state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2
refine' ⟨_, this⟩
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩
rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this]
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) M ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this]
refine' hitting_eq_hitting_of_exists hNM _
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this]
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _
rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : ∃ j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ N ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h
obtain ⟨j, hj₁, hj₂⟩ := h
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω j : ℕ hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N hj₂ : f j ω ∈ Set.Ici b ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N, f j ω ∈ Set.Ici b case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ N ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h
exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl]
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h
Mathlib.Probability.Martingale.Upcrossing.521_0.80Cpy4Qgm9i1y9y
theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by
cases n
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by
Mathlib.Probability.Martingale.Upcrossing.535_0.80Cpy4Qgm9i1y9y
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N Nat.zero ω < N ⊢ upperCrossingTime a b f M Nat.zero ω = upperCrossingTime a b f N Nat.zero ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n ·
simp
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n ·
Mathlib.Probability.Martingale.Upcrossing.535_0.80Cpy4Qgm9i1y9y
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M n✝ : ℕ h : upperCrossingTime a b f N (Nat.succ n✝) ω < N ⊢ upperCrossingTime a b f M (Nat.succ n✝) ω = upperCrossingTime a b f N (Nat.succ n✝) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp ·
exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp ·
Mathlib.Probability.Martingale.Upcrossing.535_0.80Cpy4Qgm9i1y9y
theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ Monotone fun N ω => upcrossingsBefore a b f N ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by
intro N M hNM ω
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω ⊢ (fun N ω => upcrossingsBefore a b f N ω) N ω ≤ (fun N ω => upcrossingsBefore a b f N ω) M ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω
simp only [upcrossingsBefore]
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore]
by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore]
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty ·
refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty ·
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} n : ℕ hn : n ∈ {n | upperCrossingTime a b f N n ω < N} ⊢ n ∈ {n | upperCrossingTime a b f M n ω < M}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _
rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn]
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} n : ℕ hn : n ∈ {n | upperCrossingTime a b f N n ω < N} ⊢ upperCrossingTime a b f N n ω < M
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn]
exact lt_of_lt_of_le hn hNM
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn]
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : ¬Set.Nonempty {n | upperCrossingTime a b f N n ω < N} ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM ·
rw [Set.not_nonempty_iff_eq_empty] at hemp
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM ·
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : {n | upperCrossingTime a b f N n ω < N} = ∅ ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp
simp [hemp, csSup_empty, bot_eq_zero', zero_le']
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp
Mathlib.Probability.Martingale.Upcrossing.543_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by
refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _)
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ Nat.succ (upcrossingsBefore a b f N ω) ∈ {n | upperCrossingTime a b f (N₂ + 1) n ω < N₂ + 1}
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _)
rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl]
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _)
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ ∃ j ∈ Set.Ico (lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) (N₂ + 1), f j ω ∈ Set.Ici b
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] ·
refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] ·
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N₂
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩
rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)]
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ ∃ j ∈ Set.Icc (upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) N₂, f j ω ∈ Set.Iic a
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)]
refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)]
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩
by_cases hN : 0 < N
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N ·
have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab)
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N ·
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab)
rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this]
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab)
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N ⊢ upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this]
exact this.le
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this]
