python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
// SPDX-License-Identifier: GPL-2.0 AND MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "ttm_kunit_helpers.h"
struct ttm_device_funcs ttm_dev_funcs = {
};
EXPORT_SYMBOL_GPL(ttm_dev_funcs);
int ttm_device_kunit_init(struct ttm_test_devices *priv,
struct ttm_device *ttm,
bool use_dma_alloc,
bool use_dma32)
{
struct drm_device *drm = priv->drm;
int err;
err = ttm_device_init(ttm, &ttm_dev_funcs, drm->dev,
drm->anon_inode->i_mapping,
drm->vma_offset_manager,
use_dma_alloc, use_dma32);
return err;
}
EXPORT_SYMBOL_GPL(ttm_device_kunit_init);
struct ttm_buffer_object *ttm_bo_kunit_init(struct kunit *test,
struct ttm_test_devices *devs,
size_t size)
{
struct drm_gem_object gem_obj = { .size = size };
struct ttm_buffer_object *bo;
bo = kunit_kzalloc(test, sizeof(*bo), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, bo);
bo->base = gem_obj;
bo->bdev = devs->ttm_dev;
return bo;
}
EXPORT_SYMBOL_GPL(ttm_bo_kunit_init);
struct ttm_test_devices *ttm_test_devices_basic(struct kunit *test)
{
struct ttm_test_devices *devs;
devs = kunit_kzalloc(test, sizeof(*devs), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, devs);
devs->dev = drm_kunit_helper_alloc_device(test);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, devs->dev);
devs->drm = __drm_kunit_helper_alloc_drm_device(test, devs->dev,
sizeof(*devs->drm), 0,
DRIVER_GEM);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, devs->drm);
return devs;
}
EXPORT_SYMBOL_GPL(ttm_test_devices_basic);
struct ttm_test_devices *ttm_test_devices_all(struct kunit *test)
{
struct ttm_test_devices *devs;
struct ttm_device *ttm_dev;
int err;
devs = ttm_test_devices_basic(test);
ttm_dev = kunit_kzalloc(test, sizeof(*ttm_dev), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev);
err = ttm_device_kunit_init(devs, ttm_dev, false, false);
KUNIT_ASSERT_EQ(test, err, 0);
devs->ttm_dev = ttm_dev;
return devs;
}
EXPORT_SYMBOL_GPL(ttm_test_devices_all);
void ttm_test_devices_put(struct kunit *test, struct ttm_test_devices *devs)
{
if (devs->ttm_dev)
ttm_device_fini(devs->ttm_dev);
drm_kunit_helper_free_device(test, devs->dev);
}
EXPORT_SYMBOL_GPL(ttm_test_devices_put);
int ttm_test_devices_init(struct kunit *test)
{
struct ttm_test_devices *priv;
priv = kunit_kzalloc(test, sizeof(*priv), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, priv);
priv = ttm_test_devices_basic(test);
test->priv = priv;
return 0;
}
EXPORT_SYMBOL_GPL(ttm_test_devices_init);
void ttm_test_devices_fini(struct kunit *test)
{
ttm_test_devices_put(test, test->priv);
}
EXPORT_SYMBOL_GPL(ttm_test_devices_fini);
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/ttm/tests/ttm_kunit_helpers.c |
// SPDX-License-Identifier: GPL-2.0 AND MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/mm.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/ttm/ttm_pool.h>
#include "ttm_kunit_helpers.h"
struct ttm_pool_test_case {
const char *description;
unsigned int order;
bool use_dma_alloc;
};
struct ttm_pool_test_priv {
struct ttm_test_devices *devs;
/* Used to create mock ttm_tts */
struct ttm_buffer_object *mock_bo;
};
static struct ttm_operation_ctx simple_ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
static int ttm_pool_test_init(struct kunit *test)
{
struct ttm_pool_test_priv *priv;
priv = kunit_kzalloc(test, sizeof(*priv), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, priv);
priv->devs = ttm_test_devices_basic(test);
test->priv = priv;
return 0;
}
static void ttm_pool_test_fini(struct kunit *test)
{
struct ttm_pool_test_priv *priv = test->priv;
ttm_test_devices_put(test, priv->devs);
}
static struct ttm_tt *ttm_tt_kunit_init(struct kunit *test,
uint32_t page_flags,
enum ttm_caching caching,
size_t size)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_buffer_object *bo;
struct ttm_tt *tt;
int err;
bo = ttm_bo_kunit_init(test, priv->devs, size);
KUNIT_ASSERT_NOT_NULL(test, bo);
priv->mock_bo = bo;
tt = kunit_kzalloc(test, sizeof(*tt), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, tt);
err = ttm_tt_init(tt, priv->mock_bo, page_flags, caching, 0);
KUNIT_ASSERT_EQ(test, err, 0);
return tt;
}
static struct ttm_pool *ttm_pool_pre_populated(struct kunit *test,
size_t size,
enum ttm_caching caching)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_test_devices *devs = priv->devs;
struct ttm_pool *pool;
struct ttm_tt *tt;
unsigned long order = __fls(size / PAGE_SIZE);
int err;
tt = ttm_tt_kunit_init(test, order, caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
pool = kunit_kzalloc(test, sizeof(*pool), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, pool);
ttm_pool_init(pool, devs->dev, NUMA_NO_NODE, true, false);
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
return pool;
}
static const struct ttm_pool_test_case ttm_pool_basic_cases[] = {
{
.description = "One page",
.order = 0,
},
{
.description = "More than one page",
.order = 2,
},
{
.description = "Above the allocation limit",
.order = MAX_ORDER + 1,
},
{
.description = "One page, with coherent DMA mappings enabled",
.order = 0,
.use_dma_alloc = true,
},
{
.description = "Above the allocation limit, with coherent DMA mappings enabled",
.order = MAX_ORDER + 1,
.use_dma_alloc = true,
},
};
static void ttm_pool_alloc_case_desc(const struct ttm_pool_test_case *t,
char *desc)
{
strscpy(desc, t->description, KUNIT_PARAM_DESC_SIZE);
}
KUNIT_ARRAY_PARAM(ttm_pool_alloc_basic, ttm_pool_basic_cases,
ttm_pool_alloc_case_desc);
static void ttm_pool_alloc_basic(struct kunit *test)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_test_devices *devs = priv->devs;
const struct ttm_pool_test_case *params = test->param_value;
struct ttm_tt *tt;
struct ttm_pool *pool;
struct page *fst_page, *last_page;
enum ttm_caching caching = ttm_uncached;
unsigned int expected_num_pages = 1 << params->order;
size_t size = expected_num_pages * PAGE_SIZE;
int err;
tt = ttm_tt_kunit_init(test, 0, caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
pool = kunit_kzalloc(test, sizeof(*pool), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, pool);
ttm_pool_init(pool, devs->dev, NUMA_NO_NODE, params->use_dma_alloc,
false);
KUNIT_ASSERT_PTR_EQ(test, pool->dev, devs->dev);
KUNIT_ASSERT_EQ(test, pool->nid, NUMA_NO_NODE);
KUNIT_ASSERT_EQ(test, pool->use_dma_alloc, params->use_dma_alloc);
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
KUNIT_ASSERT_EQ(test, tt->num_pages, expected_num_pages);
fst_page = tt->pages[0];
last_page = tt->pages[tt->num_pages - 1];
if (params->order <= MAX_ORDER) {
if (params->use_dma_alloc) {
KUNIT_ASSERT_NOT_NULL(test, (void *)fst_page->private);
KUNIT_ASSERT_NOT_NULL(test, (void *)last_page->private);
} else {
KUNIT_ASSERT_EQ(test, fst_page->private, params->order);
}
} else {
if (params->use_dma_alloc) {
KUNIT_ASSERT_NOT_NULL(test, (void *)fst_page->private);
KUNIT_ASSERT_NULL(test, (void *)last_page->private);
} else {
/*
* We expect to alloc one big block, followed by
* order 0 blocks
*/
KUNIT_ASSERT_EQ(test, fst_page->private,
min_t(unsigned int, MAX_ORDER,
params->order));
KUNIT_ASSERT_EQ(test, last_page->private, 0);
}
}
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
ttm_pool_fini(pool);
}
static void ttm_pool_alloc_basic_dma_addr(struct kunit *test)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_test_devices *devs = priv->devs;
const struct ttm_pool_test_case *params = test->param_value;
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_buffer_object *bo;
dma_addr_t dma1, dma2;
enum ttm_caching caching = ttm_uncached;
unsigned int expected_num_pages = 1 << params->order;
size_t size = expected_num_pages * PAGE_SIZE;
int err;
tt = kunit_kzalloc(test, sizeof(*tt), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, tt);
bo = ttm_bo_kunit_init(test, devs, size);
KUNIT_ASSERT_NOT_NULL(test, bo);
err = ttm_sg_tt_init(tt, bo, 0, caching);
KUNIT_ASSERT_EQ(test, err, 0);
pool = kunit_kzalloc(test, sizeof(*pool), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, pool);
ttm_pool_init(pool, devs->dev, NUMA_NO_NODE, true, false);
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
KUNIT_ASSERT_EQ(test, tt->num_pages, expected_num_pages);
dma1 = tt->dma_address[0];
dma2 = tt->dma_address[tt->num_pages - 1];
KUNIT_ASSERT_NOT_NULL(test, (void *)(uintptr_t)dma1);
KUNIT_ASSERT_NOT_NULL(test, (void *)(uintptr_t)dma2);
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
ttm_pool_fini(pool);
}
static void ttm_pool_alloc_order_caching_match(struct kunit *test)
{
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_pool_type *pt;
enum ttm_caching caching = ttm_uncached;
unsigned int order = 0;
size_t size = PAGE_SIZE;
int err;
pool = ttm_pool_pre_populated(test, size, caching);
pt = &pool->caching[caching].orders[order];
KUNIT_ASSERT_FALSE(test, list_empty(&pt->pages));
tt = ttm_tt_kunit_init(test, 0, caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
KUNIT_ASSERT_TRUE(test, list_empty(&pt->pages));
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
ttm_pool_fini(pool);
}
static void ttm_pool_alloc_caching_mismatch(struct kunit *test)
{
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_pool_type *pt_pool, *pt_tt;
enum ttm_caching tt_caching = ttm_uncached;
enum ttm_caching pool_caching = ttm_cached;
size_t size = PAGE_SIZE;
unsigned int order = 0;
int err;
pool = ttm_pool_pre_populated(test, size, pool_caching);
pt_pool = &pool->caching[pool_caching].orders[order];
pt_tt = &pool->caching[tt_caching].orders[order];
tt = ttm_tt_kunit_init(test, 0, tt_caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
KUNIT_ASSERT_FALSE(test, list_empty(&pt_pool->pages));
KUNIT_ASSERT_TRUE(test, list_empty(&pt_tt->pages));
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
KUNIT_ASSERT_FALSE(test, list_empty(&pt_pool->pages));
KUNIT_ASSERT_FALSE(test, list_empty(&pt_tt->pages));
ttm_pool_fini(pool);
}
static void ttm_pool_alloc_order_mismatch(struct kunit *test)
{
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_pool_type *pt_pool, *pt_tt;
enum ttm_caching caching = ttm_uncached;
unsigned int order = 2;
size_t fst_size = (1 << order) * PAGE_SIZE;
size_t snd_size = PAGE_SIZE;
int err;
pool = ttm_pool_pre_populated(test, fst_size, caching);
pt_pool = &pool->caching[caching].orders[order];
pt_tt = &pool->caching[caching].orders[0];
tt = ttm_tt_kunit_init(test, 0, caching, snd_size);
KUNIT_ASSERT_NOT_NULL(test, tt);
KUNIT_ASSERT_FALSE(test, list_empty(&pt_pool->pages));
KUNIT_ASSERT_TRUE(test, list_empty(&pt_tt->pages));
err = ttm_pool_alloc(pool, tt, &simple_ctx);
KUNIT_ASSERT_EQ(test, err, 0);
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
KUNIT_ASSERT_FALSE(test, list_empty(&pt_pool->pages));
KUNIT_ASSERT_FALSE(test, list_empty(&pt_tt->pages));
ttm_pool_fini(pool);
}
static void ttm_pool_free_dma_alloc(struct kunit *test)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_test_devices *devs = priv->devs;
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_pool_type *pt;
enum ttm_caching caching = ttm_uncached;
unsigned int order = 2;
size_t size = (1 << order) * PAGE_SIZE;
tt = ttm_tt_kunit_init(test, 0, caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
pool = kunit_kzalloc(test, sizeof(*pool), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, pool);
ttm_pool_init(pool, devs->dev, NUMA_NO_NODE, true, false);
ttm_pool_alloc(pool, tt, &simple_ctx);
pt = &pool->caching[caching].orders[order];
KUNIT_ASSERT_TRUE(test, list_empty(&pt->pages));
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
KUNIT_ASSERT_FALSE(test, list_empty(&pt->pages));
ttm_pool_fini(pool);
}
static void ttm_pool_free_no_dma_alloc(struct kunit *test)
{
struct ttm_pool_test_priv *priv = test->priv;
struct ttm_test_devices *devs = priv->devs;
struct ttm_tt *tt;
struct ttm_pool *pool;
struct ttm_pool_type *pt;
enum ttm_caching caching = ttm_uncached;
unsigned int order = 2;
size_t size = (1 << order) * PAGE_SIZE;
tt = ttm_tt_kunit_init(test, 0, caching, size);
KUNIT_ASSERT_NOT_NULL(test, tt);
pool = kunit_kzalloc(test, sizeof(*pool), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, pool);
ttm_pool_init(pool, devs->dev, NUMA_NO_NODE, false, false);
ttm_pool_alloc(pool, tt, &simple_ctx);
pt = &pool->caching[caching].orders[order];
KUNIT_ASSERT_TRUE(test, list_is_singular(&pt->pages));
ttm_pool_free(pool, tt);
ttm_tt_fini(tt);
KUNIT_ASSERT_TRUE(test, list_is_singular(&pt->pages));
ttm_pool_fini(pool);
}
static void ttm_pool_fini_basic(struct kunit *test)
{
struct ttm_pool *pool;
struct ttm_pool_type *pt;
enum ttm_caching caching = ttm_uncached;
unsigned int order = 0;
size_t size = PAGE_SIZE;
pool = ttm_pool_pre_populated(test, size, caching);
pt = &pool->caching[caching].orders[order];
KUNIT_ASSERT_FALSE(test, list_empty(&pt->pages));
ttm_pool_fini(pool);
KUNIT_ASSERT_TRUE(test, list_empty(&pt->pages));
}
static struct kunit_case ttm_pool_test_cases[] = {
KUNIT_CASE_PARAM(ttm_pool_alloc_basic, ttm_pool_alloc_basic_gen_params),
KUNIT_CASE_PARAM(ttm_pool_alloc_basic_dma_addr,
ttm_pool_alloc_basic_gen_params),
KUNIT_CASE(ttm_pool_alloc_order_caching_match),
KUNIT_CASE(ttm_pool_alloc_caching_mismatch),
KUNIT_CASE(ttm_pool_alloc_order_mismatch),
KUNIT_CASE(ttm_pool_free_dma_alloc),
KUNIT_CASE(ttm_pool_free_no_dma_alloc),
KUNIT_CASE(ttm_pool_fini_basic),
{}
};
static struct kunit_suite ttm_pool_test_suite = {
.name = "ttm_pool",
.init = ttm_pool_test_init,
.exit = ttm_pool_test_fini,
.test_cases = ttm_pool_test_cases,
};
kunit_test_suites(&ttm_pool_test_suite);
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/ttm/tests/ttm_pool_test.c |
// SPDX-License-Identifier: GPL-2.0 AND MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <drm/ttm/ttm_resource.h>
#include <drm/ttm/ttm_device.h>
#include <drm/ttm/ttm_placement.h>
#include "ttm_kunit_helpers.h"
struct ttm_device_test_case {
const char *description;
bool use_dma_alloc;
bool use_dma32;
bool pools_init_expected;
};
static void ttm_device_init_basic(struct kunit *test)
{
struct ttm_test_devices *priv = test->priv;
struct ttm_device *ttm_dev;
struct ttm_resource_manager *ttm_sys_man;
int err;
ttm_dev = kunit_kzalloc(test, sizeof(*ttm_dev), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev);
err = ttm_device_kunit_init(priv, ttm_dev, false, false);
KUNIT_ASSERT_EQ(test, err, 0);
KUNIT_EXPECT_PTR_EQ(test, ttm_dev->funcs, &ttm_dev_funcs);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev->wq);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev->man_drv[TTM_PL_SYSTEM]);
ttm_sys_man = &ttm_dev->sysman;
KUNIT_ASSERT_NOT_NULL(test, ttm_sys_man);
KUNIT_EXPECT_TRUE(test, ttm_sys_man->use_tt);
KUNIT_EXPECT_TRUE(test, ttm_sys_man->use_type);
KUNIT_ASSERT_NOT_NULL(test, ttm_sys_man->func);
KUNIT_EXPECT_PTR_EQ(test, ttm_dev->dev_mapping,
priv->drm->anon_inode->i_mapping);
ttm_device_fini(ttm_dev);
}
static void ttm_device_init_multiple(struct kunit *test)
{
struct ttm_test_devices *priv = test->priv;
struct ttm_device *ttm_devs;
unsigned int i, num_dev = 3;
int err;
ttm_devs = kunit_kcalloc(test, num_dev, sizeof(*ttm_devs), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_devs);
for (i = 0; i < num_dev; i++) {
err = ttm_device_kunit_init(priv, &ttm_devs[i], false, false);
KUNIT_ASSERT_EQ(test, err, 0);
KUNIT_EXPECT_PTR_EQ(test, ttm_devs[i].dev_mapping,
priv->drm->anon_inode->i_mapping);
KUNIT_ASSERT_NOT_NULL(test, ttm_devs[i].wq);
KUNIT_EXPECT_PTR_EQ(test, ttm_devs[i].funcs, &ttm_dev_funcs);
KUNIT_ASSERT_NOT_NULL(test, ttm_devs[i].man_drv[TTM_PL_SYSTEM]);
}
KUNIT_ASSERT_EQ(test, list_count_nodes(&ttm_devs[0].device_list), num_dev);
for (i = 0; i < num_dev; i++)
ttm_device_fini(&ttm_devs[i]);
}
static void ttm_device_fini_basic(struct kunit *test)
{
struct ttm_test_devices *priv = test->priv;
struct ttm_device *ttm_dev;
struct ttm_resource_manager *man;
int err;
ttm_dev = kunit_kzalloc(test, sizeof(*ttm_dev), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev);
err = ttm_device_kunit_init(priv, ttm_dev, false, false);
KUNIT_ASSERT_EQ(test, err, 0);
man = ttm_manager_type(ttm_dev, TTM_PL_SYSTEM);
KUNIT_ASSERT_NOT_NULL(test, man);
ttm_device_fini(ttm_dev);
KUNIT_ASSERT_FALSE(test, man->use_type);
KUNIT_ASSERT_TRUE(test, list_empty(&man->lru[0]));
KUNIT_ASSERT_NULL(test, ttm_dev->man_drv[TTM_PL_SYSTEM]);
}
static void ttm_device_init_no_vma_man(struct kunit *test)
{
struct ttm_test_devices *priv = test->priv;
struct drm_device *drm = priv->drm;
struct ttm_device *ttm_dev;
struct drm_vma_offset_manager *vma_man;
int err;
ttm_dev = kunit_kzalloc(test, sizeof(*ttm_dev), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev);
/* Let's pretend there's no VMA manager allocated */
vma_man = drm->vma_offset_manager;
drm->vma_offset_manager = NULL;
err = ttm_device_kunit_init(priv, ttm_dev, false, false);
KUNIT_EXPECT_EQ(test, err, -EINVAL);
/* Bring the manager back for a graceful cleanup */
drm->vma_offset_manager = vma_man;
}
static const struct ttm_device_test_case ttm_device_cases[] = {
{
.description = "No DMA allocations, no DMA32 required",
.use_dma_alloc = false,
.use_dma32 = false,
.pools_init_expected = false,
},
{
.description = "DMA allocations, DMA32 required",
.use_dma_alloc = true,
.use_dma32 = true,
.pools_init_expected = true,
},
{
.description = "No DMA allocations, DMA32 required",
.use_dma_alloc = false,
.use_dma32 = true,
.pools_init_expected = false,
},
{
.description = "DMA allocations, no DMA32 required",
.use_dma_alloc = true,
.use_dma32 = false,
.pools_init_expected = true,
},
};
static void ttm_device_case_desc(const struct ttm_device_test_case *t, char *desc)
{
strscpy(desc, t->description, KUNIT_PARAM_DESC_SIZE);
}
KUNIT_ARRAY_PARAM(ttm_device, ttm_device_cases, ttm_device_case_desc);
static void ttm_device_init_pools(struct kunit *test)
{
struct ttm_test_devices *priv = test->priv;
const struct ttm_device_test_case *params = test->param_value;
struct ttm_device *ttm_dev;
struct ttm_pool *pool;
struct ttm_pool_type pt;
int err;
ttm_dev = kunit_kzalloc(test, sizeof(*ttm_dev), GFP_KERNEL);
KUNIT_ASSERT_NOT_NULL(test, ttm_dev);
err = ttm_device_kunit_init(priv, ttm_dev,
params->use_dma_alloc,
params->use_dma32);
KUNIT_ASSERT_EQ(test, err, 0);
pool = &ttm_dev->pool;
KUNIT_ASSERT_NOT_NULL(test, pool);
KUNIT_EXPECT_PTR_EQ(test, pool->dev, priv->dev);
KUNIT_EXPECT_EQ(test, pool->use_dma_alloc, params->use_dma_alloc);
KUNIT_EXPECT_EQ(test, pool->use_dma32, params->use_dma32);
if (params->pools_init_expected) {
for (int i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
for (int j = 0; j <= MAX_ORDER; ++j) {
pt = pool->caching[i].orders[j];
KUNIT_EXPECT_PTR_EQ(test, pt.pool, pool);
KUNIT_EXPECT_EQ(test, pt.caching, i);
KUNIT_EXPECT_EQ(test, pt.order, j);
if (params->use_dma_alloc)
KUNIT_ASSERT_FALSE(test,
list_empty(&pt.pages));
}
}
}
ttm_device_fini(ttm_dev);
}
static struct kunit_case ttm_device_test_cases[] = {
KUNIT_CASE(ttm_device_init_basic),
KUNIT_CASE(ttm_device_init_multiple),
KUNIT_CASE(ttm_device_fini_basic),
KUNIT_CASE(ttm_device_init_no_vma_man),
KUNIT_CASE_PARAM(ttm_device_init_pools, ttm_device_gen_params),
{}
};
static struct kunit_suite ttm_device_test_suite = {
.name = "ttm_device",
.init = ttm_test_devices_init,
.exit = ttm_test_devices_fini,
.test_cases = ttm_device_test_cases,
};
kunit_test_suites(&ttm_device_test_suite);
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/ttm/tests/ttm_device_test.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
static int mgag200_g200_init_pci_options(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
bool has_sgram;
u32 option;
int err;
err = pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
if (err != PCIBIOS_SUCCESSFUL) {
dev_err(dev, "pci_read_config_dword(PCI_MGA_OPTION) failed: %d\n", err);
return pcibios_err_to_errno(err);
}
has_sgram = !!(option & PCI_MGA_OPTION_HARDPWMSK);
if (has_sgram)
option = 0x4049cd21;
else
option = 0x40499121;
return mgag200_init_pci_options(pdev, option, 0x00008000);
}
static void mgag200_g200_init_registers(struct mgag200_g200_device *g200)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x00, 0xc9, 0x1f,
0x04, 0x2d, 0x19)
};
struct mga_device *mdev = &g200->base;
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); ++i) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)))
continue;
WREG_DAC(i, dacvalue[i]);
}
mgag200_init_registers(mdev);
}
/*
* PIXPLLC
*/
static int mgag200_g200_pixpllc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *new_state)
{
static const int post_div_max = 7;
static const int in_div_min = 1;
static const int in_div_max = 6;
static const int feed_div_min = 7;
static const int feed_div_max = 127;
struct drm_device *dev = crtc->dev;
struct mgag200_g200_device *g200 = to_mgag200_g200_device(dev);
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
u8 testp, testm, testn;
u8 n = 0, m = 0, p, s;
long f_vco;
long computed;
long delta, tmp_delta;
long ref_clk = g200->ref_clk;
long p_clk_min = g200->pclk_min;
long p_clk_max = g200->pclk_max;
if (clock > p_clk_max) {
drm_err(dev, "Pixel Clock %ld too high\n", clock);
return -EINVAL;
}
if (clock < p_clk_min >> 3)
clock = p_clk_min >> 3;
f_vco = clock;
for (testp = 0;
testp <= post_div_max && f_vco < p_clk_min;
testp = (testp << 1) + 1, f_vco <<= 1)
;
p = testp + 1;
delta = clock;
for (testm = in_div_min; testm <= in_div_max; testm++) {
for (testn = feed_div_min; testn <= feed_div_max; testn++) {
computed = ref_clk * (testn + 1) / (testm + 1);
if (computed < f_vco)
tmp_delta = f_vco - computed;
else
tmp_delta = computed - f_vco;
if (tmp_delta < delta) {
delta = tmp_delta;
m = testm + 1;
n = testn + 1;
}
}
}
f_vco = ref_clk * n / m;
if (f_vco < 100000)
s = 0;
else if (f_vco < 140000)
s = 1;
else if (f_vco < 180000)
s = 2;
else
s = 3;
drm_dbg_kms(dev, "clock: %ld vco: %ld m: %d n: %d p: %d s: %d\n",
clock, f_vco, m, n, p, s);
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
static void mgag200_g200_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
WREG_DAC(MGA1064_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_PIX_PLLC_P, xpixpllcp);
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static const struct drm_crtc_helper_funcs mgag200_g200_crtc_helper_funcs = {
MGAG200_CRTC_HELPER_FUNCS,
};
static const struct drm_crtc_funcs mgag200_g200_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM Device
*/
static const struct mgag200_device_info mgag200_g200_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 0, false, 1, 3, false);
static void mgag200_g200_interpret_bios(struct mgag200_g200_device *g200,
const unsigned char *bios, size_t size)
{
static const char matrox[] = {'M', 'A', 'T', 'R', 'O', 'X'};
static const unsigned int expected_length[6] = {
0, 64, 64, 64, 128, 128
};
struct mga_device *mdev = &g200->base;
struct drm_device *dev = &mdev->base;
const unsigned char *pins;
unsigned int pins_len, version;
int offset;
int tmp;
/* Test for MATROX string. */
if (size < 45 + sizeof(matrox))
return;
if (memcmp(&bios[45], matrox, sizeof(matrox)) != 0)
return;
/* Get the PInS offset. */
if (size < MGA_BIOS_OFFSET + 2)
return;
offset = (bios[MGA_BIOS_OFFSET + 1] << 8) | bios[MGA_BIOS_OFFSET];
/* Get PInS data structure. */
if (size < offset + 6)
return;
pins = bios + offset;
if (pins[0] == 0x2e && pins[1] == 0x41) {
version = pins[5];
pins_len = pins[2];
} else {
version = 1;
pins_len = pins[0] + (pins[1] << 8);
}
if (version < 1 || version > 5) {
drm_warn(dev, "Unknown BIOS PInS version: %d\n", version);
return;
}
if (pins_len != expected_length[version]) {
drm_warn(dev, "Unexpected BIOS PInS size: %d expected: %d\n",
pins_len, expected_length[version]);
return;
}
if (size < offset + pins_len)
return;
drm_dbg_kms(dev, "MATROX BIOS PInS version %d size: %d found\n", version, pins_len);
/* Extract the clock values */
switch (version) {
case 1:
tmp = pins[24] + (pins[25] << 8);
if (tmp)
g200->pclk_max = tmp * 10;
break;
case 2:
if (pins[41] != 0xff)
g200->pclk_max = (pins[41] + 100) * 1000;
break;
case 3:
if (pins[36] != 0xff)
g200->pclk_max = (pins[36] + 100) * 1000;
if (pins[52] & 0x20)
g200->ref_clk = 14318;
break;
case 4:
if (pins[39] != 0xff)
g200->pclk_max = pins[39] * 4 * 1000;
if (pins[92] & 0x01)
g200->ref_clk = 14318;
break;
case 5:
tmp = pins[4] ? 8000 : 6000;
if (pins[123] != 0xff)
g200->pclk_min = pins[123] * tmp;
if (pins[38] != 0xff)
g200->pclk_max = pins[38] * tmp;
if (pins[110] & 0x01)
g200->ref_clk = 14318;
break;
default:
break;
}
}
static void mgag200_g200_init_refclk(struct mgag200_g200_device *g200)
{
struct mga_device *mdev = &g200->base;
struct drm_device *dev = &mdev->base;
struct pci_dev *pdev = to_pci_dev(dev->dev);
unsigned char __iomem *rom;
unsigned char *bios;
size_t size;
g200->pclk_min = 50000;
g200->pclk_max = 230000;
g200->ref_clk = 27050;
rom = pci_map_rom(pdev, &size);
if (!rom)
return;
bios = vmalloc(size);
if (!bios)
goto out;
memcpy_fromio(bios, rom, size);
if (size != 0 && bios[0] == 0x55 && bios[1] == 0xaa)
mgag200_g200_interpret_bios(g200, bios, size);
drm_dbg_kms(dev, "pclk_min: %ld pclk_max: %ld ref_clk: %ld\n",
g200->pclk_min, g200->pclk_max, g200->ref_clk);
vfree(bios);
out:
pci_unmap_rom(pdev, rom);
}
static const struct mgag200_device_funcs mgag200_g200_device_funcs = {
.pixpllc_atomic_check = mgag200_g200_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200_device_create(struct pci_dev *pdev, const struct drm_driver *drv)
{
struct mgag200_g200_device *g200;
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
g200 = devm_drm_dev_alloc(&pdev->dev, drv, struct mgag200_g200_device, base.base);
if (IS_ERR(g200))
return ERR_CAST(g200);
mdev = &g200->base;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_g200_init_pci_options(pdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
mgag200_g200_init_refclk(g200);
ret = mgag200_device_init(mdev, &mgag200_g200_device_info,
&mgag200_g200_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200_init_registers(g200);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
/*
* PIXPLLC
*/
static int mgag200_g200eh3_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 3000000;
static const unsigned int vcomin = 1500000;
static const unsigned int pllreffreq = 25000;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
testp = 0;
for (testm = 150; testm >= 6; testm--) {
if (clock * testm > vcomax)
continue;
if (clock * testm < vcomin)
continue;
for (testn = 120; testn >= 60; testn--) {
computed = (pllreffreq * testn) / testm;
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn + 1;
m = testm + 1;
p = testp + 1;
}
if (delta == 0)
break;
}
if (delta == 0)
break;
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200eh3_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200eh3_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static const struct drm_crtc_helper_funcs mgag200_g200eh3_crtc_helper_funcs = {
MGAG200_CRTC_HELPER_FUNCS,
};
static const struct drm_crtc_funcs mgag200_g200eh3_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200eh3_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200eh3_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200eh3_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200eh3_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200eh3_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200eh3_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200eh3_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200eh3_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200eh3_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200eh3_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200eh3_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200eh3_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 0, false, 1, 0, false);
static const struct mgag200_device_funcs mgag200_g200eh3_device_funcs = {
.pixpllc_atomic_check = mgag200_g200eh3_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200eh_pixpllc_atomic_update, // same as G200EH
};
struct mga_device *mgag200_g200eh3_device_create(struct pci_dev *pdev,
const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_init_pci_options(pdev, 0x00000120, 0x0000b000);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200eh3_device_info,
&mgag200_g200eh3_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200eh_init_registers(mdev); // same as G200EH
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200eh3_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200eh3.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include "mgag200_drv.h"
void mgag200_bmc_disable_vidrst(struct mga_device *mdev)
{
u8 tmp;
int iter_max;
/*
* 1 - The first step is to inform the BMC of an upcoming mode
* change. We are putting the misc<0> to output.
*/
WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
/* we are putting a 1 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
/*
* 2- Second step to mask any further scan request. This is
* done by asserting the remfreqmsk bit (XSPAREREG<7>)
*/
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp |= 0x80;
WREG_DAC(MGA1064_SPAREREG, tmp);
/*
* 3a- The third step is to verify if there is an active scan.
* We are waiting for a 0 on remhsyncsts <XSPAREREG<0>).
*/
iter_max = 300;
while (!(tmp & 0x1) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
/*
* 3b- This step occurs only if the remove is actually
* scanning. We are waiting for the end of the frame which is
* a 1 on remvsyncsts (XSPAREREG<1>)
*/
if (iter_max) {
iter_max = 300;
while ((tmp & 0x2) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
}
}
void mgag200_bmc_enable_vidrst(struct mga_device *mdev)
{
u8 tmp;
/* Ensure that the vrsten and hrsten are set */
WREG8(MGAREG_CRTCEXT_INDEX, 1);
tmp = RREG8(MGAREG_CRTCEXT_DATA);
WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
/* Assert rstlvl2 */
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
tmp = RREG8(DAC_DATA);
tmp |= 0x8;
WREG8(DAC_DATA, tmp);
udelay(10);
/* Deassert rstlvl2 */
tmp &= ~0x08;
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
WREG8(DAC_DATA, tmp);
/* Remove mask of scan request */
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp &= ~0x80;
WREG8(DAC_DATA, tmp);
/* Put back a 0 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp &= ~0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_bmc.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
static void mgag200_g200ev_init_registers(struct mga_device *mdev)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x00,
MGA1064_PIX_CLK_CTL_SEL_PLL,
MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS,
0x00, 0x00, 0x00)
};
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)) ||
((i >= 0x44) && (i <= 0x4e)))
continue;
WREG_DAC(i, dacvalue[i]);
}
mgag200_init_registers(mdev);
}
static void mgag200_g200ev_set_hiprilvl(struct mga_device *mdev)
{
WREG_ECRT(0x06, 0x00);
}
/*
* PIXPLLC
*/
static int mgag200_g200ev_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 550000;
static const unsigned int vcomin = 150000;
static const unsigned int pllreffreq = 50000;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
for (testp = 16; testp > 0; testp--) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 1; testn < 257; testn++) {
for (testm = 1; testm < 17; testm++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn;
m = testm;
p = testp;
}
}
}
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
static void mgag200_g200ev_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp, tmp;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG8(DAC_DATA, tmp & ~0x40);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
WREG_DAC(MGA1064_EV_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_EV_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_EV_PIX_PLLC_P, xpixpllcp);
udelay(50);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG8(DAC_DATA, tmp | 0x40);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3 << 2);
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200ev_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200ev_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static void mgag200_g200ev_crtc_helper_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
const struct drm_format_info *format = mgag200_crtc_state->format;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_set_format_regs(mdev, format);
mgag200_set_mode_regs(mdev, adjusted_mode);
if (funcs->pixpllc_atomic_update)
funcs->pixpllc_atomic_update(crtc, old_state);
mgag200_g200ev_set_hiprilvl(mdev);
mgag200_enable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
static const struct drm_crtc_helper_funcs mgag200_g200ev_crtc_helper_funcs = {
.mode_valid = mgag200_crtc_helper_mode_valid,
.atomic_check = mgag200_crtc_helper_atomic_check,
.atomic_flush = mgag200_crtc_helper_atomic_flush,
.atomic_enable = mgag200_g200ev_crtc_helper_atomic_enable,
.atomic_disable = mgag200_crtc_helper_atomic_disable
};
static const struct drm_crtc_funcs mgag200_g200ev_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200ev_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200ev_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200ev_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200ev_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200ev_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200ev_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200ev_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200ev_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200ev_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200ev_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200ev_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200ev_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 32700, false, 0, 1, false);
static const struct mgag200_device_funcs mgag200_g200ev_device_funcs = {
.pixpllc_atomic_check = mgag200_g200ev_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200ev_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200ev_device_create(struct pci_dev *pdev, const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_init_pci_options(pdev, 0x00000120, 0x0000b000);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200ev_device_info,
&mgag200_g200ev_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200ev_init_registers(mdev);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200ev_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200ev.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
static void mgag200_g200er_init_registers(struct mga_device *mdev)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x00, 0xc9, 0x1f, 0x00, 0x00, 0x00)
};
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)))
continue;
WREG_DAC(i, dacvalue[i]);
}
WREG_DAC(0x90, 0); /* G200ER specific */
mgag200_init_registers(mdev);
WREG_ECRT(0x24, 0x5); /* G200ER specific */
}
static void mgag200_g200er_reset_tagfifo(struct mga_device *mdev)
{
static const uint32_t RESET_FLAG = 0x00200000; /* undocumented magic value */
u32 memctl;
memctl = RREG32(MGAREG_MEMCTL);
memctl |= RESET_FLAG;
WREG32(MGAREG_MEMCTL, memctl);
udelay(1000);
memctl &= ~RESET_FLAG;
WREG32(MGAREG_MEMCTL, memctl);
}
/*
* PIXPLLC
*/
static int mgag200_g200er_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 1488000;
static const unsigned int vcomin = 1056000;
static const unsigned int pllreffreq = 48000;
static const unsigned int m_div_val[] = { 1, 2, 4, 8 };
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
int testr, testn, testm, testo;
unsigned int p, m, n, s;
unsigned int computed, vco;
m = n = p = s = 0;
delta = 0xffffffff;
for (testr = 0; testr < 4; testr++) {
if (delta == 0)
break;
for (testn = 5; testn < 129; testn++) {
if (delta == 0)
break;
for (testm = 3; testm >= 0; testm--) {
if (delta == 0)
break;
for (testo = 5; testo < 33; testo++) {
vco = pllreffreq * (testn + 1) /
(testr + 1);
if (vco < vcomin)
continue;
if (vco > vcomax)
continue;
computed = vco / (m_div_val[testm] * (testo + 1));
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = (testm | (testo << 3)) + 1;
n = testn + 1;
p = testr + 1;
s = testr;
}
}
}
}
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
static void mgag200_g200er_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp, tmp;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3<<2) | 0xc0;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG_DAC(MGA1064_ER_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_ER_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_ER_PIX_PLLC_P, xpixpllcp);
udelay(50);
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200er_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200er_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static void mgag200_g200er_crtc_helper_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
const struct drm_format_info *format = mgag200_crtc_state->format;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_set_format_regs(mdev, format);
mgag200_set_mode_regs(mdev, adjusted_mode);
if (funcs->pixpllc_atomic_update)
funcs->pixpllc_atomic_update(crtc, old_state);
mgag200_g200er_reset_tagfifo(mdev);
mgag200_enable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
static const struct drm_crtc_helper_funcs mgag200_g200er_crtc_helper_funcs = {
.mode_valid = mgag200_crtc_helper_mode_valid,
.atomic_check = mgag200_crtc_helper_atomic_check,
.atomic_flush = mgag200_crtc_helper_atomic_flush,
.atomic_enable = mgag200_g200er_crtc_helper_atomic_enable,
.atomic_disable = mgag200_crtc_helper_atomic_disable
};
static const struct drm_crtc_funcs mgag200_g200er_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200er_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200er_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200er_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200er_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200er_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200er_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200er_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200er_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200er_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200er_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200er_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200er_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 55000, false, 1, 0, false);
static const struct mgag200_device_funcs mgag200_g200er_device_funcs = {
.pixpllc_atomic_check = mgag200_g200er_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200er_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200er_device_create(struct pci_dev *pdev, const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200er_device_info,
&mgag200_g200er_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200er_init_registers(mdev);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200er_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200er.c |
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors: Dave Airlie <[email protected]>
*/
#include <linux/export.h>
#include <linux/i2c-algo-bit.h>
#include <linux/i2c.h>
#include <linux/pci.h>
#include "mgag200_drv.h"
static int mga_i2c_read_gpio(struct mga_device *mdev)
{
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
return RREG8(DAC_DATA);
}
static void mga_i2c_set_gpio(struct mga_device *mdev, int mask, int val)
{
int tmp;
WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
tmp = (RREG8(DAC_DATA) & mask) | val;
WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
WREG_DAC(MGA1064_GEN_IO_DATA, 0);
}
static inline void mga_i2c_set(struct mga_device *mdev, int mask, int state)
{
if (state)
state = 0;
else
state = mask;
mga_i2c_set_gpio(mdev, ~mask, state);
}
static void mga_gpio_setsda(void *data, int state)
{
struct mga_i2c_chan *i2c = data;
struct mga_device *mdev = to_mga_device(i2c->dev);
mga_i2c_set(mdev, i2c->data, state);
}
static void mga_gpio_setscl(void *data, int state)
{
struct mga_i2c_chan *i2c = data;
struct mga_device *mdev = to_mga_device(i2c->dev);
mga_i2c_set(mdev, i2c->clock, state);
}
static int mga_gpio_getsda(void *data)
{
struct mga_i2c_chan *i2c = data;
struct mga_device *mdev = to_mga_device(i2c->dev);
return (mga_i2c_read_gpio(mdev) & i2c->data) ? 1 : 0;
}
static int mga_gpio_getscl(void *data)
{
struct mga_i2c_chan *i2c = data;
struct mga_device *mdev = to_mga_device(i2c->dev);
return (mga_i2c_read_gpio(mdev) & i2c->clock) ? 1 : 0;
}
static void mgag200_i2c_release(void *res)
{
struct mga_i2c_chan *i2c = res;
i2c_del_adapter(&i2c->adapter);
}
int mgag200_i2c_init(struct mga_device *mdev, struct mga_i2c_chan *i2c)
{
struct drm_device *dev = &mdev->base;
const struct mgag200_device_info *info = mdev->info;
int ret;
WREG_DAC(MGA1064_GEN_IO_CTL2, 1);
WREG_DAC(MGA1064_GEN_IO_DATA, 0xff);
WREG_DAC(MGA1064_GEN_IO_CTL, 0);
i2c->data = BIT(info->i2c.data_bit);
i2c->clock = BIT(info->i2c.clock_bit);
i2c->adapter.owner = THIS_MODULE;
i2c->adapter.class = I2C_CLASS_DDC;
i2c->adapter.dev.parent = dev->dev;
i2c->dev = dev;
i2c_set_adapdata(&i2c->adapter, i2c);
snprintf(i2c->adapter.name, sizeof(i2c->adapter.name), "mga i2c");
i2c->adapter.algo_data = &i2c->bit;
i2c->bit.udelay = 10;
i2c->bit.timeout = 2;
i2c->bit.data = i2c;
i2c->bit.setsda = mga_gpio_setsda;
i2c->bit.setscl = mga_gpio_setscl;
i2c->bit.getsda = mga_gpio_getsda;
i2c->bit.getscl = mga_gpio_getscl;
ret = i2c_bit_add_bus(&i2c->adapter);
if (ret)
return ret;
return devm_add_action_or_reset(dev->dev, mgag200_i2c_release, i2c);
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_i2c.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2010 Matt Turner.
* Copyright 2012 Red Hat
*
* Authors: Matthew Garrett
* Matt Turner
* Dave Airlie
*/
#include <linux/delay.h>
#include <linux/iosys-map.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_format_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
/*
* This file contains setup code for the CRTC.
*/
static void mgag200_crtc_set_gamma_linear(struct mga_device *mdev,
const struct drm_format_info *format)
{
int i;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
switch (format->format) {
case DRM_FORMAT_RGB565:
/* Use better interpolation, to take 32 values from 0 to 255 */
for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
}
/* Green has one more bit, so add padding with 0 for red and blue. */
for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
}
break;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_XRGB8888:
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
}
break;
default:
drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
&format->format);
break;
}
}
static void mgag200_crtc_set_gamma(struct mga_device *mdev,
const struct drm_format_info *format,
struct drm_color_lut *lut)
{
int i;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
switch (format->format) {
case DRM_FORMAT_RGB565:
/* Use better interpolation, to take 32 values from lut[0] to lut[255] */
for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].red >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].blue >> 8);
}
/* Green has one more bit, so add padding with 0 for red and blue. */
for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
}
break;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_XRGB8888:
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].red >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].blue >> 8);
}
break;
default:
drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
&format->format);
break;
}
}
static inline void mga_wait_vsync(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ/10;
unsigned int status = 0;
do {
status = RREG32(MGAREG_Status);
} while ((status & 0x08) && time_before(jiffies, timeout));
timeout = jiffies + HZ/10;
status = 0;
do {
status = RREG32(MGAREG_Status);
} while (!(status & 0x08) && time_before(jiffies, timeout));
}
static inline void mga_wait_busy(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ;
unsigned int status = 0;
do {
status = RREG8(MGAREG_Status + 2);
} while ((status & 0x01) && time_before(jiffies, timeout));
}
/*
* This is how the framebuffer base address is stored in g200 cards:
* * Assume @offset is the gpu_addr variable of the framebuffer object
* * Then addr is the number of _pixels_ (not bytes) from the start of
* VRAM to the first pixel we want to display. (divided by 2 for 32bit
* framebuffers)
* * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
* addr<20> -> CRTCEXT0<6>
* addr<19-16> -> CRTCEXT0<3-0>
* addr<15-8> -> CRTCC<7-0>
* addr<7-0> -> CRTCD<7-0>
*
* CRTCEXT0 has to be programmed last to trigger an update and make the
* new addr variable take effect.
*/
static void mgag200_set_startadd(struct mga_device *mdev,
unsigned long offset)
{
struct drm_device *dev = &mdev->base;
u32 startadd;
u8 crtcc, crtcd, crtcext0;
startadd = offset / 8;
if (startadd > 0)
drm_WARN_ON_ONCE(dev, mdev->info->bug_no_startadd);
/*
* Can't store addresses any higher than that, but we also
* don't have more than 16 MiB of memory, so it should be fine.
*/
drm_WARN_ON(dev, startadd > 0x1fffff);
RREG_ECRT(0x00, crtcext0);
crtcc = (startadd >> 8) & 0xff;
crtcd = startadd & 0xff;
crtcext0 &= 0xb0;
crtcext0 |= ((startadd >> 14) & BIT(6)) |
((startadd >> 16) & 0x0f);
WREG_CRT(0x0c, crtcc);
WREG_CRT(0x0d, crtcd);
WREG_ECRT(0x00, crtcext0);
}
void mgag200_init_registers(struct mga_device *mdev)
{
u8 crtc11, misc;
WREG_SEQ(2, 0x0f);
WREG_SEQ(3, 0x00);
WREG_SEQ(4, 0x0e);
WREG_CRT(10, 0);
WREG_CRT(11, 0);
WREG_CRT(12, 0);
WREG_CRT(13, 0);
WREG_CRT(14, 0);
WREG_CRT(15, 0);
RREG_CRT(0x11, crtc11);
crtc11 &= ~(MGAREG_CRTC11_CRTCPROTECT |
MGAREG_CRTC11_VINTEN |
MGAREG_CRTC11_VINTCLR);
WREG_CRT(0x11, crtc11);
misc = RREG8(MGA_MISC_IN);
misc |= MGAREG_MISC_IOADSEL;
WREG8(MGA_MISC_OUT, misc);
}
void mgag200_set_mode_regs(struct mga_device *mdev, const struct drm_display_mode *mode)
{
const struct mgag200_device_info *info = mdev->info;
unsigned int hdisplay, hsyncstart, hsyncend, htotal;
unsigned int vdisplay, vsyncstart, vsyncend, vtotal;
u8 misc, crtcext1, crtcext2, crtcext5;
hdisplay = mode->hdisplay / 8 - 1;
hsyncstart = mode->hsync_start / 8 - 1;
hsyncend = mode->hsync_end / 8 - 1;
htotal = mode->htotal / 8 - 1;
/* Work around hardware quirk */
if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
htotal++;
vdisplay = mode->vdisplay - 1;
vsyncstart = mode->vsync_start - 1;
vsyncend = mode->vsync_end - 1;
vtotal = mode->vtotal - 2;
misc = RREG8(MGA_MISC_IN);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= MGAREG_MISC_HSYNCPOL;
else
misc &= ~MGAREG_MISC_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= MGAREG_MISC_VSYNCPOL;
else
misc &= ~MGAREG_MISC_VSYNCPOL;
crtcext1 = (((htotal - 4) & 0x100) >> 8) |
((hdisplay & 0x100) >> 7) |
((hsyncstart & 0x100) >> 6) |
(htotal & 0x40);
if (info->has_vidrst)
crtcext1 |= MGAREG_CRTCEXT1_VRSTEN |
MGAREG_CRTCEXT1_HRSTEN;
crtcext2 = ((vtotal & 0xc00) >> 10) |
((vdisplay & 0x400) >> 8) |
((vdisplay & 0xc00) >> 7) |
((vsyncstart & 0xc00) >> 5) |
((vdisplay & 0x400) >> 3);
crtcext5 = 0x00;
WREG_CRT(0, htotal - 4);
WREG_CRT(1, hdisplay);
WREG_CRT(2, hdisplay);
WREG_CRT(3, (htotal & 0x1F) | 0x80);
WREG_CRT(4, hsyncstart);
WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
WREG_CRT(6, vtotal & 0xFF);
WREG_CRT(7, ((vtotal & 0x100) >> 8) |
((vdisplay & 0x100) >> 7) |
((vsyncstart & 0x100) >> 6) |
((vdisplay & 0x100) >> 5) |
((vdisplay & 0x100) >> 4) | /* linecomp */
((vtotal & 0x200) >> 4) |
((vdisplay & 0x200) >> 3) |
((vsyncstart & 0x200) >> 2));
WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
((vdisplay & 0x200) >> 3));
WREG_CRT(16, vsyncstart & 0xFF);
WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
WREG_CRT(18, vdisplay & 0xFF);
WREG_CRT(20, 0);
WREG_CRT(21, vdisplay & 0xFF);
WREG_CRT(22, (vtotal + 1) & 0xFF);
WREG_CRT(23, 0xc3);
WREG_CRT(24, vdisplay & 0xFF);
WREG_ECRT(0x01, crtcext1);
WREG_ECRT(0x02, crtcext2);
WREG_ECRT(0x05, crtcext5);
WREG8(MGA_MISC_OUT, misc);
}
static u8 mgag200_get_bpp_shift(const struct drm_format_info *format)
{
static const u8 bpp_shift[] = {0, 1, 0, 2};
return bpp_shift[format->cpp[0] - 1];
}
/*
* Calculates the HW offset value from the framebuffer's pitch. The
* offset is a multiple of the pixel size and depends on the display
* format.
*/
static u32 mgag200_calculate_offset(struct mga_device *mdev,
const struct drm_framebuffer *fb)
{
u32 offset = fb->pitches[0] / fb->format->cpp[0];
u8 bppshift = mgag200_get_bpp_shift(fb->format);
if (fb->format->cpp[0] * 8 == 24)
offset = (offset * 3) >> (4 - bppshift);
else
offset = offset >> (4 - bppshift);
return offset;
}
static void mgag200_set_offset(struct mga_device *mdev,
const struct drm_framebuffer *fb)
{
u8 crtc13, crtcext0;
u32 offset = mgag200_calculate_offset(mdev, fb);
RREG_ECRT(0, crtcext0);
crtc13 = offset & 0xff;
crtcext0 &= ~MGAREG_CRTCEXT0_OFFSET_MASK;
crtcext0 |= (offset >> 4) & MGAREG_CRTCEXT0_OFFSET_MASK;
WREG_CRT(0x13, crtc13);
WREG_ECRT(0x00, crtcext0);
}
void mgag200_set_format_regs(struct mga_device *mdev, const struct drm_format_info *format)
{
struct drm_device *dev = &mdev->base;
unsigned int bpp, bppshift, scale;
u8 crtcext3, xmulctrl;
bpp = format->cpp[0] * 8;
bppshift = mgag200_get_bpp_shift(format);
switch (bpp) {
case 24:
scale = ((1 << bppshift) * 3) - 1;
break;
default:
scale = (1 << bppshift) - 1;
break;
}
RREG_ECRT(3, crtcext3);
switch (bpp) {
case 8:
xmulctrl = MGA1064_MUL_CTL_8bits;
break;
case 16:
if (format->depth == 15)
xmulctrl = MGA1064_MUL_CTL_15bits;
else
xmulctrl = MGA1064_MUL_CTL_16bits;
break;
case 24:
xmulctrl = MGA1064_MUL_CTL_24bits;
break;
case 32:
xmulctrl = MGA1064_MUL_CTL_32_24bits;
break;
default:
/* BUG: We should have caught this problem already. */
drm_WARN_ON(dev, "invalid format depth\n");
return;
}
crtcext3 &= ~GENMASK(2, 0);
crtcext3 |= scale;
WREG_DAC(MGA1064_MUL_CTL, xmulctrl);
WREG_GFX(0, 0x00);
WREG_GFX(1, 0x00);
WREG_GFX(2, 0x00);
WREG_GFX(3, 0x00);
WREG_GFX(4, 0x00);
WREG_GFX(5, 0x40);
/* GCTL6 should be 0x05, but we configure memmapsl to 0xb8000 (text mode),
* so that it doesn't hang when running kexec/kdump on G200_SE rev42.
*/
WREG_GFX(6, 0x0d);
WREG_GFX(7, 0x0f);
WREG_GFX(8, 0x0f);
WREG_ECRT(3, crtcext3);
}
void mgag200_enable_display(struct mga_device *mdev)
{
u8 seq0, crtcext1;
RREG_SEQ(0x00, seq0);
seq0 |= MGAREG_SEQ0_SYNCRST |
MGAREG_SEQ0_ASYNCRST;
WREG_SEQ(0x00, seq0);
/*
* TODO: replace busy waiting with vblank IRQ; put
* msleep(50) before changing SCROFF
*/
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
RREG_ECRT(0x01, crtcext1);
crtcext1 &= ~MGAREG_CRTCEXT1_VSYNCOFF;
crtcext1 &= ~MGAREG_CRTCEXT1_HSYNCOFF;
WREG_ECRT(0x01, crtcext1);
}
static void mgag200_disable_display(struct mga_device *mdev)
{
u8 seq0, crtcext1;
RREG_SEQ(0x00, seq0);
seq0 &= ~MGAREG_SEQ0_SYNCRST;
WREG_SEQ(0x00, seq0);
/*
* TODO: replace busy waiting with vblank IRQ; put
* msleep(50) before changing SCROFF
*/
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
RREG_ECRT(0x01, crtcext1);
crtcext1 |= MGAREG_CRTCEXT1_VSYNCOFF |
MGAREG_CRTCEXT1_HSYNCOFF;
WREG_ECRT(0x01, crtcext1);
}
static void mgag200_handle_damage(struct mga_device *mdev, const struct iosys_map *vmap,
struct drm_framebuffer *fb, struct drm_rect *clip)
{
struct iosys_map dst = IOSYS_MAP_INIT_VADDR_IOMEM(mdev->vram);
iosys_map_incr(&dst, drm_fb_clip_offset(fb->pitches[0], fb->format, clip));
drm_fb_memcpy(&dst, fb->pitches, vmap, fb, clip);
}
/*
* Primary plane
*/
const uint32_t mgag200_primary_plane_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGB888,
};
const size_t mgag200_primary_plane_formats_size = ARRAY_SIZE(mgag200_primary_plane_formats);
const uint64_t mgag200_primary_plane_fmtmods[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
int mgag200_primary_plane_helper_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *new_state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(new_state, plane);
struct drm_framebuffer *new_fb = new_plane_state->fb;
struct drm_framebuffer *fb = NULL;
struct drm_crtc *new_crtc = new_plane_state->crtc;
struct drm_crtc_state *new_crtc_state = NULL;
struct mgag200_crtc_state *new_mgag200_crtc_state;
int ret;
if (new_crtc)
new_crtc_state = drm_atomic_get_new_crtc_state(new_state, new_crtc);
ret = drm_atomic_helper_check_plane_state(new_plane_state, new_crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, true);
if (ret)
return ret;
else if (!new_plane_state->visible)
return 0;
if (plane->state)
fb = plane->state->fb;
if (!fb || (fb->format != new_fb->format))
new_crtc_state->mode_changed = true; /* update PLL settings */
new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
new_mgag200_crtc_state->format = new_fb->format;
return 0;
}
void mgag200_primary_plane_helper_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_plane_state *plane_state = plane->state;
struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(old_state, plane);
struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_atomic_helper_damage_iter iter;
struct drm_rect damage;
drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
drm_atomic_for_each_plane_damage(&iter, &damage) {
mgag200_handle_damage(mdev, shadow_plane_state->data, fb, &damage);
}
/* Always scanout image at VRAM offset 0 */
mgag200_set_startadd(mdev, (u32)0);
mgag200_set_offset(mdev, fb);
}
void mgag200_primary_plane_helper_atomic_enable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
u8 seq1;
RREG_SEQ(0x01, seq1);
seq1 &= ~MGAREG_SEQ1_SCROFF;
WREG_SEQ(0x01, seq1);
msleep(20);
}
void mgag200_primary_plane_helper_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
u8 seq1;
RREG_SEQ(0x01, seq1);
seq1 |= MGAREG_SEQ1_SCROFF;
WREG_SEQ(0x01, seq1);
msleep(20);
}
/*
* CRTC
*/
enum drm_mode_status mgag200_crtc_helper_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct mga_device *mdev = to_mga_device(crtc->dev);
const struct mgag200_device_info *info = mdev->info;
/*
* Some devices have additional limits on the size of the
* display mode.
*/
if (mode->hdisplay > info->max_hdisplay)
return MODE_VIRTUAL_X;
if (mode->vdisplay > info->max_vdisplay)
return MODE_VIRTUAL_Y;
if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
(mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
return MODE_H_ILLEGAL;
}
if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
return MODE_BAD;
}
return MODE_OK;
}
int mgag200_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *new_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct drm_property_blob *new_gamma_lut = new_crtc_state->gamma_lut;
int ret;
if (!new_crtc_state->enable)
return 0;
ret = drm_atomic_helper_check_crtc_primary_plane(new_crtc_state);
if (ret)
return ret;
if (new_crtc_state->mode_changed) {
if (funcs->pixpllc_atomic_check) {
ret = funcs->pixpllc_atomic_check(crtc, new_state);
if (ret)
return ret;
}
}
if (new_crtc_state->color_mgmt_changed && new_gamma_lut) {
if (new_gamma_lut->length != MGAG200_LUT_SIZE * sizeof(struct drm_color_lut)) {
drm_dbg(dev, "Wrong size for gamma_lut %zu\n", new_gamma_lut->length);
return -EINVAL;
}
}
return 0;
}
void mgag200_crtc_helper_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
if (crtc_state->enable && crtc_state->color_mgmt_changed) {
const struct drm_format_info *format = mgag200_crtc_state->format;
if (crtc_state->gamma_lut)
mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
else
mgag200_crtc_set_gamma_linear(mdev, format);
}
}
void mgag200_crtc_helper_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
const struct drm_format_info *format = mgag200_crtc_state->format;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_set_format_regs(mdev, format);
mgag200_set_mode_regs(mdev, adjusted_mode);
if (funcs->pixpllc_atomic_update)
funcs->pixpllc_atomic_update(crtc, old_state);
if (crtc_state->gamma_lut)
mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
else
mgag200_crtc_set_gamma_linear(mdev, format);
mgag200_enable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
void mgag200_crtc_helper_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct mga_device *mdev = to_mga_device(crtc->dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_disable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
void mgag200_crtc_reset(struct drm_crtc *crtc)
{
struct mgag200_crtc_state *mgag200_crtc_state;
if (crtc->state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
mgag200_crtc_state = kzalloc(sizeof(*mgag200_crtc_state), GFP_KERNEL);
if (mgag200_crtc_state)
__drm_atomic_helper_crtc_reset(crtc, &mgag200_crtc_state->base);
else
__drm_atomic_helper_crtc_reset(crtc, NULL);
}
struct drm_crtc_state *mgag200_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_crtc_state *new_mgag200_crtc_state;
if (!crtc_state)
return NULL;
new_mgag200_crtc_state = kzalloc(sizeof(*new_mgag200_crtc_state), GFP_KERNEL);
if (!new_mgag200_crtc_state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &new_mgag200_crtc_state->base);
new_mgag200_crtc_state->format = mgag200_crtc_state->format;
memcpy(&new_mgag200_crtc_state->pixpllc, &mgag200_crtc_state->pixpllc,
sizeof(new_mgag200_crtc_state->pixpllc));
return &new_mgag200_crtc_state->base;
}
void mgag200_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
{
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
__drm_atomic_helper_crtc_destroy_state(&mgag200_crtc_state->base);
kfree(mgag200_crtc_state);
}
/*
* Connector
*/
int mgag200_vga_connector_helper_get_modes(struct drm_connector *connector)
{
struct mga_device *mdev = to_mga_device(connector->dev);
int ret;
/*
* Protect access to I/O registers from concurrent modesetting
* by acquiring the I/O-register lock.
*/
mutex_lock(&mdev->rmmio_lock);
ret = drm_connector_helper_get_modes_from_ddc(connector);
mutex_unlock(&mdev->rmmio_lock);
return ret;
}
/*
* Mode config
*/
static void mgag200_mode_config_helper_atomic_commit_tail(struct drm_atomic_state *state)
{
struct mga_device *mdev = to_mga_device(state->dev);
/*
* Concurrent operations could possibly trigger a call to
* drm_connector_helper_funcs.get_modes by trying to read the
* display modes. Protect access to I/O registers by acquiring
* the I/O-register lock.
*/
mutex_lock(&mdev->rmmio_lock);
drm_atomic_helper_commit_tail(state);
mutex_unlock(&mdev->rmmio_lock);
}
static const struct drm_mode_config_helper_funcs mgag200_mode_config_helper_funcs = {
.atomic_commit_tail = mgag200_mode_config_helper_atomic_commit_tail,
};
/* Calculates a mode's required memory bandwidth (in KiB/sec). */
static uint32_t mgag200_calculate_mode_bandwidth(const struct drm_display_mode *mode,
unsigned int bits_per_pixel)
{
uint32_t total_area, divisor;
uint64_t active_area, pixels_per_second, bandwidth;
uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
divisor = 1024;
if (!mode->htotal || !mode->vtotal || !mode->clock)
return 0;
active_area = mode->hdisplay * mode->vdisplay;
total_area = mode->htotal * mode->vtotal;
pixels_per_second = active_area * mode->clock * 1000;
do_div(pixels_per_second, total_area);
bandwidth = pixels_per_second * bytes_per_pixel * 100;
do_div(bandwidth, divisor);
return (uint32_t)bandwidth;
}
static enum drm_mode_status mgag200_mode_config_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
static const unsigned int max_bpp = 4; // DRM_FORMAT_XRGB8888
struct mga_device *mdev = to_mga_device(dev);
unsigned long fbsize, fbpages, max_fbpages;
const struct mgag200_device_info *info = mdev->info;
max_fbpages = mdev->vram_available >> PAGE_SHIFT;
fbsize = mode->hdisplay * mode->vdisplay * max_bpp;
fbpages = DIV_ROUND_UP(fbsize, PAGE_SIZE);
if (fbpages > max_fbpages)
return MODE_MEM;
/*
* Test the mode's required memory bandwidth if the device
* specifies a maximum. Not all devices do though.
*/
if (info->max_mem_bandwidth) {
uint32_t mode_bandwidth = mgag200_calculate_mode_bandwidth(mode, max_bpp * 8);
if (mode_bandwidth > (info->max_mem_bandwidth * 1024))
return MODE_BAD;
}
return MODE_OK;
}
static const struct drm_mode_config_funcs mgag200_mode_config_funcs = {
.fb_create = drm_gem_fb_create_with_dirty,
.mode_valid = mgag200_mode_config_mode_valid,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
int mgag200_mode_config_init(struct mga_device *mdev, resource_size_t vram_available)
{
struct drm_device *dev = &mdev->base;
int ret;
mdev->vram_available = vram_available;
ret = drmm_mode_config_init(dev);
if (ret) {
drm_err(dev, "drmm_mode_config_init() failed: %d\n", ret);
return ret;
}
dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
dev->mode_config.preferred_depth = 24;
dev->mode_config.funcs = &mgag200_mode_config_funcs;
dev->mode_config.helper_private = &mgag200_mode_config_helper_funcs;
return 0;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_mode.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
void mgag200_g200wb_init_registers(struct mga_device *mdev)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x07, 0xc9, 0x1f, 0x00, 0x00, 0x00)
};
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)) ||
((i >= 0x44) && (i <= 0x4e)))
continue;
WREG_DAC(i, dacvalue[i]);
}
mgag200_init_registers(mdev);
}
/*
* PIXPLLC
*/
static int mgag200_g200wb_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 550000;
static const unsigned int vcomin = 150000;
static const unsigned int pllreffreq = 48000;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
for (testp = 1; testp < 9; testp++) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 17; testm++) {
for (testn = 1; testn < 151; testn++) {
computed = (pllreffreq * testn) / (testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn;
m = testm;
p = testp;
s = 0;
}
}
}
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
void mgag200_g200wb_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
bool pll_locked = false;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp, tmp;
int i, j, tmpcount, vcount;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = ((pixpllcn & BIT(8)) >> 1) | pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = ((pixpllcn & GENMASK(10, 9)) >> 3) | (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
for (i = 0; i <= 32 && pll_locked == false; i++) {
if (i > 0) {
WREG8(MGAREG_CRTC_INDEX, 0x1e);
tmp = RREG8(MGAREG_CRTC_DATA);
if (tmp < 0xff)
WREG8(MGAREG_CRTC_DATA, tmp+1);
}
/* set pixclkdis to 1 */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG8(DAC_DATA, tmp);
/* select PLL Set C */
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
WREG8(DAC_DATA, tmp);
udelay(500);
/* reset the PLL */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~0x04;
WREG8(DAC_DATA, tmp);
udelay(50);
/* program pixel pll register */
WREG_DAC(MGA1064_WB_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_WB_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_WB_PIX_PLLC_P, xpixpllcp);
udelay(50);
/* turn pll on */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x04;
WREG_DAC(MGA1064_VREF_CTL, tmp);
udelay(500);
/* select the pixel pll */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
WREG8(DAC_DATA, tmp);
/* reset dotclock rate bit */
WREG8(MGAREG_SEQ_INDEX, 1);
tmp = RREG8(MGAREG_SEQ_DATA);
tmp &= ~0x8;
WREG8(MGAREG_SEQ_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200wb_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200wb_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static const struct drm_crtc_helper_funcs mgag200_g200wb_crtc_helper_funcs = {
MGAG200_CRTC_HELPER_FUNCS,
};
static const struct drm_crtc_funcs mgag200_g200wb_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200wb_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200wb_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200wb_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200wb_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200wb_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200wb_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200wb_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200wb_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200wb_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200wb_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200wb_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200wb_device_info =
MGAG200_DEVICE_INFO_INIT(1280, 1024, 31877, true, 0, 1, false);
static const struct mgag200_device_funcs mgag200_g200wb_device_funcs = {
.disable_vidrst = mgag200_bmc_disable_vidrst,
.enable_vidrst = mgag200_bmc_enable_vidrst,
.pixpllc_atomic_check = mgag200_g200wb_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200wb_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200wb_device_create(struct pci_dev *pdev, const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_init_pci_options(pdev, 0x41049120, 0x0000b000);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200wb_device_info,
&mgag200_g200wb_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200wb_init_registers(mdev);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200wb_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200wb.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2012 Red Hat
*
* Authors: Matthew Garrett
* Dave Airlie
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <drm/drm_aperture.h>
#include <drm/drm_drv.h>
#include <drm/drm_fbdev_generic.h>
#include <drm/drm_file.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_managed.h>
#include <drm/drm_module.h>
#include <drm/drm_pciids.h>
#include "mgag200_drv.h"
static int mgag200_modeset = -1;
MODULE_PARM_DESC(modeset, "Disable/Enable modesetting");
module_param_named(modeset, mgag200_modeset, int, 0400);
int mgag200_init_pci_options(struct pci_dev *pdev, u32 option, u32 option2)
{
struct device *dev = &pdev->dev;
int err;
err = pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
if (err != PCIBIOS_SUCCESSFUL) {
dev_err(dev, "pci_write_config_dword(PCI_MGA_OPTION) failed: %d\n", err);
return pcibios_err_to_errno(err);
}
err = pci_write_config_dword(pdev, PCI_MGA_OPTION2, option2);
if (err != PCIBIOS_SUCCESSFUL) {
dev_err(dev, "pci_write_config_dword(PCI_MGA_OPTION2) failed: %d\n", err);
return pcibios_err_to_errno(err);
}
return 0;
}
resource_size_t mgag200_probe_vram(void __iomem *mem, resource_size_t size)
{
int offset;
int orig;
int test1, test2;
int orig1, orig2;
size_t vram_size;
/* Probe */
orig = ioread16(mem);
iowrite16(0, mem);
vram_size = size;
for (offset = 0x100000; offset < vram_size; offset += 0x4000) {
orig1 = ioread8(mem + offset);
orig2 = ioread8(mem + offset + 0x100);
iowrite16(0xaa55, mem + offset);
iowrite16(0xaa55, mem + offset + 0x100);
test1 = ioread16(mem + offset);
test2 = ioread16(mem);
iowrite16(orig1, mem + offset);
iowrite16(orig2, mem + offset + 0x100);
if (test1 != 0xaa55)
break;
if (test2)
break;
}
iowrite16(orig, mem);
return offset - 65536;
}
/*
* DRM driver
*/
DEFINE_DRM_GEM_FOPS(mgag200_driver_fops);
static const struct drm_driver mgag200_driver = {
.driver_features = DRIVER_ATOMIC | DRIVER_GEM | DRIVER_MODESET,
.fops = &mgag200_driver_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
DRM_GEM_SHMEM_DRIVER_OPS,
};
/*
* DRM device
*/
resource_size_t mgag200_device_probe_vram(struct mga_device *mdev)
{
return mgag200_probe_vram(mdev->vram, resource_size(mdev->vram_res));
}
int mgag200_device_preinit(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct pci_dev *pdev = to_pci_dev(dev->dev);
resource_size_t start, len;
struct resource *res;
/* BAR 1 contains registers */
start = pci_resource_start(pdev, 1);
len = pci_resource_len(pdev, 1);
res = devm_request_mem_region(dev->dev, start, len, "mgadrmfb_mmio");
if (!res) {
drm_err(dev, "devm_request_mem_region(MMIO) failed\n");
return -ENXIO;
}
mdev->rmmio_res = res;
mdev->rmmio = pcim_iomap(pdev, 1, 0);
if (!mdev->rmmio)
return -ENOMEM;
/* BAR 0 is VRAM */
start = pci_resource_start(pdev, 0);
len = pci_resource_len(pdev, 0);
res = devm_request_mem_region(dev->dev, start, len, "mgadrmfb_vram");
if (!res) {
drm_err(dev, "devm_request_mem_region(VRAM) failed\n");
return -ENXIO;
}
mdev->vram_res = res;
/* Don't fail on errors, but performance might be reduced. */
devm_arch_io_reserve_memtype_wc(dev->dev, res->start, resource_size(res));
devm_arch_phys_wc_add(dev->dev, res->start, resource_size(res));
mdev->vram = devm_ioremap(dev->dev, res->start, resource_size(res));
if (!mdev->vram)
return -ENOMEM;
return 0;
}
int mgag200_device_init(struct mga_device *mdev,
const struct mgag200_device_info *info,
const struct mgag200_device_funcs *funcs)
{
struct drm_device *dev = &mdev->base;
u8 crtcext3, misc;
int ret;
mdev->info = info;
mdev->funcs = funcs;
ret = drmm_mutex_init(dev, &mdev->rmmio_lock);
if (ret)
return ret;
mutex_lock(&mdev->rmmio_lock);
RREG_ECRT(0x03, crtcext3);
crtcext3 |= MGAREG_CRTCEXT3_MGAMODE;
WREG_ECRT(0x03, crtcext3);
WREG_ECRT(0x04, 0x00);
misc = RREG8(MGA_MISC_IN);
misc |= MGAREG_MISC_RAMMAPEN |
MGAREG_MISC_HIGH_PG_SEL;
WREG8(MGA_MISC_OUT, misc);
mutex_unlock(&mdev->rmmio_lock);
return 0;
}
/*
* PCI driver
*/
static const struct pci_device_id mgag200_pciidlist[] = {
{ PCI_VENDOR_ID_MATROX, 0x520, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_PCI },
{ PCI_VENDOR_ID_MATROX, 0x521, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_AGP },
{ PCI_VENDOR_ID_MATROX, 0x522, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_SE_A },
{ PCI_VENDOR_ID_MATROX, 0x524, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_SE_B },
{ PCI_VENDOR_ID_MATROX, 0x530, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_EV },
{ PCI_VENDOR_ID_MATROX, 0x532, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_WB },
{ PCI_VENDOR_ID_MATROX, 0x533, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_EH },
{ PCI_VENDOR_ID_MATROX, 0x534, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_ER },
{ PCI_VENDOR_ID_MATROX, 0x536, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_EW3 },
{ PCI_VENDOR_ID_MATROX, 0x538, PCI_ANY_ID, PCI_ANY_ID, 0, 0, G200_EH3 },
{0,}
};
MODULE_DEVICE_TABLE(pci, mgag200_pciidlist);
static int
mgag200_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
enum mga_type type = (enum mga_type)ent->driver_data;
struct mga_device *mdev;
struct drm_device *dev;
int ret;
ret = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &mgag200_driver);
if (ret)
return ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
switch (type) {
case G200_PCI:
case G200_AGP:
mdev = mgag200_g200_device_create(pdev, &mgag200_driver);
break;
case G200_SE_A:
case G200_SE_B:
mdev = mgag200_g200se_device_create(pdev, &mgag200_driver, type);
break;
case G200_WB:
mdev = mgag200_g200wb_device_create(pdev, &mgag200_driver);
break;
case G200_EV:
mdev = mgag200_g200ev_device_create(pdev, &mgag200_driver);
break;
case G200_EH:
mdev = mgag200_g200eh_device_create(pdev, &mgag200_driver);
break;
case G200_EH3:
mdev = mgag200_g200eh3_device_create(pdev, &mgag200_driver);
break;
case G200_ER:
mdev = mgag200_g200er_device_create(pdev, &mgag200_driver);
break;
case G200_EW3:
mdev = mgag200_g200ew3_device_create(pdev, &mgag200_driver);
break;
default:
dev_err(&pdev->dev, "Device type %d is unsupported\n", type);
return -ENODEV;
}
if (IS_ERR(mdev))
return PTR_ERR(mdev);
dev = &mdev->base;
ret = drm_dev_register(dev, 0);
if (ret)
return ret;
/*
* FIXME: A 24-bit color depth does not work with 24 bpp on
* G200ER. Force 32 bpp.
*/
drm_fbdev_generic_setup(dev, 32);
return 0;
}
static void mgag200_pci_remove(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
drm_dev_unregister(dev);
}
static struct pci_driver mgag200_pci_driver = {
.name = DRIVER_NAME,
.id_table = mgag200_pciidlist,
.probe = mgag200_pci_probe,
.remove = mgag200_pci_remove,
};
drm_module_pci_driver_if_modeset(mgag200_pci_driver, mgag200_modeset);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/mgag200/mgag200_drv.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
void mgag200_g200eh_init_registers(struct mga_device *mdev)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x00, 0xc9,
MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS,
0x00, 0x00, 0x00)
};
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)) ||
((i >= 0x44) && (i <= 0x4e)))
continue;
WREG_DAC(i, dacvalue[i]);
}
mgag200_init_registers(mdev);
}
/*
* PIXPLLC
*/
static int mgag200_g200eh_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 800000;
static const unsigned int vcomin = 400000;
static const unsigned int pllreffreq = 33333;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
for (testp = 16; testp > 0; testp >>= 1) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 33; testm++) {
for (testn = 17; testn < 257; testn++) {
computed = (pllreffreq * testn) / (testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn;
m = testm;
p = testp;
}
}
}
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
void mgag200_g200eh_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp, tmp;
int i, j, tmpcount, vcount;
bool pll_locked = false;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = ((pixpllcn & BIT(8)) >> 1) | pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
for (i = 0; i <= 32 && pll_locked == false; i++) {
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG_DAC(MGA1064_EH_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_EH_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_EH_PIX_PLLC_P, xpixpllcp);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200eh_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200eh_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static const struct drm_crtc_helper_funcs mgag200_g200eh_crtc_helper_funcs = {
MGAG200_CRTC_HELPER_FUNCS,
};
static const struct drm_crtc_funcs mgag200_g200eh_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200eh_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200eh_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200eh_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200eh_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200eh_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200eh_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200eh_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200eh_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200eh_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200eh_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200eh_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200eh_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 37500, false, 1, 0, false);
static const struct mgag200_device_funcs mgag200_g200eh_device_funcs = {
.pixpllc_atomic_check = mgag200_g200eh_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200eh_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200eh_device_create(struct pci_dev *pdev, const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_init_pci_options(pdev, 0x00000120, 0x0000b000);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200eh_device_info,
&mgag200_g200eh_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200eh_init_registers(mdev);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200eh_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200eh.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
static void mgag200_g200ew3_init_registers(struct mga_device *mdev)
{
mgag200_g200wb_init_registers(mdev); // same as G200WB
WREG_ECRT(0x34, 0x5); // G200EW3 specific
}
/*
* PIXPLLC
*/
static int mgag200_g200ew3_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 800000;
static const unsigned int vcomin = 400000;
static const unsigned int pllreffreq = 25000;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta;
unsigned int testp, testm, testn, testp2;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
for (testp = 1; testp < 8; testp++) {
for (testp2 = 1; testp2 < 8; testp2++) {
if (testp < testp2)
continue;
if ((clock * testp * testp2) > vcomax)
continue;
if ((clock * testp * testp2) < vcomin)
continue;
for (testm = 1; testm < 26; testm++) {
for (testn = 32; testn < 2048 ; testn++) {
computed = (pllreffreq * testn) / (testm * testp * testp2);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm + 1;
n = testn + 1;
p = testp + 1;
s = testp2;
}
}
}
}
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200ew3_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200ew3_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static const struct drm_crtc_helper_funcs mgag200_g200ew3_crtc_helper_funcs = {
MGAG200_CRTC_HELPER_FUNCS,
};
static const struct drm_crtc_funcs mgag200_g200ew3_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200ew3_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200ew3_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200ew3_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200ew3_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200ew3_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200ew3_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200ew3_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200ew3_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200ew3_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200ew3_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200ew3_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200ew3_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 0, true, 0, 1, false);
static const struct mgag200_device_funcs mgag200_g200ew3_device_funcs = {
.disable_vidrst = mgag200_bmc_disable_vidrst,
.enable_vidrst = mgag200_bmc_enable_vidrst,
.pixpllc_atomic_check = mgag200_g200ew3_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200wb_pixpllc_atomic_update, // same as G200WB
};
static resource_size_t mgag200_g200ew3_device_probe_vram(struct mga_device *mdev)
{
resource_size_t vram_size = resource_size(mdev->vram_res);
if (vram_size >= 0x1000000)
vram_size = vram_size - 0x400000;
return mgag200_probe_vram(mdev->vram, vram_size);
}
struct mga_device *mgag200_g200ew3_device_create(struct pci_dev *pdev,
const struct drm_driver *drv)
{
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
mdev = devm_drm_dev_alloc(&pdev->dev, drv, struct mga_device, base);
if (IS_ERR(mdev))
return mdev;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_init_pci_options(pdev, 0x41049120, 0x0000b000);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_init(mdev, &mgag200_g200ew3_device_info,
&mgag200_g200ew3_device_funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200ew3_init_registers(mdev);
vram_available = mgag200_g200ew3_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200ew3_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200ew3.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/pci.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
static int mgag200_g200se_init_pci_options(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
bool has_sgram;
u32 option;
int err;
err = pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
if (err != PCIBIOS_SUCCESSFUL) {
dev_err(dev, "pci_read_config_dword(PCI_MGA_OPTION) failed: %d\n", err);
return pcibios_err_to_errno(err);
}
has_sgram = !!(option & PCI_MGA_OPTION_HARDPWMSK);
option = 0x40049120;
if (has_sgram)
option |= PCI_MGA_OPTION_HARDPWMSK;
return mgag200_init_pci_options(pdev, option, 0x00008000);
}
static void mgag200_g200se_init_registers(struct mgag200_g200se_device *g200se)
{
static const u8 dacvalue[] = {
MGAG200_DAC_DEFAULT(0x03,
MGA1064_PIX_CLK_CTL_SEL_PLL,
MGA1064_MISC_CTL_DAC_EN |
MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS,
0x00, 0x00, 0x00)
};
struct mga_device *mdev = &g200se->base;
size_t i;
for (i = 0; i < ARRAY_SIZE(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i == 0x2c) || (i == 0x2d) || (i == 0x2e)) ||
((i >= 0x30) && (i <= 0x37)))
continue;
WREG_DAC(i, dacvalue[i]);
}
mgag200_init_registers(mdev);
}
static void mgag200_g200se_set_hiprilvl(struct mga_device *mdev,
const struct drm_display_mode *mode,
const struct drm_format_info *format)
{
struct mgag200_g200se_device *g200se = to_mgag200_g200se_device(&mdev->base);
unsigned int hiprilvl;
u8 crtcext6;
if (g200se->unique_rev_id >= 0x04) {
hiprilvl = 0;
} else if (g200se->unique_rev_id >= 0x02) {
unsigned int bpp;
unsigned long mb;
if (format->cpp[0] * 8 > 16)
bpp = 32;
else if (format->cpp[0] * 8 > 8)
bpp = 16;
else
bpp = 8;
mb = (mode->clock * bpp) / 1000;
if (mb > 3100)
hiprilvl = 0;
else if (mb > 2600)
hiprilvl = 1;
else if (mb > 1900)
hiprilvl = 2;
else if (mb > 1160)
hiprilvl = 3;
else if (mb > 440)
hiprilvl = 4;
else
hiprilvl = 5;
} else if (g200se->unique_rev_id >= 0x01) {
hiprilvl = 3;
} else {
hiprilvl = 4;
}
crtcext6 = hiprilvl; /* implicitly sets maxhipri to 0 */
WREG_ECRT(0x06, crtcext6);
}
/*
* PIXPLLC
*/
static int mgag200_g200se_00_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 320000;
static const unsigned int vcomin = 160000;
static const unsigned int pllreffreq = 25000;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
m = n = p = s = 0;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 8; testp > 0; testp /= 2) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 17; testn < 256; testn++) {
for (testm = 1; testm < 32; testm++) {
computed = (pllreffreq * testn) / (testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm;
n = testn;
p = testp;
}
}
}
}
if (delta > permitteddelta) {
pr_warn("PLL delta too large\n");
return -EINVAL;
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
static void mgag200_g200se_00_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
xpixpllcm = pixpllcm | ((pixpllcn & BIT(8)) >> 1);
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
WREG_DAC(MGA1064_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_PIX_PLLC_P, xpixpllcp);
}
static int mgag200_g200se_04_pixpllc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *new_state)
{
static const unsigned int vcomax = 1600000;
static const unsigned int vcomin = 800000;
static const unsigned int pllreffreq = 25000;
static const unsigned int pvalues_e4[] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct mgag200_crtc_state *new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
long clock = new_crtc_state->mode.clock;
struct mgag200_pll_values *pixpllc = &new_mgag200_crtc_state->pixpllc;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n, s;
unsigned int computed;
unsigned int fvv;
unsigned int i;
m = n = p = s = 0;
delta = 0xffffffff;
if (clock < 25000)
clock = 25000;
clock = clock * 2;
/* Permited delta is 0.5% as VESA Specification */
permitteddelta = clock * 5 / 1000;
for (i = 0 ; i < ARRAY_SIZE(pvalues_e4); i++) {
testp = pvalues_e4[i];
if ((clock * testp) > vcomax)
continue;
if ((clock * testp) < vcomin)
continue;
for (testn = 50; testn <= 256; testn++) {
for (testm = 1; testm <= 32; testm++) {
computed = (pllreffreq * testn) / (testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm;
n = testn;
p = testp;
}
}
}
}
fvv = pllreffreq * n / m;
fvv = (fvv - 800000) / 50000;
if (fvv > 15)
fvv = 15;
s = fvv << 1;
if (delta > permitteddelta) {
pr_warn("PLL delta too large\n");
return -EINVAL;
}
pixpllc->m = m;
pixpllc->n = n;
pixpllc->p = p;
pixpllc->s = s;
return 0;
}
static void mgag200_g200se_04_pixpllc_atomic_update(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_pll_values *pixpllc = &mgag200_crtc_state->pixpllc;
unsigned int pixpllcm, pixpllcn, pixpllcp, pixpllcs;
u8 xpixpllcm, xpixpllcn, xpixpllcp;
pixpllcm = pixpllc->m - 1;
pixpllcn = pixpllc->n - 1;
pixpllcp = pixpllc->p - 1;
pixpllcs = pixpllc->s;
// For G200SE A, BIT(7) should be set unconditionally.
xpixpllcm = BIT(7) | pixpllcm;
xpixpllcn = pixpllcn;
xpixpllcp = (pixpllcs << 3) | pixpllcp;
WREG_MISC_MASKED(MGAREG_MISC_CLKSEL_MGA, MGAREG_MISC_CLKSEL_MASK);
WREG_DAC(MGA1064_PIX_PLLC_M, xpixpllcm);
WREG_DAC(MGA1064_PIX_PLLC_N, xpixpllcn);
WREG_DAC(MGA1064_PIX_PLLC_P, xpixpllcp);
WREG_DAC(0x1a, 0x09);
msleep(20);
WREG_DAC(0x1a, 0x01);
}
/*
* Mode-setting pipeline
*/
static const struct drm_plane_helper_funcs mgag200_g200se_primary_plane_helper_funcs = {
MGAG200_PRIMARY_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs mgag200_g200se_primary_plane_funcs = {
MGAG200_PRIMARY_PLANE_FUNCS,
};
static void mgag200_g200se_crtc_helper_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
const struct drm_format_info *format = mgag200_crtc_state->format;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_set_format_regs(mdev, format);
mgag200_set_mode_regs(mdev, adjusted_mode);
if (funcs->pixpllc_atomic_update)
funcs->pixpllc_atomic_update(crtc, old_state);
mgag200_g200se_set_hiprilvl(mdev, adjusted_mode, format);
mgag200_enable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
static const struct drm_crtc_helper_funcs mgag200_g200se_crtc_helper_funcs = {
.mode_valid = mgag200_crtc_helper_mode_valid,
.atomic_check = mgag200_crtc_helper_atomic_check,
.atomic_flush = mgag200_crtc_helper_atomic_flush,
.atomic_enable = mgag200_g200se_crtc_helper_atomic_enable,
.atomic_disable = mgag200_crtc_helper_atomic_disable
};
static const struct drm_crtc_funcs mgag200_g200se_crtc_funcs = {
MGAG200_CRTC_FUNCS,
};
static const struct drm_encoder_funcs mgag200_g200se_dac_encoder_funcs = {
MGAG200_DAC_ENCODER_FUNCS,
};
static const struct drm_connector_helper_funcs mgag200_g200se_vga_connector_helper_funcs = {
MGAG200_VGA_CONNECTOR_HELPER_FUNCS,
};
static const struct drm_connector_funcs mgag200_g200se_vga_connector_funcs = {
MGAG200_VGA_CONNECTOR_FUNCS,
};
static int mgag200_g200se_pipeline_init(struct mga_device *mdev)
{
struct drm_device *dev = &mdev->base;
struct drm_plane *primary_plane = &mdev->primary_plane;
struct drm_crtc *crtc = &mdev->crtc;
struct drm_encoder *encoder = &mdev->encoder;
struct mga_i2c_chan *i2c = &mdev->i2c;
struct drm_connector *connector = &mdev->connector;
int ret;
ret = drm_universal_plane_init(dev, primary_plane, 0,
&mgag200_g200se_primary_plane_funcs,
mgag200_primary_plane_formats,
mgag200_primary_plane_formats_size,
mgag200_primary_plane_fmtmods,
DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
drm_err(dev, "drm_universal_plane_init() failed: %d\n", ret);
return ret;
}
drm_plane_helper_add(primary_plane, &mgag200_g200se_primary_plane_helper_funcs);
drm_plane_enable_fb_damage_clips(primary_plane);
ret = drm_crtc_init_with_planes(dev, crtc, primary_plane, NULL,
&mgag200_g200se_crtc_funcs, NULL);
if (ret) {
drm_err(dev, "drm_crtc_init_with_planes() failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &mgag200_g200se_crtc_helper_funcs);
/* FIXME: legacy gamma tables, but atomic gamma doesn't work without */
drm_mode_crtc_set_gamma_size(crtc, MGAG200_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, MGAG200_LUT_SIZE);
encoder->possible_crtcs = drm_crtc_mask(crtc);
ret = drm_encoder_init(dev, encoder, &mgag200_g200se_dac_encoder_funcs,
DRM_MODE_ENCODER_DAC, NULL);
if (ret) {
drm_err(dev, "drm_encoder_init() failed: %d\n", ret);
return ret;
}
ret = mgag200_i2c_init(mdev, i2c);
if (ret) {
drm_err(dev, "failed to add DDC bus: %d\n", ret);
return ret;
}
ret = drm_connector_init_with_ddc(dev, connector,
&mgag200_g200se_vga_connector_funcs,
DRM_MODE_CONNECTOR_VGA,
&i2c->adapter);
if (ret) {
drm_err(dev, "drm_connector_init_with_ddc() failed: %d\n", ret);
return ret;
}
drm_connector_helper_add(connector, &mgag200_g200se_vga_connector_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret) {
drm_err(dev, "drm_connector_attach_encoder() failed: %d\n", ret);
return ret;
}
return 0;
}
/*
* DRM device
*/
static const struct mgag200_device_info mgag200_g200se_a_01_device_info =
MGAG200_DEVICE_INFO_INIT(1600, 1200, 24400, false, 0, 1, true);
static const struct mgag200_device_info mgag200_g200se_a_02_device_info =
MGAG200_DEVICE_INFO_INIT(1920, 1200, 30100, false, 0, 1, true);
static const struct mgag200_device_info mgag200_g200se_a_03_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 55000, false, 0, 1, false);
static const struct mgag200_device_info mgag200_g200se_b_01_device_info =
MGAG200_DEVICE_INFO_INIT(1600, 1200, 24400, false, 0, 1, false);
static const struct mgag200_device_info mgag200_g200se_b_02_device_info =
MGAG200_DEVICE_INFO_INIT(1920, 1200, 30100, false, 0, 1, false);
static const struct mgag200_device_info mgag200_g200se_b_03_device_info =
MGAG200_DEVICE_INFO_INIT(2048, 2048, 55000, false, 0, 1, false);
static int mgag200_g200se_init_unique_rev_id(struct mgag200_g200se_device *g200se)
{
struct mga_device *mdev = &g200se->base;
struct drm_device *dev = &mdev->base;
/* stash G200 SE model number for later use */
g200se->unique_rev_id = RREG32(0x1e24);
if (!g200se->unique_rev_id)
return -ENODEV;
drm_dbg(dev, "G200 SE unique revision id is 0x%x\n", g200se->unique_rev_id);
return 0;
}
static const struct mgag200_device_funcs mgag200_g200se_00_device_funcs = {
.pixpllc_atomic_check = mgag200_g200se_00_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200se_00_pixpllc_atomic_update,
};
static const struct mgag200_device_funcs mgag200_g200se_04_device_funcs = {
.pixpllc_atomic_check = mgag200_g200se_04_pixpllc_atomic_check,
.pixpllc_atomic_update = mgag200_g200se_04_pixpllc_atomic_update,
};
struct mga_device *mgag200_g200se_device_create(struct pci_dev *pdev, const struct drm_driver *drv,
enum mga_type type)
{
struct mgag200_g200se_device *g200se;
const struct mgag200_device_info *info;
const struct mgag200_device_funcs *funcs;
struct mga_device *mdev;
struct drm_device *dev;
resource_size_t vram_available;
int ret;
g200se = devm_drm_dev_alloc(&pdev->dev, drv, struct mgag200_g200se_device, base.base);
if (IS_ERR(g200se))
return ERR_CAST(g200se);
mdev = &g200se->base;
dev = &mdev->base;
pci_set_drvdata(pdev, dev);
ret = mgag200_g200se_init_pci_options(pdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_device_preinit(mdev);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200se_init_unique_rev_id(g200se);
if (ret)
return ERR_PTR(ret);
switch (type) {
case G200_SE_A:
if (g200se->unique_rev_id >= 0x03)
info = &mgag200_g200se_a_03_device_info;
else if (g200se->unique_rev_id >= 0x02)
info = &mgag200_g200se_a_02_device_info;
else
info = &mgag200_g200se_a_01_device_info;
break;
case G200_SE_B:
if (g200se->unique_rev_id >= 0x03)
info = &mgag200_g200se_b_03_device_info;
else if (g200se->unique_rev_id >= 0x02)
info = &mgag200_g200se_b_02_device_info;
else
info = &mgag200_g200se_b_01_device_info;
break;
default:
return ERR_PTR(-EINVAL);
}
if (g200se->unique_rev_id >= 0x04)
funcs = &mgag200_g200se_04_device_funcs;
else
funcs = &mgag200_g200se_00_device_funcs;
ret = mgag200_device_init(mdev, info, funcs);
if (ret)
return ERR_PTR(ret);
mgag200_g200se_init_registers(g200se);
vram_available = mgag200_device_probe_vram(mdev);
ret = mgag200_mode_config_init(mdev, vram_available);
if (ret)
return ERR_PTR(ret);
ret = mgag200_g200se_pipeline_init(mdev);
if (ret)
return ERR_PTR(ret);
drm_mode_config_reset(dev);
return mdev;
}
| linux-master | drivers/gpu/drm/mgag200/mgag200_g200se.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Freescale Semiconductor, Inc.
*
* Freescale DCU drm device driver
*/
#include <linux/regmap.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include "fsl_dcu_drm_drv.h"
#include "fsl_dcu_drm_plane.h"
static int fsl_dcu_drm_plane_index(struct drm_plane *plane)
{
struct fsl_dcu_drm_device *fsl_dev = plane->dev->dev_private;
unsigned int total_layer = fsl_dev->soc->total_layer;
unsigned int index;
index = drm_plane_index(plane);
if (index < total_layer)
return total_layer - index - 1;
dev_err(fsl_dev->dev, "No more layer left\n");
return -EINVAL;
}
static int fsl_dcu_drm_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_framebuffer *fb = new_plane_state->fb;
if (!new_plane_state->fb || !new_plane_state->crtc)
return 0;
switch (fb->format->format) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_YUV422:
return 0;
default:
return -EINVAL;
}
}
static void fsl_dcu_drm_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct fsl_dcu_drm_device *fsl_dev = plane->dev->dev_private;
unsigned int value;
int index;
index = fsl_dcu_drm_plane_index(plane);
if (index < 0)
return;
regmap_read(fsl_dev->regmap, DCU_CTRLDESCLN(index, 4), &value);
value &= ~DCU_LAYER_EN;
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 4), value);
}
static void fsl_dcu_drm_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct fsl_dcu_drm_device *fsl_dev = plane->dev->dev_private;
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_framebuffer *fb = plane->state->fb;
struct drm_gem_dma_object *gem;
unsigned int alpha = DCU_LAYER_AB_NONE, bpp;
int index;
if (!fb)
return;
index = fsl_dcu_drm_plane_index(plane);
if (index < 0)
return;
gem = drm_fb_dma_get_gem_obj(fb, 0);
switch (fb->format->format) {
case DRM_FORMAT_RGB565:
bpp = FSL_DCU_RGB565;
break;
case DRM_FORMAT_RGB888:
bpp = FSL_DCU_RGB888;
break;
case DRM_FORMAT_ARGB8888:
alpha = DCU_LAYER_AB_WHOLE_FRAME;
fallthrough;
case DRM_FORMAT_XRGB8888:
bpp = FSL_DCU_ARGB8888;
break;
case DRM_FORMAT_ARGB4444:
alpha = DCU_LAYER_AB_WHOLE_FRAME;
fallthrough;
case DRM_FORMAT_XRGB4444:
bpp = FSL_DCU_ARGB4444;
break;
case DRM_FORMAT_ARGB1555:
alpha = DCU_LAYER_AB_WHOLE_FRAME;
fallthrough;
case DRM_FORMAT_XRGB1555:
bpp = FSL_DCU_ARGB1555;
break;
case DRM_FORMAT_YUV422:
bpp = FSL_DCU_YUV422;
break;
default:
return;
}
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 1),
DCU_LAYER_HEIGHT(new_state->crtc_h) |
DCU_LAYER_WIDTH(new_state->crtc_w));
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 2),
DCU_LAYER_POSY(new_state->crtc_y) |
DCU_LAYER_POSX(new_state->crtc_x));
regmap_write(fsl_dev->regmap,
DCU_CTRLDESCLN(index, 3), gem->dma_addr);
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 4),
DCU_LAYER_EN |
DCU_LAYER_TRANS(0xff) |
DCU_LAYER_BPP(bpp) |
alpha);
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 5),
DCU_LAYER_CKMAX_R(0xFF) |
DCU_LAYER_CKMAX_G(0xFF) |
DCU_LAYER_CKMAX_B(0xFF));
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 6),
DCU_LAYER_CKMIN_R(0) |
DCU_LAYER_CKMIN_G(0) |
DCU_LAYER_CKMIN_B(0));
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 7), 0);
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 8),
DCU_LAYER_FG_FCOLOR(0));
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 9),
DCU_LAYER_BG_BCOLOR(0));
if (!strcmp(fsl_dev->soc->name, "ls1021a")) {
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(index, 10),
DCU_LAYER_POST_SKIP(0) |
DCU_LAYER_PRE_SKIP(0));
}
return;
}
static const struct drm_plane_helper_funcs fsl_dcu_drm_plane_helper_funcs = {
.atomic_check = fsl_dcu_drm_plane_atomic_check,
.atomic_disable = fsl_dcu_drm_plane_atomic_disable,
.atomic_update = fsl_dcu_drm_plane_atomic_update,
};
static const struct drm_plane_funcs fsl_dcu_drm_plane_funcs = {
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
.destroy = drm_plane_helper_destroy,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = drm_atomic_helper_plane_reset,
.update_plane = drm_atomic_helper_update_plane,
};
static const u32 fsl_dcu_drm_plane_formats[] = {
DRM_FORMAT_RGB565,
DRM_FORMAT_RGB888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_YUV422,
};
void fsl_dcu_drm_init_planes(struct drm_device *dev)
{
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
int i, j;
for (i = 0; i < fsl_dev->soc->total_layer; i++) {
for (j = 1; j <= fsl_dev->soc->layer_regs; j++)
regmap_write(fsl_dev->regmap, DCU_CTRLDESCLN(i, j), 0);
}
}
struct drm_plane *fsl_dcu_drm_primary_create_plane(struct drm_device *dev)
{
struct drm_plane *primary;
int ret;
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (!primary) {
DRM_DEBUG_KMS("Failed to allocate primary plane\n");
return NULL;
}
/* possible_crtc's will be filled in later by crtc_init */
ret = drm_universal_plane_init(dev, primary, 0,
&fsl_dcu_drm_plane_funcs,
fsl_dcu_drm_plane_formats,
ARRAY_SIZE(fsl_dcu_drm_plane_formats),
NULL, DRM_PLANE_TYPE_PRIMARY, NULL);
if (ret) {
kfree(primary);
primary = NULL;
}
drm_plane_helper_add(primary, &fsl_dcu_drm_plane_helper_funcs);
return primary;
}
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_dcu_drm_plane.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Toradex AG
*
* Stefan Agner <[email protected]>
*
* Freescale TCON device driver
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include "fsl_tcon.h"
void fsl_tcon_bypass_disable(struct fsl_tcon *tcon)
{
regmap_update_bits(tcon->regs, FSL_TCON_CTRL1,
FSL_TCON_CTRL1_TCON_BYPASS, 0);
}
void fsl_tcon_bypass_enable(struct fsl_tcon *tcon)
{
regmap_update_bits(tcon->regs, FSL_TCON_CTRL1,
FSL_TCON_CTRL1_TCON_BYPASS,
FSL_TCON_CTRL1_TCON_BYPASS);
}
static struct regmap_config fsl_tcon_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.name = "tcon",
};
static int fsl_tcon_init_regmap(struct device *dev,
struct fsl_tcon *tcon,
struct device_node *np)
{
struct resource res;
void __iomem *regs;
if (of_address_to_resource(np, 0, &res))
return -EINVAL;
regs = devm_ioremap_resource(dev, &res);
if (IS_ERR(regs))
return PTR_ERR(regs);
tcon->regs = devm_regmap_init_mmio(dev, regs,
&fsl_tcon_regmap_config);
return PTR_ERR_OR_ZERO(tcon->regs);
}
struct fsl_tcon *fsl_tcon_init(struct device *dev)
{
struct fsl_tcon *tcon;
struct device_node *np;
int ret;
/* TCON node is not mandatory, some devices do not provide TCON */
np = of_parse_phandle(dev->of_node, "fsl,tcon", 0);
if (!np)
return NULL;
tcon = devm_kzalloc(dev, sizeof(*tcon), GFP_KERNEL);
if (!tcon)
goto err_node_put;
ret = fsl_tcon_init_regmap(dev, tcon, np);
if (ret) {
dev_err(dev, "Couldn't create the TCON regmap\n");
goto err_node_put;
}
tcon->ipg_clk = of_clk_get_by_name(np, "ipg");
if (IS_ERR(tcon->ipg_clk)) {
dev_err(dev, "Couldn't get the TCON bus clock\n");
goto err_node_put;
}
ret = clk_prepare_enable(tcon->ipg_clk);
if (ret) {
dev_err(dev, "Couldn't enable the TCON clock\n");
goto err_node_put;
}
of_node_put(np);
dev_info(dev, "Using TCON in bypass mode\n");
return tcon;
err_node_put:
of_node_put(np);
return NULL;
}
void fsl_tcon_free(struct fsl_tcon *tcon)
{
clk_disable_unprepare(tcon->ipg_clk);
clk_put(tcon->ipg_clk);
}
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_tcon.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Freescale Semiconductor, Inc.
*
* Freescale DCU drm device driver
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/console.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_fbdev_dma.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_modeset_helper.h>
#include <drm/drm_module.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "fsl_dcu_drm_crtc.h"
#include "fsl_dcu_drm_drv.h"
#include "fsl_tcon.h"
static int legacyfb_depth = 24;
module_param(legacyfb_depth, int, 0444);
static bool fsl_dcu_drm_is_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == DCU_INT_STATUS || reg == DCU_UPDATE_MODE)
return true;
return false;
}
static const struct regmap_config fsl_dcu_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.volatile_reg = fsl_dcu_drm_is_volatile_reg,
};
static void fsl_dcu_irq_reset(struct drm_device *dev)
{
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
regmap_write(fsl_dev->regmap, DCU_INT_STATUS, ~0);
regmap_write(fsl_dev->regmap, DCU_INT_MASK, ~0);
}
static irqreturn_t fsl_dcu_drm_irq(int irq, void *arg)
{
struct drm_device *dev = arg;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
unsigned int int_status;
int ret;
ret = regmap_read(fsl_dev->regmap, DCU_INT_STATUS, &int_status);
if (ret) {
dev_err(dev->dev, "read DCU_INT_STATUS failed\n");
return IRQ_NONE;
}
if (int_status & DCU_INT_STATUS_VBLANK)
drm_handle_vblank(dev, 0);
regmap_write(fsl_dev->regmap, DCU_INT_STATUS, int_status);
return IRQ_HANDLED;
}
static int fsl_dcu_irq_install(struct drm_device *dev, unsigned int irq)
{
if (irq == IRQ_NOTCONNECTED)
return -ENOTCONN;
fsl_dcu_irq_reset(dev);
return request_irq(irq, fsl_dcu_drm_irq, 0, dev->driver->name, dev);
}
static void fsl_dcu_irq_uninstall(struct drm_device *dev)
{
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
fsl_dcu_irq_reset(dev);
free_irq(fsl_dev->irq, dev);
}
static int fsl_dcu_load(struct drm_device *dev, unsigned long flags)
{
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
int ret;
ret = fsl_dcu_drm_modeset_init(fsl_dev);
if (ret < 0) {
dev_err(dev->dev, "failed to initialize mode setting\n");
return ret;
}
ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
if (ret < 0) {
dev_err(dev->dev, "failed to initialize vblank\n");
goto done_vblank;
}
ret = fsl_dcu_irq_install(dev, fsl_dev->irq);
if (ret < 0) {
dev_err(dev->dev, "failed to install IRQ handler\n");
goto done_irq;
}
if (legacyfb_depth != 16 && legacyfb_depth != 24 &&
legacyfb_depth != 32) {
dev_warn(dev->dev,
"Invalid legacyfb_depth. Defaulting to 24bpp\n");
legacyfb_depth = 24;
}
return 0;
done_irq:
drm_kms_helper_poll_fini(dev);
drm_mode_config_cleanup(dev);
done_vblank:
dev->dev_private = NULL;
return ret;
}
static void fsl_dcu_unload(struct drm_device *dev)
{
drm_atomic_helper_shutdown(dev);
drm_kms_helper_poll_fini(dev);
drm_mode_config_cleanup(dev);
fsl_dcu_irq_uninstall(dev);
dev->dev_private = NULL;
}
DEFINE_DRM_GEM_DMA_FOPS(fsl_dcu_drm_fops);
static const struct drm_driver fsl_dcu_drm_driver = {
.driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
.load = fsl_dcu_load,
.unload = fsl_dcu_unload,
DRM_GEM_DMA_DRIVER_OPS,
.fops = &fsl_dcu_drm_fops,
.name = "fsl-dcu-drm",
.desc = "Freescale DCU DRM",
.date = "20160425",
.major = 1,
.minor = 1,
};
#ifdef CONFIG_PM_SLEEP
static int fsl_dcu_drm_pm_suspend(struct device *dev)
{
struct fsl_dcu_drm_device *fsl_dev = dev_get_drvdata(dev);
int ret;
if (!fsl_dev)
return 0;
disable_irq(fsl_dev->irq);
ret = drm_mode_config_helper_suspend(fsl_dev->drm);
if (ret) {
enable_irq(fsl_dev->irq);
return ret;
}
clk_disable_unprepare(fsl_dev->clk);
return 0;
}
static int fsl_dcu_drm_pm_resume(struct device *dev)
{
struct fsl_dcu_drm_device *fsl_dev = dev_get_drvdata(dev);
int ret;
if (!fsl_dev)
return 0;
ret = clk_prepare_enable(fsl_dev->clk);
if (ret < 0) {
dev_err(dev, "failed to enable dcu clk\n");
return ret;
}
if (fsl_dev->tcon)
fsl_tcon_bypass_enable(fsl_dev->tcon);
fsl_dcu_drm_init_planes(fsl_dev->drm);
enable_irq(fsl_dev->irq);
drm_mode_config_helper_resume(fsl_dev->drm);
return 0;
}
#endif
static const struct dev_pm_ops fsl_dcu_drm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(fsl_dcu_drm_pm_suspend, fsl_dcu_drm_pm_resume)
};
static const struct fsl_dcu_soc_data fsl_dcu_ls1021a_data = {
.name = "ls1021a",
.total_layer = 16,
.max_layer = 4,
.layer_regs = LS1021A_LAYER_REG_NUM,
};
static const struct fsl_dcu_soc_data fsl_dcu_vf610_data = {
.name = "vf610",
.total_layer = 64,
.max_layer = 6,
.layer_regs = VF610_LAYER_REG_NUM,
};
static const struct of_device_id fsl_dcu_of_match[] = {
{
.compatible = "fsl,ls1021a-dcu",
.data = &fsl_dcu_ls1021a_data,
}, {
.compatible = "fsl,vf610-dcu",
.data = &fsl_dcu_vf610_data,
}, {
},
};
MODULE_DEVICE_TABLE(of, fsl_dcu_of_match);
static int fsl_dcu_drm_probe(struct platform_device *pdev)
{
struct fsl_dcu_drm_device *fsl_dev;
struct drm_device *drm;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *base;
struct clk *pix_clk_in;
char pix_clk_name[32];
const char *pix_clk_in_name;
const struct of_device_id *id;
int ret;
u8 div_ratio_shift = 0;
fsl_dev = devm_kzalloc(dev, sizeof(*fsl_dev), GFP_KERNEL);
if (!fsl_dev)
return -ENOMEM;
id = of_match_node(fsl_dcu_of_match, pdev->dev.of_node);
if (!id)
return -ENODEV;
fsl_dev->soc = id->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
return ret;
}
fsl_dev->irq = platform_get_irq(pdev, 0);
if (fsl_dev->irq < 0) {
dev_err(dev, "failed to get irq\n");
return fsl_dev->irq;
}
fsl_dev->regmap = devm_regmap_init_mmio(dev, base,
&fsl_dcu_regmap_config);
if (IS_ERR(fsl_dev->regmap)) {
dev_err(dev, "regmap init failed\n");
return PTR_ERR(fsl_dev->regmap);
}
fsl_dev->clk = devm_clk_get(dev, "dcu");
if (IS_ERR(fsl_dev->clk)) {
dev_err(dev, "failed to get dcu clock\n");
return PTR_ERR(fsl_dev->clk);
}
ret = clk_prepare_enable(fsl_dev->clk);
if (ret < 0) {
dev_err(dev, "failed to enable dcu clk\n");
return ret;
}
pix_clk_in = devm_clk_get(dev, "pix");
if (IS_ERR(pix_clk_in)) {
/* legancy binding, use dcu clock as pixel clock input */
pix_clk_in = fsl_dev->clk;
}
if (of_property_read_bool(dev->of_node, "big-endian"))
div_ratio_shift = 24;
pix_clk_in_name = __clk_get_name(pix_clk_in);
snprintf(pix_clk_name, sizeof(pix_clk_name), "%s_pix", pix_clk_in_name);
fsl_dev->pix_clk = clk_register_divider(dev, pix_clk_name,
pix_clk_in_name, 0, base + DCU_DIV_RATIO,
div_ratio_shift, 8, CLK_DIVIDER_ROUND_CLOSEST, NULL);
if (IS_ERR(fsl_dev->pix_clk)) {
dev_err(dev, "failed to register pix clk\n");
ret = PTR_ERR(fsl_dev->pix_clk);
goto disable_clk;
}
fsl_dev->tcon = fsl_tcon_init(dev);
drm = drm_dev_alloc(&fsl_dcu_drm_driver, dev);
if (IS_ERR(drm)) {
ret = PTR_ERR(drm);
goto unregister_pix_clk;
}
fsl_dev->dev = dev;
fsl_dev->drm = drm;
fsl_dev->np = dev->of_node;
drm->dev_private = fsl_dev;
dev_set_drvdata(dev, fsl_dev);
ret = drm_dev_register(drm, 0);
if (ret < 0)
goto put;
drm_fbdev_dma_setup(drm, legacyfb_depth);
return 0;
put:
drm_dev_put(drm);
unregister_pix_clk:
clk_unregister(fsl_dev->pix_clk);
disable_clk:
clk_disable_unprepare(fsl_dev->clk);
return ret;
}
static void fsl_dcu_drm_remove(struct platform_device *pdev)
{
struct fsl_dcu_drm_device *fsl_dev = platform_get_drvdata(pdev);
drm_dev_unregister(fsl_dev->drm);
drm_dev_put(fsl_dev->drm);
clk_disable_unprepare(fsl_dev->clk);
clk_unregister(fsl_dev->pix_clk);
}
static struct platform_driver fsl_dcu_drm_platform_driver = {
.probe = fsl_dcu_drm_probe,
.remove_new = fsl_dcu_drm_remove,
.driver = {
.name = "fsl-dcu",
.pm = &fsl_dcu_drm_pm_ops,
.of_match_table = fsl_dcu_of_match,
},
};
drm_module_platform_driver(fsl_dcu_drm_platform_driver);
MODULE_DESCRIPTION("Freescale DCU DRM Driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_dcu_drm_drv.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Freescale Semiconductor, Inc.