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : ¬0 < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le ·
rw [not_lt, le_zero_iff] at hN
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le ·
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : N = 0 ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN
rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero]
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : N = 0 ⊢ ⊥ ω ≤ 0
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero]
rfl
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero]
Mathlib.Probability.Martingale.Upcrossing.554_0.80Cpy4Qgm9i1y9y
theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by
have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by
Mathlib.Probability.Martingale.Upcrossing.588_0.80Cpy4Qgm9i1y9y
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ N ≤ upperCrossingTime a b f N n ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by
rw [upcrossingsBefore] at hn
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by
Mathlib.Probability.Martingale.Upcrossing.588_0.80Cpy4Qgm9i1y9y
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : sSup {n | upperCrossingTime a b f N n ω < N} < n ⊢ N ≤ upperCrossingTime a b f N n ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn
rw [← not_lt]
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn
Mathlib.Probability.Martingale.Upcrossing.588_0.80Cpy4Qgm9i1y9y
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : sSup {n | upperCrossingTime a b f N n ω < N} < n ⊢ ¬upperCrossingTime a b f N n ω < N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt]
exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt]
Mathlib.Probability.Martingale.Upcrossing.588_0.80Cpy4Qgm9i1y9y
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n this : N ≤ upperCrossingTime a b f N n ω ⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)]
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
Mathlib.Probability.Martingale.Upcrossing.588_0.80Cpy4Qgm9i1y9y
theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by
classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical
by_cases hN : N = 0
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 ·
simp [hN]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN]
simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, ∑ x_1 in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N x_1 ω) (upperCrossingTime a b f N (x_1 + 1) ω)) (fun a => f (a + 1) ω - f a ω) x
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul]
rw [Finset.sum_comm]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ y in Finset.range N, ∑ x in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω)) (fun a => f (a + 1) ω - f a ω) x
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm]
have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by
intro k
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k
rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ f (upperCrossingTime a b f N (k + 1) ω) ω - f (lowerCrossingTime a b f N k ω) ω = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] ·
rfl
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl ·
ext i
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case a Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k i : ℕ ⊢ i ∈ Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) ↔ i ∈ Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i
simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case a Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k i : ℕ ⊢ lowerCrossingTime a b f N k ω ≤ i → i < upperCrossingTime a b f N (k + 1) ω → i < N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ y in Finset.range N, ∑ x in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω)) (fun a => f (a + 1) ω - f a ω) x
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
simp_rw [h₁]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁]
have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi')
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi')
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ hi : i ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ i < upcrossingsBefore a b f N ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
rwa [Finset.mem_range] at hi
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : i ∉ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
by_cases hi' : i = upcrossingsBefore a b f N ω
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : i ∉ Finset.range (upcrossingsBefore a b f N ω) hi' : i = upcrossingsBefore a b f N ω ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω ·
subst hi'
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1)) ω - stoppedValue f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω)) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi'
simp only [stoppedValue]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi'
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1) ω) ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue]
rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ·
rw [heq, sub_self]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] ·
rw [sub_nonneg]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : upcrossingsBefore a b f N ω ∉ Finset.range (upcrossingsBefore a b f N ω) heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω ≤ f N ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg]
exact le_trans (stoppedValue_lowerCrossingTime heq) hf
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : i ∉ Finset.range (upcrossingsBefore a b f N ω) hi' : ¬i = upcrossingsBefore a b f N ω ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf ·
rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf ·
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : i ∉ Finset.range (upcrossingsBefore a b f N ω) hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
rw [Finset.mem_range, not_lt] at hi
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : upcrossingsBefore a b f N ω ≤ i hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi
exact lt_of_le_of_ne hi (Ne.symm hi')
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi')
refine' le_trans _ h₂
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi')
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂
rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm]
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂
Mathlib.Probability.Martingale.Upcrossing.599_0.80Cpy4Qgm9i1y9y
theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by
rw [← integral_mul_left]
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by
Mathlib.Probability.Martingale.Upcrossing.655_0.80Cpy4Qgm9i1y9y
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N]
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ ∫ (a_1 : Ω), (b - a) * ↑(upcrossingsBefore a b f N a_1) ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left]
refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left]
Mathlib.Probability.Martingale.Upcrossing.655_0.80Cpy4Qgm9i1y9y
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N]
Mathlib_Probability_Martingale_Upcrossing
case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ 0 ≤ᵐ[μ] fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ ·
exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _)
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ ·
Mathlib.Probability.Martingale.Upcrossing.655_0.80Cpy4Qgm9i1y9y
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N]
Mathlib_Probability_Martingale_Upcrossing
case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ≤ᵐ[μ] fun x => Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) ·
refine' eventually_of_forall fun ω => _
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) ·
Mathlib.Probability.Martingale.Upcrossing.655_0.80Cpy4Qgm9i1y9y
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N]
Mathlib_Probability_Martingale_Upcrossing
case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ω : Ω ⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ω ≤ (fun x => Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _
simpa using mul_upcrossingsBefore_le (hfN ω) hab
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _
Mathlib.Probability.Martingale.Upcrossing.655_0.80Cpy4Qgm9i1y9y
theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N]
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by
have hab' : 0 < b - a := sub_pos.2 hab
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab
have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a ⊢ ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by
intro i ω
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ ⊢ b - a ≤ (f ω i - a)⁺ ↔ b ≤ f ω i
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω
refine' ⟨fun h => _, fun h => _⟩
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b - a ≤ (f ω i - a)⁺ ⊢ b ≤ f ω i
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ ·
rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b ≤ f ω i ⊢ b - a ≤ (f ω i - a)⁺
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] ·
rw [← sub_le_sub_iff_right a] at h
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b - a ≤ f ω i - a ⊢ b - a ≤ (f ω i - a)⁺
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h
rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ⊢ ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by
intro ω i
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ω : Ω i : ℕ ⊢ (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i
rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
induction' n with k ih
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = upperCrossingTime a b f N Nat.zero ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih ·
refine' ⟨rfl, _⟩
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩
simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ (fun x => if ∃ j ∈ Set.Icc ⊥ N, (f j x - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i x - a)⁺ ≤ 0}) else N) = fun x => if ∃ j ∈ Set.Icc ⊥ N, f j x ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i x ≤ a}) else N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq]
ext ω
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq]
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case zero.h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω ⊢ (if ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) else N) = if ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) else N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω
split_ifs with h₁ h₂ h₂
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ ·
simp_rw [hf']
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] ·
simp_rw [Set.mem_Iic, ← hf' _ _] at h₂
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ≤ 0 ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂
exact False.elim (h₂ h₁)
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) ·
simp_rw [Set.mem_Iic, hf' _ _] at h₁
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₂ : ∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a h₁ : ¬∃ j ∈ Set.Icc ⊥ N, f j ω ≤ a ⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁
exact False.elim (h₁ h₂)
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j ∈ Set.Icc ⊥ N, (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j ∈ Set.Icc ⊥ N, f j ω ∈ Set.Iic a ⊢ N = N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) ·