*
* Freescale DCU drm device driver
*/
#include <linux/backlight.h>
#include <linux/of_graph.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include "fsl_dcu_drm_drv.h"
#include "fsl_tcon.h"
int fsl_dcu_drm_encoder_create(struct fsl_dcu_drm_device *fsl_dev,
struct drm_crtc *crtc)
{
struct drm_encoder *encoder = &fsl_dev->encoder;
int ret;
encoder->possible_crtcs = 1;
/* Use bypass mode for parallel RGB/LVDS encoder */
if (fsl_dev->tcon)
fsl_tcon_bypass_enable(fsl_dev->tcon);
ret = drm_simple_encoder_init(fsl_dev->drm, encoder,
DRM_MODE_ENCODER_LVDS);
if (ret < 0)
return ret;
return 0;
}
static void fsl_dcu_drm_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs fsl_dcu_drm_connector_funcs = {
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.destroy = fsl_dcu_drm_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.reset = drm_atomic_helper_connector_reset,
};
static int fsl_dcu_drm_connector_get_modes(struct drm_connector *connector)
{
struct fsl_dcu_drm_connector *fsl_connector;
fsl_connector = to_fsl_dcu_connector(connector);
return drm_panel_get_modes(fsl_connector->panel, connector);
}
static enum drm_mode_status
fsl_dcu_drm_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
if (mode->hdisplay & 0xf)
return MODE_ERROR;
return MODE_OK;
}
static const struct drm_connector_helper_funcs connector_helper_funcs = {
.get_modes = fsl_dcu_drm_connector_get_modes,
.mode_valid = fsl_dcu_drm_connector_mode_valid,
};
static int fsl_dcu_attach_panel(struct fsl_dcu_drm_device *fsl_dev,
struct drm_panel *panel)
{
struct drm_encoder *encoder = &fsl_dev->encoder;
struct drm_connector *connector = &fsl_dev->connector.base;
int ret;
fsl_dev->connector.encoder = encoder;
ret = drm_connector_init(fsl_dev->drm, connector,
&fsl_dcu_drm_connector_funcs,
DRM_MODE_CONNECTOR_LVDS);
if (ret < 0)
return ret;
drm_connector_helper_add(connector, &connector_helper_funcs);
ret = drm_connector_register(connector);
if (ret < 0)
goto err_cleanup;
ret = drm_connector_attach_encoder(connector, encoder);
if (ret < 0)
goto err_sysfs;
return 0;
err_sysfs:
drm_connector_unregister(connector);
err_cleanup:
drm_connector_cleanup(connector);
return ret;
}
int fsl_dcu_create_outputs(struct fsl_dcu_drm_device *fsl_dev)
{
struct device_node *panel_node;
struct drm_panel *panel;
struct drm_bridge *bridge;
int ret;
/* This is for backward compatibility */
panel_node = of_parse_phandle(fsl_dev->np, "fsl,panel", 0);
if (panel_node) {
fsl_dev->connector.panel = of_drm_find_panel(panel_node);
of_node_put(panel_node);
if (IS_ERR(fsl_dev->connector.panel))
return PTR_ERR(fsl_dev->connector.panel);
return fsl_dcu_attach_panel(fsl_dev, fsl_dev->connector.panel);
}
ret = drm_of_find_panel_or_bridge(fsl_dev->np, 0, 0, &panel, &bridge);
if (ret)
return ret;
if (panel) {
fsl_dev->connector.panel = panel;
return fsl_dcu_attach_panel(fsl_dev, panel);
}
return drm_bridge_attach(&fsl_dev->encoder, bridge, NULL, 0);
}
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_dcu_drm_rgb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Freescale Semiconductor, Inc.
*
* Freescale DCU drm device driver
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_probe_helper.h>
#include "fsl_dcu_drm_crtc.h"
#include "fsl_dcu_drm_drv.h"
static const struct drm_mode_config_funcs fsl_dcu_drm_mode_config_funcs = {
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
.fb_create = drm_gem_fb_create,
};
int fsl_dcu_drm_modeset_init(struct fsl_dcu_drm_device *fsl_dev)
{
int ret;
drm_mode_config_init(fsl_dev->drm);
fsl_dev->drm->mode_config.min_width = 0;
fsl_dev->drm->mode_config.min_height = 0;
fsl_dev->drm->mode_config.max_width = 2031;
fsl_dev->drm->mode_config.max_height = 2047;
fsl_dev->drm->mode_config.funcs = &fsl_dcu_drm_mode_config_funcs;
ret = fsl_dcu_drm_crtc_create(fsl_dev);
if (ret)
goto err;
ret = fsl_dcu_drm_encoder_create(fsl_dev, &fsl_dev->crtc);
if (ret)
goto err;
ret = fsl_dcu_create_outputs(fsl_dev);
if (ret)
goto err;
drm_mode_config_reset(fsl_dev->drm);
drm_kms_helper_poll_init(fsl_dev->drm);
return 0;
err:
drm_mode_config_cleanup(fsl_dev->drm);
return ret;
}
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_dcu_drm_kms.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2015 Freescale Semiconductor, Inc.
*
* Freescale DCU drm device driver
*/
#include <linux/clk.h>
#include <linux/regmap.h>
#include <video/videomode.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "fsl_dcu_drm_crtc.h"
#include "fsl_dcu_drm_drv.h"
#include "fsl_dcu_drm_plane.h"
static void fsl_dcu_drm_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
struct drm_pending_vblank_event *event = crtc->state->event;
regmap_write(fsl_dev->regmap,
DCU_UPDATE_MODE, DCU_UPDATE_MODE_READREG);
if (event) {
crtc->state->event = NULL;
spin_lock_irq(&crtc->dev->event_lock);
if (drm_crtc_vblank_get(crtc) == 0)
drm_crtc_arm_vblank_event(crtc, event);
else
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irq(&crtc->dev->event_lock);
}
}
static void fsl_dcu_drm_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
/* always disable planes on the CRTC */
drm_atomic_helper_disable_planes_on_crtc(old_crtc_state, true);
drm_crtc_vblank_off(crtc);
regmap_update_bits(fsl_dev->regmap, DCU_DCU_MODE,
DCU_MODE_DCU_MODE_MASK,
DCU_MODE_DCU_MODE(DCU_MODE_OFF));
regmap_write(fsl_dev->regmap, DCU_UPDATE_MODE,
DCU_UPDATE_MODE_READREG);
clk_disable_unprepare(fsl_dev->pix_clk);
}
static void fsl_dcu_drm_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
clk_prepare_enable(fsl_dev->pix_clk);
regmap_update_bits(fsl_dev->regmap, DCU_DCU_MODE,
DCU_MODE_DCU_MODE_MASK,
DCU_MODE_DCU_MODE(DCU_MODE_NORMAL));
regmap_write(fsl_dev->regmap, DCU_UPDATE_MODE,
DCU_UPDATE_MODE_READREG);
drm_crtc_vblank_on(crtc);
}
static void fsl_dcu_drm_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
struct drm_connector *con = &fsl_dev->connector.base;
struct drm_display_mode *mode = &crtc->state->mode;
unsigned int pol = 0;
struct videomode vm;
clk_set_rate(fsl_dev->pix_clk, mode->clock * 1000);
drm_display_mode_to_videomode(mode, &vm);
/* INV_PXCK as default (most display sample data on rising edge) */
if (!(con->display_info.bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE))
pol |= DCU_SYN_POL_INV_PXCK;
if (vm.flags & DISPLAY_FLAGS_HSYNC_LOW)
pol |= DCU_SYN_POL_INV_HS_LOW;
if (vm.flags & DISPLAY_FLAGS_VSYNC_LOW)
pol |= DCU_SYN_POL_INV_VS_LOW;
regmap_write(fsl_dev->regmap, DCU_HSYN_PARA,
DCU_HSYN_PARA_BP(vm.hback_porch) |
DCU_HSYN_PARA_PW(vm.hsync_len) |
DCU_HSYN_PARA_FP(vm.hfront_porch));
regmap_write(fsl_dev->regmap, DCU_VSYN_PARA,
DCU_VSYN_PARA_BP(vm.vback_porch) |
DCU_VSYN_PARA_PW(vm.vsync_len) |
DCU_VSYN_PARA_FP(vm.vfront_porch));
regmap_write(fsl_dev->regmap, DCU_DISP_SIZE,
DCU_DISP_SIZE_DELTA_Y(vm.vactive) |
DCU_DISP_SIZE_DELTA_X(vm.hactive));
regmap_write(fsl_dev->regmap, DCU_SYN_POL, pol);
regmap_write(fsl_dev->regmap, DCU_BGND, DCU_BGND_R(0) |
DCU_BGND_G(0) | DCU_BGND_B(0));
regmap_write(fsl_dev->regmap, DCU_DCU_MODE,
DCU_MODE_BLEND_ITER(1) | DCU_MODE_RASTER_EN);
regmap_write(fsl_dev->regmap, DCU_THRESHOLD,
DCU_THRESHOLD_LS_BF_VS(BF_VS_VAL) |
DCU_THRESHOLD_OUT_BUF_HIGH(BUF_MAX_VAL) |
DCU_THRESHOLD_OUT_BUF_LOW(BUF_MIN_VAL));
return;
}
static const struct drm_crtc_helper_funcs fsl_dcu_drm_crtc_helper_funcs = {
.atomic_disable = fsl_dcu_drm_crtc_atomic_disable,
.atomic_flush = fsl_dcu_drm_crtc_atomic_flush,
.atomic_enable = fsl_dcu_drm_crtc_atomic_enable,
.mode_set_nofb = fsl_dcu_drm_crtc_mode_set_nofb,
};
static int fsl_dcu_drm_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
unsigned int value;
regmap_read(fsl_dev->regmap, DCU_INT_MASK, &value);
value &= ~DCU_INT_MASK_VBLANK;
regmap_write(fsl_dev->regmap, DCU_INT_MASK, value);
return 0;
}
static void fsl_dcu_drm_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct fsl_dcu_drm_device *fsl_dev = dev->dev_private;
unsigned int value;
regmap_read(fsl_dev->regmap, DCU_INT_MASK, &value);
value |= DCU_INT_MASK_VBLANK;
regmap_write(fsl_dev->regmap, DCU_INT_MASK, value);
}
static const struct drm_crtc_funcs fsl_dcu_drm_crtc_funcs = {
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.destroy = drm_crtc_cleanup,
.page_flip = drm_atomic_helper_page_flip,
.reset = drm_atomic_helper_crtc_reset,
.set_config = drm_atomic_helper_set_config,
.enable_vblank = fsl_dcu_drm_crtc_enable_vblank,
.disable_vblank = fsl_dcu_drm_crtc_disable_vblank,
};
int fsl_dcu_drm_crtc_create(struct fsl_dcu_drm_device *fsl_dev)
{
struct drm_plane *primary;
struct drm_crtc *crtc = &fsl_dev->crtc;
int ret;
fsl_dcu_drm_init_planes(fsl_dev->drm);
primary = fsl_dcu_drm_primary_create_plane(fsl_dev->drm);
if (!primary)
return -ENOMEM;
ret = drm_crtc_init_with_planes(fsl_dev->drm, crtc, primary, NULL,
&fsl_dcu_drm_crtc_funcs, NULL);
if (ret) {
primary->funcs->destroy(primary);
return ret;
}
drm_crtc_helper_add(crtc, &fsl_dcu_drm_crtc_helper_funcs);
return 0;
}
| linux-master | drivers/gpu/drm/fsl-dcu/fsl_dcu_drm_crtc.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Amarula Solutions(India)
* Author: Jagan Teki <[email protected]>
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_mipi_dsi.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#define VENDOR_ID 0x00
#define DEVICE_ID_H 0x01
#define DEVICE_ID_L 0x02
#define VERSION_ID 0x03
#define FIRMWARE_VERSION 0x08
#define CONFIG_FINISH 0x09
#define PD_CTRL(n) (0x0a + ((n) & 0x3)) /* 0..3 */
#define RST_CTRL(n) (0x0e + ((n) & 0x1)) /* 0..1 */
#define SYS_CTRL(n) (0x10 + ((n) & 0x7)) /* 0..4 */
#define SYS_CTRL_1_CLK_PHASE_MSK GENMASK(5, 4)
#define CLK_PHASE_0 0
#define CLK_PHASE_1_4 1
#define CLK_PHASE_1_2 2
#define CLK_PHASE_3_4 3
#define RGB_DRV(n) (0x18 + ((n) & 0x3)) /* 0..3 */
#define RGB_DLY(n) (0x1c + ((n) & 0x1)) /* 0..1 */
#define RGB_TEST_CTRL 0x1e
#define ATE_PLL_EN 0x1f
#define HACTIVE_LI 0x20
#define VACTIVE_LI 0x21
#define VACTIVE_HACTIVE_HI 0x22
#define HFP_LI 0x23
#define HSYNC_LI 0x24
#define HBP_LI 0x25
#define HFP_HSW_HBP_HI 0x26
#define HFP_HSW_HBP_HI_HFP(n) (((n) & 0x300) >> 4)
#define HFP_HSW_HBP_HI_HS(n) (((n) & 0x300) >> 6)
#define HFP_HSW_HBP_HI_HBP(n) (((n) & 0x300) >> 8)
#define VFP 0x27
#define VSYNC 0x28
#define VBP 0x29
#define BIST_POL 0x2a
#define BIST_POL_BIST_MODE(n) (((n) & 0xf) << 4)
#define BIST_POL_BIST_GEN BIT(3)
#define BIST_POL_HSYNC_POL BIT(2)
#define BIST_POL_VSYNC_POL BIT(1)
#define BIST_POL_DE_POL BIT(0)
#define BIST_RED 0x2b
#define BIST_GREEN 0x2c
#define BIST_BLUE 0x2d
#define BIST_CHESS_X 0x2e
#define BIST_CHESS_Y 0x2f
#define BIST_CHESS_XY_H 0x30
#define BIST_FRAME_TIME_L 0x31
#define BIST_FRAME_TIME_H 0x32
#define FIFO_MAX_ADDR_LOW 0x33
#define SYNC_EVENT_DLY 0x34
#define HSW_MIN 0x35
#define HFP_MIN 0x36
#define LOGIC_RST_NUM 0x37
#define OSC_CTRL(n) (0x48 + ((n) & 0x7)) /* 0..5 */
#define BG_CTRL 0x4e
#define LDO_PLL 0x4f
#define PLL_CTRL(n) (0x50 + ((n) & 0xf)) /* 0..15 */
#define PLL_CTRL_6_EXTERNAL 0x90
#define PLL_CTRL_6_MIPI_CLK 0x92
#define PLL_CTRL_6_INTERNAL 0x93
#define PLL_REM(n) (0x60 + ((n) & 0x3)) /* 0..2 */
#define PLL_DIV(n) (0x63 + ((n) & 0x3)) /* 0..2 */
#define PLL_FRAC(n) (0x66 + ((n) & 0x3)) /* 0..2 */
#define PLL_INT(n) (0x69 + ((n) & 0x1)) /* 0..1 */
#define PLL_REF_DIV 0x6b
#define PLL_REF_DIV_P(n) ((n) & 0xf)
#define PLL_REF_DIV_Pe BIT(4)
#define PLL_REF_DIV_S(n) (((n) & 0x7) << 5)
#define PLL_SSC_P(n) (0x6c + ((n) & 0x3)) /* 0..2 */
#define PLL_SSC_STEP(n) (0x6f + ((n) & 0x3)) /* 0..2 */
#define PLL_SSC_OFFSET(n) (0x72 + ((n) & 0x3)) /* 0..3 */
#define GPIO_OEN 0x79
#define MIPI_CFG_PW 0x7a
#define MIPI_CFG_PW_CONFIG_DSI 0xc1
#define MIPI_CFG_PW_CONFIG_I2C 0x3e
#define GPIO_SEL(n) (0x7b + ((n) & 0x1)) /* 0..1 */
#define IRQ_SEL 0x7d
#define DBG_SEL 0x7e
#define DBG_SIGNAL 0x7f
#define MIPI_ERR_VECTOR_L 0x80
#define MIPI_ERR_VECTOR_H 0x81
#define MIPI_ERR_VECTOR_EN_L 0x82
#define MIPI_ERR_VECTOR_EN_H 0x83
#define MIPI_MAX_SIZE_L 0x84
#define MIPI_MAX_SIZE_H 0x85
#define DSI_CTRL 0x86
#define DSI_CTRL_UNKNOWN 0x28
#define DSI_CTRL_DSI_LANES(n) ((n) & 0x3)
#define MIPI_PN_SWAP 0x87
#define MIPI_PN_SWAP_CLK BIT(4)
#define MIPI_PN_SWAP_D(n) BIT((n) & 0x3)
#define MIPI_SOT_SYNC_BIT(n) (0x88 + ((n) & 0x1)) /* 0..1 */
#define MIPI_ULPS_CTRL 0x8a
#define MIPI_CLK_CHK_VAR 0x8e
#define MIPI_CLK_CHK_INI 0x8f
#define MIPI_T_TERM_EN 0x90
#define MIPI_T_HS_SETTLE 0x91
#define MIPI_T_TA_SURE_PRE 0x92
#define MIPI_T_LPX_SET 0x94
#define MIPI_T_CLK_MISS 0x95
#define MIPI_INIT_TIME_L 0x96
#define MIPI_INIT_TIME_H 0x97
#define MIPI_T_CLK_TERM_EN 0x99
#define MIPI_T_CLK_SETTLE 0x9a
#define MIPI_TO_HS_RX_L 0x9e
#define MIPI_TO_HS_RX_H 0x9f
#define MIPI_PHY(n) (0xa0 + ((n) & 0x7)) /* 0..5 */
#define MIPI_PD_RX 0xb0
#define MIPI_PD_TERM 0xb1
#define MIPI_PD_HSRX 0xb2
#define MIPI_PD_LPTX 0xb3
#define MIPI_PD_LPRX 0xb4
#define MIPI_PD_CK_LANE 0xb5
#define MIPI_FORCE_0 0xb6
#define MIPI_RST_CTRL 0xb7
#define MIPI_RST_NUM 0xb8
#define MIPI_DBG_SET(n) (0xc0 + ((n) & 0xf)) /* 0..9 */
#define MIPI_DBG_SEL 0xe0
#define MIPI_DBG_DATA 0xe1
#define MIPI_ATE_TEST_SEL 0xe2
#define MIPI_ATE_STATUS(n) (0xe3 + ((n) & 0x1)) /* 0..1 */
struct chipone {
struct device *dev;
struct regmap *regmap;
struct i2c_client *client;
struct drm_bridge bridge;
struct drm_display_mode mode;
struct drm_bridge *panel_bridge;
struct mipi_dsi_device *dsi;
struct gpio_desc *enable_gpio;
struct regulator *vdd1;
struct regulator *vdd2;
struct regulator *vdd3;
struct clk *refclk;
unsigned long refclk_rate;
bool interface_i2c;
};
static const struct regmap_range chipone_dsi_readable_ranges[] = {
regmap_reg_range(VENDOR_ID, VERSION_ID),
regmap_reg_range(FIRMWARE_VERSION, PLL_SSC_OFFSET(3)),
regmap_reg_range(GPIO_OEN, MIPI_ULPS_CTRL),
regmap_reg_range(MIPI_CLK_CHK_VAR, MIPI_T_TA_SURE_PRE),
regmap_reg_range(MIPI_T_LPX_SET, MIPI_INIT_TIME_H),
regmap_reg_range(MIPI_T_CLK_TERM_EN, MIPI_T_CLK_SETTLE),
regmap_reg_range(MIPI_TO_HS_RX_L, MIPI_PHY(5)),
regmap_reg_range(MIPI_PD_RX, MIPI_RST_NUM),
regmap_reg_range(MIPI_DBG_SET(0), MIPI_DBG_SET(9)),
regmap_reg_range(MIPI_DBG_SEL, MIPI_ATE_STATUS(1)),
};
static const struct regmap_access_table chipone_dsi_readable_table = {
.yes_ranges = chipone_dsi_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(chipone_dsi_readable_ranges),
};
static const struct regmap_range chipone_dsi_writeable_ranges[] = {
regmap_reg_range(CONFIG_FINISH, PLL_SSC_OFFSET(3)),
regmap_reg_range(GPIO_OEN, MIPI_ULPS_CTRL),
regmap_reg_range(MIPI_CLK_CHK_VAR, MIPI_T_TA_SURE_PRE),
regmap_reg_range(MIPI_T_LPX_SET, MIPI_INIT_TIME_H),
regmap_reg_range(MIPI_T_CLK_TERM_EN, MIPI_T_CLK_SETTLE),
regmap_reg_range(MIPI_TO_HS_RX_L, MIPI_PHY(5)),
regmap_reg_range(MIPI_PD_RX, MIPI_RST_NUM),
regmap_reg_range(MIPI_DBG_SET(0), MIPI_DBG_SET(9)),
regmap_reg_range(MIPI_DBG_SEL, MIPI_ATE_STATUS(1)),
};
static const struct regmap_access_table chipone_dsi_writeable_table = {
.yes_ranges = chipone_dsi_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(chipone_dsi_writeable_ranges),
};
static const struct regmap_config chipone_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.rd_table = &chipone_dsi_readable_table,
.wr_table = &chipone_dsi_writeable_table,
.cache_type = REGCACHE_RBTREE,
.max_register = MIPI_ATE_STATUS(1),
};
static int chipone_dsi_read(void *context,
const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct mipi_dsi_device *dsi = context;
const u16 reg16 = (val_size << 8) | *(u8 *)reg;
int ret;
ret = mipi_dsi_generic_read(dsi, ®16, 2, val, val_size);
return ret == val_size ? 0 : -EINVAL;
}
static int chipone_dsi_write(void *context, const void *data, size_t count)
{
struct mipi_dsi_device *dsi = context;
return mipi_dsi_generic_write(dsi, data, 2);
}
static const struct regmap_bus chipone_dsi_regmap_bus = {
.read = chipone_dsi_read,
.write = chipone_dsi_write,
.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
};
static inline struct chipone *bridge_to_chipone(struct drm_bridge *bridge)
{
return container_of(bridge, struct chipone, bridge);
}
static void chipone_readb(struct chipone *icn, u8 reg, u8 *val)
{
int ret, pval;
ret = regmap_read(icn->regmap, reg, &pval);
*val = ret ? 0 : pval & 0xff;
}
static int chipone_writeb(struct chipone *icn, u8 reg, u8 val)
{
return regmap_write(icn->regmap, reg, val);
}
static void chipone_configure_pll(struct chipone *icn,
const struct drm_display_mode *mode)
{
unsigned int best_p = 0, best_m = 0, best_s = 0;
unsigned int mode_clock = mode->clock * 1000;
unsigned int delta, min_delta = 0xffffffff;
unsigned int freq_p, freq_s, freq_out;
unsigned int p_min, p_max;
unsigned int p, m, s;
unsigned int fin;
bool best_p_pot;
u8 ref_div;
/*
* DSI byte clock frequency (input into PLL) is calculated as:
* DSI_CLK = HS clock / 4
*
* DPI pixel clock frequency (output from PLL) is mode clock.
*
* The chip contains fractional PLL which works as follows:
* DPI_CLK = ((DSI_CLK / P) * M) / S
* P is pre-divider, register PLL_REF_DIV[3:0] is 1:n divider
* register PLL_REF_DIV[4] is extra 1:2 divider
* M is integer multiplier, register PLL_INT(0) is multiplier
* S is post-divider, register PLL_REF_DIV[7:5] is 2^(n+1) divider
*
* It seems the PLL input clock after applying P pre-divider have
* to be lower than 20 MHz.
*/
if (icn->refclk)
fin = icn->refclk_rate;
else
fin = icn->dsi->hs_rate / 4; /* in Hz */
/* Minimum value of P predivider for PLL input in 5..20 MHz */
p_min = clamp(DIV_ROUND_UP(fin, 20000000), 1U, 31U);
p_max = clamp(fin / 5000000, 1U, 31U);
for (p = p_min; p < p_max; p++) { /* PLL_REF_DIV[4,3:0] */
if (p > 16 && p & 1) /* P > 16 uses extra /2 */
continue;
freq_p = fin / p;
if (freq_p == 0) /* Divider too high */
break;
for (s = 0; s < 0x7; s++) { /* PLL_REF_DIV[7:5] */
freq_s = freq_p / BIT(s + 1);
if (freq_s == 0) /* Divider too high */
break;
m = mode_clock / freq_s;
/* Multiplier is 8 bit */
if (m > 0xff)
continue;
/* Limit PLL VCO frequency to 1 GHz */
freq_out = (fin * m) / p;
if (freq_out > 1000000000)
continue;
/* Apply post-divider */
freq_out /= BIT(s + 1);
delta = abs(mode_clock - freq_out);
if (delta < min_delta) {
best_p = p;
best_m = m;
best_s = s;
min_delta = delta;
}
}
}
best_p_pot = !(best_p & 1);
dev_dbg(icn->dev,
"PLL: P[3:0]=%d P[4]=2*%d M=%d S[7:5]=2^%d delta=%d => DSI f_in(%s)=%d Hz ; DPI f_out=%d Hz\n",
best_p >> best_p_pot, best_p_pot, best_m, best_s + 1,
min_delta, icn->refclk ? "EXT" : "DSI", fin,
(fin * best_m) / (best_p << (best_s + 1)));
ref_div = PLL_REF_DIV_P(best_p >> best_p_pot) | PLL_REF_DIV_S(best_s);
if (best_p_pot) /* Prefer /2 pre-divider */
ref_div |= PLL_REF_DIV_Pe;
/* Clock source selection either external clock or MIPI DSI clock lane */
chipone_writeb(icn, PLL_CTRL(6),
icn->refclk ? PLL_CTRL_6_EXTERNAL : PLL_CTRL_6_MIPI_CLK);
chipone_writeb(icn, PLL_REF_DIV, ref_div);
chipone_writeb(icn, PLL_INT(0), best_m);
}
static void chipone_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct chipone *icn = bridge_to_chipone(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
struct drm_display_mode *mode = &icn->mode;
const struct drm_bridge_state *bridge_state;
u16 hfp, hbp, hsync;
u32 bus_flags;
u8 pol, sys_ctrl_1, id[4];
chipone_readb(icn, VENDOR_ID, id);
chipone_readb(icn, DEVICE_ID_H, id + 1);
chipone_readb(icn, DEVICE_ID_L, id + 2);
chipone_readb(icn, VERSION_ID, id + 3);
dev_dbg(icn->dev,
"Chip IDs: Vendor=0x%02x Device=0x%02x:0x%02x Version=0x%02x\n",
id[0], id[1], id[2], id[3]);
if (id[0] != 0xc1 || id[1] != 0x62 || id[2] != 0x11) {
dev_dbg(icn->dev, "Invalid Chip IDs, aborting configuration\n");
return;
}
/* Get the DPI flags from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
bus_flags = bridge_state->output_bus_cfg.flags;
if (icn->interface_i2c)
chipone_writeb(icn, MIPI_CFG_PW, MIPI_CFG_PW_CONFIG_I2C);
else
chipone_writeb(icn, MIPI_CFG_PW, MIPI_CFG_PW_CONFIG_DSI);
chipone_writeb(icn, HACTIVE_LI, mode->hdisplay & 0xff);
chipone_writeb(icn, VACTIVE_LI, mode->vdisplay & 0xff);
/*
* lsb nibble: 2nd nibble of hdisplay
* msb nibble: 2nd nibble of vdisplay
*/
chipone_writeb(icn, VACTIVE_HACTIVE_HI,
((mode->hdisplay >> 8) & 0xf) |
(((mode->vdisplay >> 8) & 0xf) << 4));
hfp = mode->hsync_start - mode->hdisplay;
hsync = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
chipone_writeb(icn, HFP_LI, hfp & 0xff);
chipone_writeb(icn, HSYNC_LI, hsync & 0xff);
chipone_writeb(icn, HBP_LI, hbp & 0xff);
/* Top two bits of Horizontal Front porch/Sync/Back porch */
chipone_writeb(icn, HFP_HSW_HBP_HI,
HFP_HSW_HBP_HI_HFP(hfp) |
HFP_HSW_HBP_HI_HS(hsync) |
HFP_HSW_HBP_HI_HBP(hbp));
chipone_writeb(icn, VFP, mode->vsync_start - mode->vdisplay);
chipone_writeb(icn, VSYNC, mode->vsync_end - mode->vsync_start);
chipone_writeb(icn, VBP, mode->vtotal - mode->vsync_end);
/* dsi specific sequence */
chipone_writeb(icn, SYNC_EVENT_DLY, 0x80);
chipone_writeb(icn, HFP_MIN, hfp & 0xff);
/* DSI data lane count */
chipone_writeb(icn, DSI_CTRL,
DSI_CTRL_UNKNOWN | DSI_CTRL_DSI_LANES(icn->dsi->lanes - 1));
chipone_writeb(icn, MIPI_PD_CK_LANE, 0xa0);
chipone_writeb(icn, PLL_CTRL(12), 0xff);
chipone_writeb(icn, MIPI_PN_SWAP, 0x00);
/* DPI HS/VS/DE polarity */
pol = ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? BIST_POL_HSYNC_POL : 0) |
((mode->flags & DRM_MODE_FLAG_PVSYNC) ? BIST_POL_VSYNC_POL : 0) |
((bus_flags & DRM_BUS_FLAG_DE_HIGH) ? BIST_POL_DE_POL : 0);
chipone_writeb(icn, BIST_POL, pol);
/* Configure PLL settings */
chipone_configure_pll(icn, mode);
chipone_writeb(icn, SYS_CTRL(0), 0x40);
sys_ctrl_1 = 0x88;
if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE)
sys_ctrl_1 |= FIELD_PREP(SYS_CTRL_1_CLK_PHASE_MSK, CLK_PHASE_0);
else
sys_ctrl_1 |= FIELD_PREP(SYS_CTRL_1_CLK_PHASE_MSK, CLK_PHASE_1_2);
chipone_writeb(icn, SYS_CTRL(1), sys_ctrl_1);
/* icn6211 specific sequence */
chipone_writeb(icn, MIPI_FORCE_0, 0x20);
chipone_writeb(icn, PLL_CTRL(1), 0x20);
chipone_writeb(icn, CONFIG_FINISH, 0x10);
usleep_range(10000, 11000);
}
static void chipone_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct chipone *icn = bridge_to_chipone(bridge);
int ret;
if (icn->vdd1) {
ret = regulator_enable(icn->vdd1);
if (ret)
DRM_DEV_ERROR(icn->dev,
"failed to enable VDD1 regulator: %d\n", ret);
}
if (icn->vdd2) {
ret = regulator_enable(icn->vdd2);
if (ret)
DRM_DEV_ERROR(icn->dev,
"failed to enable VDD2 regulator: %d\n", ret);
}
if (icn->vdd3) {
ret = regulator_enable(icn->vdd3);
if (ret)
DRM_DEV_ERROR(icn->dev,
"failed to enable VDD3 regulator: %d\n", ret);
}
ret = clk_prepare_enable(icn->refclk);
if (ret)
DRM_DEV_ERROR(icn->dev,
"failed to enable RECLK clock: %d\n", ret);
gpiod_set_value(icn->enable_gpio, 1);
usleep_range(10000, 11000);
}
static void chipone_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct chipone *icn = bridge_to_chipone(bridge);
clk_disable_unprepare(icn->refclk);
if (icn->vdd1)
regulator_disable(icn->vdd1);
if (icn->vdd2)
regulator_disable(icn->vdd2);
if (icn->vdd3)
regulator_disable(icn->vdd3);
gpiod_set_value(icn->enable_gpio, 0);
}
static void chipone_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct chipone *icn = bridge_to_chipone(bridge);
drm_mode_copy(&icn->mode, adjusted_mode);
};
static int chipone_dsi_attach(struct chipone *icn)
{
struct mipi_dsi_device *dsi = icn->dsi;
struct device *dev = icn->dev;
int dsi_lanes, ret;
dsi_lanes = drm_of_get_data_lanes_count_ep(dev->of_node, 0, 0, 1, 4);
/*
* If the 'data-lanes' property does not exist in DT or is invalid,
* default to previously hard-coded behavior, which was 4 data lanes.
*/
if (dsi_lanes < 0)
icn->dsi->lanes = 4;
else
icn->dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_LPM | MIPI_DSI_MODE_NO_EOT_PACKET;
dsi->hs_rate = 500000000;
dsi->lp_rate = 16000000;
ret = mipi_dsi_attach(dsi);
if (ret < 0)
dev_err(icn->dev, "failed to attach dsi\n");
return ret;
}
static int chipone_dsi_host_attach(struct chipone *icn)
{
struct device *dev = icn->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
int ret = 0;
const struct mipi_dsi_device_info info = {
.type = "chipone",
.channel = 0,
.node = NULL,
};
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
host_node = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (!host_node)
return -EINVAL;
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
if (!host) {
dev_err(dev, "failed to find dsi host\n");
return -EPROBE_DEFER;
}
dsi = mipi_dsi_device_register_full(host, &info);
if (IS_ERR(dsi)) {
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
}
icn->dsi = dsi;
ret = chipone_dsi_attach(icn);
if (ret < 0)
mipi_dsi_device_unregister(dsi);
return ret;
}
static int chipone_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags)
{
struct chipone *icn = bridge_to_chipone(bridge);
return drm_bridge_attach(bridge->encoder, icn->panel_bridge, bridge, flags);
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
chipone_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs chipone_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_pre_enable = chipone_atomic_pre_enable,
.atomic_enable = chipone_atomic_enable,
.atomic_post_disable = chipone_atomic_post_disable,
.mode_set = chipone_mode_set,
.attach = chipone_attach,
.atomic_get_input_bus_fmts = chipone_atomic_get_input_bus_fmts,
};
static int chipone_parse_dt(struct chipone *icn)
{
struct device *dev = icn->dev;
int ret;
icn->refclk = devm_clk_get_optional(dev, "refclk");
if (IS_ERR(icn->refclk)) {
ret = PTR_ERR(icn->refclk);
DRM_DEV_ERROR(dev, "failed to get REFCLK clock: %d\n", ret);
return ret;
} else if (icn->refclk) {
icn->refclk_rate = clk_get_rate(icn->refclk);
if (icn->refclk_rate < 10000000 || icn->refclk_rate > 154000000) {
DRM_DEV_ERROR(dev, "REFCLK out of range: %ld Hz\n",
icn->refclk_rate);
return -EINVAL;
}
}
icn->vdd1 = devm_regulator_get_optional(dev, "vdd1");
if (IS_ERR(icn->vdd1)) {
ret = PTR_ERR(icn->vdd1);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
icn->vdd1 = NULL;
DRM_DEV_DEBUG(dev, "failed to get VDD1 regulator: %d\n", ret);
}
icn->vdd2 = devm_regulator_get_optional(dev, "vdd2");
if (IS_ERR(icn->vdd2)) {
ret = PTR_ERR(icn->vdd2);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
icn->vdd2 = NULL;
DRM_DEV_DEBUG(dev, "failed to get VDD2 regulator: %d\n", ret);
}
icn->vdd3 = devm_regulator_get_optional(dev, "vdd3");
if (IS_ERR(icn->vdd3)) {
ret = PTR_ERR(icn->vdd3);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
icn->vdd3 = NULL;
DRM_DEV_DEBUG(dev, "failed to get VDD3 regulator: %d\n", ret);
}
icn->enable_gpio = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR(icn->enable_gpio)) {
DRM_DEV_ERROR(dev, "failed to get enable GPIO\n");
return PTR_ERR(icn->enable_gpio);
}
icn->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0);
if (IS_ERR(icn->panel_bridge))
return PTR_ERR(icn->panel_bridge);
return 0;
}
static int chipone_common_probe(struct device *dev, struct chipone **icnr)
{
struct chipone *icn;
int ret;
icn = devm_kzalloc(dev, sizeof(struct chipone), GFP_KERNEL);
if (!icn)
return -ENOMEM;
icn->dev = dev;
ret = chipone_parse_dt(icn);
if (ret)
return ret;
icn->bridge.funcs = &chipone_bridge_funcs;
icn->bridge.type = DRM_MODE_CONNECTOR_DPI;
icn->bridge.of_node = dev->of_node;
*icnr = icn;
return ret;
}
static int chipone_dsi_probe(struct mipi_dsi_device *dsi)
{
struct device *dev = &dsi->dev;
struct chipone *icn;
int ret;
ret = chipone_common_probe(dev, &icn);
if (ret)
return ret;
icn->regmap = devm_regmap_init(dev, &chipone_dsi_regmap_bus,
dsi, &chipone_regmap_config);
if (IS_ERR(icn->regmap))
return PTR_ERR(icn->regmap);
icn->interface_i2c = false;
icn->dsi = dsi;
mipi_dsi_set_drvdata(dsi, icn);
drm_bridge_add(&icn->bridge);
ret = chipone_dsi_attach(icn);
if (ret)
drm_bridge_remove(&icn->bridge);
return ret;
}
static int chipone_i2c_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct chipone *icn;
int ret;
ret = chipone_common_probe(dev, &icn);
if (ret)
return ret;
icn->regmap = devm_regmap_init_i2c(client, &chipone_regmap_config);
if (IS_ERR(icn->regmap))
return PTR_ERR(icn->regmap);
icn->interface_i2c = true;
icn->client = client;
dev_set_drvdata(dev, icn);
i2c_set_clientdata(client, icn);
drm_bridge_add(&icn->bridge);
return chipone_dsi_host_attach(icn);
}
static void chipone_dsi_remove(struct mipi_dsi_device *dsi)
{
struct chipone *icn = mipi_dsi_get_drvdata(dsi);
mipi_dsi_detach(dsi);
drm_bridge_remove(&icn->bridge);
}
static const struct of_device_id chipone_of_match[] = {
{ .compatible = "chipone,icn6211", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, chipone_of_match);
static struct mipi_dsi_driver chipone_dsi_driver = {
.probe = chipone_dsi_probe,
.remove = chipone_dsi_remove,
.driver = {
.name = "chipone-icn6211",
.owner = THIS_MODULE,
.of_match_table = chipone_of_match,
},
};
static struct i2c_device_id chipone_i2c_id[] = {
{ "chipone,icn6211" },
{},
};
MODULE_DEVICE_TABLE(i2c, chipone_i2c_id);
static struct i2c_driver chipone_i2c_driver = {
.probe = chipone_i2c_probe,
.id_table = chipone_i2c_id,
.driver = {
.name = "chipone-icn6211-i2c",
.of_match_table = chipone_of_match,
},
};
static int __init chipone_init(void)
{
if (IS_ENABLED(CONFIG_DRM_MIPI_DSI))
mipi_dsi_driver_register(&chipone_dsi_driver);
return i2c_add_driver(&chipone_i2c_driver);
}
module_init(chipone_init);
static void __exit chipone_exit(void)
{
i2c_del_driver(&chipone_i2c_driver);
if (IS_ENABLED(CONFIG_DRM_MIPI_DSI))
mipi_dsi_driver_unregister(&chipone_dsi_driver);
}
module_exit(chipone_exit);
MODULE_AUTHOR("Jagan Teki <[email protected]>");
MODULE_DESCRIPTION("Chipone ICN6211 MIPI-DSI to RGB Converter Bridge");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/chipone-icn6211.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2016 Laurent Pinchart <[email protected]>
* Copyright (C) 2017 Broadcom
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_connector.h>
#include <drm/drm_encoder.h>
#include <drm/drm_managed.h>
#include <drm/drm_modeset_helper_vtables.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
struct panel_bridge {
struct drm_bridge bridge;
struct drm_connector connector;
struct drm_panel *panel;
u32 connector_type;
};
static inline struct panel_bridge *
drm_bridge_to_panel_bridge(struct drm_bridge *bridge)
{
return container_of(bridge, struct panel_bridge, bridge);
}
static inline struct panel_bridge *
drm_connector_to_panel_bridge(struct drm_connector *connector)
{
return container_of(connector, struct panel_bridge, connector);
}
static int panel_bridge_connector_get_modes(struct drm_connector *connector)
{
struct panel_bridge *panel_bridge =
drm_connector_to_panel_bridge(connector);
return drm_panel_get_modes(panel_bridge->panel, connector);
}
static const struct drm_connector_helper_funcs
panel_bridge_connector_helper_funcs = {
.get_modes = panel_bridge_connector_get_modes,
};
static const struct drm_connector_funcs panel_bridge_connector_funcs = {
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int panel_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_connector *connector = &panel_bridge->connector;
int ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
if (!bridge->encoder) {
DRM_ERROR("Missing encoder\n");
return -ENODEV;
}
drm_connector_helper_add(connector,
&panel_bridge_connector_helper_funcs);
ret = drm_connector_init(bridge->dev, connector,
&panel_bridge_connector_funcs,
panel_bridge->connector_type);
if (ret) {
DRM_ERROR("Failed to initialize connector\n");
return ret;
}
drm_panel_bridge_set_orientation(connector, bridge);
drm_connector_attach_encoder(&panel_bridge->connector,
bridge->encoder);
if (bridge->dev->registered) {
if (connector->funcs->reset)
connector->funcs->reset(connector);
drm_connector_register(connector);
}
return 0;
}
static void panel_bridge_detach(struct drm_bridge *bridge)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_connector *connector = &panel_bridge->connector;
/*
* Cleanup the connector if we know it was initialized.
*
* FIXME: This wouldn't be needed if the panel_bridge structure was
* allocated with drmm_kzalloc(). This might be tricky since the
* drm_device pointer can only be retrieved when the bridge is attached.
*/
if (connector->dev)
drm_connector_cleanup(connector);
}
static void panel_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_atomic_state *atomic_state = old_bridge_state->base.state;
struct drm_encoder *encoder = bridge->encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
crtc = drm_atomic_get_new_crtc_for_encoder(atomic_state, encoder);
if (!crtc)
return;
old_crtc_state = drm_atomic_get_old_crtc_state(atomic_state, crtc);
if (old_crtc_state && old_crtc_state->self_refresh_active)
return;
drm_panel_prepare(panel_bridge->panel);
}
static void panel_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_atomic_state *atomic_state = old_bridge_state->base.state;
struct drm_encoder *encoder = bridge->encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
crtc = drm_atomic_get_new_crtc_for_encoder(atomic_state, encoder);
if (!crtc)
return;
old_crtc_state = drm_atomic_get_old_crtc_state(atomic_state, crtc);
if (old_crtc_state && old_crtc_state->self_refresh_active)
return;
drm_panel_enable(panel_bridge->panel);
}
static void panel_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_atomic_state *atomic_state = old_bridge_state->base.state;
struct drm_encoder *encoder = bridge->encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state;
crtc = drm_atomic_get_old_crtc_for_encoder(atomic_state, encoder);
if (!crtc)
return;
new_crtc_state = drm_atomic_get_new_crtc_state(atomic_state, crtc);
if (new_crtc_state && new_crtc_state->self_refresh_active)
return;
drm_panel_disable(panel_bridge->panel);
}
static void panel_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_atomic_state *atomic_state = old_bridge_state->base.state;
struct drm_encoder *encoder = bridge->encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state;
crtc = drm_atomic_get_old_crtc_for_encoder(atomic_state, encoder);
if (!crtc)
return;
new_crtc_state = drm_atomic_get_new_crtc_state(atomic_state, crtc);
if (new_crtc_state && new_crtc_state->self_refresh_active)
return;
drm_panel_unprepare(panel_bridge->panel);
}
static int panel_bridge_get_modes(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
return drm_panel_get_modes(panel_bridge->panel, connector);
}
static void panel_bridge_debugfs_init(struct drm_bridge *bridge,
struct dentry *root)
{
struct panel_bridge *panel_bridge = drm_bridge_to_panel_bridge(bridge);
struct drm_panel *panel = panel_bridge->panel;
root = debugfs_create_dir("panel", root);
if (panel->funcs->debugfs_init)
panel->funcs->debugfs_init(panel, root);
}
static const struct drm_bridge_funcs panel_bridge_bridge_funcs = {
.attach = panel_bridge_attach,
.detach = panel_bridge_detach,
.atomic_pre_enable = panel_bridge_atomic_pre_enable,
.atomic_enable = panel_bridge_atomic_enable,
.atomic_disable = panel_bridge_atomic_disable,
.atomic_post_disable = panel_bridge_atomic_post_disable,
.get_modes = panel_bridge_get_modes,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = drm_atomic_helper_bridge_propagate_bus_fmt,
.debugfs_init = panel_bridge_debugfs_init,
};
/**
* drm_bridge_is_panel - Checks if a drm_bridge is a panel_bridge.
*
* @bridge: The drm_bridge to be checked.
*
* Returns true if the bridge is a panel bridge, or false otherwise.
*/
bool drm_bridge_is_panel(const struct drm_bridge *bridge)
{
return bridge->funcs == &panel_bridge_bridge_funcs;
}
EXPORT_SYMBOL(drm_bridge_is_panel);
/**
* drm_panel_bridge_add - Creates a &drm_bridge and &drm_connector that
* just calls the appropriate functions from &drm_panel.
*
* @panel: The drm_panel being wrapped. Must be non-NULL.
*
* For drivers converting from directly using drm_panel: The expected
* usage pattern is that during either encoder module probe or DSI
* host attach, a drm_panel will be looked up through
* drm_of_find_panel_or_bridge(). drm_panel_bridge_add() is used to
* wrap that panel in the new bridge, and the result can then be
* passed to drm_bridge_attach(). The drm_panel_prepare() and related
* functions can be dropped from the encoder driver (they're now
* called by the KMS helpers before calling into the encoder), along
* with connector creation. When done with the bridge (after
* drm_mode_config_cleanup() if the bridge has already been attached), then
* drm_panel_bridge_remove() to free it.
*
* The connector type is set to @panel->connector_type, which must be set to a
* known type. Calling this function with a panel whose connector type is
* DRM_MODE_CONNECTOR_Unknown will return ERR_PTR(-EINVAL).
*
* See devm_drm_panel_bridge_add() for an automatically managed version of this
* function.
*/
struct drm_bridge *drm_panel_bridge_add(struct drm_panel *panel)
{
if (WARN_ON(panel->connector_type == DRM_MODE_CONNECTOR_Unknown))
return ERR_PTR(-EINVAL);
return drm_panel_bridge_add_typed(panel, panel->connector_type);
}
EXPORT_SYMBOL(drm_panel_bridge_add);
/**
* drm_panel_bridge_add_typed - Creates a &drm_bridge and &drm_connector with
* an explicit connector type.
* @panel: The drm_panel being wrapped. Must be non-NULL.
* @connector_type: The connector type (DRM_MODE_CONNECTOR_*)
*
* This is just like drm_panel_bridge_add(), but forces the connector type to
* @connector_type instead of infering it from the panel.
*
* This function is deprecated and should not be used in new drivers. Use
* drm_panel_bridge_add() instead, and fix panel drivers as necessary if they
* don't report a connector type.
*/
struct drm_bridge *drm_panel_bridge_add_typed(struct drm_panel *panel,
u32 connector_type)
{
struct panel_bridge *panel_bridge;
if (!panel)
return ERR_PTR(-EINVAL);
panel_bridge = devm_kzalloc(panel->dev, sizeof(*panel_bridge),
GFP_KERNEL);
if (!panel_bridge)
return ERR_PTR(-ENOMEM);
panel_bridge->connector_type = connector_type;
panel_bridge->panel = panel;
panel_bridge->bridge.funcs = &panel_bridge_bridge_funcs;
#ifdef CONFIG_OF
panel_bridge->bridge.of_node = panel->dev->of_node;
#endif
panel_bridge->bridge.ops = DRM_BRIDGE_OP_MODES;
panel_bridge->bridge.type = connector_type;
drm_bridge_add(&panel_bridge->bridge);
return &panel_bridge->bridge;
}
EXPORT_SYMBOL(drm_panel_bridge_add_typed);
/**
* drm_panel_bridge_remove - Unregisters and frees a drm_bridge
* created by drm_panel_bridge_add().
*
* @bridge: The drm_bridge being freed.
*/
void drm_panel_bridge_remove(struct drm_bridge *bridge)
{
struct panel_bridge *panel_bridge;
if (!bridge)
return;
if (bridge->funcs != &panel_bridge_bridge_funcs)
return;
panel_bridge = drm_bridge_to_panel_bridge(bridge);
drm_bridge_remove(bridge);
devm_kfree(panel_bridge->panel->dev, bridge);
}
EXPORT_SYMBOL(drm_panel_bridge_remove);
/**
* drm_panel_bridge_set_orientation - Set the connector's panel orientation
* from the bridge that can be transformed to panel bridge.
*
* @connector: The connector to be set panel orientation.
* @bridge: The drm_bridge to be transformed to panel bridge.
*
* Returns 0 on success, negative errno on failure.
*/
int drm_panel_bridge_set_orientation(struct drm_connector *connector,
struct drm_bridge *bridge)
{
struct panel_bridge *panel_bridge;
panel_bridge = drm_bridge_to_panel_bridge(bridge);
return drm_connector_set_orientation_from_panel(connector,
panel_bridge->panel);
}
EXPORT_SYMBOL(drm_panel_bridge_set_orientation);
static void devm_drm_panel_bridge_release(struct device *dev, void *res)
{
struct drm_bridge **bridge = res;
drm_panel_bridge_remove(*bridge);
}
/**
* devm_drm_panel_bridge_add - Creates a managed &drm_bridge and &drm_connector
* that just calls the appropriate functions from &drm_panel.
* @dev: device to tie the bridge lifetime to
* @panel: The drm_panel being wrapped. Must be non-NULL.
*
* This is the managed version of drm_panel_bridge_add() which automatically
* calls drm_panel_bridge_remove() when @dev is unbound.
*/
struct drm_bridge *devm_drm_panel_bridge_add(struct device *dev,
struct drm_panel *panel)
{
if (WARN_ON(panel->connector_type == DRM_MODE_CONNECTOR_Unknown))
return ERR_PTR(-EINVAL);
return devm_drm_panel_bridge_add_typed(dev, panel,
panel->connector_type);
}
EXPORT_SYMBOL(devm_drm_panel_bridge_add);
/**
* devm_drm_panel_bridge_add_typed - Creates a managed &drm_bridge and
* &drm_connector with an explicit connector type.
* @dev: device to tie the bridge lifetime to
* @panel: The drm_panel being wrapped. Must be non-NULL.
* @connector_type: The connector type (DRM_MODE_CONNECTOR_*)
*
* This is just like devm_drm_panel_bridge_add(), but forces the connector type
* to @connector_type instead of infering it from the panel.
*
* This function is deprecated and should not be used in new drivers. Use
* devm_drm_panel_bridge_add() instead, and fix panel drivers as necessary if
* they don't report a connector type.
*/
struct drm_bridge *devm_drm_panel_bridge_add_typed(struct device *dev,
struct drm_panel *panel,
u32 connector_type)
{
struct drm_bridge **ptr, *bridge;
ptr = devres_alloc(devm_drm_panel_bridge_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
bridge = drm_panel_bridge_add_typed(panel, connector_type);
if (IS_ERR(bridge)) {
devres_free(ptr);
return bridge;
}
bridge->pre_enable_prev_first = panel->prepare_prev_first;
*ptr = bridge;
devres_add(dev, ptr);
return bridge;
}
EXPORT_SYMBOL(devm_drm_panel_bridge_add_typed);
static void drmm_drm_panel_bridge_release(struct drm_device *drm, void *ptr)
{
struct drm_bridge *bridge = ptr;
drm_panel_bridge_remove(bridge);
}
/**
* drmm_panel_bridge_add - Creates a DRM-managed &drm_bridge and
* &drm_connector that just calls the
* appropriate functions from &drm_panel.
*
* @drm: DRM device to tie the bridge lifetime to
* @panel: The drm_panel being wrapped. Must be non-NULL.
*
* This is the DRM-managed version of drm_panel_bridge_add() which
* automatically calls drm_panel_bridge_remove() when @dev is cleaned
* up.
*/
struct drm_bridge *drmm_panel_bridge_add(struct drm_device *drm,
struct drm_panel *panel)
{
struct drm_bridge *bridge;
int ret;
bridge = drm_panel_bridge_add_typed(panel, panel->connector_type);
if (IS_ERR(bridge))
return bridge;
ret = drmm_add_action_or_reset(drm, drmm_drm_panel_bridge_release,
bridge);
if (ret)
return ERR_PTR(ret);
bridge->pre_enable_prev_first = panel->prepare_prev_first;
return bridge;
}
EXPORT_SYMBOL(drmm_panel_bridge_add);
/**
* drm_panel_bridge_connector - return the connector for the panel bridge
* @bridge: The drm_bridge.
*
* drm_panel_bridge creates the connector.
* This function gives external access to the connector.
*
* Returns: Pointer to drm_connector
*/
struct drm_connector *drm_panel_bridge_connector(struct drm_bridge *bridge)
{
struct panel_bridge *panel_bridge;
panel_bridge = drm_bridge_to_panel_bridge(bridge);
return &panel_bridge->connector;
}
EXPORT_SYMBOL(drm_panel_bridge_connector);
#ifdef CONFIG_OF
/**
* devm_drm_of_get_bridge - Return next bridge in the chain
* @dev: device to tie the bridge lifetime to
* @np: device tree node containing encoder output ports
* @port: port in the device tree node
* @endpoint: endpoint in the device tree node
*
* Given a DT node's port and endpoint number, finds the connected node
* and returns the associated bridge if any, or creates and returns a
* drm panel bridge instance if a panel is connected.
*
* Returns a pointer to the bridge if successful, or an error pointer
* otherwise.
*/
struct drm_bridge *devm_drm_of_get_bridge(struct device *dev,
struct device_node *np,
u32 port, u32 endpoint)
{
struct drm_bridge *bridge;
struct drm_panel *panel;
int ret;
ret = drm_of_find_panel_or_bridge(np, port, endpoint,
&panel, &bridge);
if (ret)
return ERR_PTR(ret);
if (panel)
bridge = devm_drm_panel_bridge_add(dev, panel);
return bridge;
}
EXPORT_SYMBOL(devm_drm_of_get_bridge);
/**
* drmm_of_get_bridge - Return next bridge in the chain
* @drm: device to tie the bridge lifetime to
* @np: device tree node containing encoder output ports
* @port: port in the device tree node
* @endpoint: endpoint in the device tree node
*
* Given a DT node's port and endpoint number, finds the connected node
* and returns the associated bridge if any, or creates and returns a
* drm panel bridge instance if a panel is connected.
*
* Returns a drmm managed pointer to the bridge if successful, or an error
* pointer otherwise.
*/
struct drm_bridge *drmm_of_get_bridge(struct drm_device *drm,
struct device_node *np,
u32 port, u32 endpoint)
{
struct drm_bridge *bridge;
struct drm_panel *panel;
int ret;
ret = drm_of_find_panel_or_bridge(np, port, endpoint,
&panel, &bridge);
if (ret)
return ERR_PTR(ret);
if (panel)
bridge = drmm_panel_bridge_add(drm, panel);
return bridge;
}
EXPORT_SYMBOL(drmm_of_get_bridge);
#endif
| linux-master | drivers/gpu/drm/bridge/panel.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
* datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
*/
#include <linux/atomic.h>
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include <drm/display/drm_dp_aux_bus.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_bridge_connector.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define SN_DEVICE_REV_REG 0x08
#define SN_DPPLL_SRC_REG 0x0A
#define DPPLL_CLK_SRC_DSICLK BIT(0)
#define REFCLK_FREQ_MASK GENMASK(3, 1)
#define REFCLK_FREQ(x) ((x) << 1)
#define DPPLL_SRC_DP_PLL_LOCK BIT(7)
#define SN_PLL_ENABLE_REG 0x0D
#define SN_DSI_LANES_REG 0x10
#define CHA_DSI_LANES_MASK GENMASK(4, 3)
#define CHA_DSI_LANES(x) ((x) << 3)
#define SN_DSIA_CLK_FREQ_REG 0x12
#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
#define CHA_HSYNC_POLARITY BIT(7)
#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
#define CHA_VSYNC_POLARITY BIT(7)
#define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
#define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
#define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
#define SN_LN_ASSIGN_REG 0x59
#define LN_ASSIGN_WIDTH 2
#define SN_ENH_FRAME_REG 0x5A
#define VSTREAM_ENABLE BIT(3)
#define LN_POLRS_OFFSET 4
#define LN_POLRS_MASK 0xf0
#define SN_DATA_FORMAT_REG 0x5B
#define BPP_18_RGB BIT(0)
#define SN_HPD_DISABLE_REG 0x5C
#define HPD_DISABLE BIT(0)
#define HPD_DEBOUNCED_STATE BIT(4)
#define SN_GPIO_IO_REG 0x5E
#define SN_GPIO_INPUT_SHIFT 4
#define SN_GPIO_OUTPUT_SHIFT 0
#define SN_GPIO_CTRL_REG 0x5F
#define SN_GPIO_MUX_INPUT 0
#define SN_GPIO_MUX_OUTPUT 1
#define SN_GPIO_MUX_SPECIAL 2
#define SN_GPIO_MUX_MASK 0x3
#define SN_AUX_WDATA_REG(x) (0x64 + (x))
#define SN_AUX_ADDR_19_16_REG 0x74
#define SN_AUX_ADDR_15_8_REG 0x75
#define SN_AUX_ADDR_7_0_REG 0x76
#define SN_AUX_ADDR_MASK GENMASK(19, 0)
#define SN_AUX_LENGTH_REG 0x77
#define SN_AUX_CMD_REG 0x78
#define AUX_CMD_SEND BIT(0)
#define AUX_CMD_REQ(x) ((x) << 4)
#define SN_AUX_RDATA_REG(x) (0x79 + (x))
#define SN_SSC_CONFIG_REG 0x93
#define DP_NUM_LANES_MASK GENMASK(5, 4)
#define DP_NUM_LANES(x) ((x) << 4)
#define SN_DATARATE_CONFIG_REG 0x94
#define DP_DATARATE_MASK GENMASK(7, 5)
#define DP_DATARATE(x) ((x) << 5)
#define SN_TRAINING_SETTING_REG 0x95
#define SCRAMBLE_DISABLE BIT(4)
#define SN_ML_TX_MODE_REG 0x96
#define ML_TX_MAIN_LINK_OFF 0
#define ML_TX_NORMAL_MODE BIT(0)
#define SN_PWM_PRE_DIV_REG 0xA0
#define SN_BACKLIGHT_SCALE_REG 0xA1
#define BACKLIGHT_SCALE_MAX 0xFFFF
#define SN_BACKLIGHT_REG 0xA3
#define SN_PWM_EN_INV_REG 0xA5
#define SN_PWM_INV_MASK BIT(0)
#define SN_PWM_EN_MASK BIT(1)
#define SN_AUX_CMD_STATUS_REG 0xF4
#define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
#define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
#define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
#define MIN_DSI_CLK_FREQ_MHZ 40
/* fudge factor required to account for 8b/10b encoding */
#define DP_CLK_FUDGE_NUM 10
#define DP_CLK_FUDGE_DEN 8
/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
#define SN_AUX_MAX_PAYLOAD_BYTES 16
#define SN_REGULATOR_SUPPLY_NUM 4
#define SN_MAX_DP_LANES 4
#define SN_NUM_GPIOS 4
#define SN_GPIO_PHYSICAL_OFFSET 1
#define SN_LINK_TRAINING_TRIES 10
#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
/**
* struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
* @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
* @gpio_aux: AUX-bus sub device for GPIO controller functionality.
* @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
* @pwm_aux: AUX-bus sub device for PWM controller functionality.
*
* @dev: Pointer to the top level (i2c) device.
* @regmap: Regmap for accessing i2c.
* @aux: Our aux channel.
* @bridge: Our bridge.
* @connector: Our connector.
* @host_node: Remote DSI node.
* @dsi: Our MIPI DSI source.
* @refclk: Our reference clock.
* @next_bridge: The bridge on the eDP side.
* @enable_gpio: The GPIO we toggle to enable the bridge.
* @supplies: Data for bulk enabling/disabling our regulators.
* @dp_lanes: Count of dp_lanes we're using.
* @ln_assign: Value to program to the LN_ASSIGN register.
* @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
* @comms_enabled: If true then communication over the aux channel is enabled.
* @comms_mutex: Protects modification of comms_enabled.
*
* @gchip: If we expose our GPIOs, this is used.
* @gchip_output: A cache of whether we've set GPIOs to output. This
* serves double-duty of keeping track of the direction and
* also keeping track of whether we've incremented the
* pm_runtime reference count for this pin, which we do
* whenever a pin is configured as an output. This is a
* bitmap so we can do atomic ops on it without an extra
* lock so concurrent users of our 4 GPIOs don't stomp on
* each other's read-modify-write.
*
* @pchip: pwm_chip if the PWM is exposed.
* @pwm_enabled: Used to track if the PWM signal is currently enabled.
* @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
* @pwm_refclk_freq: Cache for the reference clock input to the PWM.
*/
struct ti_sn65dsi86 {
struct auxiliary_device *bridge_aux;
struct auxiliary_device *gpio_aux;
struct auxiliary_device *aux_aux;
struct auxiliary_device *pwm_aux;
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_connector *connector;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
struct clk *refclk;
struct drm_bridge *next_bridge;
struct gpio_desc *enable_gpio;
struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
int dp_lanes;
u8 ln_assign;
u8 ln_polrs;
bool comms_enabled;
struct mutex comms_mutex;
#if defined(CONFIG_OF_GPIO)
struct gpio_chip gchip;
DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
#endif
#if defined(CONFIG_PWM)
struct pwm_chip pchip;
bool pwm_enabled;
atomic_t pwm_pin_busy;
#endif
unsigned int pwm_refclk_freq;
};
static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
{ .range_min = 0, .range_max = 0xFF },
};
static const struct regmap_access_table ti_sn_bridge_volatile_table = {
.yes_ranges = ti_sn65dsi86_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
};
static const struct regmap_config ti_sn65dsi86_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &ti_sn_bridge_volatile_table,
.cache_type = REGCACHE_NONE,
.max_register = 0xFF,
};
static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 *val)
{
u8 buf[2];
int ret;
ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
if (ret)
return ret;
*val = buf[0] | (buf[1] << 8);
return 0;
}
static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 val)
{
u8 buf[2] = { val & 0xff, val >> 8 };
regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
}
static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
{
u32 bit_rate_khz, clk_freq_khz;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
bit_rate_khz = mode->clock *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
return clk_freq_khz;
}
/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
static const u32 ti_sn_bridge_refclk_lut[] = {
12000000,
19200000,
26000000,
27000000,
38400000,
};
/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
static const u32 ti_sn_bridge_dsiclk_lut[] = {
468000000,
384000000,
416000000,
486000000,
460800000,
};
static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
{
int i;
u32 refclk_rate;
const u32 *refclk_lut;
size_t refclk_lut_size;
if (pdata->refclk) {
refclk_rate = clk_get_rate(pdata->refclk);
refclk_lut = ti_sn_bridge_refclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
clk_prepare_enable(pdata->refclk);
} else {
refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
refclk_lut = ti_sn_bridge_dsiclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
}
/* for i equals to refclk_lut_size means default frequency */
for (i = 0; i < refclk_lut_size; i++)
if (refclk_lut[i] == refclk_rate)
break;
/* avoid buffer overflow and "1" is the default rate in the datasheet. */
if (i >= refclk_lut_size)
i = 1;
regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
REFCLK_FREQ(i));
/*
* The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
* regardless of its actual sourcing.
*/
pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
}
static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
/* configure bridge ref_clk */
ti_sn_bridge_set_refclk_freq(pdata);
/*
* HPD on this bridge chip is a bit useless. This is an eDP bridge
* so the HPD is an internal signal that's only there to signal that
* the panel is done powering up. ...but the bridge chip debounces
* this signal by between 100 ms and 400 ms (depending on process,
* voltage, and temperate--I measured it at about 200 ms). One
* particular panel asserted HPD 84 ms after it was powered on meaning
* that we saw HPD 284 ms after power on. ...but the same panel said
* that instead of looking at HPD you could just hardcode a delay of
* 200 ms. We'll assume that the panel driver will have the hardcoded
* delay in its prepare and always disable HPD.
*
* If HPD somehow makes sense on some future panel we'll have to
* change this to be conditional on someone specifying that HPD should
* be used.
*/
regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
HPD_DISABLE);
pdata->comms_enabled = true;
mutex_unlock(&pdata->comms_mutex);
}
static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
pdata->comms_enabled = false;
clk_disable_unprepare(pdata->refclk);
mutex_unlock(&pdata->comms_mutex);
}
static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret) {
DRM_ERROR("failed to enable supplies %d\n", ret);
return ret;
}
/* td2: min 100 us after regulators before enabling the GPIO */
usleep_range(100, 110);
gpiod_set_value_cansleep(pdata->enable_gpio, 1);
/*
* If we have a reference clock we can enable communication w/ the
* panel (including the aux channel) w/out any need for an input clock
* so we can do it in resume which lets us read the EDID before
* pre_enable(). Without a reference clock we need the MIPI reference
* clock so reading early doesn't work.
*/
if (pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
return ret;
}
static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
if (pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
gpiod_set_value_cansleep(pdata->enable_gpio, 0);
ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret)
DRM_ERROR("failed to disable supplies %d\n", ret);
return ret;
}
static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static int status_show(struct seq_file *s, void *data)
{
struct ti_sn65dsi86 *pdata = s->private;
unsigned int reg, val;
seq_puts(s, "STATUS REGISTERS:\n");
pm_runtime_get_sync(pdata->dev);
/* IRQ Status Registers, see Table 31 in datasheet */
for (reg = 0xf0; reg <= 0xf8; reg++) {
regmap_read(pdata->regmap, reg, &val);
seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
}
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(status);
static void ti_sn65dsi86_debugfs_remove(void *data)
{
debugfs_remove_recursive(data);
}
static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
{
struct device *dev = pdata->dev;
struct dentry *debugfs;
int ret;
debugfs = debugfs_create_dir(dev_name(dev), NULL);
/*
* We might get an error back if debugfs wasn't enabled in the kernel
* so let's just silently return upon failure.
*/
if (IS_ERR_OR_NULL(debugfs))
return;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
if (ret)
return;
debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
}
/* -----------------------------------------------------------------------------
* Auxiliary Devices (*not* AUX)
*/
static void ti_sn65dsi86_uninit_aux(void *data)
{
auxiliary_device_uninit(data);
}
static void ti_sn65dsi86_delete_aux(void *data)
{
auxiliary_device_delete(data);
}
static void ti_sn65dsi86_aux_device_release(struct device *dev)
{
struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
kfree(aux);
}
static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
struct auxiliary_device **aux_out,
const char *name)
{
struct device *dev = pdata->dev;
struct auxiliary_device *aux;
int ret;
aux = kzalloc(sizeof(*aux), GFP_KERNEL);
if (!aux)
return -ENOMEM;
aux->name = name;
aux->dev.parent = dev;
aux->dev.release = ti_sn65dsi86_aux_device_release;
device_set_of_node_from_dev(&aux->dev, dev);
ret = auxiliary_device_init(aux);
if (ret) {
kfree(aux);
return ret;
}
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
if (ret)
return ret;
ret = auxiliary_device_add(aux);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
if (!ret)
*aux_out = aux;
return ret;
}
/* -----------------------------------------------------------------------------
* AUX Adapter
*/
static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
{
return container_of(aux, struct ti_sn65dsi86, aux);
}
static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
u32 request_val = AUX_CMD_REQ(msg->request);
u8 *buf = msg->buffer;
unsigned int len = msg->size;
unsigned int val;
int ret;
u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
if (len > SN_AUX_MAX_PAYLOAD_BYTES)
return -EINVAL;
pm_runtime_get_sync(pdata->dev);
mutex_lock(&pdata->comms_mutex);
/*
* If someone tries to do a DDC over AUX transaction before pre_enable()
* on a device without a dedicated reference clock then we just can't
* do it. Fail right away. This prevents non-refclk users from reading
* the EDID before enabling the panel but such is life.
*/
if (!pdata->comms_enabled) {
ret = -EIO;
goto exit;
}
switch (request) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
/* Assume it's good */
msg->reply = 0;
break;
default:
ret = -EINVAL;
goto exit;
}
BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
addr_len);
regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
ARRAY_SIZE(addr_len));
if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
/* Clear old status bits before start so we don't get confused */
regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
AUX_IRQ_STATUS_NAT_I2C_FAIL |
AUX_IRQ_STATUS_AUX_RPLY_TOUT |
AUX_IRQ_STATUS_AUX_SHORT);
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
/* Zero delay loop because i2c transactions are slow already */
ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
!(val & AUX_CMD_SEND), 0, 50 * 1000);
if (ret)
goto exit;
ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
if (ret)
goto exit;
if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
/*
* The hardware tried the message seven times per the DP spec
* but it hit a timeout. We ignore defers here because they're
* handled in hardware.
*/
ret = -ETIMEDOUT;
goto exit;
}
if (val & AUX_IRQ_STATUS_AUX_SHORT) {
ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
if (ret)
goto exit;
} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
switch (request) {
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_READ:
msg->reply |= DP_AUX_I2C_REPLY_NACK;
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_NATIVE_WRITE:
msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
break;
}
len = 0;
goto exit;
}
if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
exit:
mutex_unlock(&pdata->comms_mutex);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return len;
}
static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
{
/*
* The HPD in this chip is a bit useless (See comment in
* ti_sn65dsi86_enable_comms) so if our driver is expected to wait
* for HPD, we just assume it's asserted after the wait_us delay.
*
* In case we are asked to wait forever (wait_us=0) take conservative
* 500ms delay.
*/
if (wait_us == 0)
wait_us = 500000;
usleep_range(wait_us, wait_us + 1000);
return 0;
}
static int ti_sn_aux_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
pdata->aux.name = "ti-sn65dsi86-aux";
pdata->aux.dev = &adev->dev;
pdata->aux.transfer = ti_sn_aux_transfer;
pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
drm_dp_aux_init(&pdata->aux);
ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
if (ret)
return ret;
/*
* The eDP to MIPI bridge parts don't work until the AUX channel is
* setup so we don't add it in the main driver probe, we add it now.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
}
static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
{ .name = "ti_sn65dsi86.aux", },
{},
};
static struct auxiliary_driver ti_sn_aux_driver = {
.name = "aux",
.probe = ti_sn_aux_probe,
.id_table = ti_sn_aux_id_table,
};
/*------------------------------------------------------------------------------
* DRM Bridge
*/
static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
{
return container_of(bridge, struct ti_sn65dsi86, bridge);
}
static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
{
int val;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
struct device *dev = pdata->dev;
const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(pdata->host_node);
if (!host)
return -EPROBE_DEFER;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return PTR_ERR(dsi);
/* TODO: setting to 4 MIPI lanes always for now */
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
/* check if continuous dsi clock is required or not */
pm_runtime_get_sync(dev);
regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
pm_runtime_put_autosuspend(dev);
if (!(val & DPPLL_CLK_SRC_DSICLK))
dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
pdata->dsi = dsi;
return devm_mipi_dsi_attach(dev, dsi);
}
static int ti_sn_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
int ret;
pdata->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&pdata->aux);
if (ret < 0) {
drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
return ret;
}
/*
* Attach the next bridge.
* We never want the next bridge to *also* create a connector.
*/
ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret < 0)
goto err_initted_aux;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
pdata->bridge.encoder);
if (IS_ERR(pdata->connector)) {
ret = PTR_ERR(pdata->connector);
goto err_initted_aux;
}
drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
return 0;
err_initted_aux:
drm_dp_aux_unregister(&pdata->aux);
return ret;
}
static void ti_sn_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
}
static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* maximum supported resolution is 4K at 60 fps */
if (mode->clock > 594000)
return MODE_CLOCK_HIGH;
/*
* The front and back porch registers are 8 bits, and pulse width
* registers are 15 bits, so reject any modes with larger periods.
*/
if ((mode->hsync_start - mode->hdisplay) > 0xff)
return MODE_HBLANK_WIDE;
if ((mode->vsync_start - mode->vdisplay) > 0xff)
return MODE_VBLANK_WIDE;
if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
return MODE_HSYNC_WIDE;
if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
return MODE_VSYNC_WIDE;
if ((mode->htotal - mode->hsync_end) > 0xff)
return MODE_HBLANK_WIDE;
if ((mode->vtotal - mode->vsync_end) > 0xff)
return MODE_VBLANK_WIDE;
return MODE_OK;
}
static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* disable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
}
static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
{
unsigned int bit_rate_mhz, clk_freq_mhz;
unsigned int val;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* set DSIA clk frequency */
bit_rate_mhz = (mode->clock / 1000) *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
/* for each increment in val, frequency increases by 5MHz */
val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
}
static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
{
if (connector->display_info.bpc <= 6)
return 18;
else
return 24;
}
/*
* LUT index corresponds to register value and
* LUT values corresponds to dp data rate supported
* by the bridge in Mbps unit.
*/
static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
};
static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
{
unsigned int bit_rate_khz, dp_rate_mhz;
unsigned int i;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* Calculate minimum bit rate based on our pixel clock. */
bit_rate_khz = mode->clock * bpp;
/* Calculate minimum DP data rate, taking 80% as per DP spec */
dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
break;
return i;
}
static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
{
unsigned int valid_rates = 0;
unsigned int rate_per_200khz;
unsigned int rate_mhz;
u8 dpcd_val;
int ret;
int i, j;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read eDP rev (%d), assuming 1.1\n", ret);
dpcd_val = DP_EDP_11;
}
if (dpcd_val >= DP_EDP_14) {
/* eDP 1.4 devices must provide a custom table */
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
if (ret != sizeof(sink_rates)) {
DRM_DEV_ERROR(pdata->dev,
"Can't read supported rate table (%d)\n", ret);
/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
memset(sink_rates, 0, sizeof(sink_rates));
}
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
rate_per_200khz = le16_to_cpu(sink_rates[i]);
if (!rate_per_200khz)
break;
rate_mhz = rate_per_200khz * 200 / 1000;
for (j = 0;
j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
j++) {
if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
valid_rates |= BIT(j);
}
}
for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
if (valid_rates & BIT(i))
return valid_rates;
}
DRM_DEV_ERROR(pdata->dev,
"No matching eDP rates in table; falling back\n");
}
/* On older versions best we can do is use DP_MAX_LINK_RATE */
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read max rate (%d); assuming 5.4 GHz\n",
ret);
dpcd_val = DP_LINK_BW_5_4;
}
switch (dpcd_val) {
default:
DRM_DEV_ERROR(pdata->dev,
"Unexpected max rate (%#x); assuming 5.4 GHz\n",
(int)dpcd_val);
fallthrough;
case DP_LINK_BW_5_4:
valid_rates |= BIT(7);
fallthrough;
case DP_LINK_BW_2_7:
valid_rates |= BIT(4);
fallthrough;
case DP_LINK_BW_1_62:
valid_rates |= BIT(1);
break;
}
return valid_rates;
}
static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
{
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
u8 hsync_polarity = 0, vsync_polarity = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
hsync_polarity = CHA_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
vsync_polarity = CHA_VSYNC_POLARITY;
ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
mode->hdisplay);
ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
mode->vdisplay);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
(mode->hsync_end - mode->hsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
hsync_polarity);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
(mode->vsync_end - mode->vsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
vsync_polarity);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
(mode->htotal - mode->hsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
(mode->vtotal - mode->vsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
(mode->hsync_start - mode->hdisplay) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
(mode->vsync_start - mode->vdisplay) & 0xFF);
usleep_range(10000, 10500); /* 10ms delay recommended by spec */
}
static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
{
u8 data;
int ret;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read lane count (%d); assuming 4\n", ret);
return 4;
}
return data & DP_LANE_COUNT_MASK;
}
static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
const char **last_err_str)
{
unsigned int val;
int ret;
int i;
/* set dp clk frequency value */
regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
/* enable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
val & DPPLL_SRC_DP_PLL_LOCK, 1000,
50 * 1000);
if (ret) {
*last_err_str = "DP_PLL_LOCK polling failed";
goto exit;
}
/*
* We'll try to link train several times. As part of link training
* the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
* the panel isn't ready quite it might respond NAK here which means
* we need to try again.
*/
for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
/* Semi auto link training mode */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
val == ML_TX_MAIN_LINK_OFF ||
val == ML_TX_NORMAL_MODE, 1000,
500 * 1000);
if (ret) {
*last_err_str = "Training complete polling failed";
} else if (val == ML_TX_MAIN_LINK_OFF) {
*last_err_str = "Link training failed, link is off";
ret = -EIO;
continue;
}
break;
}
/* If we saw quite a few retries, add a note about it */
if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
exit:
/* Disable the PLL if we failed */
if (ret)
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
return ret;
}
static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
struct drm_connector *connector;
const char *last_err_str = "No supported DP rate";
unsigned int valid_rates;
int dp_rate_idx;
unsigned int val;
int ret = -EINVAL;
int max_dp_lanes;
unsigned int bpp;
connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
bridge->encoder);
if (!connector) {
dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
return;
}
max_dp_lanes = ti_sn_get_max_lanes(pdata);
pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
/* DSI_A lane config */
val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
CHA_DSI_LANES_MASK, val);
regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
pdata->ln_polrs << LN_POLRS_OFFSET);
/* set dsi clk frequency value */
ti_sn_bridge_set_dsi_rate(pdata);
/*
* The SN65DSI86 only supports ASSR Display Authentication method and
* this method is enabled for eDP panels. An eDP panel must support this
* authentication method. We need to enable this method in the eDP panel
* at DisplayPort address 0x0010A prior to link training.
*
* As only ASSR is supported by SN65DSI86, for full DisplayPort displays
* we need to disable the scrambler.
*/
if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
SCRAMBLE_DISABLE, 0);
} else {
regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
}
bpp = ti_sn_bridge_get_bpp(connector);
/* Set the DP output format (18 bpp or 24 bpp) */
val = bpp == 18 ? BPP_18_RGB : 0;
regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
/* DP lane config */
val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
val);
valid_rates = ti_sn_bridge_read_valid_rates(pdata);
/* Train until we run out of rates */
for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
dp_rate_idx++) {
if (!(valid_rates & BIT(dp_rate_idx)))
continue;
ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
if (!ret)
break;
}
if (ret) {
DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
return;
}
/* config video parameters */
ti_sn_bridge_set_video_timings(pdata);
/* enable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
VSTREAM_ENABLE);
}
static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
pm_runtime_get_sync(pdata->dev);
if (!pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
/* td7: min 100 us after enable before DSI data */
usleep_range(100, 110);
}
static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* semi auto link training mode OFF */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
/* Num lanes to 0 as per power sequencing in data sheet */
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
/* disable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
if (!pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
pm_runtime_put_sync(pdata->dev);
}
static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
int val = 0;
pm_runtime_get_sync(pdata->dev);
regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
pm_runtime_put_autosuspend(pdata->dev);
return val & HPD_DEBOUNCED_STATE ? connector_status_connected
: connector_status_disconnected;
}
static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
return drm_get_edid(connector, &pdata->aux.ddc);
}
static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
.attach = ti_sn_bridge_attach,
.detach = ti_sn_bridge_detach,
.mode_valid = ti_sn_bridge_mode_valid,
.get_edid = ti_sn_bridge_get_edid,
.detect = ti_sn_bridge_detect,
.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
.atomic_enable = ti_sn_bridge_atomic_enable,
.atomic_disable = ti_sn_bridge_atomic_disable,
.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
};
static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
struct device_node *np)
{
u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
u32 lane_polarities[SN_MAX_DP_LANES] = { };
struct device_node *endpoint;
u8 ln_assign = 0;
u8 ln_polrs = 0;
int dp_lanes;
int i;
/*
* Read config from the device tree about lane remapping and lane
* polarities. These are optional and we assume identity map and
* normal polarity if nothing is specified. It's OK to specify just
* data-lanes but not lane-polarities but not vice versa.
*
* Error checking is light (we just make sure we don't crash or
* buffer overrun) and we assume dts is well formed and specifying
* mappings that the hardware supports.
*/
endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
if (dp_lanes > 0) {
of_property_read_u32_array(endpoint, "data-lanes",
lane_assignments, dp_lanes);
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, dp_lanes);
} else {
dp_lanes = SN_MAX_DP_LANES;
}
of_node_put(endpoint);
/*
* Convert into register format. Loop over all lanes even if
* data-lanes had fewer elements so that we nicely initialize
* the LN_ASSIGN register.
*/
for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
ln_polrs = ln_polrs << 1 | lane_polarities[i];
}
/* Stash in our struct for when we power on */
pdata->dp_lanes = dp_lanes;
pdata->ln_assign = ln_assign;
pdata->ln_polrs = ln_polrs;
}
static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
{
struct device_node *np = pdata->dev->of_node;
pdata->host_node = of_graph_get_remote_node(np, 0, 0);
if (!pdata->host_node) {
DRM_ERROR("remote dsi host node not found\n");
return -ENODEV;
}
return 0;
}
static int ti_sn_bridge_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
struct device_node *np = pdata->dev->of_node;
int ret;
pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
if (IS_ERR(pdata->next_bridge))
return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
"failed to create panel bridge\n");
ti_sn_bridge_parse_lanes(pdata, np);
ret = ti_sn_bridge_parse_dsi_host(pdata);
if (ret)
return ret;
pdata->bridge.funcs = &ti_sn_bridge_funcs;
pdata->bridge.of_node = np;
pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
drm_bridge_add(&pdata->bridge);
ret = ti_sn_attach_host(pdata);
if (ret) {
dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&pdata->bridge);
return ret;
}
static void ti_sn_bridge_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
if (!pdata)
return;
drm_bridge_remove(&pdata->bridge);
of_node_put(pdata->host_node);
}
static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
{ .name = "ti_sn65dsi86.bridge", },
{},
};
static struct auxiliary_driver ti_sn_bridge_driver = {
.name = "bridge",
.probe = ti_sn_bridge_probe,
.remove = ti_sn_bridge_remove,
.id_table = ti_sn_bridge_id_table,
};
/* -----------------------------------------------------------------------------
* PWM Controller
*/
#if defined(CONFIG_PWM)
static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
{
return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
}
static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
{
atomic_set(&pdata->pwm_pin_busy, 0);
}
static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
{
return container_of(chip, struct ti_sn65dsi86, pchip);
}
static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
return ti_sn_pwm_pin_request(pdata);
}
static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
ti_sn_pwm_pin_release(pdata);
}
/*
* Limitations:
* - The PWM signal is not driven when the chip is powered down, or in its
* reset state and the driver does not implement the "suspend state"
* described in the documentation. In order to save power, state->enabled is
* interpreted as denoting if the signal is expected to be valid, and is used
* to determine if the chip needs to be kept powered.
* - Changing both period and duty_cycle is not done atomically, neither is the
* multi-byte register updates, so the output might briefly be undefined
* during update.
*/
static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int backlight;
unsigned int pre_div;
unsigned int scale;
u64 period_max;
u64 period;
int ret;
if (!pdata->pwm_enabled) {
ret = pm_runtime_get_sync(pdata->dev);
if (ret < 0) {
pm_runtime_put_sync(pdata->dev);
return ret;
}
}
if (state->enabled) {
if (!pdata->pwm_enabled) {
/*
* The chip might have been powered down while we
* didn't hold a PM runtime reference, so mux in the
* PWM function on the GPIO pin again.
*/
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
if (ret) {
dev_err(pdata->dev, "failed to mux in PWM function\n");
goto out;
}
}
/*
* Per the datasheet the PWM frequency is given by:
*
* REFCLK_FREQ
* PWM_FREQ = -----------------------------------
* PWM_PRE_DIV * BACKLIGHT_SCALE + 1
*
* However, after careful review the author is convinced that
* the documentation has lost some parenthesis around
* "BACKLIGHT_SCALE + 1".
*
* With the period T_pwm = 1/PWM_FREQ this can be written:
*
* T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
*
* In order to keep BACKLIGHT_SCALE within its 16 bits,
* PWM_PRE_DIV must be:
*
* T_pwm * REFCLK_FREQ
* PWM_PRE_DIV >= -------------------------
* BACKLIGHT_SCALE_MAX + 1
*
* To simplify the search and to favour higher resolution of
* the duty cycle over accuracy of the period, the lowest
* possible PWM_PRE_DIV is used. Finally the scale is
* calculated as:
*
* T_pwm * REFCLK_FREQ
* BACKLIGHT_SCALE = ---------------------- - 1
* PWM_PRE_DIV
*
* Here T_pwm is represented in seconds, so appropriate scaling
* to nanoseconds is necessary.
*/
/* Minimum T_pwm is 1 / REFCLK_FREQ */
if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
ret = -EINVAL;
goto out;
}
/*
* Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
* Limit period to this to avoid overflows
*/
period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
pdata->pwm_refclk_freq);
period = min(state->period, period_max);
pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
/*
* The documentation has the duty ratio given as:
*
* duty BACKLIGHT
* ------- = ---------------------
* period BACKLIGHT_SCALE + 1
*
* Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
* to definition above and adjusting for nanosecond
* representation of duty cycle gives us:
*/
backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * pre_div);
if (backlight > scale)
backlight = scale;
ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
goto out;
}
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
}
pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
goto out;
}
pdata->pwm_enabled = state->enabled;
out:
if (!pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
return ret;
}
static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int pre_div;
u16 backlight;
u16 scale;
int ret;
ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
if (ret)
return ret;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
if (ret)
return ret;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
if (ret)
return ret;
ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
if (ret)
return ret;
state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
state->polarity = PWM_POLARITY_INVERSED;
else
state->polarity = PWM_POLARITY_NORMAL;
state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
pdata->pwm_refclk_freq);
state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
pdata->pwm_refclk_freq);
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
return 0;
}
static const struct pwm_ops ti_sn_pwm_ops = {
.request = ti_sn_pwm_request,
.free = ti_sn_pwm_free,
.apply = ti_sn_pwm_apply,
.get_state = ti_sn_pwm_get_state,
.owner = THIS_MODULE,
};
static int ti_sn_pwm_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pdata->pchip.dev = pdata->dev;
pdata->pchip.ops = &ti_sn_pwm_ops;
pdata->pchip.npwm = 1;
pdata->pchip.of_xlate = of_pwm_single_xlate;
pdata->pchip.of_pwm_n_cells = 1;
return pwmchip_add(&pdata->pchip);
}
static void ti_sn_pwm_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pwmchip_remove(&pdata->pchip);
if (pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
}
static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
{ .name = "ti_sn65dsi86.pwm", },
{},
};
static struct auxiliary_driver ti_sn_pwm_driver = {
.name = "pwm",
.probe = ti_sn_pwm_probe,
.remove = ti_sn_pwm_remove,
.id_table = ti_sn_pwm_id_table,
};
static int __init ti_sn_pwm_register(void)
{
return auxiliary_driver_register(&ti_sn_pwm_driver);
}
static void ti_sn_pwm_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_pwm_driver);
}
#else
static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
static inline int ti_sn_pwm_register(void) { return 0; }
static inline void ti_sn_pwm_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* GPIO Controller
*/
#if defined(CONFIG_OF_GPIO)
static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
const struct of_phandle_args *gpiospec,
u32 *flags)
{
if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
return -EINVAL;
if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
return -EINVAL;
if (flags)
*flags = gpiospec->args[1];
return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
}
static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/*
* We already have to keep track of the direction because we use
* that to figure out whether we've powered the device. We can
* just return that rather than (maybe) powering up the device
* to ask its direction.
*/
return test_bit(offset, pdata->gchip_output) ?
GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
unsigned int val;
int ret;
/*
* When the pin is an input we don't forcibly keep the bridge
* powered--we just power it on to read the pin. NOTE: part of
* the reason this works is that the bridge defaults (when
* powered back on) to all 4 GPIOs being configured as GPIO input.
* Also note that if something else is keeping the chip powered the
* pm_runtime functions are lightweight increments of a refcount.
*/
pm_runtime_get_sync(pdata->dev);
ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
}
static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int ret;
if (!test_bit(offset, pdata->gchip_output)) {
dev_err(pdata->dev, "Ignoring GPIO set while input\n");
return;
}
val &= 1;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
BIT(SN_GPIO_OUTPUT_SHIFT + offset),
val << (SN_GPIO_OUTPUT_SHIFT + offset));
if (ret)
dev_warn(pdata->dev,
"Failed to set bridge GPIO %u: %d\n", offset, ret);
}
static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (!test_and_clear_bit(offset, pdata->gchip_output))
return 0;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_INPUT << shift);
if (ret) {
set_bit(offset, pdata->gchip_output);
return ret;
}
/*
* NOTE: if nobody else is powering the device this may fully power
* it off and when it comes back it will have lost all state, but
* that's OK because the default is input and we're now an input.
*/
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (test_and_set_bit(offset, pdata->gchip_output))
return 0;
pm_runtime_get_sync(pdata->dev);
/* Set value first to avoid glitching */
ti_sn_bridge_gpio_set(chip, offset, val);
/* Set direction */
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_OUTPUT << shift);
if (ret) {
clear_bit(offset, pdata->gchip_output);
pm_runtime_put_autosuspend(pdata->dev);
}
return ret;
}
static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
if (offset == SN_PWM_GPIO_IDX)
return ti_sn_pwm_pin_request(pdata);
return 0;
}
static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/* We won't keep pm_runtime if we're input, so switch there on free */
ti_sn_bridge_gpio_direction_input(chip, offset);
if (offset == SN_PWM_GPIO_IDX)
ti_sn_pwm_pin_release(pdata);
}
static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
"GPIO1", "GPIO2", "GPIO3", "GPIO4"
};
static int ti_sn_gpio_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
/* Only init if someone is going to use us as a GPIO controller */
if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
return 0;
pdata->gchip.label = dev_name(pdata->dev);
pdata->gchip.parent = pdata->dev;
pdata->gchip.owner = THIS_MODULE;
pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
pdata->gchip.of_gpio_n_cells = 2;
pdata->gchip.request = ti_sn_bridge_gpio_request;
pdata->gchip.free = ti_sn_bridge_gpio_free;
pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
pdata->gchip.get = ti_sn_bridge_gpio_get;
pdata->gchip.set = ti_sn_bridge_gpio_set;
pdata->gchip.can_sleep = true;
pdata->gchip.names = ti_sn_bridge_gpio_names;
pdata->gchip.ngpio = SN_NUM_GPIOS;
pdata->gchip.base = -1;
ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
if (ret)
dev_err(pdata->dev, "can't add gpio chip\n");
return ret;
}
static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
{ .name = "ti_sn65dsi86.gpio", },
{},
};
MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
static struct auxiliary_driver ti_sn_gpio_driver = {
.name = "gpio",
.probe = ti_sn_gpio_probe,
.id_table = ti_sn_gpio_id_table,
};
static int __init ti_sn_gpio_register(void)
{
return auxiliary_driver_register(&ti_sn_gpio_driver);
}
static void ti_sn_gpio_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_gpio_driver);
}
#else
static inline int ti_sn_gpio_register(void) { return 0; }
static inline void ti_sn_gpio_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static void ti_sn65dsi86_runtime_disable(void *data)
{
pm_runtime_dont_use_autosuspend(data);
pm_runtime_disable(data);
}
static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
{
unsigned int i;
const char * const ti_sn_bridge_supply_names[] = {
"vcca", "vcc", "vccio", "vpll",
};
for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
pdata->supplies);
}
static int ti_sn65dsi86_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ti_sn65dsi86 *pdata;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
DRM_ERROR("device doesn't support I2C\n");
return -ENODEV;
}
pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
dev_set_drvdata(dev, pdata);
pdata->dev = dev;
mutex_init(&pdata->comms_mutex);
pdata->regmap = devm_regmap_init_i2c(client,
&ti_sn65dsi86_regmap_config);
if (IS_ERR(pdata->regmap))
return dev_err_probe(dev, PTR_ERR(pdata->regmap),
"regmap i2c init failed\n");
pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->enable_gpio))
return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
"failed to get enable gpio from DT\n");
ret = ti_sn65dsi86_parse_regulators(pdata);
if (ret)
return dev_err_probe(dev, ret, "failed to parse regulators\n");
pdata->refclk = devm_clk_get_optional(dev, "refclk");
if (IS_ERR(pdata->refclk))
return dev_err_probe(dev, PTR_ERR(pdata->refclk),
"failed to get reference clock\n");
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(pdata->dev, 500);
pm_runtime_use_autosuspend(pdata->dev);
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
if (ret)
return ret;
ti_sn65dsi86_debugfs_init(pdata);
/*
* Break ourselves up into a collection of aux devices. The only real
* motiviation here is to solve the chicken-and-egg problem of probe
* ordering. The bridge wants the panel to be there when it probes.
* The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
* when it probes. The panel and maybe backlight might want the DDC
* bus or the pwm_chip. Having sub-devices allows the some sub devices
* to finish probing even if others return -EPROBE_DEFER and gets us
* around the problems.
*/
if (IS_ENABLED(CONFIG_OF_GPIO)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
if (ret)
return ret;
}
if (IS_ENABLED(CONFIG_PWM)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
if (ret)
return ret;
}
/*
* NOTE: At the end of the AUX channel probe we'll add the aux device
* for the bridge. This is because the bridge can't be used until the
* AUX channel is there and this is a very simple solution to the
* dependency problem.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
}
static struct i2c_device_id ti_sn65dsi86_id[] = {
{ "ti,sn65dsi86", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
static const struct of_device_id ti_sn65dsi86_match_table[] = {
{.compatible = "ti,sn65dsi86"},
{},
};
MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
static struct i2c_driver ti_sn65dsi86_driver = {
.driver = {
.name = "ti_sn65dsi86",
.of_match_table = ti_sn65dsi86_match_table,
.pm = &ti_sn65dsi86_pm_ops,
},
.probe = ti_sn65dsi86_probe,
.id_table = ti_sn65dsi86_id,
};
static int __init ti_sn65dsi86_init(void)
{
int ret;
ret = i2c_add_driver(&ti_sn65dsi86_driver);
if (ret)
return ret;
ret = ti_sn_gpio_register();
if (ret)
goto err_main_was_registered;
ret = ti_sn_pwm_register();
if (ret)
goto err_gpio_was_registered;
ret = auxiliary_driver_register(&ti_sn_aux_driver);
if (ret)
goto err_pwm_was_registered;
ret = auxiliary_driver_register(&ti_sn_bridge_driver);
if (ret)
goto err_aux_was_registered;
return 0;
err_aux_was_registered:
auxiliary_driver_unregister(&ti_sn_aux_driver);
err_pwm_was_registered:
ti_sn_pwm_unregister();
err_gpio_was_registered:
ti_sn_gpio_unregister();
err_main_was_registered:
i2c_del_driver(&ti_sn65dsi86_driver);
return ret;
}
module_init(ti_sn65dsi86_init);
static void __exit ti_sn65dsi86_exit(void)
{
auxiliary_driver_unregister(&ti_sn_bridge_driver);
auxiliary_driver_unregister(&ti_sn_aux_driver);
ti_sn_pwm_unregister();
ti_sn_gpio_unregister();
i2c_del_driver(&ti_sn65dsi86_driver);
}
module_exit(ti_sn65dsi86_exit);
MODULE_AUTHOR("Sandeep Panda <[email protected]>");
MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/ti-sn65dsi86.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016 MediaTek Inc.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <drm/display/drm_dp_aux_bus.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#define PAGE0_AUXCH_CFG3 0x76
#define AUXCH_CFG3_RESET 0xff
#define PAGE0_SWAUX_ADDR_7_0 0x7d
#define PAGE0_SWAUX_ADDR_15_8 0x7e
#define PAGE0_SWAUX_ADDR_23_16 0x7f
#define SWAUX_ADDR_MASK GENMASK(19, 0)
#define PAGE0_SWAUX_LENGTH 0x80
#define SWAUX_LENGTH_MASK GENMASK(3, 0)
#define SWAUX_NO_PAYLOAD BIT(7)
#define PAGE0_SWAUX_WDATA 0x81
#define PAGE0_SWAUX_RDATA 0x82
#define PAGE0_SWAUX_CTRL 0x83
#define SWAUX_SEND BIT(0)
#define PAGE0_SWAUX_STATUS 0x84
#define SWAUX_M_MASK GENMASK(4, 0)
#define SWAUX_STATUS_MASK GENMASK(7, 5)
#define SWAUX_STATUS_NACK (0x1 << 5)
#define SWAUX_STATUS_DEFER (0x2 << 5)
#define SWAUX_STATUS_ACKM (0x3 << 5)
#define SWAUX_STATUS_INVALID (0x4 << 5)
#define SWAUX_STATUS_I2C_NACK (0x5 << 5)
#define SWAUX_STATUS_I2C_DEFER (0x6 << 5)
#define SWAUX_STATUS_TIMEOUT (0x7 << 5)
#define PAGE2_GPIO_H 0xa7
#define PS_GPIO9 BIT(1)
#define PAGE2_I2C_BYPASS 0xea
#define I2C_BYPASS_EN 0xd0
#define PAGE2_MCS_EN 0xf3
#define MCS_EN BIT(0)
#define PAGE3_SET_ADD 0xfe
#define VDO_CTL_ADD 0x13
#define VDO_DIS 0x18
#define VDO_EN 0x1c
#define NUM_MIPI_LANES 4
#define COMMON_PS8640_REGMAP_CONFIG \
.reg_bits = 8, \
.val_bits = 8, \
.cache_type = REGCACHE_NONE
/*
* PS8640 uses multiple addresses:
* page[0]: for DP control
* page[1]: for VIDEO Bridge
* page[2]: for control top
* page[3]: for DSI Link Control1
* page[4]: for MIPI Phy
* page[5]: for VPLL
* page[6]: for DSI Link Control2
* page[7]: for SPI ROM mapping
*/
enum page_addr_offset {
PAGE0_DP_CNTL = 0,
PAGE1_VDO_BDG,
PAGE2_TOP_CNTL,
PAGE3_DSI_CNTL1,
PAGE4_MIPI_PHY,
PAGE5_VPLL,
PAGE6_DSI_CNTL2,
PAGE7_SPI_CNTL,
MAX_DEVS
};
enum ps8640_vdo_control {
DISABLE = VDO_DIS,
ENABLE = VDO_EN,
};
struct ps8640 {
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct drm_dp_aux aux;
struct mipi_dsi_device *dsi;
struct i2c_client *page[MAX_DEVS];
struct regmap *regmap[MAX_DEVS];
struct regulator_bulk_data supplies[2];
struct gpio_desc *gpio_reset;
struct gpio_desc *gpio_powerdown;
struct device_link *link;
bool pre_enabled;
bool need_post_hpd_delay;
};
static const struct regmap_config ps8640_regmap_config[] = {
[PAGE0_DP_CNTL] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xbf,
},
[PAGE1_VDO_BDG] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
[PAGE2_TOP_CNTL] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
[PAGE3_DSI_CNTL1] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
[PAGE4_MIPI_PHY] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
[PAGE5_VPLL] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0x7f,
},
[PAGE6_DSI_CNTL2] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
[PAGE7_SPI_CNTL] = {
COMMON_PS8640_REGMAP_CONFIG,
.max_register = 0xff,
},
};
static inline struct ps8640 *bridge_to_ps8640(struct drm_bridge *e)
{
return container_of(e, struct ps8640, bridge);
}
static inline struct ps8640 *aux_to_ps8640(struct drm_dp_aux *aux)
{
return container_of(aux, struct ps8640, aux);
}
static int _ps8640_wait_hpd_asserted(struct ps8640 *ps_bridge, unsigned long wait_us)
{
struct regmap *map = ps_bridge->regmap[PAGE2_TOP_CNTL];
int status;
int ret;
/*
* Apparently something about the firmware in the chip signals that
* HPD goes high by reporting GPIO9 as high (even though HPD isn't
* actually connected to GPIO9).
*/
ret = regmap_read_poll_timeout(map, PAGE2_GPIO_H, status,
status & PS_GPIO9, 20000, wait_us);
/*
* The first time we see HPD go high after a reset we delay an extra
* 50 ms. The best guess is that the MCU is doing "stuff" during this
* time (maybe talking to the panel) and we don't want to interrupt it.
*
* No locking is done around "need_post_hpd_delay". If we're here we
* know we're holding a PM Runtime reference and the only other place
* that touches this is PM Runtime resume.
*/
if (!ret && ps_bridge->need_post_hpd_delay) {
ps_bridge->need_post_hpd_delay = false;
msleep(50);
}
return ret;
}
static int ps8640_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
{
struct ps8640 *ps_bridge = aux_to_ps8640(aux);
struct device *dev = &ps_bridge->page[PAGE0_DP_CNTL]->dev;
int ret;
/*
* Note that this function is called by code that has already powered
* the panel. We have to power ourselves up but we don't need to worry
* about powering the panel.
*/
pm_runtime_get_sync(dev);
ret = _ps8640_wait_hpd_asserted(ps_bridge, wait_us);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static ssize_t ps8640_aux_transfer_msg(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct ps8640 *ps_bridge = aux_to_ps8640(aux);
struct regmap *map = ps_bridge->regmap[PAGE0_DP_CNTL];
struct device *dev = &ps_bridge->page[PAGE0_DP_CNTL]->dev;
unsigned int len = msg->size;
unsigned int data;
unsigned int base;
int ret;
u8 request = msg->request &
~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
u8 *buf = msg->buffer;
u8 addr_len[PAGE0_SWAUX_LENGTH + 1 - PAGE0_SWAUX_ADDR_7_0];
u8 i;
bool is_native_aux = false;
if (len > DP_AUX_MAX_PAYLOAD_BYTES)
return -EINVAL;
if (msg->address & ~SWAUX_ADDR_MASK)
return -EINVAL;
switch (request) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_NATIVE_READ:
is_native_aux = true;
fallthrough;
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_READ:
break;
default:
return -EINVAL;
}
ret = regmap_write(map, PAGE0_AUXCH_CFG3, AUXCH_CFG3_RESET);
if (ret) {
DRM_DEV_ERROR(dev, "failed to write PAGE0_AUXCH_CFG3: %d\n",
ret);
return ret;
}
/* Assume it's good */
msg->reply = 0;
base = PAGE0_SWAUX_ADDR_7_0;
addr_len[PAGE0_SWAUX_ADDR_7_0 - base] = msg->address;
addr_len[PAGE0_SWAUX_ADDR_15_8 - base] = msg->address >> 8;
addr_len[PAGE0_SWAUX_ADDR_23_16 - base] = (msg->address >> 16) |
(msg->request << 4);
addr_len[PAGE0_SWAUX_LENGTH - base] = (len == 0) ? SWAUX_NO_PAYLOAD :
((len - 1) & SWAUX_LENGTH_MASK);
regmap_bulk_write(map, PAGE0_SWAUX_ADDR_7_0, addr_len,
ARRAY_SIZE(addr_len));
if (len && (request == DP_AUX_NATIVE_WRITE ||
request == DP_AUX_I2C_WRITE)) {
/* Write to the internal FIFO buffer */
for (i = 0; i < len; i++) {
ret = regmap_write(map, PAGE0_SWAUX_WDATA, buf[i]);
if (ret) {
DRM_DEV_ERROR(dev,
"failed to write WDATA: %d\n",
ret);
return ret;
}
}
}
regmap_write(map, PAGE0_SWAUX_CTRL, SWAUX_SEND);
/* Zero delay loop because i2c transactions are slow already */
regmap_read_poll_timeout(map, PAGE0_SWAUX_CTRL, data,
!(data & SWAUX_SEND), 0, 50 * 1000);
regmap_read(map, PAGE0_SWAUX_STATUS, &data);
if (ret) {
DRM_DEV_ERROR(dev, "failed to read PAGE0_SWAUX_STATUS: %d\n",
ret);
return ret;
}
switch (data & SWAUX_STATUS_MASK) {
case SWAUX_STATUS_NACK:
case SWAUX_STATUS_I2C_NACK:
/*
* The programming guide is not clear about whether a I2C NACK
* would trigger SWAUX_STATUS_NACK or SWAUX_STATUS_I2C_NACK. So
* we handle both cases together.
*/
if (is_native_aux)
msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
else
msg->reply |= DP_AUX_I2C_REPLY_NACK;
fallthrough;
case SWAUX_STATUS_ACKM:
len = data & SWAUX_M_MASK;
break;
case SWAUX_STATUS_DEFER:
case SWAUX_STATUS_I2C_DEFER:
if (is_native_aux)
msg->reply |= DP_AUX_NATIVE_REPLY_DEFER;
else
msg->reply |= DP_AUX_I2C_REPLY_DEFER;
len = data & SWAUX_M_MASK;
break;
case SWAUX_STATUS_INVALID:
return -EOPNOTSUPP;
case SWAUX_STATUS_TIMEOUT:
return -ETIMEDOUT;
}
if (len && (request == DP_AUX_NATIVE_READ ||
request == DP_AUX_I2C_READ)) {
/* Read from the internal FIFO buffer */
for (i = 0; i < len; i++) {
ret = regmap_read(map, PAGE0_SWAUX_RDATA, &data);
if (ret) {
DRM_DEV_ERROR(dev,
"failed to read RDATA: %d\n",
ret);
return ret;
}
buf[i] = data;
}
}
return len;
}
static ssize_t ps8640_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct ps8640 *ps_bridge = aux_to_ps8640(aux);
struct device *dev = &ps_bridge->page[PAGE0_DP_CNTL]->dev;
int ret;
pm_runtime_get_sync(dev);
ret = ps8640_aux_transfer_msg(aux, msg);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static void ps8640_bridge_vdo_control(struct ps8640 *ps_bridge,
const enum ps8640_vdo_control ctrl)
{
struct regmap *map = ps_bridge->regmap[PAGE3_DSI_CNTL1];
struct device *dev = &ps_bridge->page[PAGE3_DSI_CNTL1]->dev;
u8 vdo_ctrl_buf[] = { VDO_CTL_ADD, ctrl };
int ret;
ret = regmap_bulk_write(map, PAGE3_SET_ADD,
vdo_ctrl_buf, sizeof(vdo_ctrl_buf));
if (ret < 0)
dev_err(dev, "failed to %sable VDO: %d\n",
ctrl == ENABLE ? "en" : "dis", ret);
}
static int __maybe_unused ps8640_resume(struct device *dev)
{
struct ps8640 *ps_bridge = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(ps_bridge->supplies),
ps_bridge->supplies);
if (ret < 0) {
dev_err(dev, "cannot enable regulators %d\n", ret);
return ret;
}
gpiod_set_value(ps_bridge->gpio_powerdown, 0);
gpiod_set_value(ps_bridge->gpio_reset, 1);
usleep_range(2000, 2500);
gpiod_set_value(ps_bridge->gpio_reset, 0);
/* Double reset for T4 and T5 */
msleep(50);
gpiod_set_value(ps_bridge->gpio_reset, 1);
msleep(50);
gpiod_set_value(ps_bridge->gpio_reset, 0);
/* We just reset things, so we need a delay after the first HPD */
ps_bridge->need_post_hpd_delay = true;
/*
* Mystery 200 ms delay for the "MCU to be ready". It's unclear if
* this is truly necessary since the MCU will already signal that
* things are "good to go" by signaling HPD on "gpio 9". See
* _ps8640_wait_hpd_asserted(). For now we'll keep this mystery delay
* just in case.