rfl
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = upperCrossingTime a b f N (Nat.succ k) ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl ·
have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici, not_true_eq_false] · refine' False.elim (h₁ _) simp_all only [Set.mem_Ici] · rfl
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by
ext ω
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) ω = upperCrossingTime a b f N (k + 1) ω
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω
simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω ⊢ (if ∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) then sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) else N) = if ∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b then sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω}) else N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right]
split_ifs with h₁ h₂ h₂
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right]
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b ⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) = sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω})
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ ·
simp_rw [← sub_le_iff_le_add, hf ω]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ¬∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b ⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) = N
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] ·
refine' False.elim (h₂ _)
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ¬∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _)
simp_all only [Set.mem_Ici, not_true_eq_false]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _)
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ¬∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b ⊢ N = sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω})
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici, not_true_eq_false] ·
refine' False.elim (h₁ _)
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici, not_true_eq_false] ·
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing
case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ¬∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N, f j ω ∈ Set.Ici b ⊢ ∃ j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N, (f j ω - a)⁺ ∈ Set.Ici (b - a)
/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.Data.Set.Intervals.Monotone import Mathlib.Probability.Process.HittingTime import Mathlib.Probability.Martingale.Basic #align_import probability.martingale.upcrossing from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # Doob's upcrossing estimate Given a discrete real-valued submartingale $(f_n)_{n \in \mathbb{N}}$, denoting by $U_N(a, b)$ the number of times $f_n$ crossed from below $a$ to above $b$ before time $N$, Doob's upcrossing estimate (also known as Doob's inequality) states that $$(b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(f_N - a)^+].$$ Doob's upcrossing estimate is an important inequality and is central in proving the martingale convergence theorems. ## Main definitions * `MeasureTheory.upperCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing above `b` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.lowerCrossingTime a b f N n`: is the stopping time corresponding to `f` crossing below `a` the `n`-th time before time `N` (if this does not occur then the value is taken to be `N`). * `MeasureTheory.upcrossingStrat a b f N`: is the predictable process which is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. Intuitively one might think of the `upcrossingStrat` as the strategy of buying 1 share whenever the process crosses below `a` for the first time after selling and selling 1 share whenever the process crosses above `b` for the first time after buying. * `MeasureTheory.upcrossingsBefore a b f N`: is the number of times `f` crosses from below `a` to above `b` before time `N`. * `MeasureTheory.upcrossings a b f`: is the number of times `f` crosses from below `a` to above `b`. This takes value in `ℝ≥0∞` and so is allowed to be `∞`. ## Main results * `MeasureTheory.Adapted.isStoppingTime_upperCrossingTime`: `upperCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime`: `lowerCrossingTime` is a stopping time whenever the process it is associated to is adapted. * `MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part`: Doob's upcrossing estimate. * `MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part`: the inequality obtained by taking the supremum on both sides of Doob's upcrossing estimate. ### References We mostly follow the proof from [Kallenberg, *Foundations of modern probability*][kallenberg2021] -/ open TopologicalSpace Filter open scoped NNReal ENNReal MeasureTheory ProbabilityTheory BigOperators Topology namespace MeasureTheory variable {Ω ι : Type*} {m0 : MeasurableSpace Ω} {μ : Measure Ω} /-! ## Proof outline In this section, we will denote by $U_N(a, b)$ the number of upcrossings of $(f_n)$ from below $a$ to above $b$ before time $N$. To define $U_N(a, b)$, we will construct two stopping times corresponding to when $(f_n)$ crosses below $a$ and above $b$. Namely, we define $$ \sigma_n := \inf \{n \ge \tau_n \mid f_n \le a\} \wedge N; $$ $$ \tau_{n + 1} := \inf \{n \ge \sigma_n \mid f_n \ge b\} \wedge N. $$ These are `lowerCrossingTime` and `upperCrossingTime` in our formalization which are defined using `MeasureTheory.hitting` allowing us to specify a starting and ending time. Then, we may simply define $U_N(a, b) := \sup \{n \mid \tau_n < N\}$. Fixing $a < b \in \mathbb{R}$, we will first prove the theorem in the special case that $0 \le f_0$ and $a \le f_N$. In particular, we will show $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[f_N]. $$ This is `MeasureTheory.integral_mul_upcrossingsBefore_le_integral` in our formalization. To prove this, we use the fact that given a non-negative, bounded, predictable process $(C_n)$ (i.e. $(C_{n + 1})$ is adapted), $(C \bullet f)_n := \sum_{k \le n} C_{k + 1}(f_{k + 1} - f_k)$ is a submartingale if $(f_n)$ is. Define $C_n := \sum_{k \le n} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)$. It is easy to see that $(1 - C_n)$ is non-negative, bounded and predictable, and hence, given a submartingale $(f_n)$, $(1 - C) \bullet f$ is also a submartingale. Thus, by the submartingale property, $0 \le \mathbb{E}[((1 - C) \bullet f)_0] \le \mathbb{E}[((1 - C) \bullet f)_N]$ implying $$ \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[(1 \bullet f)_N] = \mathbb{E}[f_N] - \mathbb{E}[f_0]. $$ Furthermore, \begin{align} (C \bullet f)_N & = \sum_{n \le N} \sum_{k \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} \sum_{n \le N} \mathbf{1}_{[\sigma_k, \tau_{k + 1})}(n)(f_{n + 1} - f_n)\\ & = \sum_{k \le N} (f_{\sigma_k + 1} - f_{\sigma_k} + f_{\sigma_k + 2} - f_{\sigma_k + 1} + \cdots + f_{\tau_{k + 1}} - f_{\tau_{k + 1} - 1})\\ & = \sum_{k \le N} (f_{\tau_{k + 1}} - f_{\sigma_k}) \ge \sum_{k < U_N(a, b)} (b - a) = (b - a) U_N(a, b) \end{align} where the inequality follows since for all $k < U_N(a, b)$, $f_{\tau_{k + 1}} - f_{\sigma_k} \ge b - a$ while for all $k > U_N(a, b)$, $f_{\tau_{k + 1}} = f_{\sigma_k} = f_N$ and $f_{\tau_{U_N(a, b) + 1}} - f_{\sigma_{U_N(a, b)}} = f_N - a \ge 0$. Hence, we have $$ (b - a) \mathbb{E}[U_N(a, b)] \le \mathbb{E}[(C \bullet f)_N] \le \mathbb{E}[f_N] - \mathbb{E}[f_0] \le \mathbb{E}[f_N], $$ as required. To obtain the general case, we simply apply the above to $((f_n - a)^+)_n$. -/ /-- `lowerCrossingTimeAux a f c N` is the first time `f` reached below `a` after time `c` before time `N`. -/ noncomputable def lowerCrossingTimeAux [Preorder ι] [InfSet ι] (a : ℝ) (f : ι → Ω → ℝ) (c N : ι) : Ω → ι := hitting f (Set.Iic a) c N #align measure_theory.lower_crossing_time_aux MeasureTheory.lowerCrossingTimeAux /-- `upperCrossingTime a b f N n` is the first time before time `N`, `f` reaches above `b` after `f` reached below `a` for the `n - 1`-th time. -/ noncomputable def upperCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) : ℕ → Ω → ι | 0 => ⊥ | n + 1 => fun ω => hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω #align measure_theory.upper_crossing_time MeasureTheory.upperCrossingTime /-- `lowerCrossingTime a b f N n` is the first time before time `N`, `f` reaches below `a` after `f` reached above `b` for the `n`-th time. -/ noncomputable def lowerCrossingTime [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (n : ℕ) : Ω → ι := fun ω => hitting f (Set.Iic a) (upperCrossingTime a b f N n ω) N ω #align measure_theory.lower_crossing_time MeasureTheory.lowerCrossingTime section variable [Preorder ι] [OrderBot ι] [InfSet ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} @[simp] theorem upperCrossingTime_zero : upperCrossingTime a b f N 0 = ⊥ := rfl #align measure_theory.upper_crossing_time_zero MeasureTheory.upperCrossingTime_zero @[simp] theorem lowerCrossingTime_zero : lowerCrossingTime a b f N 0 = hitting f (Set.Iic a) ⊥ N := rfl #align measure_theory.lower_crossing_time_zero MeasureTheory.lowerCrossingTime_zero theorem upperCrossingTime_succ : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω := by rw [upperCrossingTime] #align measure_theory.upper_crossing_time_succ MeasureTheory.upperCrossingTime_succ theorem upperCrossingTime_succ_eq (ω : Ω) : upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω := by simp only [upperCrossingTime_succ] rfl #align measure_theory.upper_crossing_time_succ_eq MeasureTheory.upperCrossingTime_succ_eq end section ConditionallyCompleteLinearOrderBot variable [ConditionallyCompleteLinearOrderBot ι] variable {a b : ℝ} {f : ι → Ω → ℝ} {N : ι} {n m : ℕ} {ω : Ω} theorem upperCrossingTime_le : upperCrossingTime a b f N n ω ≤ N := by cases n · simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] · simp only [upperCrossingTime_succ, hitting_le] #align measure_theory.upper_crossing_time_le MeasureTheory.upperCrossingTime_le @[simp] theorem upperCrossingTime_zero' : upperCrossingTime a b f ⊥ n ω = ⊥ := eq_bot_iff.2 upperCrossingTime_le #align measure_theory.upper_crossing_time_zero' MeasureTheory.upperCrossingTime_zero' theorem lowerCrossingTime_le : lowerCrossingTime a b f N n ω ≤ N := by simp only [lowerCrossingTime, hitting_le ω] #align measure_theory.lower_crossing_time_le MeasureTheory.lowerCrossingTime_le theorem upperCrossingTime_le_lowerCrossingTime : upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω := by simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] #align measure_theory.upper_crossing_time_le_lower_crossing_time MeasureTheory.upperCrossingTime_le_lowerCrossingTime theorem lowerCrossingTime_le_upperCrossingTime_succ : lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω := by rw [upperCrossingTime_succ] exact le_hitting lowerCrossingTime_le ω #align measure_theory.lower_crossing_time_le_upper_crossing_time_succ MeasureTheory.lowerCrossingTime_le_upperCrossingTime_succ theorem lowerCrossingTime_mono (hnm : n ≤ m) : lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω := by suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime #align measure_theory.lower_crossing_time_mono