*/
msleep(200);
return 0;
}
static int __maybe_unused ps8640_suspend(struct device *dev)
{
struct ps8640 *ps_bridge = dev_get_drvdata(dev);
int ret;
gpiod_set_value(ps_bridge->gpio_reset, 1);
gpiod_set_value(ps_bridge->gpio_powerdown, 1);
ret = regulator_bulk_disable(ARRAY_SIZE(ps_bridge->supplies),
ps_bridge->supplies);
if (ret < 0)
dev_err(dev, "cannot disable regulators %d\n", ret);
return ret;
}
static const struct dev_pm_ops ps8640_pm_ops = {
SET_RUNTIME_PM_OPS(ps8640_suspend, ps8640_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static void ps8640_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ps8640 *ps_bridge = bridge_to_ps8640(bridge);
struct regmap *map = ps_bridge->regmap[PAGE2_TOP_CNTL];
struct device *dev = &ps_bridge->page[PAGE0_DP_CNTL]->dev;
int ret;
pm_runtime_get_sync(dev);
ret = _ps8640_wait_hpd_asserted(ps_bridge, 200 * 1000);
if (ret < 0)
dev_warn(dev, "HPD didn't go high: %d\n", ret);
/*
* The Manufacturer Command Set (MCS) is a device dependent interface
* intended for factory programming of the display module default
* parameters. Once the display module is configured, the MCS shall be
* disabled by the manufacturer. Once disabled, all MCS commands are
* ignored by the display interface.
*/
ret = regmap_update_bits(map, PAGE2_MCS_EN, MCS_EN, 0);
if (ret < 0)
dev_warn(dev, "failed write PAGE2_MCS_EN: %d\n", ret);
/* Switch access edp panel's edid through i2c */
ret = regmap_write(map, PAGE2_I2C_BYPASS, I2C_BYPASS_EN);
if (ret < 0)
dev_warn(dev, "failed write PAGE2_MCS_EN: %d\n", ret);
ps8640_bridge_vdo_control(ps_bridge, ENABLE);
ps_bridge->pre_enabled = true;
}
static void ps8640_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ps8640 *ps_bridge = bridge_to_ps8640(bridge);
ps_bridge->pre_enabled = false;
ps8640_bridge_vdo_control(ps_bridge, DISABLE);
pm_runtime_put_sync_suspend(&ps_bridge->page[PAGE0_DP_CNTL]->dev);
}
static int ps8640_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ps8640 *ps_bridge = bridge_to_ps8640(bridge);
struct device *dev = &ps_bridge->page[0]->dev;
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
ps_bridge->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&ps_bridge->aux);
if (ret) {
dev_err(dev, "failed to register DP AUX channel: %d\n", ret);
return ret;
}
ps_bridge->link = device_link_add(bridge->dev->dev, dev, DL_FLAG_STATELESS);
if (!ps_bridge->link) {
dev_err(dev, "failed to create device link");
ret = -EINVAL;
goto err_devlink;
}
/* Attach the panel-bridge to the dsi bridge */
ret = drm_bridge_attach(bridge->encoder, ps_bridge->panel_bridge,
&ps_bridge->bridge, flags);
if (ret)
goto err_bridge_attach;
return 0;
err_bridge_attach:
device_link_del(ps_bridge->link);
err_devlink:
drm_dp_aux_unregister(&ps_bridge->aux);
return ret;
}
static void ps8640_bridge_detach(struct drm_bridge *bridge)
{
struct ps8640 *ps_bridge = bridge_to_ps8640(bridge);
drm_dp_aux_unregister(&ps_bridge->aux);
if (ps_bridge->link)
device_link_del(ps_bridge->link);
}
static void ps8640_runtime_disable(void *data)
{
pm_runtime_dont_use_autosuspend(data);
pm_runtime_disable(data);
}
static const struct drm_bridge_funcs ps8640_bridge_funcs = {
.attach = ps8640_bridge_attach,
.detach = ps8640_bridge_detach,
.atomic_post_disable = ps8640_atomic_post_disable,
.atomic_pre_enable = ps8640_atomic_pre_enable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
};
static int ps8640_bridge_get_dsi_resources(struct device *dev, struct ps8640 *ps_bridge)
{
struct device_node *in_ep, *dsi_node;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = { .type = "ps8640",
.channel = 0,
.node = NULL,
};
/* port@0 is ps8640 dsi input port */
in_ep = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
if (!in_ep)
return -ENODEV;
dsi_node = of_graph_get_remote_port_parent(in_ep);
of_node_put(in_ep);
if (!dsi_node)
return -ENODEV;
host = of_find_mipi_dsi_host_by_node(dsi_node);
of_node_put(dsi_node);
if (!host)
return -EPROBE_DEFER;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(dev, "failed to create dsi device\n");
return PTR_ERR(dsi);
}
ps_bridge->dsi = dsi;
dsi->host = host;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->lanes = NUM_MIPI_LANES;
return 0;
}
static int ps8640_bridge_link_panel(struct drm_dp_aux *aux)
{
struct ps8640 *ps_bridge = aux_to_ps8640(aux);
struct device *dev = aux->dev;
struct device_node *np = dev->of_node;
int ret;
/*
* NOTE about returning -EPROBE_DEFER from this function: if we
* return an error (most relevant to -EPROBE_DEFER) it will only
* be passed out to ps8640_probe() if it called this directly (AKA the
* panel isn't under the "aux-bus" node). That should be fine because
* if the panel is under "aux-bus" it's guaranteed to have probed by
* the time this function has been called.
*/
/* port@1 is ps8640 output port */
ps_bridge->panel_bridge = devm_drm_of_get_bridge(dev, np, 1, 0);
if (IS_ERR(ps_bridge->panel_bridge))
return PTR_ERR(ps_bridge->panel_bridge);
ret = devm_drm_bridge_add(dev, &ps_bridge->bridge);
if (ret)
return ret;
return devm_mipi_dsi_attach(dev, ps_bridge->dsi);
}
static int ps8640_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ps8640 *ps_bridge;
int ret;
u32 i;
ps_bridge = devm_kzalloc(dev, sizeof(*ps_bridge), GFP_KERNEL);
if (!ps_bridge)
return -ENOMEM;
ps_bridge->supplies[0].supply = "vdd12";
ps_bridge->supplies[1].supply = "vdd33";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(ps_bridge->supplies),
ps_bridge->supplies);
if (ret)
return ret;
ps_bridge->gpio_powerdown = devm_gpiod_get(&client->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(ps_bridge->gpio_powerdown))
return PTR_ERR(ps_bridge->gpio_powerdown);
/*
* Assert the reset to avoid the bridge being initialized prematurely
*/
ps_bridge->gpio_reset = devm_gpiod_get(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(ps_bridge->gpio_reset))
return PTR_ERR(ps_bridge->gpio_reset);
ps_bridge->bridge.funcs = &ps8640_bridge_funcs;
ps_bridge->bridge.of_node = dev->of_node;
ps_bridge->bridge.type = DRM_MODE_CONNECTOR_eDP;
/*
* Get MIPI DSI resources early. These can return -EPROBE_DEFER so
* we want to get them out of the way sooner.
*/
ret = ps8640_bridge_get_dsi_resources(&client->dev, ps_bridge);
if (ret)
return ret;
ps_bridge->page[PAGE0_DP_CNTL] = client;
ps_bridge->regmap[PAGE0_DP_CNTL] = devm_regmap_init_i2c(client, ps8640_regmap_config);
if (IS_ERR(ps_bridge->regmap[PAGE0_DP_CNTL]))
return PTR_ERR(ps_bridge->regmap[PAGE0_DP_CNTL]);
for (i = 1; i < ARRAY_SIZE(ps_bridge->page); i++) {
ps_bridge->page[i] = devm_i2c_new_dummy_device(&client->dev,
client->adapter,
client->addr + i);
if (IS_ERR(ps_bridge->page[i]))
return PTR_ERR(ps_bridge->page[i]);
ps_bridge->regmap[i] = devm_regmap_init_i2c(ps_bridge->page[i],
ps8640_regmap_config + i);
if (IS_ERR(ps_bridge->regmap[i]))
return PTR_ERR(ps_bridge->regmap[i]);
}
i2c_set_clientdata(client, ps_bridge);
ps_bridge->aux.name = "parade-ps8640-aux";
ps_bridge->aux.dev = dev;
ps_bridge->aux.transfer = ps8640_aux_transfer;
ps_bridge->aux.wait_hpd_asserted = ps8640_wait_hpd_asserted;
drm_dp_aux_init(&ps_bridge->aux);
pm_runtime_enable(dev);
/*
* Powering on ps8640 takes ~300ms. To avoid wasting time on power
* cycling ps8640 too often, set autosuspend_delay to 2000ms to ensure
* the bridge wouldn't suspend in between each _aux_transfer_msg() call
* during EDID read (~20ms in my experiment) and in between the last
* _aux_transfer_msg() call during EDID read and the _pre_enable() call
* (~100ms in my experiment).
*/
pm_runtime_set_autosuspend_delay(dev, 2000);
pm_runtime_use_autosuspend(dev);
pm_suspend_ignore_children(dev, true);
ret = devm_add_action_or_reset(dev, ps8640_runtime_disable, dev);
if (ret)
return ret;
ret = devm_of_dp_aux_populate_bus(&ps_bridge->aux, ps8640_bridge_link_panel);
/*
* If devm_of_dp_aux_populate_bus() returns -ENODEV then it's up to
* usa to call ps8640_bridge_link_panel() directly. NOTE: in this case
* the function is allowed to -EPROBE_DEFER.
*/
if (ret == -ENODEV)
return ps8640_bridge_link_panel(&ps_bridge->aux);
return ret;
}
static const struct of_device_id ps8640_match[] = {
{ .compatible = "parade,ps8640" },
{ }
};
MODULE_DEVICE_TABLE(of, ps8640_match);
static struct i2c_driver ps8640_driver = {
.probe = ps8640_probe,
.driver = {
.name = "ps8640",
.of_match_table = ps8640_match,
.pm = &ps8640_pm_ops,
},
};
module_i2c_driver(ps8640_driver);
MODULE_AUTHOR("Jitao Shi <[email protected]>");
MODULE_AUTHOR("CK Hu <[email protected]>");
MODULE_AUTHOR("Enric Balletbo i Serra <[email protected]>");
MODULE_DESCRIPTION("PARADE ps8640 DSI-eDP converter driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/parade-ps8640.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Chrontel CH7033 Video Encoder Driver
*
* Copyright (C) 2019,2020 Lubomir Rintel
*/
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* Page 0, Register 0x07 */
enum {
DRI_PD = BIT(3),
IO_PD = BIT(5),
};
/* Page 0, Register 0x08 */
enum {
DRI_PDDRI = GENMASK(7, 4),
PDDAC = GENMASK(3, 1),
PANEN = BIT(0),
};
/* Page 0, Register 0x09 */
enum {
DPD = BIT(7),
GCKOFF = BIT(6),
TV_BP = BIT(5),
SCLPD = BIT(4),
SDPD = BIT(3),
VGA_PD = BIT(2),
HDBKPD = BIT(1),
HDMI_PD = BIT(0),
};
/* Page 0, Register 0x0a */
enum {
MEMINIT = BIT(7),
MEMIDLE = BIT(6),
MEMPD = BIT(5),
STOP = BIT(4),
LVDS_PD = BIT(3),
HD_DVIB = BIT(2),
HDCP_PD = BIT(1),
MCU_PD = BIT(0),
};
/* Page 0, Register 0x18 */
enum {
IDF = GENMASK(7, 4),
INTEN = BIT(3),
SWAP = GENMASK(2, 0),
};
enum {
BYTE_SWAP_RGB = 0,
BYTE_SWAP_RBG = 1,
BYTE_SWAP_GRB = 2,
BYTE_SWAP_GBR = 3,
BYTE_SWAP_BRG = 4,
BYTE_SWAP_BGR = 5,
};
/* Page 0, Register 0x19 */
enum {
HPO_I = BIT(5),
VPO_I = BIT(4),
DEPO_I = BIT(3),
CRYS_EN = BIT(2),
GCLKFREQ = GENMASK(2, 0),
};
/* Page 0, Register 0x2e */
enum {
HFLIP = BIT(7),
VFLIP = BIT(6),
DEPO_O = BIT(5),
HPO_O = BIT(4),
VPO_O = BIT(3),
TE = GENMASK(2, 0),
};
/* Page 0, Register 0x2b */
enum {
SWAPS = GENMASK(7, 4),
VFMT = GENMASK(3, 0),
};
/* Page 0, Register 0x54 */
enum {
COMP_BP = BIT(7),
DAC_EN_T = BIT(6),
HWO_HDMI_HI = GENMASK(5, 3),
HOO_HDMI_HI = GENMASK(2, 0),
};
/* Page 0, Register 0x57 */
enum {
FLDSEN = BIT(7),
VWO_HDMI_HI = GENMASK(5, 3),
VOO_HDMI_HI = GENMASK(2, 0),
};
/* Page 0, Register 0x7e */
enum {
HDMI_LVDS_SEL = BIT(7),
DE_GEN = BIT(6),
PWM_INDEX_HI = BIT(5),
USE_DE = BIT(4),
R_INT = GENMASK(3, 0),
};
/* Page 1, Register 0x07 */
enum {
BPCKSEL = BIT(7),
DRI_CMFB_EN = BIT(6),
CEC_PUEN = BIT(5),
CEC_T = BIT(3),
CKINV = BIT(2),
CK_TVINV = BIT(1),
DRI_CKS2 = BIT(0),
};
/* Page 1, Register 0x08 */
enum {
DACG = BIT(6),
DACKTST = BIT(5),
DEDGEB = BIT(4),
SYO = BIT(3),
DRI_IT_LVDS = GENMASK(2, 1),
DISPON = BIT(0),
};
/* Page 1, Register 0x0c */
enum {
DRI_PLL_CP = GENMASK(7, 6),
DRI_PLL_DIVSEL = BIT(5),
DRI_PLL_N1_1 = BIT(4),
DRI_PLL_N1_0 = BIT(3),
DRI_PLL_N3_1 = BIT(2),
DRI_PLL_N3_0 = BIT(1),
DRI_PLL_CKTSTEN = BIT(0),
};
/* Page 1, Register 0x6b */
enum {
VCO3CS = GENMASK(7, 6),
ICPGBK2_0 = GENMASK(5, 3),
DRI_VCO357SC = BIT(2),
PDPLL2 = BIT(1),
DRI_PD_SER = BIT(0),
};
/* Page 1, Register 0x6c */
enum {
PLL2N11 = GENMASK(7, 4),
PLL2N5_4 = BIT(3),
PLL2N5_TOP = BIT(2),
DRI_PLL_PD = BIT(1),
PD_I2CM = BIT(0),
};
/* Page 3, Register 0x28 */
enum {
DIFF_EN = GENMASK(7, 6),
CORREC_EN = GENMASK(5, 4),
VGACLK_BP = BIT(3),
HM_LV_SEL = BIT(2),
HD_VGA_SEL = BIT(1),
};
/* Page 3, Register 0x2a */
enum {
LVDSCLK_BP = BIT(7),
HDTVCLK_BP = BIT(6),
HDMICLK_BP = BIT(5),
HDTV_BP = BIT(4),
HDMI_BP = BIT(3),
THRWL = GENMASK(2, 0),
};
/* Page 4, Register 0x52 */
enum {
PGM_ARSTB = BIT(7),
MCU_ARSTB = BIT(6),
MCU_RETB = BIT(2),
RESETIB = BIT(1),
RESETDB = BIT(0),
};
struct ch7033_priv {
struct regmap *regmap;
struct drm_bridge *next_bridge;
struct drm_bridge bridge;
struct drm_connector connector;
};
#define conn_to_ch7033_priv(x) \
container_of(x, struct ch7033_priv, connector)
#define bridge_to_ch7033_priv(x) \
container_of(x, struct ch7033_priv, bridge)
static enum drm_connector_status ch7033_connector_detect(
struct drm_connector *connector, bool force)
{
struct ch7033_priv *priv = conn_to_ch7033_priv(connector);
return drm_bridge_detect(priv->next_bridge);
}
static const struct drm_connector_funcs ch7033_connector_funcs = {
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = ch7033_connector_detect,
.destroy = drm_connector_cleanup,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int ch7033_connector_get_modes(struct drm_connector *connector)
{
struct ch7033_priv *priv = conn_to_ch7033_priv(connector);
struct edid *edid;
int ret;
edid = drm_bridge_get_edid(priv->next_bridge, connector);
drm_connector_update_edid_property(connector, edid);
if (edid) {
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
} else {
ret = drm_add_modes_noedid(connector, 1920, 1080);
drm_set_preferred_mode(connector, 1024, 768);
}
return ret;
}
static struct drm_encoder *ch7033_connector_best_encoder(
struct drm_connector *connector)
{
struct ch7033_priv *priv = conn_to_ch7033_priv(connector);
return priv->bridge.encoder;
}
static const struct drm_connector_helper_funcs ch7033_connector_helper_funcs = {
.get_modes = ch7033_connector_get_modes,
.best_encoder = ch7033_connector_best_encoder,
};
static void ch7033_hpd_event(void *arg, enum drm_connector_status status)
{
struct ch7033_priv *priv = arg;
if (priv->bridge.dev)
drm_helper_hpd_irq_event(priv->connector.dev);
}
static int ch7033_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ch7033_priv *priv = bridge_to_ch7033_priv(bridge);
struct drm_connector *connector = &priv->connector;
int ret;
ret = drm_bridge_attach(bridge->encoder, priv->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret)
return ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
if (priv->next_bridge->ops & DRM_BRIDGE_OP_DETECT) {
connector->polled = DRM_CONNECTOR_POLL_HPD;
} else {
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
if (priv->next_bridge->ops & DRM_BRIDGE_OP_HPD) {
drm_bridge_hpd_enable(priv->next_bridge, ch7033_hpd_event,
priv);
}
drm_connector_helper_add(connector,
&ch7033_connector_helper_funcs);
ret = drm_connector_init_with_ddc(bridge->dev, &priv->connector,
&ch7033_connector_funcs,
priv->next_bridge->type,
priv->next_bridge->ddc);
if (ret) {
DRM_ERROR("Failed to initialize connector\n");
return ret;
}
return drm_connector_attach_encoder(&priv->connector, bridge->encoder);
}
static void ch7033_bridge_detach(struct drm_bridge *bridge)
{
struct ch7033_priv *priv = bridge_to_ch7033_priv(bridge);
if (priv->next_bridge->ops & DRM_BRIDGE_OP_HPD)
drm_bridge_hpd_disable(priv->next_bridge);
drm_connector_cleanup(&priv->connector);
}
static enum drm_mode_status ch7033_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->clock > 165000)
return MODE_CLOCK_HIGH;
if (mode->hdisplay >= 1920)
return MODE_BAD_HVALUE;
if (mode->vdisplay >= 1080)
return MODE_BAD_VVALUE;
return MODE_OK;
}
static void ch7033_bridge_disable(struct drm_bridge *bridge)
{
struct ch7033_priv *priv = bridge_to_ch7033_priv(bridge);
regmap_write(priv->regmap, 0x03, 0x04);
regmap_update_bits(priv->regmap, 0x52, RESETDB, 0x00);
}
static void ch7033_bridge_enable(struct drm_bridge *bridge)
{
struct ch7033_priv *priv = bridge_to_ch7033_priv(bridge);
regmap_write(priv->regmap, 0x03, 0x04);
regmap_update_bits(priv->regmap, 0x52, RESETDB, RESETDB);
}
static void ch7033_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct ch7033_priv *priv = bridge_to_ch7033_priv(bridge);
int hbporch = mode->hsync_start - mode->hdisplay;
int hsynclen = mode->hsync_end - mode->hsync_start;
int vbporch = mode->vsync_start - mode->vdisplay;
int vsynclen = mode->vsync_end - mode->vsync_start;
/*
* Page 4
*/
regmap_write(priv->regmap, 0x03, 0x04);
/* Turn everything off to set all the registers to their defaults. */
regmap_write(priv->regmap, 0x52, 0x00);
/* Bring I/O block up. */
regmap_write(priv->regmap, 0x52, RESETIB);
/*
* Page 0
*/
regmap_write(priv->regmap, 0x03, 0x00);
/* Bring up parts we need from the power down. */
regmap_update_bits(priv->regmap, 0x07, DRI_PD | IO_PD, 0);
regmap_update_bits(priv->regmap, 0x08, DRI_PDDRI | PDDAC | PANEN, 0);
regmap_update_bits(priv->regmap, 0x09, DPD | GCKOFF |
HDMI_PD | VGA_PD, 0);
regmap_update_bits(priv->regmap, 0x0a, HD_DVIB, 0);
/* Horizontal input timing. */
regmap_write(priv->regmap, 0x0b, (mode->htotal >> 8) << 3 |
(mode->hdisplay >> 8));
regmap_write(priv->regmap, 0x0c, mode->hdisplay);
regmap_write(priv->regmap, 0x0d, mode->htotal);
regmap_write(priv->regmap, 0x0e, (hsynclen >> 8) << 3 |
(hbporch >> 8));
regmap_write(priv->regmap, 0x0f, hbporch);
regmap_write(priv->regmap, 0x10, hsynclen);
/* Vertical input timing. */
regmap_write(priv->regmap, 0x11, (mode->vtotal >> 8) << 3 |
(mode->vdisplay >> 8));
regmap_write(priv->regmap, 0x12, mode->vdisplay);
regmap_write(priv->regmap, 0x13, mode->vtotal);
regmap_write(priv->regmap, 0x14, ((vsynclen >> 8) << 3) |
(vbporch >> 8));
regmap_write(priv->regmap, 0x15, vbporch);
regmap_write(priv->regmap, 0x16, vsynclen);
/* Input color swap. */
regmap_update_bits(priv->regmap, 0x18, SWAP, BYTE_SWAP_BGR);
/* Input clock and sync polarity. */
regmap_update_bits(priv->regmap, 0x19, 0x1, mode->clock >> 16);
regmap_update_bits(priv->regmap, 0x19, HPO_I | VPO_I | GCLKFREQ,
(mode->flags & DRM_MODE_FLAG_PHSYNC) ? HPO_I : 0 |
(mode->flags & DRM_MODE_FLAG_PVSYNC) ? VPO_I : 0 |
mode->clock >> 16);
regmap_write(priv->regmap, 0x1a, mode->clock >> 8);
regmap_write(priv->regmap, 0x1b, mode->clock);
/* Horizontal output timing. */
regmap_write(priv->regmap, 0x1f, (mode->htotal >> 8) << 3 |
(mode->hdisplay >> 8));
regmap_write(priv->regmap, 0x20, mode->hdisplay);
regmap_write(priv->regmap, 0x21, mode->htotal);
/* Vertical output timing. */
regmap_write(priv->regmap, 0x25, (mode->vtotal >> 8) << 3 |
(mode->vdisplay >> 8));
regmap_write(priv->regmap, 0x26, mode->vdisplay);
regmap_write(priv->regmap, 0x27, mode->vtotal);
/* VGA channel bypass */
regmap_update_bits(priv->regmap, 0x2b, VFMT, 9);
/* Output sync polarity. */
regmap_update_bits(priv->regmap, 0x2e, HPO_O | VPO_O,
(mode->flags & DRM_MODE_FLAG_PHSYNC) ? HPO_O : 0 |
(mode->flags & DRM_MODE_FLAG_PVSYNC) ? VPO_O : 0);
/* HDMI horizontal output timing. */
regmap_update_bits(priv->regmap, 0x54, HWO_HDMI_HI | HOO_HDMI_HI,
(hsynclen >> 8) << 3 |
(hbporch >> 8));
regmap_write(priv->regmap, 0x55, hbporch);
regmap_write(priv->regmap, 0x56, hsynclen);
/* HDMI vertical output timing. */
regmap_update_bits(priv->regmap, 0x57, VWO_HDMI_HI | VOO_HDMI_HI,
(vsynclen >> 8) << 3 |
(vbporch >> 8));
regmap_write(priv->regmap, 0x58, vbporch);
regmap_write(priv->regmap, 0x59, vsynclen);
/* Pick HDMI, not LVDS. */
regmap_update_bits(priv->regmap, 0x7e, HDMI_LVDS_SEL, HDMI_LVDS_SEL);
/*
* Page 1
*/
regmap_write(priv->regmap, 0x03, 0x01);
/* No idea what these do, but VGA is wobbly and blinky without them. */
regmap_update_bits(priv->regmap, 0x07, CKINV, CKINV);
regmap_update_bits(priv->regmap, 0x08, DISPON, DISPON);
/* DRI PLL */
regmap_update_bits(priv->regmap, 0x0c, DRI_PLL_DIVSEL, DRI_PLL_DIVSEL);
if (mode->clock <= 40000) {
regmap_update_bits(priv->regmap, 0x0c, DRI_PLL_N1_1 |
DRI_PLL_N1_0 |
DRI_PLL_N3_1 |
DRI_PLL_N3_0,
0);
} else if (mode->clock < 80000) {
regmap_update_bits(priv->regmap, 0x0c, DRI_PLL_N1_1 |
DRI_PLL_N1_0 |
DRI_PLL_N3_1 |
DRI_PLL_N3_0,
DRI_PLL_N3_0 |
DRI_PLL_N1_0);
} else {
regmap_update_bits(priv->regmap, 0x0c, DRI_PLL_N1_1 |
DRI_PLL_N1_0 |
DRI_PLL_N3_1 |
DRI_PLL_N3_0,
DRI_PLL_N3_1 |
DRI_PLL_N1_1);
}
/* This seems to be color calibration for VGA. */
regmap_write(priv->regmap, 0x64, 0x29); /* LSB Blue */
regmap_write(priv->regmap, 0x65, 0x29); /* LSB Green */
regmap_write(priv->regmap, 0x66, 0x29); /* LSB Red */
regmap_write(priv->regmap, 0x67, 0x00); /* MSB Blue */
regmap_write(priv->regmap, 0x68, 0x00); /* MSB Green */
regmap_write(priv->regmap, 0x69, 0x00); /* MSB Red */
regmap_update_bits(priv->regmap, 0x6b, DRI_PD_SER, 0x00);
regmap_update_bits(priv->regmap, 0x6c, DRI_PLL_PD, 0x00);
/*
* Page 3
*/
regmap_write(priv->regmap, 0x03, 0x03);
/* More bypasses and apparently another HDMI/LVDS selector. */
regmap_update_bits(priv->regmap, 0x28, VGACLK_BP | HM_LV_SEL,
VGACLK_BP | HM_LV_SEL);
regmap_update_bits(priv->regmap, 0x2a, HDMICLK_BP | HDMI_BP,
HDMICLK_BP | HDMI_BP);
/*
* Page 4
*/
regmap_write(priv->regmap, 0x03, 0x04);
/* Output clock. */
regmap_write(priv->regmap, 0x10, mode->clock >> 16);
regmap_write(priv->regmap, 0x11, mode->clock >> 8);
regmap_write(priv->regmap, 0x12, mode->clock);
}
static const struct drm_bridge_funcs ch7033_bridge_funcs = {
.attach = ch7033_bridge_attach,
.detach = ch7033_bridge_detach,
.mode_valid = ch7033_bridge_mode_valid,
.disable = ch7033_bridge_disable,
.enable = ch7033_bridge_enable,
.mode_set = ch7033_bridge_mode_set,
};
static const struct regmap_config ch7033_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7f,
};
static int ch7033_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ch7033_priv *priv;
unsigned int val;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
ret = drm_of_find_panel_or_bridge(dev->of_node, 1, -1, NULL,
&priv->next_bridge);
if (ret)
return ret;
priv->regmap = devm_regmap_init_i2c(client, &ch7033_regmap_config);
if (IS_ERR(priv->regmap)) {
dev_err(&client->dev, "regmap init failed\n");
return PTR_ERR(priv->regmap);
}
ret = regmap_read(priv->regmap, 0x00, &val);
if (ret < 0) {
dev_err(&client->dev, "error reading the model id: %d\n", ret);
return ret;
}
if ((val & 0xf7) != 0x56) {
dev_err(&client->dev, "the device is not a ch7033\n");
return -ENODEV;
}
regmap_write(priv->regmap, 0x03, 0x04);
ret = regmap_read(priv->regmap, 0x51, &val);
if (ret < 0) {
dev_err(&client->dev, "error reading the model id: %d\n", ret);
return ret;
}
if ((val & 0x0f) != 3) {
dev_err(&client->dev, "unknown revision %u\n", val);
return -ENODEV;
}
INIT_LIST_HEAD(&priv->bridge.list);
priv->bridge.funcs = &ch7033_bridge_funcs;
priv->bridge.of_node = dev->of_node;
drm_bridge_add(&priv->bridge);
dev_info(dev, "Chrontel CH7033 Video Encoder\n");
return 0;
}
static void ch7033_remove(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ch7033_priv *priv = dev_get_drvdata(dev);
drm_bridge_remove(&priv->bridge);
}
static const struct of_device_id ch7033_dt_ids[] = {
{ .compatible = "chrontel,ch7033", },
{ }
};
MODULE_DEVICE_TABLE(of, ch7033_dt_ids);
static const struct i2c_device_id ch7033_ids[] = {
{ "ch7033", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ch7033_ids);
static struct i2c_driver ch7033_driver = {
.probe = ch7033_probe,
.remove = ch7033_remove,
.driver = {
.name = "ch7033",
.of_match_table = ch7033_dt_ids,
},
.id_table = ch7033_ids,
};
module_i2c_driver(ch7033_driver);
MODULE_AUTHOR("Lubomir Rintel <[email protected]>");
MODULE_DESCRIPTION("Chrontel CH7033 Video Encoder Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/chrontel-ch7033.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Samsung Electronics Co., Ltd
*
* Authors:
* Andrzej Hajda <[email protected]>
* Maciej Purski <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
#define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
/* PPI layer registers */
#define PPI_STARTPPI 0x0104 /* START control bit */
#define PPI_LPTXTIMECNT 0x0114 /* LPTX timing signal */
#define PPI_LANEENABLE 0x0134 /* Enables each lane */
#define PPI_TX_RX_TA 0x013C /* BTA timing parameters */
#define PPI_D0S_CLRSIPOCOUNT 0x0164 /* Assertion timer for Lane 0 */
#define PPI_D1S_CLRSIPOCOUNT 0x0168 /* Assertion timer for Lane 1 */
#define PPI_D2S_CLRSIPOCOUNT 0x016C /* Assertion timer for Lane 2 */
#define PPI_D3S_CLRSIPOCOUNT 0x0170 /* Assertion timer for Lane 3 */
#define PPI_START_FUNCTION 1
/* DSI layer registers */
#define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX */
#define DSI_LANEENABLE 0x0210 /* Enables each lane */
#define DSI_RX_START 1
/* Video path registers */
#define VP_CTRL 0x0450 /* Video Path Control */
#define VP_CTRL_MSF BIT(0) /* Magic square in RGB666 */
#define VP_CTRL_VTGEN BIT(4) /* Use chip clock for timing */
#define VP_CTRL_EVTMODE BIT(5) /* Event mode */
#define VP_CTRL_RGB888 BIT(8) /* RGB888 mode */
#define VP_CTRL_VSDELAY(v) FLD_VAL(v, 31, 20) /* VSYNC delay */
#define VP_CTRL_HSPOL BIT(17) /* Polarity of HSYNC signal */
#define VP_CTRL_DEPOL BIT(18) /* Polarity of DE signal */
#define VP_CTRL_VSPOL BIT(19) /* Polarity of VSYNC signal */
#define VP_HTIM1 0x0454 /* Horizontal Timing Control 1 */
#define VP_HTIM1_HBP(v) FLD_VAL(v, 24, 16)
#define VP_HTIM1_HSYNC(v) FLD_VAL(v, 8, 0)
#define VP_HTIM2 0x0458 /* Horizontal Timing Control 2 */
#define VP_HTIM2_HFP(v) FLD_VAL(v, 24, 16)
#define VP_HTIM2_HACT(v) FLD_VAL(v, 10, 0)
#define VP_VTIM1 0x045C /* Vertical Timing Control 1 */
#define VP_VTIM1_VBP(v) FLD_VAL(v, 23, 16)
#define VP_VTIM1_VSYNC(v) FLD_VAL(v, 7, 0)
#define VP_VTIM2 0x0460 /* Vertical Timing Control 2 */
#define VP_VTIM2_VFP(v) FLD_VAL(v, 23, 16)
#define VP_VTIM2_VACT(v) FLD_VAL(v, 10, 0)
#define VP_VFUEN 0x0464 /* Video Frame Timing Update Enable */
/* LVDS registers */
#define LV_MX0003 0x0480 /* Mux input bit 0 to 3 */
#define LV_MX0407 0x0484 /* Mux input bit 4 to 7 */
#define LV_MX0811 0x0488 /* Mux input bit 8 to 11 */
#define LV_MX1215 0x048C /* Mux input bit 12 to 15 */
#define LV_MX1619 0x0490 /* Mux input bit 16 to 19 */
#define LV_MX2023 0x0494 /* Mux input bit 20 to 23 */
#define LV_MX2427 0x0498 /* Mux input bit 24 to 27 */
#define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \
FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24))
/* Input bit numbers used in mux registers */
enum {
LVI_R0,
LVI_R1,
LVI_R2,
LVI_R3,
LVI_R4,
LVI_R5,
LVI_R6,
LVI_R7,
LVI_G0,
LVI_G1,
LVI_G2,
LVI_G3,
LVI_G4,
LVI_G5,
LVI_G6,
LVI_G7,
LVI_B0,
LVI_B1,
LVI_B2,
LVI_B3,
LVI_B4,
LVI_B5,
LVI_B6,
LVI_B7,
LVI_HS,
LVI_VS,
LVI_DE,
LVI_L0
};
#define LV_CFG 0x049C /* LVDS Configuration */
#define LV_PHY0 0x04A0 /* LVDS PHY 0 */
#define LV_PHY0_RST(v) FLD_VAL(v, 22, 22) /* PHY reset */
#define LV_PHY0_IS(v) FLD_VAL(v, 15, 14)
#define LV_PHY0_ND(v) FLD_VAL(v, 4, 0) /* Frequency range select */
#define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16) /* Clock/Data Flag pins */
/* System registers */
#define SYS_RST 0x0504 /* System Reset */
#define SYS_ID 0x0580 /* System ID */
#define SYS_RST_I2CS BIT(0) /* Reset I2C-Slave controller */
#define SYS_RST_I2CM BIT(1) /* Reset I2C-Master controller */
#define SYS_RST_LCD BIT(2) /* Reset LCD controller */
#define SYS_RST_BM BIT(3) /* Reset Bus Management controller */
#define SYS_RST_DSIRX BIT(4) /* Reset DSI-RX and App controller */
#define SYS_RST_REG BIT(5) /* Reset Register module */
#define LPX_PERIOD 2
#define TTA_SURE 3
#define TTA_GET 0x20000
/* Lane enable PPI and DSI register bits */
#define LANEENABLE_CLEN BIT(0)
#define LANEENABLE_L0EN BIT(1)
#define LANEENABLE_L1EN BIT(2)
#define LANEENABLE_L2EN BIT(3)
#define LANEENABLE_L3EN BIT(4)
/* LVCFG fields */
#define LV_CFG_LVEN BIT(0)
#define LV_CFG_LVDLINK BIT(1)
#define LV_CFG_CLKPOL1 BIT(2)
#define LV_CFG_CLKPOL2 BIT(3)
static const char * const tc358764_supplies[] = {
"vddc", "vddio", "vddlvds"
};
struct tc358764 {
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct regulator_bulk_data supplies[ARRAY_SIZE(tc358764_supplies)];
struct gpio_desc *gpio_reset;
int error;
};
static int tc358764_clear_error(struct tc358764 *ctx)
{
int ret = ctx->error;
ctx->error = 0;
return ret;
}
static void tc358764_read(struct tc358764 *ctx, u16 addr, u32 *val)
{
struct mipi_dsi_device *dsi = to_mipi_dsi_device(ctx->dev);
ssize_t ret;
if (ctx->error)
return;
cpu_to_le16s(&addr);
ret = mipi_dsi_generic_read(dsi, &addr, sizeof(addr), val, sizeof(*val));
if (ret >= 0)
le32_to_cpus(val);
dev_dbg(ctx->dev, "read: addr=0x%04x data=0x%08x\n", addr, *val);
}
static void tc358764_write(struct tc358764 *ctx, u16 addr, u32 val)
{
struct mipi_dsi_device *dsi = to_mipi_dsi_device(ctx->dev);
ssize_t ret;
u8 data[6];
if (ctx->error)
return;
data[0] = addr;
data[1] = addr >> 8;
data[2] = val;
data[3] = val >> 8;
data[4] = val >> 16;
data[5] = val >> 24;
ret = mipi_dsi_generic_write(dsi, data, sizeof(data));
if (ret < 0)
ctx->error = ret;
}
static inline struct tc358764 *bridge_to_tc358764(struct drm_bridge *bridge)
{
return container_of(bridge, struct tc358764, bridge);
}
static int tc358764_init(struct tc358764 *ctx)
{
u32 v = 0;
tc358764_read(ctx, SYS_ID, &v);
if (ctx->error)
return tc358764_clear_error(ctx);
dev_info(ctx->dev, "ID: %#x\n", v);
/* configure PPI counters */
tc358764_write(ctx, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
tc358764_write(ctx, PPI_LPTXTIMECNT, LPX_PERIOD);
tc358764_write(ctx, PPI_D0S_CLRSIPOCOUNT, 5);
tc358764_write(ctx, PPI_D1S_CLRSIPOCOUNT, 5);
tc358764_write(ctx, PPI_D2S_CLRSIPOCOUNT, 5);
tc358764_write(ctx, PPI_D3S_CLRSIPOCOUNT, 5);
/* enable four data lanes and clock lane */
tc358764_write(ctx, PPI_LANEENABLE, LANEENABLE_L3EN | LANEENABLE_L2EN |
LANEENABLE_L1EN | LANEENABLE_L0EN | LANEENABLE_CLEN);
tc358764_write(ctx, DSI_LANEENABLE, LANEENABLE_L3EN | LANEENABLE_L2EN |
LANEENABLE_L1EN | LANEENABLE_L0EN | LANEENABLE_CLEN);
/* start */
tc358764_write(ctx, PPI_STARTPPI, PPI_START_FUNCTION);
tc358764_write(ctx, DSI_STARTDSI, DSI_RX_START);
/* configure video path */
tc358764_write(ctx, VP_CTRL, VP_CTRL_VSDELAY(15) | VP_CTRL_RGB888 |
VP_CTRL_EVTMODE | VP_CTRL_HSPOL | VP_CTRL_VSPOL);
/* reset PHY */
tc358764_write(ctx, LV_PHY0, LV_PHY0_RST(1) |
LV_PHY0_PRBS_ON(4) | LV_PHY0_IS(2) | LV_PHY0_ND(6));
tc358764_write(ctx, LV_PHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_IS(2) |
LV_PHY0_ND(6));
/* reset bridge */
tc358764_write(ctx, SYS_RST, SYS_RST_LCD);
/* set bit order */
tc358764_write(ctx, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3));
tc358764_write(ctx, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0));
tc358764_write(ctx, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7));
tc358764_write(ctx, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0));
tc358764_write(ctx, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2));
tc358764_write(ctx, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0));
tc358764_write(ctx, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6));
tc358764_write(ctx, LV_CFG, LV_CFG_CLKPOL2 | LV_CFG_CLKPOL1 |
LV_CFG_LVEN);
return tc358764_clear_error(ctx);
}
static void tc358764_reset(struct tc358764 *ctx)
{
gpiod_set_value(ctx->gpio_reset, 1);
usleep_range(1000, 2000);
gpiod_set_value(ctx->gpio_reset, 0);
usleep_range(1000, 2000);
}
static void tc358764_post_disable(struct drm_bridge *bridge)
{
struct tc358764 *ctx = bridge_to_tc358764(bridge);
int ret;
tc358764_reset(ctx);
usleep_range(10000, 15000);
ret = regulator_bulk_disable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
if (ret < 0)
dev_err(ctx->dev, "error disabling regulators (%d)\n", ret);
}
static void tc358764_pre_enable(struct drm_bridge *bridge)
{
struct tc358764 *ctx = bridge_to_tc358764(bridge);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
if (ret < 0)
dev_err(ctx->dev, "error enabling regulators (%d)\n", ret);
usleep_range(10000, 15000);
tc358764_reset(ctx);
ret = tc358764_init(ctx);
if (ret < 0)
dev_err(ctx->dev, "error initializing bridge (%d)\n", ret);
}
static int tc358764_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc358764 *ctx = bridge_to_tc358764(bridge);
return drm_bridge_attach(bridge->encoder, ctx->next_bridge, bridge, flags);
}
static const struct drm_bridge_funcs tc358764_bridge_funcs = {
.post_disable = tc358764_post_disable,
.pre_enable = tc358764_pre_enable,
.attach = tc358764_attach,
};
static int tc358764_parse_dt(struct tc358764 *ctx)
{
struct device *dev = ctx->dev;
ctx->gpio_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(ctx->gpio_reset)) {
dev_err(dev, "no reset GPIO pin provided\n");
return PTR_ERR(ctx->gpio_reset);
}
ctx->next_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0);
if (IS_ERR(ctx->next_bridge))
return PTR_ERR(ctx->next_bridge);
return 0;
}
static int tc358764_configure_regulators(struct tc358764 *ctx)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(ctx->supplies); ++i)
ctx->supplies[i].supply = tc358764_supplies[i];
ret = devm_regulator_bulk_get(ctx->dev, ARRAY_SIZE(ctx->supplies),
ctx->supplies);
if (ret < 0)
dev_err(ctx->dev, "failed to get regulators: %d\n", ret);
return ret;
}
static int tc358764_probe(struct mipi_dsi_device *dsi)
{
struct device *dev = &dsi->dev;
struct tc358764 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(struct tc358764), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mipi_dsi_set_drvdata(dsi, ctx);
ctx->dev = dev;
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST
| MIPI_DSI_MODE_VIDEO_AUTO_VERT | MIPI_DSI_MODE_LPM;
ret = tc358764_parse_dt(ctx);
if (ret < 0)
return ret;
ret = tc358764_configure_regulators(ctx);
if (ret < 0)
return ret;
ctx->bridge.funcs = &tc358764_bridge_funcs;
ctx->bridge.of_node = dev->of_node;
ctx->bridge.pre_enable_prev_first = true;
drm_bridge_add(&ctx->bridge);
ret = mipi_dsi_attach(dsi);
if (ret < 0) {
drm_bridge_remove(&ctx->bridge);
dev_err(dev, "failed to attach dsi\n");
}
return ret;
}
static void tc358764_remove(struct mipi_dsi_device *dsi)
{
struct tc358764 *ctx = mipi_dsi_get_drvdata(dsi);
mipi_dsi_detach(dsi);
drm_bridge_remove(&ctx->bridge);
}
static const struct of_device_id tc358764_of_match[] = {
{ .compatible = "toshiba,tc358764" },
{ }
};
MODULE_DEVICE_TABLE(of, tc358764_of_match);
static struct mipi_dsi_driver tc358764_driver = {
.probe = tc358764_probe,
.remove = tc358764_remove,
.driver = {
.name = "tc358764",
.owner = THIS_MODULE,
.of_match_table = tc358764_of_match,
},
};
module_mipi_dsi_driver(tc358764_driver);
MODULE_AUTHOR("Andrzej Hajda <[email protected]>");
MODULE_AUTHOR("Maciej Purski <[email protected]>");
MODULE_DESCRIPTION("MIPI-DSI based Driver for TC358764 DSI/LVDS Bridge");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/tc358764.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
* Copyright (c) 2019-2020. Linaro Limited.
*/
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <sound/hdmi-codec.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define EDID_BLOCK_SIZE 128
#define EDID_NUM_BLOCKS 2
#define FW_FILE "lt9611uxc_fw.bin"
struct lt9611uxc {
struct device *dev;
struct drm_bridge bridge;
struct drm_connector connector;
struct regmap *regmap;
/* Protects all accesses to registers by stopping the on-chip MCU */
struct mutex ocm_lock;
struct wait_queue_head wq;
struct work_struct work;
struct device_node *dsi0_node;
struct device_node *dsi1_node;
struct mipi_dsi_device *dsi0;
struct mipi_dsi_device *dsi1;
struct platform_device *audio_pdev;
struct gpio_desc *reset_gpio;
struct gpio_desc *enable_gpio;
struct regulator_bulk_data supplies[2];
struct i2c_client *client;
bool hpd_supported;
bool edid_read;
/* can be accessed from different threads, so protect this with ocm_lock */
bool hdmi_connected;
uint8_t fw_version;
};
#define LT9611_PAGE_CONTROL 0xff
static const struct regmap_range_cfg lt9611uxc_ranges[] = {
{
.name = "register_range",
.range_min = 0,
.range_max = 0xd0ff,
.selector_reg = LT9611_PAGE_CONTROL,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
},
};
static const struct regmap_config lt9611uxc_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xffff,
.ranges = lt9611uxc_ranges,
.num_ranges = ARRAY_SIZE(lt9611uxc_ranges),
};
struct lt9611uxc_mode {
u16 hdisplay;
u16 vdisplay;
u8 vrefresh;
};
/*
* This chip supports only a fixed set of modes.
* Enumerate them here to check whether the mode is supported.
*/
static struct lt9611uxc_mode lt9611uxc_modes[] = {
{ 1920, 1080, 60 },
{ 1920, 1080, 30 },
{ 1920, 1080, 25 },
{ 1366, 768, 60 },
{ 1360, 768, 60 },
{ 1280, 1024, 60 },
{ 1280, 800, 60 },
{ 1280, 720, 60 },
{ 1280, 720, 50 },
{ 1280, 720, 30 },
{ 1152, 864, 60 },
{ 1024, 768, 60 },
{ 800, 600, 60 },
{ 720, 576, 50 },
{ 720, 480, 60 },
{ 640, 480, 60 },
};
static struct lt9611uxc *bridge_to_lt9611uxc(struct drm_bridge *bridge)
{
return container_of(bridge, struct lt9611uxc, bridge);
}
static struct lt9611uxc *connector_to_lt9611uxc(struct drm_connector *connector)
{
return container_of(connector, struct lt9611uxc, connector);
}
static void lt9611uxc_lock(struct lt9611uxc *lt9611uxc)
{
mutex_lock(<9611uxc->ocm_lock);
regmap_write(lt9611uxc->regmap, 0x80ee, 0x01);
}
static void lt9611uxc_unlock(struct lt9611uxc *lt9611uxc)
{
regmap_write(lt9611uxc->regmap, 0x80ee, 0x00);
msleep(50);
mutex_unlock(<9611uxc->ocm_lock);
}
static irqreturn_t lt9611uxc_irq_thread_handler(int irq, void *dev_id)
{
struct lt9611uxc *lt9611uxc = dev_id;
unsigned int irq_status = 0;
unsigned int hpd_status = 0;
lt9611uxc_lock(lt9611uxc);
regmap_read(lt9611uxc->regmap, 0xb022, &irq_status);
regmap_read(lt9611uxc->regmap, 0xb023, &hpd_status);
if (irq_status)
regmap_write(lt9611uxc->regmap, 0xb022, 0);
if (irq_status & BIT(0)) {
lt9611uxc->edid_read = !!(hpd_status & BIT(0));
wake_up_all(<9611uxc->wq);
}
if (irq_status & BIT(1)) {
lt9611uxc->hdmi_connected = hpd_status & BIT(1);
schedule_work(<9611uxc->work);
}
lt9611uxc_unlock(lt9611uxc);
return IRQ_HANDLED;
}
static void lt9611uxc_hpd_work(struct work_struct *work)
{
struct lt9611uxc *lt9611uxc = container_of(work, struct lt9611uxc, work);
bool connected;
if (lt9611uxc->connector.dev) {
if (lt9611uxc->connector.dev->mode_config.funcs)
drm_kms_helper_hotplug_event(lt9611uxc->connector.dev);
} else {
mutex_lock(<9611uxc->ocm_lock);
connected = lt9611uxc->hdmi_connected;
mutex_unlock(<9611uxc->ocm_lock);
drm_bridge_hpd_notify(<9611uxc->bridge,
connected ?
connector_status_connected :
connector_status_disconnected);
}
}
static void lt9611uxc_reset(struct lt9611uxc *lt9611uxc)
{
gpiod_set_value_cansleep(lt9611uxc->reset_gpio, 1);
msleep(20);
gpiod_set_value_cansleep(lt9611uxc->reset_gpio, 0);
msleep(20);
gpiod_set_value_cansleep(lt9611uxc->reset_gpio, 1);
msleep(300);
}
static void lt9611uxc_assert_5v(struct lt9611uxc *lt9611uxc)
{
if (!lt9611uxc->enable_gpio)
return;
gpiod_set_value_cansleep(lt9611uxc->enable_gpio, 1);
msleep(20);
}
static int lt9611uxc_regulator_init(struct lt9611uxc *lt9611uxc)
{
int ret;
lt9611uxc->supplies[0].supply = "vdd";
lt9611uxc->supplies[1].supply = "vcc";
ret = devm_regulator_bulk_get(lt9611uxc->dev, 2, lt9611uxc->supplies);
if (ret < 0)
return ret;
return regulator_set_load(lt9611uxc->supplies[0].consumer, 200000);
}
static int lt9611uxc_regulator_enable(struct lt9611uxc *lt9611uxc)
{
int ret;
ret = regulator_enable(lt9611uxc->supplies[0].consumer);
if (ret < 0)
return ret;
usleep_range(1000, 10000); /* 50000 according to dtsi */
ret = regulator_enable(lt9611uxc->supplies[1].consumer);
if (ret < 0) {
regulator_disable(lt9611uxc->supplies[0].consumer);
return ret;
}
return 0;
}
static struct lt9611uxc_mode *lt9611uxc_find_mode(const struct drm_display_mode *mode)
{
int i;
for (i = 0; i < ARRAY_SIZE(lt9611uxc_modes); i++) {
if (lt9611uxc_modes[i].hdisplay == mode->hdisplay &&
lt9611uxc_modes[i].vdisplay == mode->vdisplay &&
lt9611uxc_modes[i].vrefresh == drm_mode_vrefresh(mode)) {
return <9611uxc_modes[i];
}
}
return NULL;
}
static struct mipi_dsi_device *lt9611uxc_attach_dsi(struct lt9611uxc *lt9611uxc,
struct device_node *dsi_node)
{
const struct mipi_dsi_device_info info = { "lt9611uxc", 0, NULL };
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
struct device *dev = lt9611uxc->dev;
int ret;
host = of_find_mipi_dsi_host_by_node(dsi_node);
if (!host) {
dev_err(dev, "failed to find dsi host\n");
return ERR_PTR(-EPROBE_DEFER);
}
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(dev, "failed to create dsi device\n");
return dsi;
}
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_VIDEO_HSE;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ERR_PTR(ret);
}
return dsi;
}
static int lt9611uxc_connector_get_modes(struct drm_connector *connector)
{
struct lt9611uxc *lt9611uxc = connector_to_lt9611uxc(connector);
unsigned int count;
struct edid *edid;
edid = lt9611uxc->bridge.funcs->get_edid(<9611uxc->bridge, connector);
drm_connector_update_edid_property(connector, edid);
count = drm_add_edid_modes(connector, edid);
kfree(edid);
return count;
}
static enum drm_connector_status lt9611uxc_connector_detect(struct drm_connector *connector,
bool force)
{
struct lt9611uxc *lt9611uxc = connector_to_lt9611uxc(connector);
return lt9611uxc->bridge.funcs->detect(<9611uxc->bridge);
}
static enum drm_mode_status lt9611uxc_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct lt9611uxc_mode *lt9611uxc_mode = lt9611uxc_find_mode(mode);
return lt9611uxc_mode ? MODE_OK : MODE_BAD;
}
static const struct drm_connector_helper_funcs lt9611uxc_bridge_connector_helper_funcs = {
.get_modes = lt9611uxc_connector_get_modes,
.mode_valid = lt9611uxc_connector_mode_valid,
};
static const struct drm_connector_funcs lt9611uxc_bridge_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = lt9611uxc_connector_detect,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int lt9611uxc_connector_init(struct drm_bridge *bridge, struct lt9611uxc *lt9611uxc)
{
int ret;
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
lt9611uxc->connector.polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(<9611uxc->connector,
<9611uxc_bridge_connector_helper_funcs);
ret = drm_connector_init(bridge->dev, <9611uxc->connector,
<9611uxc_bridge_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
return drm_connector_attach_encoder(<9611uxc->connector, bridge->encoder);
}
static int lt9611uxc_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct lt9611uxc *lt9611uxc = bridge_to_lt9611uxc(bridge);
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
ret = lt9611uxc_connector_init(bridge, lt9611uxc);
if (ret < 0)
return ret;
}
return 0;
}
static enum drm_mode_status
lt9611uxc_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct lt9611uxc_mode *lt9611uxc_mode;
lt9611uxc_mode = lt9611uxc_find_mode(mode);
return lt9611uxc_mode ? MODE_OK : MODE_BAD;
}
static void lt9611uxc_video_setup(struct lt9611uxc *lt9611uxc,
const struct drm_display_mode *mode)
{
u32 h_total, hactive, hsync_len, hfront_porch;
u32 v_total, vactive, vsync_len, vfront_porch;
h_total = mode->htotal;
v_total = mode->vtotal;
hactive = mode->hdisplay;
hsync_len = mode->hsync_end - mode->hsync_start;
hfront_porch = mode->hsync_start - mode->hdisplay;
vactive = mode->vdisplay;
vsync_len = mode->vsync_end - mode->vsync_start;
vfront_porch = mode->vsync_start - mode->vdisplay;
regmap_write(lt9611uxc->regmap, 0xd00d, (u8)(v_total / 256));
regmap_write(lt9611uxc->regmap, 0xd00e, (u8)(v_total % 256));
regmap_write(lt9611uxc->regmap, 0xd00f, (u8)(vactive / 256));
regmap_write(lt9611uxc->regmap, 0xd010, (u8)(vactive % 256));
regmap_write(lt9611uxc->regmap, 0xd011, (u8)(h_total / 256));
regmap_write(lt9611uxc->regmap, 0xd012, (u8)(h_total % 256));
regmap_write(lt9611uxc->regmap, 0xd013, (u8)(hactive / 256));
regmap_write(lt9611uxc->regmap, 0xd014, (u8)(hactive % 256));
regmap_write(lt9611uxc->regmap, 0xd015, (u8)(vsync_len % 256));
regmap_update_bits(lt9611uxc->regmap, 0xd016, 0xf, (u8)(hsync_len / 256));
regmap_write(lt9611uxc->regmap, 0xd017, (u8)(hsync_len % 256));
regmap_update_bits(lt9611uxc->regmap, 0xd018, 0xf, (u8)(vfront_porch / 256));
regmap_write(lt9611uxc->regmap, 0xd019, (u8)(vfront_porch % 256));
regmap_update_bits(lt9611uxc->regmap, 0xd01a, 0xf, (u8)(hfront_porch / 256));
regmap_write(lt9611uxc->regmap, 0xd01b, (u8)(hfront_porch % 256));
}
static void lt9611uxc_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj_mode)
{
struct lt9611uxc *lt9611uxc = bridge_to_lt9611uxc(bridge);
lt9611uxc_lock(lt9611uxc);
lt9611uxc_video_setup(lt9611uxc, mode);
lt9611uxc_unlock(lt9611uxc);
}
static enum drm_connector_status lt9611uxc_bridge_detect(struct drm_bridge *bridge)
{
struct lt9611uxc *lt9611uxc = bridge_to_lt9611uxc(bridge);
unsigned int reg_val = 0;
int ret;
bool connected = true;
lt9611uxc_lock(lt9611uxc);
if (lt9611uxc->hpd_supported) {
ret = regmap_read(lt9611uxc->regmap, 0xb023, ®_val);
if (ret)
dev_err(lt9611uxc->dev, "failed to read hpd status: %d\n", ret);
else
connected = reg_val & BIT(1);
}
lt9611uxc->hdmi_connected = connected;
lt9611uxc_unlock(lt9611uxc);
return connected ? connector_status_connected :
connector_status_disconnected;
}
static int lt9611uxc_wait_for_edid(struct lt9611uxc *lt9611uxc)
{
return wait_event_interruptible_timeout(lt9611uxc->wq, lt9611uxc->edid_read,
msecs_to_jiffies(500));
}
static int lt9611uxc_get_edid_block(void *data, u8 *buf, unsigned int block, size_t len)
{
struct lt9611uxc *lt9611uxc = data;
int ret;
if (len > EDID_BLOCK_SIZE)
return -EINVAL;
if (block >= EDID_NUM_BLOCKS)
return -EINVAL;
lt9611uxc_lock(lt9611uxc);
regmap_write(lt9611uxc->regmap, 0xb00b, 0x10);
regmap_write(lt9611uxc->regmap, 0xb00a, block * EDID_BLOCK_SIZE);
ret = regmap_noinc_read(lt9611uxc->regmap, 0xb0b0, buf, len);
if (ret)
dev_err(lt9611uxc->dev, "edid read failed: %d\n", ret);
lt9611uxc_unlock(lt9611uxc);
return 0;
};
static struct edid *lt9611uxc_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct lt9611uxc *lt9611uxc = bridge_to_lt9611uxc(bridge);
int ret;
ret = lt9611uxc_wait_for_edid(lt9611uxc);
if (ret < 0) {
dev_err(lt9611uxc->dev, "wait for EDID failed: %d\n", ret);
return NULL;
} else if (ret == 0) {
dev_err(lt9611uxc->dev, "wait for EDID timeout\n");
return NULL;
}
return drm_do_get_edid(connector, lt9611uxc_get_edid_block, lt9611uxc);
}
static const struct drm_bridge_funcs lt9611uxc_bridge_funcs = {
.attach = lt9611uxc_bridge_attach,
.mode_valid = lt9611uxc_bridge_mode_valid,
.mode_set = lt9611uxc_bridge_mode_set,
.detect = lt9611uxc_bridge_detect,
.get_edid = lt9611uxc_bridge_get_edid,
};
static int lt9611uxc_parse_dt(struct device *dev,
struct lt9611uxc *lt9611uxc)
{
lt9611uxc->dsi0_node = of_graph_get_remote_node(dev->of_node, 0, -1);
if (!lt9611uxc->dsi0_node) {
dev_err(lt9611uxc->dev, "failed to get remote node for primary dsi\n");
return -ENODEV;
}
lt9611uxc->dsi1_node = of_graph_get_remote_node(dev->of_node, 1, -1);
return 0;
}
static int lt9611uxc_gpio_init(struct lt9611uxc *lt9611uxc)
{
struct device *dev = lt9611uxc->dev;
lt9611uxc->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(lt9611uxc->reset_gpio)) {
dev_err(dev, "failed to acquire reset gpio\n");
return PTR_ERR(lt9611uxc->reset_gpio);
}
lt9611uxc->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR(lt9611uxc->enable_gpio)) {
dev_err(dev, "failed to acquire enable gpio\n");
return PTR_ERR(lt9611uxc->enable_gpio);
}
return 0;
}
static int lt9611uxc_read_device_rev(struct lt9611uxc *lt9611uxc)
{
unsigned int rev0, rev1, rev2;
int ret;
lt9611uxc_lock(lt9611uxc);
ret = regmap_read(lt9611uxc->regmap, 0x8100, &rev0);
ret |= regmap_read(lt9611uxc->regmap, 0x8101, &rev1);
ret |= regmap_read(lt9611uxc->regmap, 0x8102, &rev2);
if (ret)
dev_err(lt9611uxc->dev, "failed to read revision: %d\n", ret);
else
dev_info(lt9611uxc->dev, "LT9611 revision: 0x%02x.%02x.%02x\n", rev0, rev1, rev2);
lt9611uxc_unlock(lt9611uxc);
return ret;
}
static int lt9611uxc_read_version(struct lt9611uxc *lt9611uxc)
{
unsigned int rev;
int ret;
lt9611uxc_lock(lt9611uxc);
ret = regmap_read(lt9611uxc->regmap, 0xb021, &rev);
if (ret)
dev_err(lt9611uxc->dev, "failed to read revision: %d\n", ret);
else
dev_info(lt9611uxc->dev, "LT9611 version: 0x%02x\n", rev);
lt9611uxc_unlock(lt9611uxc);
return ret < 0 ? ret : rev;
}
static int lt9611uxc_hdmi_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *fmt,
struct hdmi_codec_params *hparms)
{
/*
* LT9611UXC will automatically detect rate and sample size, so no need
* to setup anything here.
*/
return 0;
}
static void lt9611uxc_audio_shutdown(struct device *dev, void *data)
{
}
static int lt9611uxc_hdmi_i2s_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located as reg = <2>
* Then, it is sound port 0
*/
if (of_ep.port == 2)
return 0;
return -EINVAL;
}
static const struct hdmi_codec_ops lt9611uxc_codec_ops = {
.hw_params = lt9611uxc_hdmi_hw_params,
.audio_shutdown = lt9611uxc_audio_shutdown,
.get_dai_id = lt9611uxc_hdmi_i2s_get_dai_id,
};
static int lt9611uxc_audio_init(struct device *dev, struct lt9611uxc *lt9611uxc)
{
struct hdmi_codec_pdata codec_data = {
.ops = <9611uxc_codec_ops,
.max_i2s_channels = 2,
.i2s = 1,
.data = lt9611uxc,
};
lt9611uxc->audio_pdev =
platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&codec_data, sizeof(codec_data));
return PTR_ERR_OR_ZERO(lt9611uxc->audio_pdev);
}
static void lt9611uxc_audio_exit(struct lt9611uxc *lt9611uxc)
{
if (lt9611uxc->audio_pdev) {
platform_device_unregister(lt9611uxc->audio_pdev);
lt9611uxc->audio_pdev = NULL;
}
}
#define LT9611UXC_FW_PAGE_SIZE 32
static void lt9611uxc_firmware_write_page(struct lt9611uxc *lt9611uxc, u16 addr, const u8 *buf)
{
struct reg_sequence seq_write_prepare[] = {
REG_SEQ0(0x805a, 0x04),
REG_SEQ0(0x805a, 0x00),
REG_SEQ0(0x805e, 0xdf),
REG_SEQ0(0x805a, 0x20),
REG_SEQ0(0x805a, 0x00),
REG_SEQ0(0x8058, 0x21),
};
struct reg_sequence seq_write_addr[] = {
REG_SEQ0(0x805b, (addr >> 16) & 0xff),
REG_SEQ0(0x805c, (addr >> 8) & 0xff),
REG_SEQ0(0x805d, addr & 0xff),
REG_SEQ0(0x805a, 0x10),
REG_SEQ0(0x805a, 0x00),
};
regmap_write(lt9611uxc->regmap, 0x8108, 0xbf);
msleep(20);
regmap_write(lt9611uxc->regmap, 0x8108, 0xff);
msleep(20);
regmap_multi_reg_write(lt9611uxc->regmap, seq_write_prepare, ARRAY_SIZE(seq_write_prepare));
regmap_noinc_write(lt9611uxc->regmap, 0x8059, buf, LT9611UXC_FW_PAGE_SIZE);
regmap_multi_reg_write(lt9611uxc->regmap, seq_write_addr, ARRAY_SIZE(seq_write_addr));
msleep(20);
}
static void lt9611uxc_firmware_read_page(struct lt9611uxc *lt9611uxc, u16 addr, char *buf)
{
struct reg_sequence seq_read_page[] = {
REG_SEQ0(0x805a, 0xa0),
REG_SEQ0(0x805a, 0x80),
REG_SEQ0(0x805b, (addr >> 16) & 0xff),
REG_SEQ0(0x805c, (addr >> 8) & 0xff),
REG_SEQ0(0x805d, addr & 0xff),
REG_SEQ0(0x805a, 0x90),
REG_SEQ0(0x805a, 0x80),
REG_SEQ0(0x8058, 0x21),
};
regmap_multi_reg_write(lt9611uxc->regmap, seq_read_page, ARRAY_SIZE(seq_read_page));
regmap_noinc_read(lt9611uxc->regmap, 0x805f, buf, LT9611UXC_FW_PAGE_SIZE);
}
static char *lt9611uxc_firmware_read(struct lt9611uxc *lt9611uxc, size_t size)
{
struct reg_sequence seq_read_setup[] = {
REG_SEQ0(0x805a, 0x84),
REG_SEQ0(0x805a, 0x80),
};
char *readbuf;
u16 offset;
readbuf = kzalloc(ALIGN(size, 32), GFP_KERNEL);
if (!readbuf)
return NULL;
regmap_multi_reg_write(lt9611uxc->regmap, seq_read_setup, ARRAY_SIZE(seq_read_setup));
for (offset = 0;
offset < size;
offset += LT9611UXC_FW_PAGE_SIZE)
lt9611uxc_firmware_read_page(lt9611uxc, offset, &readbuf[offset]);
return readbuf;
}
static int lt9611uxc_firmware_update(struct lt9611uxc *lt9611uxc)
{
int ret;
u16 offset;
size_t remain;
char *readbuf;
const struct firmware *fw;
struct reg_sequence seq_setup[] = {
REG_SEQ0(0x805e, 0xdf),
REG_SEQ0(0x8058, 0x00),
REG_SEQ0(0x8059, 0x50),
REG_SEQ0(0x805a, 0x10),
REG_SEQ0(0x805a, 0x00),
};
struct reg_sequence seq_block_erase[] = {
REG_SEQ0(0x805a, 0x04),
REG_SEQ0(0x805a, 0x00),
REG_SEQ0(0x805b, 0x00),
REG_SEQ0(0x805c, 0x00),
REG_SEQ0(0x805d, 0x00),
REG_SEQ0(0x805a, 0x01),
REG_SEQ0(0x805a, 0x00),
};
ret = request_firmware(&fw, FW_FILE, lt9611uxc->dev);
if (ret < 0)
return ret;
dev_info(lt9611uxc->dev, "Updating firmware\n");
lt9611uxc_lock(lt9611uxc);
regmap_multi_reg_write(lt9611uxc->regmap, seq_setup, ARRAY_SIZE(seq_setup));
/*
* Need erase block 2 timess here. Sometimes, block erase can fail.
* This is a workaroud.
*/
regmap_multi_reg_write(lt9611uxc->regmap, seq_block_erase, ARRAY_SIZE(seq_block_erase));
msleep(3000);
regmap_multi_reg_write(lt9611uxc->regmap, seq_block_erase, ARRAY_SIZE(seq_block_erase));
msleep(3000);
for (offset = 0, remain = fw->size;
remain >= LT9611UXC_FW_PAGE_SIZE;
offset += LT9611UXC_FW_PAGE_SIZE, remain -= LT9611UXC_FW_PAGE_SIZE)
lt9611uxc_firmware_write_page(lt9611uxc, offset, fw->data + offset);
if (remain > 0) {
char buf[LT9611UXC_FW_PAGE_SIZE];
memset(buf, 0xff, LT9611UXC_FW_PAGE_SIZE);
memcpy(buf, fw->data + offset, remain);
lt9611uxc_firmware_write_page(lt9611uxc, offset, buf);
}
msleep(20);
readbuf = lt9611uxc_firmware_read(lt9611uxc, fw->size);
if (!readbuf) {
ret = -ENOMEM;
goto out;
}
if (!memcmp(readbuf, fw->data, fw->size)) {
dev_err(lt9611uxc->dev, "Firmware update failed\n");
print_hex_dump(KERN_ERR, "fw: ", DUMP_PREFIX_OFFSET, 16, 1, readbuf, fw->size, false);
ret = -EINVAL;
} else {
dev_info(lt9611uxc->dev, "Firmware updates successfully\n");
ret = 0;
}
kfree(readbuf);
out:
lt9611uxc_unlock(lt9611uxc);
lt9611uxc_reset(lt9611uxc);
release_firmware(fw);
return ret;
}
static ssize_t lt9611uxc_firmware_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len)
{
struct lt9611uxc *lt9611uxc = dev_get_drvdata(dev);
int ret;
ret = lt9611uxc_firmware_update(lt9611uxc);
if (ret < 0)
return ret;
return len;
}
static ssize_t lt9611uxc_firmware_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lt9611uxc *lt9611uxc = dev_get_drvdata(dev);
return sysfs_emit(buf, "%02x\n", lt9611uxc->fw_version);
}
static DEVICE_ATTR_RW(lt9611uxc_firmware);
static struct attribute *lt9611uxc_attrs[] = {
&dev_attr_lt9611uxc_firmware.attr,
NULL,
};
static const struct attribute_group lt9611uxc_attr_group = {
.attrs = lt9611uxc_attrs,
};
static const struct attribute_group *lt9611uxc_attr_groups[] = {
<9611uxc_attr_group,
NULL,
};
static int lt9611uxc_probe(struct i2c_client *client)
{
struct lt9611uxc *lt9611uxc;
struct device *dev = &client->dev;
int ret;
bool fw_updated = false;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "device doesn't support I2C\n");
return -ENODEV;
}
lt9611uxc = devm_kzalloc(dev, sizeof(*lt9611uxc), GFP_KERNEL);
if (!lt9611uxc)
return -ENOMEM;
lt9611uxc->dev = dev;
lt9611uxc->client = client;
mutex_init(<9611uxc->ocm_lock);
lt9611uxc->regmap = devm_regmap_init_i2c(client, <9611uxc_regmap_config);
if (IS_ERR(lt9611uxc->regmap)) {
dev_err(lt9611uxc->dev, "regmap i2c init failed\n");
return PTR_ERR(lt9611uxc->regmap);
}
ret = lt9611uxc_parse_dt(dev, lt9611uxc);
if (ret) {
dev_err(dev, "failed to parse device tree\n");
return ret;
}
ret = lt9611uxc_gpio_init(lt9611uxc);
if (ret < 0)
goto err_of_put;
ret = lt9611uxc_regulator_init(lt9611uxc);
if (ret < 0)
goto err_of_put;
lt9611uxc_assert_5v(lt9611uxc);
ret = lt9611uxc_regulator_enable(lt9611uxc);
if (ret)
goto err_of_put;
lt9611uxc_reset(lt9611uxc);
ret = lt9611uxc_read_device_rev(lt9611uxc);
if (ret) {
dev_err(dev, "failed to read chip rev\n");
goto err_disable_regulators;
}
retry:
ret = lt9611uxc_read_version(lt9611uxc);
if (ret < 0) {
dev_err(dev, "failed to read FW version\n");
goto err_disable_regulators;
} else if (ret == 0) {
if (!fw_updated) {
fw_updated = true;
dev_err(dev, "FW version 0, enforcing firmware update\n");
ret = lt9611uxc_firmware_update(lt9611uxc);
if (ret < 0)
goto err_disable_regulators;
else
goto retry;
} else {
dev_err(dev, "FW version 0, update failed\n");
ret = -EOPNOTSUPP;
goto err_disable_regulators;
}
} else if (ret < 0x40) {
dev_info(dev, "FW version 0x%x, HPD not supported\n", ret);
} else {
lt9611uxc->hpd_supported = true;
}
lt9611uxc->fw_version = ret;
init_waitqueue_head(<9611uxc->wq);
INIT_WORK(<9611uxc->work, lt9611uxc_hpd_work);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
lt9611uxc_irq_thread_handler,
IRQF_ONESHOT, "lt9611uxc", lt9611uxc);
if (ret) {
dev_err(dev, "failed to request irq\n");
goto err_disable_regulators;
}
i2c_set_clientdata(client, lt9611uxc);
lt9611uxc->bridge.funcs = <9611uxc_bridge_funcs;
lt9611uxc->bridge.of_node = client->dev.of_node;
lt9611uxc->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID;
if (lt9611uxc->hpd_supported)
lt9611uxc->bridge.ops |= DRM_BRIDGE_OP_HPD;
lt9611uxc->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
drm_bridge_add(<9611uxc->bridge);
/* Attach primary DSI */
lt9611uxc->dsi0 = lt9611uxc_attach_dsi(lt9611uxc, lt9611uxc->dsi0_node);
if (IS_ERR(lt9611uxc->dsi0)) {
ret = PTR_ERR(lt9611uxc->dsi0);
goto err_remove_bridge;
}
/* Attach secondary DSI, if specified */
if (lt9611uxc->dsi1_node) {
lt9611uxc->dsi1 = lt9611uxc_attach_dsi(lt9611uxc, lt9611uxc->dsi1_node);
if (IS_ERR(lt9611uxc->dsi1)) {
ret = PTR_ERR(lt9611uxc->dsi1);
goto err_remove_bridge;
}
}
return lt9611uxc_audio_init(dev, lt9611uxc);
err_remove_bridge:
drm_bridge_remove(<9611uxc->bridge);
err_disable_regulators:
regulator_bulk_disable(ARRAY_SIZE(lt9611uxc->supplies), lt9611uxc->supplies);
err_of_put:
of_node_put(lt9611uxc->dsi1_node);
of_node_put(lt9611uxc->dsi0_node);
return ret;
}
static void lt9611uxc_remove(struct i2c_client *client)
{
struct lt9611uxc *lt9611uxc = i2c_get_clientdata(client);
disable_irq(client->irq);
cancel_work_sync(<9611uxc->work);
lt9611uxc_audio_exit(lt9611uxc);
drm_bridge_remove(<9611uxc->bridge);
mutex_destroy(<9611uxc->ocm_lock);
regulator_bulk_disable(ARRAY_SIZE(lt9611uxc->supplies), lt9611uxc->supplies);
of_node_put(lt9611uxc->dsi1_node);
of_node_put(lt9611uxc->dsi0_node);
}
static struct i2c_device_id lt9611uxc_id[] = {
{ "lontium,lt9611uxc", 0 },
{ /* sentinel */ }
};
static const struct of_device_id lt9611uxc_match_table[] = {
{ .compatible = "lontium,lt9611uxc" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, lt9611uxc_match_table);
static struct i2c_driver lt9611uxc_driver = {
.driver = {
.name = "lt9611uxc",
.of_match_table = lt9611uxc_match_table,
.dev_groups = lt9611uxc_attr_groups,
},
.probe = lt9611uxc_probe,
.remove = lt9611uxc_remove,
.id_table = lt9611uxc_id,
};
module_i2c_driver(lt9611uxc_driver);
MODULE_AUTHOR("Dmitry Baryshkov <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_FIRMWARE(FW_FILE);
| linux-master | drivers/gpu/drm/bridge/lontium-lt9611uxc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* THC63LVD1024 LVDS to parallel data DRM bridge driver.
*
* Copyright (C) 2018 Jacopo Mondi <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <drm/drm_bridge.h>
#include <drm/drm_panel.h>
enum thc63_ports {
THC63_LVDS_IN0,
THC63_LVDS_IN1,
THC63_RGB_OUT0,
THC63_RGB_OUT1,
};
struct thc63_dev {
struct device *dev;
struct regulator *vcc;
struct gpio_desc *pdwn;
struct gpio_desc *oe;
struct drm_bridge bridge;
struct drm_bridge *next;
struct drm_bridge_timings timings;
};
static inline struct thc63_dev *to_thc63(struct drm_bridge *bridge)
{
return container_of(bridge, struct thc63_dev, bridge);
}
static int thc63_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct thc63_dev *thc63 = to_thc63(bridge);
return drm_bridge_attach(bridge->encoder, thc63->next, bridge, flags);
}
static enum drm_mode_status thc63_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct thc63_dev *thc63 = to_thc63(bridge);
unsigned int min_freq;
unsigned int max_freq;
/*
* The THC63LVD1024 pixel rate range is 8 to 135 MHz in all modes but
* dual-in, single-out where it is 40 to 150 MHz. As dual-in, dual-out
* isn't supported by the driver yet, simply derive the limits from the
* input mode.
*/
if (thc63->timings.dual_link) {
min_freq = 40000;
max_freq = 150000;
} else {
min_freq = 8000;
max_freq = 135000;
}
if (mode->clock < min_freq)
return MODE_CLOCK_LOW;
if (mode->clock > max_freq)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void thc63_enable(struct drm_bridge *bridge)
{
struct thc63_dev *thc63 = to_thc63(bridge);
int ret;
ret = regulator_enable(thc63->vcc);
if (ret) {
dev_err(thc63->dev,
"Failed to enable regulator \"vcc\": %d\n", ret);
return;
}
gpiod_set_value(thc63->pdwn, 0);
gpiod_set_value(thc63->oe, 1);
}
static void thc63_disable(struct drm_bridge *bridge)
{
struct thc63_dev *thc63 = to_thc63(bridge);
int ret;
gpiod_set_value(thc63->oe, 0);
gpiod_set_value(thc63->pdwn, 1);
ret = regulator_disable(thc63->vcc);
if (ret)
dev_err(thc63->dev,
"Failed to disable regulator \"vcc\": %d\n", ret);
}
static const struct drm_bridge_funcs thc63_bridge_func = {
.attach = thc63_attach,
.mode_valid = thc63_mode_valid,
.enable = thc63_enable,
.disable = thc63_disable,
};
static int thc63_parse_dt(struct thc63_dev *thc63)
{
struct device_node *endpoint;
struct device_node *remote;
endpoint = of_graph_get_endpoint_by_regs(thc63->dev->of_node,
THC63_RGB_OUT0, -1);
if (!endpoint) {
dev_err(thc63->dev, "Missing endpoint in port@%u\n",
THC63_RGB_OUT0);
return -ENODEV;
}
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (!remote) {
dev_err(thc63->dev, "Endpoint in port@%u unconnected\n",
THC63_RGB_OUT0);
return -ENODEV;
}
if (!of_device_is_available(remote)) {
dev_err(thc63->dev, "port@%u remote endpoint is disabled\n",
THC63_RGB_OUT0);
of_node_put(remote);
return -ENODEV;
}
thc63->next = of_drm_find_bridge(remote);
of_node_put(remote);
if (!thc63->next)
return -EPROBE_DEFER;
endpoint = of_graph_get_endpoint_by_regs(thc63->dev->of_node,
THC63_LVDS_IN1, -1);
if (endpoint) {
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (remote) {
if (of_device_is_available(remote))
thc63->timings.dual_link = true;
of_node_put(remote);
}
}
dev_dbg(thc63->dev, "operating in %s-link mode\n",
thc63->timings.dual_link ? "dual" : "single");
return 0;
}
static int thc63_gpio_init(struct thc63_dev *thc63)
{
thc63->oe = devm_gpiod_get_optional(thc63->dev, "oe", GPIOD_OUT_LOW);
if (IS_ERR(thc63->oe)) {
dev_err(thc63->dev, "Unable to get \"oe-gpios\": %ld\n",
PTR_ERR(thc63->oe));
return PTR_ERR(thc63->oe);
}
thc63->pdwn = devm_gpiod_get_optional(thc63->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(thc63->pdwn)) {
dev_err(thc63->dev, "Unable to get \"powerdown-gpios\": %ld\n",
PTR_ERR(thc63->pdwn));
return PTR_ERR(thc63->pdwn);
}
return 0;
}
static int thc63_probe(struct platform_device *pdev)
{
struct thc63_dev *thc63;
int ret;
thc63 = devm_kzalloc(&pdev->dev, sizeof(*thc63), GFP_KERNEL);
if (!thc63)
return -ENOMEM;
thc63->dev = &pdev->dev;
platform_set_drvdata(pdev, thc63);
thc63->vcc = devm_regulator_get(thc63->dev, "vcc");
if (IS_ERR(thc63->vcc)) {
if (PTR_ERR(thc63->vcc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_err(thc63->dev, "Unable to get \"vcc\" supply: %ld\n",
PTR_ERR(thc63->vcc));
return PTR_ERR(thc63->vcc);
}
ret = thc63_gpio_init(thc63);
if (ret)
return ret;
ret = thc63_parse_dt(thc63);
if (ret)
return ret;
thc63->bridge.driver_private = thc63;
thc63->bridge.of_node = pdev->dev.of_node;
thc63->bridge.funcs = &thc63_bridge_func;
thc63->bridge.timings = &thc63->timings;
drm_bridge_add(&thc63->bridge);
return 0;
}
static void thc63_remove(struct platform_device *pdev)
{
struct thc63_dev *thc63 = platform_get_drvdata(pdev);
drm_bridge_remove(&thc63->bridge);
}
static const struct of_device_id thc63_match[] = {
{ .compatible = "thine,thc63lvd1024", },
{ },
};
MODULE_DEVICE_TABLE(of, thc63_match);
static struct platform_driver thc63_driver = {
.probe = thc63_probe,
.remove_new = thc63_remove,
.driver = {
.name = "thc63lvd1024",
.of_match_table = thc63_match,
},
};
module_platform_driver(thc63_driver);
MODULE_AUTHOR("Jacopo Mondi <[email protected]>");
MODULE_DESCRIPTION("Thine THC63LVD1024 LVDS decoder DRM bridge driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/thc63lvd1024.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Parade PS8622 eDP/LVDS bridge driver
*
* Copyright (C) 2014 Google, Inc.
*/
#include <linux/backlight.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* Brightness scale on the Parade chip */
#define PS8622_MAX_BRIGHTNESS 0xff
/* Timings taken from the version 1.7 datasheet for the PS8622/PS8625 */
#define PS8622_POWER_RISE_T1_MIN_US 10
#define PS8622_POWER_RISE_T1_MAX_US 10000
#define PS8622_RST_HIGH_T2_MIN_US 3000
#define PS8622_RST_HIGH_T2_MAX_US 30000
#define PS8622_PWMO_END_T12_MS 200
#define PS8622_POWER_FALL_T16_MAX_US 10000
#define PS8622_POWER_OFF_T17_MS 500
#if ((PS8622_RST_HIGH_T2_MIN_US + PS8622_POWER_RISE_T1_MAX_US) > \
(PS8622_RST_HIGH_T2_MAX_US + PS8622_POWER_RISE_T1_MIN_US))
#error "T2.min + T1.max must be less than T2.max + T1.min"
#endif
struct ps8622_bridge {
struct i2c_client *client;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct regulator *v12;
struct backlight_device *bl;
struct gpio_desc *gpio_slp;
struct gpio_desc *gpio_rst;
u32 max_lane_count;
u32 lane_count;
bool enabled;
};
static inline struct ps8622_bridge *
bridge_to_ps8622(struct drm_bridge *bridge)
{
return container_of(bridge, struct ps8622_bridge, bridge);
}
static int ps8622_set(struct i2c_client *client, u8 page, u8 reg, u8 val)
{
int ret;
struct i2c_adapter *adap = client->adapter;
struct i2c_msg msg;
u8 data[] = {reg, val};
msg.addr = client->addr + page;
msg.flags = 0;
msg.len = sizeof(data);
msg.buf = data;
ret = i2c_transfer(adap, &msg, 1);
if (ret != 1)
pr_warn("PS8622 I2C write (0x%02x,0x%02x,0x%02x) failed: %d\n",
client->addr + page, reg, val, ret);
return !(ret == 1);
}
static int ps8622_send_config(struct ps8622_bridge *ps8622)
{
struct i2c_client *cl = ps8622->client;
int err = 0;
/* HPD low */
err = ps8622_set(cl, 0x02, 0xa1, 0x01);
if (err)
goto error;
/* SW setting: [1:0] SW output 1.2V voltage is lower to 96% */
err = ps8622_set(cl, 0x04, 0x14, 0x01);
if (err)
goto error;
/* RCO SS setting: [5:4] = b01 0.5%, b10 1%, b11 1.5% */
err = ps8622_set(cl, 0x04, 0xe3, 0x20);
if (err)
goto error;
/* [7] RCO SS enable */
err = ps8622_set(cl, 0x04, 0xe2, 0x80);
if (err)
goto error;
/* RPHY Setting
* [3:2] CDR tune wait cycle before measure for fine tune
* b00: 1us b01: 0.5us b10:2us, b11: 4us
*/
err = ps8622_set(cl, 0x04, 0x8a, 0x0c);
if (err)
goto error;
/* [3] RFD always on */
err = ps8622_set(cl, 0x04, 0x89, 0x08);
if (err)
goto error;
/* CTN lock in/out: 20000ppm/80000ppm. Lock out 2 times. */
err = ps8622_set(cl, 0x04, 0x71, 0x2d);
if (err)
goto error;
/* 2.7G CDR settings: NOF=40LSB for HBR CDR setting */
err = ps8622_set(cl, 0x04, 0x7d, 0x07);
if (err)
goto error;
/* [1:0] Fmin=+4bands */
err = ps8622_set(cl, 0x04, 0x7b, 0x00);
if (err)
goto error;
/* [7:5] DCO_FTRNG=+-40% */
err = ps8622_set(cl, 0x04, 0x7a, 0xfd);
if (err)
goto error;
/* 1.62G CDR settings: [5:2]NOF=64LSB [1:0]DCO scale is 2/5 */
err = ps8622_set(cl, 0x04, 0xc0, 0x12);
if (err)
goto error;
/* Gitune=-37% */
err = ps8622_set(cl, 0x04, 0xc1, 0x92);
if (err)
goto error;
/* Fbstep=100% */
err = ps8622_set(cl, 0x04, 0xc2, 0x1c);
if (err)
goto error;
/* [7] LOS signal disable */
err = ps8622_set(cl, 0x04, 0x32, 0x80);
if (err)
goto error;
/* RPIO Setting: [7:4] LVDS driver bias current : 75% (250mV swing) */
err = ps8622_set(cl, 0x04, 0x00, 0xb0);
if (err)
goto error;
/* [7:6] Right-bar GPIO output strength is 8mA */
err = ps8622_set(cl, 0x04, 0x15, 0x40);
if (err)
goto error;
/* EQ Training State Machine Setting, RCO calibration start */
err = ps8622_set(cl, 0x04, 0x54, 0x10);
if (err)
goto error;
/* Logic, needs more than 10 I2C command */
/* [4:0] MAX_LANE_COUNT set to max supported lanes */
err = ps8622_set(cl, 0x01, 0x02, 0x80 | ps8622->max_lane_count);
if (err)
goto error;
/* [4:0] LANE_COUNT_SET set to chosen lane count */
err = ps8622_set(cl, 0x01, 0x21, 0x80 | ps8622->lane_count);
if (err)
goto error;
err = ps8622_set(cl, 0x00, 0x52, 0x20);
if (err)
goto error;
/* HPD CP toggle enable */
err = ps8622_set(cl, 0x00, 0xf1, 0x03);
if (err)
goto error;
err = ps8622_set(cl, 0x00, 0x62, 0x41);
if (err)
goto error;
/* Counter number, add 1ms counter delay */
err = ps8622_set(cl, 0x00, 0xf6, 0x01);
if (err)
goto error;
/* [6]PWM function control by DPCD0040f[7], default is PWM block */
err = ps8622_set(cl, 0x00, 0x77, 0x06);
if (err)
goto error;
/* 04h Adjust VTotal toleranceto fix the 30Hz no display issue */
err = ps8622_set(cl, 0x00, 0x4c, 0x04);
if (err)
goto error;
/* DPCD00400='h00, Parade OUI ='h001cf8 */
err = ps8622_set(cl, 0x01, 0xc0, 0x00);
if (err)
goto error;
/* DPCD00401='h1c */
err = ps8622_set(cl, 0x01, 0xc1, 0x1c);
if (err)
goto error;
/* DPCD00402='hf8 */
err = ps8622_set(cl, 0x01, 0xc2, 0xf8);
if (err)
goto error;
/* DPCD403~408 = ASCII code, D2SLV5='h4432534c5635 */
err = ps8622_set(cl, 0x01, 0xc3, 0x44);
if (err)
goto error;
/* DPCD404 */
err = ps8622_set(cl, 0x01, 0xc4, 0x32);
if (err)
goto error;
/* DPCD405 */
err = ps8622_set(cl, 0x01, 0xc5, 0x53);
if (err)
goto error;
/* DPCD406 */
err = ps8622_set(cl, 0x01, 0xc6, 0x4c);
if (err)
goto error;
/* DPCD407 */
err = ps8622_set(cl, 0x01, 0xc7, 0x56);
if (err)
goto error;
/* DPCD408 */
err = ps8622_set(cl, 0x01, 0xc8, 0x35);
if (err)
goto error;
/* DPCD40A, Initial Code major revision '01' */
err = ps8622_set(cl, 0x01, 0xca, 0x01);
if (err)
goto error;
/* DPCD40B, Initial Code minor revision '05' */
err = ps8622_set(cl, 0x01, 0xcb, 0x05);
if (err)
goto error;
if (ps8622->bl) {
/* DPCD720, internal PWM */
err = ps8622_set(cl, 0x01, 0xa5, 0xa0);
if (err)
goto error;
/* FFh for 100% brightness, 0h for 0% brightness */
err = ps8622_set(cl, 0x01, 0xa7,
ps8622->bl->props.brightness);
if (err)
goto error;
} else {
/* DPCD720, external PWM */
err = ps8622_set(cl, 0x01, 0xa5, 0x80);
if (err)
goto error;
}
/* Set LVDS output as 6bit-VESA mapping, single LVDS channel */
err = ps8622_set(cl, 0x01, 0xcc, 0x13);
if (err)
goto error;
/* Enable SSC set by register */
err = ps8622_set(cl, 0x02, 0xb1, 0x20);
if (err)
goto error;
/* Set SSC enabled and +/-1% central spreading */
err = ps8622_set(cl, 0x04, 0x10, 0x16);
if (err)
goto error;
/* Logic end */
/* MPU Clock source: LC => RCO */
err = ps8622_set(cl, 0x04, 0x59, 0x60);
if (err)
goto error;
/* LC -> RCO */
err = ps8622_set(cl, 0x04, 0x54, 0x14);
if (err)
goto error;
/* HPD high */
err = ps8622_set(cl, 0x02, 0xa1, 0x91);
error:
return err ? -EIO : 0;
}
static int ps8622_backlight_update(struct backlight_device *bl)
{
struct ps8622_bridge *ps8622 = dev_get_drvdata(&bl->dev);
int ret, brightness = backlight_get_brightness(bl);
if (!ps8622->enabled)
return -EINVAL;
ret = ps8622_set(ps8622->client, 0x01, 0xa7, brightness);
return ret;
}
static const struct backlight_ops ps8622_backlight_ops = {
.update_status = ps8622_backlight_update,
};
static void ps8622_pre_enable(struct drm_bridge *bridge)
{
struct ps8622_bridge *ps8622 = bridge_to_ps8622(bridge);
int ret;
if (ps8622->enabled)
return;
gpiod_set_value(ps8622->gpio_rst, 0);
if (ps8622->v12) {
ret = regulator_enable(ps8622->v12);
if (ret)
DRM_ERROR("fails to enable ps8622->v12");
}
gpiod_set_value(ps8622->gpio_slp, 1);
/*
* T1 is the range of time that it takes for the power to rise after we
* enable the lcd/ps8622 fet. T2 is the range of time in which the
* data sheet specifies we should deassert the reset pin.
*
* If it takes T1.max for the power to rise, we need to wait atleast
* T2.min before deasserting the reset pin. If it takes T1.min for the
* power to rise, we need to wait at most T2.max before deasserting the
* reset pin.
*/
usleep_range(PS8622_RST_HIGH_T2_MIN_US + PS8622_POWER_RISE_T1_MAX_US,
PS8622_RST_HIGH_T2_MAX_US + PS8622_POWER_RISE_T1_MIN_US);
gpiod_set_value(ps8622->gpio_rst, 1);
/* wait 20ms after RST high */
usleep_range(20000, 30000);
ret = ps8622_send_config(ps8622);
if (ret) {
DRM_ERROR("Failed to send config to bridge (%d)\n", ret);
return;
}
ps8622->enabled = true;
}
static void ps8622_disable(struct drm_bridge *bridge)
{
/* Delay after panel is disabled */
msleep(PS8622_PWMO_END_T12_MS);
}
static void ps8622_post_disable(struct drm_bridge *bridge)
{
struct ps8622_bridge *ps8622 = bridge_to_ps8622(bridge);
if (!ps8622->enabled)
return;
ps8622->enabled = false;
/*
* This doesn't matter if the regulators are turned off, but something
* else might keep them on. In that case, we want to assert the slp gpio
* to lower power.
*/
gpiod_set_value(ps8622->gpio_slp, 0);
if (ps8622->v12)
regulator_disable(ps8622->v12);
/*
* Sleep for at least the amount of time that it takes the power rail to
* fall to prevent asserting the rst gpio from doing anything.
*/
usleep_range(PS8622_POWER_FALL_T16_MAX_US,
2 * PS8622_POWER_FALL_T16_MAX_US);
gpiod_set_value(ps8622->gpio_rst, 0);
msleep(PS8622_POWER_OFF_T17_MS);
}
static int ps8622_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ps8622_bridge *ps8622 = bridge_to_ps8622(bridge);
return drm_bridge_attach(ps8622->bridge.encoder, ps8622->panel_bridge,
&ps8622->bridge, flags);
}
static const struct drm_bridge_funcs ps8622_bridge_funcs = {
.pre_enable = ps8622_pre_enable,
.disable = ps8622_disable,
.post_disable = ps8622_post_disable,
.attach = ps8622_attach,
};
static const struct of_device_id ps8622_devices[] = {
{.compatible = "parade,ps8622",},
{.compatible = "parade,ps8625",},
{}
};
MODULE_DEVICE_TABLE(of, ps8622_devices);
static int ps8622_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct device *dev = &client->dev;
struct ps8622_bridge *ps8622;
struct drm_bridge *panel_bridge;
int ret;
ps8622 = devm_kzalloc(dev, sizeof(*ps8622), GFP_KERNEL);
if (!ps8622)
return -ENOMEM;
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ps8622->panel_bridge = panel_bridge;
ps8622->client = client;
ps8622->v12 = devm_regulator_get(dev, "vdd12");
if (IS_ERR(ps8622->v12)) {
dev_info(dev, "no 1.2v regulator found for PS8622\n");
ps8622->v12 = NULL;
}
ps8622->gpio_slp = devm_gpiod_get(dev, "sleep", GPIOD_OUT_HIGH);
if (IS_ERR(ps8622->gpio_slp)) {
ret = PTR_ERR(ps8622->gpio_slp);
dev_err(dev, "cannot get gpio_slp %d\n", ret);
return ret;
}
/*
* Assert the reset pin high to avoid the bridge being
* initialized prematurely
*/
ps8622->gpio_rst = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(ps8622->gpio_rst)) {
ret = PTR_ERR(ps8622->gpio_rst);
dev_err(dev, "cannot get gpio_rst %d\n", ret);
return ret;
}
ps8622->max_lane_count = id->driver_data;
if (of_property_read_u32(dev->of_node, "lane-count",
&ps8622->lane_count)) {
ps8622->lane_count = ps8622->max_lane_count;
} else if (ps8622->lane_count > ps8622->max_lane_count) {
dev_info(dev, "lane-count property is too high,"
"using max_lane_count\n");
ps8622->lane_count = ps8622->max_lane_count;
}
if (!of_property_read_bool(dev->of_node, "use-external-pwm")) {
ps8622->bl = backlight_device_register("ps8622-backlight",
dev, ps8622, &ps8622_backlight_ops,
NULL);
if (IS_ERR(ps8622->bl)) {
DRM_ERROR("failed to register backlight\n");
ret = PTR_ERR(ps8622->bl);
ps8622->bl = NULL;
return ret;
}
ps8622->bl->props.max_brightness = PS8622_MAX_BRIGHTNESS;
ps8622->bl->props.brightness = PS8622_MAX_BRIGHTNESS;
}
ps8622->bridge.funcs = &ps8622_bridge_funcs;
ps8622->bridge.type = DRM_MODE_CONNECTOR_LVDS;
ps8622->bridge.of_node = dev->of_node;
drm_bridge_add(&ps8622->bridge);
i2c_set_clientdata(client, ps8622);
return 0;
}
static void ps8622_remove(struct i2c_client *client)
{
struct ps8622_bridge *ps8622 = i2c_get_clientdata(client);
backlight_device_unregister(ps8622->bl);
drm_bridge_remove(&ps8622->bridge);
}
static const struct i2c_device_id ps8622_i2c_table[] = {
/* Device type, max_lane_count */
{"ps8622", 1},
{"ps8625", 2},
{},
};
MODULE_DEVICE_TABLE(i2c, ps8622_i2c_table);
static struct i2c_driver ps8622_driver = {
.id_table = ps8622_i2c_table,
.probe = ps8622_probe,
.remove = ps8622_remove,
.driver = {
.name = "ps8622",
.of_match_table = ps8622_devices,
},
};
module_i2c_driver(ps8622_driver);
MODULE_AUTHOR("Vincent Palatin <[email protected]>");
MODULE_DESCRIPTION("Parade ps8622/ps8625 eDP-LVDS converter driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/parade-ps8622.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* i.MX8 NWL MIPI DSI host driver
*
* Copyright (C) 2017 NXP
* Copyright (C) 2020 Purism SPC
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/math64.h>
#include <linux/mfd/syscon.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/mux/consumer.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/sys_soc.h>
#include <linux/time64.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <video/mipi_display.h>
#include "nwl-dsi.h"
#define DRV_NAME "nwl-dsi"
/* i.MX8 NWL quirks */
/* i.MX8MQ errata E11418 */
#define E11418_HS_MODE_QUIRK BIT(0)
#define NWL_DSI_MIPI_FIFO_TIMEOUT msecs_to_jiffies(500)
enum transfer_direction {
DSI_PACKET_SEND,
DSI_PACKET_RECEIVE,
};
#define NWL_DSI_ENDPOINT_LCDIF 0
#define NWL_DSI_ENDPOINT_DCSS 1
struct nwl_dsi_transfer {
const struct mipi_dsi_msg *msg;
struct mipi_dsi_packet packet;
struct completion completed;
int status; /* status of transmission */
enum transfer_direction direction;
bool need_bta;
u8 cmd;
u16 rx_word_count;
size_t tx_len; /* in bytes */
size_t rx_len; /* in bytes */
};
struct nwl_dsi {
struct drm_bridge bridge;
struct mipi_dsi_host dsi_host;
struct device *dev;
struct phy *phy;
union phy_configure_opts phy_cfg;
unsigned int quirks;
struct regmap *regmap;
int irq;
/*
* The DSI host controller needs this reset sequence according to NWL:
* 1. Deassert pclk reset to get access to DSI regs
* 2. Configure DSI Host and DPHY and enable DPHY
* 3. Deassert ESC and BYTE resets to allow host TX operations)
* 4. Send DSI cmds to configure peripheral (handled by panel drv)
* 5. Deassert DPI reset so DPI receives pixels and starts sending
* DSI data
*
* TODO: Since panel_bridges do their DSI setup in enable we
* currently have 4. and 5. swapped.
*/
struct reset_control *rst_byte;
struct reset_control *rst_esc;
struct reset_control *rst_dpi;
struct reset_control *rst_pclk;
struct mux_control *mux;
/* DSI clocks */
struct clk *phy_ref_clk;
struct clk *rx_esc_clk;
struct clk *tx_esc_clk;
struct clk *core_clk;
/*
* hardware bug: the i.MX8MQ needs this clock on during reset
* even when not using LCDIF.
*/
struct clk *lcdif_clk;
/* dsi lanes */
u32 lanes;
enum mipi_dsi_pixel_format format;
struct drm_display_mode mode;
unsigned long dsi_mode_flags;
int error;
struct nwl_dsi_transfer *xfer;
};
static const struct regmap_config nwl_dsi_regmap_config = {
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = NWL_DSI_IRQ_MASK2,
.name = DRV_NAME,
};
static inline struct nwl_dsi *bridge_to_dsi(struct drm_bridge *bridge)
{
return container_of(bridge, struct nwl_dsi, bridge);
}
static int nwl_dsi_clear_error(struct nwl_dsi *dsi)
{
int ret = dsi->error;
dsi->error = 0;
return ret;
}
static void nwl_dsi_write(struct nwl_dsi *dsi, unsigned int reg, u32 val)
{
int ret;
if (dsi->error)
return;
ret = regmap_write(dsi->regmap, reg, val);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev,
"Failed to write NWL DSI reg 0x%x: %d\n", reg,
ret);
dsi->error = ret;
}
}
static u32 nwl_dsi_read(struct nwl_dsi *dsi, u32 reg)
{
unsigned int val;
int ret;
if (dsi->error)
return 0;
ret = regmap_read(dsi->regmap, reg, &val);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to read NWL DSI reg 0x%x: %d\n",
reg, ret);
dsi->error = ret;
}
return val;
}
static int nwl_dsi_get_dpi_pixel_format(enum mipi_dsi_pixel_format format)
{
switch (format) {
case MIPI_DSI_FMT_RGB565:
return NWL_DSI_PIXEL_FORMAT_16;
case MIPI_DSI_FMT_RGB666:
return NWL_DSI_PIXEL_FORMAT_18L;
case MIPI_DSI_FMT_RGB666_PACKED:
return NWL_DSI_PIXEL_FORMAT_18;
case MIPI_DSI_FMT_RGB888:
return NWL_DSI_PIXEL_FORMAT_24;
default:
return -EINVAL;
}
}
/*
* ps2bc - Picoseconds to byte clock cycles
*/
static u32 ps2bc(struct nwl_dsi *dsi, unsigned long long ps)
{
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
return DIV64_U64_ROUND_UP(ps * dsi->mode.clock * bpp,
dsi->lanes * 8ULL * NSEC_PER_SEC);
}
/*
* ui2bc - UI time periods to byte clock cycles
*/
static u32 ui2bc(unsigned int ui)
{
return DIV_ROUND_UP(ui, BITS_PER_BYTE);
}
/*
* us2bc - micro seconds to lp clock cycles
*/
static u32 us2lp(u32 lp_clk_rate, unsigned long us)
{
return DIV_ROUND_UP(us * lp_clk_rate, USEC_PER_SEC);
}
static int nwl_dsi_config_host(struct nwl_dsi *dsi)
{
u32 cycles;
struct phy_configure_opts_mipi_dphy *cfg = &dsi->phy_cfg.mipi_dphy;
if (dsi->lanes < 1 || dsi->lanes > 4)
return -EINVAL;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "DSI Lanes %d\n", dsi->lanes);
nwl_dsi_write(dsi, NWL_DSI_CFG_NUM_LANES, dsi->lanes - 1);
if (dsi->dsi_mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x01);
nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x01);
} else {
nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x00);
}
/* values in byte clock cycles */
cycles = ui2bc(cfg->clk_pre);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_pre: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_T_PRE, cycles);
cycles = ps2bc(dsi, cfg->lpx + cfg->clk_prepare + cfg->clk_zero);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap (pre): 0x%x\n", cycles);
cycles += ui2bc(cfg->clk_pre);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_post: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_T_POST, cycles);
cycles = ps2bc(dsi, cfg->hs_exit);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_TX_GAP, cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_EXTRA_CMDS_AFTER_EOTP, 0x01);
nwl_dsi_write(dsi, NWL_DSI_CFG_HTX_TO_COUNT, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_LRX_H_TO_COUNT, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_BTA_H_TO_COUNT, 0x00);
/* In LP clock cycles */
cycles = us2lp(cfg->lp_clk_rate, cfg->wakeup);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_twakeup: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_TWAKEUP, cycles);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_config_dpi(struct nwl_dsi *dsi)
{
u32 mode;
int color_format;
bool burst_mode;
int hfront_porch, hback_porch, vfront_porch, vback_porch;
int hsync_len, vsync_len;
hfront_porch = dsi->mode.hsync_start - dsi->mode.hdisplay;
hsync_len = dsi->mode.hsync_end - dsi->mode.hsync_start;
hback_porch = dsi->mode.htotal - dsi->mode.hsync_end;
vfront_porch = dsi->mode.vsync_start - dsi->mode.vdisplay;
vsync_len = dsi->mode.vsync_end - dsi->mode.vsync_start;
vback_porch = dsi->mode.vtotal - dsi->mode.vsync_end;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hfront_porch = %d\n", hfront_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hback_porch = %d\n", hback_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hsync_len = %d\n", hsync_len);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hdisplay = %d\n", dsi->mode.hdisplay);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vfront_porch = %d\n", vfront_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vback_porch = %d\n", vback_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vsync_len = %d\n", vsync_len);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vactive = %d\n", dsi->mode.vdisplay);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "clock = %d kHz\n", dsi->mode.clock);
color_format = nwl_dsi_get_dpi_pixel_format(dsi->format);
if (color_format < 0) {
DRM_DEV_ERROR(dsi->dev, "Invalid color format 0x%x\n",
dsi->format);
return color_format;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "pixel fmt = %d\n", dsi->format);
nwl_dsi_write(dsi, NWL_DSI_INTERFACE_COLOR_CODING, NWL_DSI_DPI_24_BIT);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FORMAT, color_format);
/*
* Adjusting input polarity based on the video mode results in
* a black screen so always pick active low:
*/
nwl_dsi_write(dsi, NWL_DSI_VSYNC_POLARITY,
NWL_DSI_VSYNC_POLARITY_ACTIVE_LOW);
nwl_dsi_write(dsi, NWL_DSI_HSYNC_POLARITY,
NWL_DSI_HSYNC_POLARITY_ACTIVE_LOW);
burst_mode = (dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_BURST) &&
!(dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE);
if (burst_mode) {
nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, NWL_DSI_VM_BURST_MODE);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL, 256);
} else {
mode = ((dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) ?