MeasureTheory.lowerCrossingTime_mono theorem upperCrossingTime_mono (hnm : n ≤ m) : upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω := by suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ #align measure_theory.upper_crossing_time_mono MeasureTheory.upperCrossingTime_mono end ConditionallyCompleteLinearOrderBot variable {a b : ℝ} {f : ℕ → Ω → ℝ} {N : ℕ} {n m : ℕ} {ω : Ω} theorem stoppedValue_lowerCrossingTime (h : lowerCrossingTime a b f N n ω ≠ N) : stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ #align measure_theory.stopped_value_lower_crossing_time MeasureTheory.stoppedValue_lowerCrossingTime theorem stoppedValue_upperCrossingTime (h : upperCrossingTime a b f N (n + 1) ω ≠ N) : b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω := by obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ #align measure_theory.stopped_value_upper_crossing_time MeasureTheory.stoppedValue_upperCrossingTime theorem upperCrossingTime_lt_lowerCrossingTime (hab : a < b) (hn : lowerCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) simp only [stoppedValue] rw [← h] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) #align measure_theory.upper_crossing_time_lt_lower_crossing_time MeasureTheory.upperCrossingTime_lt_lowerCrossingTime theorem lowerCrossingTime_lt_upperCrossingTime (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := by refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ simp only [stoppedValue] rw [← h] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) #align measure_theory.lower_crossing_time_lt_upper_crossing_time MeasureTheory.lowerCrossingTime_lt_upperCrossingTime theorem upperCrossingTime_lt_succ (hab : a < b) (hn : upperCrossingTime a b f N (n + 1) ω ≠ N) : upperCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_lt_upperCrossingTime hab hn) #align measure_theory.upper_crossing_time_lt_succ MeasureTheory.upperCrossingTime_lt_succ theorem lowerCrossingTime_stabilize (hnm : n ≤ m) (hn : lowerCrossingTime a b f N n ω = N) : lowerCrossingTime a b f N m ω = N := le_antisymm lowerCrossingTime_le (le_trans (le_of_eq hn.symm) (lowerCrossingTime_mono hnm)) #align measure_theory.lower_crossing_time_stabilize MeasureTheory.lowerCrossingTime_stabilize theorem upperCrossingTime_stabilize (hnm : n ≤ m) (hn : upperCrossingTime a b f N n ω = N) : upperCrossingTime a b f N m ω = N := le_antisymm upperCrossingTime_le (le_trans (le_of_eq hn.symm) (upperCrossingTime_mono hnm)) #align measure_theory.upper_crossing_time_stabilize MeasureTheory.upperCrossingTime_stabilize theorem lowerCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ lowerCrossingTime a b f N n ω) : lowerCrossingTime a b f N m ω = N := lowerCrossingTime_stabilize hnm (le_antisymm lowerCrossingTime_le hn) #align measure_theory.lower_crossing_time_stabilize' MeasureTheory.lowerCrossingTime_stabilize' theorem upperCrossingTime_stabilize' (hnm : n ≤ m) (hn : N ≤ upperCrossingTime a b f N n ω) : upperCrossingTime a b f N m ω = N := upperCrossingTime_stabilize hnm (le_antisymm upperCrossingTime_le hn) #align measure_theory.upper_crossing_time_stabilize' MeasureTheory.upperCrossingTime_stabilize' -- `upperCrossingTime_bound_eq` provides an explicit bound theorem exists_upperCrossingTime_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : ∃ n, upperCrossingTime a b f N n ω = N := by by_contra h; push_neg at h have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ exact not_le.2 hk upperCrossingTime_le #align measure_theory.exists_upper_crossing_time_eq MeasureTheory.exists_upperCrossingTime_eq theorem upperCrossingTime_lt_bddAbove (hab : a < b) : BddAbove {n | upperCrossingTime a b f N n ω < N} := by obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ by_contra hn' exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) #align measure_theory.upper_crossing_time_lt_bdd_above MeasureTheory.upperCrossingTime_lt_bddAbove theorem upperCrossingTime_lt_nonempty (hN : 0 < N) : {n | upperCrossingTime a b f N n ω < N}.Nonempty := ⟨0, hN⟩ #align measure_theory.upper_crossing_time_lt_nonempty MeasureTheory.upperCrossingTime_lt_nonempty theorem upperCrossingTime_bound_eq (f : ℕ → Ω → ℝ) (N : ℕ) (ω : Ω) (hab : a < b) : upperCrossingTime a b f N N ω = N := by by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) · refine' le_antisymm upperCrossingTime_le _ have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm convert StrictMonoOn.Iic_id_le hmono N (Nat.le_sub_one_of_lt hN') · rw [not_lt] at hN' exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) #align measure_theory.upper_crossing_time_bound_eq MeasureTheory.upperCrossingTime_bound_eq theorem upperCrossingTime_eq_of_bound_le (hab : a < b) (hn : N ≤ n) : upperCrossingTime a b f N n ω = N := le_antisymm upperCrossingTime_le (le_trans (upperCrossingTime_bound_eq f N ω hab).symm.le (upperCrossingTime_mono hn)) #align measure_theory.upper_crossing_time_eq_of_bound_le MeasureTheory.upperCrossingTime_eq_of_bound_le variable {ℱ : Filtration ℕ m0} theorem Adapted.isStoppingTime_crossing (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) := by induction' n with k ih · refine' ⟨isStoppingTime_const _ 0, _⟩ simp [hitting_isStoppingTime hf measurableSet_Iic] · obtain ⟨_, ih₂⟩ := ih have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ refine' ⟨this, _⟩ · intro n exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ #align measure_theory.adapted.is_stopping_time_crossing MeasureTheory.Adapted.isStoppingTime_crossing theorem Adapted.isStoppingTime_upperCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (upperCrossingTime a b f N n) := hf.isStoppingTime_crossing.1 #align measure_theory.adapted.is_stopping_time_upper_crossing_time MeasureTheory.Adapted.isStoppingTime_upperCrossingTime theorem Adapted.isStoppingTime_lowerCrossingTime (hf : Adapted ℱ f) : IsStoppingTime ℱ (lowerCrossingTime a b f N n) := hf.isStoppingTime_crossing.2 #align measure_theory.adapted.is_stopping_time_lower_crossing_time MeasureTheory.Adapted.isStoppingTime_lowerCrossingTime /-- `upcrossingStrat a b f N n` is 1 if `n` is between a consecutive pair of lower and upper crossings and is 0 otherwise. `upcrossingStrat` is shifted by one index so that it is adapted rather than predictable. -/ noncomputable def upcrossingStrat (a b : ℝ) (f : ℕ → Ω → ℝ) (N n : ℕ) (ω : Ω) : ℝ := ∑ k in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator 1 n #align measure_theory.upcrossing_strat MeasureTheory.upcrossingStrat theorem upcrossingStrat_nonneg : 0 ≤ upcrossingStrat a b f N n ω := Finset.sum_nonneg fun _ _ => Set.indicator_nonneg (fun _ _ => zero_le_one) _ #align measure_theory.upcrossing_strat_nonneg MeasureTheory.upcrossingStrat_nonneg theorem upcrossingStrat_le_one : upcrossingStrat a b f N n ω ≤ 1 := by rw [upcrossingStrat, ← Finset.indicator_biUnion_apply] · exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ intro i _ j _ hij simp only [Set.Ico_disjoint_Ico] obtain hij' | hij' := lt_or_gt_of_ne hij · rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) · rw [gt_iff_lt] at hij' rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) #align measure_theory.upcrossing_strat_le_one MeasureTheory.upcrossingStrat_le_one theorem Adapted.upcrossingStrat_adapted (hf : Adapted ℱ f) : Adapted ℱ (upcrossingStrat a b f N) := by intro n change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) simp_rw [← not_le] exact (hf.isStoppingTime_upperCrossingTime n).compl #align measure_theory.adapted.upcrossing_strat_adapted MeasureTheory.Adapted.upcrossingStrat_adapted theorem Submartingale.sum_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)) ℱ μ := hf.sum_mul_sub hf.adapted.upcrossingStrat_adapted (fun _ _ => upcrossingStrat_le_one) fun _ _ => upcrossingStrat_nonneg #align measure_theory.submartingale.sum_upcrossing_strat_mul MeasureTheory.Submartingale.sum_upcrossingStrat_mul theorem Submartingale.sum_sub_upcrossingStrat_mul [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (a b : ℝ) (N : ℕ) : Submartingale (fun n : ℕ => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ := by refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ · exact fun n ω => sub_le_self _ upcrossingStrat_nonneg · intro n ω simp [upcrossingStrat_le_one] #align measure_theory.submartingale.sum_sub_upcrossing_strat_mul MeasureTheory.Submartingale.sum_sub_upcrossingStrat_mul theorem Submartingale.sum_mul_upcrossingStrat_le [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) : μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] ≤ μ[f n] - μ[f 0] := by have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp rw [h₂, sub_nonneg] at h₁ refine' le_trans h₁ _ simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] #align measure_theory.submartingale.sum_mul_upcrossing_strat_le MeasureTheory.Submartingale.sum_mul_upcrossingStrat_le /-- The number of upcrossings (strictly) before time `N`. -/ noncomputable def upcrossingsBefore [Preorder ι] [OrderBot ι] [InfSet ι] (a b : ℝ) (f : ι → Ω → ℝ) (N : ι) (ω : Ω) : ℕ := sSup {n | upperCrossingTime a b f N n ω < N} #align measure_theory.upcrossings_before MeasureTheory.upcrossingsBefore @[simp] theorem upcrossingsBefore_bot [Preorder ι] [OrderBot ι] [InfSet ι] {a b : ℝ} {f : ι → Ω → ℝ} {ω : Ω} : upcrossingsBefore a b f ⊥ ω = ⊥ := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_bot MeasureTheory.upcrossingsBefore_bot theorem upcrossingsBefore_zero : upcrossingsBefore a b f 0 ω = 0 := by simp [upcrossingsBefore] #align measure_theory.upcrossings_before_zero MeasureTheory.upcrossingsBefore_zero @[simp] theorem upcrossingsBefore_zero' : upcrossingsBefore a b f 0 = 0 := by ext ω; exact upcrossingsBefore_zero #align measure_theory.upcrossings_before_zero' MeasureTheory.upcrossingsBefore_zero' theorem upperCrossingTime_lt_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n ≤ upcrossingsBefore a b f N ω) : upperCrossingTime a b f N n ω < N := haveI : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := (upperCrossingTime_lt_nonempty hN).cSup_mem ((OrderBot.bddBelow _).finite_of_bddAbove (upperCrossingTime_lt_bddAbove hab)) lt_of_le_of_lt (upperCrossingTime_mono hn) this #align measure_theory.upper_crossing_time_lt_of_le_upcrossings_before MeasureTheory.upperCrossingTime_lt_of_le_upcrossingsBefore theorem upperCrossingTime_eq_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : upperCrossingTime a b f N n ω = N := by refine' le_antisymm upperCrossingTime_le (not_lt.1 _) convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) #align measure_theory.upper_crossing_time_eq_of_upcrossings_before_lt MeasureTheory.upperCrossingTime_eq_of_upcrossingsBefore_lt theorem upcrossingsBefore_le (f : ℕ → Ω → ℝ) (ω : Ω) (hab : a < b) : upcrossingsBefore a b f N ω ≤ N := by by_cases hN : N = 0 · subst hN rw [upcrossingsBefore_zero] · refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ by_contra hnN exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) #align measure_theory.upcrossings_before_le MeasureTheory.upcrossingsBefore_le theorem crossing_eq_crossing_of_lowerCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : lowerCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h induction' n with k ih · simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] · specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] refine' ⟨this, _⟩ simp only [lowerCrossingTime, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h obtain ⟨j, hj₁, hj₂⟩ := h exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ #align measure_theory.crossing_eq_crossing_of_lower_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt theorem crossing_eq_crossing_of_upperCrossingTime_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N (n + 1) ω < N) : upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω := by have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 refine' ⟨_, this⟩ rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] refine' hitting_eq_hitting_of_exists hNM _ rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h obtain ⟨j, hj₁, hj₂⟩ := h exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] #align measure_theory.crossing_eq_crossing_of_upper_crossing_time_lt MeasureTheory.crossing_eq_crossing_of_upperCrossingTime_lt theorem upperCrossingTime_eq_upperCrossingTime_of_lt {M : ℕ} (hNM : N ≤ M) (h : upperCrossingTime a b f N n ω < N) : upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω := by cases n · simp · exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 #align measure_theory.upper_crossing_time_eq_upper_crossing_time_of_lt MeasureTheory.upperCrossingTime_eq_upperCrossingTime_of_lt theorem upcrossingsBefore_mono (hab : a < b) : Monotone fun N ω => upcrossingsBefore a b f N ω := by intro N M hNM ω simp only [upcrossingsBefore] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty · refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] exact lt_of_lt_of_le hn hNM · rw [Set.not_nonempty_iff_eq_empty] at hemp simp [hemp, csSup_empty, bot_eq_zero', zero_le'] #align measure_theory.upcrossings_before_mono MeasureTheory.upcrossingsBefore_mono theorem upcrossingsBefore_lt_of_exists_upcrossing (hab : a < b) {N₁ N₂ : ℕ} (hN₁ : N ≤ N₁) (hN₁' : f N₁ ω < a) (hN₂ : N₁ ≤ N₂) (hN₂' : b < f N₂ ω) : upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω := by refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] · refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ by_cases hN : 0 < N · have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] exact this.le · rw [not_lt, le_zero_iff] at hN rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] rfl #align measure_theory.upcrossings_before_lt_of_exists_upcrossing MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing theorem lowerCrossingTime_lt_of_lt_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : lowerCrossingTime a b f N n ω < N := lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn) #align measure_theory.lower_crossing_time_lt_of_lt_upcrossings_before MeasureTheory.lowerCrossingTime_lt_of_lt_upcrossingsBefore theorem le_sub_of_le_upcrossingsBefore (hN : 0 < N) (hab : a < b) (hn : n < upcrossingsBefore a b f N ω) : b - a ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω := sub_le_sub (stoppedValue_upperCrossingTime (upperCrossingTime_lt_of_le_upcrossingsBefore hN hab hn).ne) (stoppedValue_lowerCrossingTime (lowerCrossingTime_lt_of_lt_upcrossingsBefore hN hab hn).ne) #align measure_theory.le_sub_of_le_upcrossings_before MeasureTheory.le_sub_of_le_upcrossingsBefore theorem sub_eq_zero_of_upcrossingsBefore_lt (hab : a < b) (hn : upcrossingsBefore a b f N ω < n) : stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 := by have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] #align measure_theory.sub_eq_zero_of_upcrossings_before_lt MeasureTheory.sub_eq_zero_of_upcrossingsBefore_lt theorem mul_upcrossingsBefore_le (hf : a ≤ f N ω) (hab : a < b) : (b - a) * upcrossingsBefore a b f N ω ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω := by classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] #align measure_theory.mul_upcrossings_before_le MeasureTheory.mul_upcrossingsBefore_le theorem integral_mul_upcrossingsBefore_le_integral [IsFiniteMeasure μ] (hf : Submartingale f ℱ μ) (hfN : ∀ ω, a ≤ f N ω) (hfzero : 0 ≤ f 0) (hab : a < b) : (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[f N] := calc (b - a) * μ[upcrossingsBefore a b f N] ≤ μ[∑ k in Finset.range N, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by rw [← integral_mul_left] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ · exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) · refine' eventually_of_forall fun ω => _ simpa using mul_upcrossingsBefore_le (hfN ω) hab _ ≤ μ[f N] - μ[f 0] := hf.sum_mul_upcrossingStrat_le _ ≤ μ[f N] := (sub_le_self_iff _).2 (integral_nonneg hfzero) #align measure_theory.integral_mul_upcrossings_before_le_integral MeasureTheory.integral_mul_upcrossingsBefore_le_integral theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici, not_true_eq_false] · refine' False.elim (h₁ _)
simp_all only [Set.mem_Ici]
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n := by have hab' : 0 < b - a := sub_pos.2 hab have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] induction' n with k ih · refine' ⟨rfl, _⟩ simp (config := { unfoldPartialApp := true }) only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] ext ω split_ifs with h₁ h₂ h₂ · simp_rw [hf'] · simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ exact False.elim (h₂ h₁) · simp_rw [Set.mem_Iic, hf' _ _] at h₁ exact False.elim (h₁ h₂) · rfl · have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici, not_true_eq_false] · refine' False.elim (h₁ _)
Mathlib.Probability.Martingale.Upcrossing.670_0.80Cpy4Qgm9i1y9y
theorem crossing_pos_eq (hab : a < b) : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
Mathlib_Probability_Martingale_Upcrossing