NWL_DSI_VM_BURST_MODE_WITH_SYNC_PULSES :
NWL_DSI_VM_NON_BURST_MODE_WITH_SYNC_EVENTS);
nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, mode);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL,
dsi->mode.hdisplay);
}
nwl_dsi_write(dsi, NWL_DSI_HFP, hfront_porch);
nwl_dsi_write(dsi, NWL_DSI_HBP, hback_porch);
nwl_dsi_write(dsi, NWL_DSI_HSA, hsync_len);
nwl_dsi_write(dsi, NWL_DSI_ENABLE_MULT_PKTS, 0x0);
nwl_dsi_write(dsi, NWL_DSI_BLLP_MODE, 0x1);
nwl_dsi_write(dsi, NWL_DSI_USE_NULL_PKT_BLLP, 0x0);
nwl_dsi_write(dsi, NWL_DSI_VC, 0x0);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_PAYLOAD_SIZE, dsi->mode.hdisplay);
nwl_dsi_write(dsi, NWL_DSI_VACTIVE, dsi->mode.vdisplay - 1);
nwl_dsi_write(dsi, NWL_DSI_VBP, vback_porch);
nwl_dsi_write(dsi, NWL_DSI_VFP, vfront_porch);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_init_interrupts(struct nwl_dsi *dsi)
{
u32 irq_enable = ~(u32)(NWL_DSI_TX_PKT_DONE_MASK |
NWL_DSI_RX_PKT_HDR_RCVD_MASK |
NWL_DSI_TX_FIFO_OVFLW_MASK |
NWL_DSI_HS_TX_TIMEOUT_MASK);
nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK, irq_enable);
nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK2, 0x7);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_host_attach(struct mipi_dsi_host *dsi_host,
struct mipi_dsi_device *device)
{
struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host);
struct device *dev = dsi->dev;
DRM_DEV_INFO(dev, "lanes=%u, format=0x%x flags=0x%lx\n", device->lanes,
device->format, device->mode_flags);
if (device->lanes < 1 || device->lanes > 4)
return -EINVAL;
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->dsi_mode_flags = device->mode_flags;
return 0;
}
static bool nwl_dsi_read_packet(struct nwl_dsi *dsi, u32 status)
{
struct device *dev = dsi->dev;
struct nwl_dsi_transfer *xfer = dsi->xfer;
int err;
u8 *payload = xfer->msg->rx_buf;
u32 val;
u16 word_count;
u8 channel;
u8 data_type;
xfer->status = 0;
if (xfer->rx_word_count == 0) {
if (!(status & NWL_DSI_RX_PKT_HDR_RCVD))
return false;
/* Get the RX header and parse it */
val = nwl_dsi_read(dsi, NWL_DSI_RX_PKT_HEADER);
err = nwl_dsi_clear_error(dsi);
if (err)
xfer->status = err;
word_count = NWL_DSI_WC(val);
channel = NWL_DSI_RX_VC(val);
data_type = NWL_DSI_RX_DT(val);
if (channel != xfer->msg->channel) {
DRM_DEV_ERROR(dev,
"[%02X] Channel mismatch (%u != %u)\n",
xfer->cmd, channel, xfer->msg->channel);
xfer->status = -EINVAL;
return true;
}
switch (data_type) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->msg->rx_len > 1) {
/* read second byte */
payload[1] = word_count >> 8;
++xfer->rx_len;
}
fallthrough;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
if (xfer->msg->rx_len > 0) {
/* read first byte */
payload[0] = word_count & 0xff;
++xfer->rx_len;
}
xfer->status = xfer->rx_len;
return true;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
word_count &= 0xff;
DRM_DEV_ERROR(dev, "[%02X] DSI error report: 0x%02x\n",
xfer->cmd, word_count);
xfer->status = -EPROTO;
return true;
}
if (word_count > xfer->msg->rx_len) {
DRM_DEV_ERROR(dev,
"[%02X] Receive buffer too small: %zu (< %u)\n",
xfer->cmd, xfer->msg->rx_len, word_count);
xfer->status = -EINVAL;
return true;
}
xfer->rx_word_count = word_count;
} else {
/* Set word_count from previous header read */
word_count = xfer->rx_word_count;
}
/* If RX payload is not yet received, wait for it */
if (!(status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD))
return false;
/* Read the RX payload */
while (word_count >= 4) {
val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD);
payload[0] = (val >> 0) & 0xff;
payload[1] = (val >> 8) & 0xff;
payload[2] = (val >> 16) & 0xff;
payload[3] = (val >> 24) & 0xff;
payload += 4;
xfer->rx_len += 4;
word_count -= 4;
}
if (word_count > 0) {
val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD);
switch (word_count) {
case 3:
payload[2] = (val >> 16) & 0xff;
++xfer->rx_len;
fallthrough;
case 2:
payload[1] = (val >> 8) & 0xff;
++xfer->rx_len;
fallthrough;
case 1:
payload[0] = (val >> 0) & 0xff;
++xfer->rx_len;
break;
}
}
xfer->status = xfer->rx_len;
err = nwl_dsi_clear_error(dsi);
if (err)
xfer->status = err;
return true;
}
static void nwl_dsi_finish_transmission(struct nwl_dsi *dsi, u32 status)
{
struct nwl_dsi_transfer *xfer = dsi->xfer;
bool end_packet = false;
if (!xfer)
return;
if (xfer->direction == DSI_PACKET_SEND &&
status & NWL_DSI_TX_PKT_DONE) {
xfer->status = xfer->tx_len;
end_packet = true;
} else if (status & NWL_DSI_DPHY_DIRECTION &&
((status & (NWL_DSI_RX_PKT_HDR_RCVD |
NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)))) {
end_packet = nwl_dsi_read_packet(dsi, status);
}
if (end_packet)
complete(&xfer->completed);
}
static void nwl_dsi_begin_transmission(struct nwl_dsi *dsi)
{
struct nwl_dsi_transfer *xfer = dsi->xfer;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload;
size_t length;
u16 word_count;
u8 hs_mode;
u32 val;
u32 hs_workaround = 0;
/* Send the payload, if any */
length = pkt->payload_length;
payload = pkt->payload;
while (length >= 4) {
val = *(u32 *)payload;
hs_workaround |= !(val & 0xFFFF00);
nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val);
payload += 4;
length -= 4;
}
/* Send the rest of the payload */
val = 0;
switch (length) {
case 3:
val |= payload[2] << 16;
fallthrough;
case 2:
val |= payload[1] << 8;
hs_workaround |= !(val & 0xFFFF00);
fallthrough;
case 1:
val |= payload[0];
nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val);
break;
}
xfer->tx_len = pkt->payload_length;
/*
* Send the header
* header[0] = Virtual Channel + Data Type
* header[1] = Word Count LSB (LP) or first param (SP)
* header[2] = Word Count MSB (LP) or second param (SP)
*/
word_count = pkt->header[1] | (pkt->header[2] << 8);
if (hs_workaround && (dsi->quirks & E11418_HS_MODE_QUIRK)) {
DRM_DEV_DEBUG_DRIVER(dsi->dev,
"Using hs mode workaround for cmd 0x%x\n",
xfer->cmd);
hs_mode = 1;
} else {
hs_mode = (xfer->msg->flags & MIPI_DSI_MSG_USE_LPM) ? 0 : 1;
}
val = NWL_DSI_WC(word_count) | NWL_DSI_TX_VC(xfer->msg->channel) |
NWL_DSI_TX_DT(xfer->msg->type) | NWL_DSI_HS_SEL(hs_mode) |
NWL_DSI_BTA_TX(xfer->need_bta);
nwl_dsi_write(dsi, NWL_DSI_PKT_CONTROL, val);
/* Send packet command */
nwl_dsi_write(dsi, NWL_DSI_SEND_PACKET, 0x1);
}
static ssize_t nwl_dsi_host_transfer(struct mipi_dsi_host *dsi_host,
const struct mipi_dsi_msg *msg)
{
struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host);
struct nwl_dsi_transfer xfer;
ssize_t ret = 0;
/* Create packet to be sent */
dsi->xfer = &xfer;
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0) {
dsi->xfer = NULL;
return ret;
}
if ((msg->type & MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM ||
msg->type & MIPI_DSI_DCS_READ) &&
msg->rx_len > 0 && msg->rx_buf)
xfer.direction = DSI_PACKET_RECEIVE;
else
xfer.direction = DSI_PACKET_SEND;
xfer.need_bta = (xfer.direction == DSI_PACKET_RECEIVE);
xfer.need_bta |= (msg->flags & MIPI_DSI_MSG_REQ_ACK) ? 1 : 0;
xfer.msg = msg;
xfer.status = -ETIMEDOUT;
xfer.rx_word_count = 0;
xfer.rx_len = 0;
xfer.cmd = 0x00;
if (msg->tx_len > 0)
xfer.cmd = ((u8 *)(msg->tx_buf))[0];
init_completion(&xfer.completed);
ret = clk_prepare_enable(dsi->rx_esc_clk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable rx_esc clk: %zd\n",
ret);
return ret;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled rx_esc clk @%lu Hz\n",
clk_get_rate(dsi->rx_esc_clk));
/* Initiate the DSI packet transmision */
nwl_dsi_begin_transmission(dsi);
if (!wait_for_completion_timeout(&xfer.completed,
NWL_DSI_MIPI_FIFO_TIMEOUT)) {
DRM_DEV_ERROR(dsi_host->dev, "[%02X] DSI transfer timed out\n",
xfer.cmd);
ret = -ETIMEDOUT;
} else {
ret = xfer.status;
}
clk_disable_unprepare(dsi->rx_esc_clk);
return ret;
}
static const struct mipi_dsi_host_ops nwl_dsi_host_ops = {
.attach = nwl_dsi_host_attach,
.transfer = nwl_dsi_host_transfer,
};
static irqreturn_t nwl_dsi_irq_handler(int irq, void *data)
{
u32 irq_status;
struct nwl_dsi *dsi = data;
irq_status = nwl_dsi_read(dsi, NWL_DSI_IRQ_STATUS);
if (irq_status & NWL_DSI_TX_FIFO_OVFLW)
DRM_DEV_ERROR_RATELIMITED(dsi->dev, "tx fifo overflow\n");
if (irq_status & NWL_DSI_HS_TX_TIMEOUT)
DRM_DEV_ERROR_RATELIMITED(dsi->dev, "HS tx timeout\n");
if (irq_status & NWL_DSI_TX_PKT_DONE ||
irq_status & NWL_DSI_RX_PKT_HDR_RCVD ||
irq_status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)
nwl_dsi_finish_transmission(dsi, irq_status);
return IRQ_HANDLED;
}
static int nwl_dsi_mode_set(struct nwl_dsi *dsi)
{
struct device *dev = dsi->dev;
union phy_configure_opts *phy_cfg = &dsi->phy_cfg;
int ret;
if (!dsi->lanes) {
DRM_DEV_ERROR(dev, "Need DSI lanes: %d\n", dsi->lanes);
return -EINVAL;
}
ret = phy_init(dsi->phy);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to init DSI phy: %d\n", ret);
return ret;
}
ret = phy_set_mode(dsi->phy, PHY_MODE_MIPI_DPHY);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to set DSI phy mode: %d\n", ret);
goto uninit_phy;
}
ret = phy_configure(dsi->phy, phy_cfg);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to configure DSI phy: %d\n", ret);
goto uninit_phy;
}
ret = clk_prepare_enable(dsi->tx_esc_clk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable tx_esc clk: %d\n",
ret);
goto uninit_phy;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled tx_esc clk @%lu Hz\n",
clk_get_rate(dsi->tx_esc_clk));
ret = nwl_dsi_config_host(dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to set up DSI: %d", ret);
goto disable_clock;
}
ret = nwl_dsi_config_dpi(dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to set up DPI: %d", ret);
goto disable_clock;
}
ret = phy_power_on(dsi->phy);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to power on DPHY (%d)\n", ret);
goto disable_clock;
}
ret = nwl_dsi_init_interrupts(dsi);
if (ret < 0)
goto power_off_phy;
return ret;
power_off_phy:
phy_power_off(dsi->phy);
disable_clock:
clk_disable_unprepare(dsi->tx_esc_clk);
uninit_phy:
phy_exit(dsi->phy);
return ret;
}
static int nwl_dsi_disable(struct nwl_dsi *dsi)
{
struct device *dev = dsi->dev;
DRM_DEV_DEBUG_DRIVER(dev, "Disabling clocks and phy\n");
phy_power_off(dsi->phy);
phy_exit(dsi->phy);
/* Disabling the clock before the phy breaks enabling dsi again */
clk_disable_unprepare(dsi->tx_esc_clk);
return 0;
}
static void
nwl_dsi_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int ret;
nwl_dsi_disable(dsi);
ret = reset_control_assert(dsi->rst_dpi);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert DPI: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_byte);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert ESC: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_esc);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert BYTE: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_pclk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert PCLK: %d\n", ret);
return;
}
clk_disable_unprepare(dsi->core_clk);
clk_disable_unprepare(dsi->lcdif_clk);
pm_runtime_put(dsi->dev);
}
static int nwl_dsi_get_dphy_params(struct nwl_dsi *dsi,
const struct drm_display_mode *mode,
union phy_configure_opts *phy_opts)
{
unsigned long rate;
int ret;
if (dsi->lanes < 1 || dsi->lanes > 4)
return -EINVAL;
/*
* So far the DPHY spec minimal timings work for both mixel
* dphy and nwl dsi host
*/
ret = phy_mipi_dphy_get_default_config(mode->clock * 1000,
mipi_dsi_pixel_format_to_bpp(dsi->format), dsi->lanes,
&phy_opts->mipi_dphy);
if (ret < 0)
return ret;
rate = clk_get_rate(dsi->tx_esc_clk);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "LP clk is @%lu Hz\n", rate);
phy_opts->mipi_dphy.lp_clk_rate = rate;
return 0;
}
static enum drm_mode_status
nwl_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
if (mode->clock * bpp > 15000000 * dsi->lanes)
return MODE_CLOCK_HIGH;
if (mode->clock * bpp < 80000 * dsi->lanes)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static int nwl_dsi_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
/* At least LCDIF + NWL needs active high sync */
adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
/*
* Do a full modeset if crtc_state->active is changed to be true.
* This ensures our ->mode_set() is called to get the DSI controller
* and the PHY ready to send DCS commands, when only the connector's
* DPMS is brought out of "Off" status.
*/
if (crtc_state->active_changed && crtc_state->active)
crtc_state->mode_changed = true;
return 0;
}
static void
nwl_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
struct device *dev = dsi->dev;
union phy_configure_opts new_cfg;
unsigned long phy_ref_rate;
int ret;
ret = nwl_dsi_get_dphy_params(dsi, adjusted_mode, &new_cfg);
if (ret < 0)
return;
phy_ref_rate = clk_get_rate(dsi->phy_ref_clk);
DRM_DEV_DEBUG_DRIVER(dev, "PHY at ref rate: %lu\n", phy_ref_rate);
/* Save the new desired phy config */
memcpy(&dsi->phy_cfg, &new_cfg, sizeof(new_cfg));
drm_mode_copy(&dsi->mode, adjusted_mode);
drm_mode_debug_printmodeline(adjusted_mode);
if (pm_runtime_resume_and_get(dev) < 0)
return;
if (clk_prepare_enable(dsi->lcdif_clk) < 0)
goto runtime_put;
if (clk_prepare_enable(dsi->core_clk) < 0)
goto runtime_put;
/* Step 1 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_pclk);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to deassert PCLK: %d\n", ret);
goto runtime_put;
}
/* Step 2 from DSI reset-out instructions */
nwl_dsi_mode_set(dsi);
/* Step 3 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_esc);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to deassert ESC: %d\n", ret);
goto runtime_put;
}
ret = reset_control_deassert(dsi->rst_byte);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to deassert BYTE: %d\n", ret);
goto runtime_put;
}
return;
runtime_put:
pm_runtime_put_sync(dev);
}
static void
nwl_dsi_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int ret;
/* Step 5 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_dpi);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to deassert DPI: %d\n", ret);
}
static int nwl_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
struct drm_bridge *panel_bridge;
panel_bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node, 1, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
return drm_bridge_attach(bridge->encoder, panel_bridge, bridge, flags);
}
static u32 *nwl_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts, input_fmt;
*num_input_fmts = 0;
switch (output_fmt) {
/* If MEDIA_BUS_FMT_FIXED is tested, return default bus format */
case MEDIA_BUS_FMT_FIXED:
input_fmt = MEDIA_BUS_FMT_RGB888_1X24;
break;
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB666_1X18:
case MEDIA_BUS_FMT_RGB565_1X16:
input_fmt = output_fmt;
break;
default:
return NULL;
}
input_fmts = kcalloc(1, sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = input_fmt;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs nwl_dsi_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_check = nwl_dsi_bridge_atomic_check,
.atomic_enable = nwl_dsi_bridge_atomic_enable,
.atomic_disable = nwl_dsi_bridge_atomic_disable,
.atomic_get_input_bus_fmts = nwl_bridge_atomic_get_input_bus_fmts,
.mode_set = nwl_dsi_bridge_mode_set,
.mode_valid = nwl_dsi_bridge_mode_valid,
.attach = nwl_dsi_bridge_attach,
};
static int nwl_dsi_parse_dt(struct nwl_dsi *dsi)
{
struct platform_device *pdev = to_platform_device(dsi->dev);
struct clk *clk;
void __iomem *base;
int ret;
dsi->phy = devm_phy_get(dsi->dev, "dphy");
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dsi->dev, "Could not get PHY: %d\n", ret);
return ret;
}
clk = devm_clk_get(dsi->dev, "lcdif");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get lcdif clock: %d\n",
ret);
return ret;
}
dsi->lcdif_clk = clk;
clk = devm_clk_get(dsi->dev, "core");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get core clock: %d\n",
ret);
return ret;
}
dsi->core_clk = clk;
clk = devm_clk_get(dsi->dev, "phy_ref");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get phy_ref clock: %d\n",
ret);
return ret;
}
dsi->phy_ref_clk = clk;
clk = devm_clk_get(dsi->dev, "rx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get rx_esc clock: %d\n",
ret);
return ret;
}
dsi->rx_esc_clk = clk;
clk = devm_clk_get(dsi->dev, "tx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get tx_esc clock: %d\n",
ret);
return ret;
}
dsi->tx_esc_clk = clk;
dsi->mux = devm_mux_control_get(dsi->dev, NULL);
if (IS_ERR(dsi->mux)) {
ret = PTR_ERR(dsi->mux);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dsi->dev, "Failed to get mux: %d\n", ret);
return ret;
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
dsi->regmap =
devm_regmap_init_mmio(dsi->dev, base, &nwl_dsi_regmap_config);
if (IS_ERR(dsi->regmap)) {
ret = PTR_ERR(dsi->regmap);
DRM_DEV_ERROR(dsi->dev, "Failed to create NWL DSI regmap: %d\n",
ret);
return ret;
}
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to get device IRQ: %d\n",
dsi->irq);
return dsi->irq;
}
dsi->rst_pclk = devm_reset_control_get_exclusive(dsi->dev, "pclk");
if (IS_ERR(dsi->rst_pclk)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get pclk reset: %ld\n",
PTR_ERR(dsi->rst_pclk));
return PTR_ERR(dsi->rst_pclk);
}
dsi->rst_byte = devm_reset_control_get_exclusive(dsi->dev, "byte");
if (IS_ERR(dsi->rst_byte)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get byte reset: %ld\n",
PTR_ERR(dsi->rst_byte));
return PTR_ERR(dsi->rst_byte);
}
dsi->rst_esc = devm_reset_control_get_exclusive(dsi->dev, "esc");
if (IS_ERR(dsi->rst_esc)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get esc reset: %ld\n",
PTR_ERR(dsi->rst_esc));
return PTR_ERR(dsi->rst_esc);
}
dsi->rst_dpi = devm_reset_control_get_exclusive(dsi->dev, "dpi");
if (IS_ERR(dsi->rst_dpi)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get dpi reset: %ld\n",
PTR_ERR(dsi->rst_dpi));
return PTR_ERR(dsi->rst_dpi);
}
return 0;
}
static int nwl_dsi_select_input(struct nwl_dsi *dsi)
{
struct device_node *remote;
u32 use_dcss = 1;
int ret;
remote = of_graph_get_remote_node(dsi->dev->of_node, 0,
NWL_DSI_ENDPOINT_LCDIF);
if (remote) {
use_dcss = 0;
} else {
remote = of_graph_get_remote_node(dsi->dev->of_node, 0,
NWL_DSI_ENDPOINT_DCSS);
if (!remote) {
DRM_DEV_ERROR(dsi->dev,
"No valid input endpoint found\n");
return -EINVAL;
}
}
DRM_DEV_INFO(dsi->dev, "Using %s as input source\n",
(use_dcss) ? "DCSS" : "LCDIF");
ret = mux_control_try_select(dsi->mux, use_dcss);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to select input: %d\n", ret);
of_node_put(remote);
return ret;
}
static int nwl_dsi_deselect_input(struct nwl_dsi *dsi)
{
int ret;
ret = mux_control_deselect(dsi->mux);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to deselect input: %d\n", ret);
return ret;
}
static const struct drm_bridge_timings nwl_dsi_timings = {
.input_bus_flags = DRM_BUS_FLAG_DE_LOW,
};
static const struct of_device_id nwl_dsi_dt_ids[] = {
{ .compatible = "fsl,imx8mq-nwl-dsi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nwl_dsi_dt_ids);
static const struct soc_device_attribute nwl_dsi_quirks_match[] = {
{ .soc_id = "i.MX8MQ", .revision = "2.0",
.data = (void *)E11418_HS_MODE_QUIRK },
{ /* sentinel. */ }
};
static int nwl_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct soc_device_attribute *attr;
struct nwl_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->dev = dev;
ret = nwl_dsi_parse_dt(dsi);
if (ret)
return ret;
ret = devm_request_irq(dev, dsi->irq, nwl_dsi_irq_handler, 0,
dev_name(dev), dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to request IRQ %d: %d\n", dsi->irq,
ret);
return ret;
}
dsi->dsi_host.ops = &nwl_dsi_host_ops;
dsi->dsi_host.dev = dev;
ret = mipi_dsi_host_register(&dsi->dsi_host);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to register MIPI host: %d\n", ret);
return ret;
}
attr = soc_device_match(nwl_dsi_quirks_match);
if (attr)
dsi->quirks = (uintptr_t)attr->data;
dsi->bridge.driver_private = dsi;
dsi->bridge.funcs = &nwl_dsi_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
dsi->bridge.timings = &nwl_dsi_timings;
dev_set_drvdata(dev, dsi);
pm_runtime_enable(dev);
ret = nwl_dsi_select_input(dsi);
if (ret < 0) {
pm_runtime_disable(dev);
mipi_dsi_host_unregister(&dsi->dsi_host);
return ret;
}
drm_bridge_add(&dsi->bridge);
return 0;
}
static void nwl_dsi_remove(struct platform_device *pdev)
{
struct nwl_dsi *dsi = platform_get_drvdata(pdev);
nwl_dsi_deselect_input(dsi);
mipi_dsi_host_unregister(&dsi->dsi_host);
drm_bridge_remove(&dsi->bridge);
pm_runtime_disable(&pdev->dev);
}
static struct platform_driver nwl_dsi_driver = {
.probe = nwl_dsi_probe,
.remove_new = nwl_dsi_remove,
.driver = {
.of_match_table = nwl_dsi_dt_ids,
.name = DRV_NAME,
},
};
module_platform_driver(nwl_dsi_driver);
MODULE_AUTHOR("NXP Semiconductor");
MODULE_AUTHOR("Purism SPC");
MODULE_DESCRIPTION("Northwest Logic MIPI-DSI driver");
MODULE_LICENSE("GPL"); /* GPLv2 or later */
| linux-master | drivers/gpu/drm/bridge/nwl-dsi.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018 Renesas Electronics
*
* Copyright (C) 2016 Atmel
* Bo Shen <[email protected]>
*
* Authors: Bo Shen <[email protected]>
* Boris Brezillon <[email protected]>
* Wu, Songjun <[email protected]>
*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
*/
#include <linux/gpio/consumer.h>
#include <linux/i2c-mux.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_drv.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <sound/hdmi-codec.h>
#define SII902X_TPI_VIDEO_DATA 0x0
#define SII902X_TPI_PIXEL_REPETITION 0x8
#define SII902X_TPI_AVI_PIXEL_REP_BUS_24BIT BIT(5)
#define SII902X_TPI_AVI_PIXEL_REP_RISING_EDGE BIT(4)
#define SII902X_TPI_AVI_PIXEL_REP_4X 3
#define SII902X_TPI_AVI_PIXEL_REP_2X 1
#define SII902X_TPI_AVI_PIXEL_REP_NONE 0
#define SII902X_TPI_CLK_RATIO_HALF (0 << 6)
#define SII902X_TPI_CLK_RATIO_1X (1 << 6)
#define SII902X_TPI_CLK_RATIO_2X (2 << 6)
#define SII902X_TPI_CLK_RATIO_4X (3 << 6)
#define SII902X_TPI_AVI_IN_FORMAT 0x9
#define SII902X_TPI_AVI_INPUT_BITMODE_12BIT BIT(7)
#define SII902X_TPI_AVI_INPUT_DITHER BIT(6)
#define SII902X_TPI_AVI_INPUT_RANGE_LIMITED (2 << 2)
#define SII902X_TPI_AVI_INPUT_RANGE_FULL (1 << 2)
#define SII902X_TPI_AVI_INPUT_RANGE_AUTO (0 << 2)
#define SII902X_TPI_AVI_INPUT_COLORSPACE_BLACK (3 << 0)
#define SII902X_TPI_AVI_INPUT_COLORSPACE_YUV422 (2 << 0)
#define SII902X_TPI_AVI_INPUT_COLORSPACE_YUV444 (1 << 0)
#define SII902X_TPI_AVI_INPUT_COLORSPACE_RGB (0 << 0)
#define SII902X_TPI_AVI_INFOFRAME 0x0c
#define SII902X_SYS_CTRL_DATA 0x1a
#define SII902X_SYS_CTRL_PWR_DWN BIT(4)
#define SII902X_SYS_CTRL_AV_MUTE BIT(3)
#define SII902X_SYS_CTRL_DDC_BUS_REQ BIT(2)
#define SII902X_SYS_CTRL_DDC_BUS_GRTD BIT(1)
#define SII902X_SYS_CTRL_OUTPUT_MODE BIT(0)
#define SII902X_SYS_CTRL_OUTPUT_HDMI 1
#define SII902X_SYS_CTRL_OUTPUT_DVI 0
#define SII902X_REG_CHIPID(n) (0x1b + (n))
#define SII902X_PWR_STATE_CTRL 0x1e
#define SII902X_AVI_POWER_STATE_MSK GENMASK(1, 0)
#define SII902X_AVI_POWER_STATE_D(l) ((l) & SII902X_AVI_POWER_STATE_MSK)
/* Audio */
#define SII902X_TPI_I2S_ENABLE_MAPPING_REG 0x1f
#define SII902X_TPI_I2S_CONFIG_FIFO0 (0 << 0)
#define SII902X_TPI_I2S_CONFIG_FIFO1 (1 << 0)
#define SII902X_TPI_I2S_CONFIG_FIFO2 (2 << 0)
#define SII902X_TPI_I2S_CONFIG_FIFO3 (3 << 0)
#define SII902X_TPI_I2S_LEFT_RIGHT_SWAP (1 << 2)
#define SII902X_TPI_I2S_AUTO_DOWNSAMPLE (1 << 3)
#define SII902X_TPI_I2S_SELECT_SD0 (0 << 4)
#define SII902X_TPI_I2S_SELECT_SD1 (1 << 4)
#define SII902X_TPI_I2S_SELECT_SD2 (2 << 4)
#define SII902X_TPI_I2S_SELECT_SD3 (3 << 4)
#define SII902X_TPI_I2S_FIFO_ENABLE (1 << 7)
#define SII902X_TPI_I2S_INPUT_CONFIG_REG 0x20
#define SII902X_TPI_I2S_FIRST_BIT_SHIFT_YES (0 << 0)
#define SII902X_TPI_I2S_FIRST_BIT_SHIFT_NO (1 << 0)
#define SII902X_TPI_I2S_SD_DIRECTION_MSB_FIRST (0 << 1)
#define SII902X_TPI_I2S_SD_DIRECTION_LSB_FIRST (1 << 1)
#define SII902X_TPI_I2S_SD_JUSTIFY_LEFT (0 << 2)
#define SII902X_TPI_I2S_SD_JUSTIFY_RIGHT (1 << 2)
#define SII902X_TPI_I2S_WS_POLARITY_LOW (0 << 3)
#define SII902X_TPI_I2S_WS_POLARITY_HIGH (1 << 3)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_128 (0 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_256 (1 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_384 (2 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_512 (3 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_768 (4 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_1024 (5 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_1152 (6 << 4)
#define SII902X_TPI_I2S_MCLK_MULTIPLIER_192 (7 << 4)
#define SII902X_TPI_I2S_SCK_EDGE_FALLING (0 << 7)
#define SII902X_TPI_I2S_SCK_EDGE_RISING (1 << 7)
#define SII902X_TPI_I2S_STRM_HDR_BASE 0x21
#define SII902X_TPI_I2S_STRM_HDR_SIZE 5
#define SII902X_TPI_AUDIO_CONFIG_BYTE2_REG 0x26
#define SII902X_TPI_AUDIO_CODING_STREAM_HEADER (0 << 0)
#define SII902X_TPI_AUDIO_CODING_PCM (1 << 0)
#define SII902X_TPI_AUDIO_CODING_AC3 (2 << 0)
#define SII902X_TPI_AUDIO_CODING_MPEG1 (3 << 0)
#define SII902X_TPI_AUDIO_CODING_MP3 (4 << 0)
#define SII902X_TPI_AUDIO_CODING_MPEG2 (5 << 0)
#define SII902X_TPI_AUDIO_CODING_AAC (6 << 0)
#define SII902X_TPI_AUDIO_CODING_DTS (7 << 0)
#define SII902X_TPI_AUDIO_CODING_ATRAC (8 << 0)
#define SII902X_TPI_AUDIO_MUTE_DISABLE (0 << 4)
#define SII902X_TPI_AUDIO_MUTE_ENABLE (1 << 4)
#define SII902X_TPI_AUDIO_LAYOUT_2_CHANNELS (0 << 5)
#define SII902X_TPI_AUDIO_LAYOUT_8_CHANNELS (1 << 5)
#define SII902X_TPI_AUDIO_INTERFACE_DISABLE (0 << 6)
#define SII902X_TPI_AUDIO_INTERFACE_SPDIF (1 << 6)
#define SII902X_TPI_AUDIO_INTERFACE_I2S (2 << 6)
#define SII902X_TPI_AUDIO_CONFIG_BYTE3_REG 0x27
#define SII902X_TPI_AUDIO_FREQ_STREAM (0 << 3)
#define SII902X_TPI_AUDIO_FREQ_32KHZ (1 << 3)
#define SII902X_TPI_AUDIO_FREQ_44KHZ (2 << 3)
#define SII902X_TPI_AUDIO_FREQ_48KHZ (3 << 3)
#define SII902X_TPI_AUDIO_FREQ_88KHZ (4 << 3)
#define SII902X_TPI_AUDIO_FREQ_96KHZ (5 << 3)
#define SII902X_TPI_AUDIO_FREQ_176KHZ (6 << 3)
#define SII902X_TPI_AUDIO_FREQ_192KHZ (7 << 3)
#define SII902X_TPI_AUDIO_SAMPLE_SIZE_STREAM (0 << 6)
#define SII902X_TPI_AUDIO_SAMPLE_SIZE_16 (1 << 6)
#define SII902X_TPI_AUDIO_SAMPLE_SIZE_20 (2 << 6)
#define SII902X_TPI_AUDIO_SAMPLE_SIZE_24 (3 << 6)
#define SII902X_TPI_AUDIO_CONFIG_BYTE4_REG 0x28
#define SII902X_INT_ENABLE 0x3c
#define SII902X_INT_STATUS 0x3d
#define SII902X_HOTPLUG_EVENT BIT(0)
#define SII902X_PLUGGED_STATUS BIT(2)
#define SII902X_REG_TPI_RQB 0xc7
/* Indirect internal register access */
#define SII902X_IND_SET_PAGE 0xbc
#define SII902X_IND_OFFSET 0xbd
#define SII902X_IND_VALUE 0xbe
#define SII902X_TPI_MISC_INFOFRAME_BASE 0xbf
#define SII902X_TPI_MISC_INFOFRAME_END 0xde
#define SII902X_TPI_MISC_INFOFRAME_SIZE \
(SII902X_TPI_MISC_INFOFRAME_END - SII902X_TPI_MISC_INFOFRAME_BASE)
#define SII902X_I2C_BUS_ACQUISITION_TIMEOUT_MS 500
#define SII902X_AUDIO_PORT_INDEX 3
struct sii902x {
struct i2c_client *i2c;
struct regmap *regmap;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_connector connector;
struct gpio_desc *reset_gpio;
struct i2c_mux_core *i2cmux;
bool sink_is_hdmi;
/*
* Mutex protects audio and video functions from interfering
* each other, by keeping their i2c command sequences atomic.
*/
struct mutex mutex;
struct sii902x_audio {
struct platform_device *pdev;
struct clk *mclk;
u32 i2s_fifo_sequence[4];
} audio;
};
static int sii902x_read_unlocked(struct i2c_client *i2c, u8 reg, u8 *val)
{
union i2c_smbus_data data;
int ret;
ret = __i2c_smbus_xfer(i2c->adapter, i2c->addr, i2c->flags,
I2C_SMBUS_READ, reg, I2C_SMBUS_BYTE_DATA, &data);
if (ret < 0)
return ret;
*val = data.byte;
return 0;
}
static int sii902x_write_unlocked(struct i2c_client *i2c, u8 reg, u8 val)
{
union i2c_smbus_data data;
data.byte = val;
return __i2c_smbus_xfer(i2c->adapter, i2c->addr, i2c->flags,
I2C_SMBUS_WRITE, reg, I2C_SMBUS_BYTE_DATA,
&data);
}
static int sii902x_update_bits_unlocked(struct i2c_client *i2c, u8 reg, u8 mask,
u8 val)
{
int ret;
u8 status;
ret = sii902x_read_unlocked(i2c, reg, &status);
if (ret)
return ret;
status &= ~mask;
status |= val & mask;
return sii902x_write_unlocked(i2c, reg, status);
}
static inline struct sii902x *bridge_to_sii902x(struct drm_bridge *bridge)
{
return container_of(bridge, struct sii902x, bridge);
}
static inline struct sii902x *connector_to_sii902x(struct drm_connector *con)
{
return container_of(con, struct sii902x, connector);
}
static void sii902x_reset(struct sii902x *sii902x)
{
if (!sii902x->reset_gpio)
return;
gpiod_set_value_cansleep(sii902x->reset_gpio, 1);
/* The datasheet says treset-min = 100us. Make it 150us to be sure. */
usleep_range(150, 200);
gpiod_set_value_cansleep(sii902x->reset_gpio, 0);
}
static enum drm_connector_status sii902x_detect(struct sii902x *sii902x)
{
unsigned int status;
mutex_lock(&sii902x->mutex);
regmap_read(sii902x->regmap, SII902X_INT_STATUS, &status);
mutex_unlock(&sii902x->mutex);
return (status & SII902X_PLUGGED_STATUS) ?
connector_status_connected : connector_status_disconnected;
}
static enum drm_connector_status
sii902x_connector_detect(struct drm_connector *connector, bool force)
{
struct sii902x *sii902x = connector_to_sii902x(connector);
return sii902x_detect(sii902x);
}
static const struct drm_connector_funcs sii902x_connector_funcs = {
.detect = sii902x_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static struct edid *sii902x_get_edid(struct sii902x *sii902x,
struct drm_connector *connector)
{
struct edid *edid;
mutex_lock(&sii902x->mutex);
edid = drm_get_edid(connector, sii902x->i2cmux->adapter[0]);
if (edid) {
if (drm_detect_hdmi_monitor(edid))
sii902x->sink_is_hdmi = true;
else
sii902x->sink_is_hdmi = false;
}
mutex_unlock(&sii902x->mutex);
return edid;
}
static int sii902x_get_modes(struct drm_connector *connector)
{
struct sii902x *sii902x = connector_to_sii902x(connector);
struct edid *edid;
int num = 0;
edid = sii902x_get_edid(sii902x, connector);
drm_connector_update_edid_property(connector, edid);
if (edid) {
num = drm_add_edid_modes(connector, edid);
kfree(edid);
}
return num;
}
static enum drm_mode_status sii902x_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
/* TODO: check mode */
return MODE_OK;
}
static const struct drm_connector_helper_funcs sii902x_connector_helper_funcs = {
.get_modes = sii902x_get_modes,
.mode_valid = sii902x_mode_valid,
};
static void sii902x_bridge_disable(struct drm_bridge *bridge)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
mutex_lock(&sii902x->mutex);
regmap_update_bits(sii902x->regmap, SII902X_SYS_CTRL_DATA,
SII902X_SYS_CTRL_PWR_DWN,
SII902X_SYS_CTRL_PWR_DWN);
mutex_unlock(&sii902x->mutex);
}
static void sii902x_bridge_enable(struct drm_bridge *bridge)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
mutex_lock(&sii902x->mutex);
regmap_update_bits(sii902x->regmap, SII902X_PWR_STATE_CTRL,
SII902X_AVI_POWER_STATE_MSK,
SII902X_AVI_POWER_STATE_D(0));
regmap_update_bits(sii902x->regmap, SII902X_SYS_CTRL_DATA,
SII902X_SYS_CTRL_PWR_DWN, 0);
mutex_unlock(&sii902x->mutex);
}
static void sii902x_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
u8 output_mode = SII902X_SYS_CTRL_OUTPUT_DVI;
struct regmap *regmap = sii902x->regmap;
u8 buf[HDMI_INFOFRAME_SIZE(AVI)];
struct hdmi_avi_infoframe frame;
u16 pixel_clock_10kHz = adj->clock / 10;
int ret;
if (sii902x->sink_is_hdmi)
output_mode = SII902X_SYS_CTRL_OUTPUT_HDMI;
buf[0] = pixel_clock_10kHz & 0xff;
buf[1] = pixel_clock_10kHz >> 8;
buf[2] = drm_mode_vrefresh(adj);
buf[3] = 0x00;
buf[4] = adj->hdisplay;
buf[5] = adj->hdisplay >> 8;
buf[6] = adj->vdisplay;
buf[7] = adj->vdisplay >> 8;
buf[8] = SII902X_TPI_CLK_RATIO_1X | SII902X_TPI_AVI_PIXEL_REP_NONE |
SII902X_TPI_AVI_PIXEL_REP_BUS_24BIT;
buf[9] = SII902X_TPI_AVI_INPUT_RANGE_AUTO |
SII902X_TPI_AVI_INPUT_COLORSPACE_RGB;
mutex_lock(&sii902x->mutex);
ret = regmap_update_bits(sii902x->regmap, SII902X_SYS_CTRL_DATA,
SII902X_SYS_CTRL_OUTPUT_MODE, output_mode);
if (ret)
goto out;
ret = regmap_bulk_write(regmap, SII902X_TPI_VIDEO_DATA, buf, 10);
if (ret)
goto out;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame,
&sii902x->connector, adj);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
goto out;
}
ret = hdmi_avi_infoframe_pack(&frame, buf, sizeof(buf));
if (ret < 0) {
DRM_ERROR("failed to pack AVI infoframe: %d\n", ret);
goto out;
}
/* Do not send the infoframe header, but keep the CRC field. */
regmap_bulk_write(regmap, SII902X_TPI_AVI_INFOFRAME,
buf + HDMI_INFOFRAME_HEADER_SIZE - 1,
HDMI_AVI_INFOFRAME_SIZE + 1);
out:
mutex_unlock(&sii902x->mutex);
}
static int sii902x_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
struct drm_device *drm = bridge->dev;
int ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return drm_bridge_attach(bridge->encoder, sii902x->next_bridge,
bridge, flags);
drm_connector_helper_add(&sii902x->connector,
&sii902x_connector_helper_funcs);
if (!drm_core_check_feature(drm, DRIVER_ATOMIC)) {
dev_err(&sii902x->i2c->dev,
"sii902x driver is only compatible with DRM devices supporting atomic updates\n");
return -ENOTSUPP;
}
ret = drm_connector_init(drm, &sii902x->connector,
&sii902x_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
if (ret)
return ret;
if (sii902x->i2c->irq > 0)
sii902x->connector.polled = DRM_CONNECTOR_POLL_HPD;
else
sii902x->connector.polled = DRM_CONNECTOR_POLL_CONNECT;
ret = drm_display_info_set_bus_formats(&sii902x->connector.display_info,
&bus_format, 1);
if (ret)
return ret;
drm_connector_attach_encoder(&sii902x->connector, bridge->encoder);
return 0;
}
static enum drm_connector_status sii902x_bridge_detect(struct drm_bridge *bridge)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
return sii902x_detect(sii902x);
}
static struct edid *sii902x_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct sii902x *sii902x = bridge_to_sii902x(bridge);
return sii902x_get_edid(sii902x, connector);
}
static u32 *sii902x_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(1, sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static int sii902x_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
/*
* There might be flags negotiation supported in future but
* set the bus flags in atomic_check statically for now.
*/
bridge_state->input_bus_cfg.flags = bridge->timings->input_bus_flags;
return 0;
}
static const struct drm_bridge_funcs sii902x_bridge_funcs = {
.attach = sii902x_bridge_attach,
.mode_set = sii902x_bridge_mode_set,
.disable = sii902x_bridge_disable,
.enable = sii902x_bridge_enable,
.detect = sii902x_bridge_detect,
.get_edid = sii902x_bridge_get_edid,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = sii902x_bridge_atomic_get_input_bus_fmts,
.atomic_check = sii902x_bridge_atomic_check,
};
static int sii902x_mute(struct sii902x *sii902x, bool mute)
{
struct device *dev = &sii902x->i2c->dev;
unsigned int val = mute ? SII902X_TPI_AUDIO_MUTE_ENABLE :
SII902X_TPI_AUDIO_MUTE_DISABLE;
dev_dbg(dev, "%s: %s\n", __func__, mute ? "Muted" : "Unmuted");
return regmap_update_bits(sii902x->regmap,
SII902X_TPI_AUDIO_CONFIG_BYTE2_REG,
SII902X_TPI_AUDIO_MUTE_ENABLE, val);
}
static const int sii902x_mclk_div_table[] = {
128, 256, 384, 512, 768, 1024, 1152, 192 };
static int sii902x_select_mclk_div(u8 *i2s_config_reg, unsigned int rate,
unsigned int mclk)
{
int div = mclk / rate;
int distance = 100000;
u8 i, nearest = 0;
for (i = 0; i < ARRAY_SIZE(sii902x_mclk_div_table); i++) {
unsigned int d = abs(div - sii902x_mclk_div_table[i]);
if (d >= distance)
continue;
nearest = i;
distance = d;
if (d == 0)
break;
}
*i2s_config_reg |= nearest << 4;
return sii902x_mclk_div_table[nearest];
}
static const struct sii902x_sample_freq {
u32 freq;
u8 val;
} sii902x_sample_freq[] = {
{ .freq = 32000, .val = SII902X_TPI_AUDIO_FREQ_32KHZ },
{ .freq = 44000, .val = SII902X_TPI_AUDIO_FREQ_44KHZ },
{ .freq = 48000, .val = SII902X_TPI_AUDIO_FREQ_48KHZ },
{ .freq = 88000, .val = SII902X_TPI_AUDIO_FREQ_88KHZ },
{ .freq = 96000, .val = SII902X_TPI_AUDIO_FREQ_96KHZ },
{ .freq = 176000, .val = SII902X_TPI_AUDIO_FREQ_176KHZ },
{ .freq = 192000, .val = SII902X_TPI_AUDIO_FREQ_192KHZ },
};
static int sii902x_audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct sii902x *sii902x = dev_get_drvdata(dev);
u8 i2s_config_reg = SII902X_TPI_I2S_SD_DIRECTION_MSB_FIRST;
u8 config_byte2_reg = (SII902X_TPI_AUDIO_INTERFACE_I2S |
SII902X_TPI_AUDIO_MUTE_ENABLE |
SII902X_TPI_AUDIO_CODING_PCM);
u8 config_byte3_reg = 0;
u8 infoframe_buf[HDMI_INFOFRAME_SIZE(AUDIO)];
unsigned long mclk_rate;
int i, ret;
if (daifmt->bit_clk_provider || daifmt->frame_clk_provider) {
dev_dbg(dev, "%s: I2S clock provider mode not supported\n",
__func__);
return -EINVAL;
}
switch (daifmt->fmt) {
case HDMI_I2S:
i2s_config_reg |= SII902X_TPI_I2S_FIRST_BIT_SHIFT_YES |
SII902X_TPI_I2S_SD_JUSTIFY_LEFT;
break;
case HDMI_RIGHT_J:
i2s_config_reg |= SII902X_TPI_I2S_SD_JUSTIFY_RIGHT;
break;
case HDMI_LEFT_J:
i2s_config_reg |= SII902X_TPI_I2S_SD_JUSTIFY_LEFT;
break;
default:
dev_dbg(dev, "%s: Unsupported i2s format %u\n", __func__,
daifmt->fmt);
return -EINVAL;
}
if (daifmt->bit_clk_inv)
i2s_config_reg |= SII902X_TPI_I2S_SCK_EDGE_FALLING;
else
i2s_config_reg |= SII902X_TPI_I2S_SCK_EDGE_RISING;
if (daifmt->frame_clk_inv)
i2s_config_reg |= SII902X_TPI_I2S_WS_POLARITY_LOW;
else
i2s_config_reg |= SII902X_TPI_I2S_WS_POLARITY_HIGH;
if (params->channels > 2)
config_byte2_reg |= SII902X_TPI_AUDIO_LAYOUT_8_CHANNELS;
else
config_byte2_reg |= SII902X_TPI_AUDIO_LAYOUT_2_CHANNELS;
switch (params->sample_width) {
case 16:
config_byte3_reg |= SII902X_TPI_AUDIO_SAMPLE_SIZE_16;
break;
case 20:
config_byte3_reg |= SII902X_TPI_AUDIO_SAMPLE_SIZE_20;
break;
case 24:
case 32:
config_byte3_reg |= SII902X_TPI_AUDIO_SAMPLE_SIZE_24;
break;
default:
dev_err(dev, "%s: Unsupported sample width %u\n", __func__,
params->sample_width);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(sii902x_sample_freq); i++) {
if (params->sample_rate == sii902x_sample_freq[i].freq) {
config_byte3_reg |= sii902x_sample_freq[i].val;
break;
}
}
ret = clk_prepare_enable(sii902x->audio.mclk);
if (ret) {
dev_err(dev, "Enabling mclk failed: %d\n", ret);
return ret;
}
if (sii902x->audio.mclk) {
mclk_rate = clk_get_rate(sii902x->audio.mclk);
ret = sii902x_select_mclk_div(&i2s_config_reg,
params->sample_rate, mclk_rate);
if (mclk_rate != ret * params->sample_rate)
dev_dbg(dev, "Inaccurate reference clock (%ld/%d != %u)\n",
mclk_rate, ret, params->sample_rate);
}
mutex_lock(&sii902x->mutex);
ret = regmap_write(sii902x->regmap,
SII902X_TPI_AUDIO_CONFIG_BYTE2_REG,
config_byte2_reg);
if (ret < 0)
goto out;
ret = regmap_write(sii902x->regmap, SII902X_TPI_I2S_INPUT_CONFIG_REG,
i2s_config_reg);
if (ret)
goto out;
for (i = 0; i < ARRAY_SIZE(sii902x->audio.i2s_fifo_sequence) &&
sii902x->audio.i2s_fifo_sequence[i]; i++)
regmap_write(sii902x->regmap,
SII902X_TPI_I2S_ENABLE_MAPPING_REG,
sii902x->audio.i2s_fifo_sequence[i]);
ret = regmap_write(sii902x->regmap, SII902X_TPI_AUDIO_CONFIG_BYTE3_REG,
config_byte3_reg);
if (ret)
goto out;
ret = regmap_bulk_write(sii902x->regmap, SII902X_TPI_I2S_STRM_HDR_BASE,
params->iec.status,
min((size_t) SII902X_TPI_I2S_STRM_HDR_SIZE,
sizeof(params->iec.status)));
if (ret)
goto out;
ret = hdmi_audio_infoframe_pack(¶ms->cea, infoframe_buf,
sizeof(infoframe_buf));
if (ret < 0) {
dev_err(dev, "%s: Failed to pack audio infoframe: %d\n",
__func__, ret);
goto out;
}
ret = regmap_bulk_write(sii902x->regmap,
SII902X_TPI_MISC_INFOFRAME_BASE,
infoframe_buf,
min(ret, SII902X_TPI_MISC_INFOFRAME_SIZE));
if (ret)
goto out;
/* Decode Level 0 Packets */
ret = regmap_write(sii902x->regmap, SII902X_IND_SET_PAGE, 0x02);
if (ret)
goto out;
ret = regmap_write(sii902x->regmap, SII902X_IND_OFFSET, 0x24);
if (ret)
goto out;
ret = regmap_write(sii902x->regmap, SII902X_IND_VALUE, 0x02);
if (ret)
goto out;
dev_dbg(dev, "%s: hdmi audio enabled\n", __func__);
out:
mutex_unlock(&sii902x->mutex);
if (ret) {
clk_disable_unprepare(sii902x->audio.mclk);
dev_err(dev, "%s: hdmi audio enable failed: %d\n", __func__,
ret);
}
return ret;
}
static void sii902x_audio_shutdown(struct device *dev, void *data)
{
struct sii902x *sii902x = dev_get_drvdata(dev);
mutex_lock(&sii902x->mutex);
regmap_write(sii902x->regmap, SII902X_TPI_AUDIO_CONFIG_BYTE2_REG,
SII902X_TPI_AUDIO_INTERFACE_DISABLE);
mutex_unlock(&sii902x->mutex);
clk_disable_unprepare(sii902x->audio.mclk);
}
static int sii902x_audio_mute(struct device *dev, void *data,
bool enable, int direction)
{
struct sii902x *sii902x = dev_get_drvdata(dev);
mutex_lock(&sii902x->mutex);
sii902x_mute(sii902x, enable);
mutex_unlock(&sii902x->mutex);
return 0;
}
static int sii902x_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct sii902x *sii902x = dev_get_drvdata(dev);
mutex_lock(&sii902x->mutex);
memcpy(buf, sii902x->connector.eld,
min(sizeof(sii902x->connector.eld), len));
mutex_unlock(&sii902x->mutex);
return 0;
}
static int sii902x_audio_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located at reg = <3>
* Return expected DAI index 0.
*/
if (of_ep.port == SII902X_AUDIO_PORT_INDEX)
return 0;
return -EINVAL;
}
static const struct hdmi_codec_ops sii902x_audio_codec_ops = {
.hw_params = sii902x_audio_hw_params,
.audio_shutdown = sii902x_audio_shutdown,
.mute_stream = sii902x_audio_mute,
.get_eld = sii902x_audio_get_eld,
.get_dai_id = sii902x_audio_get_dai_id,
.no_capture_mute = 1,
};
static int sii902x_audio_codec_init(struct sii902x *sii902x,
struct device *dev)
{
static const u8 audio_fifo_id[] = {
SII902X_TPI_I2S_CONFIG_FIFO0,
SII902X_TPI_I2S_CONFIG_FIFO1,
SII902X_TPI_I2S_CONFIG_FIFO2,
SII902X_TPI_I2S_CONFIG_FIFO3,
};
static const u8 i2s_lane_id[] = {
SII902X_TPI_I2S_SELECT_SD0,
SII902X_TPI_I2S_SELECT_SD1,
SII902X_TPI_I2S_SELECT_SD2,
SII902X_TPI_I2S_SELECT_SD3,
};
struct hdmi_codec_pdata codec_data = {
.ops = &sii902x_audio_codec_ops,
.i2s = 1, /* Only i2s support for now. */
.spdif = 0,
.max_i2s_channels = 0,
};
u8 lanes[4];
int num_lanes, i;
if (!of_property_read_bool(dev->of_node, "#sound-dai-cells")) {
dev_dbg(dev, "%s: No \"#sound-dai-cells\", no audio\n",
__func__);
return 0;
}
num_lanes = of_property_read_variable_u8_array(dev->of_node,
"sil,i2s-data-lanes",
lanes, 1,
ARRAY_SIZE(lanes));
if (num_lanes == -EINVAL) {
dev_dbg(dev,
"%s: No \"sil,i2s-data-lanes\", use default <0>\n",
__func__);
num_lanes = 1;
lanes[0] = 0;
} else if (num_lanes < 0) {
dev_err(dev,
"%s: Error gettin \"sil,i2s-data-lanes\": %d\n",
__func__, num_lanes);
return num_lanes;
}
codec_data.max_i2s_channels = 2 * num_lanes;
for (i = 0; i < num_lanes; i++)
sii902x->audio.i2s_fifo_sequence[i] |= audio_fifo_id[i] |
i2s_lane_id[lanes[i]] | SII902X_TPI_I2S_FIFO_ENABLE;
sii902x->audio.mclk = devm_clk_get_optional(dev, "mclk");
if (IS_ERR(sii902x->audio.mclk)) {
dev_err(dev, "%s: No clock (audio mclk) found: %ld\n",
__func__, PTR_ERR(sii902x->audio.mclk));
return PTR_ERR(sii902x->audio.mclk);
}
sii902x->audio.pdev = platform_device_register_data(
dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
&codec_data, sizeof(codec_data));
return PTR_ERR_OR_ZERO(sii902x->audio.pdev);
}
static const struct regmap_range sii902x_volatile_ranges[] = {
{ .range_min = 0, .range_max = 0xff },
};
static const struct regmap_access_table sii902x_volatile_table = {
.yes_ranges = sii902x_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(sii902x_volatile_ranges),
};
static const struct regmap_config sii902x_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.disable_locking = true, /* struct sii902x mutex should be enough */
.max_register = SII902X_TPI_MISC_INFOFRAME_END,
.volatile_table = &sii902x_volatile_table,
.cache_type = REGCACHE_NONE,
};
static irqreturn_t sii902x_interrupt(int irq, void *data)
{
struct sii902x *sii902x = data;
unsigned int status = 0;
mutex_lock(&sii902x->mutex);
regmap_read(sii902x->regmap, SII902X_INT_STATUS, &status);
regmap_write(sii902x->regmap, SII902X_INT_STATUS, status);
mutex_unlock(&sii902x->mutex);
if ((status & SII902X_HOTPLUG_EVENT) && sii902x->bridge.dev) {
drm_helper_hpd_irq_event(sii902x->bridge.dev);
drm_bridge_hpd_notify(&sii902x->bridge, (status & SII902X_PLUGGED_STATUS)
? connector_status_connected
: connector_status_disconnected);
}
return IRQ_HANDLED;
}
/*
* The purpose of sii902x_i2c_bypass_select is to enable the pass through
* mode of the HDMI transmitter. Do not use regmap from within this function,
* only use sii902x_*_unlocked functions to read/modify/write registers.
* We are holding the parent adapter lock here, keep this in mind before
* adding more i2c transactions.
*
* Also, since SII902X_SYS_CTRL_DATA is used with regmap_update_bits elsewhere
* in this driver, we need to make sure that we only touch 0x1A[2:1] from
* within sii902x_i2c_bypass_select and sii902x_i2c_bypass_deselect, and that
* we leave the remaining bits as we have found them.
*/
static int sii902x_i2c_bypass_select(struct i2c_mux_core *mux, u32 chan_id)
{
struct sii902x *sii902x = i2c_mux_priv(mux);
struct device *dev = &sii902x->i2c->dev;
unsigned long timeout;
u8 status;
int ret;
ret = sii902x_update_bits_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
SII902X_SYS_CTRL_DDC_BUS_REQ,
SII902X_SYS_CTRL_DDC_BUS_REQ);
if (ret)
return ret;
timeout = jiffies +
msecs_to_jiffies(SII902X_I2C_BUS_ACQUISITION_TIMEOUT_MS);
do {
ret = sii902x_read_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
&status);
if (ret)
return ret;
} while (!(status & SII902X_SYS_CTRL_DDC_BUS_GRTD) &&
time_before(jiffies, timeout));
if (!(status & SII902X_SYS_CTRL_DDC_BUS_GRTD)) {
dev_err(dev, "Failed to acquire the i2c bus\n");
return -ETIMEDOUT;
}
return sii902x_write_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
status);
}
/*
* The purpose of sii902x_i2c_bypass_deselect is to disable the pass through
* mode of the HDMI transmitter. Do not use regmap from within this function,
* only use sii902x_*_unlocked functions to read/modify/write registers.
* We are holding the parent adapter lock here, keep this in mind before
* adding more i2c transactions.
*
* Also, since SII902X_SYS_CTRL_DATA is used with regmap_update_bits elsewhere
* in this driver, we need to make sure that we only touch 0x1A[2:1] from
* within sii902x_i2c_bypass_select and sii902x_i2c_bypass_deselect, and that
* we leave the remaining bits as we have found them.
*/
static int sii902x_i2c_bypass_deselect(struct i2c_mux_core *mux, u32 chan_id)
{
struct sii902x *sii902x = i2c_mux_priv(mux);
struct device *dev = &sii902x->i2c->dev;
unsigned long timeout;
unsigned int retries;
u8 status;
int ret;
/*
* When the HDMI transmitter is in pass through mode, we need an
* (undocumented) additional delay between STOP and START conditions
* to guarantee the bus won't get stuck.
*/
udelay(30);
/*
* Sometimes the I2C bus can stall after failure to use the
* EDID channel. Retry a few times to see if things clear
* up, else continue anyway.
*/
retries = 5;
do {
ret = sii902x_read_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
&status);
retries--;
} while (ret && retries);
if (ret) {
dev_err(dev, "failed to read status (%d)\n", ret);
return ret;
}
ret = sii902x_update_bits_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
SII902X_SYS_CTRL_DDC_BUS_REQ |
SII902X_SYS_CTRL_DDC_BUS_GRTD, 0);
if (ret)
return ret;
timeout = jiffies +
msecs_to_jiffies(SII902X_I2C_BUS_ACQUISITION_TIMEOUT_MS);
do {
ret = sii902x_read_unlocked(sii902x->i2c, SII902X_SYS_CTRL_DATA,
&status);
if (ret)
return ret;
} while (status & (SII902X_SYS_CTRL_DDC_BUS_REQ |
SII902X_SYS_CTRL_DDC_BUS_GRTD) &&
time_before(jiffies, timeout));
if (status & (SII902X_SYS_CTRL_DDC_BUS_REQ |
SII902X_SYS_CTRL_DDC_BUS_GRTD)) {
dev_err(dev, "failed to release the i2c bus\n");
return -ETIMEDOUT;
}
return 0;
}
static const struct drm_bridge_timings default_sii902x_timings = {
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE
| DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE
| DRM_BUS_FLAG_DE_HIGH,
};
static int sii902x_init(struct sii902x *sii902x)
{
struct device *dev = &sii902x->i2c->dev;
unsigned int status = 0;
u8 chipid[4];
int ret;
sii902x_reset(sii902x);
ret = regmap_write(sii902x->regmap, SII902X_REG_TPI_RQB, 0x0);
if (ret)
return ret;
ret = regmap_bulk_read(sii902x->regmap, SII902X_REG_CHIPID(0),
&chipid, 4);
if (ret) {
dev_err(dev, "regmap_read failed %d\n", ret);
return ret;
}
if (chipid[0] != 0xb0) {
dev_err(dev, "Invalid chipid: %02x (expecting 0xb0)\n",
chipid[0]);
return -EINVAL;
}
/* Clear all pending interrupts */
regmap_read(sii902x->regmap, SII902X_INT_STATUS, &status);
regmap_write(sii902x->regmap, SII902X_INT_STATUS, status);
if (sii902x->i2c->irq > 0) {
regmap_write(sii902x->regmap, SII902X_INT_ENABLE,
SII902X_HOTPLUG_EVENT);
ret = devm_request_threaded_irq(dev, sii902x->i2c->irq, NULL,
sii902x_interrupt,
IRQF_ONESHOT, dev_name(dev),
sii902x);
if (ret)
return ret;
}
sii902x->bridge.funcs = &sii902x_bridge_funcs;
sii902x->bridge.of_node = dev->of_node;
sii902x->bridge.timings = &default_sii902x_timings;
sii902x->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID;
if (sii902x->i2c->irq > 0)
sii902x->bridge.ops |= DRM_BRIDGE_OP_HPD;
drm_bridge_add(&sii902x->bridge);
sii902x_audio_codec_init(sii902x, dev);
i2c_set_clientdata(sii902x->i2c, sii902x);
sii902x->i2cmux = i2c_mux_alloc(sii902x->i2c->adapter, dev,
1, 0, I2C_MUX_GATE,
sii902x_i2c_bypass_select,
sii902x_i2c_bypass_deselect);
if (!sii902x->i2cmux)
return -ENOMEM;
sii902x->i2cmux->priv = sii902x;
return i2c_mux_add_adapter(sii902x->i2cmux, 0, 0, 0);
}
static int sii902x_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct device_node *endpoint;
struct sii902x *sii902x;
static const char * const supplies[] = {"iovcc", "cvcc12"};
int ret;
ret = i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA);
if (!ret) {
dev_err(dev, "I2C adapter not suitable\n");
return -EIO;
}
sii902x = devm_kzalloc(dev, sizeof(*sii902x), GFP_KERNEL);
if (!sii902x)
return -ENOMEM;
sii902x->i2c = client;
sii902x->regmap = devm_regmap_init_i2c(client, &sii902x_regmap_config);
if (IS_ERR(sii902x->regmap))
return PTR_ERR(sii902x->regmap);
sii902x->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(sii902x->reset_gpio)) {
dev_err(dev, "Failed to retrieve/request reset gpio: %ld\n",
PTR_ERR(sii902x->reset_gpio));
return PTR_ERR(sii902x->reset_gpio);
}
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 1, -1);
if (endpoint) {
struct device_node *remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (!remote) {
dev_err(dev, "Endpoint in port@1 unconnected\n");
return -ENODEV;
}
if (!of_device_is_available(remote)) {
dev_err(dev, "port@1 remote device is disabled\n");
of_node_put(remote);
return -ENODEV;
}
sii902x->next_bridge = of_drm_find_bridge(remote);
of_node_put(remote);
if (!sii902x->next_bridge)
return dev_err_probe(dev, -EPROBE_DEFER,
"Failed to find remote bridge\n");
}
mutex_init(&sii902x->mutex);
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(supplies), supplies);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to enable supplies");
return sii902x_init(sii902x);
}
static void sii902x_remove(struct i2c_client *client)
{
struct sii902x *sii902x = i2c_get_clientdata(client);
i2c_mux_del_adapters(sii902x->i2cmux);
drm_bridge_remove(&sii902x->bridge);
}
static const struct of_device_id sii902x_dt_ids[] = {
{ .compatible = "sil,sii9022", },
{ }
};
MODULE_DEVICE_TABLE(of, sii902x_dt_ids);
static const struct i2c_device_id sii902x_i2c_ids[] = {
{ "sii9022", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, sii902x_i2c_ids);
static struct i2c_driver sii902x_driver = {
.probe = sii902x_probe,
.remove = sii902x_remove,
.driver = {
.name = "sii902x",
.of_match_table = sii902x_dt_ids,
},
.id_table = sii902x_i2c_ids,
};
module_i2c_driver(sii902x_driver);
MODULE_AUTHOR("Boris Brezillon <[email protected]>");
MODULE_DESCRIPTION("SII902x RGB -> HDMI bridges");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/sii902x.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
* Copyright (c) 2019-2020. Linaro Limited.
*/
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <sound/hdmi-codec.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define EDID_SEG_SIZE 256
#define EDID_LEN 32
#define EDID_LOOP 8
#define KEY_DDC_ACCS_DONE 0x02
#define DDC_NO_ACK 0x50
#define LT9611_4LANES 0
struct lt9611 {
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct regmap *regmap;
struct device_node *dsi0_node;
struct device_node *dsi1_node;
struct mipi_dsi_device *dsi0;
struct mipi_dsi_device *dsi1;
struct platform_device *audio_pdev;
bool ac_mode;
struct gpio_desc *reset_gpio;
struct gpio_desc *enable_gpio;
bool power_on;
bool sleep;
struct regulator_bulk_data supplies[2];
struct i2c_client *client;
enum drm_connector_status status;
u8 edid_buf[EDID_SEG_SIZE];
};
#define LT9611_PAGE_CONTROL 0xff
static const struct regmap_range_cfg lt9611_ranges[] = {
{
.name = "register_range",
.range_min = 0,
.range_max = 0x85ff,
.selector_reg = LT9611_PAGE_CONTROL,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
},
};
static const struct regmap_config lt9611_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xffff,
.ranges = lt9611_ranges,
.num_ranges = ARRAY_SIZE(lt9611_ranges),
};
static struct lt9611 *bridge_to_lt9611(struct drm_bridge *bridge)
{
return container_of(bridge, struct lt9611, bridge);
}
static int lt9611_mipi_input_analog(struct lt9611 *lt9611)
{
const struct reg_sequence reg_cfg[] = {
{ 0x8106, 0x40 }, /* port A rx current */
{ 0x810a, 0xfe }, /* port A ldo voltage set */
{ 0x810b, 0xbf }, /* enable port A lprx */
{ 0x8111, 0x40 }, /* port B rx current */
{ 0x8115, 0xfe }, /* port B ldo voltage set */
{ 0x8116, 0xbf }, /* enable port B lprx */
{ 0x811c, 0x03 }, /* PortA clk lane no-LP mode */
{ 0x8120, 0x03 }, /* PortB clk lane with-LP mode */
};
return regmap_multi_reg_write(lt9611->regmap, reg_cfg, ARRAY_SIZE(reg_cfg));
}
static int lt9611_mipi_input_digital(struct lt9611 *lt9611,
const struct drm_display_mode *mode)
{
struct reg_sequence reg_cfg[] = {
{ 0x8300, LT9611_4LANES },
{ 0x830a, 0x00 },
{ 0x824f, 0x80 },
{ 0x8250, 0x10 },
{ 0x8302, 0x0a },
{ 0x8306, 0x0a },
};
if (lt9611->dsi1_node)
reg_cfg[1].def = 0x03;
return regmap_multi_reg_write(lt9611->regmap, reg_cfg, ARRAY_SIZE(reg_cfg));
}
static void lt9611_mipi_video_setup(struct lt9611 *lt9611,
const struct drm_display_mode *mode)
{
u32 h_total, hactive, hsync_len, hfront_porch, hsync_porch;
u32 v_total, vactive, vsync_len, vfront_porch, vsync_porch;
h_total = mode->htotal;
v_total = mode->vtotal;
hactive = mode->hdisplay;
hsync_len = mode->hsync_end - mode->hsync_start;
hfront_porch = mode->hsync_start - mode->hdisplay;
hsync_porch = mode->htotal - mode->hsync_start;
vactive = mode->vdisplay;
vsync_len = mode->vsync_end - mode->vsync_start;
vfront_porch = mode->vsync_start - mode->vdisplay;
vsync_porch = mode->vtotal - mode->vsync_start;
regmap_write(lt9611->regmap, 0x830d, (u8)(v_total / 256));
regmap_write(lt9611->regmap, 0x830e, (u8)(v_total % 256));
regmap_write(lt9611->regmap, 0x830f, (u8)(vactive / 256));
regmap_write(lt9611->regmap, 0x8310, (u8)(vactive % 256));
regmap_write(lt9611->regmap, 0x8311, (u8)(h_total / 256));
regmap_write(lt9611->regmap, 0x8312, (u8)(h_total % 256));
regmap_write(lt9611->regmap, 0x8313, (u8)(hactive / 256));
regmap_write(lt9611->regmap, 0x8314, (u8)(hactive % 256));
regmap_write(lt9611->regmap, 0x8315, (u8)(vsync_len % 256));
regmap_write(lt9611->regmap, 0x8316, (u8)(hsync_len % 256));
regmap_write(lt9611->regmap, 0x8317, (u8)(vfront_porch % 256));
regmap_write(lt9611->regmap, 0x8318, (u8)(vsync_porch % 256));
regmap_write(lt9611->regmap, 0x8319, (u8)(hfront_porch % 256));
regmap_write(lt9611->regmap, 0x831a, (u8)(hsync_porch / 256) |
((hfront_porch / 256) << 4));
regmap_write(lt9611->regmap, 0x831b, (u8)(hsync_porch % 256));
}
static void lt9611_pcr_setup(struct lt9611 *lt9611, const struct drm_display_mode *mode, unsigned int postdiv)
{
unsigned int pcr_m = mode->clock * 5 * postdiv / 27000;
const struct reg_sequence reg_cfg[] = {
{ 0x830b, 0x01 },
{ 0x830c, 0x10 },
{ 0x8348, 0x00 },
{ 0x8349, 0x81 },
/* stage 1 */
{ 0x8321, 0x4a },
{ 0x8324, 0x71 },
{ 0x8325, 0x30 },
{ 0x832a, 0x01 },
/* stage 2 */
{ 0x834a, 0x40 },
/* MK limit */
{ 0x832d, 0x38 },
{ 0x8331, 0x08 },
};
u8 pol = 0x10;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
pol |= 0x2;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
pol |= 0x1;
regmap_write(lt9611->regmap, 0x831d, pol);
regmap_multi_reg_write(lt9611->regmap, reg_cfg, ARRAY_SIZE(reg_cfg));
if (lt9611->dsi1_node) {
unsigned int hact = mode->hdisplay;
hact >>= 2;
hact += 0x50;
hact = min(hact, 0x3e0U);
regmap_write(lt9611->regmap, 0x830b, hact / 256);
regmap_write(lt9611->regmap, 0x830c, hact % 256);
regmap_write(lt9611->regmap, 0x8348, hact / 256);
regmap_write(lt9611->regmap, 0x8349, hact % 256);
}
regmap_write(lt9611->regmap, 0x8326, pcr_m);
/* pcr rst */
regmap_write(lt9611->regmap, 0x8011, 0x5a);
regmap_write(lt9611->regmap, 0x8011, 0xfa);
}
static int lt9611_pll_setup(struct lt9611 *lt9611, const struct drm_display_mode *mode, unsigned int *postdiv)
{
unsigned int pclk = mode->clock;
const struct reg_sequence reg_cfg[] = {
/* txpll init */
{ 0x8123, 0x40 },
{ 0x8124, 0x64 },
{ 0x8125, 0x80 },
{ 0x8126, 0x55 },
{ 0x812c, 0x37 },
{ 0x812f, 0x01 },
{ 0x8126, 0x55 },
{ 0x8127, 0x66 },
{ 0x8128, 0x88 },
{ 0x812a, 0x20 },
};
regmap_multi_reg_write(lt9611->regmap, reg_cfg, ARRAY_SIZE(reg_cfg));
if (pclk > 150000) {
regmap_write(lt9611->regmap, 0x812d, 0x88);
*postdiv = 1;
} else if (pclk > 70000) {
regmap_write(lt9611->regmap, 0x812d, 0x99);
*postdiv = 2;
} else {
regmap_write(lt9611->regmap, 0x812d, 0xaa);
*postdiv = 4;
}
/*
* first divide pclk by 2 first
* - write divide by 64k to 19:16 bits which means shift by 17
* - write divide by 256 to 15:8 bits which means shift by 9
* - write remainder to 7:0 bits, which means shift by 1
*/
regmap_write(lt9611->regmap, 0x82e3, pclk >> 17); /* pclk[19:16] */
regmap_write(lt9611->regmap, 0x82e4, pclk >> 9); /* pclk[15:8] */
regmap_write(lt9611->regmap, 0x82e5, pclk >> 1); /* pclk[7:0] */
regmap_write(lt9611->regmap, 0x82de, 0x20);
regmap_write(lt9611->regmap, 0x82de, 0xe0);
regmap_write(lt9611->regmap, 0x8016, 0xf1);
regmap_write(lt9611->regmap, 0x8016, 0xf3);
return 0;
}
static int lt9611_read_video_check(struct lt9611 *lt9611, unsigned int reg)
{
unsigned int temp, temp2;
int ret;
ret = regmap_read(lt9611->regmap, reg, &temp);
if (ret)
return ret;
temp <<= 8;
ret = regmap_read(lt9611->regmap, reg + 1, &temp2);
if (ret)
return ret;
return (temp + temp2);
}
static int lt9611_video_check(struct lt9611 *lt9611)
{
u32 v_total, vactive, hactive_a, hactive_b, h_total_sysclk;
int temp;
/* top module video check */
/* vactive */
temp = lt9611_read_video_check(lt9611, 0x8282);
if (temp < 0)
goto end;
vactive = temp;
/* v_total */
temp = lt9611_read_video_check(lt9611, 0x826c);
if (temp < 0)
goto end;
v_total = temp;
/* h_total_sysclk */
temp = lt9611_read_video_check(lt9611, 0x8286);
if (temp < 0)
goto end;
h_total_sysclk = temp;
/* hactive_a */
temp = lt9611_read_video_check(lt9611, 0x8382);
if (temp < 0)
goto end;
hactive_a = temp / 3;
/* hactive_b */
temp = lt9611_read_video_check(lt9611, 0x8386);
if (temp < 0)
goto end;
hactive_b = temp / 3;
dev_info(lt9611->dev,
"video check: hactive_a=%d, hactive_b=%d, vactive=%d, v_total=%d, h_total_sysclk=%d\n",
hactive_a, hactive_b, vactive, v_total, h_total_sysclk);
return 0;
end:
dev_err(lt9611->dev, "read video check error\n");
return temp;
}
static void lt9611_hdmi_set_infoframes(struct lt9611 *lt9611,
struct drm_connector *connector,
struct drm_display_mode *mode)
{
union hdmi_infoframe infoframe;
ssize_t len;
u8 iframes = 0x0a; /* UD1 infoframe */
u8 buf[32];
int ret;
int i;
ret = drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi,
connector,
mode);
if (ret < 0)
goto out;
len = hdmi_infoframe_pack(&infoframe, buf, sizeof(buf));
if (len < 0)
goto out;
for (i = 0; i < len; i++)
regmap_write(lt9611->regmap, 0x8440 + i, buf[i]);
ret = drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
connector,
mode);
if (ret < 0)
goto out;
len = hdmi_infoframe_pack(&infoframe, buf, sizeof(buf));
if (len < 0)
goto out;
for (i = 0; i < len; i++)
regmap_write(lt9611->regmap, 0x8474 + i, buf[i]);
iframes |= 0x20;
out:
regmap_write(lt9611->regmap, 0x843d, iframes); /* UD1 infoframe */
}
static void lt9611_hdmi_tx_digital(struct lt9611 *lt9611, bool is_hdmi)
{
if (is_hdmi)
regmap_write(lt9611->regmap, 0x82d6, 0x8c);
else
regmap_write(lt9611->regmap, 0x82d6, 0x0c);
regmap_write(lt9611->regmap, 0x82d7, 0x04);
}
static void lt9611_hdmi_tx_phy(struct lt9611 *lt9611)
{
struct reg_sequence reg_cfg[] = {
{ 0x8130, 0x6a },
{ 0x8131, 0x44 }, /* HDMI DC mode */
{ 0x8132, 0x4a },
{ 0x8133, 0x0b },
{ 0x8134, 0x00 },
{ 0x8135, 0x00 },
{ 0x8136, 0x00 },
{ 0x8137, 0x44 },
{ 0x813f, 0x0f },
{ 0x8140, 0xa0 },
{ 0x8141, 0xa0 },
{ 0x8142, 0xa0 },
{ 0x8143, 0xa0 },
{ 0x8144, 0x0a },
};
/* HDMI AC mode */
if (lt9611->ac_mode)
reg_cfg[2].def = 0x73;
regmap_multi_reg_write(lt9611->regmap, reg_cfg, ARRAY_SIZE(reg_cfg));
}
static irqreturn_t lt9611_irq_thread_handler(int irq, void *dev_id)
{
struct lt9611 *lt9611 = dev_id;
unsigned int irq_flag0 = 0;
unsigned int irq_flag3 = 0;
regmap_read(lt9611->regmap, 0x820f, &irq_flag3);
regmap_read(lt9611->regmap, 0x820c, &irq_flag0);
/* hpd changed low */
if (irq_flag3 & 0x80) {
dev_info(lt9611->dev, "hdmi cable disconnected\n");
regmap_write(lt9611->regmap, 0x8207, 0xbf);
regmap_write(lt9611->regmap, 0x8207, 0x3f);
}
/* hpd changed high */
if (irq_flag3 & 0x40) {
dev_info(lt9611->dev, "hdmi cable connected\n");
regmap_write(lt9611->regmap, 0x8207, 0x7f);
regmap_write(lt9611->regmap, 0x8207, 0x3f);
}
if (irq_flag3 & 0xc0 && lt9611->bridge.dev)
drm_kms_helper_hotplug_event(lt9611->bridge.dev);
/* video input changed */
if (irq_flag0 & 0x01) {
dev_info(lt9611->dev, "video input changed\n");
regmap_write(lt9611->regmap, 0x829e, 0xff);
regmap_write(lt9611->regmap, 0x829e, 0xf7);
regmap_write(lt9611->regmap, 0x8204, 0xff);
regmap_write(lt9611->regmap, 0x8204, 0xfe);
}
return IRQ_HANDLED;
}
static void lt9611_enable_hpd_interrupts(struct lt9611 *lt9611)
{
unsigned int val;
regmap_read(lt9611->regmap, 0x8203, &val);
val &= ~0xc0;
regmap_write(lt9611->regmap, 0x8203, val);
regmap_write(lt9611->regmap, 0x8207, 0xff); /* clear */
regmap_write(lt9611->regmap, 0x8207, 0x3f);
}
static void lt9611_sleep_setup(struct lt9611 *lt9611)
{
const struct reg_sequence sleep_setup[] = {
{ 0x8024, 0x76 },
{ 0x8023, 0x01 },
{ 0x8157, 0x03 }, /* set addr pin as output */
{ 0x8149, 0x0b },
{ 0x8102, 0x48 }, /* MIPI Rx power down */
{ 0x8123, 0x80 },
{ 0x8130, 0x00 },
{ 0x8011, 0x0a },
};
regmap_multi_reg_write(lt9611->regmap,
sleep_setup, ARRAY_SIZE(sleep_setup));
lt9611->sleep = true;
}
static int lt9611_power_on(struct lt9611 *lt9611)
{
int ret;
const struct reg_sequence seq[] = {
/* LT9611_System_Init */
{ 0x8101, 0x18 }, /* sel xtal clock */
/* timer for frequency meter */
{ 0x821b, 0x69 }, /* timer 2 */
{ 0x821c, 0x78 },
{ 0x82cb, 0x69 }, /* timer 1 */
{ 0x82cc, 0x78 },
/* irq init */
{ 0x8251, 0x01 },
{ 0x8258, 0x0a }, /* hpd irq */
{ 0x8259, 0x80 }, /* hpd debounce width */
{ 0x829e, 0xf7 }, /* video check irq */
/* power consumption for work */
{ 0x8004, 0xf0 },
{ 0x8006, 0xf0 },
{ 0x800a, 0x80 },
{ 0x800b, 0x40 },
{ 0x800d, 0xef },
{ 0x8011, 0xfa },
};
if (lt9611->power_on)
return 0;
ret = regmap_multi_reg_write(lt9611->regmap, seq, ARRAY_SIZE(seq));
if (!ret)
lt9611->power_on = true;
return ret;
}
static int lt9611_power_off(struct lt9611 *lt9611)
{
int ret;
ret = regmap_write(lt9611->regmap, 0x8130, 0x6a);
if (!ret)
lt9611->power_on = false;
return ret;
}
static void lt9611_reset(struct lt9611 *lt9611)
{
gpiod_set_value_cansleep(lt9611->reset_gpio, 1);
msleep(20);
gpiod_set_value_cansleep(lt9611->reset_gpio, 0);
msleep(20);
gpiod_set_value_cansleep(lt9611->reset_gpio, 1);
msleep(100);
}
static void lt9611_assert_5v(struct lt9611 *lt9611)
{
if (!lt9611->enable_gpio)
return;
gpiod_set_value_cansleep(lt9611->enable_gpio, 1);
msleep(20);
}
static int lt9611_regulator_init(struct lt9611 *lt9611)
{
int ret;
lt9611->supplies[0].supply = "vdd";
lt9611->supplies[1].supply = "vcc";
ret = devm_regulator_bulk_get(lt9611->dev, 2, lt9611->supplies);
if (ret < 0)
return ret;
return regulator_set_load(lt9611->supplies[0].consumer, 300000);
}
static int lt9611_regulator_enable(struct lt9611 *lt9611)
{
int ret;
ret = regulator_enable(lt9611->supplies[0].consumer);
if (ret < 0)
return ret;
usleep_range(1000, 10000);
ret = regulator_enable(lt9611->supplies[1].consumer);
if (ret < 0) {
regulator_disable(lt9611->supplies[0].consumer);
return ret;
}
return 0;
}
static enum drm_connector_status lt9611_bridge_detect(struct drm_bridge *bridge)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
unsigned int reg_val = 0;
int connected = 0;
regmap_read(lt9611->regmap, 0x825e, ®_val);
connected = (reg_val & (BIT(2) | BIT(0)));
lt9611->status = connected ? connector_status_connected :
connector_status_disconnected;
return lt9611->status;
}
static int lt9611_read_edid(struct lt9611 *lt9611)
{
unsigned int temp;
int ret = 0;
int i, j;
/* memset to clear old buffer, if any */
memset(lt9611->edid_buf, 0, sizeof(lt9611->edid_buf));
regmap_write(lt9611->regmap, 0x8503, 0xc9);
/* 0xA0 is EDID device address */
regmap_write(lt9611->regmap, 0x8504, 0xa0);
/* 0x00 is EDID offset address */
regmap_write(lt9611->regmap, 0x8505, 0x00);
/* length for read */
regmap_write(lt9611->regmap, 0x8506, EDID_LEN);
regmap_write(lt9611->regmap, 0x8514, 0x7f);
for (i = 0; i < EDID_LOOP; i++) {
/* offset address */
regmap_write(lt9611->regmap, 0x8505, i * EDID_LEN);
regmap_write(lt9611->regmap, 0x8507, 0x36);
regmap_write(lt9611->regmap, 0x8507, 0x31);
regmap_write(lt9611->regmap, 0x8507, 0x37);
usleep_range(5000, 10000);
regmap_read(lt9611->regmap, 0x8540, &temp);
if (temp & KEY_DDC_ACCS_DONE) {
for (j = 0; j < EDID_LEN; j++) {
regmap_read(lt9611->regmap, 0x8583, &temp);
lt9611->edid_buf[i * EDID_LEN + j] = temp;
}
} else if (temp & DDC_NO_ACK) { /* DDC No Ack or Abitration lost */
dev_err(lt9611->dev, "read edid failed: no ack\n");
ret = -EIO;
goto end;
} else {
dev_err(lt9611->dev, "read edid failed: access not done\n");
ret = -EIO;
goto end;
}
}
end:
regmap_write(lt9611->regmap, 0x8507, 0x1f);
return ret;
}
static int
lt9611_get_edid_block(void *data, u8 *buf, unsigned int block, size_t len)
{
struct lt9611 *lt9611 = data;
int ret;
if (len > 128)
return -EINVAL;
/* supports up to 1 extension block */
/* TODO: add support for more extension blocks */
if (block > 1)
return -EINVAL;
if (block == 0) {
ret = lt9611_read_edid(lt9611);
if (ret) {
dev_err(lt9611->dev, "edid read failed\n");
return ret;
}
}
block %= 2;
memcpy(buf, lt9611->edid_buf + (block * 128), len);
return 0;
}
/* bridge funcs */
static void
lt9611_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
struct drm_display_mode *mode;
unsigned int postdiv;
connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
if (WARN_ON(!connector))
return;
conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!conn_state))
return;
crtc_state = drm_atomic_get_new_crtc_state(state, conn_state->crtc);
if (WARN_ON(!crtc_state))
return;
mode = &crtc_state->adjusted_mode;
lt9611_mipi_input_digital(lt9611, mode);
lt9611_pll_setup(lt9611, mode, &postdiv);
lt9611_mipi_video_setup(lt9611, mode);
lt9611_pcr_setup(lt9611, mode, postdiv);
if (lt9611_power_on(lt9611)) {
dev_err(lt9611->dev, "power on failed\n");
return;
}
lt9611_mipi_input_analog(lt9611);
lt9611_hdmi_set_infoframes(lt9611, connector, mode);
lt9611_hdmi_tx_digital(lt9611, connector->display_info.is_hdmi);
lt9611_hdmi_tx_phy(lt9611);
msleep(500);
lt9611_video_check(lt9611);
/* Enable HDMI output */
regmap_write(lt9611->regmap, 0x8130, 0xea);
}
static void
lt9611_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
int ret;
/* Disable HDMI output */
ret = regmap_write(lt9611->regmap, 0x8130, 0x6a);
if (ret) {
dev_err(lt9611->dev, "video on failed\n");
return;
}
if (lt9611_power_off(lt9611)) {
dev_err(lt9611->dev, "power on failed\n");
return;
}
}
static struct mipi_dsi_device *lt9611_attach_dsi(struct lt9611 *lt9611,
struct device_node *dsi_node)
{
const struct mipi_dsi_device_info info = { "lt9611", 0, lt9611->dev->of_node};
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
struct device *dev = lt9611->dev;
int ret;
host = of_find_mipi_dsi_host_by_node(dsi_node);
if (!host) {
dev_err(lt9611->dev, "failed to find dsi host\n");
return ERR_PTR(-EPROBE_DEFER);
}
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(lt9611->dev, "failed to create dsi device\n");
return dsi;
}
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_VIDEO_HSE;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ERR_PTR(ret);
}
return dsi;
}
static int lt9611_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
return drm_bridge_attach(bridge->encoder, lt9611->next_bridge,
bridge, flags);
}
static enum drm_mode_status lt9611_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
if (mode->hdisplay > 3840)
return MODE_BAD_HVALUE;
if (mode->vdisplay > 2160)
return MODE_BAD_VVALUE;
if (mode->hdisplay == 3840 &&
mode->vdisplay == 2160 &&
drm_mode_vrefresh(mode) > 30)
return MODE_CLOCK_HIGH;
if (mode->hdisplay > 2000 && !lt9611->dsi1_node)
return MODE_PANEL;
else
return MODE_OK;
}
static void lt9611_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
static const struct reg_sequence reg_cfg[] = {
{ 0x8102, 0x12 },
{ 0x8123, 0x40 },
{ 0x8130, 0xea },
{ 0x8011, 0xfa },
};
if (!lt9611->sleep)
return;
regmap_multi_reg_write(lt9611->regmap,
reg_cfg, ARRAY_SIZE(reg_cfg));
lt9611->sleep = false;
}
static void
lt9611_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
lt9611_sleep_setup(lt9611);
}
static struct edid *lt9611_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
lt9611_power_on(lt9611);
return drm_do_get_edid(connector, lt9611_get_edid_block, lt9611);
}
static void lt9611_bridge_hpd_enable(struct drm_bridge *bridge)
{
struct lt9611 *lt9611 = bridge_to_lt9611(bridge);
lt9611_enable_hpd_interrupts(lt9611);
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
lt9611_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs lt9611_bridge_funcs = {
.attach = lt9611_bridge_attach,
.mode_valid = lt9611_bridge_mode_valid,
.detect = lt9611_bridge_detect,
.get_edid = lt9611_bridge_get_edid,
.hpd_enable = lt9611_bridge_hpd_enable,
.atomic_pre_enable = lt9611_bridge_atomic_pre_enable,
.atomic_enable = lt9611_bridge_atomic_enable,
.atomic_disable = lt9611_bridge_atomic_disable,
.atomic_post_disable = lt9611_bridge_atomic_post_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = lt9611_atomic_get_input_bus_fmts,
};
static int lt9611_parse_dt(struct device *dev,
struct lt9611 *lt9611)
{
lt9611->dsi0_node = of_graph_get_remote_node(dev->of_node, 0, -1);
if (!lt9611->dsi0_node) {
dev_err(lt9611->dev, "failed to get remote node for primary dsi\n");
return -ENODEV;
}
lt9611->dsi1_node = of_graph_get_remote_node(dev->of_node, 1, -1);
lt9611->ac_mode = of_property_read_bool(dev->of_node, "lt,ac-mode");
return drm_of_find_panel_or_bridge(dev->of_node, 2, -1, NULL, <9611->next_bridge);
}
static int lt9611_gpio_init(struct lt9611 *lt9611)
{
struct device *dev = lt9611->dev;
lt9611->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(lt9611->reset_gpio)) {
dev_err(dev, "failed to acquire reset gpio\n");
return PTR_ERR(lt9611->reset_gpio);
}
lt9611->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(lt9611->enable_gpio)) {
dev_err(dev, "failed to acquire enable gpio\n");
return PTR_ERR(lt9611->enable_gpio);
}
return 0;
}
static int lt9611_read_device_rev(struct lt9611 *lt9611)
{
unsigned int rev;
int ret;
regmap_write(lt9611->regmap, 0x80ee, 0x01);
ret = regmap_read(lt9611->regmap, 0x8002, &rev);
if (ret)
dev_err(lt9611->dev, "failed to read revision: %d\n", ret);
else
dev_info(lt9611->dev, "LT9611 revision: 0x%x\n", rev);
return ret;
}
static int lt9611_hdmi_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *fmt,
struct hdmi_codec_params *hparms)
{
struct lt9611 *lt9611 = data;
if (hparms->sample_rate == 48000)
regmap_write(lt9611->regmap, 0x840f, 0x2b);
else if (hparms->sample_rate == 96000)
regmap_write(lt9611->regmap, 0x840f, 0xab);
else
return -EINVAL;
regmap_write(lt9611->regmap, 0x8435, 0x00);
regmap_write(lt9611->regmap, 0x8436, 0x18);
regmap_write(lt9611->regmap, 0x8437, 0x00);
return 0;
}
static int lt9611_audio_startup(struct device *dev, void *data)
{
struct lt9611 *lt9611 = data;
regmap_write(lt9611->regmap, 0x82d6, 0x8c);
regmap_write(lt9611->regmap, 0x82d7, 0x04);
regmap_write(lt9611->regmap, 0x8406, 0x08);
regmap_write(lt9611->regmap, 0x8407, 0x10);
regmap_write(lt9611->regmap, 0x8434, 0xd5);
return 0;
}
static void lt9611_audio_shutdown(struct device *dev, void *data)
{
struct lt9611 *lt9611 = data;
regmap_write(lt9611->regmap, 0x8406, 0x00);
regmap_write(lt9611->regmap, 0x8407, 0x00);
}
static int lt9611_hdmi_i2s_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located as reg = <2>
* Then, it is sound port 0
*/
if (of_ep.port == 2)
return 0;
return -EINVAL;
}
static const struct hdmi_codec_ops lt9611_codec_ops = {
.hw_params = lt9611_hdmi_hw_params,
.audio_shutdown = lt9611_audio_shutdown,
.audio_startup = lt9611_audio_startup,
.get_dai_id = lt9611_hdmi_i2s_get_dai_id,
};
static struct hdmi_codec_pdata codec_data = {
.ops = <9611_codec_ops,
.max_i2s_channels = 8,
.i2s = 1,
};
static int lt9611_audio_init(struct device *dev, struct lt9611 *lt9611)
{
codec_data.data = lt9611;
lt9611->audio_pdev =
platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&codec_data, sizeof(codec_data));
return PTR_ERR_OR_ZERO(lt9611->audio_pdev);
}
static void lt9611_audio_exit(struct lt9611 *lt9611)
{
if (lt9611->audio_pdev) {
platform_device_unregister(lt9611->audio_pdev);
lt9611->audio_pdev = NULL;
}
}
static int lt9611_probe(struct i2c_client *client)
{
struct lt9611 *lt9611;
struct device *dev = &client->dev;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "device doesn't support I2C\n");
return -ENODEV;
}
lt9611 = devm_kzalloc(dev, sizeof(*lt9611), GFP_KERNEL);
if (!lt9611)
return -ENOMEM;
lt9611->dev = dev;
lt9611->client = client;
lt9611->sleep = false;
lt9611->regmap = devm_regmap_init_i2c(client, <9611_regmap_config);
if (IS_ERR(lt9611->regmap)) {
dev_err(lt9611->dev, "regmap i2c init failed\n");
return PTR_ERR(lt9611->regmap);
}
ret = lt9611_parse_dt(dev, lt9611);
if (ret) {
dev_err(dev, "failed to parse device tree\n");
return ret;
}
ret = lt9611_gpio_init(lt9611);
if (ret < 0)
goto err_of_put;
ret = lt9611_regulator_init(lt9611);
if (ret < 0)
goto err_of_put;
lt9611_assert_5v(lt9611);
ret = lt9611_regulator_enable(lt9611);
if (ret)
goto err_of_put;
lt9611_reset(lt9611);
ret = lt9611_read_device_rev(lt9611);
if (ret) {
dev_err(dev, "failed to read chip rev\n");
goto err_disable_regulators;
}
ret = devm_request_threaded_irq(dev, client->irq, NULL,
lt9611_irq_thread_handler,
IRQF_ONESHOT, "lt9611", lt9611);
if (ret) {
dev_err(dev, "failed to request irq\n");
goto err_disable_regulators;
}
i2c_set_clientdata(client, lt9611);
lt9611->bridge.funcs = <9611_bridge_funcs;
lt9611->bridge.of_node = client->dev.of_node;
lt9611->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID |
DRM_BRIDGE_OP_HPD | DRM_BRIDGE_OP_MODES;
lt9611->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
drm_bridge_add(<9611->bridge);
/* Attach primary DSI */
lt9611->dsi0 = lt9611_attach_dsi(lt9611, lt9611->dsi0_node);
if (IS_ERR(lt9611->dsi0)) {
ret = PTR_ERR(lt9611->dsi0);
goto err_remove_bridge;
}
/* Attach secondary DSI, if specified */
if (lt9611->dsi1_node) {
lt9611->dsi1 = lt9611_attach_dsi(lt9611, lt9611->dsi1_node);
if (IS_ERR(lt9611->dsi1)) {
ret = PTR_ERR(lt9611->dsi1);
goto err_remove_bridge;
}
}
lt9611_enable_hpd_interrupts(lt9611);
ret = lt9611_audio_init(dev, lt9611);
if (ret)
goto err_remove_bridge;
return 0;
err_remove_bridge:
drm_bridge_remove(<9611->bridge);
err_disable_regulators:
regulator_bulk_disable(ARRAY_SIZE(lt9611->supplies), lt9611->supplies);
err_of_put:
of_node_put(lt9611->dsi1_node);
of_node_put(lt9611->dsi0_node);
return ret;
}
static void lt9611_remove(struct i2c_client *client)
{
struct lt9611 *lt9611 = i2c_get_clientdata(client);
disable_irq(client->irq);
lt9611_audio_exit(lt9611);
drm_bridge_remove(<9611->bridge);
regulator_bulk_disable(ARRAY_SIZE(lt9611->supplies), lt9611->supplies);
of_node_put(lt9611->dsi1_node);
of_node_put(lt9611->dsi0_node);
}
static struct i2c_device_id lt9611_id[] = {
{ "lontium,lt9611", 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, lt9611_id);
static const struct of_device_id lt9611_match_table[] = {
{ .compatible = "lontium,lt9611" },
{ }
};
MODULE_DEVICE_TABLE(of, lt9611_match_table);
static struct i2c_driver lt9611_driver = {
.driver = {
.name = "lt9611",
.of_match_table = lt9611_match_table,
},
.probe = lt9611_probe,
.remove = lt9611_remove,
.id_table = lt9611_id,
};
module_i2c_driver(lt9611_driver);
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/lontium-lt9611.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* NXP PTN3460 DP/LVDS bridge driver
*
* Copyright (C) 2013 Google, Inc.
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define PTN3460_EDID_ADDR 0x0
#define PTN3460_EDID_EMULATION_ADDR 0x84
#define PTN3460_EDID_ENABLE_EMULATION 0
#define PTN3460_EDID_EMULATION_SELECTION 1
#define PTN3460_EDID_SRAM_LOAD_ADDR 0x85
struct ptn3460_bridge {
struct drm_connector connector;
struct i2c_client *client;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct gpio_desc *gpio_pd_n;
struct gpio_desc *gpio_rst_n;
u32 edid_emulation;
bool enabled;
};
static inline struct ptn3460_bridge *
bridge_to_ptn3460(struct drm_bridge *bridge)
{
return container_of(bridge, struct ptn3460_bridge, bridge);
}
static inline struct ptn3460_bridge *
connector_to_ptn3460(struct drm_connector *connector)
{
return container_of(connector, struct ptn3460_bridge, connector);
}
static int ptn3460_read_bytes(struct ptn3460_bridge *ptn_bridge, char addr,
u8 *buf, int len)
{
int ret;
ret = i2c_master_send(ptn_bridge->client, &addr, 1);
if (ret <= 0) {
DRM_ERROR("Failed to send i2c command, ret=%d\n", ret);
return ret;
}
ret = i2c_master_recv(ptn_bridge->client, buf, len);
if (ret <= 0) {
DRM_ERROR("Failed to recv i2c data, ret=%d\n", ret);
return ret;
}
return 0;
}
static int ptn3460_write_byte(struct ptn3460_bridge *ptn_bridge, char addr,
char val)
{
int ret;
char buf[2];
buf[0] = addr;
buf[1] = val;
ret = i2c_master_send(ptn_bridge->client, buf, ARRAY_SIZE(buf));
if (ret <= 0) {
DRM_ERROR("Failed to send i2c command, ret=%d\n", ret);
return ret;
}
return 0;
}
static int ptn3460_select_edid(struct ptn3460_bridge *ptn_bridge)
{
int ret;
char val;
/* Load the selected edid into SRAM (accessed at PTN3460_EDID_ADDR) */
ret = ptn3460_write_byte(ptn_bridge, PTN3460_EDID_SRAM_LOAD_ADDR,
ptn_bridge->edid_emulation);
if (ret) {
DRM_ERROR("Failed to transfer EDID to sram, ret=%d\n", ret);
return ret;
}
/* Enable EDID emulation and select the desired EDID */
val = 1 << PTN3460_EDID_ENABLE_EMULATION |
ptn_bridge->edid_emulation << PTN3460_EDID_EMULATION_SELECTION;
ret = ptn3460_write_byte(ptn_bridge, PTN3460_EDID_EMULATION_ADDR, val);
if (ret) {
DRM_ERROR("Failed to write EDID value, ret=%d\n", ret);
return ret;
}
return 0;
}
static void ptn3460_pre_enable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
int ret;
if (ptn_bridge->enabled)
return;
gpiod_set_value(ptn_bridge->gpio_pd_n, 1);
gpiod_set_value(ptn_bridge->gpio_rst_n, 0);
usleep_range(10, 20);
gpiod_set_value(ptn_bridge->gpio_rst_n, 1);
/*
* There's a bug in the PTN chip where it falsely asserts hotplug before
* it is fully functional. We're forced to wait for the maximum start up
* time specified in the chip's datasheet to make sure we're really up.
*/
msleep(90);
ret = ptn3460_select_edid(ptn_bridge);
if (ret)
DRM_ERROR("Select EDID failed ret=%d\n", ret);
ptn_bridge->enabled = true;
}
static void ptn3460_disable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
if (!ptn_bridge->enabled)
return;
ptn_bridge->enabled = false;
gpiod_set_value(ptn_bridge->gpio_rst_n, 1);
gpiod_set_value(ptn_bridge->gpio_pd_n, 0);
}
static struct edid *ptn3460_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
bool power_off;
u8 *edid;
int ret;
power_off = !ptn_bridge->enabled;
ptn3460_pre_enable(&ptn_bridge->bridge);
edid = kmalloc(EDID_LENGTH, GFP_KERNEL);
if (!edid) {
DRM_ERROR("Failed to allocate EDID\n");
goto out;
}
ret = ptn3460_read_bytes(ptn_bridge, PTN3460_EDID_ADDR, edid,
EDID_LENGTH);
if (ret) {
kfree(edid);
edid = NULL;
goto out;
}
out:
if (power_off)
ptn3460_disable(&ptn_bridge->bridge);
return (struct edid *)edid;
}
static int ptn3460_connector_get_modes(struct drm_connector *connector)
{
struct ptn3460_bridge *ptn_bridge = connector_to_ptn3460(connector);
struct edid *edid;
int num_modes;
edid = ptn3460_get_edid(&ptn_bridge->bridge, connector);
drm_connector_update_edid_property(connector, edid);
num_modes = drm_add_edid_modes(connector, edid);
kfree(edid);
return num_modes;
}
static const struct drm_connector_helper_funcs ptn3460_connector_helper_funcs = {
.get_modes = ptn3460_connector_get_modes,
};
static const struct drm_connector_funcs ptn3460_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int ptn3460_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
int ret;
/* Let this driver create connector if requested */
ret = drm_bridge_attach(bridge->encoder, ptn_bridge->panel_bridge,
bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret < 0)
return ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
ptn_bridge->connector.polled = DRM_CONNECTOR_POLL_HPD;
ret = drm_connector_init(bridge->dev, &ptn_bridge->connector,
&ptn3460_connector_funcs, DRM_MODE_CONNECTOR_LVDS);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(&ptn_bridge->connector,
&ptn3460_connector_helper_funcs);
drm_connector_register(&ptn_bridge->connector);
drm_connector_attach_encoder(&ptn_bridge->connector,
bridge->encoder);
drm_helper_hpd_irq_event(ptn_bridge->connector.dev);
return ret;
}
static const struct drm_bridge_funcs ptn3460_bridge_funcs = {
.pre_enable = ptn3460_pre_enable,
.disable = ptn3460_disable,
.attach = ptn3460_bridge_attach,
.get_edid = ptn3460_get_edid,
};
static int ptn3460_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct ptn3460_bridge *ptn_bridge;
struct drm_bridge *panel_bridge;
int ret;
ptn_bridge = devm_kzalloc(dev, sizeof(*ptn_bridge), GFP_KERNEL);
if (!ptn_bridge) {
return -ENOMEM;
}
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ptn_bridge->panel_bridge = panel_bridge;
ptn_bridge->client = client;
ptn_bridge->gpio_pd_n = devm_gpiod_get(&client->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(ptn_bridge->gpio_pd_n)) {
ret = PTR_ERR(ptn_bridge->gpio_pd_n);
dev_err(dev, "cannot get gpio_pd_n %d\n", ret);
return ret;
}
/*
* Request the reset pin low to avoid the bridge being
* initialized prematurely
*/
ptn_bridge->gpio_rst_n = devm_gpiod_get(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(ptn_bridge->gpio_rst_n)) {
ret = PTR_ERR(ptn_bridge->gpio_rst_n);
DRM_ERROR("cannot get gpio_rst_n %d\n", ret);
return ret;
}
ret = of_property_read_u32(dev->of_node, "edid-emulation",
&ptn_bridge->edid_emulation);
if (ret) {
dev_err(dev, "Can't read EDID emulation value\n");
return ret;
}
ptn_bridge->bridge.funcs = &ptn3460_bridge_funcs;
ptn_bridge->bridge.ops = DRM_BRIDGE_OP_EDID;
ptn_bridge->bridge.type = DRM_MODE_CONNECTOR_LVDS;
ptn_bridge->bridge.of_node = dev->of_node;
drm_bridge_add(&ptn_bridge->bridge);
i2c_set_clientdata(client, ptn_bridge);
return 0;
}
static void ptn3460_remove(struct i2c_client *client)
{
struct ptn3460_bridge *ptn_bridge = i2c_get_clientdata(client);
drm_bridge_remove(&ptn_bridge->bridge);
}
static const struct i2c_device_id ptn3460_i2c_table[] = {
{"ptn3460", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ptn3460_i2c_table);
static const struct of_device_id ptn3460_match[] = {
{ .compatible = "nxp,ptn3460" },
{},
};
MODULE_DEVICE_TABLE(of, ptn3460_match);
static struct i2c_driver ptn3460_driver = {
.id_table = ptn3460_i2c_table,
.probe = ptn3460_probe,
.remove = ptn3460_remove,
.driver = {
.name = "nxp,ptn3460",
.of_match_table = ptn3460_match,
},
};
module_i2c_driver(ptn3460_driver);
MODULE_AUTHOR("Sean Paul <[email protected]>");
MODULE_DESCRIPTION("NXP ptn3460 eDP-LVDS converter driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/nxp-ptn3460.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022 Marek Vasut <[email protected]>
*/
#include <linux/clk.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#define LDB_CTRL_CH0_ENABLE BIT(0)
#define LDB_CTRL_CH0_DI_SELECT BIT(1)
#define LDB_CTRL_CH1_ENABLE BIT(2)
#define LDB_CTRL_CH1_DI_SELECT BIT(3)
#define LDB_CTRL_SPLIT_MODE BIT(4)
#define LDB_CTRL_CH0_DATA_WIDTH BIT(5)
#define LDB_CTRL_CH0_BIT_MAPPING BIT(6)
#define LDB_CTRL_CH1_DATA_WIDTH BIT(7)
#define LDB_CTRL_CH1_BIT_MAPPING BIT(8)
#define LDB_CTRL_DI0_VSYNC_POLARITY BIT(9)
#define LDB_CTRL_DI1_VSYNC_POLARITY BIT(10)
#define LDB_CTRL_REG_CH0_FIFO_RESET BIT(11)
#define LDB_CTRL_REG_CH1_FIFO_RESET BIT(12)
#define LDB_CTRL_ASYNC_FIFO_ENABLE BIT(24)
#define LDB_CTRL_ASYNC_FIFO_THRESHOLD_MASK GENMASK(27, 25)
#define LVDS_CTRL_CH0_EN BIT(0)
#define LVDS_CTRL_CH1_EN BIT(1)
/*
* LVDS_CTRL_LVDS_EN bit is poorly named in i.MX93 reference manual.
* Clear it to enable LVDS and set it to disable LVDS.
*/
#define LVDS_CTRL_LVDS_EN BIT(1)
#define LVDS_CTRL_VBG_EN BIT(2)
#define LVDS_CTRL_HS_EN BIT(3)
#define LVDS_CTRL_PRE_EMPH_EN BIT(4)
#define LVDS_CTRL_PRE_EMPH_ADJ(n) (((n) & 0x7) << 5)
#define LVDS_CTRL_PRE_EMPH_ADJ_MASK GENMASK(7, 5)
#define LVDS_CTRL_CM_ADJ(n) (((n) & 0x7) << 8)
#define LVDS_CTRL_CM_ADJ_MASK GENMASK(10, 8)
#define LVDS_CTRL_CC_ADJ(n) (((n) & 0x7) << 11)
#define LVDS_CTRL_CC_ADJ_MASK GENMASK(13, 11)
#define LVDS_CTRL_SLEW_ADJ(n) (((n) & 0x7) << 14)
#define LVDS_CTRL_SLEW_ADJ_MASK GENMASK(16, 14)
#define LVDS_CTRL_VBG_ADJ(n) (((n) & 0x7) << 17)
#define LVDS_CTRL_VBG_ADJ_MASK GENMASK(19, 17)
enum fsl_ldb_devtype {
IMX6SX_LDB,
IMX8MP_LDB,
IMX93_LDB,
};
struct fsl_ldb_devdata {
u32 ldb_ctrl;
u32 lvds_ctrl;
bool lvds_en_bit;
bool single_ctrl_reg;
};
static const struct fsl_ldb_devdata fsl_ldb_devdata[] = {
[IMX6SX_LDB] = {
.ldb_ctrl = 0x18,
.single_ctrl_reg = true,
},
[IMX8MP_LDB] = {
.ldb_ctrl = 0x5c,
.lvds_ctrl = 0x128,
},
[IMX93_LDB] = {
.ldb_ctrl = 0x20,
.lvds_ctrl = 0x24,
.lvds_en_bit = true,
},
};
struct fsl_ldb {
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct clk *clk;
struct regmap *regmap;
const struct fsl_ldb_devdata *devdata;
bool ch0_enabled;
bool ch1_enabled;
};
static bool fsl_ldb_is_dual(const struct fsl_ldb *fsl_ldb)
{
return (fsl_ldb->ch0_enabled && fsl_ldb->ch1_enabled);
}
static inline struct fsl_ldb *to_fsl_ldb(struct drm_bridge *bridge)
{
return container_of(bridge, struct fsl_ldb, bridge);
}
static unsigned long fsl_ldb_link_frequency(struct fsl_ldb *fsl_ldb, int clock)
{
if (fsl_ldb_is_dual(fsl_ldb))
return clock * 3500;
else
return clock * 7000;
}
static int fsl_ldb_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct fsl_ldb *fsl_ldb = to_fsl_ldb(bridge);
return drm_bridge_attach(bridge->encoder, fsl_ldb->panel_bridge,
bridge, flags);
}
static void fsl_ldb_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct fsl_ldb *fsl_ldb = to_fsl_ldb(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
const struct drm_bridge_state *bridge_state;
const struct drm_crtc_state *crtc_state;
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
unsigned long configured_link_freq;
unsigned long requested_link_freq;
bool lvds_format_24bpp;
bool lvds_format_jeida;
u32 reg;
/* Get the LVDS format from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
switch (bridge_state->output_bus_cfg.format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
lvds_format_24bpp = false;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
lvds_format_24bpp = true;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
lvds_format_24bpp = true;
lvds_format_jeida = false;
break;
default:
/*
* Some bridges still don't set the correct LVDS bus pixel
* format, use SPWG24 default format until those are fixed.
*/
lvds_format_24bpp = true;
lvds_format_jeida = false;
dev_warn(fsl_ldb->dev,
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
bridge_state->output_bus_cfg.format);
break;
}
/*
* Retrieve the CRTC adjusted mode. This requires a little dance to go
* from the bridge to the encoder, to the connector and to the CRTC.
*/
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
mode = &crtc_state->adjusted_mode;
requested_link_freq = fsl_ldb_link_frequency(fsl_ldb, mode->clock);
clk_set_rate(fsl_ldb->clk, requested_link_freq);
configured_link_freq = clk_get_rate(fsl_ldb->clk);
if (configured_link_freq != requested_link_freq)
dev_warn(fsl_ldb->dev, "Configured LDB clock (%lu Hz) does not match requested LVDS clock: %lu Hz\n",
configured_link_freq,
requested_link_freq);
clk_prepare_enable(fsl_ldb->clk);
/* Program LDB_CTRL */
reg = (fsl_ldb->ch0_enabled ? LDB_CTRL_CH0_ENABLE : 0) |
(fsl_ldb->ch1_enabled ? LDB_CTRL_CH1_ENABLE : 0) |
(fsl_ldb_is_dual(fsl_ldb) ? LDB_CTRL_SPLIT_MODE : 0);
if (lvds_format_24bpp)
reg |= (fsl_ldb->ch0_enabled ? LDB_CTRL_CH0_DATA_WIDTH : 0) |
(fsl_ldb->ch1_enabled ? LDB_CTRL_CH1_DATA_WIDTH : 0);
if (lvds_format_jeida)
reg |= (fsl_ldb->ch0_enabled ? LDB_CTRL_CH0_BIT_MAPPING : 0) |
(fsl_ldb->ch1_enabled ? LDB_CTRL_CH1_BIT_MAPPING : 0);
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
reg |= (fsl_ldb->ch0_enabled ? LDB_CTRL_DI0_VSYNC_POLARITY : 0) |
(fsl_ldb->ch1_enabled ? LDB_CTRL_DI1_VSYNC_POLARITY : 0);
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->ldb_ctrl, reg);
if (fsl_ldb->devdata->single_ctrl_reg)
return;
/* Program LVDS_CTRL */
reg = LVDS_CTRL_CC_ADJ(2) | LVDS_CTRL_PRE_EMPH_EN |
LVDS_CTRL_PRE_EMPH_ADJ(3) | LVDS_CTRL_VBG_EN;
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->lvds_ctrl, reg);
/* Wait for VBG to stabilize. */
usleep_range(15, 20);
reg |= (fsl_ldb->ch0_enabled ? LVDS_CTRL_CH0_EN : 0) |
(fsl_ldb->ch1_enabled ? LVDS_CTRL_CH1_EN : 0);
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->lvds_ctrl, reg);
}
static void fsl_ldb_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct fsl_ldb *fsl_ldb = to_fsl_ldb(bridge);
/* Stop channel(s). */
if (fsl_ldb->devdata->lvds_en_bit)
/* Set LVDS_CTRL_LVDS_EN bit to disable. */
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->lvds_ctrl,
LVDS_CTRL_LVDS_EN);
else
if (!fsl_ldb->devdata->single_ctrl_reg)
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->lvds_ctrl, 0);
regmap_write(fsl_ldb->regmap, fsl_ldb->devdata->ldb_ctrl, 0);
clk_disable_unprepare(fsl_ldb->clk);
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
fsl_ldb_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = MAX_INPUT_SEL_FORMATS;
return input_fmts;
}
static enum drm_mode_status
fsl_ldb_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct fsl_ldb *fsl_ldb = to_fsl_ldb(bridge);
if (mode->clock > (fsl_ldb_is_dual(fsl_ldb) ? 160000 : 80000))
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_bridge_funcs funcs = {
.attach = fsl_ldb_attach,
.atomic_enable = fsl_ldb_atomic_enable,
.atomic_disable = fsl_ldb_atomic_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = fsl_ldb_atomic_get_input_bus_fmts,
.atomic_reset = drm_atomic_helper_bridge_reset,
.mode_valid = fsl_ldb_mode_valid,
};
static int fsl_ldb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *panel_node;
struct device_node *remote1, *remote2;
struct drm_panel *panel;
struct fsl_ldb *fsl_ldb;
int dual_link;
fsl_ldb = devm_kzalloc(dev, sizeof(*fsl_ldb), GFP_KERNEL);
if (!fsl_ldb)
return -ENOMEM;
fsl_ldb->devdata = of_device_get_match_data(dev);
if (!fsl_ldb->devdata)
return -EINVAL;
fsl_ldb->dev = &pdev->dev;
fsl_ldb->bridge.funcs = &funcs;
fsl_ldb->bridge.of_node = dev->of_node;
fsl_ldb->clk = devm_clk_get(dev, "ldb");
if (IS_ERR(fsl_ldb->clk))
return PTR_ERR(fsl_ldb->clk);
fsl_ldb->regmap = syscon_node_to_regmap(dev->of_node->parent);
if (IS_ERR(fsl_ldb->regmap))
return PTR_ERR(fsl_ldb->regmap);
/* Locate the remote ports and the panel node */
remote1 = of_graph_get_remote_node(dev->of_node, 1, 0);
remote2 = of_graph_get_remote_node(dev->of_node, 2, 0);
fsl_ldb->ch0_enabled = (remote1 != NULL);
fsl_ldb->ch1_enabled = (remote2 != NULL);
panel_node = of_node_get(remote1 ? remote1 : remote2);
of_node_put(remote1);
of_node_put(remote2);
if (!fsl_ldb->ch0_enabled && !fsl_ldb->ch1_enabled) {
of_node_put(panel_node);
return dev_err_probe(dev, -ENXIO, "No panel node found");
}
dev_dbg(dev, "Using %s\n",
fsl_ldb_is_dual(fsl_ldb) ? "dual-link mode" :
fsl_ldb->ch0_enabled ? "channel 0" : "channel 1");
panel = of_drm_find_panel(panel_node);
of_node_put(panel_node);
if (IS_ERR(panel))
return PTR_ERR(panel);
fsl_ldb->panel_bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(fsl_ldb->panel_bridge))
return PTR_ERR(fsl_ldb->panel_bridge);
if (fsl_ldb_is_dual(fsl_ldb)) {
struct device_node *port1, *port2;
port1 = of_graph_get_port_by_id(dev->of_node, 1);
port2 = of_graph_get_port_by_id(dev->of_node, 2);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port1, port2);
of_node_put(port1);
of_node_put(port2);
if (dual_link < 0)
return dev_err_probe(dev, dual_link,
"Error getting dual link configuration\n");
/* Only DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS is supported */
if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
dev_err(dev, "LVDS channel pixel swap not supported.\n");
return -EINVAL;
}
}
platform_set_drvdata(pdev, fsl_ldb);
drm_bridge_add(&fsl_ldb->bridge);
return 0;
}
static void fsl_ldb_remove(struct platform_device *pdev)
{
struct fsl_ldb *fsl_ldb = platform_get_drvdata(pdev);
drm_bridge_remove(&fsl_ldb->bridge);
}
static const struct of_device_id fsl_ldb_match[] = {
{ .compatible = "fsl,imx6sx-ldb",
.data = &fsl_ldb_devdata[IMX6SX_LDB], },
{ .compatible = "fsl,imx8mp-ldb",
.data = &fsl_ldb_devdata[IMX8MP_LDB], },
{ .compatible = "fsl,imx93-ldb",
.data = &fsl_ldb_devdata[IMX93_LDB], },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, fsl_ldb_match);
static struct platform_driver fsl_ldb_driver = {
.probe = fsl_ldb_probe,
.remove_new = fsl_ldb_remove,
.driver = {
.name = "fsl-ldb",
.of_match_table = fsl_ldb_match,
},
};
module_platform_driver(fsl_ldb_driver);
MODULE_AUTHOR("Marek Vasut <[email protected]>");
MODULE_DESCRIPTION("Freescale i.MX8MP LDB");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/fsl-ldb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TC358767/TC358867/TC9595 DSI/DPI-to-DPI/(e)DP bridge driver
*
* The TC358767/TC358867/TC9595 can operate in multiple modes.
* All modes are supported -- DPI->(e)DP / DSI->DPI / DSI->(e)DP .
*
* Copyright (C) 2016 CogentEmbedded Inc
* Author: Andrey Gusakov <[email protected]>
*
* Copyright (C) 2016 Pengutronix, Philipp Zabel <[email protected]>
*
* Copyright (C) 2016 Zodiac Inflight Innovations
*
* Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c
*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* Registers */
/* PPI layer registers */
#define PPI_STARTPPI 0x0104 /* START control bit */
#define PPI_LPTXTIMECNT 0x0114 /* LPTX timing signal */
#define LPX_PERIOD 3
#define PPI_LANEENABLE 0x0134
#define PPI_TX_RX_TA 0x013c
#define TTA_GET 0x40000
#define TTA_SURE 6
#define PPI_D0S_ATMR 0x0144
#define PPI_D1S_ATMR 0x0148
#define PPI_D0S_CLRSIPOCOUNT 0x0164 /* Assertion timer for Lane 0 */
#define PPI_D1S_CLRSIPOCOUNT 0x0168 /* Assertion timer for Lane 1 */
#define PPI_D2S_CLRSIPOCOUNT 0x016c /* Assertion timer for Lane 2 */
#define PPI_D3S_CLRSIPOCOUNT 0x0170 /* Assertion timer for Lane 3 */
#define PPI_START_FUNCTION BIT(0)
/* DSI layer registers */
#define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX */
#define DSI_LANEENABLE 0x0210 /* Enables each lane */
#define DSI_RX_START BIT(0)
/* Lane enable PPI and DSI register bits */
#define LANEENABLE_CLEN BIT(0)
#define LANEENABLE_L0EN BIT(1)
#define LANEENABLE_L1EN BIT(2)
#define LANEENABLE_L2EN BIT(1)
#define LANEENABLE_L3EN BIT(2)
/* Display Parallel Input Interface */
#define DPIPXLFMT 0x0440
#define VS_POL_ACTIVE_LOW (1 << 10)
#define HS_POL_ACTIVE_LOW (1 << 9)
#define DE_POL_ACTIVE_HIGH (0 << 8)
#define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */
#define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */
#define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */
#define DPI_BPP_RGB888 (0 << 0)
#define DPI_BPP_RGB666 (1 << 0)
#define DPI_BPP_RGB565 (2 << 0)
/* Display Parallel Output Interface */
#define POCTRL 0x0448
#define POCTRL_S2P BIT(7)
#define POCTRL_PCLK_POL BIT(3)
#define POCTRL_VS_POL BIT(2)
#define POCTRL_HS_POL BIT(1)
#define POCTRL_DE_POL BIT(0)
/* Video Path */
#define VPCTRL0 0x0450
#define VSDELAY GENMASK(31, 20)
#define OPXLFMT_RGB666 (0 << 8)
#define OPXLFMT_RGB888 (1 << 8)
#define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */
#define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */
#define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */
#define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */
#define HTIM01 0x0454
#define HPW GENMASK(8, 0)
#define HBPR GENMASK(24, 16)
#define HTIM02 0x0458
#define HDISPR GENMASK(10, 0)
#define HFPR GENMASK(24, 16)
#define VTIM01 0x045c
#define VSPR GENMASK(7, 0)
#define VBPR GENMASK(23, 16)
#define VTIM02 0x0460
#define VFPR GENMASK(23, 16)
#define VDISPR GENMASK(10, 0)
#define VFUEN0 0x0464
#define VFUEN BIT(0) /* Video Frame Timing Upload */
/* System */
#define TC_IDREG 0x0500
#define SYSSTAT 0x0508
#define SYSCTRL 0x0510
#define DP0_AUDSRC_NO_INPUT (0 << 3)
#define DP0_AUDSRC_I2S_RX (1 << 3)
#define DP0_VIDSRC_NO_INPUT (0 << 0)
#define DP0_VIDSRC_DSI_RX (1 << 0)
#define DP0_VIDSRC_DPI_RX (2 << 0)
#define DP0_VIDSRC_COLOR_BAR (3 << 0)
#define SYSRSTENB 0x050c
#define ENBI2C (1 << 0)
#define ENBLCD0 (1 << 2)
#define ENBBM (1 << 3)
#define ENBDSIRX (1 << 4)
#define ENBREG (1 << 5)
#define ENBHDCP (1 << 8)
#define GPIOM 0x0540
#define GPIOC 0x0544
#define GPIOO 0x0548
#define GPIOI 0x054c
#define INTCTL_G 0x0560
#define INTSTS_G 0x0564
#define INT_SYSERR BIT(16)
#define INT_GPIO_H(x) (1 << (x == 0 ? 2 : 10))
#define INT_GPIO_LC(x) (1 << (x == 0 ? 3 : 11))
#define INT_GP0_LCNT 0x0584
#define INT_GP1_LCNT 0x0588
/* Control */
#define DP0CTL 0x0600
#define VID_MN_GEN BIT(6) /* Auto-generate M/N values */
#define EF_EN BIT(5) /* Enable Enhanced Framing */
#define VID_EN BIT(1) /* Video transmission enable */
#define DP_EN BIT(0) /* Enable DPTX function */
/* Clocks */
#define DP0_VIDMNGEN0 0x0610
#define DP0_VIDMNGEN1 0x0614
#define DP0_VMNGENSTATUS 0x0618
/* Main Channel */
#define DP0_SECSAMPLE 0x0640
#define DP0_VIDSYNCDELAY 0x0644
#define VID_SYNC_DLY GENMASK(15, 0)
#define THRESH_DLY GENMASK(31, 16)
#define DP0_TOTALVAL 0x0648
#define H_TOTAL GENMASK(15, 0)
#define V_TOTAL GENMASK(31, 16)
#define DP0_STARTVAL 0x064c
#define H_START GENMASK(15, 0)
#define V_START GENMASK(31, 16)
#define DP0_ACTIVEVAL 0x0650
#define H_ACT GENMASK(15, 0)
#define V_ACT GENMASK(31, 16)
#define DP0_SYNCVAL 0x0654
#define VS_WIDTH GENMASK(30, 16)
#define HS_WIDTH GENMASK(14, 0)
#define SYNCVAL_HS_POL_ACTIVE_LOW (1 << 15)
#define SYNCVAL_VS_POL_ACTIVE_LOW (1 << 31)
#define DP0_MISC 0x0658
#define TU_SIZE_RECOMMENDED (63) /* LSCLK cycles per TU */
#define MAX_TU_SYMBOL GENMASK(28, 23)
#define TU_SIZE GENMASK(21, 16)
#define BPC_6 (0 << 5)
#define BPC_8 (1 << 5)
/* AUX channel */
#define DP0_AUXCFG0 0x0660
#define DP0_AUXCFG0_BSIZE GENMASK(11, 8)
#define DP0_AUXCFG0_ADDR_ONLY BIT(4)
#define DP0_AUXCFG1 0x0664
#define AUX_RX_FILTER_EN BIT(16)
#define DP0_AUXADDR 0x0668
#define DP0_AUXWDATA(i) (0x066c + (i) * 4)
#define DP0_AUXRDATA(i) (0x067c + (i) * 4)
#define DP0_AUXSTATUS 0x068c
#define AUX_BYTES GENMASK(15, 8)
#define AUX_STATUS GENMASK(7, 4)
#define AUX_TIMEOUT BIT(1)
#define AUX_BUSY BIT(0)
#define DP0_AUXI2CADR 0x0698
/* Link Training */
#define DP0_SRCCTRL 0x06a0
#define DP0_SRCCTRL_SCRMBLDIS BIT(13)
#define DP0_SRCCTRL_EN810B BIT(12)
#define DP0_SRCCTRL_NOTP (0 << 8)
#define DP0_SRCCTRL_TP1 (1 << 8)
#define DP0_SRCCTRL_TP2 (2 << 8)
#define DP0_SRCCTRL_LANESKEW BIT(7)
#define DP0_SRCCTRL_SSCG BIT(3)
#define DP0_SRCCTRL_LANES_1 (0 << 2)
#define DP0_SRCCTRL_LANES_2 (1 << 2)
#define DP0_SRCCTRL_BW27 (1 << 1)
#define DP0_SRCCTRL_BW162 (0 << 1)
#define DP0_SRCCTRL_AUTOCORRECT BIT(0)
#define DP0_LTSTAT 0x06d0
#define LT_LOOPDONE BIT(13)
#define LT_STATUS_MASK (0x1f << 8)
#define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4)
#define LT_INTERLANE_ALIGN_DONE BIT(3)
#define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS)
#define DP0_SNKLTCHGREQ 0x06d4
#define DP0_LTLOOPCTRL 0x06d8
#define DP0_SNKLTCTRL 0x06e4
#define DP1_SRCCTRL 0x07a0
/* PHY */
#define DP_PHY_CTRL 0x0800
#define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */
#define BGREN BIT(25) /* AUX PHY BGR Enable */
#define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */
#define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */
#define PHY_RDY BIT(16) /* PHY Main Channels Ready */
#define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */
#define PHY_2LANE BIT(2) /* PHY Enable 2 lanes */
#define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */
#define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */
/* PLL */
#define DP0_PLLCTRL 0x0900
#define DP1_PLLCTRL 0x0904 /* not defined in DS */
#define PXL_PLLCTRL 0x0908
#define PLLUPDATE BIT(2)
#define PLLBYP BIT(1)
#define PLLEN BIT(0)
#define PXL_PLLPARAM 0x0914
#define IN_SEL_REFCLK (0 << 14)
#define SYS_PLLPARAM 0x0918
#define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */
#define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */
#define REF_FREQ_26M (2 << 8) /* 26 MHz */
#define REF_FREQ_13M (3 << 8) /* 13 MHz */
#define SYSCLK_SEL_LSCLK (0 << 4)
#define LSCLK_DIV_1 (0 << 0)
#define LSCLK_DIV_2 (1 << 0)
/* Test & Debug */
#define TSTCTL 0x0a00
#define COLOR_R GENMASK(31, 24)
#define COLOR_G GENMASK(23, 16)
#define COLOR_B GENMASK(15, 8)
#define ENI2CFILTER BIT(4)
#define COLOR_BAR_MODE GENMASK(1, 0)
#define COLOR_BAR_MODE_BARS 2
#define PLL_DBG 0x0a04
static bool tc_test_pattern;
module_param_named(test, tc_test_pattern, bool, 0644);
struct tc_edp_link {
u8 dpcd[DP_RECEIVER_CAP_SIZE];
unsigned int rate;
u8 num_lanes;
u8 assr;
bool scrambler_dis;
bool spread;
};
struct tc_data {
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct drm_connector connector;
struct mipi_dsi_device *dsi;
/* link settings */
struct tc_edp_link link;
/* current mode */
struct drm_display_mode mode;
u32 rev;
u8 assr;
struct gpio_desc *sd_gpio;
struct gpio_desc *reset_gpio;
struct clk *refclk;
/* do we have IRQ */
bool have_irq;
/* Input connector type, DSI and not DPI. */
bool input_connector_dsi;
/* HPD pin number (0 or 1) or -ENODEV */
int hpd_pin;
};
static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a)
{
return container_of(a, struct tc_data, aux);
}
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static inline struct tc_data *connector_to_tc(struct drm_connector *c)
{
return container_of(c, struct tc_data, connector);
}
static inline int tc_poll_timeout(struct tc_data *tc, unsigned int addr,
unsigned int cond_mask,
unsigned int cond_value,
unsigned long sleep_us, u64 timeout_us)
{
unsigned int val;
return regmap_read_poll_timeout(tc->regmap, addr, val,
(val & cond_mask) == cond_value,
sleep_us, timeout_us);
}
static int tc_aux_wait_busy(struct tc_data *tc)
{
return tc_poll_timeout(tc, DP0_AUXSTATUS, AUX_BUSY, 0, 100, 100000);
}
static int tc_aux_write_data(struct tc_data *tc, const void *data,
size_t size)
{
u32 auxwdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)] = { 0 };
int ret, count = ALIGN(size, sizeof(u32));
memcpy(auxwdata, data, size);
ret = regmap_raw_write(tc->regmap, DP0_AUXWDATA(0), auxwdata, count);
if (ret)
return ret;
return size;
}
static int tc_aux_read_data(struct tc_data *tc, void *data, size_t size)
{
u32 auxrdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)];
int ret, count = ALIGN(size, sizeof(u32));
ret = regmap_raw_read(tc->regmap, DP0_AUXRDATA(0), auxrdata, count);
if (ret)
return ret;
memcpy(data, auxrdata, size);
return size;
}
static u32 tc_auxcfg0(struct drm_dp_aux_msg *msg, size_t size)
{
u32 auxcfg0 = msg->request;
if (size)
auxcfg0 |= FIELD_PREP(DP0_AUXCFG0_BSIZE, size - 1);
else
auxcfg0 |= DP0_AUXCFG0_ADDR_ONLY;
return auxcfg0;
}
static ssize_t tc_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct tc_data *tc = aux_to_tc(aux);
size_t size = min_t(size_t, DP_AUX_MAX_PAYLOAD_BYTES - 1, msg->size);
u8 request = msg->request & ~DP_AUX_I2C_MOT;
u32 auxstatus;
int ret;
ret = tc_aux_wait_busy(tc);
if (ret)
return ret;
switch (request) {
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
break;
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
if (size) {
ret = tc_aux_write_data(tc, msg->buffer, size);
if (ret < 0)
return ret;
}
break;
default:
return -EINVAL;
}
/* Store address */
ret = regmap_write(tc->regmap, DP0_AUXADDR, msg->address);
if (ret)
return ret;
/* Start transfer */
ret = regmap_write(tc->regmap, DP0_AUXCFG0, tc_auxcfg0(msg, size));
if (ret)
return ret;
ret = tc_aux_wait_busy(tc);
if (ret)
return ret;
ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &auxstatus);
if (ret)
return ret;
if (auxstatus & AUX_TIMEOUT)
return -ETIMEDOUT;
/*
* For some reason address-only DP_AUX_I2C_WRITE (MOT), still
* reports 1 byte transferred in its status. To deal we that
* we ignore aux_bytes field if we know that this was an
* address-only transfer
*/
if (size)
size = FIELD_GET(AUX_BYTES, auxstatus);
msg->reply = FIELD_GET(AUX_STATUS, auxstatus);
switch (request) {
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
if (size)
return tc_aux_read_data(tc, msg->buffer, size);
break;
}
return size;
}
static const char * const training_pattern1_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Max voltage reached error",
"Loop counter expired error",
"res", "res", "res"
};
static const char * const training_pattern2_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Clock recovery failed error",
"Loop counter expired error",
"res", "res", "res"
};
static u32 tc_srcctrl(struct tc_data *tc)
{
/*
* No training pattern, skew lane 1 data by two LSCLK cycles with
* respect to lane 0 data, AutoCorrect Mode = 0
*/
u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW | DP0_SRCCTRL_EN810B;
if (tc->link.scrambler_dis)
reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */
if (tc->link.spread)
reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */
if (tc->link.num_lanes == 2)
reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */
if (tc->link.rate != 162000)
reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */
return reg;
}
static int tc_pllupdate(struct tc_data *tc, unsigned int pllctrl)
{
int ret;
ret = regmap_write(tc->regmap, pllctrl, PLLUPDATE | PLLEN);
if (ret)
return ret;
/* Wait for PLL to lock: up to 7.5 ms, depending on refclk */
usleep_range(15000, 20000);
return 0;
}
static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock)
{
int ret;
int i_pre, best_pre = 1;
int i_post, best_post = 1;
int div, best_div = 1;
int mul, best_mul = 1;
int delta, best_delta;
int ext_div[] = {1, 2, 3, 5, 7};
int clk_min, clk_max;
int best_pixelclock = 0;
int vco_hi = 0;
u32 pxl_pllparam;
/*
* refclk * mul / (ext_pre_div * pre_div) should be in range:
* - DPI ..... 0 to 100 MHz
* - (e)DP ... 150 to 650 MHz
*/
if (tc->bridge.type == DRM_MODE_CONNECTOR_DPI) {
clk_min = 0;
clk_max = 100000000;
} else {
clk_min = 150000000;
clk_max = 650000000;
}
dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock,
refclk);
best_delta = pixelclock;
/* Loop over all possible ext_divs, skipping invalid configurations */
for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) {
/*
* refclk / ext_pre_div should be in the 1 to 200 MHz range.
* We don't allow any refclk > 200 MHz, only check lower bounds.
*/
if (refclk / ext_div[i_pre] < 1000000)
continue;
for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) {
for (div = 1; div <= 16; div++) {
u32 clk;
u64 tmp;
tmp = pixelclock * ext_div[i_pre] *
ext_div[i_post] * div;
do_div(tmp, refclk);
mul = tmp;
/* Check limits */
if ((mul < 1) || (mul > 128))
continue;
clk = (refclk / ext_div[i_pre] / div) * mul;
if ((clk > clk_max) || (clk < clk_min))
continue;
clk = clk / ext_div[i_post];
delta = clk - pixelclock;
if (abs(delta) < abs(best_delta)) {
best_pre = i_pre;
best_post = i_post;
best_div = div;
best_mul = mul;
best_delta = delta;
best_pixelclock = clk;
}
}
}
}
if (best_pixelclock == 0) {
dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n",
pixelclock);
return -EINVAL;
}
dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock,
best_delta);
dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk,
ext_div[best_pre], best_div, best_mul, ext_div[best_post]);
/* if VCO >= 300 MHz */
if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000)
vco_hi = 1;
/* see DS */
if (best_div == 16)
best_div = 0;
if (best_mul == 128)
best_mul = 0;
/* Power up PLL and switch to bypass */
ret = regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP | PLLEN);
if (ret)
return ret;
pxl_pllparam = vco_hi << 24; /* For PLL VCO >= 300 MHz = 1 */
pxl_pllparam |= ext_div[best_pre] << 20; /* External Pre-divider */
pxl_pllparam |= ext_div[best_post] << 16; /* External Post-divider */
pxl_pllparam |= IN_SEL_REFCLK; /* Use RefClk as PLL input */
pxl_pllparam |= best_div << 8; /* Divider for PLL RefClk */
pxl_pllparam |= best_mul; /* Multiplier for PLL */
ret = regmap_write(tc->regmap, PXL_PLLPARAM, pxl_pllparam);
if (ret)
return ret;
/* Force PLL parameter update and disable bypass */
return tc_pllupdate(tc, PXL_PLLCTRL);
}
static int tc_pxl_pll_dis(struct tc_data *tc)
{
/* Enable PLL bypass, power down PLL */
return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP);
}
static int tc_stream_clock_calc(struct tc_data *tc)
{
/*
* If the Stream clock and Link Symbol clock are
* asynchronous with each other, the value of M changes over
* time. This way of generating link clock and stream
* clock is called Asynchronous Clock mode. The value M
* must change while the value N stays constant. The
* value of N in this Asynchronous Clock mode must be set
* to 2^15 or 32,768.
*
* LSCLK = 1/10 of high speed link clock
*
* f_STRMCLK = M/N * f_LSCLK
* M/N = f_STRMCLK / f_LSCLK
*
*/
return regmap_write(tc->regmap, DP0_VIDMNGEN1, 32768);
}
static int tc_set_syspllparam(struct tc_data *tc)
{
unsigned long rate;
u32 pllparam = SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
pllparam |= REF_FREQ_38M4;
break;
case 26000000:
pllparam |= REF_FREQ_26M;
break;
case 19200000:
pllparam |= REF_FREQ_19M2;
break;
case 13000000:
pllparam |= REF_FREQ_13M;
break;
default:
dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate);
return -EINVAL;
}
return regmap_write(tc->regmap, SYS_PLLPARAM, pllparam);
}
static int tc_aux_link_setup(struct tc_data *tc)
{
int ret;
u32 dp0_auxcfg1;
/* Setup DP-PHY / PLL */
ret = tc_set_syspllparam(tc);
if (ret)
goto err;
ret = regmap_write(tc->regmap, DP_PHY_CTRL,
BGREN | PWR_SW_EN | PHY_A0_EN);
if (ret)
goto err;
/*
* Initially PLLs are in bypass. Force PLL parameter update,
* disable PLL bypass, enable PLL
*/
ret = tc_pllupdate(tc, DP0_PLLCTRL);
if (ret)
goto err;
ret = tc_pllupdate(tc, DP1_PLLCTRL);
if (ret)
goto err;
ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 100, 100000);
if (ret == -ETIMEDOUT) {
dev_err(tc->dev, "Timeout waiting for PHY to become ready");
return ret;
} else if (ret) {
goto err;
}
/* Setup AUX link */
dp0_auxcfg1 = AUX_RX_FILTER_EN;
dp0_auxcfg1 |= 0x06 << 8; /* Aux Bit Period Calculator Threshold */
dp0_auxcfg1 |= 0x3f << 0; /* Aux Response Timeout Timer */
ret = regmap_write(tc->regmap, DP0_AUXCFG1, dp0_auxcfg1);
if (ret)
goto err;
/* Register DP AUX channel */
tc->aux.name = "TC358767 AUX i2c adapter";
tc->aux.dev = tc->dev;
tc->aux.transfer = tc_aux_transfer;
drm_dp_aux_init(&tc->aux);
return 0;
err:
dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret);
return ret;
}
static int tc_get_display_props(struct tc_data *tc)
{
u8 revision, num_lanes;
unsigned int rate;
int ret;
u8 reg;
/* Read DP Rx Link Capability */
ret = drm_dp_dpcd_read(&tc->aux, DP_DPCD_REV, tc->link.dpcd,
DP_RECEIVER_CAP_SIZE);
if (ret < 0)
goto err_dpcd_read;
revision = tc->link.dpcd[DP_DPCD_REV];
rate = drm_dp_max_link_rate(tc->link.dpcd);
num_lanes = drm_dp_max_lane_count(tc->link.dpcd);
if (rate != 162000 && rate != 270000) {
dev_dbg(tc->dev, "Falling to 2.7 Gbps rate\n");
rate = 270000;
}
tc->link.rate = rate;
if (num_lanes > 2) {
dev_dbg(tc->dev, "Falling to 2 lanes\n");
num_lanes = 2;
}
tc->link.num_lanes = num_lanes;
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, ®);
if (ret < 0)
goto err_dpcd_read;
tc->link.spread = reg & DP_MAX_DOWNSPREAD_0_5;
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, ®);
if (ret < 0)
goto err_dpcd_read;
tc->link.scrambler_dis = false;
/* read assr */
ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, ®);
if (ret < 0)
goto err_dpcd_read;
tc->link.assr = reg & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE;
dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n",
revision >> 4, revision & 0x0f,
(tc->link.rate == 162000) ? "1.62Gbps" : "2.7Gbps",
tc->link.num_lanes,
drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
"enhanced" : "default");
dev_dbg(tc->dev, "Downspread: %s, scrambler: %s\n",
tc->link.spread ? "0.5%" : "0.0%",
tc->link.scrambler_dis ? "disabled" : "enabled");
dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n",
tc->link.assr, tc->assr);
return 0;
err_dpcd_read:
dev_err(tc->dev, "failed to read DPCD: %d\n", ret);
return ret;
}
static int tc_set_common_video_mode(struct tc_data *tc,
const struct drm_display_mode *mode)
{
int left_margin = mode->htotal - mode->hsync_end;
int right_margin = mode->hsync_start - mode->hdisplay;
int hsync_len = mode->hsync_end - mode->hsync_start;
int upper_margin = mode->vtotal - mode->vsync_end;
int lower_margin = mode->vsync_start - mode->vdisplay;
int vsync_len = mode->vsync_end - mode->vsync_start;
int ret;
dev_dbg(tc->dev, "set mode %dx%d\n",
mode->hdisplay, mode->vdisplay);
dev_dbg(tc->dev, "H margin %d,%d sync %d\n",
left_margin, right_margin, hsync_len);
dev_dbg(tc->dev, "V margin %d,%d sync %d\n",
upper_margin, lower_margin, vsync_len);
dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal);
/*
* LCD Ctl Frame Size
* datasheet is not clear of vsdelay in case of DPI
* assume we do not need any delay when DPI is a source of
* sync signals
*/
ret = regmap_write(tc->regmap, VPCTRL0,
FIELD_PREP(VSDELAY, right_margin + 10) |
OPXLFMT_RGB888 | FRMSYNC_DISABLED | MSF_DISABLED);
if (ret)
return ret;
ret = regmap_write(tc->regmap, HTIM01,
FIELD_PREP(HBPR, ALIGN(left_margin, 2)) |
FIELD_PREP(HPW, ALIGN(hsync_len, 2)));
if (ret)
return ret;
ret = regmap_write(tc->regmap, HTIM02,
FIELD_PREP(HDISPR, ALIGN(mode->hdisplay, 2)) |
FIELD_PREP(HFPR, ALIGN(right_margin, 2)));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VTIM01,
FIELD_PREP(VBPR, upper_margin) |
FIELD_PREP(VSPR, vsync_len));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VTIM02,
FIELD_PREP(VFPR, lower_margin) |
FIELD_PREP(VDISPR, mode->vdisplay));
if (ret)
return ret;
ret = regmap_write(tc->regmap, VFUEN0, VFUEN); /* update settings */
if (ret)
return ret;
/* Test pattern settings */
ret = regmap_write(tc->regmap, TSTCTL,
FIELD_PREP(COLOR_R, 120) |
FIELD_PREP(COLOR_G, 20) |
FIELD_PREP(COLOR_B, 99) |
ENI2CFILTER |
FIELD_PREP(COLOR_BAR_MODE, COLOR_BAR_MODE_BARS));
return ret;
}
static int tc_set_dpi_video_mode(struct tc_data *tc,
const struct drm_display_mode *mode)
{
u32 value = POCTRL_S2P;
if (tc->mode.flags & DRM_MODE_FLAG_NHSYNC)
value |= POCTRL_HS_POL;
if (tc->mode.flags & DRM_MODE_FLAG_NVSYNC)
value |= POCTRL_VS_POL;
return regmap_write(tc->regmap, POCTRL, value);
}
static int tc_set_edp_video_mode(struct tc_data *tc,
const struct drm_display_mode *mode)
{
int ret;
int vid_sync_dly;
int max_tu_symbol;
int left_margin = mode->htotal - mode->hsync_end;
int hsync_len = mode->hsync_end - mode->hsync_start;
int upper_margin = mode->vtotal - mode->vsync_end;
int vsync_len = mode->vsync_end - mode->vsync_start;
u32 dp0_syncval;
u32 bits_per_pixel = 24;
u32 in_bw, out_bw;
u32 dpipxlfmt;
/*
* Recommended maximum number of symbols transferred in a transfer unit:
* DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size,
* (output active video bandwidth in bytes))
* Must be less than tu_size.
*/
in_bw = mode->clock * bits_per_pixel / 8;
out_bw = tc->link.num_lanes * tc->link.rate;
max_tu_symbol = DIV_ROUND_UP(in_bw * TU_SIZE_RECOMMENDED, out_bw);
/* DP Main Stream Attributes */
vid_sync_dly = hsync_len + left_margin + mode->hdisplay;
ret = regmap_write(tc->regmap, DP0_VIDSYNCDELAY,
FIELD_PREP(THRESH_DLY, max_tu_symbol) |
FIELD_PREP(VID_SYNC_DLY, vid_sync_dly));
ret = regmap_write(tc->regmap, DP0_TOTALVAL,
FIELD_PREP(H_TOTAL, mode->htotal) |
FIELD_PREP(V_TOTAL, mode->vtotal));
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_STARTVAL,
FIELD_PREP(H_START, left_margin + hsync_len) |
FIELD_PREP(V_START, upper_margin + vsync_len));
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_ACTIVEVAL,
FIELD_PREP(V_ACT, mode->vdisplay) |
FIELD_PREP(H_ACT, mode->hdisplay));
if (ret)
return ret;
dp0_syncval = FIELD_PREP(VS_WIDTH, vsync_len) |
FIELD_PREP(HS_WIDTH, hsync_len);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
dp0_syncval |= SYNCVAL_VS_POL_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
dp0_syncval |= SYNCVAL_HS_POL_ACTIVE_LOW;
ret = regmap_write(tc->regmap, DP0_SYNCVAL, dp0_syncval);
if (ret)
return ret;
dpipxlfmt = DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 | DPI_BPP_RGB888;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
dpipxlfmt |= VS_POL_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
dpipxlfmt |= HS_POL_ACTIVE_LOW;
ret = regmap_write(tc->regmap, DPIPXLFMT, dpipxlfmt);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_MISC,
FIELD_PREP(MAX_TU_SYMBOL, max_tu_symbol) |
FIELD_PREP(TU_SIZE, TU_SIZE_RECOMMENDED) |
BPC_8);
return ret;
}
static int tc_wait_link_training(struct tc_data *tc)
{
u32 value;
int ret;
ret = tc_poll_timeout(tc, DP0_LTSTAT, LT_LOOPDONE,
LT_LOOPDONE, 500, 100000);
if (ret) {
dev_err(tc->dev, "Link training timeout waiting for LT_LOOPDONE!\n");
return ret;
}
ret = regmap_read(tc->regmap, DP0_LTSTAT, &value);
if (ret)
return ret;
return (value >> 8) & 0x7;
}
static int tc_main_link_enable(struct tc_data *tc)
{
struct drm_dp_aux *aux = &tc->aux;
struct device *dev = tc->dev;
u32 dp_phy_ctrl;
u32 value;
int ret;
u8 tmp[DP_LINK_STATUS_SIZE];
dev_dbg(tc->dev, "link enable\n");
ret = regmap_read(tc->regmap, DP0CTL, &value);
if (ret)
return ret;
if (WARN_ON(value & DP_EN)) {
ret = regmap_write(tc->regmap, DP0CTL, 0);
if (ret)
return ret;
}
ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc));
if (ret)
return ret;
/* SSCG and BW27 on DP1 must be set to the same as on DP0 */
ret = regmap_write(tc->regmap, DP1_SRCCTRL,
(tc->link.spread ? DP0_SRCCTRL_SSCG : 0) |
((tc->link.rate != 162000) ? DP0_SRCCTRL_BW27 : 0));
if (ret)
return ret;
ret = tc_set_syspllparam(tc);
if (ret)
return ret;
/* Setup Main Link */
dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN | PHY_M0_EN;
if (tc->link.num_lanes == 2)
dp_phy_ctrl |= PHY_2LANE;
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
if (ret)
return ret;
/* PLL setup */
ret = tc_pllupdate(tc, DP0_PLLCTRL);
if (ret)
return ret;
ret = tc_pllupdate(tc, DP1_PLLCTRL);
if (ret)
return ret;
/* Reset/Enable Main Links */
dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST;
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
usleep_range(100, 200);
dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST);
ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 500, 100000);
if (ret) {
dev_err(dev, "timeout waiting for phy become ready");
return ret;
}
/* Set misc: 8 bits per color */
ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8);
if (ret)
return ret;
/*
* ASSR mode
* on TC358767 side ASSR configured through strap pin
* seems there is no way to change this setting from SW
*
* check is tc configured for same mode
*/
if (tc->assr != tc->link.assr) {
dev_dbg(dev, "Trying to set display to ASSR: %d\n",
tc->assr);
/* try to set ASSR on display side */
tmp[0] = tc->assr;
ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_read;
/* read back */
ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
if (tmp[0] != tc->assr) {
dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n",
tc->assr);
/* trying with disabled scrambler */
tc->link.scrambler_dis = true;
}
}
/* Setup Link & DPRx Config for Training */
tmp[0] = drm_dp_link_rate_to_bw_code(tc->link.rate);
tmp[1] = tc->link.num_lanes;
if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
tmp[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
ret = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* DOWNSPREAD_CTRL */
tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00;
/* MAIN_LINK_CHANNEL_CODING_SET */
tmp[1] = DP_SET_ANSI_8B10B;
ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* Reset voltage-swing & pre-emphasis */
tmp[0] = tmp[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 |
DP_TRAIN_PRE_EMPH_LEVEL_0;
ret = drm_dp_dpcd_write(aux, DP_TRAINING_LANE0_SET, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
/* Clock-Recovery */
/* Set DPCD 0x102 for Training Pattern 1 */
ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_1);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_LTLOOPCTRL,
(15 << 28) | /* Defer Iteration Count */
(15 << 24) | /* Loop Iteration Count */
(0xd << 0)); /* Loop Timer Delay */
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_SRCCTRL,
tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT |
DP0_SRCCTRL_TP1);
if (ret)
return ret;
/* Enable DP0 to start Link Training */
ret = regmap_write(tc->regmap, DP0CTL,
(drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
EF_EN : 0) | DP_EN);
if (ret)
return ret;
/* wait */
ret = tc_wait_link_training(tc);
if (ret < 0)
return ret;
if (ret) {
dev_err(tc->dev, "Link training phase 1 failed: %s\n",
training_pattern1_errors[ret]);
return -ENODEV;
}
/* Channel Equalization */
/* Set DPCD 0x102 for Training Pattern 2 */
ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_2);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0_SRCCTRL,
tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT |
DP0_SRCCTRL_TP2);
if (ret)
return ret;
/* wait */
ret = tc_wait_link_training(tc);
if (ret < 0)
return ret;
if (ret) {
dev_err(tc->dev, "Link training phase 2 failed: %s\n",
training_pattern2_errors[ret]);
return -ENODEV;
}
/*
* Toshiba's documentation suggests to first clear DPCD 0x102, then
* clear the training pattern bit in DP0_SRCCTRL. Testing shows
* that the link sometimes drops if those steps are done in that order,
* but if the steps are done in reverse order, the link stays up.
*
* So we do the steps differently than documented here.
*/
/* Clear Training Pattern, set AutoCorrect Mode = 1 */
ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) |
DP0_SRCCTRL_AUTOCORRECT);
if (ret)
return ret;
/* Clear DPCD 0x102 */
/* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */
tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00;
ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_write;
/* Check link status */
ret = drm_dp_dpcd_read_link_status(aux, tmp);
if (ret < 0)
goto err_dpcd_read;
ret = 0;
value = tmp[0] & DP_CHANNEL_EQ_BITS;
if (value != DP_CHANNEL_EQ_BITS) {
dev_err(tc->dev, "Lane 0 failed: %x\n", value);
ret = -ENODEV;
}
if (tc->link.num_lanes == 2) {
value = (tmp[0] >> 4) & DP_CHANNEL_EQ_BITS;
if (value != DP_CHANNEL_EQ_BITS) {
dev_err(tc->dev, "Lane 1 failed: %x\n", value);
ret = -ENODEV;
}
if (!(tmp[2] & DP_INTERLANE_ALIGN_DONE)) {
dev_err(tc->dev, "Interlane align failed\n");
ret = -ENODEV;
}
}
if (ret) {
dev_err(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[0]);
dev_err(dev, "0x0203 LANE2_3_STATUS 0x%02x\n", tmp[1]);
dev_err(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n", tmp[2]);
dev_err(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[3]);
dev_err(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n", tmp[4]);
dev_err(dev, "0x0207 ADJUST_REQUEST_LANE2_3: 0x%02x\n", tmp[5]);
return ret;
}
return 0;
err_dpcd_read:
dev_err(tc->dev, "Failed to read DPCD: %d\n", ret);
return ret;
err_dpcd_write:
dev_err(tc->dev, "Failed to write DPCD: %d\n", ret);
return ret;
}
static int tc_main_link_disable(struct tc_data *tc)
{
int ret;
dev_dbg(tc->dev, "link disable\n");
ret = regmap_write(tc->regmap, DP0_SRCCTRL, 0);
if (ret)
return ret;
ret = regmap_write(tc->regmap, DP0CTL, 0);
if (ret)
return ret;
return regmap_update_bits(tc->regmap, DP_PHY_CTRL,
PHY_M0_RST | PHY_M1_RST | PHY_M0_EN,
PHY_M0_RST | PHY_M1_RST);
}
static int tc_dsi_rx_enable(struct tc_data *tc)
{
u32 value;
int ret;
regmap_write(tc->regmap, PPI_D0S_CLRSIPOCOUNT, 25);
regmap_write(tc->regmap, PPI_D1S_CLRSIPOCOUNT, 25);
regmap_write(tc->regmap, PPI_D2S_CLRSIPOCOUNT, 25);
regmap_write(tc->regmap, PPI_D3S_CLRSIPOCOUNT, 25);
regmap_write(tc->regmap, PPI_D0S_ATMR, 0);
regmap_write(tc->regmap, PPI_D1S_ATMR, 0);
regmap_write(tc->regmap, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
regmap_write(tc->regmap, PPI_LPTXTIMECNT, LPX_PERIOD);
value = ((LANEENABLE_L0EN << tc->dsi->lanes) - LANEENABLE_L0EN) |
LANEENABLE_CLEN;
regmap_write(tc->regmap, PPI_LANEENABLE, value);
regmap_write(tc->regmap, DSI_LANEENABLE, value);
/* Set input interface */
value = DP0_AUDSRC_NO_INPUT;
if (tc_test_pattern)
value |= DP0_VIDSRC_COLOR_BAR;
else
value |= DP0_VIDSRC_DSI_RX;
ret = regmap_write(tc->regmap, SYSCTRL, value);
if (ret)
return ret;
usleep_range(120, 150);
regmap_write(tc->regmap, PPI_STARTPPI, PPI_START_FUNCTION);
regmap_write(tc->regmap, DSI_STARTDSI, DSI_RX_START);
return 0;
}
static int tc_dpi_rx_enable(struct tc_data *tc)
{
u32 value;
/* Set input interface */
value = DP0_AUDSRC_NO_INPUT;
if (tc_test_pattern)
value |= DP0_VIDSRC_COLOR_BAR;
else
value |= DP0_VIDSRC_DPI_RX;
return regmap_write(tc->regmap, SYSCTRL, value);
}
static int tc_dpi_stream_enable(struct tc_data *tc)
{
int ret;
dev_dbg(tc->dev, "enable video stream\n");
/* Setup PLL */
ret = tc_set_syspllparam(tc);
if (ret)
return ret;
/*
* Initially PLLs are in bypass. Force PLL parameter update,
* disable PLL bypass, enable PLL
*/
ret = tc_pllupdate(tc, DP0_PLLCTRL);
if (ret)
return ret;
ret = tc_pllupdate(tc, DP1_PLLCTRL);
if (ret)
return ret;
/* Pixel PLL must always be enabled for DPI mode */
ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1000 * tc->mode.clock);
if (ret)
return ret;
ret = tc_set_common_video_mode(tc, &tc->mode);
if (ret)
return ret;
ret = tc_set_dpi_video_mode(tc, &tc->mode);
if (ret)
return ret;
return tc_dsi_rx_enable(tc);
}
static int tc_dpi_stream_disable(struct tc_data *tc)
{
dev_dbg(tc->dev, "disable video stream\n");
tc_pxl_pll_dis(tc);
return 0;
}
static int tc_edp_stream_enable(struct tc_data *tc)
{
int ret;
u32 value;
dev_dbg(tc->dev, "enable video stream\n");
/*
* Pixel PLL must be enabled for DSI input mode and test pattern.
*
* Per TC9595XBG datasheet Revision 0.1 2018-12-27 Figure 4.18
* "Clock Mode Selection and Clock Sources", either Pixel PLL
* or DPI_PCLK supplies StrmClk. DPI_PCLK is only available in
* case valid Pixel Clock are supplied to the chip DPI input.
* In case built-in test pattern is desired OR DSI input mode
* is used, DPI_PCLK is not available and thus Pixel PLL must
* be used instead.
*/
if (tc->input_connector_dsi || tc_test_pattern) {
ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1000 * tc->mode.clock);
if (ret)
return ret;
}
ret = tc_set_common_video_mode(tc, &tc->mode);
if (ret)
return ret;
ret = tc_set_edp_video_mode(tc, &tc->mode);
if (ret)
return ret;
/* Set M/N */
ret = tc_stream_clock_calc(tc);
if (ret)
return ret;
value = VID_MN_GEN | DP_EN;
if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
value |= EF_EN;
ret = regmap_write(tc->regmap, DP0CTL, value);
if (ret)
return ret;
/*
* VID_EN assertion should be delayed by at least N * LSCLK
* cycles from the time VID_MN_GEN is enabled in order to
* generate stable values for VID_M. LSCLK is 270 MHz or
* 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(),
* so a delay of at least 203 us should suffice.
*/
usleep_range(500, 1000);
value |= VID_EN;
ret = regmap_write(tc->regmap, DP0CTL, value);
if (ret)
return ret;
/* Set input interface */
if (tc->input_connector_dsi)
return tc_dsi_rx_enable(tc);
else
return tc_dpi_rx_enable(tc);
}
static int tc_edp_stream_disable(struct tc_data *tc)
{
int ret;
dev_dbg(tc->dev, "disable video stream\n");
ret = regmap_update_bits(tc->regmap, DP0CTL, VID_EN, 0);
if (ret)
return ret;
tc_pxl_pll_dis(tc);
return 0;
}
static void
tc_dpi_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_dpi_stream_enable(tc);
if (ret < 0) {
dev_err(tc->dev, "main link stream start error: %d\n", ret);
tc_main_link_disable(tc);
return;
}
}
static void
tc_dpi_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_dpi_stream_disable(tc);
if (ret < 0)
dev_err(tc->dev, "main link stream stop error: %d\n", ret);
}
static void
tc_edp_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_get_display_props(tc);
if (ret < 0) {
dev_err(tc->dev, "failed to read display props: %d\n", ret);
return;
}
ret = tc_main_link_enable(tc);
if (ret < 0) {
dev_err(tc->dev, "main link enable error: %d\n", ret);
return;
}
ret = tc_edp_stream_enable(tc);
if (ret < 0) {
dev_err(tc->dev, "main link stream start error: %d\n", ret);
tc_main_link_disable(tc);
return;
}
}
static void
tc_edp_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_edp_stream_disable(tc);
if (ret < 0)
dev_err(tc->dev, "main link stream stop error: %d\n", ret);
ret = tc_main_link_disable(tc);
if (ret < 0)
dev_err(tc->dev, "main link disable error: %d\n", ret);
}
static int tc_dpi_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
/* DSI->DPI interface clock limitation: upto 100 MHz */
if (crtc_state->adjusted_mode.clock > 100000)
return -EINVAL;
return 0;
}
static int tc_edp_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
/* DPI->(e)DP interface clock limitation: upto 154 MHz */
if (crtc_state->adjusted_mode.clock > 154000)
return -EINVAL;
return 0;
}
static enum drm_mode_status
tc_dpi_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* DPI interface clock limitation: upto 100 MHz */
if (mode->clock > 100000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static enum drm_mode_status
tc_edp_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc_data *tc = bridge_to_tc(bridge);
u32 req, avail;
u32 bits_per_pixel = 24;
/* DPI interface clock limitation: upto 154 MHz */
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
req = mode->clock * bits_per_pixel / 8;
avail = tc->link.num_lanes * tc->link.rate;
if (req > avail)
return MODE_BAD;
return MODE_OK;
}
static void tc_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct tc_data *tc = bridge_to_tc(bridge);
drm_mode_copy(&tc->mode, mode);
}
static struct edid *tc_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct tc_data *tc = bridge_to_tc(bridge);
return drm_get_edid(connector, &tc->aux.ddc);
}
static int tc_connector_get_modes(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
int num_modes;
struct edid *edid;
int ret;
ret = tc_get_display_props(tc);
if (ret < 0) {
dev_err(tc->dev, "failed to read display props: %d\n", ret);
return 0;
}
if (tc->panel_bridge) {
num_modes = drm_bridge_get_modes(tc->panel_bridge, connector);
if (num_modes > 0)
return num_modes;
}
edid = tc_get_edid(&tc->bridge, connector);
num_modes = drm_add_edid_modes(connector, edid);
kfree(edid);
return num_modes;
}
static const struct drm_connector_helper_funcs tc_connector_helper_funcs = {
.get_modes = tc_connector_get_modes,
};
static enum drm_connector_status tc_bridge_detect(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
bool conn;
u32 val;
int ret;
ret = regmap_read(tc->regmap, GPIOI, &val);
if (ret)
return connector_status_unknown;
conn = val & BIT(tc->hpd_pin);
if (conn)
return connector_status_connected;
else
return connector_status_disconnected;
}
static enum drm_connector_status
tc_connector_detect(struct drm_connector *connector, bool force)
{
struct tc_data *tc = connector_to_tc(connector);
if (tc->hpd_pin >= 0)
return tc_bridge_detect(&tc->bridge);
if (tc->panel_bridge)
return connector_status_connected;
else
return connector_status_unknown;
}
static const struct drm_connector_funcs tc_connector_funcs = {
.detect = tc_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tc_dpi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc_data *tc = bridge_to_tc(bridge);
if (!tc->panel_bridge)
return 0;
return drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge,
&tc->bridge, flags);
}
static int tc_edp_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
struct tc_data *tc = bridge_to_tc(bridge);
struct drm_device *drm = bridge->dev;
int ret;
if (tc->panel_bridge) {
/* If a connector is required then this driver shall create it */
ret = drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge,
&tc->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret)
return ret;
}
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
tc->aux.drm_dev = drm;
ret = drm_dp_aux_register(&tc->aux);
if (ret < 0)
return ret;
/* Create DP/eDP connector */
drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs);
ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs, tc->bridge.type);
if (ret)
goto aux_unregister;
/* Don't poll if don't have HPD connected */
if (tc->hpd_pin >= 0) {
if (tc->have_irq)
tc->connector.polled = DRM_CONNECTOR_POLL_HPD;
else
tc->connector.polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
drm_display_info_set_bus_formats(&tc->connector.display_info,
&bus_format, 1);
tc->connector.display_info.bus_flags =
DRM_BUS_FLAG_DE_HIGH |
DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE |
DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE;
drm_connector_attach_encoder(&tc->connector, tc->bridge.encoder);
return 0;
aux_unregister:
drm_dp_aux_unregister(&tc->aux);
return ret;
}
static void tc_edp_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_tc(bridge)->aux);
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
tc_dpi_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs tc_dpi_bridge_funcs = {
.attach = tc_dpi_bridge_attach,
.mode_valid = tc_dpi_mode_valid,
.mode_set = tc_bridge_mode_set,
.atomic_check = tc_dpi_atomic_check,
.atomic_enable = tc_dpi_bridge_atomic_enable,
.atomic_disable = tc_dpi_bridge_atomic_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = tc_dpi_atomic_get_input_bus_fmts,
};
static const struct drm_bridge_funcs tc_edp_bridge_funcs = {
.attach = tc_edp_bridge_attach,
.detach = tc_edp_bridge_detach,
.mode_valid = tc_edp_mode_valid,
.mode_set = tc_bridge_mode_set,
.atomic_check = tc_edp_atomic_check,
.atomic_enable = tc_edp_bridge_atomic_enable,
.atomic_disable = tc_edp_bridge_atomic_disable,
.detect = tc_bridge_detect,
.get_edid = tc_get_edid,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
};
static bool tc_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
/* DSI D-PHY Layer */
case 0x004:
case 0x020:
case 0x024:
case 0x028:
case 0x02c:
case 0x030:
case 0x038:
case 0x040:
case 0x044:
case 0x048:
case 0x04c:
case 0x050:
case 0x054:
/* DSI PPI Layer */
case PPI_STARTPPI:
case 0x108:
case 0x110:
case PPI_LPTXTIMECNT:
case PPI_LANEENABLE:
case PPI_TX_RX_TA:
case 0x140:
case PPI_D0S_ATMR:
case PPI_D1S_ATMR:
case 0x14c:
case 0x150:
case PPI_D0S_CLRSIPOCOUNT:
case PPI_D1S_CLRSIPOCOUNT:
case PPI_D2S_CLRSIPOCOUNT:
case PPI_D3S_CLRSIPOCOUNT:
case 0x180:
case 0x184:
case 0x188:
case 0x18c:
case 0x190:
case 0x1a0:
case 0x1a4:
case 0x1a8:
case 0x1ac:
case 0x1b0:
case 0x1c0:
case 0x1c4:
case 0x1c8:
case 0x1cc:
case 0x1d0:
case 0x1e0:
case 0x1e4:
case 0x1f0:
case 0x1f4:
/* DSI Protocol Layer */
case DSI_STARTDSI:
case 0x208:
case DSI_LANEENABLE:
case 0x214:
case 0x218:
case 0x220:
case 0x224:
case 0x228:
case 0x230:
/* DSI General */
case 0x300:
/* DSI Application Layer */
case 0x400:
case 0x404:
/* DPI */
case DPIPXLFMT:
/* Parallel Output */
case POCTRL:
/* Video Path0 Configuration */
case VPCTRL0:
case HTIM01:
case HTIM02:
case VTIM01:
case VTIM02:
case VFUEN0:
/* System */
case TC_IDREG:
case 0x504:
case SYSSTAT:
case SYSRSTENB:
case SYSCTRL:
/* I2C */
case 0x520:
/* GPIO */
case GPIOM:
case GPIOC:
case GPIOO:
case GPIOI:
/* Interrupt */
case INTCTL_G:
case INTSTS_G:
case 0x570:
case 0x574:
case INT_GP0_LCNT:
case INT_GP1_LCNT:
/* DisplayPort Control */
case DP0CTL:
/* DisplayPort Clock */
case DP0_VIDMNGEN0:
case DP0_VIDMNGEN1:
case DP0_VMNGENSTATUS:
case 0x628:
case 0x62c:
case 0x630:
/* DisplayPort Main Channel */
case DP0_SECSAMPLE:
case DP0_VIDSYNCDELAY:
case DP0_TOTALVAL:
case DP0_STARTVAL:
case DP0_ACTIVEVAL:
case DP0_SYNCVAL:
case DP0_MISC:
/* DisplayPort Aux Channel */
case DP0_AUXCFG0:
case DP0_AUXCFG1:
case DP0_AUXADDR:
case 0x66c:
case 0x670:
case 0x674:
case 0x678:
case 0x67c:
case 0x680:
case 0x684:
case 0x688:
case DP0_AUXSTATUS:
case DP0_AUXI2CADR:
/* DisplayPort Link Training */
case DP0_SRCCTRL:
case DP0_LTSTAT:
case DP0_SNKLTCHGREQ:
case DP0_LTLOOPCTRL:
case DP0_SNKLTCTRL:
case 0x6e8:
case 0x6ec:
case 0x6f0:
case 0x6f4:
/* DisplayPort Audio */
case 0x700:
case 0x704:
case 0x708:
case 0x70c:
case 0x710:
case 0x714:
case 0x718:
case 0x71c:
case 0x720:
/* DisplayPort Source Control */
case DP1_SRCCTRL:
/* DisplayPort PHY */
case DP_PHY_CTRL:
case 0x810:
case 0x814:
case 0x820:
case 0x840:
/* I2S */
case 0x880:
case 0x888:
case 0x88c:
case 0x890:
case 0x894:
case 0x898:
case 0x89c:
case 0x8a0:
case 0x8a4:
case 0x8a8:
case 0x8ac:
case 0x8b0:
case 0x8b4:
/* PLL */
case DP0_PLLCTRL:
case DP1_PLLCTRL:
case PXL_PLLCTRL:
case PXL_PLLPARAM:
case SYS_PLLPARAM:
/* HDCP */
case 0x980:
case 0x984:
case 0x988:
case 0x98c:
case 0x990:
case 0x994:
case 0x998:
case 0x99c:
case 0x9a0:
case 0x9a4:
case 0x9a8:
case 0x9ac:
/* Debug */
case TSTCTL:
case PLL_DBG:
return true;
}
return false;
}
static const struct regmap_range tc_volatile_ranges[] = {
regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS),
regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ),
regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL),
regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL),
regmap_reg_range(VFUEN0, VFUEN0),
regmap_reg_range(INTSTS_G, INTSTS_G),
regmap_reg_range(GPIOI, GPIOI),
};
static const struct regmap_access_table tc_volatile_table = {
.yes_ranges = tc_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges),
};
static bool tc_writeable_reg(struct device *dev, unsigned int reg)
{
return (reg != TC_IDREG) &&
(reg != DP0_LTSTAT) &&
(reg != DP0_SNKLTCHGREQ);
}
static const struct regmap_config tc_regmap_config = {
.name = "tc358767",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = PLL_DBG,
.cache_type = REGCACHE_RBTREE,
.readable_reg = tc_readable_reg,
.volatile_table = &tc_volatile_table,
.writeable_reg = tc_writeable_reg,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static irqreturn_t tc_irq_handler(int irq, void *arg)
{
struct tc_data *tc = arg;
u32 val;
int r;
r = regmap_read(tc->regmap, INTSTS_G, &val);
if (r)
return IRQ_NONE;
if (!val)
return IRQ_NONE;
if (val & INT_SYSERR) {
u32 stat = 0;
regmap_read(tc->regmap, SYSSTAT, &stat);
dev_err(tc->dev, "syserr %x\n", stat);
}
if (tc->hpd_pin >= 0 && tc->bridge.dev) {
/*
* H is triggered when the GPIO goes high.
*
* LC is triggered when the GPIO goes low and stays low for
* the duration of LCNT
*/
bool h = val & INT_GPIO_H(tc->hpd_pin);
bool lc = val & INT_GPIO_LC(tc->hpd_pin);
dev_dbg(tc->dev, "GPIO%d: %s %s\n", tc->hpd_pin,
h ? "H" : "", lc ? "LC" : "");
if (h || lc)
drm_kms_helper_hotplug_event(tc->bridge.dev);
}
regmap_write(tc->regmap, INTSTS_G, val);
return IRQ_HANDLED;
}
static int tc_mipi_dsi_host_attach(struct tc_data *tc)
{
struct device *dev = tc->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = {
.type = "tc358767",
.channel = 0,
.node = NULL,
};
int dsi_lanes, ret;
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
host_node = of_graph_get_remote_port_parent(endpoint);
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
of_node_put(endpoint);
if (!host)
return -EPROBE_DEFER;
if (dsi_lanes < 0)
return dsi_lanes;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
tc->dsi = dsi;
dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_LPM | MIPI_DSI_CLOCK_NON_CONTINUOUS;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
return ret;
}
return 0;
}
static int tc_probe_dpi_bridge_endpoint(struct tc_data *tc)
{
struct device *dev = tc->dev;
struct drm_bridge *bridge;
struct drm_panel *panel;
int ret;
/* port@1 is the DPI input/output port */
ret = drm_of_find_panel_or_bridge(dev->of_node, 1, 0, &panel, &bridge);
if (ret && ret != -ENODEV)
return ret;
if (panel) {
bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(bridge))
return PTR_ERR(bridge);
}
if (bridge) {
tc->panel_bridge = bridge;
tc->bridge.type = DRM_MODE_CONNECTOR_DPI;
tc->bridge.funcs = &tc_dpi_bridge_funcs;
return 0;
}
return ret;
}
static int tc_probe_edp_bridge_endpoint(struct tc_data *tc)
{
struct device *dev = tc->dev;
struct drm_panel *panel;
int ret;
/* port@2 is the output port */
ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, NULL);
if (ret && ret != -ENODEV)
return ret;
if (panel) {
struct drm_bridge *panel_bridge;
panel_bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
tc->panel_bridge = panel_bridge;
tc->bridge.type = DRM_MODE_CONNECTOR_eDP;
} else {
tc->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
}
tc->bridge.funcs = &tc_edp_bridge_funcs;
if (tc->hpd_pin >= 0)
tc->bridge.ops |= DRM_BRIDGE_OP_DETECT;
tc->bridge.ops |= DRM_BRIDGE_OP_EDID;
return 0;
}
static int tc_probe_bridge_endpoint(struct tc_data *tc)
{
struct device *dev = tc->dev;
struct of_endpoint endpoint;
struct device_node *node = NULL;
const u8 mode_dpi_to_edp = BIT(1) | BIT(2);
const u8 mode_dpi_to_dp = BIT(1);
const u8 mode_dsi_to_edp = BIT(0) | BIT(2);
const u8 mode_dsi_to_dp = BIT(0);
const u8 mode_dsi_to_dpi = BIT(0) | BIT(1);
u8 mode = 0;
/*
* Determine bridge configuration.
*
* Port allocation:
* port@0 - DSI input
* port@1 - DPI input/output
* port@2 - eDP output
*
* Possible connections:
* DPI -> port@1 -> port@2 -> eDP :: [port@0 is not connected]
* DSI -> port@0 -> port@2 -> eDP :: [port@1 is not connected]
* DSI -> port@0 -> port@1 -> DPI :: [port@2 is not connected]
*/
for_each_endpoint_of_node(dev->of_node, node) {
of_graph_parse_endpoint(node, &endpoint);
if (endpoint.port > 2) {
of_node_put(node);
return -EINVAL;
}
mode |= BIT(endpoint.port);
}
if (mode == mode_dpi_to_edp || mode == mode_dpi_to_dp) {
tc->input_connector_dsi = false;
return tc_probe_edp_bridge_endpoint(tc);
} else if (mode == mode_dsi_to_dpi) {
tc->input_connector_dsi = true;
return tc_probe_dpi_bridge_endpoint(tc);
} else if (mode == mode_dsi_to_edp || mode == mode_dsi_to_dp) {
tc->input_connector_dsi = true;
return tc_probe_edp_bridge_endpoint(tc);
}
dev_warn(dev, "Invalid mode (0x%x) is not supported!\n", mode);
return -EINVAL;
}
static int tc_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
ret = tc_probe_bridge_endpoint(tc);
if (ret)
return ret;
tc->refclk = devm_clk_get_enabled(dev, "ref");
if (IS_ERR(tc->refclk))
return dev_err_probe(dev, PTR_ERR(tc->refclk),
"Failed to get and enable the ref clk\n");
/* tRSTW = 100 cycles , at 13 MHz that is ~7.69 us */
usleep_range(10, 15);
/* Shut down GPIO is optional */
tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH);
if (IS_ERR(tc->sd_gpio))
return PTR_ERR(tc->sd_gpio);
if (tc->sd_gpio) {
gpiod_set_value_cansleep(tc->sd_gpio, 0);
usleep_range(5000, 10000);
}
/* Reset GPIO is optional */
tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(tc->reset_gpio))
return PTR_ERR(tc->reset_gpio);
if (tc->reset_gpio) {
gpiod_set_value_cansleep(tc->reset_gpio, 1);
usleep_range(5000, 10000);
}
tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config);
if (IS_ERR(tc->regmap)) {
ret = PTR_ERR(tc->regmap);
dev_err(dev, "Failed to initialize regmap: %d\n", ret);
return ret;
}
ret = of_property_read_u32(dev->of_node, "toshiba,hpd-pin",
&tc->hpd_pin);
if (ret) {
tc->hpd_pin = -ENODEV;
} else {
if (tc->hpd_pin < 0 || tc->hpd_pin > 1) {
dev_err(dev, "failed to parse HPD number\n");
return ret;
}
}
if (client->irq > 0) {
/* enable SysErr */
regmap_write(tc->regmap, INTCTL_G, INT_SYSERR);
ret = devm_request_threaded_irq(dev, client->irq,
NULL, tc_irq_handler,
IRQF_ONESHOT,
"tc358767-irq", tc);
if (ret) {
dev_err(dev, "failed to register dp interrupt\n");
return ret;
}
tc->have_irq = true;
}
ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev);
if (ret) {
dev_err(tc->dev, "can not read device ID: %d\n", ret);
return ret;
}
if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) {
dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev);
return -EINVAL;
}
tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */
if (!tc->reset_gpio) {
/*
* If the reset pin isn't present, do a software reset. It isn't
* as thorough as the hardware reset, as we can't reset the I2C
* communication block for obvious reasons, but it's getting the
* chip into a defined state.
*/
regmap_update_bits(tc->regmap, SYSRSTENB,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
0);
regmap_update_bits(tc->regmap, SYSRSTENB,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP);
usleep_range(5000, 10000);
}
if (tc->hpd_pin >= 0) {
u32 lcnt_reg = tc->hpd_pin == 0 ? INT_GP0_LCNT : INT_GP1_LCNT;
u32 h_lc = INT_GPIO_H(tc->hpd_pin) | INT_GPIO_LC(tc->hpd_pin);
/* Set LCNT to 2ms */
regmap_write(tc->regmap, lcnt_reg,
clk_get_rate(tc->refclk) * 2 / 1000);
/* We need the "alternate" mode for HPD */
regmap_write(tc->regmap, GPIOM, BIT(tc->hpd_pin));
if (tc->have_irq) {
/* enable H & LC */
regmap_update_bits(tc->regmap, INTCTL_G, h_lc, h_lc);
}
}
if (tc->bridge.type != DRM_MODE_CONNECTOR_DPI) { /* (e)DP output */
ret = tc_aux_link_setup(tc);
if (ret)
return ret;
}
tc->bridge.of_node = dev->of_node;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
if (tc->input_connector_dsi) { /* DSI input */
ret = tc_mipi_dsi_host_attach(tc);
if (ret) {
drm_bridge_remove(&tc->bridge);
return ret;
}
}
return 0;
}
static void tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
}
static const struct i2c_device_id tc358767_i2c_ids[] = {
{ "tc358767", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids);
static const struct of_device_id tc358767_of_ids[] = {
{ .compatible = "toshiba,tc358767", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358767_of_ids);
static struct i2c_driver tc358767_driver = {
.driver = {
.name = "tc358767",
.of_match_table = tc358767_of_ids,
},
.id_table = tc358767_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358767_driver);
MODULE_AUTHOR("Andrey Gusakov <[email protected]>");
MODULE_DESCRIPTION("tc358767 eDP encoder driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/tc358767.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2017 Samsung Electronics
*
* Authors:
* Tomasz Stanislawski <[email protected]>
* Maciej Purski <[email protected]>
*
* Based on sii9234 driver created by:
* Adam Hampson <[email protected]>
* Erik Gilling <[email protected]>
* Shankar Bandal <[email protected]>
* Dharam Kumar <[email protected]>
*/
#include <drm/bridge/mhl.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#define CBUS_DEVCAP_OFFSET 0x80
#define SII9234_MHL_VERSION 0x11
#define SII9234_SCRATCHPAD_SIZE 0x10
#define SII9234_INT_STAT_SIZE 0x33
#define BIT_TMDS_CCTRL_TMDS_OE BIT(4)
#define MHL_HPD_OUT_OVR_EN BIT(4)
#define MHL_HPD_OUT_OVR_VAL BIT(5)
#define MHL_INIT_TIMEOUT 0x0C
/* MHL Tx registers and bits */
#define MHL_TX_SRST 0x05
#define MHL_TX_SYSSTAT_REG 0x09
#define MHL_TX_INTR1_REG 0x71
#define MHL_TX_INTR4_REG 0x74
#define MHL_TX_INTR1_ENABLE_REG 0x75
#define MHL_TX_INTR4_ENABLE_REG 0x78
#define MHL_TX_INT_CTRL_REG 0x79
#define MHL_TX_TMDS_CCTRL 0x80
#define MHL_TX_DISC_CTRL1_REG 0x90
#define MHL_TX_DISC_CTRL2_REG 0x91
#define MHL_TX_DISC_CTRL3_REG 0x92
#define MHL_TX_DISC_CTRL4_REG 0x93
#define MHL_TX_DISC_CTRL5_REG 0x94
#define MHL_TX_DISC_CTRL6_REG 0x95
#define MHL_TX_DISC_CTRL7_REG 0x96
#define MHL_TX_DISC_CTRL8_REG 0x97
#define MHL_TX_STAT2_REG 0x99
#define MHL_TX_MHLTX_CTL1_REG 0xA0
#define MHL_TX_MHLTX_CTL2_REG 0xA1
#define MHL_TX_MHLTX_CTL4_REG 0xA3
#define MHL_TX_MHLTX_CTL6_REG 0xA5
#define MHL_TX_MHLTX_CTL7_REG 0xA6
#define RSEN_STATUS BIT(2)
#define HPD_CHANGE_INT BIT(6)
#define RSEN_CHANGE_INT BIT(5)
#define RGND_READY_INT BIT(6)
#define VBUS_LOW_INT BIT(5)
#define CBUS_LKOUT_INT BIT(4)
#define MHL_DISC_FAIL_INT BIT(3)
#define MHL_EST_INT BIT(2)
#define HPD_CHANGE_INT_MASK BIT(6)
#define RSEN_CHANGE_INT_MASK BIT(5)
#define RGND_READY_MASK BIT(6)
#define CBUS_LKOUT_MASK BIT(4)
#define MHL_DISC_FAIL_MASK BIT(3)
#define MHL_EST_MASK BIT(2)
#define SKIP_GND BIT(6)
#define ATT_THRESH_SHIFT 0x04
#define ATT_THRESH_MASK (0x03 << ATT_THRESH_SHIFT)
#define USB_D_OEN BIT(3)
#define DEGLITCH_TIME_MASK 0x07
#define DEGLITCH_TIME_2MS 0
#define DEGLITCH_TIME_4MS 1
#define DEGLITCH_TIME_8MS 2
#define DEGLITCH_TIME_16MS 3
#define DEGLITCH_TIME_40MS 4
#define DEGLITCH_TIME_50MS 5
#define DEGLITCH_TIME_60MS 6
#define DEGLITCH_TIME_128MS 7
#define USB_D_OVR BIT(7)
#define USB_ID_OVR BIT(6)
#define DVRFLT_SEL BIT(5)
#define BLOCK_RGND_INT BIT(4)
#define SKIP_DEG BIT(3)
#define CI2CA_POL BIT(2)
#define CI2CA_WKUP BIT(1)
#define SINGLE_ATT BIT(0)
#define USB_D_ODN BIT(5)
#define VBUS_CHECK BIT(2)
#define RGND_INTP_MASK 0x03
#define RGND_INTP_OPEN 0
#define RGND_INTP_2K 1
#define RGND_INTP_1K 2
#define RGND_INTP_SHORT 3
/* HDMI registers */
#define HDMI_RX_TMDS0_CCTRL1_REG 0x10
#define HDMI_RX_TMDS_CLK_EN_REG 0x11
#define HDMI_RX_TMDS_CH_EN_REG 0x12
#define HDMI_RX_PLL_CALREFSEL_REG 0x17
#define HDMI_RX_PLL_VCOCAL_REG 0x1A
#define HDMI_RX_EQ_DATA0_REG 0x22
#define HDMI_RX_EQ_DATA1_REG 0x23
#define HDMI_RX_EQ_DATA2_REG 0x24
#define HDMI_RX_EQ_DATA3_REG 0x25
#define HDMI_RX_EQ_DATA4_REG 0x26
#define HDMI_RX_TMDS_ZONE_CTRL_REG 0x4C
#define HDMI_RX_TMDS_MODE_CTRL_REG 0x4D
/* CBUS registers */
#define CBUS_INT_STATUS_1_REG 0x08
#define CBUS_INTR1_ENABLE_REG 0x09
#define CBUS_MSC_REQ_ABORT_REASON_REG 0x0D
#define CBUS_INT_STATUS_2_REG 0x1E
#define CBUS_INTR2_ENABLE_REG 0x1F
#define CBUS_LINK_CONTROL_2_REG 0x31
#define CBUS_MHL_STATUS_REG_0 0xB0
#define CBUS_MHL_STATUS_REG_1 0xB1
#define BIT_CBUS_RESET BIT(3)
#define SET_HPD_DOWNSTREAM BIT(6)
/* TPI registers */
#define TPI_DPD_REG 0x3D
/* Timeouts in msec */
#define T_SRC_VBUS_CBUS_TO_STABLE 200
#define T_SRC_CBUS_FLOAT 100
#define T_SRC_CBUS_DEGLITCH 2
#define T_SRC_RXSENSE_DEGLITCH 110
#define MHL1_MAX_CLK 75000 /* in kHz */
#define I2C_TPI_ADDR 0x3D
#define I2C_HDMI_ADDR 0x49
#define I2C_CBUS_ADDR 0x64
enum sii9234_state {
ST_OFF,
ST_D3,
ST_RGND_INIT,
ST_RGND_1K,
ST_RSEN_HIGH,
ST_MHL_ESTABLISHED,
ST_FAILURE_DISCOVERY,
ST_FAILURE,
};
struct sii9234 {
struct i2c_client *client[4];
struct drm_bridge bridge;
struct device *dev;
struct gpio_desc *gpio_reset;
int i2c_error;
struct regulator_bulk_data supplies[4];
struct mutex lock; /* Protects fields below and device registers */
enum sii9234_state state;
};
enum sii9234_client_id {
I2C_MHL,
I2C_TPI,
I2C_HDMI,
I2C_CBUS,
};
static const char * const sii9234_client_name[] = {
[I2C_MHL] = "MHL",
[I2C_TPI] = "TPI",
[I2C_HDMI] = "HDMI",
[I2C_CBUS] = "CBUS",
};
static int sii9234_writeb(struct sii9234 *ctx, int id, int offset,
int value)
{
int ret;
struct i2c_client *client = ctx->client[id];
if (ctx->i2c_error)
return ctx->i2c_error;
ret = i2c_smbus_write_byte_data(client, offset, value);
if (ret < 0)
dev_err(ctx->dev, "writeb: %4s[0x%02x] <- 0x%02x\n",
sii9234_client_name[id], offset, value);
ctx->i2c_error = ret;
return ret;
}
static int sii9234_writebm(struct sii9234 *ctx, int id, int offset,
int value, int mask)
{
int ret;
struct i2c_client *client = ctx->client[id];
if (ctx->i2c_error)
return ctx->i2c_error;
ret = i2c_smbus_write_byte(client, offset);
if (ret < 0) {
dev_err(ctx->dev, "writebm: %4s[0x%02x] <- 0x%02x\n",
sii9234_client_name[id], offset, value);
ctx->i2c_error = ret;
return ret;
}
ret = i2c_smbus_read_byte(client);
if (ret < 0) {
dev_err(ctx->dev, "writebm: %4s[0x%02x] <- 0x%02x\n",
sii9234_client_name[id], offset, value);
ctx->i2c_error = ret;
return ret;
}
value = (value & mask) | (ret & ~mask);
ret = i2c_smbus_write_byte_data(client, offset, value);
if (ret < 0) {
dev_err(ctx->dev, "writebm: %4s[0x%02x] <- 0x%02x\n",
sii9234_client_name[id], offset, value);
ctx->i2c_error = ret;
}
return ret;
}
static int sii9234_readb(struct sii9234 *ctx, int id, int offset)
{
int ret;
struct i2c_client *client = ctx->client[id];
if (ctx->i2c_error)
return ctx->i2c_error;
ret = i2c_smbus_write_byte(client, offset);
if (ret < 0) {
dev_err(ctx->dev, "readb: %4s[0x%02x]\n",
sii9234_client_name[id], offset);
ctx->i2c_error = ret;
return ret;
}
ret = i2c_smbus_read_byte(client);
if (ret < 0) {
dev_err(ctx->dev, "readb: %4s[0x%02x]\n",
sii9234_client_name[id], offset);
ctx->i2c_error = ret;
}
return ret;
}
static int sii9234_clear_error(struct sii9234 *ctx)
{
int ret = ctx->i2c_error;
ctx->i2c_error = 0;
return ret;
}
#define mhl_tx_writeb(sii9234, offset, value) \
sii9234_writeb(sii9234, I2C_MHL, offset, value)
#define mhl_tx_writebm(sii9234, offset, value, mask) \
sii9234_writebm(sii9234, I2C_MHL, offset, value, mask)
#define mhl_tx_readb(sii9234, offset) \
sii9234_readb(sii9234, I2C_MHL, offset)
#define cbus_writeb(sii9234, offset, value) \
sii9234_writeb(sii9234, I2C_CBUS, offset, value)
#define cbus_writebm(sii9234, offset, value, mask) \
sii9234_writebm(sii9234, I2C_CBUS, offset, value, mask)
#define cbus_readb(sii9234, offset) \
sii9234_readb(sii9234, I2C_CBUS, offset)
#define hdmi_writeb(sii9234, offset, value) \
sii9234_writeb(sii9234, I2C_HDMI, offset, value)
#define hdmi_writebm(sii9234, offset, value, mask) \
sii9234_writebm(sii9234, I2C_HDMI, offset, value, mask)
#define hdmi_readb(sii9234, offset) \
sii9234_readb(sii9234, I2C_HDMI, offset)
#define tpi_writeb(sii9234, offset, value) \
sii9234_writeb(sii9234, I2C_TPI, offset, value)
#define tpi_writebm(sii9234, offset, value, mask) \
sii9234_writebm(sii9234, I2C_TPI, offset, value, mask)
#define tpi_readb(sii9234, offset) \
sii9234_readb(sii9234, I2C_TPI, offset)
static u8 sii9234_tmds_control(struct sii9234 *ctx, bool enable)
{
mhl_tx_writebm(ctx, MHL_TX_TMDS_CCTRL, enable ? ~0 : 0,
BIT_TMDS_CCTRL_TMDS_OE);
mhl_tx_writebm(ctx, MHL_TX_INT_CTRL_REG, enable ? ~0 : 0,
MHL_HPD_OUT_OVR_EN | MHL_HPD_OUT_OVR_VAL);
return sii9234_clear_error(ctx);
}
static int sii9234_cbus_reset(struct sii9234 *ctx)
{
int i;
mhl_tx_writebm(ctx, MHL_TX_SRST, ~0, BIT_CBUS_RESET);
msleep(T_SRC_CBUS_DEGLITCH);
mhl_tx_writebm(ctx, MHL_TX_SRST, 0, BIT_CBUS_RESET);
for (i = 0; i < 4; i++) {
/*
* Enable WRITE_STAT interrupt for writes to all
* 4 MSC Status registers.
*/
cbus_writeb(ctx, 0xE0 + i, 0xF2);
/*
* Enable SET_INT interrupt for writes to all
* 4 MSC Interrupt registers.
*/
cbus_writeb(ctx, 0xF0 + i, 0xF2);
}
return sii9234_clear_error(ctx);
}
/* Require to chek mhl imformation of samsung in cbus_init_register */
static int sii9234_cbus_init(struct sii9234 *ctx)
{
cbus_writeb(ctx, 0x07, 0xF2);
cbus_writeb(ctx, 0x40, 0x03);
cbus_writeb(ctx, 0x42, 0x06);
cbus_writeb(ctx, 0x36, 0x0C);
cbus_writeb(ctx, 0x3D, 0xFD);
cbus_writeb(ctx, 0x1C, 0x01);
cbus_writeb(ctx, 0x1D, 0x0F);
cbus_writeb(ctx, 0x44, 0x02);
/* Setup our devcap */
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_DEV_STATE, 0x00);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_MHL_VERSION,
SII9234_MHL_VERSION);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_CAT,
MHL_DCAP_CAT_SOURCE);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_ADOPTER_ID_H, 0x01);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_ADOPTER_ID_L, 0x41);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_VID_LINK_MODE,
MHL_DCAP_VID_LINK_RGB444 | MHL_DCAP_VID_LINK_YCBCR444);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_VIDEO_TYPE,
MHL_DCAP_VT_GRAPHICS);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_LOG_DEV_MAP,
MHL_DCAP_LD_GUI);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_BANDWIDTH, 0x0F);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_FEATURE_FLAG,
MHL_DCAP_FEATURE_RCP_SUPPORT | MHL_DCAP_FEATURE_RAP_SUPPORT
| MHL_DCAP_FEATURE_SP_SUPPORT);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_DEVICE_ID_H, 0x0);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_DEVICE_ID_L, 0x0);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_SCRATCHPAD_SIZE,
SII9234_SCRATCHPAD_SIZE);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_INT_STAT_SIZE,
SII9234_INT_STAT_SIZE);
cbus_writeb(ctx, CBUS_DEVCAP_OFFSET + MHL_DCAP_RESERVED, 0);
cbus_writebm(ctx, 0x31, 0x0C, 0x0C);
cbus_writeb(ctx, 0x30, 0x01);
cbus_writebm(ctx, 0x3C, 0x30, 0x38);
cbus_writebm(ctx, 0x22, 0x0D, 0x0F);
cbus_writebm(ctx, 0x2E, 0x15, 0x15);
cbus_writeb(ctx, CBUS_INTR1_ENABLE_REG, 0);
cbus_writeb(ctx, CBUS_INTR2_ENABLE_REG, 0);
return sii9234_clear_error(ctx);
}
static void force_usb_id_switch_open(struct sii9234 *ctx)
{
/* Disable CBUS discovery */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL1_REG, 0, 0x01);
/* Force USB ID switch to open */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL6_REG, ~0, USB_ID_OVR);
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL3_REG, ~0, 0x86);
/* Force upstream HPD to 0 when not in MHL mode. */
mhl_tx_writebm(ctx, MHL_TX_INT_CTRL_REG, 0, 0x30);
}
static void release_usb_id_switch_open(struct sii9234 *ctx)
{
msleep(T_SRC_CBUS_FLOAT);
/* Clear USB ID switch to open */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL6_REG, 0, USB_ID_OVR);
/* Enable CBUS discovery */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL1_REG, ~0, 0x01);
}
static int sii9234_power_init(struct sii9234 *ctx)
{
/* Force the SiI9234 into the D0 state. */
tpi_writeb(ctx, TPI_DPD_REG, 0x3F);
/* Enable TxPLL Clock */
hdmi_writeb(ctx, HDMI_RX_TMDS_CLK_EN_REG, 0x01);
/* Enable Tx Clock Path & Equalizer */
hdmi_writeb(ctx, HDMI_RX_TMDS_CH_EN_REG, 0x15);
/* Power Up TMDS */
mhl_tx_writeb(ctx, 0x08, 0x35);
return sii9234_clear_error(ctx);
}
static int sii9234_hdmi_init(struct sii9234 *ctx)
{
hdmi_writeb(ctx, HDMI_RX_TMDS0_CCTRL1_REG, 0xC1);
hdmi_writeb(ctx, HDMI_RX_PLL_CALREFSEL_REG, 0x03);
hdmi_writeb(ctx, HDMI_RX_PLL_VCOCAL_REG, 0x20);
hdmi_writeb(ctx, HDMI_RX_EQ_DATA0_REG, 0x8A);
hdmi_writeb(ctx, HDMI_RX_EQ_DATA1_REG, 0x6A);
hdmi_writeb(ctx, HDMI_RX_EQ_DATA2_REG, 0xAA);
hdmi_writeb(ctx, HDMI_RX_EQ_DATA3_REG, 0xCA);
hdmi_writeb(ctx, HDMI_RX_EQ_DATA4_REG, 0xEA);
hdmi_writeb(ctx, HDMI_RX_TMDS_ZONE_CTRL_REG, 0xA0);
hdmi_writeb(ctx, HDMI_RX_TMDS_MODE_CTRL_REG, 0x00);
mhl_tx_writeb(ctx, MHL_TX_TMDS_CCTRL, 0x34);
hdmi_writeb(ctx, 0x45, 0x44);
hdmi_writeb(ctx, 0x31, 0x0A);
hdmi_writeb(ctx, HDMI_RX_TMDS0_CCTRL1_REG, 0xC1);
return sii9234_clear_error(ctx);
}
static int sii9234_mhl_tx_ctl_int(struct sii9234 *ctx)
{
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL1_REG, 0xD0);
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL2_REG, 0xFC);
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL4_REG, 0xEB);
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL7_REG, 0x0C);
return sii9234_clear_error(ctx);
}
static int sii9234_reset(struct sii9234 *ctx)
{
int ret;
sii9234_clear_error(ctx);
ret = sii9234_power_init(ctx);
if (ret < 0)
return ret;
ret = sii9234_cbus_reset(ctx);
if (ret < 0)
return ret;
ret = sii9234_hdmi_init(ctx);
if (ret < 0)
return ret;
ret = sii9234_mhl_tx_ctl_int(ctx);
if (ret < 0)
return ret;
/* Enable HDCP Compliance safety */
mhl_tx_writeb(ctx, 0x2B, 0x01);
/* CBUS discovery cycle time for each drive and float = 150us */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL1_REG, 0x04, 0x06);
/* Clear bit 6 (reg_skip_rgnd) */
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL2_REG, (1 << 7) /* Reserved */
| 2 << ATT_THRESH_SHIFT | DEGLITCH_TIME_50MS);
/*
* Changed from 66 to 65 for 94[1:0] = 01 = 5k reg_cbusmhl_pup_sel
* 1.8V CBUS VTH & GND threshold
* to meet CTS 3.3.7.2 spec
*/
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL5_REG, 0x77);
cbus_writebm(ctx, CBUS_LINK_CONTROL_2_REG, ~0, MHL_INIT_TIMEOUT);
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL6_REG, 0xA0);
/* RGND & single discovery attempt (RGND blocking) */
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL6_REG, BLOCK_RGND_INT |
DVRFLT_SEL | SINGLE_ATT);
/* Use VBUS path of discovery state machine */
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL8_REG, 0);
/* 0x92[3] sets the CBUS / ID switch */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL6_REG, ~0, USB_ID_OVR);
/*
* To allow RGND engine to operate correctly.
* When moving the chip from D2 to D0 (power up, init regs)
* the values should be
* 94[1:0] = 01 reg_cbusmhl_pup_sel[1:0] should be set for 5k
* 93[7:6] = 10 reg_cbusdisc_pup_sel[1:0] should be
* set for 10k (default)
* 93[5:4] = 00 reg_cbusidle_pup_sel[1:0] = open (default)
*/
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL3_REG, ~0, 0x86);
/*
* Change from CC to 8C to match 5K
* to meet CTS 3.3.72 spec
*/
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL4_REG, ~0, 0x8C);
/* Configure the interrupt as active high */
mhl_tx_writebm(ctx, MHL_TX_INT_CTRL_REG, 0, 0x06);
msleep(25);
/* Release usb_id switch */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL6_REG, 0, USB_ID_OVR);
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL1_REG, 0x27);
ret = sii9234_clear_error(ctx);
if (ret < 0)
return ret;
ret = sii9234_cbus_init(ctx);
if (ret < 0)
return ret;
/* Enable Auto soft reset on SCDT = 0 */
mhl_tx_writeb(ctx, 0x05, 0x04);
/* HDMI Transcode mode enable */
mhl_tx_writeb(ctx, 0x0D, 0x1C);
mhl_tx_writeb(ctx, MHL_TX_INTR4_ENABLE_REG,
RGND_READY_MASK | CBUS_LKOUT_MASK
| MHL_DISC_FAIL_MASK | MHL_EST_MASK);
mhl_tx_writeb(ctx, MHL_TX_INTR1_ENABLE_REG, 0x60);
/* This point is very important before measure RGND impedance */
force_usb_id_switch_open(ctx);
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL4_REG, 0, 0xF0);
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL5_REG, 0, 0x03);
release_usb_id_switch_open(ctx);
/* Force upstream HPD to 0 when not in MHL mode */
mhl_tx_writebm(ctx, MHL_TX_INT_CTRL_REG, 0, 1 << 5);
mhl_tx_writebm(ctx, MHL_TX_INT_CTRL_REG, ~0, 1 << 4);
return sii9234_clear_error(ctx);
}
static int sii9234_goto_d3(struct sii9234 *ctx)
{
int ret;
dev_dbg(ctx->dev, "sii9234: detection started d3\n");
ret = sii9234_reset(ctx);
if (ret < 0)
goto exit;
hdmi_writeb(ctx, 0x01, 0x03);
tpi_writebm(ctx, TPI_DPD_REG, 0, 1);
/* I2C above is expected to fail because power goes down */
sii9234_clear_error(ctx);
ctx->state = ST_D3;
return 0;
exit:
dev_err(ctx->dev, "%s failed\n", __func__);
return -1;
}
static int sii9234_hw_on(struct sii9234 *ctx)
{
return regulator_bulk_enable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
}
static void sii9234_hw_off(struct sii9234 *ctx)
{
gpiod_set_value(ctx->gpio_reset, 1);
msleep(20);
regulator_bulk_disable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
}
static void sii9234_hw_reset(struct sii9234 *ctx)
{
gpiod_set_value(ctx->gpio_reset, 1);
msleep(20);
gpiod_set_value(ctx->gpio_reset, 0);
}
static void sii9234_cable_in(struct sii9234 *ctx)
{
int ret;
mutex_lock(&ctx->lock);
if (ctx->state != ST_OFF)
goto unlock;
ret = sii9234_hw_on(ctx);
if (ret < 0)
goto unlock;
sii9234_hw_reset(ctx);
sii9234_goto_d3(ctx);
/* To avoid irq storm, when hw is in meta state */
enable_irq(to_i2c_client(ctx->dev)->irq);
unlock:
mutex_unlock(&ctx->lock);
}
static void sii9234_cable_out(struct sii9234 *ctx)
{
mutex_lock(&ctx->lock);
if (ctx->state == ST_OFF)
goto unlock;
disable_irq(to_i2c_client(ctx->dev)->irq);
tpi_writeb(ctx, TPI_DPD_REG, 0);
/* Turn on&off hpd festure for only QCT HDMI */
sii9234_hw_off(ctx);
ctx->state = ST_OFF;
unlock:
mutex_unlock(&ctx->lock);
}
static enum sii9234_state sii9234_rgnd_ready_irq(struct sii9234 *ctx)
{
int value;
if (ctx->state == ST_D3) {
int ret;
dev_dbg(ctx->dev, "RGND_READY_INT\n");
sii9234_hw_reset(ctx);
ret = sii9234_reset(ctx);
if (ret < 0) {
dev_err(ctx->dev, "sii9234_reset() failed\n");
return ST_FAILURE;
}
return ST_RGND_INIT;
}
/* Got interrupt in inappropriate state */
if (ctx->state != ST_RGND_INIT)
return ST_FAILURE;
value = mhl_tx_readb(ctx, MHL_TX_STAT2_REG);
if (sii9234_clear_error(ctx))
return ST_FAILURE;
if ((value & RGND_INTP_MASK) != RGND_INTP_1K) {
dev_warn(ctx->dev, "RGND is not 1k\n");
return ST_RGND_INIT;
}
dev_dbg(ctx->dev, "RGND 1K!!\n");
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL4_REG, ~0, 0x8C);
mhl_tx_writeb(ctx, MHL_TX_DISC_CTRL5_REG, 0x77);
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL6_REG, ~0, 0x05);
if (sii9234_clear_error(ctx))
return ST_FAILURE;
msleep(T_SRC_VBUS_CBUS_TO_STABLE);
return ST_RGND_1K;
}
static enum sii9234_state sii9234_mhl_established(struct sii9234 *ctx)
{
dev_dbg(ctx->dev, "mhl est interrupt\n");
/* Discovery override */
mhl_tx_writeb(ctx, MHL_TX_MHLTX_CTL1_REG, 0x10);
/* Increase DDC translation layer timer (byte mode) */
cbus_writeb(ctx, 0x07, 0x32);
cbus_writebm(ctx, 0x44, ~0, 1 << 1);
/* Keep the discovery enabled. Need RGND interrupt */
mhl_tx_writebm(ctx, MHL_TX_DISC_CTRL1_REG, ~0, 1);
mhl_tx_writeb(ctx, MHL_TX_INTR1_ENABLE_REG,
RSEN_CHANGE_INT_MASK | HPD_CHANGE_INT_MASK);
if (sii9234_clear_error(ctx))
return ST_FAILURE;
return ST_MHL_ESTABLISHED;
}
static enum sii9234_state sii9234_hpd_change(struct sii9234 *ctx)
{
int value;
value = cbus_readb(ctx, CBUS_MSC_REQ_ABORT_REASON_REG);
if (sii9234_clear_error(ctx))
return ST_FAILURE;
if (value & SET_HPD_DOWNSTREAM) {
/* Downstream HPD High, Enable TMDS */
sii9234_tmds_control(ctx, true);
} else {
/* Downstream HPD Low, Disable TMDS */
sii9234_tmds_control(ctx, false);
}
return ctx->state;
}
static enum sii9234_state sii9234_rsen_change(struct sii9234 *ctx)
{
int value;
/* Work_around code to handle wrong interrupt */
if (ctx->state != ST_RGND_1K) {
dev_err(ctx->dev, "RSEN_HIGH without RGND_1K\n");
return ST_FAILURE;
}
value = mhl_tx_readb(ctx, MHL_TX_SYSSTAT_REG);
if (value < 0)
return ST_FAILURE;
if (value & RSEN_STATUS) {
dev_dbg(ctx->dev, "MHL cable connected.. RSEN High\n");
return ST_RSEN_HIGH;
}
dev_dbg(ctx->dev, "RSEN lost\n");
/*
* Once RSEN loss is confirmed,we need to check
* based on cable status and chip power status,whether
* it is SINK Loss(HDMI cable not connected, TV Off)
* or MHL cable disconnection
* TODO: Define the below mhl_disconnection()
*/
msleep(T_SRC_RXSENSE_DEGLITCH);
value = mhl_tx_readb(ctx, MHL_TX_SYSSTAT_REG);
if (value < 0)
return ST_FAILURE;
dev_dbg(ctx->dev, "sys_stat: %x\n", value);
if (value & RSEN_STATUS) {
dev_dbg(ctx->dev, "RSEN recovery\n");
return ST_RSEN_HIGH;
}
dev_dbg(ctx->dev, "RSEN Really LOW\n");
/* To meet CTS 3.3.22.2 spec */
sii9234_tmds_control(ctx, false);
force_usb_id_switch_open(ctx);
release_usb_id_switch_open(ctx);
return ST_FAILURE;
}
static irqreturn_t sii9234_irq_thread(int irq, void *data)
{
struct sii9234 *ctx = data;
int intr1, intr4;
int intr1_en, intr4_en;
int cbus_intr1, cbus_intr2;
dev_dbg(ctx->dev, "%s\n", __func__);
mutex_lock(&ctx->lock);
intr1 = mhl_tx_readb(ctx, MHL_TX_INTR1_REG);
intr4 = mhl_tx_readb(ctx, MHL_TX_INTR4_REG);
intr1_en = mhl_tx_readb(ctx, MHL_TX_INTR1_ENABLE_REG);
intr4_en = mhl_tx_readb(ctx, MHL_TX_INTR4_ENABLE_REG);
cbus_intr1 = cbus_readb(ctx, CBUS_INT_STATUS_1_REG);
cbus_intr2 = cbus_readb(ctx, CBUS_INT_STATUS_2_REG);
if (sii9234_clear_error(ctx))
goto done;
dev_dbg(ctx->dev, "irq %02x/%02x %02x/%02x %02x/%02x\n",
intr1, intr1_en, intr4, intr4_en, cbus_intr1, cbus_intr2);
if (intr4 & RGND_READY_INT)
ctx->state = sii9234_rgnd_ready_irq(ctx);
if (intr1 & RSEN_CHANGE_INT)
ctx->state = sii9234_rsen_change(ctx);
if (intr4 & MHL_EST_INT)
ctx->state = sii9234_mhl_established(ctx);
if (intr1 & HPD_CHANGE_INT)
ctx->state = sii9234_hpd_change(ctx);
if (intr4 & CBUS_LKOUT_INT)
ctx->state = ST_FAILURE;
if (intr4 & MHL_DISC_FAIL_INT)
ctx->state = ST_FAILURE_DISCOVERY;
done:
/* Clean interrupt status and pending flags */
mhl_tx_writeb(ctx, MHL_TX_INTR1_REG, intr1);
mhl_tx_writeb(ctx, MHL_TX_INTR4_REG, intr4);
cbus_writeb(ctx, CBUS_MHL_STATUS_REG_0, 0xFF);
cbus_writeb(ctx, CBUS_MHL_STATUS_REG_1, 0xFF);
cbus_writeb(ctx, CBUS_INT_STATUS_1_REG, cbus_intr1);
cbus_writeb(ctx, CBUS_INT_STATUS_2_REG, cbus_intr2);
sii9234_clear_error(ctx);
if (ctx->state == ST_FAILURE) {
dev_dbg(ctx->dev, "try to reset after failure\n");
sii9234_hw_reset(ctx);
sii9234_goto_d3(ctx);
}
if (ctx->state == ST_FAILURE_DISCOVERY) {
dev_err(ctx->dev, "discovery failed, no power for MHL?\n");
tpi_writebm(ctx, TPI_DPD_REG, 0, 1);
ctx->state = ST_D3;
}
mutex_unlock(&ctx->lock);
return IRQ_HANDLED;
}
static int sii9234_init_resources(struct sii9234 *ctx,
struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
int ret;
if (!ctx->dev->of_node) {
dev_err(ctx->dev, "not DT device\n");
return -ENODEV;
}
ctx->gpio_reset = devm_gpiod_get(ctx->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(ctx->gpio_reset)) {
dev_err(ctx->dev, "failed to get reset gpio from DT\n");
return PTR_ERR(ctx->gpio_reset);
}
ctx->supplies[0].supply = "avcc12";
ctx->supplies[1].supply = "avcc33";
ctx->supplies[2].supply = "iovcc18";
ctx->supplies[3].supply = "cvcc12";
ret = devm_regulator_bulk_get(ctx->dev, 4, ctx->supplies);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(ctx->dev, "regulator_bulk failed\n");
return ret;
}
ctx->client[I2C_MHL] = client;
ctx->client[I2C_TPI] = devm_i2c_new_dummy_device(&client->dev, adapter,
I2C_TPI_ADDR);
if (IS_ERR(ctx->client[I2C_TPI])) {
dev_err(ctx->dev, "failed to create TPI client\n");
return PTR_ERR(ctx->client[I2C_TPI]);
}
ctx->client[I2C_HDMI] = devm_i2c_new_dummy_device(&client->dev, adapter,
I2C_HDMI_ADDR);
if (IS_ERR(ctx->client[I2C_HDMI])) {
dev_err(ctx->dev, "failed to create HDMI RX client\n");
return PTR_ERR(ctx->client[I2C_HDMI]);
}
ctx->client[I2C_CBUS] = devm_i2c_new_dummy_device(&client->dev, adapter,
I2C_CBUS_ADDR);
if (IS_ERR(ctx->client[I2C_CBUS])) {
dev_err(ctx->dev, "failed to create CBUS client\n");
return PTR_ERR(ctx->client[I2C_CBUS]);
}
return 0;
}
static enum drm_mode_status sii9234_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->clock > MHL1_MAX_CLK)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_bridge_funcs sii9234_bridge_funcs = {
.mode_valid = sii9234_mode_valid,
};
static int sii9234_probe(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
struct sii9234 *ctx;
struct device *dev = &client->dev;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
mutex_init(&ctx->lock);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(dev, "I2C adapter lacks SMBUS feature\n");
return -EIO;
}
if (!client->irq) {
dev_err(dev, "no irq provided\n");
return -EINVAL;
}
irq_set_status_flags(client->irq, IRQ_NOAUTOEN);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
sii9234_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"sii9234", ctx);
if (ret < 0) {
dev_err(dev, "failed to install IRQ handler\n");
return ret;
}
ret = sii9234_init_resources(ctx, client);
if (ret < 0)
return ret;
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = &sii9234_bridge_funcs;
ctx->bridge.of_node = dev->of_node;
drm_bridge_add(&ctx->bridge);
sii9234_cable_in(ctx);
return 0;
}
static void sii9234_remove(struct i2c_client *client)
{
struct sii9234 *ctx = i2c_get_clientdata(client);
sii9234_cable_out(ctx);
drm_bridge_remove(&ctx->bridge);
}
static const struct of_device_id sii9234_dt_match[] = {
{ .compatible = "sil,sii9234" },
{ },
};
MODULE_DEVICE_TABLE(of, sii9234_dt_match);
static const struct i2c_device_id sii9234_id[] = {
{ "SII9234", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, sii9234_id);
static struct i2c_driver sii9234_driver = {
.driver = {
.name = "sii9234",
.of_match_table = sii9234_dt_match,
},
.probe = sii9234_probe,
.remove = sii9234_remove,
.id_table = sii9234_id,
};
module_i2c_driver(sii9234_driver);
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/sii9234.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Lontium LT9211 bridge driver
*
* LT9211 is capable of converting:
* 2xDSI/2xLVDS/1xDPI -> 2xDSI/2xLVDS/1xDPI
* Currently supported is:
* 1xDSI -> 1xLVDS
*
* Copyright (C) 2022 Marek Vasut <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define REG_PAGE_CONTROL 0xff
#define REG_CHIPID0 0x8100
#define REG_CHIPID0_VALUE 0x18
#define REG_CHIPID1 0x8101
#define REG_CHIPID1_VALUE 0x01
#define REG_CHIPID2 0x8102
#define REG_CHIPID2_VALUE 0xe3
#define REG_DSI_LANE 0xd000
/* DSI lane count - 0 means 4 lanes ; 1, 2, 3 means 1, 2, 3 lanes. */
#define REG_DSI_LANE_COUNT(n) ((n) & 3)
struct lt9211 {
struct drm_bridge bridge;
struct device *dev;
struct regmap *regmap;
struct mipi_dsi_device *dsi;
struct drm_bridge *panel_bridge;
struct gpio_desc *reset_gpio;
struct regulator *vccio;
bool lvds_dual_link;
bool lvds_dual_link_even_odd_swap;
};
static const struct regmap_range lt9211_rw_ranges[] = {
regmap_reg_range(0xff, 0xff),
regmap_reg_range(0x8100, 0x816b),
regmap_reg_range(0x8200, 0x82aa),
regmap_reg_range(0x8500, 0x85ff),
regmap_reg_range(0x8600, 0x86a0),
regmap_reg_range(0x8700, 0x8746),
regmap_reg_range(0xd000, 0xd0a7),
regmap_reg_range(0xd400, 0xd42c),
regmap_reg_range(0xd800, 0xd838),
regmap_reg_range(0xd9c0, 0xd9d5),
};
static const struct regmap_access_table lt9211_rw_table = {
.yes_ranges = lt9211_rw_ranges,
.n_yes_ranges = ARRAY_SIZE(lt9211_rw_ranges),
};
static const struct regmap_range_cfg lt9211_range = {
.name = "lt9211",
.range_min = 0x0000,
.range_max = 0xda00,
.selector_reg = REG_PAGE_CONTROL,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
};
static const struct regmap_config lt9211_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.rd_table = <9211_rw_table,
.wr_table = <9211_rw_table,
.volatile_table = <9211_rw_table,
.ranges = <9211_range,
.num_ranges = 1,
.cache_type = REGCACHE_RBTREE,
.max_register = 0xda00,
};
static struct lt9211 *bridge_to_lt9211(struct drm_bridge *bridge)
{
return container_of(bridge, struct lt9211, bridge);
}
static int lt9211_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct lt9211 *ctx = bridge_to_lt9211(bridge);
return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
&ctx->bridge, flags);
}
static int lt9211_read_chipid(struct lt9211 *ctx)
{
u8 chipid[3];
int ret;
/* Read Chip ID registers and verify the chip can communicate. */
ret = regmap_bulk_read(ctx->regmap, REG_CHIPID0, chipid, 3);
if (ret < 0) {
dev_err(ctx->dev, "Failed to read Chip ID: %d\n", ret);
return ret;
}
/* Test for known Chip ID. */
if (chipid[0] != REG_CHIPID0_VALUE || chipid[1] != REG_CHIPID1_VALUE ||
chipid[2] != REG_CHIPID2_VALUE) {
dev_err(ctx->dev, "Unknown Chip ID: 0x%02x 0x%02x 0x%02x\n",
chipid[0], chipid[1], chipid[2]);
return -EINVAL;
}
return 0;
}
static int lt9211_system_init(struct lt9211 *ctx)
{
const struct reg_sequence lt9211_system_init_seq[] = {
{ 0x8201, 0x18 },
{ 0x8606, 0x61 },
{ 0x8607, 0xa8 },
{ 0x8714, 0x08 },
{ 0x8715, 0x00 },
{ 0x8718, 0x0f },
{ 0x8722, 0x08 },
{ 0x8723, 0x00 },
{ 0x8726, 0x0f },
{ 0x810b, 0xfe },
};
return regmap_multi_reg_write(ctx->regmap, lt9211_system_init_seq,
ARRAY_SIZE(lt9211_system_init_seq));
}
static int lt9211_configure_rx(struct lt9211 *ctx)
{
const struct reg_sequence lt9211_rx_phy_seq[] = {
{ 0x8202, 0x44 },
{ 0x8204, 0xa0 },
{ 0x8205, 0x22 },
{ 0x8207, 0x9f },
{ 0x8208, 0xfc },
/* ORR with 0xf8 here to enable DSI DN/DP swap. */
{ 0x8209, 0x01 },
{ 0x8217, 0x0c },
{ 0x8633, 0x1b },
};
const struct reg_sequence lt9211_rx_cal_reset_seq[] = {
{ 0x8120, 0x7f },
{ 0x8120, 0xff },
};
const struct reg_sequence lt9211_rx_dig_seq[] = {
{ 0x8630, 0x85 },
/* 0x8588: BIT 6 set = MIPI-RX, BIT 4 unset = LVDS-TX */
{ 0x8588, 0x40 },
{ 0x85ff, 0xd0 },
{ REG_DSI_LANE, REG_DSI_LANE_COUNT(ctx->dsi->lanes) },
{ 0xd002, 0x05 },
};
const struct reg_sequence lt9211_rx_div_reset_seq[] = {
{ 0x810a, 0xc0 },
{ 0x8120, 0xbf },
};
const struct reg_sequence lt9211_rx_div_clear_seq[] = {
{ 0x810a, 0xc1 },
{ 0x8120, 0xff },
};
int ret;
ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_phy_seq,
ARRAY_SIZE(lt9211_rx_phy_seq));
if (ret)
return ret;
ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_cal_reset_seq,
ARRAY_SIZE(lt9211_rx_cal_reset_seq));
if (ret)
return ret;
ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_dig_seq,
ARRAY_SIZE(lt9211_rx_dig_seq));
if (ret)
return ret;
ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_div_reset_seq,
ARRAY_SIZE(lt9211_rx_div_reset_seq));
if (ret)
return ret;
usleep_range(10000, 15000);
return regmap_multi_reg_write(ctx->regmap, lt9211_rx_div_clear_seq,
ARRAY_SIZE(lt9211_rx_div_clear_seq));
}
static int lt9211_autodetect_rx(struct lt9211 *ctx,
const struct drm_display_mode *mode)
{
u16 width, height;
u32 byteclk;
u8 buf[5];
u8 format;
u8 bc[3];
int ret;
/* Measure ByteClock frequency. */
ret = regmap_write(ctx->regmap, 0x8600, 0x01);
if (ret)
return ret;
/* Give the chip time to lock onto RX stream. */
msleep(100);
/* Read the ByteClock frequency from the chip. */
ret = regmap_bulk_read(ctx->regmap, 0x8608, bc, sizeof(bc));
if (ret)
return ret;
/* RX ByteClock in kHz */
byteclk = ((bc[0] & 0xf) << 16) | (bc[1] << 8) | bc[2];
/* Width/Height/Format Auto-detection */
ret = regmap_bulk_read(ctx->regmap, 0xd082, buf, sizeof(buf));
if (ret)
return ret;
width = (buf[0] << 8) | buf[1];
height = (buf[3] << 8) | buf[4];
format = buf[2] & 0xf;
if (format == 0x3) { /* YUV422 16bit */
width /= 2;
} else if (format == 0xa) { /* RGB888 24bit */
width /= 3;
} else {
dev_err(ctx->dev, "Unsupported DSI pixel format 0x%01x\n",
format);
return -EINVAL;
}
if (width != mode->hdisplay) {
dev_err(ctx->dev,
"RX: Detected DSI width (%d) does not match mode hdisplay (%d)\n",
width, mode->hdisplay);
return -EINVAL;
}
if (height != mode->vdisplay) {
dev_err(ctx->dev,
"RX: Detected DSI height (%d) does not match mode vdisplay (%d)\n",
height, mode->vdisplay);
return -EINVAL;
}
dev_dbg(ctx->dev, "RX: %dx%d format=0x%01x byteclock=%d kHz\n",
width, height, format, byteclk);
return 0;
}
static int lt9211_configure_timing(struct lt9211 *ctx,
const struct drm_display_mode *mode)
{
const struct reg_sequence lt9211_timing[] = {
{ 0xd00d, (mode->vtotal >> 8) & 0xff },
{ 0xd00e, mode->vtotal & 0xff },
{ 0xd00f, (mode->vdisplay >> 8) & 0xff },
{ 0xd010, mode->vdisplay & 0xff },
{ 0xd011, (mode->htotal >> 8) & 0xff },
{ 0xd012, mode->htotal & 0xff },
{ 0xd013, (mode->hdisplay >> 8) & 0xff },
{ 0xd014, mode->hdisplay & 0xff },
{ 0xd015, (mode->vsync_end - mode->vsync_start) & 0xff },
{ 0xd016, (mode->hsync_end - mode->hsync_start) & 0xff },
{ 0xd017, ((mode->vsync_start - mode->vdisplay) >> 8) & 0xff },
{ 0xd018, (mode->vsync_start - mode->vdisplay) & 0xff },
{ 0xd019, ((mode->hsync_start - mode->hdisplay) >> 8) & 0xff },
{ 0xd01a, (mode->hsync_start - mode->hdisplay) & 0xff },
};
return regmap_multi_reg_write(ctx->regmap, lt9211_timing,
ARRAY_SIZE(lt9211_timing));
}
static int lt9211_configure_plls(struct lt9211 *ctx,
const struct drm_display_mode *mode)
{
const struct reg_sequence lt9211_pcr_seq[] = {
{ 0xd026, 0x17 },
{ 0xd027, 0xc3 },
{ 0xd02d, 0x30 },
{ 0xd031, 0x10 },
{ 0xd023, 0x20 },
{ 0xd038, 0x02 },
{ 0xd039, 0x10 },
{ 0xd03a, 0x20 },
{ 0xd03b, 0x60 },
{ 0xd03f, 0x04 },
{ 0xd040, 0x08 },
{ 0xd041, 0x10 },
{ 0x810b, 0xee },
{ 0x810b, 0xfe },
};
unsigned int pval;
int ret;
/* DeSSC PLL reference clock is 25 MHz XTal. */
ret = regmap_write(ctx->regmap, 0x822d, 0x48);
if (ret)
return ret;
if (mode->clock < 44000) {
ret = regmap_write(ctx->regmap, 0x8235, 0x83);
} else if (mode->clock < 88000) {
ret = regmap_write(ctx->regmap, 0x8235, 0x82);
} else if (mode->clock < 176000) {
ret = regmap_write(ctx->regmap, 0x8235, 0x81);
} else {
dev_err(ctx->dev,
"Unsupported mode clock (%d kHz) above 176 MHz.\n",
mode->clock);
return -EINVAL;
}
if (ret)
return ret;
/* Wait for the DeSSC PLL to stabilize. */
msleep(100);
ret = regmap_multi_reg_write(ctx->regmap, lt9211_pcr_seq,
ARRAY_SIZE(lt9211_pcr_seq));
if (ret)
return ret;
/* PCR stability test takes seconds. */
ret = regmap_read_poll_timeout(ctx->regmap, 0xd087, pval, pval & 0x8,
20000, 10000000);
if (ret)
dev_err(ctx->dev, "PCR unstable, ret=%i\n", ret);
return ret;
}
static int lt9211_configure_tx(struct lt9211 *ctx, bool jeida,
bool bpp24, bool de)
{
const struct reg_sequence system_lt9211_tx_phy_seq[] = {
/* DPI output disable */
{ 0x8262, 0x00 },
/* BIT(7) is LVDS dual-port */
{ 0x823b, 0x38 | (ctx->lvds_dual_link ? BIT(7) : 0) },
{ 0x823e, 0x92 },
{ 0x823f, 0x48 },
{ 0x8240, 0x31 },
{ 0x8243, 0x80 },
{ 0x8244, 0x00 },
{ 0x8245, 0x00 },
{ 0x8249, 0x00 },
{ 0x824a, 0x01 },
{ 0x824e, 0x00 },
{ 0x824f, 0x00 },
{ 0x8250, 0x00 },
{ 0x8253, 0x00 },
{ 0x8254, 0x01 },
/* LVDS channel order, Odd:Even 0x10..A:B, 0x40..B:A */
{ 0x8646, ctx->lvds_dual_link_even_odd_swap ? 0x40 : 0x10 },
{ 0x8120, 0x7b },
{ 0x816b, 0xff },
};
const struct reg_sequence system_lt9211_tx_dig_seq[] = {
{ 0x8559, 0x40 | (jeida ? BIT(7) : 0) |
(de ? BIT(5) : 0) | (bpp24 ? BIT(4) : 0) },
{ 0x855a, 0xaa },
{ 0x855b, 0xaa },
{ 0x855c, ctx->lvds_dual_link ? BIT(0) : 0 },
{ 0x85a1, 0x77 },
{ 0x8640, 0x40 },
{ 0x8641, 0x34 },
{ 0x8642, 0x10 },
{ 0x8643, 0x23 },
{ 0x8644, 0x41 },
{ 0x8645, 0x02 },
};
const struct reg_sequence system_lt9211_tx_pll_seq[] = {
/* TX PLL power down */
{ 0x8236, 0x01 },
{ 0x8237, ctx->lvds_dual_link ? 0x2a : 0x29 },
{ 0x8238, 0x06 },
{ 0x8239, 0x30 },
{ 0x823a, 0x8e },
{ 0x8737, 0x14 },
{ 0x8713, 0x00 },
{ 0x8713, 0x80 },
};
unsigned int pval;
int ret;
ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_phy_seq,
ARRAY_SIZE(system_lt9211_tx_phy_seq));
if (ret)
return ret;
ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_dig_seq,
ARRAY_SIZE(system_lt9211_tx_dig_seq));
if (ret)
return ret;
ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_pll_seq,
ARRAY_SIZE(system_lt9211_tx_pll_seq));
if (ret)
return ret;
ret = regmap_read_poll_timeout(ctx->regmap, 0x871f, pval, pval & 0x80,
10000, 1000000);
if (ret) {
dev_err(ctx->dev, "TX PLL unstable, ret=%i\n", ret);
return ret;
}
ret = regmap_read_poll_timeout(ctx->regmap, 0x8720, pval, pval & 0x80,
10000, 1000000);
if (ret) {
dev_err(ctx->dev, "TX PLL unstable, ret=%i\n", ret);
return ret;
}
return 0;
}
static void lt9211_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9211 *ctx = bridge_to_lt9211(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
const struct drm_bridge_state *bridge_state;
const struct drm_crtc_state *crtc_state;
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
bool lvds_format_24bpp;
bool lvds_format_jeida;
u32 bus_flags;
int ret;
ret = regulator_enable(ctx->vccio);
if (ret) {
dev_err(ctx->dev, "Failed to enable vccio: %d\n", ret);
return;
}
/* Deassert reset */
gpiod_set_value(ctx->reset_gpio, 1);
usleep_range(20000, 21000); /* Very long post-reset delay. */
/* Get the LVDS format from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
bus_flags = bridge_state->output_bus_cfg.flags;
switch (bridge_state->output_bus_cfg.format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
lvds_format_24bpp = false;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
lvds_format_24bpp = true;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
lvds_format_24bpp = true;
lvds_format_jeida = false;
break;
default:
/*
* Some bridges still don't set the correct
* LVDS bus pixel format, use SPWG24 default
* format until those are fixed.
*/
lvds_format_24bpp = true;
lvds_format_jeida = false;
dev_warn(ctx->dev,
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
bridge_state->output_bus_cfg.format);
break;
}
/*
* Retrieve the CRTC adjusted mode. This requires a little dance to go
* from the bridge to the encoder, to the connector and to the CRTC.
*/
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
mode = &crtc_state->adjusted_mode;
ret = lt9211_read_chipid(ctx);
if (ret)
return;
ret = lt9211_system_init(ctx);
if (ret)
return;
ret = lt9211_configure_rx(ctx);
if (ret)
return;
ret = lt9211_autodetect_rx(ctx, mode);
if (ret)
return;
ret = lt9211_configure_timing(ctx, mode);
if (ret)
return;
ret = lt9211_configure_plls(ctx, mode);
if (ret)
return;
ret = lt9211_configure_tx(ctx, lvds_format_jeida, lvds_format_24bpp,
bus_flags & DRM_BUS_FLAG_DE_HIGH);
if (ret)
return;
dev_dbg(ctx->dev, "LT9211 enabled.\n");
}
static void lt9211_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct lt9211 *ctx = bridge_to_lt9211(bridge);
int ret;
/*
* Put the chip in reset, pull nRST line low,
* and assure lengthy 10ms reset low timing.
*/
gpiod_set_value(ctx->reset_gpio, 0);
usleep_range(10000, 11000); /* Very long reset duration. */
ret = regulator_disable(ctx->vccio);
if (ret)
dev_err(ctx->dev, "Failed to disable vccio: %d\n", ret);
regcache_mark_dirty(ctx->regmap);
}
static enum drm_mode_status
lt9211_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* LVDS output clock range 25..176 MHz */
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (mode->clock > 176000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
lt9211_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs lt9211_funcs = {
.attach = lt9211_attach,
.mode_valid = lt9211_mode_valid,
.atomic_enable = lt9211_atomic_enable,
.atomic_disable = lt9211_atomic_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = lt9211_atomic_get_input_bus_fmts,
.atomic_reset = drm_atomic_helper_bridge_reset,
};
static int lt9211_parse_dt(struct lt9211 *ctx)
{
struct device_node *port2, *port3;
struct drm_bridge *panel_bridge;
struct device *dev = ctx->dev;
struct drm_panel *panel;
int dual_link;
int ret;
ctx->vccio = devm_regulator_get(dev, "vccio");
if (IS_ERR(ctx->vccio))
return dev_err_probe(dev, PTR_ERR(ctx->vccio),
"Failed to get supply 'vccio'\n");
ctx->lvds_dual_link = false;
ctx->lvds_dual_link_even_odd_swap = false;
port2 = of_graph_get_port_by_id(dev->of_node, 2);
port3 = of_graph_get_port_by_id(dev->of_node, 3);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
of_node_put(port2);
of_node_put(port3);
if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
ctx->lvds_dual_link = true;
/* Odd pixels to LVDS Channel A, even pixels to B */
ctx->lvds_dual_link_even_odd_swap = false;
} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
ctx->lvds_dual_link = true;
/* Even pixels to LVDS Channel A, odd pixels to B */
ctx->lvds_dual_link_even_odd_swap = true;
}
ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, &panel_bridge);
if (ret < 0)
return ret;
if (panel) {
panel_bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
}
ctx->panel_bridge = panel_bridge;
return 0;
}
static int lt9211_host_attach(struct lt9211 *ctx)
{
const struct mipi_dsi_device_info info = {
.type = "lt9211",
.channel = 0,
.node = NULL,
};
struct device *dev = ctx->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
int dsi_lanes;
int ret;
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
host_node = of_graph_get_remote_port_parent(endpoint);
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
of_node_put(endpoint);
if (!host)
return -EPROBE_DEFER;
if (dsi_lanes < 0)
return dsi_lanes;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
ctx->dsi = dsi;
dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_VIDEO_HSE | MIPI_DSI_MODE_VIDEO_NO_HSA |
MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
MIPI_DSI_MODE_NO_EOT_PACKET;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
return ret;
}
return 0;
}
static int lt9211_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct lt9211 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
/*
* Put the chip in reset, pull nRST line low,
* and assure lengthy 10ms reset low timing.
*/
ctx->reset_gpio = devm_gpiod_get_optional(ctx->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(ctx->reset_gpio))
return PTR_ERR(ctx->reset_gpio);
usleep_range(10000, 11000); /* Very long reset duration. */
ret = lt9211_parse_dt(ctx);
if (ret)
return ret;
ctx->regmap = devm_regmap_init_i2c(client, <9211_regmap_config);
if (IS_ERR(ctx->regmap))
return PTR_ERR(ctx->regmap);
dev_set_drvdata(dev, ctx);
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = <9211_funcs;
ctx->bridge.of_node = dev->of_node;
drm_bridge_add(&ctx->bridge);
ret = lt9211_host_attach(ctx);
if (ret)
drm_bridge_remove(&ctx->bridge);
return ret;
}
static void lt9211_remove(struct i2c_client *client)
{
struct lt9211 *ctx = i2c_get_clientdata(client);
drm_bridge_remove(&ctx->bridge);
}
static struct i2c_device_id lt9211_id[] = {
{ "lontium,lt9211" },
{},
};
MODULE_DEVICE_TABLE(i2c, lt9211_id);
static const struct of_device_id lt9211_match_table[] = {
{ .compatible = "lontium,lt9211" },
{},
};
MODULE_DEVICE_TABLE(of, lt9211_match_table);
static struct i2c_driver lt9211_driver = {
.probe = lt9211_probe,
.remove = lt9211_remove,
.id_table = lt9211_id,
.driver = {
.name = "lt9211",
.of_match_table = lt9211_match_table,
},
};
module_i2c_driver(lt9211_driver);
MODULE_AUTHOR("Marek Vasut <[email protected]>");
MODULE_DESCRIPTION("Lontium LT9211 DSI/LVDS/DPI bridge driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/lontium-lt9211.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2021 RenewOutReach
* Copyright (C) 2021 Amarula Solutions(India)
*
* Author:
* Jagan Teki <[email protected]>
* Christopher Vollo <[email protected]>
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_mipi_dsi.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
enum cmd_registers {
WR_INPUT_SOURCE = 0x05, /* Write Input Source Select */
WR_EXT_SOURCE_FMT = 0x07, /* Write External Video Source Format */
WR_IMAGE_CROP = 0x10, /* Write Image Crop */
WR_DISPLAY_SIZE = 0x12, /* Write Display Size */
WR_IMAGE_FREEZE = 0x1A, /* Write Image Freeze */
WR_INPUT_IMAGE_SIZE = 0x2E, /* Write External Input Image Size */
WR_RGB_LED_EN = 0x52, /* Write RGB LED Enable */
WR_RGB_LED_CURRENT = 0x54, /* Write RGB LED Current */
WR_RGB_LED_MAX_CURRENT = 0x5C, /* Write RGB LED Max Current */
WR_DSI_HS_CLK = 0xBD, /* Write DSI HS Clock */
RD_DEVICE_ID = 0xD4, /* Read Controller Device ID */
WR_DSI_PORT_EN = 0xD7, /* Write DSI Port Enable */
};
enum input_source {
INPUT_EXTERNAL_VIDEO = 0,
INPUT_TEST_PATTERN,
INPUT_SPLASH_SCREEN,
};
#define DEV_ID_MASK GENMASK(3, 0)
#define IMAGE_FREESE_EN BIT(0)
#define DSI_PORT_EN 0
#define EXT_SOURCE_FMT_DSI 0
#define RED_LED_EN BIT(0)
#define GREEN_LED_EN BIT(1)
#define BLUE_LED_EN BIT(2)
#define LED_MASK GENMASK(2, 0)
#define MAX_BYTE_SIZE 8
struct dlpc {
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
struct drm_display_mode mode;
struct gpio_desc *enable_gpio;
struct regulator *vcc_intf;
struct regulator *vcc_flsh;
struct regmap *regmap;
unsigned int dsi_lanes;
};
static inline struct dlpc *bridge_to_dlpc(struct drm_bridge *bridge)
{
return container_of(bridge, struct dlpc, bridge);
}
static bool dlpc_writeable_noinc_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case WR_IMAGE_CROP:
case WR_DISPLAY_SIZE:
case WR_INPUT_IMAGE_SIZE:
case WR_DSI_HS_CLK:
return true;
default:
return false;
}
}
static const struct regmap_range dlpc_volatile_ranges[] = {
{ .range_min = 0x10, .range_max = 0xBF },
};
static const struct regmap_access_table dlpc_volatile_table = {
.yes_ranges = dlpc_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(dlpc_volatile_ranges),
};
static struct regmap_config dlpc_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = WR_DSI_PORT_EN,
.writeable_noinc_reg = dlpc_writeable_noinc_reg,
.volatile_table = &dlpc_volatile_table,
.cache_type = REGCACHE_RBTREE,
.name = "dlpc3433",
};
static void dlpc_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dlpc *dlpc = bridge_to_dlpc(bridge);
struct device *dev = dlpc->dev;
struct drm_display_mode *mode = &dlpc->mode;
struct regmap *regmap = dlpc->regmap;
char buf[MAX_BYTE_SIZE];
unsigned int devid;
regmap_read(regmap, RD_DEVICE_ID, &devid);
devid &= DEV_ID_MASK;
DRM_DEV_DEBUG(dev, "DLPC3433 device id: 0x%02x\n", devid);
if (devid != 0x01) {
DRM_DEV_ERROR(dev, "Unsupported DLPC device id: 0x%02x\n", devid);
return;
}
/* disable image freeze */
regmap_write(regmap, WR_IMAGE_FREEZE, IMAGE_FREESE_EN);
/* enable DSI port */
regmap_write(regmap, WR_DSI_PORT_EN, DSI_PORT_EN);
memset(buf, 0, MAX_BYTE_SIZE);
/* set image crop */
buf[4] = mode->hdisplay & 0xff;
buf[5] = (mode->hdisplay & 0xff00) >> 8;
buf[6] = mode->vdisplay & 0xff;
buf[7] = (mode->vdisplay & 0xff00) >> 8;
regmap_noinc_write(regmap, WR_IMAGE_CROP, buf, MAX_BYTE_SIZE);
/* set display size */
buf[4] = mode->hdisplay & 0xff;
buf[5] = (mode->hdisplay & 0xff00) >> 8;
buf[6] = mode->vdisplay & 0xff;
buf[7] = (mode->vdisplay & 0xff00) >> 8;
regmap_noinc_write(regmap, WR_DISPLAY_SIZE, buf, MAX_BYTE_SIZE);
/* set input image size */
buf[0] = mode->hdisplay & 0xff;
buf[1] = (mode->hdisplay & 0xff00) >> 8;
buf[2] = mode->vdisplay & 0xff;
buf[3] = (mode->vdisplay & 0xff00) >> 8;
regmap_noinc_write(regmap, WR_INPUT_IMAGE_SIZE, buf, 4);
/* set external video port */
regmap_write(regmap, WR_INPUT_SOURCE, INPUT_EXTERNAL_VIDEO);
/* set external video format select as DSI */
regmap_write(regmap, WR_EXT_SOURCE_FMT, EXT_SOURCE_FMT_DSI);
/* disable image freeze */
regmap_write(regmap, WR_IMAGE_FREEZE, 0x00);
/* enable RGB led */
regmap_update_bits(regmap, WR_RGB_LED_EN, LED_MASK,
RED_LED_EN | GREEN_LED_EN | BLUE_LED_EN);
msleep(10);
}
static void dlpc_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dlpc *dlpc = bridge_to_dlpc(bridge);
int ret;
gpiod_set_value(dlpc->enable_gpio, 1);
msleep(500);
ret = regulator_enable(dlpc->vcc_intf);
if (ret)
DRM_DEV_ERROR(dlpc->dev,
"failed to enable VCC_INTF regulator: %d\n", ret);
ret = regulator_enable(dlpc->vcc_flsh);
if (ret)
DRM_DEV_ERROR(dlpc->dev,
"failed to enable VCC_FLSH regulator: %d\n", ret);
msleep(10);
}
static void dlpc_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dlpc *dlpc = bridge_to_dlpc(bridge);
regulator_disable(dlpc->vcc_flsh);
regulator_disable(dlpc->vcc_intf);
msleep(10);
gpiod_set_value(dlpc->enable_gpio, 0);
msleep(500);
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
dlpc_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static void dlpc_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct dlpc *dlpc = bridge_to_dlpc(bridge);
drm_mode_copy(&dlpc->mode, adjusted_mode);
}
static int dlpc_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct dlpc *dlpc = bridge_to_dlpc(bridge);
return drm_bridge_attach(bridge->encoder, dlpc->next_bridge, bridge, flags);
}
static const struct drm_bridge_funcs dlpc_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = dlpc_atomic_get_input_bus_fmts,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_pre_enable = dlpc_atomic_pre_enable,
.atomic_enable = dlpc_atomic_enable,
.atomic_post_disable = dlpc_atomic_post_disable,
.mode_set = dlpc_mode_set,
.attach = dlpc_attach,
};
static int dlpc3433_parse_dt(struct dlpc *dlpc)
{
struct device *dev = dlpc->dev;
struct device_node *endpoint;
int ret;
dlpc->enable_gpio = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR(dlpc->enable_gpio))
return PTR_ERR(dlpc->enable_gpio);
dlpc->vcc_intf = devm_regulator_get(dlpc->dev, "vcc_intf");
if (IS_ERR(dlpc->vcc_intf))
return dev_err_probe(dev, PTR_ERR(dlpc->vcc_intf),
"failed to get VCC_INTF supply\n");
dlpc->vcc_flsh = devm_regulator_get(dlpc->dev, "vcc_flsh");
if (IS_ERR(dlpc->vcc_flsh))
return dev_err_probe(dev, PTR_ERR(dlpc->vcc_flsh),
"failed to get VCC_FLSH supply\n");
dlpc->next_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0);
if (IS_ERR(dlpc->next_bridge))
return PTR_ERR(dlpc->next_bridge);
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
dlpc->dsi_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
if (dlpc->dsi_lanes < 0 || dlpc->dsi_lanes > 4) {
ret = -EINVAL;
goto err_put_endpoint;
}
dlpc->host_node = of_graph_get_remote_port_parent(endpoint);
if (!dlpc->host_node) {
ret = -ENODEV;
goto err_put_host;
}
of_node_put(endpoint);
return 0;
err_put_host:
of_node_put(dlpc->host_node);
err_put_endpoint:
of_node_put(endpoint);
return ret;
}
static int dlpc_host_attach(struct dlpc *dlpc)
{
struct device *dev = dlpc->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device_info info = {
.type = "dlpc3433",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(dlpc->host_node);
if (!host) {
DRM_DEV_ERROR(dev, "failed to find dsi host\n");
return -EPROBE_DEFER;
}
dlpc->dsi = mipi_dsi_device_register_full(host, &info);
if (IS_ERR(dlpc->dsi)) {
DRM_DEV_ERROR(dev, "failed to create dsi device\n");
return PTR_ERR(dlpc->dsi);
}
dlpc->dsi->mode_flags = MIPI_DSI_MODE_VIDEO_BURST;
dlpc->dsi->format = MIPI_DSI_FMT_RGB565;
dlpc->dsi->lanes = dlpc->dsi_lanes;
return devm_mipi_dsi_attach(dev, dlpc->dsi);
}
static int dlpc3433_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct dlpc *dlpc;
int ret;
dlpc = devm_kzalloc(dev, sizeof(*dlpc), GFP_KERNEL);
if (!dlpc)
return -ENOMEM;
dlpc->dev = dev;
dlpc->regmap = devm_regmap_init_i2c(client, &dlpc_regmap_config);
if (IS_ERR(dlpc->regmap))
return PTR_ERR(dlpc->regmap);
ret = dlpc3433_parse_dt(dlpc);
if (ret)
return ret;
dev_set_drvdata(dev, dlpc);
i2c_set_clientdata(client, dlpc);
dlpc->bridge.funcs = &dlpc_bridge_funcs;
dlpc->bridge.of_node = dev->of_node;
drm_bridge_add(&dlpc->bridge);
ret = dlpc_host_attach(dlpc);
if (ret) {
DRM_DEV_ERROR(dev, "failed to attach dsi host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&dlpc->bridge);
return ret;
}
static void dlpc3433_remove(struct i2c_client *client)
{
struct dlpc *dlpc = i2c_get_clientdata(client);
drm_bridge_remove(&dlpc->bridge);
of_node_put(dlpc->host_node);
}
static const struct i2c_device_id dlpc3433_id[] = {
{ "ti,dlpc3433", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, dlpc3433_id);
static const struct of_device_id dlpc3433_match_table[] = {
{ .compatible = "ti,dlpc3433" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dlpc3433_match_table);
static struct i2c_driver dlpc3433_driver = {
.probe = dlpc3433_probe,
.remove = dlpc3433_remove,
.id_table = dlpc3433_id,
.driver = {
.name = "ti-dlpc3433",
.of_match_table = dlpc3433_match_table,
},
};
module_i2c_driver(dlpc3433_driver);
MODULE_AUTHOR("Jagan Teki <[email protected]>");
MODULE_AUTHOR("Christopher Vollo <[email protected]>");
MODULE_DESCRIPTION("TI DLPC3433 MIPI DSI Display Controller Bridge");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/ti-dlpc3433.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2015-2016 Free Electrons
* Copyright (C) 2015-2016 NextThing Co
*
* Maxime Ripard <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
struct simple_bridge_info {
const struct drm_bridge_timings *timings;
unsigned int connector_type;
};
struct simple_bridge {
struct drm_bridge bridge;
struct drm_connector connector;
const struct simple_bridge_info *info;
struct drm_bridge *next_bridge;
struct regulator *vdd;
struct gpio_desc *enable;
};
static inline struct simple_bridge *
drm_bridge_to_simple_bridge(struct drm_bridge *bridge)
{
return container_of(bridge, struct simple_bridge, bridge);
}
static inline struct simple_bridge *
drm_connector_to_simple_bridge(struct drm_connector *connector)
{
return container_of(connector, struct simple_bridge, connector);
}
static int simple_bridge_get_modes(struct drm_connector *connector)
{
struct simple_bridge *sbridge = drm_connector_to_simple_bridge(connector);
struct edid *edid;
int ret;
if (sbridge->next_bridge->ops & DRM_BRIDGE_OP_EDID) {
edid = drm_bridge_get_edid(sbridge->next_bridge, connector);
if (!edid)
DRM_INFO("EDID read failed. Fallback to standard modes\n");
} else {
edid = NULL;
}
if (!edid) {
/*
* In case we cannot retrieve the EDIDs (missing or broken DDC
* bus from the next bridge), fallback on the XGA standards and
* prefer a mode pretty much anyone can handle.
*/
ret = drm_add_modes_noedid(connector, 1920, 1200);
drm_set_preferred_mode(connector, 1024, 768);
return ret;
}
drm_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
return ret;
}
static const struct drm_connector_helper_funcs simple_bridge_con_helper_funcs = {
.get_modes = simple_bridge_get_modes,
};
static enum drm_connector_status
simple_bridge_connector_detect(struct drm_connector *connector, bool force)
{
struct simple_bridge *sbridge = drm_connector_to_simple_bridge(connector);
return drm_bridge_detect(sbridge->next_bridge);
}
static const struct drm_connector_funcs simple_bridge_con_funcs = {
.detect = simple_bridge_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int simple_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct simple_bridge *sbridge = drm_bridge_to_simple_bridge(bridge);
int ret;
ret = drm_bridge_attach(bridge->encoder, sbridge->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret < 0)
return ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
if (!bridge->encoder) {
DRM_ERROR("Missing encoder\n");
return -ENODEV;
}
drm_connector_helper_add(&sbridge->connector,
&simple_bridge_con_helper_funcs);
ret = drm_connector_init_with_ddc(bridge->dev, &sbridge->connector,
&simple_bridge_con_funcs,
sbridge->info->connector_type,
sbridge->next_bridge->ddc);
if (ret) {
DRM_ERROR("Failed to initialize connector\n");
return ret;
}
drm_connector_attach_encoder(&sbridge->connector, bridge->encoder);
return 0;
}
static void simple_bridge_enable(struct drm_bridge *bridge)
{
struct simple_bridge *sbridge = drm_bridge_to_simple_bridge(bridge);
int ret;
if (sbridge->vdd) {
ret = regulator_enable(sbridge->vdd);
if (ret)
DRM_ERROR("Failed to enable vdd regulator: %d\n", ret);
}
gpiod_set_value_cansleep(sbridge->enable, 1);
}
static void simple_bridge_disable(struct drm_bridge *bridge)
{
struct simple_bridge *sbridge = drm_bridge_to_simple_bridge(bridge);
gpiod_set_value_cansleep(sbridge->enable, 0);
if (sbridge->vdd)
regulator_disable(sbridge->vdd);
}
static const struct drm_bridge_funcs simple_bridge_bridge_funcs = {
.attach = simple_bridge_attach,
.enable = simple_bridge_enable,
.disable = simple_bridge_disable,
};
static int simple_bridge_probe(struct platform_device *pdev)
{
struct simple_bridge *sbridge;
struct device_node *remote;
sbridge = devm_kzalloc(&pdev->dev, sizeof(*sbridge), GFP_KERNEL);
if (!sbridge)
return -ENOMEM;
platform_set_drvdata(pdev, sbridge);
sbridge->info = of_device_get_match_data(&pdev->dev);
/* Get the next bridge in the pipeline. */
remote = of_graph_get_remote_node(pdev->dev.of_node, 1, -1);
if (!remote)
return -EINVAL;
sbridge->next_bridge = of_drm_find_bridge(remote);
of_node_put(remote);
if (!sbridge->next_bridge) {
dev_dbg(&pdev->dev, "Next bridge not found, deferring probe\n");
return -EPROBE_DEFER;
}
/* Get the regulator and GPIO resources. */
sbridge->vdd = devm_regulator_get_optional(&pdev->dev, "vdd");
if (IS_ERR(sbridge->vdd)) {
int ret = PTR_ERR(sbridge->vdd);
if (ret == -EPROBE_DEFER)
return -EPROBE_DEFER;
sbridge->vdd = NULL;
dev_dbg(&pdev->dev, "No vdd regulator found: %d\n", ret);
}
sbridge->enable = devm_gpiod_get_optional(&pdev->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(sbridge->enable))
return dev_err_probe(&pdev->dev, PTR_ERR(sbridge->enable),
"Unable to retrieve enable GPIO\n");
/* Register the bridge. */
sbridge->bridge.funcs = &simple_bridge_bridge_funcs;
sbridge->bridge.of_node = pdev->dev.of_node;
sbridge->bridge.timings = sbridge->info->timings;
drm_bridge_add(&sbridge->bridge);
return 0;
}
static void simple_bridge_remove(struct platform_device *pdev)
{
struct simple_bridge *sbridge = platform_get_drvdata(pdev);
drm_bridge_remove(&sbridge->bridge);
}
/*
* We assume the ADV7123 DAC is the "default" for historical reasons
* Information taken from the ADV7123 datasheet, revision D.
* NOTE: the ADV7123EP seems to have other timings and need a new timings
* set if used.
*/
static const struct drm_bridge_timings default_bridge_timings = {
/* Timing specifications, datasheet page 7 */
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE,
.setup_time_ps = 500,
.hold_time_ps = 1500,
};
/*
* Information taken from the THS8134, THS8134A, THS8134B datasheet named
* "SLVS205D", dated May 1990, revised March 2000.
*/
static const struct drm_bridge_timings ti_ths8134_bridge_timings = {
/* From timing diagram, datasheet page 9 */
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE,
/* From datasheet, page 12 */
.setup_time_ps = 3000,
/* I guess this means latched input */
.hold_time_ps = 0,
};
/*
* Information taken from the THS8135 datasheet named "SLAS343B", dated
* May 2001, revised April 2013.
*/
static const struct drm_bridge_timings ti_ths8135_bridge_timings = {
/* From timing diagram, datasheet page 14 */
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE,
/* From datasheet, page 16 */
.setup_time_ps = 2000,
.hold_time_ps = 500,
};
static const struct of_device_id simple_bridge_match[] = {
{
.compatible = "dumb-vga-dac",
.data = &(const struct simple_bridge_info) {
.connector_type = DRM_MODE_CONNECTOR_VGA,
},
}, {
.compatible = "adi,adv7123",
.data = &(const struct simple_bridge_info) {
.timings = &default_bridge_timings,
.connector_type = DRM_MODE_CONNECTOR_VGA,
},
}, {
.compatible = "ti,opa362",
.data = &(const struct simple_bridge_info) {
.connector_type = DRM_MODE_CONNECTOR_Composite,
},
}, {
.compatible = "ti,ths8135",
.data = &(const struct simple_bridge_info) {
.timings = &ti_ths8135_bridge_timings,
.connector_type = DRM_MODE_CONNECTOR_VGA,
},
}, {
.compatible = "ti,ths8134",
.data = &(const struct simple_bridge_info) {
.timings = &ti_ths8134_bridge_timings,
.connector_type = DRM_MODE_CONNECTOR_VGA,
},
},
{},
};
MODULE_DEVICE_TABLE(of, simple_bridge_match);
static struct platform_driver simple_bridge_driver = {
.probe = simple_bridge_probe,
.remove_new = simple_bridge_remove,
.driver = {
.name = "simple-bridge",
.of_match_table = simple_bridge_match,
},
};
module_platform_driver(simple_bridge_driver);
MODULE_AUTHOR("Maxime Ripard <[email protected]>");
MODULE_DESCRIPTION("Simple DRM bridge driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/simple-bridge.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Marek Vasut <[email protected]>
*
* Based on tc358764.c by
* Andrzej Hajda <[email protected]>
* Maciej Purski <[email protected]>
*
* Based on rpi_touchscreen.c by
* Eric Anholt <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* PPI layer registers */
#define PPI_STARTPPI 0x0104 /* START control bit */
#define PPI_LPTXTIMECNT 0x0114 /* LPTX timing signal */
#define PPI_D0S_ATMR 0x0144
#define PPI_D1S_ATMR 0x0148
#define PPI_D0S_CLRSIPOCOUNT 0x0164 /* Assertion timer for Lane 0 */
#define PPI_D1S_CLRSIPOCOUNT 0x0168 /* Assertion timer for Lane 1 */
#define PPI_START_FUNCTION 1
/* DSI layer registers */
#define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX */
#define DSI_LANEENABLE 0x0210 /* Enables each lane */
#define DSI_RX_START 1
/* LCDC/DPI Host Registers, based on guesswork that this matches TC358764 */
#define LCDCTRL 0x0420 /* Video Path Control */
#define LCDCTRL_MSF BIT(0) /* Magic square in RGB666 */
#define LCDCTRL_VTGEN BIT(4)/* Use chip clock for timing */
#define LCDCTRL_UNK6 BIT(6) /* Unknown */
#define LCDCTRL_EVTMODE BIT(5) /* Event mode */
#define LCDCTRL_RGB888 BIT(8) /* RGB888 mode */
#define LCDCTRL_HSPOL BIT(17) /* Polarity of HSYNC signal */
#define LCDCTRL_DEPOL BIT(18) /* Polarity of DE signal */
#define LCDCTRL_VSPOL BIT(19) /* Polarity of VSYNC signal */
#define LCDCTRL_VSDELAY(v) (((v) & 0xfff) << 20) /* VSYNC delay */
/* SPI Master Registers */
#define SPICMR 0x0450
#define SPITCR 0x0454
/* System Controller Registers */
#define SYSCTRL 0x0464
/* System registers */
#define LPX_PERIOD 3
/* Lane enable PPI and DSI register bits */
#define LANEENABLE_CLEN BIT(0)
#define LANEENABLE_L0EN BIT(1)
#define LANEENABLE_L1EN BIT(2)
struct tc358762 {
struct device *dev;
struct drm_bridge bridge;
struct regulator *regulator;
struct drm_bridge *panel_bridge;
struct gpio_desc *reset_gpio;
struct drm_display_mode mode;
bool pre_enabled;
int error;
};
static int tc358762_clear_error(struct tc358762 *ctx)
{
int ret = ctx->error;
ctx->error = 0;
return ret;
}
static void tc358762_write(struct tc358762 *ctx, u16 addr, u32 val)
{
struct mipi_dsi_device *dsi = to_mipi_dsi_device(ctx->dev);
ssize_t ret;
u8 data[6];
if (ctx->error)
return;
data[0] = addr;
data[1] = addr >> 8;
data[2] = val;
data[3] = val >> 8;
data[4] = val >> 16;
data[5] = val >> 24;
ret = mipi_dsi_generic_write(dsi, data, sizeof(data));
if (ret < 0)
ctx->error = ret;
}
static inline struct tc358762 *bridge_to_tc358762(struct drm_bridge *bridge)
{
return container_of(bridge, struct tc358762, bridge);
}
static int tc358762_init(struct tc358762 *ctx)
{
u32 lcdctrl;
tc358762_write(ctx, DSI_LANEENABLE,
LANEENABLE_L0EN | LANEENABLE_CLEN);
tc358762_write(ctx, PPI_D0S_CLRSIPOCOUNT, 5);
tc358762_write(ctx, PPI_D1S_CLRSIPOCOUNT, 5);
tc358762_write(ctx, PPI_D0S_ATMR, 0);
tc358762_write(ctx, PPI_D1S_ATMR, 0);
tc358762_write(ctx, PPI_LPTXTIMECNT, LPX_PERIOD);
tc358762_write(ctx, SPICMR, 0x00);
lcdctrl = LCDCTRL_VSDELAY(1) | LCDCTRL_RGB888 |
LCDCTRL_UNK6 | LCDCTRL_VTGEN;
if (ctx->mode.flags & DRM_MODE_FLAG_NHSYNC)
lcdctrl |= LCDCTRL_HSPOL;
if (ctx->mode.flags & DRM_MODE_FLAG_NVSYNC)
lcdctrl |= LCDCTRL_VSPOL;
tc358762_write(ctx, LCDCTRL, lcdctrl);
tc358762_write(ctx, SYSCTRL, 0x040f);
msleep(100);
tc358762_write(ctx, PPI_STARTPPI, PPI_START_FUNCTION);
tc358762_write(ctx, DSI_STARTDSI, DSI_RX_START);
msleep(100);
return tc358762_clear_error(ctx);
}
static void tc358762_post_disable(struct drm_bridge *bridge, struct drm_bridge_state *state)
{
struct tc358762 *ctx = bridge_to_tc358762(bridge);
int ret;
/*
* The post_disable hook might be called multiple times.
* We want to avoid regulator imbalance below.
*/
if (!ctx->pre_enabled)
return;
ctx->pre_enabled = false;
if (ctx->reset_gpio)
gpiod_set_value_cansleep(ctx->reset_gpio, 0);
ret = regulator_disable(ctx->regulator);
if (ret < 0)
dev_err(ctx->dev, "error disabling regulators (%d)\n", ret);
}
static void tc358762_pre_enable(struct drm_bridge *bridge, struct drm_bridge_state *state)
{
struct tc358762 *ctx = bridge_to_tc358762(bridge);
int ret;
ret = regulator_enable(ctx->regulator);
if (ret < 0)
dev_err(ctx->dev, "error enabling regulators (%d)\n", ret);
if (ctx->reset_gpio) {
gpiod_set_value_cansleep(ctx->reset_gpio, 1);
usleep_range(5000, 10000);
}
ctx->pre_enabled = true;
}
static void tc358762_enable(struct drm_bridge *bridge, struct drm_bridge_state *state)
{
struct tc358762 *ctx = bridge_to_tc358762(bridge);
int ret;
ret = tc358762_init(ctx);
if (ret < 0)
dev_err(ctx->dev, "error initializing bridge (%d)\n", ret);
}
static int tc358762_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc358762 *ctx = bridge_to_tc358762(bridge);
return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
bridge, flags);
}
static void tc358762_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct tc358762 *ctx = bridge_to_tc358762(bridge);
drm_mode_copy(&ctx->mode, mode);
}
static const struct drm_bridge_funcs tc358762_bridge_funcs = {
.atomic_post_disable = tc358762_post_disable,
.atomic_pre_enable = tc358762_pre_enable,
.atomic_enable = tc358762_enable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = tc358762_attach,
.mode_set = tc358762_bridge_mode_set,
};
static int tc358762_parse_dt(struct tc358762 *ctx)
{
struct drm_bridge *panel_bridge;
struct device *dev = ctx->dev;
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 1, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ctx->panel_bridge = panel_bridge;
/* Reset GPIO is optional */
ctx->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(ctx->reset_gpio))
return PTR_ERR(ctx->reset_gpio);
return 0;
}
static int tc358762_configure_regulators(struct tc358762 *ctx)
{
ctx->regulator = devm_regulator_get(ctx->dev, "vddc");
if (IS_ERR(ctx->regulator))
return PTR_ERR(ctx->regulator);
return 0;
}
static int tc358762_probe(struct mipi_dsi_device *dsi)
{
struct device *dev = &dsi->dev;
struct tc358762 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(struct tc358762), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mipi_dsi_set_drvdata(dsi, ctx);
ctx->dev = dev;
ctx->pre_enabled = false;
/* TODO: Find out how to get dual-lane mode working */
dsi->lanes = 1;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_LPM | MIPI_DSI_MODE_VIDEO_HSE;
ret = tc358762_parse_dt(ctx);
if (ret < 0)
return ret;
ret = tc358762_configure_regulators(ctx);
if (ret < 0)
return ret;
ctx->bridge.funcs = &tc358762_bridge_funcs;
ctx->bridge.type = DRM_MODE_CONNECTOR_DPI;
ctx->bridge.of_node = dev->of_node;
ctx->bridge.pre_enable_prev_first = true;
drm_bridge_add(&ctx->bridge);
ret = mipi_dsi_attach(dsi);
if (ret < 0) {
drm_bridge_remove(&ctx->bridge);
dev_err(dev, "failed to attach dsi\n");
}
return ret;
}
static void tc358762_remove(struct mipi_dsi_device *dsi)
{
struct tc358762 *ctx = mipi_dsi_get_drvdata(dsi);
mipi_dsi_detach(dsi);
drm_bridge_remove(&ctx->bridge);
}
static const struct of_device_id tc358762_of_match[] = {
{ .compatible = "toshiba,tc358762" },
{ }
};
MODULE_DEVICE_TABLE(of, tc358762_of_match);
static struct mipi_dsi_driver tc358762_driver = {
.probe = tc358762_probe,
.remove = tc358762_remove,
.driver = {
.name = "tc358762",
.of_match_table = tc358762_of_match,
},
};
module_mipi_dsi_driver(tc358762_driver);
MODULE_AUTHOR("Marek Vasut <[email protected]>");
MODULE_DESCRIPTION("MIPI-DSI based Driver for TC358762 DSI/DPI Bridge");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/tc358762.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Texas Instruments Incorporated - https://www.ti.com
* Author: Peter Ujfalusi <[email protected]>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <video/mipi_display.h>
#include <video/videomode.h>
/* Global (16-bit addressable) */
#define TC358768_CHIPID 0x0000
#define TC358768_SYSCTL 0x0002
#define TC358768_CONFCTL 0x0004
#define TC358768_VSDLY 0x0006
#define TC358768_DATAFMT 0x0008
#define TC358768_GPIOEN 0x000E
#define TC358768_GPIODIR 0x0010
#define TC358768_GPIOIN 0x0012
#define TC358768_GPIOOUT 0x0014
#define TC358768_PLLCTL0 0x0016
#define TC358768_PLLCTL1 0x0018
#define TC358768_CMDBYTE 0x0022
#define TC358768_PP_MISC 0x0032
#define TC358768_DSITX_DT 0x0050
#define TC358768_FIFOSTATUS 0x00F8
/* Debug (16-bit addressable) */
#define TC358768_VBUFCTRL 0x00E0
#define TC358768_DBG_WIDTH 0x00E2
#define TC358768_DBG_VBLANK 0x00E4
#define TC358768_DBG_DATA 0x00E8
/* TX PHY (32-bit addressable) */
#define TC358768_CLW_DPHYCONTTX 0x0100
#define TC358768_D0W_DPHYCONTTX 0x0104
#define TC358768_D1W_DPHYCONTTX 0x0108
#define TC358768_D2W_DPHYCONTTX 0x010C
#define TC358768_D3W_DPHYCONTTX 0x0110
#define TC358768_CLW_CNTRL 0x0140
#define TC358768_D0W_CNTRL 0x0144
#define TC358768_D1W_CNTRL 0x0148
#define TC358768_D2W_CNTRL 0x014C
#define TC358768_D3W_CNTRL 0x0150
/* TX PPI (32-bit addressable) */
#define TC358768_STARTCNTRL 0x0204
#define TC358768_DSITXSTATUS 0x0208
#define TC358768_LINEINITCNT 0x0210
#define TC358768_LPTXTIMECNT 0x0214
#define TC358768_TCLK_HEADERCNT 0x0218
#define TC358768_TCLK_TRAILCNT 0x021C
#define TC358768_THS_HEADERCNT 0x0220
#define TC358768_TWAKEUP 0x0224
#define TC358768_TCLK_POSTCNT 0x0228
#define TC358768_THS_TRAILCNT 0x022C
#define TC358768_HSTXVREGCNT 0x0230
#define TC358768_HSTXVREGEN 0x0234
#define TC358768_TXOPTIONCNTRL 0x0238
#define TC358768_BTACNTRL1 0x023C
/* TX CTRL (32-bit addressable) */
#define TC358768_DSI_CONTROL 0x040C
#define TC358768_DSI_STATUS 0x0410
#define TC358768_DSI_INT 0x0414
#define TC358768_DSI_INT_ENA 0x0418
#define TC358768_DSICMD_RDFIFO 0x0430
#define TC358768_DSI_ACKERR 0x0434
#define TC358768_DSI_ACKERR_INTENA 0x0438
#define TC358768_DSI_ACKERR_HALT 0x043c
#define TC358768_DSI_RXERR 0x0440
#define TC358768_DSI_RXERR_INTENA 0x0444
#define TC358768_DSI_RXERR_HALT 0x0448
#define TC358768_DSI_ERR 0x044C
#define TC358768_DSI_ERR_INTENA 0x0450
#define TC358768_DSI_ERR_HALT 0x0454
#define TC358768_DSI_CONFW 0x0500
#define TC358768_DSI_LPCMD 0x0500
#define TC358768_DSI_RESET 0x0504
#define TC358768_DSI_INT_CLR 0x050C
#define TC358768_DSI_START 0x0518
/* DSITX CTRL (16-bit addressable) */
#define TC358768_DSICMD_TX 0x0600
#define TC358768_DSICMD_TYPE 0x0602
#define TC358768_DSICMD_WC 0x0604
#define TC358768_DSICMD_WD0 0x0610
#define TC358768_DSICMD_WD1 0x0612
#define TC358768_DSICMD_WD2 0x0614
#define TC358768_DSICMD_WD3 0x0616
#define TC358768_DSI_EVENT 0x0620
#define TC358768_DSI_VSW 0x0622
#define TC358768_DSI_VBPR 0x0624
#define TC358768_DSI_VACT 0x0626
#define TC358768_DSI_HSW 0x0628
#define TC358768_DSI_HBPR 0x062A
#define TC358768_DSI_HACT 0x062C
/* TC358768_DSI_CONTROL (0x040C) register */
#define TC358768_DSI_CONTROL_DIS_MODE BIT(15)
#define TC358768_DSI_CONTROL_TXMD BIT(7)
#define TC358768_DSI_CONTROL_HSCKMD BIT(5)
#define TC358768_DSI_CONTROL_EOTDIS BIT(0)
/* TC358768_DSI_CONFW (0x0500) register */
#define TC358768_DSI_CONFW_MODE_SET (5 << 29)
#define TC358768_DSI_CONFW_MODE_CLR (6 << 29)
#define TC358768_DSI_CONFW_ADDR_DSI_CONTROL (0x3 << 24)
static const char * const tc358768_supplies[] = {
"vddc", "vddmipi", "vddio"
};
struct tc358768_dsi_output {
struct mipi_dsi_device *dev;
struct drm_panel *panel;
struct drm_bridge *bridge;
};
struct tc358768_priv {
struct device *dev;
struct regmap *regmap;
struct gpio_desc *reset_gpio;
struct regulator_bulk_data supplies[ARRAY_SIZE(tc358768_supplies)];
struct clk *refclk;
int enabled;
int error;
struct mipi_dsi_host dsi_host;
struct drm_bridge bridge;
struct tc358768_dsi_output output;
u32 pd_lines; /* number of Parallel Port Input Data Lines */
u32 dsi_lanes; /* number of DSI Lanes */
u32 dsi_bpp; /* number of Bits Per Pixel over DSI */
/* Parameters for PLL programming */
u32 fbd; /* PLL feedback divider */
u32 prd; /* PLL input divider */
u32 frs; /* PLL Freqency range for HSCK (post divider) */
u32 dsiclk; /* pll_clk / 2 */
};
static inline struct tc358768_priv *dsi_host_to_tc358768(struct mipi_dsi_host
*host)
{
return container_of(host, struct tc358768_priv, dsi_host);
}
static inline struct tc358768_priv *bridge_to_tc358768(struct drm_bridge
*bridge)
{
return container_of(bridge, struct tc358768_priv, bridge);
}
static int tc358768_clear_error(struct tc358768_priv *priv)
{
int ret = priv->error;
priv->error = 0;
return ret;
}
static void tc358768_write(struct tc358768_priv *priv, u32 reg, u32 val)
{
/* work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */
int tmpval = val;
size_t count = 2;
if (priv->error)
return;
/* 16-bit register? */
if (reg < 0x100 || reg >= 0x600)
count = 1;
priv->error = regmap_bulk_write(priv->regmap, reg, &tmpval, count);
}
static void tc358768_read(struct tc358768_priv *priv, u32 reg, u32 *val)
{
size_t count = 2;
if (priv->error)
return;
/* 16-bit register? */
if (reg < 0x100 || reg >= 0x600) {
*val = 0;
count = 1;
}
priv->error = regmap_bulk_read(priv->regmap, reg, val, count);
}
static void tc358768_update_bits(struct tc358768_priv *priv, u32 reg, u32 mask,
u32 val)
{
u32 tmp, orig;
tc358768_read(priv, reg, &orig);
tmp = orig & ~mask;
tmp |= val & mask;
if (tmp != orig)
tc358768_write(priv, reg, tmp);
}
static int tc358768_sw_reset(struct tc358768_priv *priv)
{
/* Assert Reset */
tc358768_write(priv, TC358768_SYSCTL, 1);
/* Release Reset, Exit Sleep */
tc358768_write(priv, TC358768_SYSCTL, 0);
return tc358768_clear_error(priv);
}
static void tc358768_hw_enable(struct tc358768_priv *priv)
{
int ret;
if (priv->enabled)
return;
ret = clk_prepare_enable(priv->refclk);
if (ret < 0)
dev_err(priv->dev, "error enabling refclk (%d)\n", ret);
ret = regulator_bulk_enable(ARRAY_SIZE(priv->supplies), priv->supplies);
if (ret < 0)
dev_err(priv->dev, "error enabling regulators (%d)\n", ret);
if (priv->reset_gpio)
usleep_range(200, 300);
/*
* The RESX is active low (GPIO_ACTIVE_LOW).
* DEASSERT (value = 0) the reset_gpio to enable the chip
*/
gpiod_set_value_cansleep(priv->reset_gpio, 0);
/* wait for encoder clocks to stabilize */
usleep_range(1000, 2000);
priv->enabled = true;
}
static void tc358768_hw_disable(struct tc358768_priv *priv)
{
int ret;
if (!priv->enabled)
return;
/*
* The RESX is active low (GPIO_ACTIVE_LOW).
* ASSERT (value = 1) the reset_gpio to disable the chip
*/
gpiod_set_value_cansleep(priv->reset_gpio, 1);
ret = regulator_bulk_disable(ARRAY_SIZE(priv->supplies),
priv->supplies);
if (ret < 0)
dev_err(priv->dev, "error disabling regulators (%d)\n", ret);
clk_disable_unprepare(priv->refclk);
priv->enabled = false;
}
static u32 tc358768_pll_to_pclk(struct tc358768_priv *priv, u32 pll_clk)
{
return (u32)div_u64((u64)pll_clk * priv->dsi_lanes, priv->dsi_bpp);
}
static u32 tc358768_pclk_to_pll(struct tc358768_priv *priv, u32 pclk)
{
return (u32)div_u64((u64)pclk * priv->dsi_bpp, priv->dsi_lanes);
}
static int tc358768_calc_pll(struct tc358768_priv *priv,
const struct drm_display_mode *mode,
bool verify_only)
{
static const u32 frs_limits[] = {
1000000000,
500000000,
250000000,
125000000,
62500000
};
unsigned long refclk;
u32 prd, target_pll, i, max_pll, min_pll;
u32 frs, best_diff, best_pll, best_prd, best_fbd;
target_pll = tc358768_pclk_to_pll(priv, mode->clock * 1000);
/* pll_clk = RefClk * [(FBD + 1)/ (PRD + 1)] * [1 / (2^FRS)] */
for (i = 0; i < ARRAY_SIZE(frs_limits); i++)
if (target_pll >= frs_limits[i])
break;
if (i == ARRAY_SIZE(frs_limits) || i == 0)
return -EINVAL;
frs = i - 1;
max_pll = frs_limits[i - 1];
min_pll = frs_limits[i];
refclk = clk_get_rate(priv->refclk);
best_diff = UINT_MAX;
best_pll = 0;
best_prd = 0;
best_fbd = 0;
for (prd = 0; prd < 16; ++prd) {
u32 divisor = (prd + 1) * (1 << frs);
u32 fbd;
for (fbd = 0; fbd < 512; ++fbd) {
u32 pll, diff, pll_in;
pll = (u32)div_u64((u64)refclk * (fbd + 1), divisor);
if (pll >= max_pll || pll < min_pll)
continue;
pll_in = (u32)div_u64((u64)refclk, prd + 1);
if (pll_in < 4000000)
continue;
diff = max(pll, target_pll) - min(pll, target_pll);
if (diff < best_diff) {
best_diff = diff;
best_pll = pll;
best_prd = prd;
best_fbd = fbd;
if (best_diff == 0)
goto found;
}
}
}
if (best_diff == UINT_MAX) {
dev_err(priv->dev, "could not find suitable PLL setup\n");
return -EINVAL;
}
found:
if (verify_only)
return 0;
priv->fbd = best_fbd;
priv->prd = best_prd;
priv->frs = frs;
priv->dsiclk = best_pll / 2;
return 0;
}
static int tc358768_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct tc358768_priv *priv = dsi_host_to_tc358768(host);
struct drm_bridge *bridge;
struct drm_panel *panel;
struct device_node *ep;
int ret;
if (dev->lanes > 4) {
dev_err(priv->dev, "unsupported number of data lanes(%u)\n",
dev->lanes);
return -EINVAL;
}
/*
* tc358768 supports both Video and Pulse mode, but the driver only
* implements Video (event) mode currently
*/
if (!(dev->mode_flags & MIPI_DSI_MODE_VIDEO)) {
dev_err(priv->dev, "Only MIPI_DSI_MODE_VIDEO is supported\n");
return -ENOTSUPP;
}
/*
* tc358768 supports RGB888, RGB666, RGB666_PACKED and RGB565, but only
* RGB888 is verified.
*/
if (dev->format != MIPI_DSI_FMT_RGB888) {
dev_warn(priv->dev, "Only MIPI_DSI_FMT_RGB888 tested!\n");
return -ENOTSUPP;
}
ret = drm_of_find_panel_or_bridge(host->dev->of_node, 1, 0, &panel,
&bridge);
if (ret)
return ret;
if (panel) {
bridge = drm_panel_bridge_add_typed(panel,
DRM_MODE_CONNECTOR_DSI);
if (IS_ERR(bridge))
return PTR_ERR(bridge);
}
priv->output.dev = dev;
priv->output.bridge = bridge;
priv->output.panel = panel;
priv->dsi_lanes = dev->lanes;
priv->dsi_bpp = mipi_dsi_pixel_format_to_bpp(dev->format);
/* get input ep (port0/endpoint0) */
ret = -EINVAL;
ep = of_graph_get_endpoint_by_regs(host->dev->of_node, 0, 0);
if (ep) {
ret = of_property_read_u32(ep, "data-lines", &priv->pd_lines);
of_node_put(ep);
}
if (ret)
priv->pd_lines = priv->dsi_bpp;
drm_bridge_add(&priv->bridge);
return 0;
}
static int tc358768_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct tc358768_priv *priv = dsi_host_to_tc358768(host);
drm_bridge_remove(&priv->bridge);
if (priv->output.panel)
drm_panel_bridge_remove(priv->output.bridge);
return 0;
}
static ssize_t tc358768_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct tc358768_priv *priv = dsi_host_to_tc358768(host);
struct mipi_dsi_packet packet;
int ret;
if (!priv->enabled) {
dev_err(priv->dev, "Bridge is not enabled\n");
return -ENODEV;
}
if (msg->rx_len) {
dev_warn(priv->dev, "MIPI rx is not supported\n");
return -ENOTSUPP;
}
if (msg->tx_len > 8) {
dev_warn(priv->dev, "Maximum 8 byte MIPI tx is supported\n");
return -ENOTSUPP;
}
ret = mipi_dsi_create_packet(&packet, msg);
if (ret)
return ret;
if (mipi_dsi_packet_format_is_short(msg->type)) {
tc358768_write(priv, TC358768_DSICMD_TYPE,
(0x10 << 8) | (packet.header[0] & 0x3f));
tc358768_write(priv, TC358768_DSICMD_WC, 0);
tc358768_write(priv, TC358768_DSICMD_WD0,
(packet.header[2] << 8) | packet.header[1]);
} else {
int i;
tc358768_write(priv, TC358768_DSICMD_TYPE,
(0x40 << 8) | (packet.header[0] & 0x3f));
tc358768_write(priv, TC358768_DSICMD_WC, packet.payload_length);
for (i = 0; i < packet.payload_length; i += 2) {
u16 val = packet.payload[i];
if (i + 1 < packet.payload_length)
val |= packet.payload[i + 1] << 8;
tc358768_write(priv, TC358768_DSICMD_WD0 + i, val);
}
}
/* start transfer */
tc358768_write(priv, TC358768_DSICMD_TX, 1);
ret = tc358768_clear_error(priv);
if (ret)
dev_warn(priv->dev, "Software disable failed: %d\n", ret);
else
ret = packet.size;
return ret;
}
static const struct mipi_dsi_host_ops tc358768_dsi_host_ops = {
.attach = tc358768_dsi_host_attach,
.detach = tc358768_dsi_host_detach,
.transfer = tc358768_dsi_host_transfer,
};
static int tc358768_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
if (!drm_core_check_feature(bridge->dev, DRIVER_ATOMIC)) {
dev_err(priv->dev, "needs atomic updates support\n");
return -ENOTSUPP;
}
return drm_bridge_attach(bridge->encoder, priv->output.bridge, bridge,
flags);
}
static enum drm_mode_status
tc358768_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
if (tc358768_calc_pll(priv, mode, true))
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static void tc358768_bridge_disable(struct drm_bridge *bridge)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
int ret;
/* set FrmStop */
tc358768_update_bits(priv, TC358768_PP_MISC, BIT(15), BIT(15));
/* wait at least for one frame */
msleep(50);
/* clear PP_en */
tc358768_update_bits(priv, TC358768_CONFCTL, BIT(6), 0);
/* set RstPtr */
tc358768_update_bits(priv, TC358768_PP_MISC, BIT(14), BIT(14));
ret = tc358768_clear_error(priv);
if (ret)
dev_warn(priv->dev, "Software disable failed: %d\n", ret);
}
static void tc358768_bridge_post_disable(struct drm_bridge *bridge)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
tc358768_hw_disable(priv);
}
static int tc358768_setup_pll(struct tc358768_priv *priv,
const struct drm_display_mode *mode)
{
u32 fbd, prd, frs;
int ret;
ret = tc358768_calc_pll(priv, mode, false);
if (ret) {
dev_err(priv->dev, "PLL calculation failed: %d\n", ret);
return ret;
}
fbd = priv->fbd;
prd = priv->prd;
frs = priv->frs;
dev_dbg(priv->dev, "PLL: refclk %lu, fbd %u, prd %u, frs %u\n",
clk_get_rate(priv->refclk), fbd, prd, frs);
dev_dbg(priv->dev, "PLL: pll_clk: %u, DSIClk %u, DSIByteClk %u\n",
priv->dsiclk * 2, priv->dsiclk, priv->dsiclk / 4);
dev_dbg(priv->dev, "PLL: pclk %u (panel: %u)\n",
tc358768_pll_to_pclk(priv, priv->dsiclk * 2),
mode->clock * 1000);
/* PRD[15:12] FBD[8:0] */
tc358768_write(priv, TC358768_PLLCTL0, (prd << 12) | fbd);
/* FRS[11:10] LBWS[9:8] CKEN[4] RESETB[1] EN[0] */
tc358768_write(priv, TC358768_PLLCTL1,
(frs << 10) | (0x2 << 8) | BIT(1) | BIT(0));
/* wait for lock */
usleep_range(1000, 2000);
/* FRS[11:10] LBWS[9:8] CKEN[4] PLL_CKEN[4] RESETB[1] EN[0] */
tc358768_write(priv, TC358768_PLLCTL1,
(frs << 10) | (0x2 << 8) | BIT(4) | BIT(1) | BIT(0));
return tc358768_clear_error(priv);
}
#define TC358768_PRECISION 1000
static u32 tc358768_ns_to_cnt(u32 ns, u32 period_nsk)
{
return (ns * TC358768_PRECISION + period_nsk) / period_nsk;
}
static u32 tc358768_to_ns(u32 nsk)
{
return (nsk / TC358768_PRECISION);
}
static void tc358768_bridge_pre_enable(struct drm_bridge *bridge)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
struct mipi_dsi_device *dsi_dev = priv->output.dev;
unsigned long mode_flags = dsi_dev->mode_flags;
u32 val, val2, lptxcnt, hact, data_type;
s32 raw_val;
const struct drm_display_mode *mode;
u32 dsibclk_nsk, dsiclk_nsk, ui_nsk;
u32 dsiclk, dsibclk, video_start;
const u32 internal_delay = 40;
int ret, i;
if (mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
dev_warn_once(priv->dev, "Non-continuous mode unimplemented, falling back to continuous\n");
mode_flags &= ~MIPI_DSI_CLOCK_NON_CONTINUOUS;
}
tc358768_hw_enable(priv);
ret = tc358768_sw_reset(priv);
if (ret) {
dev_err(priv->dev, "Software reset failed: %d\n", ret);
tc358768_hw_disable(priv);
return;
}
mode = &bridge->encoder->crtc->state->adjusted_mode;
ret = tc358768_setup_pll(priv, mode);
if (ret) {
dev_err(priv->dev, "PLL setup failed: %d\n", ret);
tc358768_hw_disable(priv);
return;
}
dsiclk = priv->dsiclk;
dsibclk = dsiclk / 4;
/* Data Format Control Register */
val = BIT(2) | BIT(1) | BIT(0); /* rdswap_en | dsitx_en | txdt_en */
switch (dsi_dev->format) {
case MIPI_DSI_FMT_RGB888:
val |= (0x3 << 4);
hact = mode->hdisplay * 3;
video_start = (mode->htotal - mode->hsync_start) * 3;
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
break;
case MIPI_DSI_FMT_RGB666:
val |= (0x4 << 4);
hact = mode->hdisplay * 3;
video_start = (mode->htotal - mode->hsync_start) * 3;
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
val |= (0x4 << 4) | BIT(3);
hact = mode->hdisplay * 18 / 8;
video_start = (mode->htotal - mode->hsync_start) * 18 / 8;
data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
break;
case MIPI_DSI_FMT_RGB565:
val |= (0x5 << 4);
hact = mode->hdisplay * 2;
video_start = (mode->htotal - mode->hsync_start) * 2;
data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
break;
default:
dev_err(priv->dev, "Invalid data format (%u)\n",
dsi_dev->format);
tc358768_hw_disable(priv);
return;
}
/* VSDly[9:0] */
video_start = max(video_start, internal_delay + 1) - internal_delay;
tc358768_write(priv, TC358768_VSDLY, video_start);
tc358768_write(priv, TC358768_DATAFMT, val);
tc358768_write(priv, TC358768_DSITX_DT, data_type);
/* Enable D-PHY (HiZ->LP11) */
tc358768_write(priv, TC358768_CLW_CNTRL, 0x0000);
/* Enable lanes */
for (i = 0; i < dsi_dev->lanes; i++)
tc358768_write(priv, TC358768_D0W_CNTRL + i * 4, 0x0000);
/* DSI Timings */
dsibclk_nsk = (u32)div_u64((u64)1000000000 * TC358768_PRECISION,
dsibclk);
dsiclk_nsk = (u32)div_u64((u64)1000000000 * TC358768_PRECISION, dsiclk);
ui_nsk = dsiclk_nsk / 2;
dev_dbg(priv->dev, "dsiclk_nsk: %u\n", dsiclk_nsk);
dev_dbg(priv->dev, "ui_nsk: %u\n", ui_nsk);
dev_dbg(priv->dev, "dsibclk_nsk: %u\n", dsibclk_nsk);
/* LP11 > 100us for D-PHY Rx Init */
val = tc358768_ns_to_cnt(100 * 1000, dsibclk_nsk) - 1;
dev_dbg(priv->dev, "LINEINITCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_LINEINITCNT, val);
/* LPTimeCnt > 50ns */
val = tc358768_ns_to_cnt(50, dsibclk_nsk) - 1;
lptxcnt = val;
dev_dbg(priv->dev, "LPTXTIMECNT: 0x%x\n", val);
tc358768_write(priv, TC358768_LPTXTIMECNT, val);
/* 38ns < TCLK_PREPARE < 95ns */
val = tc358768_ns_to_cnt(65, dsibclk_nsk) - 1;
/* TCLK_PREPARE + TCLK_ZERO > 300ns */
val2 = tc358768_ns_to_cnt(300 - tc358768_to_ns(2 * ui_nsk),
dsibclk_nsk) - 2;
val |= val2 << 8;
dev_dbg(priv->dev, "TCLK_HEADERCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_TCLK_HEADERCNT, val);
/* TCLK_TRAIL > 60ns AND TEOT <= 105 ns + 12*UI */
raw_val = tc358768_ns_to_cnt(60 + tc358768_to_ns(2 * ui_nsk), dsibclk_nsk) - 5;
val = clamp(raw_val, 0, 127);
dev_dbg(priv->dev, "TCLK_TRAILCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_TCLK_TRAILCNT, val);
/* 40ns + 4*UI < THS_PREPARE < 85ns + 6*UI */
val = 50 + tc358768_to_ns(4 * ui_nsk);
val = tc358768_ns_to_cnt(val, dsibclk_nsk) - 1;
/* THS_PREPARE + THS_ZERO > 145ns + 10*UI */
raw_val = tc358768_ns_to_cnt(145 - tc358768_to_ns(3 * ui_nsk), dsibclk_nsk) - 10;
val2 = clamp(raw_val, 0, 127);
val |= val2 << 8;
dev_dbg(priv->dev, "THS_HEADERCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_THS_HEADERCNT, val);
/* TWAKEUP > 1ms in lptxcnt steps */
val = tc358768_ns_to_cnt(1020000, dsibclk_nsk);
val = val / (lptxcnt + 1) - 1;
dev_dbg(priv->dev, "TWAKEUP: 0x%x\n", val);
tc358768_write(priv, TC358768_TWAKEUP, val);
/* TCLK_POSTCNT > 60ns + 52*UI */
val = tc358768_ns_to_cnt(60 + tc358768_to_ns(52 * ui_nsk),
dsibclk_nsk) - 3;
dev_dbg(priv->dev, "TCLK_POSTCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_TCLK_POSTCNT, val);
/* max(60ns + 4*UI, 8*UI) < THS_TRAILCNT < 105ns + 12*UI */
raw_val = tc358768_ns_to_cnt(60 + tc358768_to_ns(18 * ui_nsk),
dsibclk_nsk) - 4;
val = clamp(raw_val, 0, 15);
dev_dbg(priv->dev, "THS_TRAILCNT: 0x%x\n", val);
tc358768_write(priv, TC358768_THS_TRAILCNT, val);
val = BIT(0);
for (i = 0; i < dsi_dev->lanes; i++)
val |= BIT(i + 1);
tc358768_write(priv, TC358768_HSTXVREGEN, val);
if (!(mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
tc358768_write(priv, TC358768_TXOPTIONCNTRL, 0x1);
/* TXTAGOCNT[26:16] RXTASURECNT[10:0] */
val = tc358768_to_ns((lptxcnt + 1) * dsibclk_nsk * 4);
val = tc358768_ns_to_cnt(val, dsibclk_nsk) / 4 - 1;
val2 = tc358768_ns_to_cnt(tc358768_to_ns((lptxcnt + 1) * dsibclk_nsk),
dsibclk_nsk) - 2;
val = val << 16 | val2;
dev_dbg(priv->dev, "BTACNTRL1: 0x%x\n", val);
tc358768_write(priv, TC358768_BTACNTRL1, val);
/* START[0] */
tc358768_write(priv, TC358768_STARTCNTRL, 1);
if (dsi_dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
/* Set pulse mode */
tc358768_write(priv, TC358768_DSI_EVENT, 0);
/* vact */
tc358768_write(priv, TC358768_DSI_VACT, mode->vdisplay);
/* vsw */
tc358768_write(priv, TC358768_DSI_VSW,
mode->vsync_end - mode->vsync_start);
/* vbp */
tc358768_write(priv, TC358768_DSI_VBPR,
mode->vtotal - mode->vsync_end);
/* hsw * byteclk * ndl / pclk */
val = (u32)div_u64((mode->hsync_end - mode->hsync_start) *
((u64)priv->dsiclk / 4) * priv->dsi_lanes,
mode->clock * 1000);
tc358768_write(priv, TC358768_DSI_HSW, val);
/* hbp * byteclk * ndl / pclk */
val = (u32)div_u64((mode->htotal - mode->hsync_end) *
((u64)priv->dsiclk / 4) * priv->dsi_lanes,
mode->clock * 1000);
tc358768_write(priv, TC358768_DSI_HBPR, val);
} else {
/* Set event mode */
tc358768_write(priv, TC358768_DSI_EVENT, 1);
/* vact */
tc358768_write(priv, TC358768_DSI_VACT, mode->vdisplay);
/* vsw (+ vbp) */
tc358768_write(priv, TC358768_DSI_VSW,
mode->vtotal - mode->vsync_start);
/* vbp (not used in event mode) */
tc358768_write(priv, TC358768_DSI_VBPR, 0);
/* (hsw + hbp) * byteclk * ndl / pclk */
val = (u32)div_u64((mode->htotal - mode->hsync_start) *
((u64)priv->dsiclk / 4) * priv->dsi_lanes,
mode->clock * 1000);
tc358768_write(priv, TC358768_DSI_HSW, val);
/* hbp (not used in event mode) */
tc358768_write(priv, TC358768_DSI_HBPR, 0);
}
/* hact (bytes) */
tc358768_write(priv, TC358768_DSI_HACT, hact);
/* VSYNC polarity */
if (!(mode->flags & DRM_MODE_FLAG_NVSYNC))
tc358768_update_bits(priv, TC358768_CONFCTL, BIT(5), BIT(5));
/* HSYNC polarity */
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
tc358768_update_bits(priv, TC358768_PP_MISC, BIT(0), BIT(0));
/* Start DSI Tx */
tc358768_write(priv, TC358768_DSI_START, 0x1);
/* Configure DSI_Control register */
val = TC358768_DSI_CONFW_MODE_CLR | TC358768_DSI_CONFW_ADDR_DSI_CONTROL;
val |= TC358768_DSI_CONTROL_TXMD | TC358768_DSI_CONTROL_HSCKMD |
0x3 << 1 | TC358768_DSI_CONTROL_EOTDIS;
tc358768_write(priv, TC358768_DSI_CONFW, val);
val = TC358768_DSI_CONFW_MODE_SET | TC358768_DSI_CONFW_ADDR_DSI_CONTROL;
val |= (dsi_dev->lanes - 1) << 1;
val |= TC358768_DSI_CONTROL_TXMD;
if (!(mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
val |= TC358768_DSI_CONTROL_HSCKMD;
if (dsi_dev->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET)
val |= TC358768_DSI_CONTROL_EOTDIS;
tc358768_write(priv, TC358768_DSI_CONFW, val);
val = TC358768_DSI_CONFW_MODE_CLR | TC358768_DSI_CONFW_ADDR_DSI_CONTROL;
val |= TC358768_DSI_CONTROL_DIS_MODE; /* DSI mode */
tc358768_write(priv, TC358768_DSI_CONFW, val);
ret = tc358768_clear_error(priv);
if (ret) {
dev_err(priv->dev, "Bridge pre_enable failed: %d\n", ret);
tc358768_bridge_disable(bridge);
tc358768_bridge_post_disable(bridge);
}
}
static void tc358768_bridge_enable(struct drm_bridge *bridge)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
int ret;
if (!priv->enabled) {
dev_err(priv->dev, "Bridge is not enabled\n");
return;
}
/* clear FrmStop and RstPtr */
tc358768_update_bits(priv, TC358768_PP_MISC, 0x3 << 14, 0);
/* set PP_en */
tc358768_update_bits(priv, TC358768_CONFCTL, BIT(6), BIT(6));
ret = tc358768_clear_error(priv);
if (ret) {
dev_err(priv->dev, "Bridge enable failed: %d\n", ret);
tc358768_bridge_disable(bridge);
tc358768_bridge_post_disable(bridge);
}
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
tc358768_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct tc358768_priv *priv = bridge_to_tc358768(bridge);
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (priv->pd_lines) {
case 16:
input_fmts[0] = MEDIA_BUS_FMT_RGB565_1X16;
break;
case 18:
input_fmts[0] = MEDIA_BUS_FMT_RGB666_1X18;
break;
default:
case 24:
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
break;
}
*num_input_fmts = MAX_INPUT_SEL_FORMATS;
return input_fmts;
}
static const struct drm_bridge_funcs tc358768_bridge_funcs = {
.attach = tc358768_bridge_attach,
.mode_valid = tc358768_bridge_mode_valid,
.pre_enable = tc358768_bridge_pre_enable,
.enable = tc358768_bridge_enable,
.disable = tc358768_bridge_disable,
.post_disable = tc358768_bridge_post_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = tc358768_atomic_get_input_bus_fmts,
};
static const struct drm_bridge_timings default_tc358768_timings = {
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE
| DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE
| DRM_BUS_FLAG_DE_HIGH,
};
static bool tc358768_is_reserved_reg(unsigned int reg)
{
switch (reg) {
case 0x114 ... 0x13f:
case 0x200:
case 0x20c:
case 0x400 ... 0x408:
case 0x41c ... 0x42f:
return true;
default:
return false;
}
}
static bool tc358768_writeable_reg(struct device *dev, unsigned int reg)
{
if (tc358768_is_reserved_reg(reg))
return false;
switch (reg) {
case TC358768_CHIPID:
case TC358768_FIFOSTATUS:
case TC358768_DSITXSTATUS ... (TC358768_DSITXSTATUS + 2):
case TC358768_DSI_CONTROL ... (TC358768_DSI_INT_ENA + 2):
case TC358768_DSICMD_RDFIFO ... (TC358768_DSI_ERR_HALT + 2):
return false;
default:
return true;
}
}
static bool tc358768_readable_reg(struct device *dev, unsigned int reg)
{
if (tc358768_is_reserved_reg(reg))
return false;
switch (reg) {
case TC358768_STARTCNTRL:
case TC358768_DSI_CONFW ... (TC358768_DSI_CONFW + 2):
case TC358768_DSI_INT_CLR ... (TC358768_DSI_INT_CLR + 2):
case TC358768_DSI_START ... (TC358768_DSI_START + 2):
case TC358768_DBG_DATA:
return false;
default:
return true;
}
}
static const struct regmap_config tc358768_regmap_config = {
.name = "tc358768",
.reg_bits = 16,
.val_bits = 16,
.max_register = TC358768_DSI_HACT,
.cache_type = REGCACHE_NONE,
.writeable_reg = tc358768_writeable_reg,
.readable_reg = tc358768_readable_reg,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
};
static const struct i2c_device_id tc358768_i2c_ids[] = {
{ "tc358768", 0 },
{ "tc358778", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358768_i2c_ids);
static const struct of_device_id tc358768_of_ids[] = {
{ .compatible = "toshiba,tc358768", },
{ .compatible = "toshiba,tc358778", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358768_of_ids);
static int tc358768_get_regulators(struct tc358768_priv *priv)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(priv->supplies); ++i)
priv->supplies[i].supply = tc358768_supplies[i];
ret = devm_regulator_bulk_get(priv->dev, ARRAY_SIZE(priv->supplies),
priv->supplies);
if (ret < 0)
dev_err(priv->dev, "failed to get regulators: %d\n", ret);
return ret;
}
static int tc358768_i2c_probe(struct i2c_client *client)
{
struct tc358768_priv *priv;
struct device *dev = &client->dev;
struct device_node *np = dev->of_node;
int ret;
if (!np)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->dev = dev;
ret = tc358768_get_regulators(priv);
if (ret)
return ret;
priv->refclk = devm_clk_get(dev, "refclk");
if (IS_ERR(priv->refclk))
return PTR_ERR(priv->refclk);
/*
* RESX is low active, to disable tc358768 initially (keep in reset)
* the gpio line must be LOW. This is the ASSERTED state of
* GPIO_ACTIVE_LOW (GPIOD_OUT_HIGH == ASSERTED).
*/
priv->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(priv->reset_gpio))
return PTR_ERR(priv->reset_gpio);
priv->regmap = devm_regmap_init_i2c(client, &tc358768_regmap_config);
if (IS_ERR(priv->regmap)) {
dev_err(dev, "Failed to init regmap\n");
return PTR_ERR(priv->regmap);
}
priv->dsi_host.dev = dev;
priv->dsi_host.ops = &tc358768_dsi_host_ops;
priv->bridge.funcs = &tc358768_bridge_funcs;
priv->bridge.timings = &default_tc358768_timings;
priv->bridge.of_node = np;
i2c_set_clientdata(client, priv);
return mipi_dsi_host_register(&priv->dsi_host);
}
static void tc358768_i2c_remove(struct i2c_client *client)
{
struct tc358768_priv *priv = i2c_get_clientdata(client);
mipi_dsi_host_unregister(&priv->dsi_host);
}
static struct i2c_driver tc358768_driver = {
.driver = {
.name = "tc358768",
.of_match_table = tc358768_of_ids,
},
.id_table = tc358768_i2c_ids,
.probe = tc358768_i2c_probe,
.remove = tc358768_i2c_remove,
};
module_i2c_driver(tc358768_driver);
MODULE_AUTHOR("Peter Ujfalusi <[email protected]>");
MODULE_DESCRIPTION("TC358768AXBG/TC358778XBG DSI bridge");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/tc358768.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2019 Renesas Electronics Corporation
* Copyright (C) 2016 Laurent Pinchart <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
struct lvds_codec {
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct drm_bridge_timings timings;
struct regulator *vcc;
struct gpio_desc *powerdown_gpio;
u32 connector_type;
unsigned int bus_format;
};
static inline struct lvds_codec *to_lvds_codec(struct drm_bridge *bridge)
{
return container_of(bridge, struct lvds_codec, bridge);
}
static int lvds_codec_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct lvds_codec *lvds_codec = to_lvds_codec(bridge);
return drm_bridge_attach(bridge->encoder, lvds_codec->panel_bridge,
bridge, flags);
}
static void lvds_codec_enable(struct drm_bridge *bridge)
{
struct lvds_codec *lvds_codec = to_lvds_codec(bridge);
int ret;
ret = regulator_enable(lvds_codec->vcc);
if (ret) {
dev_err(lvds_codec->dev,
"Failed to enable regulator \"vcc\": %d\n", ret);
return;
}
if (lvds_codec->powerdown_gpio)
gpiod_set_value_cansleep(lvds_codec->powerdown_gpio, 0);
}
static void lvds_codec_disable(struct drm_bridge *bridge)
{
struct lvds_codec *lvds_codec = to_lvds_codec(bridge);
int ret;
if (lvds_codec->powerdown_gpio)
gpiod_set_value_cansleep(lvds_codec->powerdown_gpio, 1);
ret = regulator_disable(lvds_codec->vcc);
if (ret)
dev_err(lvds_codec->dev,
"Failed to disable regulator \"vcc\": %d\n", ret);
}
static const struct drm_bridge_funcs funcs = {
.attach = lvds_codec_attach,
.enable = lvds_codec_enable,
.disable = lvds_codec_disable,
};
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
lvds_codec_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct lvds_codec *lvds_codec = to_lvds_codec(bridge);
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = lvds_codec->bus_format;
*num_input_fmts = MAX_INPUT_SEL_FORMATS;
return input_fmts;
}
static const struct drm_bridge_funcs funcs_decoder = {
.attach = lvds_codec_attach,
.enable = lvds_codec_enable,
.disable = lvds_codec_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = lvds_codec_atomic_get_input_bus_fmts,
};
static int lvds_codec_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *panel_node;
struct device_node *bus_node;
struct drm_panel *panel;
struct lvds_codec *lvds_codec;
u32 val;
int ret;
lvds_codec = devm_kzalloc(dev, sizeof(*lvds_codec), GFP_KERNEL);
if (!lvds_codec)
return -ENOMEM;
lvds_codec->dev = &pdev->dev;
lvds_codec->connector_type = (uintptr_t)of_device_get_match_data(dev);
lvds_codec->vcc = devm_regulator_get(lvds_codec->dev, "power");
if (IS_ERR(lvds_codec->vcc))
return dev_err_probe(dev, PTR_ERR(lvds_codec->vcc),
"Unable to get \"vcc\" supply\n");
lvds_codec->powerdown_gpio = devm_gpiod_get_optional(dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(lvds_codec->powerdown_gpio))
return dev_err_probe(dev, PTR_ERR(lvds_codec->powerdown_gpio),
"powerdown GPIO failure\n");
/* Locate the panel DT node. */
panel_node = of_graph_get_remote_node(dev->of_node, 1, 0);
if (!panel_node) {
dev_dbg(dev, "panel DT node not found\n");
return -ENXIO;
}
panel = of_drm_find_panel(panel_node);
of_node_put(panel_node);
if (IS_ERR(panel)) {
dev_dbg(dev, "panel not found, deferring probe\n");
return PTR_ERR(panel);
}
lvds_codec->panel_bridge =
devm_drm_panel_bridge_add_typed(dev, panel,
lvds_codec->connector_type);
if (IS_ERR(lvds_codec->panel_bridge))
return PTR_ERR(lvds_codec->panel_bridge);
lvds_codec->bridge.funcs = &funcs;
/*
* Decoder input LVDS format is a property of the decoder chip or even
* its strapping. Handle data-mapping the same way lvds-panel does. In
* case data-mapping is not present, do nothing, since there are still
* legacy bindings which do not specify this property.
*/
if (lvds_codec->connector_type != DRM_MODE_CONNECTOR_LVDS) {
bus_node = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
if (!bus_node) {
dev_dbg(dev, "bus DT node not found\n");
return -ENXIO;
}
ret = drm_of_lvds_get_data_mapping(bus_node);
of_node_put(bus_node);
if (ret == -ENODEV) {
dev_warn(dev, "missing 'data-mapping' DT property\n");
} else if (ret < 0) {
dev_err(dev, "invalid 'data-mapping' DT property\n");
return ret;
} else {
lvds_codec->bus_format = ret;
lvds_codec->bridge.funcs = &funcs_decoder;
}
}
/*
* Encoder might sample data on different clock edge than the display,
* for example OnSemi FIN3385 has a dedicated strapping pin to select
* the sampling edge.
*/
if (lvds_codec->connector_type == DRM_MODE_CONNECTOR_LVDS &&
!of_property_read_u32(dev->of_node, "pclk-sample", &val)) {
lvds_codec->timings.input_bus_flags = val ?
DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE :
DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE;
}
/*
* The panel_bridge bridge is attached to the panel's of_node,
* but we need a bridge attached to our of_node for our user
* to look up.
*/
lvds_codec->bridge.of_node = dev->of_node;
lvds_codec->bridge.timings = &lvds_codec->timings;
drm_bridge_add(&lvds_codec->bridge);
platform_set_drvdata(pdev, lvds_codec);
return 0;
}
static void lvds_codec_remove(struct platform_device *pdev)
{
struct lvds_codec *lvds_codec = platform_get_drvdata(pdev);
drm_bridge_remove(&lvds_codec->bridge);
}
static const struct of_device_id lvds_codec_match[] = {
{
.compatible = "lvds-decoder",
.data = (void *)DRM_MODE_CONNECTOR_DPI,
},
{
.compatible = "lvds-encoder",
.data = (void *)DRM_MODE_CONNECTOR_LVDS,
},
{
.compatible = "thine,thc63lvdm83d",
.data = (void *)DRM_MODE_CONNECTOR_LVDS,
},
{},
};
MODULE_DEVICE_TABLE(of, lvds_codec_match);
static struct platform_driver lvds_codec_driver = {
.probe = lvds_codec_probe,
.remove_new = lvds_codec_remove,
.driver = {
.name = "lvds-codec",
.of_match_table = lvds_codec_match,
},
};
module_platform_driver(lvds_codec_driver);
MODULE_AUTHOR("Laurent Pinchart <[email protected]>");
MODULE_DESCRIPTION("LVDS encoders and decoders");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/lvds-codec.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for MegaChips STDP4028 with GE B850v3 firmware (LVDS-DP)
* Driver for MegaChips STDP2690 with GE B850v3 firmware (DP-DP++)
* Copyright (c) 2017, Collabora Ltd.
* Copyright (c) 2017, General Electric Company
* This driver creates a drm_bridge and a drm_connector for the LVDS to DP++
* display bridge of the GE B850v3. There are two physical bridges on the video
* signal pipeline: a STDP4028(LVDS to DP) and a STDP2690(DP to DP++). The
* physical bridges are automatically configured by the input video signal, and
* the driver has no access to the video processing pipeline. The driver is
* only needed to read EDID from the STDP2690 and to handle HPD events from the
* STDP4028. The driver communicates with both bridges over i2c. The video
* signal pipeline is as follows:
*
* Host -> LVDS|--(STDP4028)--|DP -> DP|--(STDP2690)--|DP++ -> Video output
*/
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define EDID_EXT_BLOCK_CNT 0x7E
#define STDP4028_IRQ_OUT_CONF_REG 0x02
#define STDP4028_DPTX_IRQ_EN_REG 0x3C
#define STDP4028_DPTX_IRQ_STS_REG 0x3D
#define STDP4028_DPTX_STS_REG 0x3E
#define STDP4028_DPTX_DP_IRQ_EN 0x1000
#define STDP4028_DPTX_HOTPLUG_IRQ_EN 0x0400
#define STDP4028_DPTX_LINK_CH_IRQ_EN 0x2000
#define STDP4028_DPTX_IRQ_CONFIG \
(STDP4028_DPTX_LINK_CH_IRQ_EN | STDP4028_DPTX_HOTPLUG_IRQ_EN)
#define STDP4028_DPTX_HOTPLUG_STS 0x0200
#define STDP4028_DPTX_LINK_STS 0x1000
#define STDP4028_CON_STATE_CONNECTED \
(STDP4028_DPTX_HOTPLUG_STS | STDP4028_DPTX_LINK_STS)
#define STDP4028_DPTX_HOTPLUG_CH_STS 0x0400
#define STDP4028_DPTX_LINK_CH_STS 0x2000
#define STDP4028_DPTX_IRQ_CLEAR \
(STDP4028_DPTX_LINK_CH_STS | STDP4028_DPTX_HOTPLUG_CH_STS)
static DEFINE_MUTEX(ge_b850v3_lvds_dev_mutex);
struct ge_b850v3_lvds {
struct drm_connector connector;
struct drm_bridge bridge;
struct i2c_client *stdp4028_i2c;
struct i2c_client *stdp2690_i2c;
};
static struct ge_b850v3_lvds *ge_b850v3_lvds_ptr;
static u8 *stdp2690_get_edid(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
unsigned char start = 0x00;
unsigned int total_size;
u8 *block = kmalloc(EDID_LENGTH, GFP_KERNEL);
struct i2c_msg msgs[] = {
{
.addr = client->addr,
.flags = 0,
.len = 1,
.buf = &start,
}, {
.addr = client->addr,
.flags = I2C_M_RD,
.len = EDID_LENGTH,
.buf = block,
}
};
if (!block)
return NULL;
if (i2c_transfer(adapter, msgs, 2) != 2) {
DRM_ERROR("Unable to read EDID.\n");
goto err;
}
if (!drm_edid_block_valid(block, 0, false, NULL)) {
DRM_ERROR("Invalid EDID data\n");
goto err;
}
total_size = (block[EDID_EXT_BLOCK_CNT] + 1) * EDID_LENGTH;
if (total_size > EDID_LENGTH) {
kfree(block);
block = kmalloc(total_size, GFP_KERNEL);
if (!block)
return NULL;
/* Yes, read the entire buffer, and do not skip the first
* EDID_LENGTH bytes.
*/
start = 0x00;
msgs[1].len = total_size;
msgs[1].buf = block;
if (i2c_transfer(adapter, msgs, 2) != 2) {
DRM_ERROR("Unable to read EDID extension blocks.\n");
goto err;
}
if (!drm_edid_block_valid(block, 1, false, NULL)) {
DRM_ERROR("Invalid EDID data\n");
goto err;
}
}
return block;
err:
kfree(block);
return NULL;
}
static struct edid *ge_b850v3_lvds_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct i2c_client *client;
client = ge_b850v3_lvds_ptr->stdp2690_i2c;
return (struct edid *)stdp2690_get_edid(client);
}
static int ge_b850v3_lvds_get_modes(struct drm_connector *connector)
{
struct edid *edid;
int num_modes;
edid = ge_b850v3_lvds_get_edid(&ge_b850v3_lvds_ptr->bridge, connector);
drm_connector_update_edid_property(connector, edid);
num_modes = drm_add_edid_modes(connector, edid);
kfree(edid);
return num_modes;
}
static enum drm_mode_status ge_b850v3_lvds_mode_valid(
struct drm_connector *connector, struct drm_display_mode *mode)
{
return MODE_OK;
}
static const struct
drm_connector_helper_funcs ge_b850v3_lvds_connector_helper_funcs = {
.get_modes = ge_b850v3_lvds_get_modes,
.mode_valid = ge_b850v3_lvds_mode_valid,
};
static enum drm_connector_status ge_b850v3_lvds_bridge_detect(struct drm_bridge *bridge)
{
struct i2c_client *stdp4028_i2c =
ge_b850v3_lvds_ptr->stdp4028_i2c;
s32 link_state;
link_state = i2c_smbus_read_word_data(stdp4028_i2c,
STDP4028_DPTX_STS_REG);
if (link_state == STDP4028_CON_STATE_CONNECTED)
return connector_status_connected;
if (link_state == 0)
return connector_status_disconnected;
return connector_status_unknown;
}
static enum drm_connector_status ge_b850v3_lvds_detect(struct drm_connector *connector,
bool force)
{
return ge_b850v3_lvds_bridge_detect(&ge_b850v3_lvds_ptr->bridge);
}
static const struct drm_connector_funcs ge_b850v3_lvds_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = ge_b850v3_lvds_detect,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int ge_b850v3_lvds_create_connector(struct drm_bridge *bridge)
{
struct drm_connector *connector = &ge_b850v3_lvds_ptr->connector;
int ret;
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(connector,
&ge_b850v3_lvds_connector_helper_funcs);
ret = drm_connector_init(bridge->dev, connector,
&ge_b850v3_lvds_connector_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
return drm_connector_attach_encoder(connector, bridge->encoder);
}
static irqreturn_t ge_b850v3_lvds_irq_handler(int irq, void *dev_id)
{
struct i2c_client *stdp4028_i2c
= ge_b850v3_lvds_ptr->stdp4028_i2c;
i2c_smbus_write_word_data(stdp4028_i2c,
STDP4028_DPTX_IRQ_STS_REG,
STDP4028_DPTX_IRQ_CLEAR);
if (ge_b850v3_lvds_ptr->bridge.dev)
drm_kms_helper_hotplug_event(ge_b850v3_lvds_ptr->bridge.dev);
return IRQ_HANDLED;
}
static int ge_b850v3_lvds_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct i2c_client *stdp4028_i2c
= ge_b850v3_lvds_ptr->stdp4028_i2c;
/* Configures the bridge to re-enable interrupts after each ack. */
i2c_smbus_write_word_data(stdp4028_i2c,
STDP4028_IRQ_OUT_CONF_REG,
STDP4028_DPTX_DP_IRQ_EN);
/* Enable interrupts */
i2c_smbus_write_word_data(stdp4028_i2c,
STDP4028_DPTX_IRQ_EN_REG,
STDP4028_DPTX_IRQ_CONFIG);
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
return ge_b850v3_lvds_create_connector(bridge);
}
static const struct drm_bridge_funcs ge_b850v3_lvds_funcs = {
.attach = ge_b850v3_lvds_attach,
.detect = ge_b850v3_lvds_bridge_detect,
.get_edid = ge_b850v3_lvds_get_edid,
};
static int ge_b850v3_lvds_init(struct device *dev)
{
mutex_lock(&ge_b850v3_lvds_dev_mutex);
if (ge_b850v3_lvds_ptr)
goto success;
ge_b850v3_lvds_ptr = devm_kzalloc(dev,
sizeof(*ge_b850v3_lvds_ptr),
GFP_KERNEL);
if (!ge_b850v3_lvds_ptr) {
mutex_unlock(&ge_b850v3_lvds_dev_mutex);
return -ENOMEM;
}
success:
mutex_unlock(&ge_b850v3_lvds_dev_mutex);
return 0;
}
static void ge_b850v3_lvds_remove(void)
{
mutex_lock(&ge_b850v3_lvds_dev_mutex);
/*
* This check is to avoid both the drivers
* removing the bridge in their remove() function
*/
if (!ge_b850v3_lvds_ptr ||
!ge_b850v3_lvds_ptr->stdp2690_i2c ||
!ge_b850v3_lvds_ptr->stdp4028_i2c)
goto out;
drm_bridge_remove(&ge_b850v3_lvds_ptr->bridge);
ge_b850v3_lvds_ptr = NULL;
out:
mutex_unlock(&ge_b850v3_lvds_dev_mutex);
}
static int ge_b850v3_register(void)
{
struct i2c_client *stdp4028_i2c = ge_b850v3_lvds_ptr->stdp4028_i2c;
struct device *dev = &stdp4028_i2c->dev;
/* drm bridge initialization */
ge_b850v3_lvds_ptr->bridge.funcs = &ge_b850v3_lvds_funcs;
ge_b850v3_lvds_ptr->bridge.ops = DRM_BRIDGE_OP_DETECT |
DRM_BRIDGE_OP_EDID;
ge_b850v3_lvds_ptr->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
ge_b850v3_lvds_ptr->bridge.of_node = dev->of_node;
drm_bridge_add(&ge_b850v3_lvds_ptr->bridge);
/* Clear pending interrupts since power up. */
i2c_smbus_write_word_data(stdp4028_i2c,
STDP4028_DPTX_IRQ_STS_REG,
STDP4028_DPTX_IRQ_CLEAR);
if (!stdp4028_i2c->irq)
return 0;
return devm_request_threaded_irq(&stdp4028_i2c->dev,
stdp4028_i2c->irq, NULL,
ge_b850v3_lvds_irq_handler,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"ge-b850v3-lvds-dp", ge_b850v3_lvds_ptr);
}
static int stdp4028_ge_b850v3_fw_probe(struct i2c_client *stdp4028_i2c)
{
struct device *dev = &stdp4028_i2c->dev;
int ret;
ret = ge_b850v3_lvds_init(dev);
if (ret)
return ret;
ge_b850v3_lvds_ptr->stdp4028_i2c = stdp4028_i2c;
i2c_set_clientdata(stdp4028_i2c, ge_b850v3_lvds_ptr);
/* Only register after both bridges are probed */
if (!ge_b850v3_lvds_ptr->stdp2690_i2c)
return 0;
return ge_b850v3_register();
}
static void stdp4028_ge_b850v3_fw_remove(struct i2c_client *stdp4028_i2c)
{
ge_b850v3_lvds_remove();
}
static const struct i2c_device_id stdp4028_ge_b850v3_fw_i2c_table[] = {
{"stdp4028_ge_fw", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, stdp4028_ge_b850v3_fw_i2c_table);
static const struct of_device_id stdp4028_ge_b850v3_fw_match[] = {
{ .compatible = "megachips,stdp4028-ge-b850v3-fw" },
{},
};
MODULE_DEVICE_TABLE(of, stdp4028_ge_b850v3_fw_match);
static struct i2c_driver stdp4028_ge_b850v3_fw_driver = {
.id_table = stdp4028_ge_b850v3_fw_i2c_table,
.probe = stdp4028_ge_b850v3_fw_probe,
.remove = stdp4028_ge_b850v3_fw_remove,
.driver = {
.name = "stdp4028-ge-b850v3-fw",
.of_match_table = stdp4028_ge_b850v3_fw_match,
},
};
static int stdp2690_ge_b850v3_fw_probe(struct i2c_client *stdp2690_i2c)
{
struct device *dev = &stdp2690_i2c->dev;
int ret;
ret = ge_b850v3_lvds_init(dev);
if (ret)
return ret;
ge_b850v3_lvds_ptr->stdp2690_i2c = stdp2690_i2c;
i2c_set_clientdata(stdp2690_i2c, ge_b850v3_lvds_ptr);
/* Only register after both bridges are probed */
if (!ge_b850v3_lvds_ptr->stdp4028_i2c)
return 0;
return ge_b850v3_register();
}
static void stdp2690_ge_b850v3_fw_remove(struct i2c_client *stdp2690_i2c)
{
ge_b850v3_lvds_remove();
}
static const struct i2c_device_id stdp2690_ge_b850v3_fw_i2c_table[] = {
{"stdp2690_ge_fw", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, stdp2690_ge_b850v3_fw_i2c_table);
static const struct of_device_id stdp2690_ge_b850v3_fw_match[] = {
{ .compatible = "megachips,stdp2690-ge-b850v3-fw" },
{},
};
MODULE_DEVICE_TABLE(of, stdp2690_ge_b850v3_fw_match);
static struct i2c_driver stdp2690_ge_b850v3_fw_driver = {
.id_table = stdp2690_ge_b850v3_fw_i2c_table,
.probe = stdp2690_ge_b850v3_fw_probe,
.remove = stdp2690_ge_b850v3_fw_remove,
.driver = {
.name = "stdp2690-ge-b850v3-fw",
.of_match_table = stdp2690_ge_b850v3_fw_match,
},
};
static int __init stdpxxxx_ge_b850v3_init(void)
{
int ret;
ret = i2c_add_driver(&stdp4028_ge_b850v3_fw_driver);
if (ret)
return ret;
ret = i2c_add_driver(&stdp2690_ge_b850v3_fw_driver);
if (ret)
i2c_del_driver(&stdp4028_ge_b850v3_fw_driver);
return ret;
}
module_init(stdpxxxx_ge_b850v3_init);
static void __exit stdpxxxx_ge_b850v3_exit(void)
{
i2c_del_driver(&stdp2690_ge_b850v3_fw_driver);
i2c_del_driver(&stdp4028_ge_b850v3_fw_driver);
}
module_exit(stdpxxxx_ge_b850v3_exit);
MODULE_AUTHOR("Peter Senna Tschudin <[email protected]>");
MODULE_AUTHOR("Martyn Welch <[email protected]>");
MODULE_DESCRIPTION("GE LVDS to DP++ display bridge)");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/megachips-stdpxxxx-ge-b850v3-fw.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TPD12S015 HDMI ESD protection & level shifter chip driver
*
* Copyright (C) 2019 Texas Instruments Incorporated
*
* Based on the omapdrm-specific encoder-opa362 driver
*
* Copyright (C) 2013 Texas Instruments Incorporated
* Author: Tomi Valkeinen <[email protected]>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <drm/drm_bridge.h>
struct tpd12s015_device {
struct drm_bridge bridge;
struct gpio_desc *ct_cp_hpd_gpio;
struct gpio_desc *ls_oe_gpio;
struct gpio_desc *hpd_gpio;
int hpd_irq;
struct drm_bridge *next_bridge;
};
static inline struct tpd12s015_device *to_tpd12s015(struct drm_bridge *bridge)
{
return container_of(bridge, struct tpd12s015_device, bridge);
}
static int tpd12s015_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tpd12s015_device *tpd = to_tpd12s015(bridge);
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
ret = drm_bridge_attach(bridge->encoder, tpd->next_bridge,
bridge, flags);
if (ret < 0)
return ret;
gpiod_set_value_cansleep(tpd->ls_oe_gpio, 1);
/* DC-DC converter needs at max 300us to get to 90% of 5V. */
usleep_range(300, 1000);
return 0;
}
static void tpd12s015_detach(struct drm_bridge *bridge)
{
struct tpd12s015_device *tpd = to_tpd12s015(bridge);
gpiod_set_value_cansleep(tpd->ls_oe_gpio, 0);
}
static enum drm_connector_status tpd12s015_detect(struct drm_bridge *bridge)
{
struct tpd12s015_device *tpd = to_tpd12s015(bridge);
if (gpiod_get_value_cansleep(tpd->hpd_gpio))
return connector_status_connected;
else
return connector_status_disconnected;
}
static void tpd12s015_hpd_enable(struct drm_bridge *bridge)
{
struct tpd12s015_device *tpd = to_tpd12s015(bridge);
gpiod_set_value_cansleep(tpd->ct_cp_hpd_gpio, 1);
}
static void tpd12s015_hpd_disable(struct drm_bridge *bridge)
{
struct tpd12s015_device *tpd = to_tpd12s015(bridge);
gpiod_set_value_cansleep(tpd->ct_cp_hpd_gpio, 0);
}
static const struct drm_bridge_funcs tpd12s015_bridge_funcs = {
.attach = tpd12s015_attach,
.detach = tpd12s015_detach,
.detect = tpd12s015_detect,
.hpd_enable = tpd12s015_hpd_enable,
.hpd_disable = tpd12s015_hpd_disable,
};
static irqreturn_t tpd12s015_hpd_isr(int irq, void *data)
{
struct tpd12s015_device *tpd = data;
struct drm_bridge *bridge = &tpd->bridge;
drm_bridge_hpd_notify(bridge, tpd12s015_detect(bridge));
return IRQ_HANDLED;
}
static int tpd12s015_probe(struct platform_device *pdev)
{
struct tpd12s015_device *tpd;
struct device_node *node;
struct gpio_desc *gpio;
int ret;
tpd = devm_kzalloc(&pdev->dev, sizeof(*tpd), GFP_KERNEL);
if (!tpd)
return -ENOMEM;
platform_set_drvdata(pdev, tpd);
tpd->bridge.funcs = &tpd12s015_bridge_funcs;
tpd->bridge.of_node = pdev->dev.of_node;
tpd->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
tpd->bridge.ops = DRM_BRIDGE_OP_DETECT;
/* Get the next bridge, connected to port@1. */
node = of_graph_get_remote_node(pdev->dev.of_node, 1, -1);
if (!node)
return -ENODEV;
tpd->next_bridge = of_drm_find_bridge(node);
of_node_put(node);
if (!tpd->next_bridge)
return -EPROBE_DEFER;
/* Get the control and HPD GPIOs. */
gpio = devm_gpiod_get_index_optional(&pdev->dev, NULL, 0,
GPIOD_OUT_LOW);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
tpd->ct_cp_hpd_gpio = gpio;
gpio = devm_gpiod_get_index_optional(&pdev->dev, NULL, 1,
GPIOD_OUT_LOW);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
tpd->ls_oe_gpio = gpio;
gpio = devm_gpiod_get_index(&pdev->dev, NULL, 2, GPIOD_IN);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
tpd->hpd_gpio = gpio;
/* Register the IRQ if the HPD GPIO is IRQ-capable. */
tpd->hpd_irq = gpiod_to_irq(tpd->hpd_gpio);
if (tpd->hpd_irq >= 0) {
ret = devm_request_threaded_irq(&pdev->dev, tpd->hpd_irq, NULL,
tpd12s015_hpd_isr,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"tpd12s015 hpd", tpd);
if (ret)
return ret;
tpd->bridge.ops |= DRM_BRIDGE_OP_HPD;
}
/* Register the DRM bridge. */
drm_bridge_add(&tpd->bridge);
return 0;
}
static int __exit tpd12s015_remove(struct platform_device *pdev)
{
struct tpd12s015_device *tpd = platform_get_drvdata(pdev);
drm_bridge_remove(&tpd->bridge);
return 0;
}
static const struct of_device_id tpd12s015_of_match[] = {
{ .compatible = "ti,tpd12s015", },
{},
};
MODULE_DEVICE_TABLE(of, tpd12s015_of_match);
static struct platform_driver tpd12s015_driver = {
.probe = tpd12s015_probe,
.remove = __exit_p(tpd12s015_remove),
.driver = {
.name = "tpd12s015",
.of_match_table = tpd12s015_of_match,
},
};
module_platform_driver(tpd12s015_driver);
MODULE_AUTHOR("Tomi Valkeinen <[email protected]>");
MODULE_DESCRIPTION("TPD12S015 HDMI level shifter and ESD protection driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/ti-tpd12s015.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Laurent Pinchart <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
struct display_connector {
struct drm_bridge bridge;
struct gpio_desc *hpd_gpio;
int hpd_irq;
struct regulator *supply;
struct gpio_desc *ddc_en;
};
static inline struct display_connector *
to_display_connector(struct drm_bridge *bridge)
{
return container_of(bridge, struct display_connector, bridge);
}
static int display_connector_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
return flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR ? 0 : -EINVAL;
}
static enum drm_connector_status
display_connector_detect(struct drm_bridge *bridge)
{
struct display_connector *conn = to_display_connector(bridge);
if (conn->hpd_gpio) {
if (gpiod_get_value_cansleep(conn->hpd_gpio))
return connector_status_connected;
else
return connector_status_disconnected;
}
if (conn->bridge.ddc && drm_probe_ddc(conn->bridge.ddc))
return connector_status_connected;
switch (conn->bridge.type) {
case DRM_MODE_CONNECTOR_DVIA:
case DRM_MODE_CONNECTOR_DVID:
case DRM_MODE_CONNECTOR_DVII:
case DRM_MODE_CONNECTOR_HDMIA:
case DRM_MODE_CONNECTOR_HDMIB:
/*
* For DVI and HDMI connectors a DDC probe failure indicates
* that no cable is connected.
*/
return connector_status_disconnected;
case DRM_MODE_CONNECTOR_Composite:
case DRM_MODE_CONNECTOR_SVIDEO:
case DRM_MODE_CONNECTOR_VGA:
default:
/*
* Composite and S-Video connectors have no other detection
* mean than the HPD GPIO. For VGA connectors, even if we have
* an I2C bus, we can't assume that the cable is disconnected
* if drm_probe_ddc fails, as some cables don't wire the DDC
* pins.
*/
return connector_status_unknown;
}
}
static struct edid *display_connector_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct display_connector *conn = to_display_connector(bridge);
return drm_get_edid(connector, conn->bridge.ddc);
}
/*
* Since this bridge is tied to the connector, it acts like a passthrough,
* so concerning the output bus formats, either pass the bus formats from the
* previous bridge or return fallback data like done in the bridge function:
* drm_atomic_bridge_chain_select_bus_fmts().
* This supports negotiation if the bridge chain has all bits in place.
*/
static u32 *display_connector_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
struct drm_bridge *prev_bridge = drm_bridge_get_prev_bridge(bridge);
struct drm_bridge_state *prev_bridge_state;
if (!prev_bridge || !prev_bridge->funcs->atomic_get_output_bus_fmts) {
struct drm_connector *conn = conn_state->connector;
u32 *out_bus_fmts;
*num_output_fmts = 1;
out_bus_fmts = kmalloc(sizeof(*out_bus_fmts), GFP_KERNEL);
if (!out_bus_fmts)
return NULL;
if (conn->display_info.num_bus_formats &&
conn->display_info.bus_formats)
out_bus_fmts[0] = conn->display_info.bus_formats[0];
else
out_bus_fmts[0] = MEDIA_BUS_FMT_FIXED;
return out_bus_fmts;
}
prev_bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state,
prev_bridge);
return prev_bridge->funcs->atomic_get_output_bus_fmts(prev_bridge, prev_bridge_state,
crtc_state, conn_state,
num_output_fmts);
}
/*
* Since this bridge is tied to the connector, it acts like a passthrough,
* so concerning the input bus formats, either pass the bus formats from the
* previous bridge or MEDIA_BUS_FMT_FIXED (like select_bus_fmt_recursive())
* when atomic_get_input_bus_fmts is not supported.
* This supports negotiation if the bridge chain has all bits in place.
*/
static u32 *display_connector_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct drm_bridge *prev_bridge = drm_bridge_get_prev_bridge(bridge);
struct drm_bridge_state *prev_bridge_state;
if (!prev_bridge || !prev_bridge->funcs->atomic_get_input_bus_fmts) {
u32 *in_bus_fmts;
*num_input_fmts = 1;
in_bus_fmts = kmalloc(sizeof(*in_bus_fmts), GFP_KERNEL);
if (!in_bus_fmts)
return NULL;
in_bus_fmts[0] = MEDIA_BUS_FMT_FIXED;
return in_bus_fmts;
}
prev_bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state,
prev_bridge);
return prev_bridge->funcs->atomic_get_input_bus_fmts(prev_bridge, prev_bridge_state,
crtc_state, conn_state, output_fmt,
num_input_fmts);
}
static const struct drm_bridge_funcs display_connector_bridge_funcs = {
.attach = display_connector_attach,
.detect = display_connector_detect,
.get_edid = display_connector_get_edid,
.atomic_get_output_bus_fmts = display_connector_get_output_bus_fmts,
.atomic_get_input_bus_fmts = display_connector_get_input_bus_fmts,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
};
static irqreturn_t display_connector_hpd_irq(int irq, void *arg)
{
struct display_connector *conn = arg;
struct drm_bridge *bridge = &conn->bridge;
drm_bridge_hpd_notify(bridge, display_connector_detect(bridge));
return IRQ_HANDLED;
}
static int display_connector_get_supply(struct platform_device *pdev,
struct display_connector *conn,
const char *name)
{
conn->supply = devm_regulator_get_optional(&pdev->dev, name);
if (conn->supply == ERR_PTR(-ENODEV))
conn->supply = NULL;
return PTR_ERR_OR_ZERO(conn->supply);
}
static int display_connector_probe(struct platform_device *pdev)
{
struct display_connector *conn;
unsigned int type;
const char *label = NULL;
int ret;
conn = devm_kzalloc(&pdev->dev, sizeof(*conn), GFP_KERNEL);
if (!conn)
return -ENOMEM;
platform_set_drvdata(pdev, conn);
type = (uintptr_t)of_device_get_match_data(&pdev->dev);
/* Get the exact connector type. */
switch (type) {
case DRM_MODE_CONNECTOR_DVII: {
bool analog, digital;
analog = of_property_read_bool(pdev->dev.of_node, "analog");
digital = of_property_read_bool(pdev->dev.of_node, "digital");
if (analog && !digital) {
conn->bridge.type = DRM_MODE_CONNECTOR_DVIA;
} else if (!analog && digital) {
conn->bridge.type = DRM_MODE_CONNECTOR_DVID;
} else if (analog && digital) {
conn->bridge.type = DRM_MODE_CONNECTOR_DVII;
} else {
dev_err(&pdev->dev, "DVI connector with no type\n");
return -EINVAL;
}
break;
}
case DRM_MODE_CONNECTOR_HDMIA: {
const char *hdmi_type;
ret = of_property_read_string(pdev->dev.of_node, "type",
&hdmi_type);
if (ret < 0) {
dev_err(&pdev->dev, "HDMI connector with no type\n");
return -EINVAL;
}
if (!strcmp(hdmi_type, "a") || !strcmp(hdmi_type, "c") ||
!strcmp(hdmi_type, "d") || !strcmp(hdmi_type, "e")) {
conn->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
} else if (!strcmp(hdmi_type, "b")) {
conn->bridge.type = DRM_MODE_CONNECTOR_HDMIB;
} else {
dev_err(&pdev->dev,
"Unsupported HDMI connector type '%s'\n",
hdmi_type);
return -EINVAL;
}
break;
}
default:
conn->bridge.type = type;
break;
}
/* All the supported connector types support interlaced modes. */
conn->bridge.interlace_allowed = true;
/* Get the optional connector label. */
of_property_read_string(pdev->dev.of_node, "label", &label);
/*
* Get the HPD GPIO for DVI, HDMI and DP connectors. If the GPIO can provide
* edge interrupts, register an interrupt handler.
*/
if (type == DRM_MODE_CONNECTOR_DVII ||
type == DRM_MODE_CONNECTOR_HDMIA ||
type == DRM_MODE_CONNECTOR_DisplayPort) {
conn->hpd_gpio = devm_gpiod_get_optional(&pdev->dev, "hpd",
GPIOD_IN);
if (IS_ERR(conn->hpd_gpio))
return dev_err_probe(&pdev->dev, PTR_ERR(conn->hpd_gpio),
"Unable to retrieve HPD GPIO\n");
conn->hpd_irq = gpiod_to_irq(conn->hpd_gpio);
} else {
conn->hpd_irq = -EINVAL;
}
if (conn->hpd_irq >= 0) {
ret = devm_request_threaded_irq(&pdev->dev, conn->hpd_irq,
NULL, display_connector_hpd_irq,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"HPD", conn);
if (ret) {
dev_info(&pdev->dev,
"Failed to request HPD edge interrupt, falling back to polling\n");
conn->hpd_irq = -EINVAL;
}
}
/* Retrieve the DDC I2C adapter for DVI, HDMI and VGA connectors. */
if (type == DRM_MODE_CONNECTOR_DVII ||
type == DRM_MODE_CONNECTOR_HDMIA ||
type == DRM_MODE_CONNECTOR_VGA) {
struct device_node *phandle;
phandle = of_parse_phandle(pdev->dev.of_node, "ddc-i2c-bus", 0);
if (phandle) {
conn->bridge.ddc = of_get_i2c_adapter_by_node(phandle);
of_node_put(phandle);
if (!conn->bridge.ddc)
return -EPROBE_DEFER;
} else {
dev_dbg(&pdev->dev,
"No I2C bus specified, disabling EDID readout\n");
}
}
/* Get the DP PWR for DP connector. */
if (type == DRM_MODE_CONNECTOR_DisplayPort) {
int ret;
ret = display_connector_get_supply(pdev, conn, "dp-pwr");
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "failed to get DP PWR regulator\n");
}
/* enable DDC */
if (type == DRM_MODE_CONNECTOR_HDMIA) {
int ret;
conn->ddc_en = devm_gpiod_get_optional(&pdev->dev, "ddc-en",
GPIOD_OUT_HIGH);
if (IS_ERR(conn->ddc_en)) {
dev_err(&pdev->dev, "Couldn't get ddc-en gpio\n");
return PTR_ERR(conn->ddc_en);
}
ret = display_connector_get_supply(pdev, conn, "hdmi-pwr");
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "failed to get HDMI +5V Power regulator\n");
}
if (conn->supply) {
ret = regulator_enable(conn->supply);
if (ret) {
dev_err(&pdev->dev, "failed to enable PWR regulator: %d\n", ret);
return ret;
}
}
conn->bridge.funcs = &display_connector_bridge_funcs;
conn->bridge.of_node = pdev->dev.of_node;
if (conn->bridge.ddc)
conn->bridge.ops |= DRM_BRIDGE_OP_EDID
| DRM_BRIDGE_OP_DETECT;
if (conn->hpd_gpio)
conn->bridge.ops |= DRM_BRIDGE_OP_DETECT;
if (conn->hpd_irq >= 0)
conn->bridge.ops |= DRM_BRIDGE_OP_HPD;
dev_dbg(&pdev->dev,
"Found %s display connector '%s' %s DDC bus and %s HPD GPIO (ops 0x%x)\n",
drm_get_connector_type_name(conn->bridge.type),
label ? label : "<unlabelled>",
conn->bridge.ddc ? "with" : "without",
conn->hpd_gpio ? "with" : "without",
conn->bridge.ops);
drm_bridge_add(&conn->bridge);
return 0;
}
static void display_connector_remove(struct platform_device *pdev)
{
struct display_connector *conn = platform_get_drvdata(pdev);
if (conn->ddc_en)
gpiod_set_value(conn->ddc_en, 0);
if (conn->supply)
regulator_disable(conn->supply);
drm_bridge_remove(&conn->bridge);
if (!IS_ERR(conn->bridge.ddc))
i2c_put_adapter(conn->bridge.ddc);
}
static const struct of_device_id display_connector_match[] = {
{
.compatible = "composite-video-connector",
.data = (void *)DRM_MODE_CONNECTOR_Composite,
}, {
.compatible = "dvi-connector",
.data = (void *)DRM_MODE_CONNECTOR_DVII,
}, {
.compatible = "hdmi-connector",
.data = (void *)DRM_MODE_CONNECTOR_HDMIA,
}, {
.compatible = "svideo-connector",
.data = (void *)DRM_MODE_CONNECTOR_SVIDEO,
}, {
.compatible = "vga-connector",
.data = (void *)DRM_MODE_CONNECTOR_VGA,
}, {
.compatible = "dp-connector",
.data = (void *)DRM_MODE_CONNECTOR_DisplayPort,
},
{},
};
MODULE_DEVICE_TABLE(of, display_connector_match);
static struct platform_driver display_connector_driver = {
.probe = display_connector_probe,
.remove_new = display_connector_remove,
.driver = {
.name = "display-connector",
.of_match_table = display_connector_match,
},
};
module_platform_driver(display_connector_driver);
MODULE_AUTHOR("Laurent Pinchart <[email protected]>");
MODULE_DESCRIPTION("Display connector driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/display-connector.c |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/*
* Copyright (c) 2020, The Linux Foundation. All rights reserved.
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/extcon.h>
#include <linux/fs.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <crypto/hash.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_hdcp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <sound/hdmi-codec.h>
#define REG_IC_VER 0x04
#define REG_RESET_CTRL 0x05
#define VIDEO_RESET BIT(0)
#define AUDIO_RESET BIT(1)
#define ALL_LOGIC_RESET BIT(2)
#define AUX_RESET BIT(3)
#define HDCP_RESET BIT(4)
#define INT_STATUS_01 0x06
#define INT_MASK_01 0x09
#define INT_HPD_CHANGE 0
#define INT_RECEIVE_HPD_IRQ 1
#define INT_SCDT_CHANGE 2
#define INT_HDCP_FAIL 3
#define INT_HDCP_DONE 4
#define BIT_OFFSET(x) (((x) - INT_STATUS_01) * BITS_PER_BYTE)
#define BIT_INT_HPD INT_HPD_CHANGE
#define BIT_INT_HPD_IRQ INT_RECEIVE_HPD_IRQ
#define BIT_INT_SCDT INT_SCDT_CHANGE
#define BIT_INT_HDCP_FAIL INT_HDCP_FAIL
#define BIT_INT_HDCP_DONE INT_HDCP_DONE
#define INT_STATUS_02 0x07
#define INT_MASK_02 0x0A
#define INT_AUX_CMD_FAIL 0
#define INT_HDCP_KSV_CHECK 1
#define INT_AUDIO_FIFO_ERROR 2
#define BIT_INT_AUX_CMD_FAIL (BIT_OFFSET(0x07) + INT_AUX_CMD_FAIL)
#define BIT_INT_HDCP_KSV_CHECK (BIT_OFFSET(0x07) + INT_HDCP_KSV_CHECK)
#define BIT_INT_AUDIO_FIFO_ERROR (BIT_OFFSET(0x07) + INT_AUDIO_FIFO_ERROR)
#define INT_STATUS_03 0x08
#define INT_MASK_03 0x0B
#define INT_LINK_TRAIN_FAIL 4
#define INT_VID_FIFO_ERROR 5
#define INT_IO_LATCH_FIFO_OVERFLOW 7
#define BIT_INT_LINK_TRAIN_FAIL (BIT_OFFSET(0x08) + INT_LINK_TRAIN_FAIL)
#define BIT_INT_VID_FIFO_ERROR (BIT_OFFSET(0x08) + INT_VID_FIFO_ERROR)
#define BIT_INT_IO_FIFO_OVERFLOW (BIT_OFFSET(0x08) + INT_IO_LATCH_FIFO_OVERFLOW)
#define REG_SYSTEM_STS 0x0D
#define INT_STS BIT(0)
#define HPD_STS BIT(1)
#define VIDEO_STB BIT(2)
#define REG_LINK_TRAIN_STS 0x0E
#define LINK_STATE_CR BIT(2)
#define LINK_STATE_EQ BIT(3)
#define LINK_STATE_NORP BIT(4)
#define REG_BANK_SEL 0x0F
#define REG_CLK_CTRL0 0x10
#define M_PCLK_DELAY 0x03
#define REG_AUX_OPT 0x11
#define AUX_AUTO_RST BIT(0)
#define AUX_FIX_FREQ BIT(3)
#define REG_DATA_CTRL0 0x12
#define VIDEO_LATCH_EDGE BIT(4)
#define ENABLE_PCLK_COUNTER BIT(7)
#define REG_PCLK_COUNTER_VALUE 0x13
#define REG_501_FIFO_CTRL 0x15
#define RST_501_FIFO BIT(1)
#define REG_TRAIN_CTRL0 0x16
#define FORCE_LBR BIT(0)
#define LANE_COUNT_MASK 0x06
#define LANE_SWAP BIT(3)
#define SPREAD_AMP_5 BIT(4)
#define FORCE_CR_DONE BIT(5)
#define FORCE_EQ_DONE BIT(6)
#define REG_TRAIN_CTRL1 0x17
#define AUTO_TRAIN BIT(0)
#define MANUAL_TRAIN BIT(1)
#define FORCE_RETRAIN BIT(2)
#define REG_AUX_CTRL 0x23
#define CLR_EDID_FIFO BIT(0)
#define AUX_USER_MODE BIT(1)
#define AUX_NO_SEGMENT_WR BIT(6)
#define AUX_EN_FIFO_READ BIT(7)
#define REG_AUX_ADR_0_7 0x24
#define REG_AUX_ADR_8_15 0x25
#define REG_AUX_ADR_16_19 0x26
#define REG_AUX_OUT_DATA0 0x27
#define REG_AUX_CMD_REQ 0x2B
#define AUX_BUSY BIT(5)
#define REG_AUX_DATA_0_7 0x2C
#define REG_AUX_DATA_8_15 0x2D
#define REG_AUX_DATA_16_23 0x2E
#define REG_AUX_DATA_24_31 0x2F
#define REG_AUX_DATA_FIFO 0x2F
#define REG_AUX_ERROR_STS 0x9F
#define M_AUX_REQ_FAIL 0x03
#define REG_HDCP_CTRL1 0x38
#define HDCP_CP_ENABLE BIT(0)
#define REG_HDCP_TRIGGER 0x39
#define HDCP_TRIGGER_START BIT(0)
#define HDCP_TRIGGER_CPIRQ BIT(1)
#define HDCP_TRIGGER_KSV_DONE BIT(4)
#define HDCP_TRIGGER_KSV_FAIL BIT(5)
#define REG_HDCP_CTRL2 0x3A
#define HDCP_AN_SEL BIT(0)
#define HDCP_AN_GEN BIT(1)
#define HDCP_HW_HPDIRQ_ACT BIT(2)
#define HDCP_EN_M0_READ BIT(5)
#define REG_M0_0_7 0x4C
#define REG_AN_0_7 0x4C
#define REG_SP_CTRL0 0x58
#define REG_IP_CTRL1 0x59
#define REG_IP_CTRL2 0x5A
#define REG_LINK_DRV 0x5C
#define DRV_HS BIT(1)
#define REG_DRV_LN_DATA_SEL 0x5D
#define REG_AUX 0x5E
#define REG_VID_BUS_CTRL0 0x60
#define IN_DDR BIT(2)
#define DDR_CD (0x01 << 6)
#define REG_VID_BUS_CTRL1 0x61
#define TX_FIFO_RESET BIT(1)
#define REG_INPUT_CTRL 0xA0
#define INPUT_HSYNC_POL BIT(0)
#define INPUT_VSYNC_POL BIT(2)
#define INPUT_INTERLACED BIT(4)
#define REG_INPUT_HTOTAL 0xA1
#define REG_INPUT_HACTIVE_START 0xA3
#define REG_INPUT_HACTIVE_WIDTH 0xA5
#define REG_INPUT_HFRONT_PORCH 0xA7
#define REG_INPUT_HSYNC_WIDTH 0xA9
#define REG_INPUT_VTOTAL 0xAB
#define REG_INPUT_VACTIVE_START 0xAD
#define REG_INPUT_VACTIVE_WIDTH 0xAF
#define REG_INPUT_VFRONT_PORCH 0xB1
#define REG_INPUT_VSYNC_WIDTH 0xB3
#define REG_AUDIO_SRC_CTRL 0xB8
#define M_AUDIO_I2S_EN 0x0F
#define EN_I2S0 BIT(0)
#define EN_I2S1 BIT(1)
#define EN_I2S2 BIT(2)
#define EN_I2S3 BIT(3)
#define AUDIO_FIFO_RESET BIT(7)
#define REG_AUDIO_FMT 0xB9
#define REG_AUDIO_FIFO_SEL 0xBA
#define REG_AUDIO_CTRL0 0xBB
#define AUDIO_FULL_PKT BIT(4)
#define AUDIO_16B_BOUND BIT(5)
#define REG_AUDIO_CTRL1 0xBC
#define REG_AUDIO_INPUT_FREQ 0xBE
#define REG_IEC958_STS0 0xBF
#define REG_IEC958_STS1 0xC0
#define REG_IEC958_STS2 0xC1
#define REG_IEC958_STS3 0xC2
#define REG_IEC958_STS4 0xC3
#define REG_HPD_IRQ_TIME 0xC9
#define REG_AUX_DEBUG_MODE 0xCA
#define REG_AUX_OPT2 0xCB
#define REG_HDCP_OPT 0xCE
#define REG_USER_DRV_PRE 0xCF
#define REG_DATA_MUTE_CTRL 0xD3
#define ENABLE_ENHANCED_FRAME BIT(0)
#define ENABLE_AUTO_VIDEO_FIFO_RESET BIT(1)
#define EN_VID_MUTE BIT(4)
#define EN_AUD_MUTE BIT(5)
#define REG_TIME_STMP_CTRL 0xD4
#define EN_ENHANCE_VID_STMP BIT(0)
#define EN_ENHANCE_AUD_STMP BIT(2)
#define M_STAMP_STEP 0x30
#define EN_SSC_GAT BIT(6)
#define REG_INFOFRAME_CTRL 0xE8
#define EN_AVI_PKT BIT(0)
#define EN_AUD_PKT BIT(1)
#define EN_MPG_PKT BIT(2)
#define EN_GEN_PKT BIT(3)
#define EN_VID_TIME_STMP BIT(4)
#define EN_AUD_TIME_STMP BIT(5)
#define EN_VID_CTRL_PKT (EN_AVI_PKT | EN_VID_TIME_STMP)
#define EN_AUD_CTRL_PKT (EN_AUD_PKT | EN_AUD_TIME_STMP)
#define REG_AUDIO_N_0_7 0xDE
#define REG_AUDIO_N_8_15 0xDF
#define REG_AUDIO_N_16_23 0xE0
#define REG_AVI_INFO_DB1 0xE9
#define REG_AVI_INFO_DB2 0xEA
#define REG_AVI_INFO_DB3 0xEB
#define REG_AVI_INFO_DB4 0xEC
#define REG_AVI_INFO_DB5 0xED
#define REG_AVI_INFO_SUM 0xF6
#define REG_AUD_INFOFRAM_DB1 0xF7
#define REG_AUD_INFOFRAM_DB2 0xF8
#define REG_AUD_INFOFRAM_DB3 0xF9
#define REG_AUD_INFOFRAM_DB4 0xFA
#define REG_AUD_INFOFRAM_SUM 0xFB
/* the following six registers are in bank1 */
#define REG_DRV_0_DB_800_MV 0x17E
#define REG_PRE_0_DB_800_MV 0x17F
#define REG_PRE_3P5_DB_800_MV 0x181
#define REG_SSC_CTRL0 0x188
#define REG_SSC_CTRL1 0x189
#define REG_SSC_CTRL2 0x18A
#define RBR DP_LINK_BW_1_62
#define HBR DP_LINK_BW_2_7
#define HBR2 DP_LINK_BW_5_4
#define HBR3 DP_LINK_BW_8_1
#define DPCD_V_1_1 0x11
#define MISC_VERB 0xF0
#define MISC_VERC 0x70
#define I2S_INPUT_FORMAT_STANDARD 0
#define I2S_INPUT_FORMAT_32BIT 1
#define I2S_INPUT_LEFT_JUSTIFIED 0
#define I2S_INPUT_RIGHT_JUSTIFIED 1
#define I2S_DATA_1T_DELAY 0
#define I2S_DATA_NO_DELAY 1
#define I2S_WS_LEFT_CHANNEL 0
#define I2S_WS_RIGHT_CHANNEL 1
#define I2S_DATA_MSB_FIRST 0
#define I2S_DATA_LSB_FIRST 1
#define WORD_LENGTH_16BIT 0
#define WORD_LENGTH_18BIT 1
#define WORD_LENGTH_20BIT 2
#define WORD_LENGTH_24BIT 3
#define DEBUGFS_DIR_NAME "it6505-debugfs"
#define READ_BUFFER_SIZE 400
/* Vendor option */
#define HDCP_DESIRED 1
#define MAX_LANE_COUNT 4
#define MAX_LINK_RATE HBR
#define AUTO_TRAIN_RETRY 3
#define MAX_HDCP_DOWN_STREAM_COUNT 10
#define MAX_CR_LEVEL 0x03
#define MAX_EQ_LEVEL 0x03
#define AUX_WAIT_TIMEOUT_MS 15
#define AUX_FIFO_MAX_SIZE 32
#define PIXEL_CLK_DELAY 1
#define PIXEL_CLK_INVERSE 0
#define ADJUST_PHASE_THRESHOLD 80000
#define DPI_PIXEL_CLK_MAX 95000
#define HDCP_SHA1_FIFO_LEN (MAX_HDCP_DOWN_STREAM_COUNT * 5 + 10)
#define DEFAULT_PWR_ON 0
#define DEFAULT_DRV_HOLD 0
#define AUDIO_SELECT I2S
#define AUDIO_TYPE LPCM
#define AUDIO_SAMPLE_RATE SAMPLE_RATE_48K
#define AUDIO_CHANNEL_COUNT 2
#define I2S_INPUT_FORMAT I2S_INPUT_FORMAT_32BIT
#define I2S_JUSTIFIED I2S_INPUT_LEFT_JUSTIFIED
#define I2S_DATA_DELAY I2S_DATA_1T_DELAY
#define I2S_WS_CHANNEL I2S_WS_LEFT_CHANNEL
#define I2S_DATA_SEQUENCE I2S_DATA_MSB_FIRST
#define AUDIO_WORD_LENGTH WORD_LENGTH_24BIT
enum aux_cmd_type {
CMD_AUX_NATIVE_READ = 0x0,
CMD_AUX_NATIVE_WRITE = 0x5,
CMD_AUX_I2C_EDID_READ = 0xB,
};
enum aux_cmd_reply {
REPLY_ACK,
REPLY_NACK,
REPLY_DEFER,
};
enum link_train_status {
LINK_IDLE,
LINK_BUSY,
LINK_OK,
};
enum hdcp_state {
HDCP_AUTH_IDLE,
HDCP_AUTH_GOING,
HDCP_AUTH_DONE,
};
struct it6505_platform_data {
struct regulator *pwr18;
struct regulator *ovdd;
struct gpio_desc *gpiod_reset;
};
enum it6505_audio_select {
I2S = 0,
SPDIF,
};
enum it6505_audio_sample_rate {
SAMPLE_RATE_24K = 0x6,
SAMPLE_RATE_32K = 0x3,
SAMPLE_RATE_48K = 0x2,
SAMPLE_RATE_96K = 0xA,
SAMPLE_RATE_192K = 0xE,
SAMPLE_RATE_44_1K = 0x0,
SAMPLE_RATE_88_2K = 0x8,
SAMPLE_RATE_176_4K = 0xC,
};
enum it6505_audio_type {
LPCM = 0,
NLPCM,
DSS,
};
struct it6505_audio_data {
enum it6505_audio_select select;
enum it6505_audio_sample_rate sample_rate;
enum it6505_audio_type type;
u8 word_length;
u8 channel_count;
u8 i2s_input_format;
u8 i2s_justified;
u8 i2s_data_delay;
u8 i2s_ws_channel;
u8 i2s_data_sequence;
};
struct it6505_audio_sample_rate_map {
enum it6505_audio_sample_rate rate;
int sample_rate_value;
};
struct it6505_drm_dp_link {
unsigned char revision;
unsigned int rate;
unsigned int num_lanes;
unsigned long capabilities;
};
struct debugfs_entries {
char *name;
const struct file_operations *fops;
};
struct it6505 {
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct device *dev;
struct it6505_drm_dp_link link;
struct it6505_platform_data pdata;
/*
* Mutex protects extcon and interrupt functions from interfering
* each other.
*/
struct mutex extcon_lock;
struct mutex mode_lock; /* used to bridge_detect */
struct mutex aux_lock; /* used to aux data transfers */
struct regmap *regmap;
struct drm_display_mode source_output_mode;
struct drm_display_mode video_info;
struct notifier_block event_nb;
struct extcon_dev *extcon;
struct work_struct extcon_wq;
int extcon_state;
enum drm_connector_status connector_status;
enum link_train_status link_state;
struct work_struct link_works;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
u8 lane_count;
u8 link_rate_bw_code;
u8 sink_count;
bool step_train;
bool branch_device;
bool enable_ssc;
bool lane_swap_disabled;
bool lane_swap;
bool powered;
bool hpd_state;
u32 afe_setting;
u32 max_dpi_pixel_clock;
u32 max_lane_count;
enum hdcp_state hdcp_status;
struct delayed_work hdcp_work;
struct work_struct hdcp_wait_ksv_list;
struct completion extcon_completion;
u8 auto_train_retry;
bool hdcp_desired;
bool is_repeater;
u8 hdcp_down_stream_count;
u8 bksvs[DRM_HDCP_KSV_LEN];
u8 sha1_input[HDCP_SHA1_FIFO_LEN];
bool enable_enhanced_frame;
hdmi_codec_plugged_cb plugged_cb;
struct device *codec_dev;
struct delayed_work delayed_audio;
struct it6505_audio_data audio;
struct dentry *debugfs;
/* it6505 driver hold option */
bool enable_drv_hold;
struct edid *cached_edid;
};
struct it6505_step_train_para {
u8 voltage_swing[MAX_LANE_COUNT];
u8 pre_emphasis[MAX_LANE_COUNT];
};
/*
* Vendor option afe settings for different platforms
* 0: without FPC cable
* 1: with FPC cable
*/
static const u8 afe_setting_table[][3] = {
{0x82, 0x00, 0x45},
{0x93, 0x2A, 0x85}
};
static const struct it6505_audio_sample_rate_map audio_sample_rate_map[] = {
{SAMPLE_RATE_24K, 24000},
{SAMPLE_RATE_32K, 32000},
{SAMPLE_RATE_48K, 48000},
{SAMPLE_RATE_96K, 96000},
{SAMPLE_RATE_192K, 192000},
{SAMPLE_RATE_44_1K, 44100},
{SAMPLE_RATE_88_2K, 88200},
{SAMPLE_RATE_176_4K, 176400},
};
static const struct regmap_range it6505_bridge_volatile_ranges[] = {
{ .range_min = 0, .range_max = 0x1FF },
};
static const struct regmap_access_table it6505_bridge_volatile_table = {
.yes_ranges = it6505_bridge_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(it6505_bridge_volatile_ranges),
};
static const struct regmap_range_cfg it6505_regmap_banks[] = {
{
.name = "it6505",
.range_min = 0x00,
.range_max = 0x1FF,
.selector_reg = REG_BANK_SEL,
.selector_mask = 0x1,
.selector_shift = 0,
.window_start = 0x00,
.window_len = 0x100,
},
};
static const struct regmap_config it6505_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &it6505_bridge_volatile_table,
.cache_type = REGCACHE_NONE,
.ranges = it6505_regmap_banks,
.num_ranges = ARRAY_SIZE(it6505_regmap_banks),
.max_register = 0x1FF,
};
static int it6505_read(struct it6505 *it6505, unsigned int reg_addr)
{
unsigned int value;
int err;
struct device *dev = it6505->dev;
if (!it6505->powered)
return -ENODEV;
err = regmap_read(it6505->regmap, reg_addr, &value);
if (err < 0) {
dev_err(dev, "read failed reg[0x%x] err: %d", reg_addr, err);
return err;
}
return value;
}
static int it6505_write(struct it6505 *it6505, unsigned int reg_addr,
unsigned int reg_val)
{
int err;
struct device *dev = it6505->dev;
if (!it6505->powered)
return -ENODEV;
err = regmap_write(it6505->regmap, reg_addr, reg_val);
if (err < 0) {
dev_err(dev, "write failed reg[0x%x] = 0x%x err = %d",
reg_addr, reg_val, err);
return err;
}
return 0;
}
static int it6505_set_bits(struct it6505 *it6505, unsigned int reg,
unsigned int mask, unsigned int value)
{
int err;
struct device *dev = it6505->dev;
if (!it6505->powered)
return -ENODEV;
err = regmap_update_bits(it6505->regmap, reg, mask, value);
if (err < 0) {
dev_err(dev, "write reg[0x%x] = 0x%x mask = 0x%x failed err %d",
reg, value, mask, err);
return err;
}
return 0;
}
static void it6505_debug_print(struct it6505 *it6505, unsigned int reg,
const char *prefix)
{
struct device *dev = it6505->dev;
int val;
if (!drm_debug_enabled(DRM_UT_DRIVER))
return;
val = it6505_read(it6505, reg);
if (val < 0)
DRM_DEV_DEBUG_DRIVER(dev, "%s reg[%02x] read error (%d)",
prefix, reg, val);
else
DRM_DEV_DEBUG_DRIVER(dev, "%s reg[%02x] = 0x%02x", prefix, reg,
val);
}
static int it6505_dpcd_read(struct it6505 *it6505, unsigned long offset)
{
u8 value;
int ret;
struct device *dev = it6505->dev;
ret = drm_dp_dpcd_readb(&it6505->aux, offset, &value);
if (ret < 0) {
dev_err(dev, "DPCD read failed [0x%lx] ret: %d", offset, ret);
return ret;
}
return value;
}
static int it6505_dpcd_write(struct it6505 *it6505, unsigned long offset,
u8 datain)
{
int ret;
struct device *dev = it6505->dev;
ret = drm_dp_dpcd_writeb(&it6505->aux, offset, datain);
if (ret < 0) {
dev_err(dev, "DPCD write failed [0x%lx] ret: %d", offset, ret);
return ret;
}
return 0;
}
static int it6505_get_dpcd(struct it6505 *it6505, int offset, u8 *dpcd, int num)
{
int ret;
struct device *dev = it6505->dev;
ret = drm_dp_dpcd_read(&it6505->aux, offset, dpcd, num);
if (ret < 0)
return ret;
DRM_DEV_DEBUG_DRIVER(dev, "ret = %d DPCD[0x%x] = 0x%*ph", ret, offset,
num, dpcd);
return 0;
}
static void it6505_dump(struct it6505 *it6505)
{
unsigned int i, j;
u8 regs[16];
struct device *dev = it6505->dev;
for (i = 0; i <= 0xff; i += 16) {
for (j = 0; j < 16; j++)
regs[j] = it6505_read(it6505, i + j);
DRM_DEV_DEBUG_DRIVER(dev, "[0x%02x] = %16ph", i, regs);
}
}
static bool it6505_get_sink_hpd_status(struct it6505 *it6505)
{
int reg_0d;
reg_0d = it6505_read(it6505, REG_SYSTEM_STS);
if (reg_0d < 0)
return false;
return reg_0d & HPD_STS;
}
static int it6505_read_word(struct it6505 *it6505, unsigned int reg)
{
int val0, val1;
val0 = it6505_read(it6505, reg);
if (val0 < 0)
return val0;
val1 = it6505_read(it6505, reg + 1);
if (val1 < 0)
return val1;
return (val1 << 8) | val0;
}
static void it6505_calc_video_info(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int hsync_pol, vsync_pol, interlaced;
int htotal, hdes, hdew, hfph, hsyncw;
int vtotal, vdes, vdew, vfph, vsyncw;
int rddata, i, pclk, sum = 0;
usleep_range(10000, 15000);
rddata = it6505_read(it6505, REG_INPUT_CTRL);
hsync_pol = rddata & INPUT_HSYNC_POL;
vsync_pol = (rddata & INPUT_VSYNC_POL) >> 2;
interlaced = (rddata & INPUT_INTERLACED) >> 4;
htotal = it6505_read_word(it6505, REG_INPUT_HTOTAL) & 0x1FFF;
hdes = it6505_read_word(it6505, REG_INPUT_HACTIVE_START) & 0x1FFF;
hdew = it6505_read_word(it6505, REG_INPUT_HACTIVE_WIDTH) & 0x1FFF;
hfph = it6505_read_word(it6505, REG_INPUT_HFRONT_PORCH) & 0x1FFF;
hsyncw = it6505_read_word(it6505, REG_INPUT_HSYNC_WIDTH) & 0x1FFF;
vtotal = it6505_read_word(it6505, REG_INPUT_VTOTAL) & 0xFFF;
vdes = it6505_read_word(it6505, REG_INPUT_VACTIVE_START) & 0xFFF;
vdew = it6505_read_word(it6505, REG_INPUT_VACTIVE_WIDTH) & 0xFFF;
vfph = it6505_read_word(it6505, REG_INPUT_VFRONT_PORCH) & 0xFFF;
vsyncw = it6505_read_word(it6505, REG_INPUT_VSYNC_WIDTH) & 0xFFF;
DRM_DEV_DEBUG_DRIVER(dev, "hsync_pol:%d, vsync_pol:%d, interlaced:%d",
hsync_pol, vsync_pol, interlaced);
DRM_DEV_DEBUG_DRIVER(dev, "hactive_start:%d, vactive_start:%d",
hdes, vdes);
for (i = 0; i < 3; i++) {
it6505_set_bits(it6505, REG_DATA_CTRL0, ENABLE_PCLK_COUNTER,
ENABLE_PCLK_COUNTER);
usleep_range(10000, 15000);
it6505_set_bits(it6505, REG_DATA_CTRL0, ENABLE_PCLK_COUNTER,
0x00);
rddata = it6505_read_word(it6505, REG_PCLK_COUNTER_VALUE) &
0xFFF;
sum += rddata;
}
if (sum == 0) {
DRM_DEV_DEBUG_DRIVER(dev, "calc video timing error");
return;
}
sum /= 3;
pclk = 13500 * 2048 / sum;
it6505->video_info.clock = pclk;
it6505->video_info.hdisplay = hdew;
it6505->video_info.hsync_start = hdew + hfph;
it6505->video_info.hsync_end = hdew + hfph + hsyncw;
it6505->video_info.htotal = htotal;
it6505->video_info.vdisplay = vdew;
it6505->video_info.vsync_start = vdew + vfph;
it6505->video_info.vsync_end = vdew + vfph + vsyncw;
it6505->video_info.vtotal = vtotal;
DRM_DEV_DEBUG_DRIVER(dev, DRM_MODE_FMT,
DRM_MODE_ARG(&it6505->video_info));
}
static int it6505_drm_dp_link_set_power(struct drm_dp_aux *aux,
struct it6505_drm_dp_link *link,
u8 mode)
{
u8 value;
int err;
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
if (link->revision < DPCD_V_1_1)
return 0;
err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
if (err < 0)
return err;
value &= ~DP_SET_POWER_MASK;
value |= mode;
err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
if (err < 0)
return err;
if (mode == DP_SET_POWER_D0) {
/*
* According to the DP 1.1 specification, a "Sink Device must
* exit the power saving state within 1 ms" (Section 2.5.3.1,
* Table 5-52, "Sink Control Field" (register 0x600).
*/
usleep_range(1000, 2000);
}
return 0;
}
static void it6505_clear_int(struct it6505 *it6505)
{
it6505_write(it6505, INT_STATUS_01, 0xFF);
it6505_write(it6505, INT_STATUS_02, 0xFF);
it6505_write(it6505, INT_STATUS_03, 0xFF);
}
static void it6505_int_mask_enable(struct it6505 *it6505)
{
it6505_write(it6505, INT_MASK_01, BIT(INT_HPD_CHANGE) |
BIT(INT_RECEIVE_HPD_IRQ) | BIT(INT_SCDT_CHANGE) |
BIT(INT_HDCP_FAIL) | BIT(INT_HDCP_DONE));
it6505_write(it6505, INT_MASK_02, BIT(INT_AUX_CMD_FAIL) |
BIT(INT_HDCP_KSV_CHECK) | BIT(INT_AUDIO_FIFO_ERROR));
it6505_write(it6505, INT_MASK_03, BIT(INT_LINK_TRAIN_FAIL) |
BIT(INT_VID_FIFO_ERROR) | BIT(INT_IO_LATCH_FIFO_OVERFLOW));
}
static void it6505_int_mask_disable(struct it6505 *it6505)
{
it6505_write(it6505, INT_MASK_01, 0x00);
it6505_write(it6505, INT_MASK_02, 0x00);
it6505_write(it6505, INT_MASK_03, 0x00);
}
static void it6505_lane_termination_on(struct it6505 *it6505)
{
int regcf;
regcf = it6505_read(it6505, REG_USER_DRV_PRE);
if (regcf == MISC_VERB)
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL, 0x80, 0x00);
if (regcf == MISC_VERC) {
if (it6505->lane_swap) {
switch (it6505->lane_count) {
case 1:
case 2:
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL,
0x0C, 0x08);
break;
default:
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL,
0x0C, 0x0C);
break;
}
} else {
switch (it6505->lane_count) {
case 1:
case 2:
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL,
0x0C, 0x04);
break;
default:
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL,
0x0C, 0x0C);
break;
}
}
}
}
static void it6505_lane_termination_off(struct it6505 *it6505)
{
int regcf;
regcf = it6505_read(it6505, REG_USER_DRV_PRE);
if (regcf == MISC_VERB)
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL, 0x80, 0x80);
if (regcf == MISC_VERC)
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL, 0x0C, 0x00);
}
static void it6505_lane_power_on(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_LINK_DRV, 0xF1,
(it6505->lane_swap ?
GENMASK(7, 8 - it6505->lane_count) :
GENMASK(3 + it6505->lane_count, 4)) |
0x01);
}
static void it6505_lane_power_off(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_LINK_DRV, 0xF0, 0x00);
}
static void it6505_lane_off(struct it6505 *it6505)
{
it6505_lane_power_off(it6505);
it6505_lane_termination_off(it6505);
}
static void it6505_aux_termination_on(struct it6505 *it6505)
{
int regcf;
regcf = it6505_read(it6505, REG_USER_DRV_PRE);
if (regcf == MISC_VERB)
it6505_lane_termination_on(it6505);
if (regcf == MISC_VERC)
it6505_set_bits(it6505, REG_DRV_LN_DATA_SEL, 0x80, 0x80);
}
static void it6505_aux_power_on(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_AUX, 0x02, 0x02);
}
static void it6505_aux_on(struct it6505 *it6505)
{
it6505_aux_power_on(it6505);
it6505_aux_termination_on(it6505);
}
static void it6505_aux_reset(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_RESET_CTRL, AUX_RESET, AUX_RESET);
it6505_set_bits(it6505, REG_RESET_CTRL, AUX_RESET, 0x00);
}
static void it6505_reset_logic(struct it6505 *it6505)
{
regmap_write(it6505->regmap, REG_RESET_CTRL, ALL_LOGIC_RESET);
usleep_range(1000, 1500);
}
static bool it6505_aux_op_finished(struct it6505 *it6505)
{
int reg2b = it6505_read(it6505, REG_AUX_CMD_REQ);
if (reg2b < 0)
return false;
return (reg2b & AUX_BUSY) == 0;
}
static int it6505_aux_wait(struct it6505 *it6505)
{
int status;
unsigned long timeout;
struct device *dev = it6505->dev;
timeout = jiffies + msecs_to_jiffies(AUX_WAIT_TIMEOUT_MS) + 1;
while (!it6505_aux_op_finished(it6505)) {
if (time_after(jiffies, timeout)) {
dev_err(dev, "Timed out waiting AUX to finish");
return -ETIMEDOUT;
}
usleep_range(1000, 2000);
}
status = it6505_read(it6505, REG_AUX_ERROR_STS);
if (status < 0) {
dev_err(dev, "Failed to read AUX channel: %d", status);
return status;
}
return 0;
}
static ssize_t it6505_aux_operation(struct it6505 *it6505,
enum aux_cmd_type cmd,
unsigned int address, u8 *buffer,
size_t size, enum aux_cmd_reply *reply)
{
int i, ret;
bool aux_write_check = false;
if (!it6505_get_sink_hpd_status(it6505))
return -EIO;
/* set AUX user mode */
it6505_set_bits(it6505, REG_AUX_CTRL, AUX_USER_MODE, AUX_USER_MODE);
aux_op_start:
if (cmd == CMD_AUX_I2C_EDID_READ) {
/* AUX EDID FIFO has max length of AUX_FIFO_MAX_SIZE bytes. */
size = min_t(size_t, size, AUX_FIFO_MAX_SIZE);
/* Enable AUX FIFO read back and clear FIFO */
it6505_set_bits(it6505, REG_AUX_CTRL,
AUX_EN_FIFO_READ | CLR_EDID_FIFO,
AUX_EN_FIFO_READ | CLR_EDID_FIFO);
it6505_set_bits(it6505, REG_AUX_CTRL,
AUX_EN_FIFO_READ | CLR_EDID_FIFO,
AUX_EN_FIFO_READ);
} else {
/* The DP AUX transmit buffer has 4 bytes. */
size = min_t(size_t, size, 4);
it6505_set_bits(it6505, REG_AUX_CTRL, AUX_NO_SEGMENT_WR,
AUX_NO_SEGMENT_WR);
}
/* Start Address[7:0] */
it6505_write(it6505, REG_AUX_ADR_0_7, (address >> 0) & 0xFF);
/* Start Address[15:8] */
it6505_write(it6505, REG_AUX_ADR_8_15, (address >> 8) & 0xFF);
/* WriteNum[3:0]+StartAdr[19:16] */
it6505_write(it6505, REG_AUX_ADR_16_19,
((address >> 16) & 0x0F) | ((size - 1) << 4));
if (cmd == CMD_AUX_NATIVE_WRITE)
regmap_bulk_write(it6505->regmap, REG_AUX_OUT_DATA0, buffer,
size);
/* Aux Fire */
it6505_write(it6505, REG_AUX_CMD_REQ, cmd);
ret = it6505_aux_wait(it6505);
if (ret < 0)
goto aux_op_err;
ret = it6505_read(it6505, REG_AUX_ERROR_STS);
if (ret < 0)
goto aux_op_err;
switch ((ret >> 6) & 0x3) {
case 0:
*reply = REPLY_ACK;
break;
case 1:
*reply = REPLY_DEFER;
ret = -EAGAIN;
goto aux_op_err;
case 2:
*reply = REPLY_NACK;
ret = -EIO;
goto aux_op_err;
case 3:
ret = -ETIMEDOUT;
goto aux_op_err;
}
/* Read back Native Write data */
if (cmd == CMD_AUX_NATIVE_WRITE) {
aux_write_check = true;
cmd = CMD_AUX_NATIVE_READ;
goto aux_op_start;
}
if (cmd == CMD_AUX_I2C_EDID_READ) {
for (i = 0; i < size; i++) {
ret = it6505_read(it6505, REG_AUX_DATA_FIFO);
if (ret < 0)
goto aux_op_err;
buffer[i] = ret;
}
} else {
for (i = 0; i < size; i++) {
ret = it6505_read(it6505, REG_AUX_DATA_0_7 + i);
if (ret < 0)
goto aux_op_err;
if (aux_write_check && buffer[size - 1 - i] != ret) {
ret = -EINVAL;
goto aux_op_err;
}
buffer[size - 1 - i] = ret;
}
}
ret = i;
aux_op_err:
if (cmd == CMD_AUX_I2C_EDID_READ) {
/* clear AUX FIFO */
it6505_set_bits(it6505, REG_AUX_CTRL,
AUX_EN_FIFO_READ | CLR_EDID_FIFO,
AUX_EN_FIFO_READ | CLR_EDID_FIFO);
it6505_set_bits(it6505, REG_AUX_CTRL,
AUX_EN_FIFO_READ | CLR_EDID_FIFO, 0x00);
}
/* Leave AUX user mode */
it6505_set_bits(it6505, REG_AUX_CTRL, AUX_USER_MODE, 0);
return ret;
}
static ssize_t it6505_aux_do_transfer(struct it6505 *it6505,
enum aux_cmd_type cmd,
unsigned int address, u8 *buffer,
size_t size, enum aux_cmd_reply *reply)
{
int i, ret_size, ret = 0, request_size;
mutex_lock(&it6505->aux_lock);
for (i = 0; i < size; i += 4) {
request_size = min((int)size - i, 4);
ret_size = it6505_aux_operation(it6505, cmd, address + i,
buffer + i, request_size,
reply);
if (ret_size < 0) {
ret = ret_size;
goto aux_op_err;
}
ret += ret_size;
}
aux_op_err:
mutex_unlock(&it6505->aux_lock);
return ret;
}
static ssize_t it6505_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct it6505 *it6505 = container_of(aux, struct it6505, aux);
u8 cmd;
bool is_i2c = !(msg->request & DP_AUX_NATIVE_WRITE);
int ret;
enum aux_cmd_reply reply;
/* IT6505 doesn't support arbitrary I2C read / write. */
if (is_i2c)
return -EINVAL;
switch (msg->request) {
case DP_AUX_NATIVE_READ:
cmd = CMD_AUX_NATIVE_READ;
break;
case DP_AUX_NATIVE_WRITE:
cmd = CMD_AUX_NATIVE_WRITE;
break;
default:
return -EINVAL;
}
ret = it6505_aux_do_transfer(it6505, cmd, msg->address, msg->buffer,
msg->size, &reply);
if (ret < 0)
return ret;
switch (reply) {
case REPLY_ACK:
msg->reply = DP_AUX_NATIVE_REPLY_ACK;
break;
case REPLY_NACK:
msg->reply = DP_AUX_NATIVE_REPLY_NACK;
break;
case REPLY_DEFER:
msg->reply = DP_AUX_NATIVE_REPLY_DEFER;
break;
}
return ret;
}
static int it6505_get_edid_block(void *data, u8 *buf, unsigned int block,
size_t len)
{
struct it6505 *it6505 = data;
struct device *dev = it6505->dev;
enum aux_cmd_reply reply;
int offset, ret, aux_retry = 100;
it6505_aux_reset(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "block number = %d", block);
for (offset = 0; offset < EDID_LENGTH;) {
ret = it6505_aux_do_transfer(it6505, CMD_AUX_I2C_EDID_READ,
block * EDID_LENGTH + offset,
buf + offset, 8, &reply);
if (ret < 0 && ret != -EAGAIN)
return ret;
switch (reply) {
case REPLY_ACK:
DRM_DEV_DEBUG_DRIVER(dev, "[0x%02x]: %8ph", offset,
buf + offset);
offset += 8;
aux_retry = 100;
break;
case REPLY_NACK:
return -EIO;
case REPLY_DEFER:
msleep(20);
if (!(--aux_retry))
return -EIO;
}
}
return 0;
}
static void it6505_variable_config(struct it6505 *it6505)
{
it6505->link_rate_bw_code = HBR;
it6505->lane_count = MAX_LANE_COUNT;
it6505->link_state = LINK_IDLE;
it6505->hdcp_desired = HDCP_DESIRED;
it6505->auto_train_retry = AUTO_TRAIN_RETRY;
it6505->audio.select = AUDIO_SELECT;
it6505->audio.sample_rate = AUDIO_SAMPLE_RATE;
it6505->audio.channel_count = AUDIO_CHANNEL_COUNT;
it6505->audio.type = AUDIO_TYPE;
it6505->audio.i2s_input_format = I2S_INPUT_FORMAT;
it6505->audio.i2s_justified = I2S_JUSTIFIED;
it6505->audio.i2s_data_delay = I2S_DATA_DELAY;
it6505->audio.i2s_ws_channel = I2S_WS_CHANNEL;
it6505->audio.i2s_data_sequence = I2S_DATA_SEQUENCE;
it6505->audio.word_length = AUDIO_WORD_LENGTH;
memset(it6505->sha1_input, 0, sizeof(it6505->sha1_input));
memset(it6505->bksvs, 0, sizeof(it6505->bksvs));
}
static int it6505_send_video_infoframe(struct it6505 *it6505,
struct hdmi_avi_infoframe *frame)
{
u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
int err;
struct device *dev = it6505->dev;
err = hdmi_avi_infoframe_pack(frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(dev, "Failed to pack AVI infoframe: %d", err);
return err;
}
err = it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_AVI_PKT, 0x00);
if (err)
return err;
err = regmap_bulk_write(it6505->regmap, REG_AVI_INFO_DB1,
buffer + HDMI_INFOFRAME_HEADER_SIZE,
frame->length);
if (err)
return err;
err = it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_AVI_PKT,
EN_AVI_PKT);
if (err)
return err;
return 0;
}
static void it6505_get_extcon_property(struct it6505 *it6505)
{
int err;
union extcon_property_value property;
struct device *dev = it6505->dev;
if (it6505->extcon && !it6505->lane_swap_disabled) {
err = extcon_get_property(it6505->extcon, EXTCON_DISP_DP,
EXTCON_PROP_USB_TYPEC_POLARITY,
&property);
if (err) {
dev_err(dev, "get property fail!");
return;
}
it6505->lane_swap = property.intval;
}
}
static void it6505_clk_phase_adjustment(struct it6505 *it6505,
const struct drm_display_mode *mode)
{
int clock = mode->clock;
it6505_set_bits(it6505, REG_CLK_CTRL0, M_PCLK_DELAY,
clock < ADJUST_PHASE_THRESHOLD ? PIXEL_CLK_DELAY : 0);
it6505_set_bits(it6505, REG_DATA_CTRL0, VIDEO_LATCH_EDGE,
PIXEL_CLK_INVERSE << 4);
}
static void it6505_link_reset_step_train(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_TRAIN_CTRL0,
FORCE_CR_DONE | FORCE_EQ_DONE, 0x00);
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
}
static void it6505_init(struct it6505 *it6505)
{
it6505_write(it6505, REG_AUX_OPT, AUX_AUTO_RST | AUX_FIX_FREQ);
it6505_write(it6505, REG_AUX_CTRL, AUX_NO_SEGMENT_WR);
it6505_write(it6505, REG_HDCP_CTRL2, HDCP_AN_SEL | HDCP_HW_HPDIRQ_ACT);
it6505_write(it6505, REG_VID_BUS_CTRL0, IN_DDR | DDR_CD);
it6505_write(it6505, REG_VID_BUS_CTRL1, 0x01);
it6505_write(it6505, REG_AUDIO_CTRL0, AUDIO_16B_BOUND);
/* chip internal setting, don't modify */
it6505_write(it6505, REG_HPD_IRQ_TIME, 0xF5);
it6505_write(it6505, REG_AUX_DEBUG_MODE, 0x4D);
it6505_write(it6505, REG_AUX_OPT2, 0x17);
it6505_write(it6505, REG_HDCP_OPT, 0x60);
it6505_write(it6505, REG_DATA_MUTE_CTRL,
EN_VID_MUTE | EN_AUD_MUTE | ENABLE_AUTO_VIDEO_FIFO_RESET);
it6505_write(it6505, REG_TIME_STMP_CTRL,
EN_SSC_GAT | EN_ENHANCE_VID_STMP | EN_ENHANCE_AUD_STMP);
it6505_write(it6505, REG_INFOFRAME_CTRL, 0x00);
it6505_write(it6505, REG_DRV_0_DB_800_MV,
afe_setting_table[it6505->afe_setting][0]);
it6505_write(it6505, REG_PRE_0_DB_800_MV,
afe_setting_table[it6505->afe_setting][1]);
it6505_write(it6505, REG_PRE_3P5_DB_800_MV,
afe_setting_table[it6505->afe_setting][2]);
it6505_write(it6505, REG_SSC_CTRL0, 0x9E);
it6505_write(it6505, REG_SSC_CTRL1, 0x1C);
it6505_write(it6505, REG_SSC_CTRL2, 0x42);
}
static void it6505_video_disable(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL, EN_VID_MUTE, EN_VID_MUTE);
it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_VID_CTRL_PKT, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, VIDEO_RESET, VIDEO_RESET);
}
static void it6505_video_reset(struct it6505 *it6505)
{
it6505_link_reset_step_train(it6505);
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL, EN_VID_MUTE, EN_VID_MUTE);
it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_VID_CTRL_PKT, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, VIDEO_RESET, VIDEO_RESET);
it6505_set_bits(it6505, REG_501_FIFO_CTRL, RST_501_FIFO, RST_501_FIFO);
it6505_set_bits(it6505, REG_501_FIFO_CTRL, RST_501_FIFO, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, VIDEO_RESET, 0x00);
}
static void it6505_update_video_parameter(struct it6505 *it6505,
const struct drm_display_mode *mode)
{
it6505_clk_phase_adjustment(it6505, mode);
it6505_video_disable(it6505);
}
static bool it6505_audio_input(struct it6505 *it6505)
{
int reg05, regbe;
reg05 = it6505_read(it6505, REG_RESET_CTRL);
it6505_set_bits(it6505, REG_RESET_CTRL, AUDIO_RESET, 0x00);
usleep_range(3000, 4000);
regbe = it6505_read(it6505, REG_AUDIO_INPUT_FREQ);
it6505_write(it6505, REG_RESET_CTRL, reg05);
return regbe != 0xFF;
}
static void it6505_setup_audio_channel_status(struct it6505 *it6505)
{
enum it6505_audio_sample_rate sample_rate = it6505->audio.sample_rate;
u8 audio_word_length_map[] = { 0x02, 0x04, 0x03, 0x0B };
/* Channel Status */
it6505_write(it6505, REG_IEC958_STS0, it6505->audio.type << 1);
it6505_write(it6505, REG_IEC958_STS1, 0x00);
it6505_write(it6505, REG_IEC958_STS2, 0x00);
it6505_write(it6505, REG_IEC958_STS3, sample_rate);
it6505_write(it6505, REG_IEC958_STS4, (~sample_rate << 4) |
audio_word_length_map[it6505->audio.word_length]);
}
static void it6505_setup_audio_format(struct it6505 *it6505)
{
/* I2S MODE */
it6505_write(it6505, REG_AUDIO_FMT,
(it6505->audio.word_length << 5) |
(it6505->audio.i2s_data_sequence << 4) |
(it6505->audio.i2s_ws_channel << 3) |
(it6505->audio.i2s_data_delay << 2) |
(it6505->audio.i2s_justified << 1) |
it6505->audio.i2s_input_format);
if (it6505->audio.select == SPDIF) {
it6505_write(it6505, REG_AUDIO_FIFO_SEL, 0x00);
/* 0x30 = 128*FS */
it6505_set_bits(it6505, REG_AUX_OPT, 0xF0, 0x30);
} else {
it6505_write(it6505, REG_AUDIO_FIFO_SEL, 0xE4);
}
it6505_write(it6505, REG_AUDIO_CTRL0, 0x20);
it6505_write(it6505, REG_AUDIO_CTRL1, 0x00);
}
static void it6505_enable_audio_source(struct it6505 *it6505)
{
unsigned int audio_source_count;
audio_source_count = BIT(DIV_ROUND_UP(it6505->audio.channel_count, 2))
- 1;
audio_source_count |= it6505->audio.select << 4;
it6505_write(it6505, REG_AUDIO_SRC_CTRL, audio_source_count);
}
static void it6505_enable_audio_infoframe(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
u8 audio_info_ca[] = { 0x00, 0x00, 0x01, 0x03, 0x07, 0x0B, 0x0F, 0x1F };
DRM_DEV_DEBUG_DRIVER(dev, "infoframe channel_allocation:0x%02x",
audio_info_ca[it6505->audio.channel_count - 1]);
it6505_write(it6505, REG_AUD_INFOFRAM_DB1, it6505->audio.channel_count
- 1);
it6505_write(it6505, REG_AUD_INFOFRAM_DB2, 0x00);
it6505_write(it6505, REG_AUD_INFOFRAM_DB3,
audio_info_ca[it6505->audio.channel_count - 1]);
it6505_write(it6505, REG_AUD_INFOFRAM_DB4, 0x00);
it6505_write(it6505, REG_AUD_INFOFRAM_SUM, 0x00);
/* Enable Audio InfoFrame */
it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_AUD_CTRL_PKT,
EN_AUD_CTRL_PKT);
}
static void it6505_disable_audio(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL, EN_AUD_MUTE, EN_AUD_MUTE);
it6505_set_bits(it6505, REG_AUDIO_SRC_CTRL, M_AUDIO_I2S_EN, 0x00);
it6505_set_bits(it6505, REG_INFOFRAME_CTRL, EN_AUD_CTRL_PKT, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, AUDIO_RESET, AUDIO_RESET);
}
static void it6505_enable_audio(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int regbe;
DRM_DEV_DEBUG_DRIVER(dev, "start");
it6505_disable_audio(it6505);
it6505_setup_audio_channel_status(it6505);
it6505_setup_audio_format(it6505);
it6505_enable_audio_source(it6505);
it6505_enable_audio_infoframe(it6505);
it6505_write(it6505, REG_AUDIO_N_0_7, 0x00);
it6505_write(it6505, REG_AUDIO_N_8_15, 0x80);
it6505_write(it6505, REG_AUDIO_N_16_23, 0x00);
it6505_set_bits(it6505, REG_AUDIO_SRC_CTRL, AUDIO_FIFO_RESET,
AUDIO_FIFO_RESET);
it6505_set_bits(it6505, REG_AUDIO_SRC_CTRL, AUDIO_FIFO_RESET, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, AUDIO_RESET, 0x00);
regbe = it6505_read(it6505, REG_AUDIO_INPUT_FREQ);
DRM_DEV_DEBUG_DRIVER(dev, "regbe:0x%02x audio input fs: %d.%d kHz",
regbe, 6750 / regbe, (6750 % regbe) * 10 / regbe);
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL, EN_AUD_MUTE, 0x00);
}
static bool it6505_use_step_train_check(struct it6505 *it6505)
{
if (it6505->link.revision >= 0x12)
return it6505->dpcd[DP_TRAINING_AUX_RD_INTERVAL] >= 0x01;
return true;
}
static void it6505_parse_link_capabilities(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
struct it6505_drm_dp_link *link = &it6505->link;
int bcaps;
if (it6505->dpcd[0] == 0) {
dev_err(dev, "DPCD is not initialized");
return;
}
memset(link, 0, sizeof(*link));
link->revision = it6505->dpcd[0];
link->rate = drm_dp_bw_code_to_link_rate(it6505->dpcd[1]);
link->num_lanes = it6505->dpcd[2] & DP_MAX_LANE_COUNT_MASK;
if (it6505->dpcd[2] & DP_ENHANCED_FRAME_CAP)
link->capabilities = DP_ENHANCED_FRAME_CAP;
DRM_DEV_DEBUG_DRIVER(dev, "DPCD Rev.: %d.%d",
link->revision >> 4, link->revision & 0x0F);
DRM_DEV_DEBUG_DRIVER(dev, "Sink max link rate: %d.%02d Gbps per lane",
link->rate / 100000, link->rate / 1000 % 100);
it6505->link_rate_bw_code = drm_dp_link_rate_to_bw_code(link->rate);
DRM_DEV_DEBUG_DRIVER(dev, "link rate bw code:0x%02x",
it6505->link_rate_bw_code);
it6505->link_rate_bw_code = min_t(int, it6505->link_rate_bw_code,
MAX_LINK_RATE);
it6505->lane_count = link->num_lanes;
DRM_DEV_DEBUG_DRIVER(dev, "Sink support %d lanes training",
it6505->lane_count);
it6505->lane_count = min_t(int, it6505->lane_count,
it6505->max_lane_count);
it6505->branch_device = drm_dp_is_branch(it6505->dpcd);
DRM_DEV_DEBUG_DRIVER(dev, "Sink %sbranch device",
it6505->branch_device ? "" : "Not ");
it6505->enable_enhanced_frame = link->capabilities;
DRM_DEV_DEBUG_DRIVER(dev, "Sink %sSupport Enhanced Framing",
it6505->enable_enhanced_frame ? "" : "Not ");
it6505->enable_ssc = (it6505->dpcd[DP_MAX_DOWNSPREAD] &
DP_MAX_DOWNSPREAD_0_5);
DRM_DEV_DEBUG_DRIVER(dev, "Maximum Down-Spread: %s, %ssupport SSC!",
it6505->enable_ssc ? "0.5" : "0",
it6505->enable_ssc ? "" : "Not ");
it6505->step_train = it6505_use_step_train_check(it6505);
if (it6505->step_train)
DRM_DEV_DEBUG_DRIVER(dev, "auto train fail, will step train");
bcaps = it6505_dpcd_read(it6505, DP_AUX_HDCP_BCAPS);
DRM_DEV_DEBUG_DRIVER(dev, "bcaps:0x%02x", bcaps);
if (bcaps & DP_BCAPS_HDCP_CAPABLE) {
it6505->is_repeater = (bcaps & DP_BCAPS_REPEATER_PRESENT);
DRM_DEV_DEBUG_DRIVER(dev, "Support HDCP! Downstream is %s!",
it6505->is_repeater ? "repeater" :
"receiver");
} else {
DRM_DEV_DEBUG_DRIVER(dev, "Sink not support HDCP!");
it6505->hdcp_desired = false;
}
DRM_DEV_DEBUG_DRIVER(dev, "HDCP %s",
it6505->hdcp_desired ? "desired" : "undesired");
}
static void it6505_setup_ssc(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_TRAIN_CTRL0, SPREAD_AMP_5,
it6505->enable_ssc ? SPREAD_AMP_5 : 0x00);
if (it6505->enable_ssc) {
it6505_write(it6505, REG_SSC_CTRL0, 0x9E);
it6505_write(it6505, REG_SSC_CTRL1, 0x1C);
it6505_write(it6505, REG_SSC_CTRL2, 0x42);
it6505_write(it6505, REG_SP_CTRL0, 0x07);
it6505_write(it6505, REG_IP_CTRL1, 0x29);
it6505_write(it6505, REG_IP_CTRL2, 0x03);
/* Stamp Interrupt Step */
it6505_set_bits(it6505, REG_TIME_STMP_CTRL, M_STAMP_STEP,
0x10);
it6505_dpcd_write(it6505, DP_DOWNSPREAD_CTRL,
DP_SPREAD_AMP_0_5);
} else {
it6505_dpcd_write(it6505, DP_DOWNSPREAD_CTRL, 0x00);
it6505_set_bits(it6505, REG_TIME_STMP_CTRL, M_STAMP_STEP,
0x00);
}
}
static inline void it6505_link_rate_setup(struct it6505 *it6505)
{
it6505_set_bits(it6505, REG_TRAIN_CTRL0, FORCE_LBR,
(it6505->link_rate_bw_code == RBR) ? FORCE_LBR : 0x00);
it6505_set_bits(it6505, REG_LINK_DRV, DRV_HS,
(it6505->link_rate_bw_code == RBR) ? 0x00 : DRV_HS);
}
static void it6505_lane_count_setup(struct it6505 *it6505)
{
it6505_get_extcon_property(it6505);
it6505_set_bits(it6505, REG_TRAIN_CTRL0, LANE_SWAP,
it6505->lane_swap ? LANE_SWAP : 0x00);
it6505_set_bits(it6505, REG_TRAIN_CTRL0, LANE_COUNT_MASK,
(it6505->lane_count - 1) << 1);
}
static void it6505_link_training_setup(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
if (it6505->enable_enhanced_frame)
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL,
ENABLE_ENHANCED_FRAME, ENABLE_ENHANCED_FRAME);
it6505_link_rate_setup(it6505);
it6505_lane_count_setup(it6505);
it6505_setup_ssc(it6505);
DRM_DEV_DEBUG_DRIVER(dev,
"%s, %d lanes, %sable ssc, %sable enhanced frame",
it6505->link_rate_bw_code != RBR ? "HBR" : "RBR",
it6505->lane_count,
it6505->enable_ssc ? "en" : "dis",
it6505->enable_enhanced_frame ? "en" : "dis");
}
static bool it6505_link_start_auto_train(struct it6505 *it6505)
{
int timeout = 500, link_training_state;
bool state = false;
mutex_lock(&it6505->aux_lock);
it6505_set_bits(it6505, REG_TRAIN_CTRL0,
FORCE_CR_DONE | FORCE_EQ_DONE, 0x00);
it6505_write(it6505, REG_TRAIN_CTRL1, FORCE_RETRAIN);
it6505_write(it6505, REG_TRAIN_CTRL1, AUTO_TRAIN);
while (timeout > 0) {
usleep_range(1000, 2000);
link_training_state = it6505_read(it6505, REG_LINK_TRAIN_STS);
if (link_training_state > 0 &&
(link_training_state & LINK_STATE_NORP)) {
state = true;
goto unlock;
}
timeout--;
}
unlock:
mutex_unlock(&it6505->aux_lock);
return state;
}
static int it6505_drm_dp_link_configure(struct it6505 *it6505)
{
u8 values[2];
int err;
struct drm_dp_aux *aux = &it6505->aux;
values[0] = it6505->link_rate_bw_code;
values[1] = it6505->lane_count;
if (it6505->enable_enhanced_frame)
values[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, values, sizeof(values));
if (err < 0)
return err;
return 0;
}
static bool it6505_check_voltage_swing_max(u8 lane_voltage_swing_pre_emphasis)
{
return ((lane_voltage_swing_pre_emphasis & 0x03) == MAX_CR_LEVEL);
}
static bool it6505_check_pre_emphasis_max(u8 lane_voltage_swing_pre_emphasis)
{
return ((lane_voltage_swing_pre_emphasis & 0x03) == MAX_EQ_LEVEL);
}
static bool it6505_check_max_voltage_swing_reached(u8 *lane_voltage_swing,
u8 lane_count)
{
u8 i;
for (i = 0; i < lane_count; i++) {
if (lane_voltage_swing[i] & DP_TRAIN_MAX_SWING_REACHED)
return true;
}
return false;
}
static bool
step_train_lane_voltage_para_set(struct it6505 *it6505,
struct it6505_step_train_para
*lane_voltage_pre_emphasis,
u8 *lane_voltage_pre_emphasis_set)
{
u8 *voltage_swing = lane_voltage_pre_emphasis->voltage_swing;
u8 *pre_emphasis = lane_voltage_pre_emphasis->pre_emphasis;
u8 i;
for (i = 0; i < it6505->lane_count; i++) {
voltage_swing[i] &= 0x03;
lane_voltage_pre_emphasis_set[i] = voltage_swing[i];
if (it6505_check_voltage_swing_max(voltage_swing[i]))
lane_voltage_pre_emphasis_set[i] |=
DP_TRAIN_MAX_SWING_REACHED;
pre_emphasis[i] &= 0x03;
lane_voltage_pre_emphasis_set[i] |= pre_emphasis[i]
<< DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (it6505_check_pre_emphasis_max(pre_emphasis[i]))
lane_voltage_pre_emphasis_set[i] |=
DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
it6505_dpcd_write(it6505, DP_TRAINING_LANE0_SET + i,
lane_voltage_pre_emphasis_set[i]);
if (lane_voltage_pre_emphasis_set[i] !=
it6505_dpcd_read(it6505, DP_TRAINING_LANE0_SET + i))
return false;
}
return true;
}
static bool
it6505_step_cr_train(struct it6505 *it6505,
struct it6505_step_train_para *lane_voltage_pre_emphasis)
{
u8 loop_count = 0, i = 0, j;
u8 link_status[DP_LINK_STATUS_SIZE] = { 0 };
u8 lane_level_config[MAX_LANE_COUNT] = { 0 };
int pre_emphasis_adjust = -1, voltage_swing_adjust = -1;
const struct drm_dp_aux *aux = &it6505->aux;
it6505_dpcd_write(it6505, DP_DOWNSPREAD_CTRL,
it6505->enable_ssc ? DP_SPREAD_AMP_0_5 : 0x00);
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_1);
while (loop_count < 5 && i < 10) {
i++;
if (!step_train_lane_voltage_para_set(it6505,
lane_voltage_pre_emphasis,
lane_level_config))
continue;
drm_dp_link_train_clock_recovery_delay(aux, it6505->dpcd);
drm_dp_dpcd_read_link_status(&it6505->aux, link_status);
if (drm_dp_clock_recovery_ok(link_status, it6505->lane_count)) {
it6505_set_bits(it6505, REG_TRAIN_CTRL0, FORCE_CR_DONE,
FORCE_CR_DONE);
return true;
}
DRM_DEV_DEBUG_DRIVER(it6505->dev, "cr not done");
if (it6505_check_max_voltage_swing_reached(lane_level_config,
it6505->lane_count))
goto cr_train_fail;
for (j = 0; j < it6505->lane_count; j++) {
lane_voltage_pre_emphasis->voltage_swing[j] =
drm_dp_get_adjust_request_voltage(link_status,
j) >>
DP_TRAIN_VOLTAGE_SWING_SHIFT;
lane_voltage_pre_emphasis->pre_emphasis[j] =
drm_dp_get_adjust_request_pre_emphasis(link_status,
j) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (voltage_swing_adjust ==
lane_voltage_pre_emphasis->voltage_swing[j] &&
pre_emphasis_adjust ==
lane_voltage_pre_emphasis->pre_emphasis[j]) {
loop_count++;
continue;
}
voltage_swing_adjust =
lane_voltage_pre_emphasis->voltage_swing[j];
pre_emphasis_adjust =
lane_voltage_pre_emphasis->pre_emphasis[j];
loop_count = 0;
if (voltage_swing_adjust + pre_emphasis_adjust >
MAX_EQ_LEVEL)
lane_voltage_pre_emphasis->voltage_swing[j] =
MAX_EQ_LEVEL -
lane_voltage_pre_emphasis
->pre_emphasis[j];
}
}
cr_train_fail:
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
return false;
}
static bool
it6505_step_eq_train(struct it6505 *it6505,
struct it6505_step_train_para *lane_voltage_pre_emphasis)
{
u8 loop_count = 0, i, link_status[DP_LINK_STATUS_SIZE] = { 0 };
u8 lane_level_config[MAX_LANE_COUNT] = { 0 };
const struct drm_dp_aux *aux = &it6505->aux;
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_2);
while (loop_count < 6) {
loop_count++;
if (!step_train_lane_voltage_para_set(it6505,
lane_voltage_pre_emphasis,
lane_level_config))
continue;
drm_dp_link_train_channel_eq_delay(aux, it6505->dpcd);
drm_dp_dpcd_read_link_status(&it6505->aux, link_status);
if (!drm_dp_clock_recovery_ok(link_status, it6505->lane_count))
goto eq_train_fail;
if (drm_dp_channel_eq_ok(link_status, it6505->lane_count)) {
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
it6505_set_bits(it6505, REG_TRAIN_CTRL0, FORCE_EQ_DONE,
FORCE_EQ_DONE);
return true;
}
DRM_DEV_DEBUG_DRIVER(it6505->dev, "eq not done");
for (i = 0; i < it6505->lane_count; i++) {
lane_voltage_pre_emphasis->voltage_swing[i] =
drm_dp_get_adjust_request_voltage(link_status,
i) >>
DP_TRAIN_VOLTAGE_SWING_SHIFT;
lane_voltage_pre_emphasis->pre_emphasis[i] =
drm_dp_get_adjust_request_pre_emphasis(link_status,
i) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (lane_voltage_pre_emphasis->voltage_swing[i] +
lane_voltage_pre_emphasis->pre_emphasis[i] >
MAX_EQ_LEVEL)
lane_voltage_pre_emphasis->voltage_swing[i] =
0x03 - lane_voltage_pre_emphasis
->pre_emphasis[i];
}
}
eq_train_fail:
it6505_dpcd_write(it6505, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
return false;
}
static bool it6505_link_start_step_train(struct it6505 *it6505)
{
int err;
struct it6505_step_train_para lane_voltage_pre_emphasis = {
.voltage_swing = { 0 },
.pre_emphasis = { 0 },
};
DRM_DEV_DEBUG_DRIVER(it6505->dev, "start");
err = it6505_drm_dp_link_configure(it6505);
if (err < 0)
return false;
if (!it6505_step_cr_train(it6505, &lane_voltage_pre_emphasis))
return false;
if (!it6505_step_eq_train(it6505, &lane_voltage_pre_emphasis))
return false;
return true;
}
static bool it6505_get_video_status(struct it6505 *it6505)
{
int reg_0d;
reg_0d = it6505_read(it6505, REG_SYSTEM_STS);
if (reg_0d < 0)
return false;
return reg_0d & VIDEO_STB;
}
static void it6505_reset_hdcp(struct it6505 *it6505)
{
it6505->hdcp_status = HDCP_AUTH_IDLE;
/* Disable CP_Desired */
it6505_set_bits(it6505, REG_HDCP_CTRL1, HDCP_CP_ENABLE, 0x00);
it6505_set_bits(it6505, REG_RESET_CTRL, HDCP_RESET, HDCP_RESET);
}
static void it6505_start_hdcp(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "start");
it6505_reset_hdcp(it6505);
queue_delayed_work(system_wq, &it6505->hdcp_work,
msecs_to_jiffies(2400));
}
static void it6505_stop_hdcp(struct it6505 *it6505)
{
it6505_reset_hdcp(it6505);
cancel_delayed_work(&it6505->hdcp_work);
}
static bool it6505_hdcp_is_ksv_valid(u8 *ksv)
{
int i, ones = 0;
/* KSV has 20 1's and 20 0's */
for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
ones += hweight8(ksv[i]);
if (ones != 20)
return false;
return true;
}
static void it6505_hdcp_part1_auth(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
u8 hdcp_bcaps;
it6505_set_bits(it6505, REG_RESET_CTRL, HDCP_RESET, 0x00);
/* Disable CP_Desired */
it6505_set_bits(it6505, REG_HDCP_CTRL1, HDCP_CP_ENABLE, 0x00);
usleep_range(1000, 1500);
hdcp_bcaps = it6505_dpcd_read(it6505, DP_AUX_HDCP_BCAPS);
DRM_DEV_DEBUG_DRIVER(dev, "DPCD[0x68028]: 0x%02x",
hdcp_bcaps);
if (!hdcp_bcaps)
return;
/* clear the repeater List Chk Done and fail bit */
it6505_set_bits(it6505, REG_HDCP_TRIGGER,
HDCP_TRIGGER_KSV_DONE | HDCP_TRIGGER_KSV_FAIL,
0x00);
/* Enable An Generator */
it6505_set_bits(it6505, REG_HDCP_CTRL2, HDCP_AN_GEN, HDCP_AN_GEN);
/* delay1ms(10);*/
usleep_range(10000, 15000);
/* Stop An Generator */
it6505_set_bits(it6505, REG_HDCP_CTRL2, HDCP_AN_GEN, 0x00);
it6505_set_bits(it6505, REG_HDCP_CTRL1, HDCP_CP_ENABLE, HDCP_CP_ENABLE);
it6505_set_bits(it6505, REG_HDCP_TRIGGER, HDCP_TRIGGER_START,
HDCP_TRIGGER_START);
it6505->hdcp_status = HDCP_AUTH_GOING;
}
static int it6505_sha1_digest(struct it6505 *it6505, u8 *sha1_input,
unsigned int size, u8 *output_av)
{
struct shash_desc *desc;
struct crypto_shash *tfm;
int err;
struct device *dev = it6505->dev;
tfm = crypto_alloc_shash("sha1", 0, 0);
if (IS_ERR(tfm)) {
dev_err(dev, "crypto_alloc_shash sha1 failed");
return PTR_ERR(tfm);
}
desc = kzalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL);
if (!desc) {
crypto_free_shash(tfm);
return -ENOMEM;
}
desc->tfm = tfm;
err = crypto_shash_digest(desc, sha1_input, size, output_av);
if (err)
dev_err(dev, "crypto_shash_digest sha1 failed");
crypto_free_shash(tfm);
kfree(desc);
return err;
}
static int it6505_setup_sha1_input(struct it6505 *it6505, u8 *sha1_input)
{
struct device *dev = it6505->dev;
u8 binfo[2];
int down_stream_count, i, err, msg_count = 0;
err = it6505_get_dpcd(it6505, DP_AUX_HDCP_BINFO, binfo,
ARRAY_SIZE(binfo));
if (err < 0) {
dev_err(dev, "Read binfo value Fail");
return err;
}
down_stream_count = binfo[0] & 0x7F;
DRM_DEV_DEBUG_DRIVER(dev, "binfo:0x%*ph", (int)ARRAY_SIZE(binfo),
binfo);
if ((binfo[0] & BIT(7)) || (binfo[1] & BIT(3))) {
dev_err(dev, "HDCP max cascade device exceed");
return 0;
}
if (!down_stream_count ||
down_stream_count > MAX_HDCP_DOWN_STREAM_COUNT) {
dev_err(dev, "HDCP down stream count Error %d",
down_stream_count);
return 0;
}
for (i = 0; i < down_stream_count; i++) {
err = it6505_get_dpcd(it6505, DP_AUX_HDCP_KSV_FIFO +
(i % 3) * DRM_HDCP_KSV_LEN,
sha1_input + msg_count,
DRM_HDCP_KSV_LEN);
if (err < 0)
return err;
msg_count += 5;
}
it6505->hdcp_down_stream_count = down_stream_count;
sha1_input[msg_count++] = binfo[0];
sha1_input[msg_count++] = binfo[1];
it6505_set_bits(it6505, REG_HDCP_CTRL2, HDCP_EN_M0_READ,
HDCP_EN_M0_READ);
err = regmap_bulk_read(it6505->regmap, REG_M0_0_7,
sha1_input + msg_count, 8);
it6505_set_bits(it6505, REG_HDCP_CTRL2, HDCP_EN_M0_READ, 0x00);
if (err < 0) {
dev_err(dev, " Warning, Read M value Fail");
return err;
}
msg_count += 8;
return msg_count;
}
static bool it6505_hdcp_part2_ksvlist_check(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
u8 av[5][4], bv[5][4];
int i, err;
i = it6505_setup_sha1_input(it6505, it6505->sha1_input);
if (i <= 0) {
dev_err(dev, "SHA-1 Input length error %d", i);
return false;
}
it6505_sha1_digest(it6505, it6505->sha1_input, i, (u8 *)av);
err = it6505_get_dpcd(it6505, DP_AUX_HDCP_V_PRIME(0), (u8 *)bv,
sizeof(bv));
if (err < 0) {
dev_err(dev, "Read V' value Fail");
return false;
}
for (i = 0; i < 5; i++)
if (bv[i][3] != av[i][0] || bv[i][2] != av[i][1] ||
bv[i][1] != av[i][2] || bv[i][0] != av[i][3])
return false;
DRM_DEV_DEBUG_DRIVER(dev, "V' all match!!");
return true;
}
static void it6505_hdcp_wait_ksv_list(struct work_struct *work)
{
struct it6505 *it6505 = container_of(work, struct it6505,
hdcp_wait_ksv_list);
struct device *dev = it6505->dev;
unsigned int timeout = 5000;
u8 bstatus = 0;
bool ksv_list_check;
timeout /= 20;
while (timeout > 0) {
if (!it6505_get_sink_hpd_status(it6505))
return;
bstatus = it6505_dpcd_read(it6505, DP_AUX_HDCP_BSTATUS);
if (bstatus & DP_BSTATUS_READY)
break;
msleep(20);
timeout--;
}
if (timeout == 0) {
DRM_DEV_DEBUG_DRIVER(dev, "timeout and ksv list wait failed");
goto timeout;
}
ksv_list_check = it6505_hdcp_part2_ksvlist_check(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "ksv list ready, ksv list check %s",
ksv_list_check ? "pass" : "fail");
if (ksv_list_check) {
it6505_set_bits(it6505, REG_HDCP_TRIGGER,
HDCP_TRIGGER_KSV_DONE, HDCP_TRIGGER_KSV_DONE);
return;
}
timeout:
it6505_set_bits(it6505, REG_HDCP_TRIGGER,
HDCP_TRIGGER_KSV_DONE | HDCP_TRIGGER_KSV_FAIL,
HDCP_TRIGGER_KSV_DONE | HDCP_TRIGGER_KSV_FAIL);
}
static void it6505_hdcp_work(struct work_struct *work)
{
struct it6505 *it6505 = container_of(work, struct it6505,
hdcp_work.work);
struct device *dev = it6505->dev;
int ret;
u8 link_status[DP_LINK_STATUS_SIZE] = { 0 };
DRM_DEV_DEBUG_DRIVER(dev, "start");
if (!it6505_get_sink_hpd_status(it6505))
return;
ret = drm_dp_dpcd_read_link_status(&it6505->aux, link_status);
DRM_DEV_DEBUG_DRIVER(dev, "ret: %d link_status: %*ph", ret,
(int)sizeof(link_status), link_status);
if (ret < 0 || !drm_dp_channel_eq_ok(link_status, it6505->lane_count) ||
!it6505_get_video_status(it6505)) {
DRM_DEV_DEBUG_DRIVER(dev, "link train not done or no video");
return;
}
ret = it6505_get_dpcd(it6505, DP_AUX_HDCP_BKSV, it6505->bksvs,
ARRAY_SIZE(it6505->bksvs));
if (ret < 0) {
dev_err(dev, "fail to get bksv ret: %d", ret);
it6505_set_bits(it6505, REG_HDCP_TRIGGER,
HDCP_TRIGGER_KSV_FAIL, HDCP_TRIGGER_KSV_FAIL);
}
DRM_DEV_DEBUG_DRIVER(dev, "bksv = 0x%*ph",
(int)ARRAY_SIZE(it6505->bksvs), it6505->bksvs);
if (!it6505_hdcp_is_ksv_valid(it6505->bksvs)) {
dev_err(dev, "Display Port bksv not valid");
it6505_set_bits(it6505, REG_HDCP_TRIGGER,
HDCP_TRIGGER_KSV_FAIL, HDCP_TRIGGER_KSV_FAIL);
}
it6505_hdcp_part1_auth(it6505);
}
static void it6505_show_hdcp_info(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int i;
u8 *sha1 = it6505->sha1_input;
DRM_DEV_DEBUG_DRIVER(dev, "hdcp_status: %d is_repeater: %d",
it6505->hdcp_status, it6505->is_repeater);
DRM_DEV_DEBUG_DRIVER(dev, "bksv = 0x%*ph",
(int)ARRAY_SIZE(it6505->bksvs), it6505->bksvs);
if (it6505->is_repeater) {
DRM_DEV_DEBUG_DRIVER(dev, "hdcp_down_stream_count: %d",
it6505->hdcp_down_stream_count);
DRM_DEV_DEBUG_DRIVER(dev, "sha1_input: 0x%*ph",
(int)ARRAY_SIZE(it6505->sha1_input),
it6505->sha1_input);
for (i = 0; i < it6505->hdcp_down_stream_count; i++) {
DRM_DEV_DEBUG_DRIVER(dev, "KSV_%d = 0x%*ph", i,
DRM_HDCP_KSV_LEN, sha1);
sha1 += DRM_HDCP_KSV_LEN;
}
DRM_DEV_DEBUG_DRIVER(dev, "binfo: 0x%2ph M0: 0x%8ph",
sha1, sha1 + 2);
}
}
static void it6505_stop_link_train(struct it6505 *it6505)
{
it6505->link_state = LINK_IDLE;
cancel_work_sync(&it6505->link_works);
it6505_write(it6505, REG_TRAIN_CTRL1, FORCE_RETRAIN);
}
static void it6505_link_train_ok(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
it6505->link_state = LINK_OK;
/* disalbe mute enable avi info frame */
it6505_set_bits(it6505, REG_DATA_MUTE_CTRL, EN_VID_MUTE, 0x00);
it6505_set_bits(it6505, REG_INFOFRAME_CTRL,
EN_VID_CTRL_PKT, EN_VID_CTRL_PKT);
if (it6505_audio_input(it6505)) {
DRM_DEV_DEBUG_DRIVER(dev, "Enable audio!");
it6505_enable_audio(it6505);
}
if (it6505->hdcp_desired)
it6505_start_hdcp(it6505);
}
static void it6505_link_step_train_process(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int ret, i, step_retry = 3;
DRM_DEV_DEBUG_DRIVER(dev, "Start step train");
if (it6505->sink_count == 0) {
DRM_DEV_DEBUG_DRIVER(dev, "it6505->sink_count:%d, force eq",
it6505->sink_count);
it6505_set_bits(it6505, REG_TRAIN_CTRL0, FORCE_EQ_DONE,
FORCE_EQ_DONE);
return;
}
if (!it6505->step_train) {
DRM_DEV_DEBUG_DRIVER(dev, "not support step train");
return;
}
/* step training start here */
for (i = 0; i < step_retry; i++) {
it6505_link_reset_step_train(it6505);
ret = it6505_link_start_step_train(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "step train %s, retry:%d times",
ret ? "pass" : "failed", i + 1);
if (ret) {
it6505_link_train_ok(it6505);
return;
}
}
DRM_DEV_DEBUG_DRIVER(dev, "training fail");
it6505->link_state = LINK_IDLE;
it6505_video_reset(it6505);
}
static void it6505_link_training_work(struct work_struct *work)
{
struct it6505 *it6505 = container_of(work, struct it6505, link_works);
struct device *dev = it6505->dev;
int ret;
DRM_DEV_DEBUG_DRIVER(dev, "it6505->sink_count: %d",
it6505->sink_count);
if (!it6505_get_sink_hpd_status(it6505))
return;
it6505_link_training_setup(it6505);
it6505_reset_hdcp(it6505);
it6505_aux_reset(it6505);
if (it6505->auto_train_retry < 1) {
it6505_link_step_train_process(it6505);
return;
}
ret = it6505_link_start_auto_train(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "auto train %s, auto_train_retry: %d",
ret ? "pass" : "failed", it6505->auto_train_retry);
it6505->auto_train_retry--;
if (ret) {
it6505_link_train_ok(it6505);
return;
}
it6505_dump(it6505);
}
static void it6505_plugged_status_to_codec(struct it6505 *it6505)
{
enum drm_connector_status status = it6505->connector_status;
if (it6505->plugged_cb && it6505->codec_dev)
it6505->plugged_cb(it6505->codec_dev,
status == connector_status_connected);
}
static void it6505_remove_edid(struct it6505 *it6505)
{
kfree(it6505->cached_edid);
it6505->cached_edid = NULL;
}
static int it6505_process_hpd_irq(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int ret, dpcd_sink_count, dp_irq_vector, bstatus;
u8 link_status[DP_LINK_STATUS_SIZE];
if (!it6505_get_sink_hpd_status(it6505)) {
DRM_DEV_DEBUG_DRIVER(dev, "HPD_IRQ HPD low");
it6505->sink_count = 0;
return 0;
}
ret = it6505_dpcd_read(it6505, DP_SINK_COUNT);
if (ret < 0)
return ret;
dpcd_sink_count = DP_GET_SINK_COUNT(ret);
DRM_DEV_DEBUG_DRIVER(dev, "dpcd_sink_count: %d it6505->sink_count:%d",
dpcd_sink_count, it6505->sink_count);
if (it6505->branch_device && dpcd_sink_count != it6505->sink_count) {
memset(it6505->dpcd, 0, sizeof(it6505->dpcd));
it6505->sink_count = dpcd_sink_count;
it6505_reset_logic(it6505);
it6505_int_mask_enable(it6505);
it6505_init(it6505);
it6505_remove_edid(it6505);
return 0;
}
dp_irq_vector = it6505_dpcd_read(it6505, DP_DEVICE_SERVICE_IRQ_VECTOR);
if (dp_irq_vector < 0)
return dp_irq_vector;
DRM_DEV_DEBUG_DRIVER(dev, "dp_irq_vector = 0x%02x", dp_irq_vector);
if (dp_irq_vector & DP_CP_IRQ) {
it6505_set_bits(it6505, REG_HDCP_TRIGGER, HDCP_TRIGGER_CPIRQ,
HDCP_TRIGGER_CPIRQ);
bstatus = it6505_dpcd_read(it6505, DP_AUX_HDCP_BSTATUS);
if (bstatus < 0)
return bstatus;
DRM_DEV_DEBUG_DRIVER(dev, "Bstatus = 0x%02x", bstatus);
}
ret = drm_dp_dpcd_read_link_status(&it6505->aux, link_status);
if (ret < 0) {
dev_err(dev, "Fail to read link status ret: %d", ret);
return ret;
}
DRM_DEV_DEBUG_DRIVER(dev, "link status = 0x%*ph",
(int)ARRAY_SIZE(link_status), link_status);
if (!drm_dp_channel_eq_ok(link_status, it6505->lane_count)) {
it6505->auto_train_retry = AUTO_TRAIN_RETRY;
it6505_video_reset(it6505);
}
return 0;
}
static void it6505_irq_hpd(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
int dp_sink_count;
it6505->hpd_state = it6505_get_sink_hpd_status(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "hpd change interrupt, change to %s",
it6505->hpd_state ? "high" : "low");
if (it6505->hpd_state) {
wait_for_completion_timeout(&it6505->extcon_completion,
msecs_to_jiffies(1000));
it6505_aux_on(it6505);
if (it6505->dpcd[0] == 0) {
it6505_get_dpcd(it6505, DP_DPCD_REV, it6505->dpcd,
ARRAY_SIZE(it6505->dpcd));
it6505_variable_config(it6505);
it6505_parse_link_capabilities(it6505);
}
it6505->auto_train_retry = AUTO_TRAIN_RETRY;
it6505_drm_dp_link_set_power(&it6505->aux, &it6505->link,
DP_SET_POWER_D0);
dp_sink_count = it6505_dpcd_read(it6505, DP_SINK_COUNT);
it6505->sink_count = DP_GET_SINK_COUNT(dp_sink_count);
DRM_DEV_DEBUG_DRIVER(dev, "it6505->sink_count: %d",
it6505->sink_count);
it6505_lane_termination_on(it6505);
it6505_lane_power_on(it6505);
/*
* for some dongle which issue HPD_irq
* when sink count change from 0->1
* it6505 not able to receive HPD_IRQ
* if HW never go into trainig done
*/
if (it6505->branch_device && it6505->sink_count == 0)
schedule_work(&it6505->link_works);
if (!it6505_get_video_status(it6505))
it6505_video_reset(it6505);
} else {
memset(it6505->dpcd, 0, sizeof(it6505->dpcd));
it6505_remove_edid(it6505);
if (it6505->hdcp_desired)
it6505_stop_hdcp(it6505);
it6505_video_disable(it6505);
it6505_disable_audio(it6505);
it6505_stop_link_train(it6505);
it6505_lane_off(it6505);
it6505_link_reset_step_train(it6505);
}
if (it6505->bridge.dev)
drm_helper_hpd_irq_event(it6505->bridge.dev);
}
static void it6505_irq_hpd_irq(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "hpd_irq interrupt");
if (it6505_process_hpd_irq(it6505) < 0)
DRM_DEV_DEBUG_DRIVER(dev, "process hpd_irq fail!");
}
static void it6505_irq_scdt(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
bool data;
data = it6505_get_video_status(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "video stable change interrupt, %s",
data ? "stable" : "unstable");
it6505_calc_video_info(it6505);
it6505_link_reset_step_train(it6505);
if (data)
schedule_work(&it6505->link_works);
}
static void it6505_irq_hdcp_done(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "hdcp done interrupt");
it6505->hdcp_status = HDCP_AUTH_DONE;
it6505_show_hdcp_info(it6505);
}
static void it6505_irq_hdcp_fail(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "hdcp fail interrupt");
it6505->hdcp_status = HDCP_AUTH_IDLE;
it6505_show_hdcp_info(it6505);
it6505_start_hdcp(it6505);
}
static void it6505_irq_aux_cmd_fail(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "AUX PC Request Fail Interrupt");
}
static void it6505_irq_hdcp_ksv_check(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "HDCP event Interrupt");
schedule_work(&it6505->hdcp_wait_ksv_list);
}
static void it6505_irq_audio_fifo_error(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "audio fifo error Interrupt");
if (it6505_audio_input(it6505))
it6505_enable_audio(it6505);
}
static void it6505_irq_link_train_fail(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "link training fail interrupt");
schedule_work(&it6505->link_works);
}
static void it6505_irq_video_fifo_error(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "video fifo overflow interrupt");
it6505->auto_train_retry = AUTO_TRAIN_RETRY;
flush_work(&it6505->link_works);
it6505_stop_hdcp(it6505);
it6505_video_reset(it6505);
}
static void it6505_irq_io_latch_fifo_overflow(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "IO latch fifo overflow interrupt");
it6505->auto_train_retry = AUTO_TRAIN_RETRY;
flush_work(&it6505->link_works);
it6505_stop_hdcp(it6505);
it6505_video_reset(it6505);
}
static bool it6505_test_bit(unsigned int bit, const unsigned int *addr)
{
return 1 & (addr[bit / BITS_PER_BYTE] >> (bit % BITS_PER_BYTE));
}
static irqreturn_t it6505_int_threaded_handler(int unused, void *data)
{
struct it6505 *it6505 = data;
struct device *dev = it6505->dev;
static const struct {
int bit;
void (*handler)(struct it6505 *it6505);
} irq_vec[] = {
{ BIT_INT_HPD, it6505_irq_hpd },
{ BIT_INT_HPD_IRQ, it6505_irq_hpd_irq },
{ BIT_INT_SCDT, it6505_irq_scdt },
{ BIT_INT_HDCP_FAIL, it6505_irq_hdcp_fail },
{ BIT_INT_HDCP_DONE, it6505_irq_hdcp_done },
{ BIT_INT_AUX_CMD_FAIL, it6505_irq_aux_cmd_fail },
{ BIT_INT_HDCP_KSV_CHECK, it6505_irq_hdcp_ksv_check },
{ BIT_INT_AUDIO_FIFO_ERROR, it6505_irq_audio_fifo_error },
{ BIT_INT_LINK_TRAIN_FAIL, it6505_irq_link_train_fail },
{ BIT_INT_VID_FIFO_ERROR, it6505_irq_video_fifo_error },
{ BIT_INT_IO_FIFO_OVERFLOW, it6505_irq_io_latch_fifo_overflow },
};
int int_status[3], i;
if (it6505->enable_drv_hold || !it6505->powered)
return IRQ_HANDLED;
pm_runtime_get_sync(dev);
int_status[0] = it6505_read(it6505, INT_STATUS_01);
int_status[1] = it6505_read(it6505, INT_STATUS_02);
int_status[2] = it6505_read(it6505, INT_STATUS_03);
it6505_write(it6505, INT_STATUS_01, int_status[0]);
it6505_write(it6505, INT_STATUS_02, int_status[1]);
it6505_write(it6505, INT_STATUS_03, int_status[2]);
DRM_DEV_DEBUG_DRIVER(dev, "reg06 = 0x%02x", int_status[0]);
DRM_DEV_DEBUG_DRIVER(dev, "reg07 = 0x%02x", int_status[1]);
DRM_DEV_DEBUG_DRIVER(dev, "reg08 = 0x%02x", int_status[2]);
it6505_debug_print(it6505, REG_SYSTEM_STS, "");
if (it6505_test_bit(irq_vec[0].bit, (unsigned int *)int_status))
irq_vec[0].handler(it6505);
if (it6505->hpd_state) {
for (i = 1; i < ARRAY_SIZE(irq_vec); i++) {
if (it6505_test_bit(irq_vec[i].bit, (unsigned int *)int_status))
irq_vec[i].handler(it6505);
}
}
pm_runtime_put_sync(dev);
return IRQ_HANDLED;
}
static int it6505_poweron(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
struct it6505_platform_data *pdata = &it6505->pdata;
int err;
DRM_DEV_DEBUG_DRIVER(dev, "it6505 start powered on");
if (it6505->powered) {
DRM_DEV_DEBUG_DRIVER(dev, "it6505 already powered on");
return 0;
}
if (pdata->pwr18) {
err = regulator_enable(pdata->pwr18);
if (err) {
DRM_DEV_DEBUG_DRIVER(dev, "Failed to enable VDD18: %d",
err);
return err;
}
}
if (pdata->ovdd) {
/* time interval between IVDD and OVDD at least be 1ms */
usleep_range(1000, 2000);
err = regulator_enable(pdata->ovdd);
if (err) {
regulator_disable(pdata->pwr18);
return err;
}
}
/* time interval between OVDD and SYSRSTN at least be 10ms */
if (pdata->gpiod_reset) {
usleep_range(10000, 20000);
gpiod_set_value_cansleep(pdata->gpiod_reset, 0);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(pdata->gpiod_reset, 1);
usleep_range(10000, 20000);
}
it6505->powered = true;
it6505_reset_logic(it6505);
it6505_int_mask_enable(it6505);
it6505_init(it6505);
it6505_lane_off(it6505);
return 0;
}
static int it6505_poweroff(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
struct it6505_platform_data *pdata = &it6505->pdata;
int err;
DRM_DEV_DEBUG_DRIVER(dev, "it6505 start power off");
if (!it6505->powered) {
DRM_DEV_DEBUG_DRIVER(dev, "power had been already off");
return 0;
}
if (pdata->gpiod_reset)
gpiod_set_value_cansleep(pdata->gpiod_reset, 0);
if (pdata->pwr18) {
err = regulator_disable(pdata->pwr18);
if (err)
return err;
}
if (pdata->ovdd) {
err = regulator_disable(pdata->ovdd);
if (err)
return err;
}
it6505->powered = false;
it6505->sink_count = 0;
return 0;
}
static enum drm_connector_status it6505_detect(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
enum drm_connector_status status = connector_status_disconnected;
int dp_sink_count;
DRM_DEV_DEBUG_DRIVER(dev, "it6505->sink_count:%d powered:%d",
it6505->sink_count, it6505->powered);
mutex_lock(&it6505->mode_lock);
if (!it6505->powered)
goto unlock;
if (it6505->enable_drv_hold) {
status = it6505->hpd_state ? connector_status_connected :
connector_status_disconnected;
goto unlock;
}
if (it6505->hpd_state) {
it6505_drm_dp_link_set_power(&it6505->aux, &it6505->link,
DP_SET_POWER_D0);
dp_sink_count = it6505_dpcd_read(it6505, DP_SINK_COUNT);
it6505->sink_count = DP_GET_SINK_COUNT(dp_sink_count);
DRM_DEV_DEBUG_DRIVER(dev, "it6505->sink_count:%d branch:%d",
it6505->sink_count, it6505->branch_device);
if (it6505->branch_device) {
status = (it6505->sink_count != 0) ?
connector_status_connected :
connector_status_disconnected;
} else {
status = connector_status_connected;
}
} else {
it6505->sink_count = 0;
memset(it6505->dpcd, 0, sizeof(it6505->dpcd));
}
unlock:
if (it6505->connector_status != status) {
it6505->connector_status = status;
it6505_plugged_status_to_codec(it6505);
}
mutex_unlock(&it6505->mode_lock);
return status;
}
static int it6505_extcon_notifier(struct notifier_block *self,
unsigned long event, void *ptr)
{
struct it6505 *it6505 = container_of(self, struct it6505, event_nb);
schedule_work(&it6505->extcon_wq);
return NOTIFY_DONE;
}
static void it6505_extcon_work(struct work_struct *work)
{
struct it6505 *it6505 = container_of(work, struct it6505, extcon_wq);
struct device *dev = it6505->dev;
int state, ret;
if (it6505->enable_drv_hold)
return;
mutex_lock(&it6505->extcon_lock);
state = extcon_get_state(it6505->extcon, EXTCON_DISP_DP);
DRM_DEV_DEBUG_DRIVER(dev, "EXTCON_DISP_DP = 0x%02x", state);
if (state == it6505->extcon_state || unlikely(state < 0))
goto unlock;
it6505->extcon_state = state;
if (state) {
DRM_DEV_DEBUG_DRIVER(dev, "start to power on");
msleep(100);
ret = pm_runtime_get_sync(dev);
/*
* On system resume, extcon_work can be triggered before
* pm_runtime_force_resume re-enables runtime power management.
* Handling the error here to make sure the bridge is powered on.
*/
if (ret < 0)
it6505_poweron(it6505);
complete_all(&it6505->extcon_completion);
} else {
DRM_DEV_DEBUG_DRIVER(dev, "start to power off");
pm_runtime_put_sync(dev);
reinit_completion(&it6505->extcon_completion);
drm_helper_hpd_irq_event(it6505->bridge.dev);
memset(it6505->dpcd, 0, sizeof(it6505->dpcd));
DRM_DEV_DEBUG_DRIVER(dev, "power off it6505 success!");
}
unlock:
mutex_unlock(&it6505->extcon_lock);
}
static int it6505_use_notifier_module(struct it6505 *it6505)
{
int ret;
struct device *dev = it6505->dev;
it6505->event_nb.notifier_call = it6505_extcon_notifier;
INIT_WORK(&it6505->extcon_wq, it6505_extcon_work);
ret = devm_extcon_register_notifier(it6505->dev,
it6505->extcon, EXTCON_DISP_DP,
&it6505->event_nb);
if (ret) {
dev_err(dev, "failed to register notifier for DP");
return ret;
}
schedule_work(&it6505->extcon_wq);
return 0;
}
static void it6505_remove_notifier_module(struct it6505 *it6505)
{
if (it6505->extcon) {
devm_extcon_unregister_notifier(it6505->dev,
it6505->extcon, EXTCON_DISP_DP,
&it6505->event_nb);
flush_work(&it6505->extcon_wq);
}
}
static void __maybe_unused it6505_delayed_audio(struct work_struct *work)
{
struct it6505 *it6505 = container_of(work, struct it6505,
delayed_audio.work);
DRM_DEV_DEBUG_DRIVER(it6505->dev, "start");
if (!it6505->powered)
return;
if (!it6505->enable_drv_hold)
it6505_enable_audio(it6505);
}
static int __maybe_unused it6505_audio_setup_hw_params(struct it6505 *it6505,
struct hdmi_codec_params
*params)
{
struct device *dev = it6505->dev;
int i = 0;
DRM_DEV_DEBUG_DRIVER(dev, "%s %d Hz, %d bit, %d channels\n", __func__,
params->sample_rate, params->sample_width,
params->cea.channels);
if (!it6505->bridge.encoder)
return -ENODEV;
if (params->cea.channels <= 1 || params->cea.channels > 8) {
DRM_DEV_DEBUG_DRIVER(dev, "channel number: %d not support",
it6505->audio.channel_count);
return -EINVAL;
}
it6505->audio.channel_count = params->cea.channels;
while (i < ARRAY_SIZE(audio_sample_rate_map) &&
params->sample_rate !=
audio_sample_rate_map[i].sample_rate_value) {
i++;
}
if (i == ARRAY_SIZE(audio_sample_rate_map)) {
DRM_DEV_DEBUG_DRIVER(dev, "sample rate: %d Hz not support",
params->sample_rate);
return -EINVAL;
}
it6505->audio.sample_rate = audio_sample_rate_map[i].rate;
switch (params->sample_width) {
case 16:
it6505->audio.word_length = WORD_LENGTH_16BIT;
break;
case 18:
it6505->audio.word_length = WORD_LENGTH_18BIT;
break;
case 20:
it6505->audio.word_length = WORD_LENGTH_20BIT;
break;
case 24:
case 32:
it6505->audio.word_length = WORD_LENGTH_24BIT;
break;
default:
DRM_DEV_DEBUG_DRIVER(dev, "wordlength: %d bit not support",
params->sample_width);
return -EINVAL;
}
return 0;
}
static void __maybe_unused it6505_audio_shutdown(struct device *dev, void *data)
{
struct it6505 *it6505 = dev_get_drvdata(dev);
if (it6505->powered)
it6505_disable_audio(it6505);
}
static int __maybe_unused it6505_audio_hook_plugged_cb(struct device *dev,
void *data,
hdmi_codec_plugged_cb fn,
struct device *codec_dev)
{
struct it6505 *it6505 = data;
it6505->plugged_cb = fn;
it6505->codec_dev = codec_dev;
it6505_plugged_status_to_codec(it6505);
return 0;
}
static inline struct it6505 *bridge_to_it6505(struct drm_bridge *bridge)
{
return container_of(bridge, struct it6505, bridge);
}
static int it6505_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
DRM_ERROR("DRM_BRIDGE_ATTACH_NO_CONNECTOR must be supplied");
return -EINVAL;
}
if (!bridge->encoder) {
dev_err(dev, "Parent encoder object not found");
return -ENODEV;
}
/* Register aux channel */
it6505->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&it6505->aux);
if (ret < 0) {
dev_err(dev, "Failed to register aux: %d", ret);
return ret;
}
if (it6505->extcon) {
ret = it6505_use_notifier_module(it6505);
if (ret < 0) {
dev_err(dev, "use notifier module failed");
return ret;
}
}
return 0;
}
static void it6505_bridge_detach(struct drm_bridge *bridge)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
flush_work(&it6505->link_works);
it6505_remove_notifier_module(it6505);
}
static enum drm_mode_status
it6505_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
if (mode->clock > it6505->max_dpi_pixel_clock)
return MODE_CLOCK_HIGH;
it6505->video_info.clock = mode->clock;
return MODE_OK;
}
static void it6505_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
struct drm_atomic_state *state = old_state->base.state;
struct hdmi_avi_infoframe frame;
struct drm_crtc_state *crtc_state;
struct drm_connector_state *conn_state;
struct drm_display_mode *mode;
struct drm_connector *connector;
int ret;
DRM_DEV_DEBUG_DRIVER(dev, "start");
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
if (WARN_ON(!connector))
return;
conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!conn_state))
return;
crtc_state = drm_atomic_get_new_crtc_state(state, conn_state->crtc);
if (WARN_ON(!crtc_state))
return;
mode = &crtc_state->adjusted_mode;
if (WARN_ON(!mode))
return;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame,
connector,
mode);
if (ret)
dev_err(dev, "Failed to setup AVI infoframe: %d", ret);
it6505_update_video_parameter(it6505, mode);
ret = it6505_send_video_infoframe(it6505, &frame);
if (ret)
dev_err(dev, "Failed to send AVI infoframe: %d", ret);
it6505_int_mask_enable(it6505);
it6505_video_reset(it6505);
it6505_drm_dp_link_set_power(&it6505->aux, &it6505->link,
DP_SET_POWER_D0);
}
static void it6505_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "start");
if (it6505->powered) {
it6505_drm_dp_link_set_power(&it6505->aux, &it6505->link,
DP_SET_POWER_D3);
it6505_video_disable(it6505);
}
}
static void it6505_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "start");
pm_runtime_get_sync(dev);
}
static void it6505_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
DRM_DEV_DEBUG_DRIVER(dev, "start");
pm_runtime_put_sync(dev);
}
static enum drm_connector_status
it6505_bridge_detect(struct drm_bridge *bridge)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
return it6505_detect(it6505);
}
static struct edid *it6505_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct it6505 *it6505 = bridge_to_it6505(bridge);
struct device *dev = it6505->dev;
if (!it6505->cached_edid) {
it6505->cached_edid = drm_do_get_edid(connector, it6505_get_edid_block,
it6505);
if (!it6505->cached_edid) {
DRM_DEV_DEBUG_DRIVER(dev, "failed to get edid!");
return NULL;
}
}
return drm_edid_duplicate(it6505->cached_edid);
}
static const struct drm_bridge_funcs it6505_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = it6505_bridge_attach,
.detach = it6505_bridge_detach,
.mode_valid = it6505_bridge_mode_valid,
.atomic_enable = it6505_bridge_atomic_enable,
.atomic_disable = it6505_bridge_atomic_disable,
.atomic_pre_enable = it6505_bridge_atomic_pre_enable,
.atomic_post_disable = it6505_bridge_atomic_post_disable,
.detect = it6505_bridge_detect,
.get_edid = it6505_bridge_get_edid,
};
static __maybe_unused int it6505_bridge_resume(struct device *dev)
{
struct it6505 *it6505 = dev_get_drvdata(dev);
return it6505_poweron(it6505);
}
static __maybe_unused int it6505_bridge_suspend(struct device *dev)
{
struct it6505 *it6505 = dev_get_drvdata(dev);
return it6505_poweroff(it6505);
}
static const struct dev_pm_ops it6505_bridge_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(it6505_bridge_suspend, it6505_bridge_resume, NULL)
};
static int it6505_init_pdata(struct it6505 *it6505)
{
struct it6505_platform_data *pdata = &it6505->pdata;
struct device *dev = it6505->dev;
/* 1.0V digital core power regulator */
pdata->pwr18 = devm_regulator_get(dev, "pwr18");
if (IS_ERR(pdata->pwr18)) {
dev_err(dev, "pwr18 regulator not found");
return PTR_ERR(pdata->pwr18);
}
pdata->ovdd = devm_regulator_get(dev, "ovdd");
if (IS_ERR(pdata->ovdd)) {
dev_err(dev, "ovdd regulator not found");
return PTR_ERR(pdata->ovdd);
}
pdata->gpiod_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(pdata->gpiod_reset)) {
dev_err(dev, "gpiod_reset gpio not found");
return PTR_ERR(pdata->gpiod_reset);
}
return 0;
}
static int it6505_get_data_lanes_count(const struct device_node *endpoint,
const unsigned int min,
const unsigned int max)
{
int ret;
ret = of_property_count_u32_elems(endpoint, "data-lanes");
if (ret < 0)
return ret;
if (ret < min || ret > max)
return -EINVAL;
return ret;
}
static void it6505_parse_dt(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
struct device_node *np = dev->of_node, *ep = NULL;
int len;
u64 link_frequencies;
u32 data_lanes[4];
u32 *afe_setting = &it6505->afe_setting;
u32 *max_lane_count = &it6505->max_lane_count;
u32 *max_dpi_pixel_clock = &it6505->max_dpi_pixel_clock;
it6505->lane_swap_disabled =
device_property_read_bool(dev, "no-laneswap");
if (it6505->lane_swap_disabled)
it6505->lane_swap = false;
if (device_property_read_u32(dev, "afe-setting", afe_setting) == 0) {
if (*afe_setting >= ARRAY_SIZE(afe_setting_table)) {
dev_err(dev, "afe setting error, use default");
*afe_setting = 0;
}
} else {
*afe_setting = 0;
}
ep = of_graph_get_endpoint_by_regs(np, 1, 0);
of_node_put(ep);
if (ep) {
len = it6505_get_data_lanes_count(ep, 1, 4);
if (len > 0 && len != 3) {
of_property_read_u32_array(ep, "data-lanes",
data_lanes, len);
*max_lane_count = len;
} else {
*max_lane_count = MAX_LANE_COUNT;
dev_err(dev, "error data-lanes, use default");
}
} else {
*max_lane_count = MAX_LANE_COUNT;
dev_err(dev, "error endpoint, use default");
}
ep = of_graph_get_endpoint_by_regs(np, 0, 0);
of_node_put(ep);
if (ep) {
len = of_property_read_variable_u64_array(ep,
"link-frequencies",
&link_frequencies, 0,
1);
if (len >= 0) {
do_div(link_frequencies, 1000);
if (link_frequencies > 297000) {
dev_err(dev,
"max pixel clock error, use default");
*max_dpi_pixel_clock = DPI_PIXEL_CLK_MAX;
} else {
*max_dpi_pixel_clock = link_frequencies;
}
} else {
dev_err(dev, "error link frequencies, use default");
*max_dpi_pixel_clock = DPI_PIXEL_CLK_MAX;
}
} else {
dev_err(dev, "error endpoint, use default");
*max_dpi_pixel_clock = DPI_PIXEL_CLK_MAX;
}
DRM_DEV_DEBUG_DRIVER(dev, "using afe_setting: %u, max_lane_count: %u",
it6505->afe_setting, it6505->max_lane_count);
DRM_DEV_DEBUG_DRIVER(dev, "using max_dpi_pixel_clock: %u kHz",
it6505->max_dpi_pixel_clock);
}
static ssize_t receive_timing_debugfs_show(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
struct it6505 *it6505 = file->private_data;
struct drm_display_mode *vid;
u8 read_buf[READ_BUFFER_SIZE];
u8 *str = read_buf, *end = read_buf + READ_BUFFER_SIZE;
ssize_t ret, count;
if (!it6505)
return -ENODEV;
it6505_calc_video_info(it6505);
vid = &it6505->video_info;
str += scnprintf(str, end - str, "---video timing---\n");
str += scnprintf(str, end - str, "PCLK:%d.%03dMHz\n",
vid->clock / 1000, vid->clock % 1000);
str += scnprintf(str, end - str, "HTotal:%d\n", vid->htotal);
str += scnprintf(str, end - str, "HActive:%d\n", vid->hdisplay);
str += scnprintf(str, end - str, "HFrontPorch:%d\n",
vid->hsync_start - vid->hdisplay);
str += scnprintf(str, end - str, "HSyncWidth:%d\n",
vid->hsync_end - vid->hsync_start);
str += scnprintf(str, end - str, "HBackPorch:%d\n",
vid->htotal - vid->hsync_end);
str += scnprintf(str, end - str, "VTotal:%d\n", vid->vtotal);
str += scnprintf(str, end - str, "VActive:%d\n", vid->vdisplay);
str += scnprintf(str, end - str, "VFrontPorch:%d\n",
vid->vsync_start - vid->vdisplay);
str += scnprintf(str, end - str, "VSyncWidth:%d\n",
vid->vsync_end - vid->vsync_start);
str += scnprintf(str, end - str, "VBackPorch:%d\n",
vid->vtotal - vid->vsync_end);
count = str - read_buf;
ret = simple_read_from_buffer(buf, len, ppos, read_buf, count);
return ret;
}
static int force_power_on_off_debugfs_write(void *data, u64 value)
{
struct it6505 *it6505 = data;
if (!it6505)
return -ENODEV;
if (value)
it6505_poweron(it6505);
else
it6505_poweroff(it6505);
return 0;
}
static int enable_drv_hold_debugfs_show(void *data, u64 *buf)
{
struct it6505 *it6505 = data;
if (!it6505)
return -ENODEV;
*buf = it6505->enable_drv_hold;
return 0;
}
static int enable_drv_hold_debugfs_write(void *data, u64 drv_hold)
{
struct it6505 *it6505 = data;
if (!it6505)
return -ENODEV;
it6505->enable_drv_hold = drv_hold;
if (it6505->enable_drv_hold) {
it6505_int_mask_disable(it6505);
} else {
it6505_clear_int(it6505);
it6505_int_mask_enable(it6505);
if (it6505->powered) {
it6505->connector_status =
it6505_get_sink_hpd_status(it6505) ?
connector_status_connected :
connector_status_disconnected;
} else {
it6505->connector_status =
connector_status_disconnected;
}
}
return 0;
}
static const struct file_operations receive_timing_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = receive_timing_debugfs_show,
.llseek = default_llseek,
};
DEFINE_DEBUGFS_ATTRIBUTE(fops_force_power, NULL,
force_power_on_off_debugfs_write, "%llu\n");
DEFINE_DEBUGFS_ATTRIBUTE(fops_enable_drv_hold, enable_drv_hold_debugfs_show,
enable_drv_hold_debugfs_write, "%llu\n");
static const struct debugfs_entries debugfs_entry[] = {
{ "receive_timing", &receive_timing_fops },
{ "force_power_on_off", &fops_force_power },
{ "enable_drv_hold", &fops_enable_drv_hold },
{ NULL, NULL },
};
static void debugfs_create_files(struct it6505 *it6505)
{
int i = 0;
while (debugfs_entry[i].name && debugfs_entry[i].fops) {
debugfs_create_file(debugfs_entry[i].name, 0644,
it6505->debugfs, it6505,
debugfs_entry[i].fops);
i++;
}
}
static void debugfs_init(struct it6505 *it6505)
{
struct device *dev = it6505->dev;
it6505->debugfs = debugfs_create_dir(DEBUGFS_DIR_NAME, NULL);
if (IS_ERR(it6505->debugfs)) {
dev_err(dev, "failed to create debugfs root");
return;
}
debugfs_create_files(it6505);
}
static void it6505_debugfs_remove(struct it6505 *it6505)
{
debugfs_remove_recursive(it6505->debugfs);
}
static void it6505_shutdown(struct i2c_client *client)
{
struct it6505 *it6505 = dev_get_drvdata(&client->dev);
if (it6505->powered)
it6505_lane_off(it6505);
}
static int it6505_i2c_probe(struct i2c_client *client)
{
struct it6505 *it6505;
struct device *dev = &client->dev;
struct extcon_dev *extcon;
int err, intp_irq;
it6505 = devm_kzalloc(&client->dev, sizeof(*it6505), GFP_KERNEL);
if (!it6505)
return -ENOMEM;
mutex_init(&it6505->extcon_lock);
mutex_init(&it6505->mode_lock);
mutex_init(&it6505->aux_lock);
it6505->bridge.of_node = client->dev.of_node;
it6505->connector_status = connector_status_disconnected;
it6505->dev = &client->dev;
i2c_set_clientdata(client, it6505);
/* get extcon device from DTS */
extcon = extcon_get_edev_by_phandle(dev, 0);
if (PTR_ERR(extcon) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (IS_ERR(extcon)) {
dev_err(dev, "can not get extcon device!");
return PTR_ERR(extcon);
}
it6505->extcon = extcon;
it6505->regmap = devm_regmap_init_i2c(client, &it6505_regmap_config);
if (IS_ERR(it6505->regmap)) {
dev_err(dev, "regmap i2c init failed");
err = PTR_ERR(it6505->regmap);
return err;
}
err = it6505_init_pdata(it6505);
if (err) {
dev_err(dev, "Failed to initialize pdata: %d", err);
return err;
}
it6505_parse_dt(it6505);
intp_irq = client->irq;
if (!intp_irq) {
dev_err(dev, "Failed to get INTP IRQ");
err = -ENODEV;
return err;
}
err = devm_request_threaded_irq(&client->dev, intp_irq, NULL,
it6505_int_threaded_handler,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"it6505-intp", it6505);
if (err) {
dev_err(dev, "Failed to request INTP threaded IRQ: %d", err);
return err;
}
INIT_WORK(&it6505->link_works, it6505_link_training_work);
INIT_WORK(&it6505->hdcp_wait_ksv_list, it6505_hdcp_wait_ksv_list);
INIT_DELAYED_WORK(&it6505->hdcp_work, it6505_hdcp_work);
init_completion(&it6505->extcon_completion);
memset(it6505->dpcd, 0, sizeof(it6505->dpcd));
it6505->powered = false;
it6505->enable_drv_hold = DEFAULT_DRV_HOLD;
if (DEFAULT_PWR_ON)
it6505_poweron(it6505);
DRM_DEV_DEBUG_DRIVER(dev, "it6505 device name: %s", dev_name(dev));
debugfs_init(it6505);
pm_runtime_enable(dev);
it6505->aux.name = "DP-AUX";
it6505->aux.dev = dev;
it6505->aux.transfer = it6505_aux_transfer;
drm_dp_aux_init(&it6505->aux);
it6505->bridge.funcs = &it6505_bridge_funcs;
it6505->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
it6505->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID |
DRM_BRIDGE_OP_HPD;
drm_bridge_add(&it6505->bridge);
return 0;
}
static void it6505_i2c_remove(struct i2c_client *client)
{
struct it6505 *it6505 = i2c_get_clientdata(client);
drm_bridge_remove(&it6505->bridge);
drm_dp_aux_unregister(&it6505->aux);
it6505_debugfs_remove(it6505);
it6505_poweroff(it6505);
it6505_remove_edid(it6505);
}
static const struct i2c_device_id it6505_id[] = {
{ "it6505", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, it6505_id);
static const struct of_device_id it6505_of_match[] = {
{ .compatible = "ite,it6505" },
{ }
};
static struct i2c_driver it6505_i2c_driver = {
.driver = {
.name = "it6505",
.of_match_table = it6505_of_match,
.pm = &it6505_bridge_pm_ops,
},
.probe = it6505_i2c_probe,
.remove = it6505_i2c_remove,
.shutdown = it6505_shutdown,
.id_table = it6505_id,
};
module_i2c_driver(it6505_i2c_driver);
MODULE_AUTHOR("Allen Chen <[email protected]>");
MODULE_DESCRIPTION("IT6505 DisplayPort Transmitter driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/ite-it6505.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TI SN65DSI83,84,85 driver
*
* Currently supported:
* - SN65DSI83
* = 1x Single-link DSI ~ 1x Single-link LVDS
* - Supported
* - Single-link LVDS mode tested
* - SN65DSI84
* = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Supported
* - Dual-link LVDS mode tested
* - 2x Single-link LVDS mode unsupported
* (should be easy to add by someone who has the HW)
* - SN65DSI85
* = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Unsupported
* (should be easy to add by someone who has the HW)
*
* Copyright (C) 2021 Marek Vasut <[email protected]>
*
* Based on previous work of:
* Valentin Raevsky <[email protected]>
* Philippe Schenker <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* ID registers */
#define REG_ID(n) (0x00 + (n))
/* Reset and clock registers */
#define REG_RC_RESET 0x09
#define REG_RC_RESET_SOFT_RESET BIT(0)
#define REG_RC_LVDS_PLL 0x0a
#define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
#define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
#define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
#define REG_RC_DSI_CLK 0x0b
#define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
#define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
#define REG_RC_PLL_EN 0x0d
#define REG_RC_PLL_EN_PLL_EN BIT(0)
/* DSI registers */
#define REG_DSI_LANE 0x10
#define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
#define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
#define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
#define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
#define REG_DSI_EQ 0x11
#define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
#define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
#define REG_DSI_CLK 0x12
#define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
/* LVDS registers */
#define REG_LVDS_FMT 0x18
#define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
#define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
#define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
#define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
#define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
#define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
#define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
#define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
#define REG_LVDS_VCOM 0x19
#define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
#define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
#define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
#define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
#define REG_LVDS_LANE 0x1a
#define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
#define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
#define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
#define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
#define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
#define REG_LVDS_CM 0x1b
#define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
#define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
/* Video registers */
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
#define REG_VID_CHA_SYNC_DELAY_LOW 0x28
#define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
#define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
#define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
#define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
#define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
#define REG_VID_CHA_TEST_PATTERN 0x3c
/* IRQ registers */
#define REG_IRQ_GLOBAL 0xe0
#define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
#define REG_IRQ_EN 0xe1
#define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
#define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
#define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
#define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
#define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
#define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
#define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
#define REG_IRQ_STAT 0xe5
#define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
#define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
#define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
#define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
#define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
#define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
#define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
enum sn65dsi83_model {
MODEL_SN65DSI83,
MODEL_SN65DSI84,
};
struct sn65dsi83 {
struct drm_bridge bridge;
struct device *dev;
struct regmap *regmap;
struct mipi_dsi_device *dsi;
struct drm_bridge *panel_bridge;
struct gpio_desc *enable_gpio;
struct regulator *vcc;
bool lvds_dual_link;
bool lvds_dual_link_even_odd_swap;
};
static const struct regmap_range sn65dsi83_readable_ranges[] = {
regmap_reg_range(REG_ID(0), REG_ID(8)),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_readable_table = {
.yes_ranges = sn65dsi83_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
};
static const struct regmap_range sn65dsi83_writeable_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_writeable_table = {
.yes_ranges = sn65dsi83_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
};
static const struct regmap_range sn65dsi83_volatile_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_volatile_table = {
.yes_ranges = sn65dsi83_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
};
static const struct regmap_config sn65dsi83_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.rd_table = &sn65dsi83_readable_table,
.wr_table = &sn65dsi83_writeable_table,
.volatile_table = &sn65dsi83_volatile_table,
.cache_type = REGCACHE_RBTREE,
.max_register = REG_IRQ_STAT,
};
static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
{
return container_of(bridge, struct sn65dsi83, bridge);
}
static int sn65dsi83_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
&ctx->bridge, flags);
}
static void sn65dsi83_detach(struct drm_bridge *bridge)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
if (!ctx->dsi)
return;
ctx->dsi = NULL;
}
static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the LVDS_CLK_RANGE is as follows:
* 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
* 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
* 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
* 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
* 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
* 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
* which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
* the ends of the ranges are clamped to the supported range. Since
* sn65dsi83_mode_valid() already filters the valid modes and limits
* the clock to 25..154 MHz, the range calculation can be simplified
* as follows:
*/
int mode_clock = mode->clock;
if (ctx->lvds_dual_link)
mode_clock /= 2;
return (mode_clock - 12500) / 25000;
}
static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the CHA_DSI_CLK_RANGE is as follows:
* 0x00 through 0x07 - Reserved
* 0x08 - 40 <= DSI_CLK < 45 MHz
* 0x09 - 45 <= DSI_CLK < 50 MHz
* ...
* 0x63 - 495 <= DSI_CLK < 500 MHz
* 0x64 - 500 MHz
* 0x65 through 0xFF - Reserved
* which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
* The DSI clock are calculated as:
* DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
* the 2 is there because the bus is DDR.
*/
return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
}
static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
{
/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
dsi_div /= ctx->dsi->lanes;
if (!ctx->lvds_dual_link)
dsi_div /= 2;
return dsi_div - 1;
}
static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
const struct drm_bridge_state *bridge_state;
const struct drm_crtc_state *crtc_state;
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
bool lvds_format_24bpp;
bool lvds_format_jeida;
unsigned int pval;
__le16 le16val;
u16 val;
int ret;
ret = regulator_enable(ctx->vcc);
if (ret) {
dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
return;
}
/* Deassert reset */
gpiod_set_value_cansleep(ctx->enable_gpio, 1);
usleep_range(10000, 11000);
/* Get the LVDS format from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
switch (bridge_state->output_bus_cfg.format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
lvds_format_24bpp = false;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
lvds_format_24bpp = true;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
lvds_format_24bpp = true;
lvds_format_jeida = false;
break;
default:
/*
* Some bridges still don't set the correct
* LVDS bus pixel format, use SPWG24 default
* format until those are fixed.
*/
lvds_format_24bpp = true;
lvds_format_jeida = false;
dev_warn(ctx->dev,
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
bridge_state->output_bus_cfg.format);
break;
}
/*
* Retrieve the CRTC adjusted mode. This requires a little dance to go
* from the bridge to the encoder, to the connector and to the CRTC.
*/
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
mode = &crtc_state->adjusted_mode;
/* Clear reset, disable PLL */
regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
/* Reference clock derived from DSI link clock. */
regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
regmap_write(ctx->regmap, REG_DSI_CLK,
REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
regmap_write(ctx->regmap, REG_RC_DSI_CLK,
REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
/* Set number of DSI lanes and LVDS link config. */
regmap_write(ctx->regmap, REG_DSI_LANE,
REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
/* CHB is DSI85-only, set to default on DSI83/DSI84 */
REG_DSI_LANE_CHB_DSI_LANES(3));
/* No equalization. */
regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
/* Set up sync signal polarity. */
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
(mode->flags & DRM_MODE_FLAG_NVSYNC ?
REG_LVDS_FMT_VS_NEG_POLARITY : 0);
/* Set up bits-per-pixel, 18bpp or 24bpp. */
if (lvds_format_24bpp) {
val |= REG_LVDS_FMT_CHA_24BPP_MODE;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_MODE;
}
/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
if (lvds_format_jeida) {
val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
}
/* Set up LVDS output config (DSI84,DSI85) */
if (!ctx->lvds_dual_link)
val |= REG_LVDS_FMT_LVDS_LINK_CFG;
regmap_write(ctx->regmap, REG_LVDS_FMT, val);
regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05);
regmap_write(ctx->regmap, REG_LVDS_LANE,
(ctx->lvds_dual_link_even_odd_swap ?
REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
REG_LVDS_LANE_CHA_LVDS_TERM |
REG_LVDS_LANE_CHB_LVDS_TERM);
regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
le16val = cpu_to_le16(mode->hdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
&le16val, 2);
/* 32 + 1 pixel clock to ensure proper operation */
le16val = cpu_to_le16(32 + 1);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
mode->htotal - mode->hsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
mode->vtotal - mode->vsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
mode->hsync_start - mode->hdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
mode->vsync_start - mode->vdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
/* Enable PLL */
regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
usleep_range(3000, 4000);
ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
1000, 100000);
if (ret) {
dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
/* On failure, disable PLL again and exit. */
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
regulator_disable(ctx->vcc);
return;
}
/* Trigger reset after CSR register update. */
regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
/* Wait for 10ms after soft reset as specified in datasheet */
usleep_range(10000, 12000);
}
static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
unsigned int pval;
/* Clear all errors that got asserted during initialization. */
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
/* Wait for 1ms and check for errors in status register */
usleep_range(1000, 1100);
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
if (pval)
dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
}
static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
int ret;
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
gpiod_set_value_cansleep(ctx->enable_gpio, 0);
usleep_range(10000, 11000);
ret = regulator_disable(ctx->vcc);
if (ret)
dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
regcache_mark_dirty(ctx->regmap);
}
static enum drm_mode_status
sn65dsi83_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* LVDS output clock range 25..154 MHz */
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs sn65dsi83_funcs = {
.attach = sn65dsi83_attach,
.detach = sn65dsi83_detach,
.atomic_enable = sn65dsi83_atomic_enable,
.atomic_pre_enable = sn65dsi83_atomic_pre_enable,
.atomic_disable = sn65dsi83_atomic_disable,
.mode_valid = sn65dsi83_mode_valid,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
};
static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
{
struct drm_bridge *panel_bridge;
struct device *dev = ctx->dev;
ctx->lvds_dual_link = false;
ctx->lvds_dual_link_even_odd_swap = false;
if (model != MODEL_SN65DSI83) {
struct device_node *port2, *port3;
int dual_link;
port2 = of_graph_get_port_by_id(dev->of_node, 2);
port3 = of_graph_get_port_by_id(dev->of_node, 3);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
of_node_put(port2);
of_node_put(port3);
if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
ctx->lvds_dual_link = true;
/* Odd pixels to LVDS Channel A, even pixels to B */
ctx->lvds_dual_link_even_odd_swap = false;
} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
ctx->lvds_dual_link = true;
/* Even pixels to LVDS Channel A, odd pixels to B */
ctx->lvds_dual_link_even_odd_swap = true;
}
}
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ctx->panel_bridge = panel_bridge;
ctx->vcc = devm_regulator_get(dev, "vcc");
if (IS_ERR(ctx->vcc))
return dev_err_probe(dev, PTR_ERR(ctx->vcc),
"Failed to get supply 'vcc'\n");
return 0;
}
static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
{
struct device *dev = ctx->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = {
.type = "sn65dsi83",
.channel = 0,
.node = NULL,
};
int dsi_lanes, ret;
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
host_node = of_graph_get_remote_port_parent(endpoint);
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
of_node_put(endpoint);
if (!host)
return -EPROBE_DEFER;
if (dsi_lanes < 0)
return dsi_lanes;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
ctx->dsi = dsi;
dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
return ret;
}
return 0;
}
static int sn65dsi83_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct device *dev = &client->dev;
enum sn65dsi83_model model;
struct sn65dsi83 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
if (dev->of_node) {
model = (enum sn65dsi83_model)(uintptr_t)
of_device_get_match_data(dev);
} else {
model = id->driver_data;
}
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(ctx->enable_gpio))
return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
usleep_range(10000, 11000);
ret = sn65dsi83_parse_dt(ctx, model);
if (ret)
return ret;
ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
if (IS_ERR(ctx->regmap))
return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
dev_set_drvdata(dev, ctx);
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = &sn65dsi83_funcs;
ctx->bridge.of_node = dev->of_node;
ctx->bridge.pre_enable_prev_first = true;
drm_bridge_add(&ctx->bridge);
ret = sn65dsi83_host_attach(ctx);
if (ret) {
dev_err_probe(dev, ret, "failed to attach DSI host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&ctx->bridge);
return ret;
}
static void sn65dsi83_remove(struct i2c_client *client)
{
struct sn65dsi83 *ctx = i2c_get_clientdata(client);
drm_bridge_remove(&ctx->bridge);
}
static struct i2c_device_id sn65dsi83_id[] = {
{ "ti,sn65dsi83", MODEL_SN65DSI83 },
{ "ti,sn65dsi84", MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
static const struct of_device_id sn65dsi83_match_table[] = {
{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
static struct i2c_driver sn65dsi83_driver = {
.probe = sn65dsi83_probe,
.remove = sn65dsi83_remove,
.id_table = sn65dsi83_id,
.driver = {
.name = "sn65dsi83",
.of_match_table = sn65dsi83_match_table,
},
};
module_i2c_driver(sn65dsi83_driver);
MODULE_AUTHOR("Marek Vasut <[email protected]>");
MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/ti-sn65dsi83.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung MIPI DSIM bridge driver.
*
* Copyright (C) 2021 Amarula Solutions(India)
* Copyright (c) 2014 Samsung Electronics Co., Ltd
* Author: Jagan Teki <[email protected]>
*
* Based on exynos_drm_dsi from
* Tomasz Figa <[email protected]>
*/
#include <asm/unaligned.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/media-bus-format.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <video/mipi_display.h>
#include <drm/bridge/samsung-dsim.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
/* returns true iff both arguments logically differs */
#define NEQV(a, b) (!(a) ^ !(b))
/* DSIM_STATUS */
#define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
#define DSIM_STOP_STATE_CLK BIT(8)
#define DSIM_TX_READY_HS_CLK BIT(10)
#define DSIM_PLL_STABLE BIT(31)
/* DSIM_SWRST */
#define DSIM_FUNCRST BIT(16)
#define DSIM_SWRST BIT(0)
/* DSIM_TIMEOUT */
#define DSIM_LPDR_TIMEOUT(x) ((x) << 0)
#define DSIM_BTA_TIMEOUT(x) ((x) << 16)
/* DSIM_CLKCTRL */
#define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0)
#define DSIM_ESC_PRESCALER_MASK (0xffff << 0)
#define DSIM_LANE_ESC_CLK_EN_CLK BIT(19)
#define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20)
#define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20)
#define DSIM_BYTE_CLKEN BIT(24)
#define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25)
#define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25)
#define DSIM_PLL_BYPASS BIT(27)
#define DSIM_ESC_CLKEN BIT(28)
#define DSIM_TX_REQUEST_HSCLK BIT(31)
/* DSIM_CONFIG */
#define DSIM_LANE_EN_CLK BIT(0)
#define DSIM_LANE_EN(x) (((x) & 0xf) << 1)
#define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5)
#define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8)
#define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12)
#define DSIM_SUB_VC (((x) & 0x3) << 16)
#define DSIM_MAIN_VC (((x) & 0x3) << 18)
#define DSIM_HSA_DISABLE_MODE BIT(20)
#define DSIM_HBP_DISABLE_MODE BIT(21)
#define DSIM_HFP_DISABLE_MODE BIT(22)
/*
* The i.MX 8M Mini Applications Processor Reference Manual,
* Rev. 3, 11/2020 Page 4091
* The i.MX 8M Nano Applications Processor Reference Manual,
* Rev. 2, 07/2022 Page 3058
* The i.MX 8M Plus Applications Processor Reference Manual,
* Rev. 1, 06/2021 Page 5436
* all claims this bit is 'HseDisableMode' with the definition
* 0 = Disables transfer
* 1 = Enables transfer
*
* This clearly states that HSE is not a disabled bit.
*
* The naming convention follows as per the manual and the
* driver logic is based on the MIPI_DSI_MODE_VIDEO_HSE flag.
*/
#define DSIM_HSE_DISABLE_MODE BIT(23)
#define DSIM_AUTO_MODE BIT(24)
#define DSIM_VIDEO_MODE BIT(25)
#define DSIM_BURST_MODE BIT(26)
#define DSIM_SYNC_INFORM BIT(27)
#define DSIM_EOT_DISABLE BIT(28)
#define DSIM_MFLUSH_VS BIT(29)
/* This flag is valid only for exynos3250/3472/5260/5430 */
#define DSIM_CLKLANE_STOP BIT(30)
/* DSIM_ESCMODE */
#define DSIM_TX_TRIGGER_RST BIT(4)
#define DSIM_TX_LPDT_LP BIT(6)
#define DSIM_CMD_LPDT_LP BIT(7)
#define DSIM_FORCE_BTA BIT(16)
#define DSIM_FORCE_STOP_STATE BIT(20)
#define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21)
#define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21)
/* DSIM_MDRESOL */
#define DSIM_MAIN_STAND_BY BIT(31)
#define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16)
#define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0)
/* DSIM_MVPORCH */
#define DSIM_CMD_ALLOW(x) ((x) << 28)
#define DSIM_STABLE_VFP(x) ((x) << 16)
#define DSIM_MAIN_VBP(x) ((x) << 0)
#define DSIM_CMD_ALLOW_MASK (0xf << 28)
#define DSIM_STABLE_VFP_MASK (0x7ff << 16)
#define DSIM_MAIN_VBP_MASK (0x7ff << 0)
/* DSIM_MHPORCH */
#define DSIM_MAIN_HFP(x) ((x) << 16)
#define DSIM_MAIN_HBP(x) ((x) << 0)
#define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
#define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
/* DSIM_MSYNC */
#define DSIM_MAIN_VSA(x) ((x) << 22)
#define DSIM_MAIN_HSA(x) ((x) << 0)
#define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
#define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
/* DSIM_SDRESOL */
#define DSIM_SUB_STANDY(x) ((x) << 31)
#define DSIM_SUB_VRESOL(x) ((x) << 16)
#define DSIM_SUB_HRESOL(x) ((x) << 0)
#define DSIM_SUB_STANDY_MASK ((0x1) << 31)
#define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
#define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
/* DSIM_INTSRC */
#define DSIM_INT_PLL_STABLE BIT(31)
#define DSIM_INT_SW_RST_RELEASE BIT(30)
#define DSIM_INT_SFR_FIFO_EMPTY BIT(29)
#define DSIM_INT_SFR_HDR_FIFO_EMPTY BIT(28)
#define DSIM_INT_BTA BIT(25)
#define DSIM_INT_FRAME_DONE BIT(24)
#define DSIM_INT_RX_TIMEOUT BIT(21)
#define DSIM_INT_BTA_TIMEOUT BIT(20)
#define DSIM_INT_RX_DONE BIT(18)
#define DSIM_INT_RX_TE BIT(17)
#define DSIM_INT_RX_ACK BIT(16)
#define DSIM_INT_RX_ECC_ERR BIT(15)
#define DSIM_INT_RX_CRC_ERR BIT(14)
/* DSIM_FIFOCTRL */
#define DSIM_RX_DATA_FULL BIT(25)
#define DSIM_RX_DATA_EMPTY BIT(24)
#define DSIM_SFR_HEADER_FULL BIT(23)
#define DSIM_SFR_HEADER_EMPTY BIT(22)
#define DSIM_SFR_PAYLOAD_FULL BIT(21)
#define DSIM_SFR_PAYLOAD_EMPTY BIT(20)
#define DSIM_I80_HEADER_FULL BIT(19)
#define DSIM_I80_HEADER_EMPTY BIT(18)
#define DSIM_I80_PAYLOAD_FULL BIT(17)
#define DSIM_I80_PAYLOAD_EMPTY BIT(16)
#define DSIM_SD_HEADER_FULL BIT(15)
#define DSIM_SD_HEADER_EMPTY BIT(14)
#define DSIM_SD_PAYLOAD_FULL BIT(13)
#define DSIM_SD_PAYLOAD_EMPTY BIT(12)
#define DSIM_MD_HEADER_FULL BIT(11)
#define DSIM_MD_HEADER_EMPTY BIT(10)
#define DSIM_MD_PAYLOAD_FULL BIT(9)
#define DSIM_MD_PAYLOAD_EMPTY BIT(8)
#define DSIM_RX_FIFO BIT(4)
#define DSIM_SFR_FIFO BIT(3)
#define DSIM_I80_FIFO BIT(2)
#define DSIM_SD_FIFO BIT(1)
#define DSIM_MD_FIFO BIT(0)
/* DSIM_PHYACCHR */
#define DSIM_AFC_EN BIT(14)
#define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
/* DSIM_PLLCTRL */
#define DSIM_PLL_DPDNSWAP_CLK (1 << 25)
#define DSIM_PLL_DPDNSWAP_DAT (1 << 24)
#define DSIM_FREQ_BAND(x) ((x) << 24)
#define DSIM_PLL_EN BIT(23)
#define DSIM_PLL_P(x, offset) ((x) << (offset))
#define DSIM_PLL_M(x) ((x) << 4)
#define DSIM_PLL_S(x) ((x) << 1)
/* DSIM_PHYCTRL */
#define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0)
#define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP BIT(30)
#define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP BIT(14)
/* DSIM_PHYTIMING */
#define DSIM_PHYTIMING_LPX(x) ((x) << 8)
#define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0)
/* DSIM_PHYTIMING1 */
#define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24)
#define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16)
#define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8)
#define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0)
/* DSIM_PHYTIMING2 */
#define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16)
#define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8)
#define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0)
#define DSI_MAX_BUS_WIDTH 4
#define DSI_NUM_VIRTUAL_CHANNELS 4
#define DSI_TX_FIFO_SIZE 2048
#define DSI_RX_FIFO_SIZE 256
#define DSI_XFER_TIMEOUT_MS 100
#define DSI_RX_FIFO_EMPTY 0x30800002
#define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
#define PS_TO_CYCLE(ps, hz) DIV64_U64_ROUND_CLOSEST(((ps) * (hz)), 1000000000000ULL)
static const char *const clk_names[5] = {
"bus_clk",
"sclk_mipi",
"phyclk_mipidphy0_bitclkdiv8",
"phyclk_mipidphy0_rxclkesc0",
"sclk_rgb_vclk_to_dsim0"
};
enum samsung_dsim_transfer_type {
EXYNOS_DSI_TX,
EXYNOS_DSI_RX,
};
enum reg_idx {
DSIM_STATUS_REG, /* Status register */
DSIM_SWRST_REG, /* Software reset register */
DSIM_CLKCTRL_REG, /* Clock control register */
DSIM_TIMEOUT_REG, /* Time out register */
DSIM_CONFIG_REG, /* Configuration register */
DSIM_ESCMODE_REG, /* Escape mode register */
DSIM_MDRESOL_REG,
DSIM_MVPORCH_REG, /* Main display Vporch register */
DSIM_MHPORCH_REG, /* Main display Hporch register */
DSIM_MSYNC_REG, /* Main display sync area register */
DSIM_INTSRC_REG, /* Interrupt source register */
DSIM_INTMSK_REG, /* Interrupt mask register */
DSIM_PKTHDR_REG, /* Packet Header FIFO register */
DSIM_PAYLOAD_REG, /* Payload FIFO register */
DSIM_RXFIFO_REG, /* Read FIFO register */
DSIM_FIFOCTRL_REG, /* FIFO status and control register */
DSIM_PLLCTRL_REG, /* PLL control register */
DSIM_PHYCTRL_REG,
DSIM_PHYTIMING_REG,
DSIM_PHYTIMING1_REG,
DSIM_PHYTIMING2_REG,
NUM_REGS
};
static const unsigned int exynos_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x00,
[DSIM_SWRST_REG] = 0x04,
[DSIM_CLKCTRL_REG] = 0x08,
[DSIM_TIMEOUT_REG] = 0x0c,
[DSIM_CONFIG_REG] = 0x10,
[DSIM_ESCMODE_REG] = 0x14,
[DSIM_MDRESOL_REG] = 0x18,
[DSIM_MVPORCH_REG] = 0x1c,
[DSIM_MHPORCH_REG] = 0x20,
[DSIM_MSYNC_REG] = 0x24,
[DSIM_INTSRC_REG] = 0x2c,
[DSIM_INTMSK_REG] = 0x30,
[DSIM_PKTHDR_REG] = 0x34,
[DSIM_PAYLOAD_REG] = 0x38,
[DSIM_RXFIFO_REG] = 0x3c,
[DSIM_FIFOCTRL_REG] = 0x44,
[DSIM_PLLCTRL_REG] = 0x4c,
[DSIM_PHYCTRL_REG] = 0x5c,
[DSIM_PHYTIMING_REG] = 0x64,
[DSIM_PHYTIMING1_REG] = 0x68,
[DSIM_PHYTIMING2_REG] = 0x6c,
};
static const unsigned int exynos5433_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x04,
[DSIM_SWRST_REG] = 0x0C,
[DSIM_CLKCTRL_REG] = 0x10,
[DSIM_TIMEOUT_REG] = 0x14,
[DSIM_CONFIG_REG] = 0x18,
[DSIM_ESCMODE_REG] = 0x1C,
[DSIM_MDRESOL_REG] = 0x20,
[DSIM_MVPORCH_REG] = 0x24,
[DSIM_MHPORCH_REG] = 0x28,
[DSIM_MSYNC_REG] = 0x2C,
[DSIM_INTSRC_REG] = 0x34,
[DSIM_INTMSK_REG] = 0x38,
[DSIM_PKTHDR_REG] = 0x3C,
[DSIM_PAYLOAD_REG] = 0x40,
[DSIM_RXFIFO_REG] = 0x44,
[DSIM_FIFOCTRL_REG] = 0x4C,
[DSIM_PLLCTRL_REG] = 0x94,
[DSIM_PHYCTRL_REG] = 0xA4,
[DSIM_PHYTIMING_REG] = 0xB4,
[DSIM_PHYTIMING1_REG] = 0xB8,
[DSIM_PHYTIMING2_REG] = 0xBC,
};
enum reg_value_idx {
RESET_TYPE,
PLL_TIMER,
STOP_STATE_CNT,
PHYCTRL_ULPS_EXIT,
PHYCTRL_VREG_LP,
PHYCTRL_SLEW_UP,
PHYTIMING_LPX,
PHYTIMING_HS_EXIT,
PHYTIMING_CLK_PREPARE,
PHYTIMING_CLK_ZERO,
PHYTIMING_CLK_POST,
PHYTIMING_CLK_TRAIL,
PHYTIMING_HS_PREPARE,
PHYTIMING_HS_ZERO,
PHYTIMING_HS_TRAIL
};
static const unsigned int reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const unsigned int exynos5422_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d),
};
static const unsigned int exynos5433_reg_values[] = {
[RESET_TYPE] = DSIM_FUNCRST,
[PLL_TIMER] = 22200,
[STOP_STATE_CNT] = 0xa,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
[PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
[PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
};
static const unsigned int imx8mm_dsim_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = 0,
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x26),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x08),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const struct samsung_dsim_driver_data exynos3_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos4_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x58,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5433_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 5,
.max_freq = 1500,
.wait_for_reset = 0,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5433_reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5422_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1500,
.wait_for_reset = 1,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5422_reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data imx8mm_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 2100,
.wait_for_reset = 0,
.num_bits_resol = 12,
/*
* Unlike Exynos, PLL_P(PMS_P) offset 14 is used in i.MX8M Mini/Nano/Plus
* downstream driver - drivers/gpu/drm/bridge/sec-dsim.c
*/
.pll_p_offset = 14,
.reg_values = imx8mm_dsim_reg_values,
.m_min = 64,
.m_max = 1023,
.min_freq = 1050,
};
static const struct samsung_dsim_driver_data *
samsung_dsim_types[DSIM_TYPE_COUNT] = {
[DSIM_TYPE_EXYNOS3250] = &exynos3_dsi_driver_data,
[DSIM_TYPE_EXYNOS4210] = &exynos4_dsi_driver_data,
[DSIM_TYPE_EXYNOS5410] = &exynos5_dsi_driver_data,
[DSIM_TYPE_EXYNOS5422] = &exynos5422_dsi_driver_data,
[DSIM_TYPE_EXYNOS5433] = &exynos5433_dsi_driver_data,
[DSIM_TYPE_IMX8MM] = &imx8mm_dsi_driver_data,
[DSIM_TYPE_IMX8MP] = &imx8mm_dsi_driver_data,
};
static inline struct samsung_dsim *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct samsung_dsim, dsi_host);
}
static inline struct samsung_dsim *bridge_to_dsi(struct drm_bridge *b)
{
return container_of(b, struct samsung_dsim, bridge);
}
static inline void samsung_dsim_write(struct samsung_dsim *dsi,
enum reg_idx idx, u32 val)
{
writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static inline u32 samsung_dsim_read(struct samsung_dsim *dsi, enum reg_idx idx)
{
return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static void samsung_dsim_wait_for_reset(struct samsung_dsim *dsi)
{
if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
return;
dev_err(dsi->dev, "timeout waiting for reset\n");
}
static void samsung_dsim_reset(struct samsung_dsim *dsi)
{
u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE];
reinit_completion(&dsi->completed);
samsung_dsim_write(dsi, DSIM_SWRST_REG, reset_val);
}
#ifndef MHZ
#define MHZ (1000 * 1000)
#endif
static unsigned long samsung_dsim_pll_find_pms(struct samsung_dsim *dsi,
unsigned long fin,
unsigned long fout,
u8 *p, u16 *m, u8 *s)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long best_freq = 0;
u32 min_delta = 0xffffffff;
u8 p_min, p_max;
u8 _p, best_p;
u16 _m, best_m;
u8 _s, best_s;
p_min = DIV_ROUND_UP(fin, (12 * MHZ));
p_max = fin / (6 * MHZ);
for (_p = p_min; _p <= p_max; ++_p) {
for (_s = 0; _s <= 5; ++_s) {
u64 tmp;
u32 delta;
tmp = (u64)fout * (_p << _s);
do_div(tmp, fin);
_m = tmp;
if (_m < driver_data->m_min || _m > driver_data->m_max)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p);
if (tmp < driver_data->min_freq * MHZ ||
tmp > driver_data->max_freq * MHZ)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p << _s);
delta = abs(fout - tmp);
if (delta < min_delta) {
best_p = _p;
best_m = _m;
best_s = _s;
min_delta = delta;
best_freq = tmp;
}
}
}
if (best_freq) {
*p = best_p;
*m = best_m;
*s = best_s;
}
return best_freq;
}
static unsigned long samsung_dsim_set_pll(struct samsung_dsim *dsi,
unsigned long freq)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long fin, fout;
int timeout;
u8 p, s;
u16 m;
u32 reg;
fin = dsi->pll_clk_rate;
fout = samsung_dsim_pll_find_pms(dsi, fin, freq, &p, &m, &s);
if (!fout) {
dev_err(dsi->dev,
"failed to find PLL PMS for requested frequency\n");
return 0;
}
dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
writel(driver_data->reg_values[PLL_TIMER],
dsi->reg_base + driver_data->plltmr_reg);
reg = DSIM_PLL_EN | DSIM_PLL_P(p, driver_data->pll_p_offset) |
DSIM_PLL_M(m) | DSIM_PLL_S(s);
if (driver_data->has_freqband) {
static const unsigned long freq_bands[] = {
100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
770 * MHZ, 870 * MHZ, 950 * MHZ,
};
int band;
for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
if (fout < freq_bands[band])
break;
dev_dbg(dsi->dev, "band %d\n", band);
reg |= DSIM_FREQ_BAND(band);
}
if (dsi->swap_dn_dp_clk)
reg |= DSIM_PLL_DPDNSWAP_CLK;
if (dsi->swap_dn_dp_data)
reg |= DSIM_PLL_DPDNSWAP_DAT;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
timeout = 1000;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "PLL failed to stabilize\n");
return 0;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
} while ((reg & DSIM_PLL_STABLE) == 0);
dsi->hs_clock = fout;
return fout;
}
static int samsung_dsim_enable_clock(struct samsung_dsim *dsi)
{
unsigned long hs_clk, byte_clk, esc_clk, pix_clk;
unsigned long esc_div;
u32 reg;
struct drm_display_mode *m = &dsi->mode;
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
/* m->clock is in KHz */
pix_clk = m->clock * 1000;
/* Use burst_clk_rate if available, otherwise use the pix_clk */
if (dsi->burst_clk_rate)
hs_clk = samsung_dsim_set_pll(dsi, dsi->burst_clk_rate);
else
hs_clk = samsung_dsim_set_pll(dsi, DIV_ROUND_UP(pix_clk * bpp, dsi->lanes));
if (!hs_clk) {
dev_err(dsi->dev, "failed to configure DSI PLL\n");
return -EFAULT;
}
byte_clk = hs_clk / 8;
esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
esc_clk = byte_clk / esc_div;
if (esc_clk > 20 * MHZ) {
++esc_div;
esc_clk = byte_clk / esc_div;
}
dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
hs_clk, byte_clk, esc_clk);
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
| DSIM_BYTE_CLK_SRC_MASK);
reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
| DSIM_ESC_PRESCALER(esc_div)
| DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
| DSIM_BYTE_CLK_SRC(0)
| DSIM_TX_REQUEST_HSCLK;
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
return 0;
}
static void samsung_dsim_set_phy_ctrl(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
const unsigned int *reg_values = driver_data->reg_values;
u32 reg;
struct phy_configure_opts_mipi_dphy cfg;
int clk_prepare, lpx, clk_zero, clk_post, clk_trail;
int hs_exit, hs_prepare, hs_zero, hs_trail;
unsigned long long byte_clock = dsi->hs_clock / 8;
if (driver_data->has_freqband)
return;
phy_mipi_dphy_get_default_config_for_hsclk(dsi->hs_clock,
dsi->lanes, &cfg);
/*
* TODO:
* The tech Applications Processor manuals for i.MX8M Mini, Nano,
* and Plus don't state what the definition of the PHYTIMING
* bits are beyond their address and bit position.
* After reviewing NXP's downstream code, it appears
* that the various PHYTIMING registers take the number
* of cycles and use various dividers on them. This
* calculation does not result in an exact match to the
* downstream code, but it is very close to the values
* generated by their lookup table, and it appears
* to sync at a variety of resolutions. If someone
* can get a more accurate mathematical equation needed
* for these registers, this should be updated.
*/
lpx = PS_TO_CYCLE(cfg.lpx, byte_clock);
hs_exit = PS_TO_CYCLE(cfg.hs_exit, byte_clock);
clk_prepare = PS_TO_CYCLE(cfg.clk_prepare, byte_clock);
clk_zero = PS_TO_CYCLE(cfg.clk_zero, byte_clock);
clk_post = PS_TO_CYCLE(cfg.clk_post, byte_clock);
clk_trail = PS_TO_CYCLE(cfg.clk_trail, byte_clock);
hs_prepare = PS_TO_CYCLE(cfg.hs_prepare, byte_clock);
hs_zero = PS_TO_CYCLE(cfg.hs_zero, byte_clock);
hs_trail = PS_TO_CYCLE(cfg.hs_trail, byte_clock);
/* B D-PHY: D-PHY Master & Slave Analog Block control */
reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
reg_values[PHYCTRL_SLEW_UP];
samsung_dsim_write(dsi, DSIM_PHYCTRL_REG, reg);
/*
* T LPX: Transmitted length of any Low-Power state period
* T HS-EXIT: Time that the transmitter drives LP-11 following a HS
* burst
*/
reg = DSIM_PHYTIMING_LPX(lpx) | DSIM_PHYTIMING_HS_EXIT(hs_exit);
samsung_dsim_write(dsi, DSIM_PHYTIMING_REG, reg);
/*
* T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Clock.
* T CLK_POST: Time that the transmitter continues to send HS clock
* after the last associated Data Lane has transitioned to LP Mode
* Interval is defined as the period from the end of T HS-TRAIL to
* the beginning of T CLK-TRAIL
* T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
* the last payload clock bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING1_CLK_PREPARE(clk_prepare) |
DSIM_PHYTIMING1_CLK_ZERO(clk_zero) |
DSIM_PHYTIMING1_CLK_POST(clk_post) |
DSIM_PHYTIMING1_CLK_TRAIL(clk_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING1_REG, reg);
/*
* T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Sync sequence.
* T HS-TRAIL: Time that the transmitter drives the flipped differential
* state after last payload data bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING2_HS_PREPARE(hs_prepare) |
DSIM_PHYTIMING2_HS_ZERO(hs_zero) |
DSIM_PHYTIMING2_HS_TRAIL(hs_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING2_REG, reg);
}
static void samsung_dsim_disable_clock(struct samsung_dsim *dsi)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
| DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
reg = samsung_dsim_read(dsi, DSIM_PLLCTRL_REG);
reg &= ~DSIM_PLL_EN;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
}
static void samsung_dsim_enable_lane(struct samsung_dsim *dsi, u32 lane)
{
u32 reg = samsung_dsim_read(dsi, DSIM_CONFIG_REG);
reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
DSIM_LANE_EN(lane));
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
}
static int samsung_dsim_init_link(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int timeout;
u32 reg;
u32 lanes_mask;
/* Initialize FIFO pointers */
reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
reg &= ~0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
reg |= 0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
/* DSI configuration */
reg = 0;
/*
* The first bit of mode_flags specifies display configuration.
* If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
* mode, otherwise it will support command mode.
*/
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
reg |= DSIM_VIDEO_MODE;
/*
* The user manual describes that following bits are ignored in
* command mode.
*/
if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
reg |= DSIM_MFLUSH_VS;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
reg |= DSIM_SYNC_INFORM;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
reg |= DSIM_BURST_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
reg |= DSIM_AUTO_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
reg |= DSIM_HSE_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
reg |= DSIM_HFP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
reg |= DSIM_HBP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
reg |= DSIM_HSA_DISABLE_MODE;
}
if (dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET)
reg |= DSIM_EOT_DISABLE;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
break;
case MIPI_DSI_FMT_RGB565:
reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
break;
default:
dev_err(dsi->dev, "invalid pixel format\n");
return -EINVAL;
}
/*
* Use non-continuous clock mode if the periparal wants and
* host controller supports
*
* In non-continous clock mode, host controller will turn off
* the HS clock between high-speed transmissions to reduce
* power consumption.
*/
if (driver_data->has_clklane_stop &&
dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
reg |= DSIM_CLKLANE_STOP;
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
lanes_mask = BIT(dsi->lanes) - 1;
samsung_dsim_enable_lane(dsi, lanes_mask);
/* Check clock and data lane state are stop state */
timeout = 100;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "waiting for bus lanes timed out\n");
return -EFAULT;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
!= DSIM_STOP_STATE_DAT(lanes_mask))
continue;
} while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
reg &= ~DSIM_STOP_STATE_CNT_MASK;
reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type))
reg |= DSIM_FORCE_STOP_STATE;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
samsung_dsim_write(dsi, DSIM_TIMEOUT_REG, reg);
return 0;
}
static void samsung_dsim_set_display_mode(struct samsung_dsim *dsi)
{
struct drm_display_mode *m = &dsi->mode;
unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
u32 reg;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
int byte_clk_khz = dsi->hs_clock / 1000 / 8;
int hfp = (m->hsync_start - m->hdisplay) * byte_clk_khz / m->clock;
int hbp = (m->htotal - m->hsync_end) * byte_clk_khz / m->clock;
int hsa = (m->hsync_end - m->hsync_start) * byte_clk_khz / m->clock;
/* remove packet overhead when possible */
hfp = max(hfp - 6, 0);
hbp = max(hbp - 6, 0);
hsa = max(hsa - 6, 0);
dev_dbg(dsi->dev, "calculated hfp: %u, hbp: %u, hsa: %u",
hfp, hbp, hsa);
reg = DSIM_CMD_ALLOW(0xf)
| DSIM_STABLE_VFP(m->vsync_start - m->vdisplay)
| DSIM_MAIN_VBP(m->vtotal - m->vsync_end);
samsung_dsim_write(dsi, DSIM_MVPORCH_REG, reg);
reg = DSIM_MAIN_HFP(hfp) | DSIM_MAIN_HBP(hbp);
samsung_dsim_write(dsi, DSIM_MHPORCH_REG, reg);
reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start)
| DSIM_MAIN_HSA(hsa);
samsung_dsim_write(dsi, DSIM_MSYNC_REG, reg);
}
reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) |
DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol);
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay);
}
static void samsung_dsim_set_display_enable(struct samsung_dsim *dsi, bool enable)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_MDRESOL_REG);
if (enable)
reg |= DSIM_MAIN_STAND_BY;
else
reg &= ~DSIM_MAIN_STAND_BY;
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
}
static int samsung_dsim_wait_for_hdr_fifo(struct samsung_dsim *dsi)
{
int timeout = 2000;
do {
u32 reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
if (reg & DSIM_SFR_HEADER_EMPTY)
return 0;
if (!cond_resched())
usleep_range(950, 1050);
} while (--timeout);
return -ETIMEDOUT;
}
static void samsung_dsim_set_cmd_lpm(struct samsung_dsim *dsi, bool lpm)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
if (lpm)
v |= DSIM_CMD_LPDT_LP;
else
v &= ~DSIM_CMD_LPDT_LP;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_force_bta(struct samsung_dsim *dsi)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
v |= DSIM_FORCE_BTA;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_send_to_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
struct device *dev = dsi->dev;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload = pkt->payload + xfer->tx_done;
u16 length = pkt->payload_length - xfer->tx_done;
bool first = !xfer->tx_done;
u32 reg;
dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n",
xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done);
if (length > DSI_TX_FIFO_SIZE)
length = DSI_TX_FIFO_SIZE;
xfer->tx_done += length;
/* Send payload */
while (length >= 4) {
reg = get_unaligned_le32(payload);
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
payload += 4;
length -= 4;
}
reg = 0;
switch (length) {
case 3:
reg |= payload[2] << 16;
fallthrough;
case 2:
reg |= payload[1] << 8;
fallthrough;
case 1:
reg |= payload[0];
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
break;
}
/* Send packet header */
if (!first)
return;
reg = get_unaligned_le32(pkt->header);
if (samsung_dsim_wait_for_hdr_fifo(dsi)) {
dev_err(dev, "waiting for header FIFO timed out\n");
return;
}
if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
dsi->state & DSIM_STATE_CMD_LPM)) {
samsung_dsim_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
dsi->state ^= DSIM_STATE_CMD_LPM;
}
samsung_dsim_write(dsi, DSIM_PKTHDR_REG, reg);
if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
samsung_dsim_force_bta(dsi);
}
static void samsung_dsim_read_from_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
u8 *payload = xfer->rx_payload + xfer->rx_done;
bool first = !xfer->rx_done;
struct device *dev = dsi->dev;
u16 length;
u32 reg;
if (first) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (reg & 0x3f) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->rx_len >= 2) {
payload[1] = reg >> 16;
++xfer->rx_done;
}
fallthrough;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
payload[0] = reg >> 8;
++xfer->rx_done;
xfer->rx_len = xfer->rx_done;
xfer->result = 0;
goto clear_fifo;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
dev_err(dev, "DSI Error Report: 0x%04x\n", (reg >> 8) & 0xffff);
xfer->result = 0;
goto clear_fifo;
}
length = (reg >> 8) & 0xffff;
if (length > xfer->rx_len) {
dev_err(dev,
"response too long (%u > %u bytes), stripping\n",
xfer->rx_len, length);
length = xfer->rx_len;
} else if (length < xfer->rx_len) {
xfer->rx_len = length;
}
}
length = xfer->rx_len - xfer->rx_done;
xfer->rx_done += length;
/* Receive payload */
while (length >= 4) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
payload[0] = (reg >> 0) & 0xff;
payload[1] = (reg >> 8) & 0xff;
payload[2] = (reg >> 16) & 0xff;
payload[3] = (reg >> 24) & 0xff;
payload += 4;
length -= 4;
}
if (length) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (length) {
case 3:
payload[2] = (reg >> 16) & 0xff;
fallthrough;
case 2:
payload[1] = (reg >> 8) & 0xff;
fallthrough;
case 1:
payload[0] = reg & 0xff;
}
}
if (xfer->rx_done == xfer->rx_len)
xfer->result = 0;
clear_fifo:
length = DSI_RX_FIFO_SIZE / 4;
do {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
if (reg == DSI_RX_FIFO_EMPTY)
break;
} while (--length);
}
static void samsung_dsim_transfer_start(struct samsung_dsim *dsi)
{
unsigned long flags;
struct samsung_dsim_transfer *xfer;
bool start = false;
again:
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (xfer->packet.payload_length &&
xfer->tx_done == xfer->packet.payload_length)
/* waiting for RX */
return;
samsung_dsim_send_to_fifo(dsi, xfer);
if (xfer->packet.payload_length || xfer->rx_len)
return;
xfer->result = 0;
complete(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
goto again;
}
static bool samsung_dsim_transfer_finish(struct samsung_dsim *dsi)
{
struct samsung_dsim_transfer *xfer;
unsigned long flags;
bool start = true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return false;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
dev_dbg(dsi->dev,
"> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n",
xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len,
xfer->rx_done);
if (xfer->tx_done != xfer->packet.payload_length)
return true;
if (xfer->rx_done != xfer->rx_len)
samsung_dsim_read_from_fifo(dsi, xfer);
if (xfer->rx_done != xfer->rx_len)
return true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (!xfer->rx_len)
xfer->result = 0;
complete(&xfer->completed);
return start;
}
static void samsung_dsim_remove_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool start;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (!list_empty(&dsi->transfer_list) &&
xfer == list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list)) {
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
samsung_dsim_transfer_start(dsi);
return;
}
list_del_init(&xfer->list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
}
static int samsung_dsim_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool stopped;
xfer->tx_done = 0;
xfer->rx_done = 0;
xfer->result = -ETIMEDOUT;
init_completion(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
stopped = list_empty(&dsi->transfer_list);
list_add_tail(&xfer->list, &dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (stopped)
samsung_dsim_transfer_start(dsi);
wait_for_completion_timeout(&xfer->completed,
msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
if (xfer->result == -ETIMEDOUT) {
struct mipi_dsi_packet *pkt = &xfer->packet;
samsung_dsim_remove_transfer(dsi, xfer);
dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header,
(int)pkt->payload_length, pkt->payload);
return -ETIMEDOUT;
}
/* Also covers hardware timeout condition */
return xfer->result;
}
static irqreturn_t samsung_dsim_irq(int irq, void *dev_id)
{
struct samsung_dsim *dsi = dev_id;
u32 status;
status = samsung_dsim_read(dsi, DSIM_INTSRC_REG);
if (!status) {
static unsigned long j;
if (printk_timed_ratelimit(&j, 500))
dev_warn(dsi->dev, "spurious interrupt\n");
return IRQ_HANDLED;
}
samsung_dsim_write(dsi, DSIM_INTSRC_REG, status);
if (status & DSIM_INT_SW_RST_RELEASE) {
unsigned long mask = ~(DSIM_INT_RX_DONE |
DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_SFR_HDR_FIFO_EMPTY |
DSIM_INT_RX_ECC_ERR |
DSIM_INT_SW_RST_RELEASE);
samsung_dsim_write(dsi, DSIM_INTMSK_REG, mask);
complete(&dsi->completed);
return IRQ_HANDLED;
}
if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_PLL_STABLE)))
return IRQ_HANDLED;
if (samsung_dsim_transfer_finish(dsi))
samsung_dsim_transfer_start(dsi);
return IRQ_HANDLED;
}
static void samsung_dsim_enable_irq(struct samsung_dsim *dsi)
{
enable_irq(dsi->irq);
if (dsi->te_gpio)
enable_irq(gpiod_to_irq(dsi->te_gpio));
}
static void samsung_dsim_disable_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio)
disable_irq(gpiod_to_irq(dsi->te_gpio));
disable_irq(dsi->irq);
}
static void samsung_dsim_set_stop_state(struct samsung_dsim *dsi, bool enable)
{
u32 reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
if (enable)
reg |= DSIM_FORCE_STOP_STATE;
else
reg &= ~DSIM_FORCE_STOP_STATE;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
}
static int samsung_dsim_init(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
if (dsi->state & DSIM_STATE_INITIALIZED)
return 0;
samsung_dsim_reset(dsi);
samsung_dsim_enable_irq(dsi);
if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
samsung_dsim_enable_lane(dsi, BIT(dsi->lanes) - 1);
samsung_dsim_enable_clock(dsi);
if (driver_data->wait_for_reset)
samsung_dsim_wait_for_reset(dsi);
samsung_dsim_set_phy_ctrl(dsi);
samsung_dsim_init_link(dsi);
dsi->state |= DSIM_STATE_INITIALIZED;
return 0;
}
static void samsung_dsim_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
int ret;
if (dsi->state & DSIM_STATE_ENABLED)
return;
ret = pm_runtime_resume_and_get(dsi->dev);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable DSI device.\n");
return;
}
dsi->state |= DSIM_STATE_ENABLED;
/*
* For Exynos-DSIM the downstream bridge, or panel are expecting
* the host initialization during DSI transfer.
*/
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
ret = samsung_dsim_init(dsi);
if (ret)
return;
samsung_dsim_set_display_mode(dsi);
samsung_dsim_set_display_enable(dsi, true);
}
}
static void samsung_dsim_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
if (samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
samsung_dsim_set_display_mode(dsi);
samsung_dsim_set_display_enable(dsi, true);
} else {
samsung_dsim_set_stop_state(dsi, false);
}
dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
if (!(dsi->state & DSIM_STATE_ENABLED))
return;
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type))
samsung_dsim_set_stop_state(dsi, true);
dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
samsung_dsim_set_display_enable(dsi, false);
dsi->state &= ~DSIM_STATE_ENABLED;
pm_runtime_put_sync(dsi->dev);
}
/*
* This pixel output formats list referenced from,
* AN13573 i.MX 8/RT MIPI DSI/CSI-2, Rev. 0, 21 March 2022
* 3.7.4 Pixel formats
* Table 14. DSI pixel packing formats
*/
static const u32 samsung_dsim_pixel_output_fmts[] = {
MEDIA_BUS_FMT_YUYV10_1X20,
MEDIA_BUS_FMT_YUYV12_1X24,
MEDIA_BUS_FMT_UYVY8_1X16,
MEDIA_BUS_FMT_RGB101010_1X30,
MEDIA_BUS_FMT_RGB121212_1X36,
MEDIA_BUS_FMT_RGB565_1X16,
MEDIA_BUS_FMT_RGB666_1X18,
MEDIA_BUS_FMT_RGB888_1X24,
};
static bool samsung_dsim_pixel_output_fmt_supported(u32 fmt)
{
int i;
if (fmt == MEDIA_BUS_FMT_FIXED)
return false;
for (i = 0; i < ARRAY_SIZE(samsung_dsim_pixel_output_fmts); i++) {
if (samsung_dsim_pixel_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
samsung_dsim_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
if (!samsung_dsim_pixel_output_fmt_supported(output_fmt))
/*
* Some bridge/display drivers are still not able to pass the
* correct format, so handle those pipelines by falling back
* to the default format till the supported formats finalized.
*/
output_fmt = MEDIA_BUS_FMT_RGB888_1X24;
input_fmts[0] = output_fmt;
*num_input_fmts = 1;
return input_fmts;
}
static int samsung_dsim_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
/*
* The i.MX8M Mini/Nano glue logic between LCDIF and DSIM
* inverts HS/VS/DE sync signals polarity, therefore, while
* i.MX 8M Mini Applications Processor Reference Manual Rev. 3, 11/2020
* 13.6.3.5.2 RGB interface
* i.MX 8M Nano Applications Processor Reference Manual Rev. 2, 07/2022
* 13.6.2.7.2 RGB interface
* both claim "Vsync, Hsync, and VDEN are active high signals.", the
* LCDIF must generate inverted HS/VS/DE signals, i.e. active LOW.
*
* The i.MX8M Plus glue logic between LCDIFv3 and DSIM does not
* implement the same behavior, therefore LCDIFv3 must generate
* HS/VS/DE signals active HIGH.
*/
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM) {
adjusted_mode->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
} else if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MP) {
adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
}
return 0;
}
static void samsung_dsim_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
drm_mode_copy(&dsi->mode, adjusted_mode);
}
static int samsung_dsim_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
return drm_bridge_attach(bridge->encoder, dsi->out_bridge, bridge,
flags);
}
static const struct drm_bridge_funcs samsung_dsim_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = samsung_dsim_atomic_get_input_bus_fmts,
.atomic_check = samsung_dsim_atomic_check,
.atomic_pre_enable = samsung_dsim_atomic_pre_enable,
.atomic_enable = samsung_dsim_atomic_enable,
.atomic_disable = samsung_dsim_atomic_disable,
.atomic_post_disable = samsung_dsim_atomic_post_disable,
.mode_set = samsung_dsim_mode_set,
.attach = samsung_dsim_attach,
};
static irqreturn_t samsung_dsim_te_irq_handler(int irq, void *dev_id)
{
struct samsung_dsim *dsi = (struct samsung_dsim *)dev_id;
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
if (pdata->host_ops && pdata->host_ops->te_irq_handler)
return pdata->host_ops->te_irq_handler(dsi);
return IRQ_HANDLED;
}
static int samsung_dsim_register_te_irq(struct samsung_dsim *dsi, struct device *dev)
{
int te_gpio_irq;
int ret;
dsi->te_gpio = devm_gpiod_get_optional(dev, "te", GPIOD_IN);
if (!dsi->te_gpio)
return 0;
else if (IS_ERR(dsi->te_gpio))
return dev_err_probe(dev, PTR_ERR(dsi->te_gpio), "failed to get te GPIO\n");
te_gpio_irq = gpiod_to_irq(dsi->te_gpio);
ret = request_threaded_irq(te_gpio_irq, samsung_dsim_te_irq_handler, NULL,
IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi);
if (ret) {
dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
gpiod_put(dsi->te_gpio);
return ret;
}
return 0;
}
static int samsung_dsim_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
struct device *dev = dsi->dev;
struct device_node *np = dev->of_node;
struct device_node *remote;
struct drm_panel *panel;
int ret;
/*
* Devices can also be child nodes when we also control that device
* through the upstream device (ie, MIPI-DCS for a MIPI-DSI device).
*
* Lookup for a child node of the given parent that isn't either port
* or ports.
*/
for_each_available_child_of_node(np, remote) {
if (of_node_name_eq(remote, "port") ||
of_node_name_eq(remote, "ports"))
continue;
goto of_find_panel_or_bridge;
}
/*
* of_graph_get_remote_node() produces a noisy error message if port
* node isn't found and the absence of the port is a legit case here,
* so at first we silently check whether graph presents in the
* device-tree node.
*/
if (!of_graph_is_present(np))
return -ENODEV;
remote = of_graph_get_remote_node(np, 1, 0);
of_find_panel_or_bridge:
if (!remote)
return -ENODEV;
panel = of_drm_find_panel(remote);
if (!IS_ERR(panel)) {
dsi->out_bridge = devm_drm_panel_bridge_add(dev, panel);
} else {
dsi->out_bridge = of_drm_find_bridge(remote);
if (!dsi->out_bridge)
dsi->out_bridge = ERR_PTR(-EINVAL);
}
of_node_put(remote);
if (IS_ERR(dsi->out_bridge)) {
ret = PTR_ERR(dsi->out_bridge);
DRM_DEV_ERROR(dev, "failed to find the bridge: %d\n", ret);
return ret;
}
DRM_DEV_INFO(dev, "Attached %s device\n", device->name);
drm_bridge_add(&dsi->bridge);
/*
* This is a temporary solution and should be made by more generic way.
*
* If attached panel device is for command mode one, dsi should register
* TE interrupt handler.
*/
if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) {
ret = samsung_dsim_register_te_irq(dsi, &device->dev);
if (ret)
return ret;
}
if (pdata->host_ops && pdata->host_ops->attach) {
ret = pdata->host_ops->attach(dsi, device);
if (ret)
return ret;
}
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
return 0;
}
static void samsung_dsim_unregister_te_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio) {
free_irq(gpiod_to_irq(dsi->te_gpio), dsi);
gpiod_put(dsi->te_gpio);
}
}
static int samsung_dsim_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
dsi->out_bridge = NULL;
if (pdata->host_ops && pdata->host_ops->detach)
pdata->host_ops->detach(dsi, device);
samsung_dsim_unregister_te_irq(dsi);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static ssize_t samsung_dsim_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct samsung_dsim *dsi = host_to_dsi(host);
struct samsung_dsim_transfer xfer;
int ret;
if (!(dsi->state & DSIM_STATE_ENABLED))
return -EINVAL;
ret = samsung_dsim_init(dsi);
if (ret)
return ret;
samsung_dsim_set_stop_state(dsi, false);
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0)
return ret;
xfer.rx_len = msg->rx_len;
xfer.rx_payload = msg->rx_buf;
xfer.flags = msg->flags;
ret = samsung_dsim_transfer(dsi, &xfer);
return (ret < 0) ? ret : xfer.rx_done;
}
static const struct mipi_dsi_host_ops samsung_dsim_ops = {
.attach = samsung_dsim_host_attach,
.detach = samsung_dsim_host_detach,
.transfer = samsung_dsim_host_transfer,
};
static int samsung_dsim_of_read_u32(const struct device_node *np,
const char *propname, u32 *out_value, bool optional)
{
int ret = of_property_read_u32(np, propname, out_value);
if (ret < 0 && !optional)
pr_err("%pOF: failed to get '%s' property\n", np, propname);
return ret;
}
static int samsung_dsim_parse_dt(struct samsung_dsim *dsi)
{
struct device *dev = dsi->dev;
struct device_node *node = dev->of_node;
u32 lane_polarities[5] = { 0 };
struct device_node *endpoint;
int i, nr_lanes, ret;
struct clk *pll_clk;
ret = samsung_dsim_of_read_u32(node, "samsung,pll-clock-frequency",
&dsi->pll_clk_rate, 1);
/* If it doesn't exist, read it from the clock instead of failing */
if (ret < 0) {
dev_dbg(dev, "Using sclk_mipi for pll clock frequency\n");
pll_clk = devm_clk_get(dev, "sclk_mipi");
if (!IS_ERR(pll_clk))
dsi->pll_clk_rate = clk_get_rate(pll_clk);
else
return PTR_ERR(pll_clk);
}
/* If it doesn't exist, use pixel clock instead of failing */
ret = samsung_dsim_of_read_u32(node, "samsung,burst-clock-frequency",
&dsi->burst_clk_rate, 1);
if (ret < 0) {
dev_dbg(dev, "Using pixel clock for HS clock frequency\n");
dsi->burst_clk_rate = 0;
}
ret = samsung_dsim_of_read_u32(node, "samsung,esc-clock-frequency",
&dsi->esc_clk_rate, 0);
if (ret < 0)
return ret;
endpoint = of_graph_get_endpoint_by_regs(node, 1, -1);
nr_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
if (nr_lanes > 0 && nr_lanes <= 4) {
/* Polarity 0 is clock lane, 1..4 are data lanes. */
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, nr_lanes + 1);
for (i = 1; i <= nr_lanes; i++) {
if (lane_polarities[1] != lane_polarities[i])
DRM_DEV_ERROR(dsi->dev, "Data lanes polarities do not match");
}
if (lane_polarities[0])
dsi->swap_dn_dp_clk = true;
if (lane_polarities[1])
dsi->swap_dn_dp_data = true;
}
return 0;
}
static int generic_dsim_register_host(struct samsung_dsim *dsi)
{
return mipi_dsi_host_register(&dsi->dsi_host);
}
static void generic_dsim_unregister_host(struct samsung_dsim *dsi)
{
mipi_dsi_host_unregister(&dsi->dsi_host);
}
static const struct samsung_dsim_host_ops generic_dsim_host_ops = {
.register_host = generic_dsim_register_host,
.unregister_host = generic_dsim_unregister_host,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_high = {
.input_bus_flags = DRM_BUS_FLAG_DE_HIGH,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_low = {
.input_bus_flags = DRM_BUS_FLAG_DE_LOW,
};
int samsung_dsim_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct samsung_dsim *dsi;
int ret, i;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
init_completion(&dsi->completed);
spin_lock_init(&dsi->transfer_lock);
INIT_LIST_HEAD(&dsi->transfer_list);
dsi->dsi_host.ops = &samsung_dsim_ops;
dsi->dsi_host.dev = dev;
dsi->dev = dev;
dsi->plat_data = of_device_get_match_data(dev);
dsi->driver_data = samsung_dsim_types[dsi->plat_data->hw_type];
dsi->supplies[0].supply = "vddcore";
dsi->supplies[1].supply = "vddio";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
dsi->supplies);
if (ret)
return dev_err_probe(dev, ret, "failed to get regulators\n");
dsi->clks = devm_kcalloc(dev, dsi->driver_data->num_clks,
sizeof(*dsi->clks), GFP_KERNEL);
if (!dsi->clks)
return -ENOMEM;
for (i = 0; i < dsi->driver_data->num_clks; i++) {
dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
if (IS_ERR(dsi->clks[i])) {
if (strcmp(clk_names[i], "sclk_mipi") == 0) {
dsi->clks[i] = devm_clk_get(dev, OLD_SCLK_MIPI_CLK_NAME);
if (!IS_ERR(dsi->clks[i]))
continue;
}
dev_info(dev, "failed to get the clock: %s\n", clk_names[i]);
return PTR_ERR(dsi->clks[i]);
}
}
dsi->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dsi->reg_base))
return PTR_ERR(dsi->reg_base);
dsi->phy = devm_phy_optional_get(dev, "dsim");
if (IS_ERR(dsi->phy)) {
dev_info(dev, "failed to get dsim phy\n");
return PTR_ERR(dsi->phy);
}
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0)
return dsi->irq;
ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
samsung_dsim_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
dev_name(dev), dsi);
if (ret) {
dev_err(dev, "failed to request dsi irq\n");
return ret;
}
ret = samsung_dsim_parse_dt(dsi);
if (ret)
return ret;
platform_set_drvdata(pdev, dsi);
pm_runtime_enable(dev);
dsi->bridge.funcs = &samsung_dsim_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
/* DE_LOW: i.MX8M Mini/Nano LCDIF-DSIM glue logic inverts HS/VS/DE */
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM)
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_low;
else
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_high;
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->register_host)
ret = dsi->plat_data->host_ops->register_host(dsi);
if (ret)
goto err_disable_runtime;
return 0;
err_disable_runtime:
pm_runtime_disable(dev);
return ret;
}
EXPORT_SYMBOL_GPL(samsung_dsim_probe);
int samsung_dsim_remove(struct platform_device *pdev)
{
struct samsung_dsim *dsi = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->unregister_host)
dsi->plat_data->host_ops->unregister_host(dsi);
return 0;
}
EXPORT_SYMBOL_GPL(samsung_dsim_remove);
static int __maybe_unused samsung_dsim_suspend(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
usleep_range(10000, 20000);
if (dsi->state & DSIM_STATE_INITIALIZED) {
dsi->state &= ~DSIM_STATE_INITIALIZED;
samsung_dsim_disable_clock(dsi);
samsung_dsim_disable_irq(dsi);
}
dsi->state &= ~DSIM_STATE_CMD_LPM;
phy_power_off(dsi->phy);
for (i = driver_data->num_clks - 1; i > -1; i--)
clk_disable_unprepare(dsi->clks[i]);
ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0)
dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
return 0;
}
static int __maybe_unused samsung_dsim_resume(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
return ret;
}
for (i = 0; i < driver_data->num_clks; i++) {
ret = clk_prepare_enable(dsi->clks[i]);
if (ret < 0)
goto err_clk;
}
ret = phy_power_on(dsi->phy);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable phy %d\n", ret);
goto err_clk;
}
return 0;
err_clk:
while (--i > -1)
clk_disable_unprepare(dsi->clks[i]);
regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
return ret;
}
const struct dev_pm_ops samsung_dsim_pm_ops = {
SET_RUNTIME_PM_OPS(samsung_dsim_suspend, samsung_dsim_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
EXPORT_SYMBOL_GPL(samsung_dsim_pm_ops);
static const struct samsung_dsim_plat_data samsung_dsim_imx8mm_pdata = {
.hw_type = DSIM_TYPE_IMX8MM,
.host_ops = &generic_dsim_host_ops,
};
static const struct samsung_dsim_plat_data samsung_dsim_imx8mp_pdata = {
.hw_type = DSIM_TYPE_IMX8MP,
.host_ops = &generic_dsim_host_ops,
};
static const struct of_device_id samsung_dsim_of_match[] = {
{
.compatible = "fsl,imx8mm-mipi-dsim",
.data = &samsung_dsim_imx8mm_pdata,
},
{
.compatible = "fsl,imx8mp-mipi-dsim",
.data = &samsung_dsim_imx8mp_pdata,
},
{ /* sentinel. */ }
};
MODULE_DEVICE_TABLE(of, samsung_dsim_of_match);
static struct platform_driver samsung_dsim_driver = {
.probe = samsung_dsim_probe,
.remove = samsung_dsim_remove,
.driver = {
.name = "samsung-dsim",
.pm = &samsung_dsim_pm_ops,
.of_match_table = samsung_dsim_of_match,
},
};
module_platform_driver(samsung_dsim_driver);
MODULE_AUTHOR("Jagan Teki <[email protected]>");
MODULE_DESCRIPTION("Samsung MIPI DSIM controller bridge");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/samsung-dsim.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/regmap.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <video/videomode.h>
#define I2C_MAIN 0
#define I2C_ADDR_MAIN 0x48
#define I2C_CEC_DSI 1
#define I2C_ADDR_CEC_DSI 0x49
#define I2C_MAX_IDX 2
struct lt8912 {
struct device *dev;
struct drm_bridge bridge;
struct drm_connector connector;
struct i2c_client *i2c_client[I2C_MAX_IDX];
struct regmap *regmap[I2C_MAX_IDX];
struct device_node *host_node;
struct drm_bridge *hdmi_port;
struct mipi_dsi_device *dsi;
struct gpio_desc *gp_reset;
struct videomode mode;
u8 data_lanes;
bool is_power_on;
bool is_attached;
};
static int lt8912_write_init_config(struct lt8912 *lt)
{
const struct reg_sequence seq[] = {
/* Digital clock en*/
{0x08, 0xff},
{0x09, 0xff},
{0x0a, 0xff},
{0x0b, 0x7c},
{0x0c, 0xff},
{0x42, 0x04},
/*Tx Analog*/
{0x31, 0xb1},
{0x32, 0xb1},
{0x33, 0x0e},
{0x37, 0x00},
{0x38, 0x22},
{0x60, 0x82},
/*Cbus Analog*/
{0x39, 0x45},
{0x3a, 0x00},
{0x3b, 0x00},
/*HDMI Pll Analog*/
{0x44, 0x31},
{0x55, 0x44},
{0x57, 0x01},
{0x5a, 0x02},
/*MIPI Analog*/
{0x3e, 0xd6},
{0x3f, 0xd4},
{0x41, 0x3c},
{0xB2, 0x00},
};
return regmap_multi_reg_write(lt->regmap[I2C_MAIN], seq, ARRAY_SIZE(seq));
}
static int lt8912_write_mipi_basic_config(struct lt8912 *lt)
{
const struct reg_sequence seq[] = {
{0x12, 0x04},
{0x14, 0x00},
{0x15, 0x00},
{0x1a, 0x03},
{0x1b, 0x03},
};
return regmap_multi_reg_write(lt->regmap[I2C_CEC_DSI], seq, ARRAY_SIZE(seq));
};
static int lt8912_write_dds_config(struct lt8912 *lt)
{
const struct reg_sequence seq[] = {
{0x4e, 0xff},
{0x4f, 0x56},
{0x50, 0x69},
{0x51, 0x80},
{0x1f, 0x5e},
{0x20, 0x01},
{0x21, 0x2c},
{0x22, 0x01},
{0x23, 0xfa},
{0x24, 0x00},
{0x25, 0xc8},
{0x26, 0x00},
{0x27, 0x5e},
{0x28, 0x01},
{0x29, 0x2c},
{0x2a, 0x01},
{0x2b, 0xfa},
{0x2c, 0x00},
{0x2d, 0xc8},
{0x2e, 0x00},
{0x42, 0x64},
{0x43, 0x00},
{0x44, 0x04},
{0x45, 0x00},
{0x46, 0x59},
{0x47, 0x00},
{0x48, 0xf2},
{0x49, 0x06},
{0x4a, 0x00},
{0x4b, 0x72},
{0x4c, 0x45},
{0x4d, 0x00},
{0x52, 0x08},
{0x53, 0x00},
{0x54, 0xb2},
{0x55, 0x00},
{0x56, 0xe4},
{0x57, 0x0d},
{0x58, 0x00},
{0x59, 0xe4},
{0x5a, 0x8a},
{0x5b, 0x00},
{0x5c, 0x34},
{0x1e, 0x4f},
{0x51, 0x00},
};
return regmap_multi_reg_write(lt->regmap[I2C_CEC_DSI], seq, ARRAY_SIZE(seq));
}
static int lt8912_write_rxlogicres_config(struct lt8912 *lt)
{
int ret;
ret = regmap_write(lt->regmap[I2C_MAIN], 0x03, 0x7f);
usleep_range(10000, 20000);
ret |= regmap_write(lt->regmap[I2C_MAIN], 0x03, 0xff);
return ret;
};
/* enable LVDS output with some hardcoded configuration, not required for the HDMI output */
static int lt8912_write_lvds_config(struct lt8912 *lt)
{
const struct reg_sequence seq[] = {
// lvds power up
{0x44, 0x30},
{0x51, 0x05},
// core pll bypass
{0x50, 0x24}, // cp=50uA
{0x51, 0x2d}, // Pix_clk as reference, second order passive LPF PLL
{0x52, 0x04}, // loopdiv=0, use second-order PLL
{0x69, 0x0e}, // CP_PRESET_DIV_RATIO
{0x69, 0x8e},
{0x6a, 0x00},
{0x6c, 0xb8}, // RGD_CP_SOFT_K_EN,RGD_CP_SOFT_K[13:8]
{0x6b, 0x51},
{0x04, 0xfb}, // core pll reset
{0x04, 0xff},
// scaler bypass
{0x7f, 0x00}, // disable scaler
{0xa8, 0x13}, // 0x13: JEIDA, 0x33: VESA
{0x02, 0xf7}, // lvds pll reset
{0x02, 0xff},
{0x03, 0xcf},
{0x03, 0xff},
};
return regmap_multi_reg_write(lt->regmap[I2C_MAIN], seq, ARRAY_SIZE(seq));
};
static inline struct lt8912 *bridge_to_lt8912(struct drm_bridge *b)
{
return container_of(b, struct lt8912, bridge);
}
static inline struct lt8912 *connector_to_lt8912(struct drm_connector *c)
{
return container_of(c, struct lt8912, connector);
}
static const struct regmap_config lt8912_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
};
static int lt8912_init_i2c(struct lt8912 *lt, struct i2c_client *client)
{
unsigned int i;
/*
* At this time we only initialize 2 chips, but the lt8912 provides
* a third interface for the audio over HDMI configuration.
*/
struct i2c_board_info info[] = {
{ I2C_BOARD_INFO("lt8912p0", I2C_ADDR_MAIN), },
{ I2C_BOARD_INFO("lt8912p1", I2C_ADDR_CEC_DSI), },
};
if (!lt)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(info); i++) {
if (i > 0) {
lt->i2c_client[i] = i2c_new_dummy_device(client->adapter,
info[i].addr);
if (IS_ERR(lt->i2c_client[i]))
return PTR_ERR(lt->i2c_client[i]);
}
lt->regmap[i] = devm_regmap_init_i2c(lt->i2c_client[i],
<8912_regmap_config);
if (IS_ERR(lt->regmap[i]))
return PTR_ERR(lt->regmap[i]);
}
return 0;
}
static int lt8912_free_i2c(struct lt8912 *lt)
{
unsigned int i;
for (i = 1; i < I2C_MAX_IDX; i++)
i2c_unregister_device(lt->i2c_client[i]);
return 0;
}
static int lt8912_hard_power_on(struct lt8912 *lt)
{
gpiod_set_value_cansleep(lt->gp_reset, 0);
msleep(20);
return 0;
}
static void lt8912_hard_power_off(struct lt8912 *lt)
{
gpiod_set_value_cansleep(lt->gp_reset, 1);
msleep(20);
lt->is_power_on = false;
}
static int lt8912_video_setup(struct lt8912 *lt)
{
u32 hactive, h_total, hpw, hfp, hbp;
u32 vactive, v_total, vpw, vfp, vbp;
u8 settle = 0x08;
int ret, hsync_activehigh, vsync_activehigh;
if (!lt)
return -EINVAL;
hactive = lt->mode.hactive;
hfp = lt->mode.hfront_porch;
hpw = lt->mode.hsync_len;
hbp = lt->mode.hback_porch;
h_total = hactive + hfp + hpw + hbp;
hsync_activehigh = lt->mode.flags & DISPLAY_FLAGS_HSYNC_HIGH;
vactive = lt->mode.vactive;
vfp = lt->mode.vfront_porch;
vpw = lt->mode.vsync_len;
vbp = lt->mode.vback_porch;
v_total = vactive + vfp + vpw + vbp;
vsync_activehigh = lt->mode.flags & DISPLAY_FLAGS_VSYNC_HIGH;
if (vactive <= 600)
settle = 0x04;
else if (vactive == 1080)
settle = 0x0a;
ret = regmap_write(lt->regmap[I2C_CEC_DSI], 0x10, 0x01);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x11, settle);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x18, hpw);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x19, vpw);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x1c, hactive & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x1d, hactive >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x2f, 0x0c);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x34, h_total & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x35, h_total >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x36, v_total & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x37, v_total >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x38, vbp & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x39, vbp >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3a, vfp & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3b, vfp >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3c, hbp & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3d, hbp >> 8);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3e, hfp & 0xff);
ret |= regmap_write(lt->regmap[I2C_CEC_DSI], 0x3f, hfp >> 8);
ret |= regmap_update_bits(lt->regmap[I2C_MAIN], 0xab, BIT(0),
vsync_activehigh ? BIT(0) : 0);
ret |= regmap_update_bits(lt->regmap[I2C_MAIN], 0xab, BIT(1),
hsync_activehigh ? BIT(1) : 0);
ret |= regmap_update_bits(lt->regmap[I2C_MAIN], 0xb2, BIT(0),
lt->connector.display_info.is_hdmi ? BIT(0) : 0);
return ret;
}
static int lt8912_soft_power_on(struct lt8912 *lt)
{
if (!lt->is_power_on) {
u32 lanes = lt->data_lanes;
lt8912_write_init_config(lt);
regmap_write(lt->regmap[I2C_CEC_DSI], 0x13, lanes & 3);
lt8912_write_mipi_basic_config(lt);
lt->is_power_on = true;
}
return 0;
}
static int lt8912_video_on(struct lt8912 *lt)
{
int ret;
ret = lt8912_video_setup(lt);
if (ret < 0)
goto end;
ret = lt8912_write_dds_config(lt);
if (ret < 0)
goto end;
ret = lt8912_write_rxlogicres_config(lt);
if (ret < 0)
goto end;
ret = lt8912_write_lvds_config(lt);
if (ret < 0)
goto end;
end:
return ret;
}
static enum drm_connector_status lt8912_check_cable_status(struct lt8912 *lt)
{
int ret;
unsigned int reg_val;
ret = regmap_read(lt->regmap[I2C_MAIN], 0xC1, ®_val);
if (ret)
return connector_status_unknown;
if (reg_val & BIT(7))
return connector_status_connected;
return connector_status_disconnected;
}
static enum drm_connector_status
lt8912_connector_detect(struct drm_connector *connector, bool force)
{
struct lt8912 *lt = connector_to_lt8912(connector);
if (lt->hdmi_port->ops & DRM_BRIDGE_OP_DETECT)
return drm_bridge_detect(lt->hdmi_port);
return lt8912_check_cable_status(lt);
}
static const struct drm_connector_funcs lt8912_connector_funcs = {
.detect = lt8912_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static enum drm_mode_status
lt8912_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
if (mode->clock > 150000)
return MODE_CLOCK_HIGH;
if (mode->hdisplay > 1920)
return MODE_BAD_HVALUE;
if (mode->vdisplay > 1080)
return MODE_BAD_VVALUE;
return MODE_OK;
}
static int lt8912_connector_get_modes(struct drm_connector *connector)
{
struct edid *edid;
int ret = -1;
int num = 0;
struct lt8912 *lt = connector_to_lt8912(connector);
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
edid = drm_bridge_get_edid(lt->hdmi_port, connector);
if (edid) {
drm_connector_update_edid_property(connector, edid);
num = drm_add_edid_modes(connector, edid);
} else {
return ret;
}
ret = drm_display_info_set_bus_formats(&connector->display_info,
&bus_format, 1);
if (ret)
num = ret;
kfree(edid);
return num;
}
static const struct drm_connector_helper_funcs lt8912_connector_helper_funcs = {
.get_modes = lt8912_connector_get_modes,
.mode_valid = lt8912_connector_mode_valid,
};
static void lt8912_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
drm_display_mode_to_videomode(adj, <->mode);
}
static void lt8912_bridge_enable(struct drm_bridge *bridge)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
lt8912_video_on(lt);
}
static int lt8912_attach_dsi(struct lt8912 *lt)
{
struct device *dev = lt->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
int ret = -1;
const struct mipi_dsi_device_info info = { .type = "lt8912",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(lt->host_node);
if (!host) {
dev_err(dev, "failed to find dsi host\n");
return -EPROBE_DEFER;
}
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
ret = PTR_ERR(dsi);
dev_err(dev, "failed to create dsi device (%d)\n", ret);
return ret;
}
lt->dsi = dsi;
dsi->lanes = lt->data_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_LPM |
MIPI_DSI_MODE_NO_EOT_PACKET;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ret;
}
return 0;
}
static void lt8912_bridge_hpd_cb(void *data, enum drm_connector_status status)
{
struct lt8912 *lt = data;
if (lt->bridge.dev)
drm_helper_hpd_irq_event(lt->bridge.dev);
}
static int lt8912_bridge_connector_init(struct drm_bridge *bridge)
{
int ret;
struct lt8912 *lt = bridge_to_lt8912(bridge);
struct drm_connector *connector = <->connector;
if (lt->hdmi_port->ops & DRM_BRIDGE_OP_HPD) {
drm_bridge_hpd_enable(lt->hdmi_port, lt8912_bridge_hpd_cb, lt);
connector->polled = DRM_CONNECTOR_POLL_HPD;
} else {
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
ret = drm_connector_init(bridge->dev, connector,
<8912_connector_funcs,
lt->hdmi_port->type);
if (ret)
goto exit;
drm_connector_helper_add(connector, <8912_connector_helper_funcs);
connector->dpms = DRM_MODE_DPMS_OFF;
drm_connector_attach_encoder(connector, bridge->encoder);
exit:
return ret;
}
static int lt8912_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
ret = lt8912_bridge_connector_init(bridge);
if (ret) {
dev_err(lt->dev, "Failed to init bridge ! (%d)\n", ret);
return ret;
}
}
ret = lt8912_hard_power_on(lt);
if (ret)
return ret;
ret = lt8912_soft_power_on(lt);
if (ret)
goto error;
lt->is_attached = true;
return 0;
error:
lt8912_hard_power_off(lt);
return ret;
}
static void lt8912_bridge_detach(struct drm_bridge *bridge)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
if (lt->is_attached) {
lt8912_hard_power_off(lt);
if (lt->hdmi_port->ops & DRM_BRIDGE_OP_HPD)
drm_bridge_hpd_disable(lt->hdmi_port);
drm_connector_unregister(<->connector);
drm_connector_cleanup(<->connector);
}
}
static enum drm_connector_status
lt8912_bridge_detect(struct drm_bridge *bridge)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
if (lt->hdmi_port->ops & DRM_BRIDGE_OP_DETECT)
return drm_bridge_detect(lt->hdmi_port);
return lt8912_check_cable_status(lt);
}
static struct edid *lt8912_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct lt8912 *lt = bridge_to_lt8912(bridge);
/*
* edid must be read through the ddc bus but it must be
* given to the hdmi connector node.
*/
if (lt->hdmi_port->ops & DRM_BRIDGE_OP_EDID)
return drm_bridge_get_edid(lt->hdmi_port, connector);
dev_warn(lt->dev, "The connected bridge does not supports DRM_BRIDGE_OP_EDID\n");
return NULL;
}
static const struct drm_bridge_funcs lt8912_bridge_funcs = {
.attach = lt8912_bridge_attach,
.detach = lt8912_bridge_detach,
.mode_set = lt8912_bridge_mode_set,
.enable = lt8912_bridge_enable,
.detect = lt8912_bridge_detect,
.get_edid = lt8912_bridge_get_edid,
};
static int lt8912_parse_dt(struct lt8912 *lt)
{
struct gpio_desc *gp_reset;
struct device *dev = lt->dev;
int ret;
int data_lanes;
struct device_node *port_node;
gp_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gp_reset)) {
ret = PTR_ERR(gp_reset);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get reset gpio: %d\n", ret);
return ret;
}
lt->gp_reset = gp_reset;
data_lanes = drm_of_get_data_lanes_count_ep(dev->of_node, 0, -1, 1, 4);
if (data_lanes < 0) {
dev_err(lt->dev, "%s: Bad data-lanes property\n", __func__);
return data_lanes;
}
lt->data_lanes = data_lanes;
lt->host_node = of_graph_get_remote_node(dev->of_node, 0, -1);
if (!lt->host_node) {
dev_err(lt->dev, "%s: Failed to get remote port\n", __func__);
return -ENODEV;
}
port_node = of_graph_get_remote_node(dev->of_node, 1, -1);
if (!port_node) {
dev_err(lt->dev, "%s: Failed to get connector port\n", __func__);
ret = -ENODEV;
goto err_free_host_node;
}
lt->hdmi_port = of_drm_find_bridge(port_node);
if (!lt->hdmi_port) {
ret = -EPROBE_DEFER;
dev_err_probe(lt->dev, ret, "%s: Failed to get hdmi port\n", __func__);
goto err_free_host_node;
}
if (!of_device_is_compatible(port_node, "hdmi-connector")) {
dev_err(lt->dev, "%s: Failed to get hdmi port\n", __func__);
ret = -EINVAL;
goto err_free_host_node;
}
of_node_put(port_node);
return 0;
err_free_host_node:
of_node_put(port_node);
of_node_put(lt->host_node);
return ret;
}
static int lt8912_put_dt(struct lt8912 *lt)
{
of_node_put(lt->host_node);
return 0;
}
static int lt8912_probe(struct i2c_client *client)
{
static struct lt8912 *lt;
int ret = 0;
struct device *dev = &client->dev;
lt = devm_kzalloc(dev, sizeof(struct lt8912), GFP_KERNEL);
if (!lt)
return -ENOMEM;
lt->dev = dev;
lt->i2c_client[0] = client;
ret = lt8912_parse_dt(lt);
if (ret)
goto err_dt_parse;
ret = lt8912_init_i2c(lt, client);
if (ret)
goto err_i2c;
i2c_set_clientdata(client, lt);
lt->bridge.funcs = <8912_bridge_funcs;
lt->bridge.of_node = dev->of_node;
lt->bridge.ops = (DRM_BRIDGE_OP_EDID |
DRM_BRIDGE_OP_DETECT);
drm_bridge_add(<->bridge);
ret = lt8912_attach_dsi(lt);
if (ret)
goto err_attach;
return 0;
err_attach:
drm_bridge_remove(<->bridge);
lt8912_free_i2c(lt);
err_i2c:
lt8912_put_dt(lt);
err_dt_parse:
return ret;
}
static void lt8912_remove(struct i2c_client *client)
{
struct lt8912 *lt = i2c_get_clientdata(client);
lt8912_bridge_detach(<->bridge);
drm_bridge_remove(<->bridge);
lt8912_free_i2c(lt);
lt8912_put_dt(lt);
}
static const struct of_device_id lt8912_dt_match[] = {
{.compatible = "lontium,lt8912b"},
{}
};
MODULE_DEVICE_TABLE(of, lt8912_dt_match);
static const struct i2c_device_id lt8912_id[] = {
{"lt8912", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, lt8912_id);
static struct i2c_driver lt8912_i2c_driver = {
.driver = {
.name = "lt8912",
.of_match_table = lt8912_dt_match,
},
.probe = lt8912_probe,
.remove = lt8912_remove,
.id_table = lt8912_id,
};
module_i2c_driver(lt8912_i2c_driver);
MODULE_AUTHOR("Adrien Grassein <[email protected]>");
MODULE_DESCRIPTION("lt8912 drm driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/lontium-lt8912b.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TC358775 DSI to LVDS bridge driver
*
* Copyright (C) 2020 SMART Wireless Computing
* Author: Vinay Simha BN <[email protected]>
*
*/
/* #define DEBUG */
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#define FLD_VAL(val, start, end) FIELD_PREP(GENMASK(start, end), val)
/* Registers */
/* DSI D-PHY Layer Registers */
#define D0W_DPHYCONTTX 0x0004 /* Data Lane 0 DPHY Tx Control */
#define CLW_DPHYCONTRX 0x0020 /* Clock Lane DPHY Rx Control */
#define D0W_DPHYCONTRX 0x0024 /* Data Lane 0 DPHY Rx Control */
#define D1W_DPHYCONTRX 0x0028 /* Data Lane 1 DPHY Rx Control */
#define D2W_DPHYCONTRX 0x002C /* Data Lane 2 DPHY Rx Control */
#define D3W_DPHYCONTRX 0x0030 /* Data Lane 3 DPHY Rx Control */
#define COM_DPHYCONTRX 0x0038 /* DPHY Rx Common Control */
#define CLW_CNTRL 0x0040 /* Clock Lane Control */
#define D0W_CNTRL 0x0044 /* Data Lane 0 Control */
#define D1W_CNTRL 0x0048 /* Data Lane 1 Control */
#define D2W_CNTRL 0x004C /* Data Lane 2 Control */
#define D3W_CNTRL 0x0050 /* Data Lane 3 Control */
#define DFTMODE_CNTRL 0x0054 /* DFT Mode Control */
/* DSI PPI Layer Registers */
#define PPI_STARTPPI 0x0104 /* START control bit of PPI-TX function. */
#define PPI_START_FUNCTION 1
#define PPI_BUSYPPI 0x0108
#define PPI_LINEINITCNT 0x0110 /* Line Initialization Wait Counter */
#define PPI_LPTXTIMECNT 0x0114
#define PPI_LANEENABLE 0x0134 /* Enables each lane at the PPI layer. */
#define PPI_TX_RX_TA 0x013C /* DSI Bus Turn Around timing parameters */
/* Analog timer function enable */
#define PPI_CLS_ATMR 0x0140 /* Delay for Clock Lane in LPRX */
#define PPI_D0S_ATMR 0x0144 /* Delay for Data Lane 0 in LPRX */
#define PPI_D1S_ATMR 0x0148 /* Delay for Data Lane 1 in LPRX */
#define PPI_D2S_ATMR 0x014C /* Delay for Data Lane 2 in LPRX */
#define PPI_D3S_ATMR 0x0150 /* Delay for Data Lane 3 in LPRX */
#define PPI_D0S_CLRSIPOCOUNT 0x0164 /* For lane 0 */
#define PPI_D1S_CLRSIPOCOUNT 0x0168 /* For lane 1 */
#define PPI_D2S_CLRSIPOCOUNT 0x016C /* For lane 2 */
#define PPI_D3S_CLRSIPOCOUNT 0x0170 /* For lane 3 */
#define CLS_PRE 0x0180 /* Digital Counter inside of PHY IO */
#define D0S_PRE 0x0184 /* Digital Counter inside of PHY IO */
#define D1S_PRE 0x0188 /* Digital Counter inside of PHY IO */
#define D2S_PRE 0x018C /* Digital Counter inside of PHY IO */
#define D3S_PRE 0x0190 /* Digital Counter inside of PHY IO */
#define CLS_PREP 0x01A0 /* Digital Counter inside of PHY IO */
#define D0S_PREP 0x01A4 /* Digital Counter inside of PHY IO */
#define D1S_PREP 0x01A8 /* Digital Counter inside of PHY IO */
#define D2S_PREP 0x01AC /* Digital Counter inside of PHY IO */
#define D3S_PREP 0x01B0 /* Digital Counter inside of PHY IO */
#define CLS_ZERO 0x01C0 /* Digital Counter inside of PHY IO */
#define D0S_ZERO 0x01C4 /* Digital Counter inside of PHY IO */
#define D1S_ZERO 0x01C8 /* Digital Counter inside of PHY IO */
#define D2S_ZERO 0x01CC /* Digital Counter inside of PHY IO */
#define D3S_ZERO 0x01D0 /* Digital Counter inside of PHY IO */
#define PPI_CLRFLG 0x01E0 /* PRE Counters has reached set values */
#define PPI_CLRSIPO 0x01E4 /* Clear SIPO values, Slave mode use only. */
#define HSTIMEOUT 0x01F0 /* HS Rx Time Out Counter */
#define HSTIMEOUTENABLE 0x01F4 /* Enable HS Rx Time Out Counter */
#define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX function */
#define DSI_RX_START 1
#define DSI_BUSYDSI 0x0208
#define DSI_LANEENABLE 0x0210 /* Enables each lane at the Protocol layer. */
#define DSI_LANESTATUS0 0x0214 /* Displays lane is in HS RX mode. */
#define DSI_LANESTATUS1 0x0218 /* Displays lane is in ULPS or STOP state */
#define DSI_INTSTATUS 0x0220 /* Interrupt Status */
#define DSI_INTMASK 0x0224 /* Interrupt Mask */
#define DSI_INTCLR 0x0228 /* Interrupt Clear */
#define DSI_LPTXTO 0x0230 /* Low Power Tx Time Out Counter */
#define DSIERRCNT 0x0300 /* DSI Error Count */
#define APLCTRL 0x0400 /* Application Layer Control */
#define RDPKTLN 0x0404 /* Command Read Packet Length */
#define VPCTRL 0x0450 /* Video Path Control */
#define HTIM1 0x0454 /* Horizontal Timing Control 1 */
#define HTIM2 0x0458 /* Horizontal Timing Control 2 */
#define VTIM1 0x045C /* Vertical Timing Control 1 */
#define VTIM2 0x0460 /* Vertical Timing Control 2 */
#define VFUEN 0x0464 /* Video Frame Timing Update Enable */
#define VFUEN_EN BIT(0) /* Upload Enable */
/* Mux Input Select for LVDS LINK Input */
#define LV_MX0003 0x0480 /* Bit 0 to 3 */
#define LV_MX0407 0x0484 /* Bit 4 to 7 */
#define LV_MX0811 0x0488 /* Bit 8 to 11 */
#define LV_MX1215 0x048C /* Bit 12 to 15 */
#define LV_MX1619 0x0490 /* Bit 16 to 19 */
#define LV_MX2023 0x0494 /* Bit 20 to 23 */
#define LV_MX2427 0x0498 /* Bit 24 to 27 */
#define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \
FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24))
/* Input bit numbers used in mux registers */
enum {
LVI_R0,
LVI_R1,
LVI_R2,
LVI_R3,
LVI_R4,
LVI_R5,
LVI_R6,
LVI_R7,
LVI_G0,
LVI_G1,
LVI_G2,
LVI_G3,
LVI_G4,
LVI_G5,
LVI_G6,
LVI_G7,
LVI_B0,
LVI_B1,
LVI_B2,
LVI_B3,
LVI_B4,
LVI_B5,
LVI_B6,
LVI_B7,
LVI_HS,
LVI_VS,
LVI_DE,
LVI_L0
};
#define LVCFG 0x049C /* LVDS Configuration */
#define LVPHY0 0x04A0 /* LVDS PHY 0 */
#define LV_PHY0_RST(v) FLD_VAL(v, 22, 22) /* PHY reset */
#define LV_PHY0_IS(v) FLD_VAL(v, 15, 14)
#define LV_PHY0_ND(v) FLD_VAL(v, 4, 0) /* Frequency range select */
#define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16) /* Clock/Data Flag pins */
#define LVPHY1 0x04A4 /* LVDS PHY 1 */
#define SYSSTAT 0x0500 /* System Status */
#define SYSRST 0x0504 /* System Reset */
#define SYS_RST_I2CS BIT(0) /* Reset I2C-Slave controller */
#define SYS_RST_I2CM BIT(1) /* Reset I2C-Master controller */
#define SYS_RST_LCD BIT(2) /* Reset LCD controller */
#define SYS_RST_BM BIT(3) /* Reset Bus Management controller */
#define SYS_RST_DSIRX BIT(4) /* Reset DSI-RX and App controller */
#define SYS_RST_REG BIT(5) /* Reset Register module */
/* GPIO Registers */
#define GPIOC 0x0520 /* GPIO Control */
#define GPIOO 0x0524 /* GPIO Output */
#define GPIOI 0x0528 /* GPIO Input */
/* I2C Registers */
#define I2CTIMCTRL 0x0540 /* I2C IF Timing and Enable Control */
#define I2CMADDR 0x0544 /* I2C Master Addressing */
#define WDATAQ 0x0548 /* Write Data Queue */
#define RDATAQ 0x054C /* Read Data Queue */
/* Chip ID and Revision ID Register */
#define IDREG 0x0580
#define LPX_PERIOD 4
#define TTA_GET 0x40000
#define TTA_SURE 6
#define SINGLE_LINK 1
#define DUAL_LINK 2
#define TC358775XBG_ID 0x00007500
/* Debug Registers */
#define DEBUG00 0x05A0 /* Debug */
#define DEBUG01 0x05A4 /* LVDS Data */
#define DSI_CLEN_BIT BIT(0)
#define DIVIDE_BY_3 3 /* PCLK=DCLK/3 */
#define DIVIDE_BY_6 6 /* PCLK=DCLK/6 */
#define LVCFG_LVEN_BIT BIT(0)
#define L0EN BIT(1)
#define TC358775_VPCTRL_VSDELAY__MASK 0x3FF00000
#define TC358775_VPCTRL_VSDELAY__SHIFT 20
static inline u32 TC358775_VPCTRL_VSDELAY(uint32_t val)
{
return ((val) << TC358775_VPCTRL_VSDELAY__SHIFT) &
TC358775_VPCTRL_VSDELAY__MASK;
}
#define TC358775_VPCTRL_OPXLFMT__MASK 0x00000100
#define TC358775_VPCTRL_OPXLFMT__SHIFT 8
static inline u32 TC358775_VPCTRL_OPXLFMT(uint32_t val)
{
return ((val) << TC358775_VPCTRL_OPXLFMT__SHIFT) &
TC358775_VPCTRL_OPXLFMT__MASK;
}
#define TC358775_VPCTRL_MSF__MASK 0x00000001
#define TC358775_VPCTRL_MSF__SHIFT 0
static inline u32 TC358775_VPCTRL_MSF(uint32_t val)
{
return ((val) << TC358775_VPCTRL_MSF__SHIFT) &
TC358775_VPCTRL_MSF__MASK;
}
#define TC358775_LVCFG_PCLKDIV__MASK 0x000000f0
#define TC358775_LVCFG_PCLKDIV__SHIFT 4
static inline u32 TC358775_LVCFG_PCLKDIV(uint32_t val)
{
return ((val) << TC358775_LVCFG_PCLKDIV__SHIFT) &
TC358775_LVCFG_PCLKDIV__MASK;
}
#define TC358775_LVCFG_LVDLINK__MASK 0x00000002
#define TC358775_LVCFG_LVDLINK__SHIFT 1
static inline u32 TC358775_LVCFG_LVDLINK(uint32_t val)
{
return ((val) << TC358775_LVCFG_LVDLINK__SHIFT) &
TC358775_LVCFG_LVDLINK__MASK;
}
enum tc358775_ports {
TC358775_DSI_IN,
TC358775_LVDS_OUT0,
TC358775_LVDS_OUT1,
};
struct tc_data {
struct i2c_client *i2c;
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
u8 num_dsi_lanes;
struct regulator *vdd;
struct regulator *vddio;
struct gpio_desc *reset_gpio;
struct gpio_desc *stby_gpio;
u8 lvds_link; /* single-link or dual-link */
u8 bpc;
};
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static void tc_bridge_pre_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
ret = regulator_enable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio enable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_enable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd enable failed, %d\n", ret);
usleep_range(10000, 11000);
gpiod_set_value(tc->stby_gpio, 0);
usleep_range(10000, 11000);
gpiod_set_value(tc->reset_gpio, 0);
usleep_range(10, 20);
}
static void tc_bridge_post_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
gpiod_set_value(tc->reset_gpio, 1);
usleep_range(10, 20);
gpiod_set_value(tc->stby_gpio, 1);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd disable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio disable failed, %d\n", ret);
usleep_range(10000, 11000);
}
static void d2l_read(struct i2c_client *i2c, u16 addr, u32 *val)
{
int ret;
u8 buf_addr[2];
put_unaligned_be16(addr, buf_addr);
ret = i2c_master_send(i2c, buf_addr, sizeof(buf_addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(i2c, (u8 *)val, sizeof(*val));
if (ret < 0)
goto fail;
pr_debug("d2l: I2C : addr:%04x value:%08x\n", addr, *val);
return;
fail:
dev_err(&i2c->dev, "Error %d reading from subaddress 0x%x\n",
ret, addr);
}
static void d2l_write(struct i2c_client *i2c, u16 addr, u32 val)
{
u8 data[6];
int ret;
put_unaligned_be16(addr, data);
put_unaligned_le32(val, data + 2);
ret = i2c_master_send(i2c, data, ARRAY_SIZE(data));
if (ret < 0)
dev_err(&i2c->dev, "Error %d writing to subaddress 0x%x\n",
ret, addr);
}
/* helper function to access bus_formats */
static struct drm_connector *get_connector(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder)
return connector;
return NULL;
}
static void tc_bridge_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
u32 hback_porch, hsync_len, hfront_porch, hactive, htime1, htime2;
u32 vback_porch, vsync_len, vfront_porch, vactive, vtime1, vtime2;
u32 val = 0;
u16 dsiclk, clkdiv, byteclk, t1, t2, t3, vsdelay;
struct drm_display_mode *mode;
struct drm_connector *connector = get_connector(bridge->encoder);
mode = &bridge->encoder->crtc->state->adjusted_mode;
hback_porch = mode->htotal - mode->hsync_end;
hsync_len = mode->hsync_end - mode->hsync_start;
vback_porch = mode->vtotal - mode->vsync_end;
vsync_len = mode->vsync_end - mode->vsync_start;
htime1 = (hback_porch << 16) + hsync_len;
vtime1 = (vback_porch << 16) + vsync_len;
hfront_porch = mode->hsync_start - mode->hdisplay;
hactive = mode->hdisplay;
vfront_porch = mode->vsync_start - mode->vdisplay;
vactive = mode->vdisplay;
htime2 = (hfront_porch << 16) + hactive;
vtime2 = (vfront_porch << 16) + vactive;
d2l_read(tc->i2c, IDREG, &val);
dev_info(tc->dev, "DSI2LVDS Chip ID.%02x Revision ID. %02x **\n",
(val >> 8) & 0xFF, val & 0xFF);
d2l_write(tc->i2c, SYSRST, SYS_RST_REG | SYS_RST_DSIRX | SYS_RST_BM |
SYS_RST_LCD | SYS_RST_I2CM);
usleep_range(30000, 40000);
d2l_write(tc->i2c, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
d2l_write(tc->i2c, PPI_LPTXTIMECNT, LPX_PERIOD);
d2l_write(tc->i2c, PPI_D0S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D1S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D2S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D3S_CLRSIPOCOUNT, 3);
val = ((L0EN << tc->num_dsi_lanes) - L0EN) | DSI_CLEN_BIT;
d2l_write(tc->i2c, PPI_LANEENABLE, val);
d2l_write(tc->i2c, DSI_LANEENABLE, val);
d2l_write(tc->i2c, PPI_STARTPPI, PPI_START_FUNCTION);
d2l_write(tc->i2c, DSI_STARTDSI, DSI_RX_START);
if (tc->bpc == 8)
val = TC358775_VPCTRL_OPXLFMT(1);
else /* bpc = 6; */
val = TC358775_VPCTRL_MSF(1);
dsiclk = mode->crtc_clock * 3 * tc->bpc / tc->num_dsi_lanes / 1000;
clkdiv = dsiclk / (tc->lvds_link == DUAL_LINK ? DIVIDE_BY_6 : DIVIDE_BY_3);
byteclk = dsiclk / 4;
t1 = hactive * (tc->bpc * 3 / 8) / tc->num_dsi_lanes;
t2 = ((100000 / clkdiv)) * (hactive + hback_porch + hsync_len + hfront_porch) / 1000;
t3 = ((t2 * byteclk) / 100) - (hactive * (tc->bpc * 3 / 8) /
tc->num_dsi_lanes);
vsdelay = (clkdiv * (t1 + t3) / byteclk) - hback_porch - hsync_len - hactive;
val |= TC358775_VPCTRL_VSDELAY(vsdelay);
d2l_write(tc->i2c, VPCTRL, val);
d2l_write(tc->i2c, HTIM1, htime1);
d2l_write(tc->i2c, VTIM1, vtime1);
d2l_write(tc->i2c, HTIM2, htime2);
d2l_write(tc->i2c, VTIM2, vtime2);
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
d2l_write(tc->i2c, SYSRST, SYS_RST_LCD);
d2l_write(tc->i2c, LVPHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_ND(6));
dev_dbg(tc->dev, "bus_formats %04x bpc %d\n",
connector->display_info.bus_formats[0],
tc->bpc);
/*
* Default hardware register settings of tc358775 configured
* with MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA jeida-24 format
*/
if (connector->display_info.bus_formats[0] ==
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG) {
/* VESA-24 */
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6));
} else { /* MEDIA_BUS_FMT_RGB666_1X7X3_SPWG - JEIDA-18 */
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R4, LVI_L0, LVI_R5, LVI_G0));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_L0, LVI_L0));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_L0, LVI_L0, LVI_B1, LVI_B2));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_L0));
}
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
val = LVCFG_LVEN_BIT;
if (tc->lvds_link == DUAL_LINK) {
val |= TC358775_LVCFG_LVDLINK(1);
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_6);
} else {
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_3);
}
d2l_write(tc->i2c, LVCFG, val);
}
static enum drm_mode_status
tc_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc_data *tc = bridge_to_tc(bridge);
/*
* Maximum pixel clock speed 135MHz for single-link
* 270MHz for dual-link
*/
if ((mode->clock > 135000 && tc->lvds_link == SINGLE_LINK) ||
(mode->clock > 270000 && tc->lvds_link == DUAL_LINK))
return MODE_CLOCK_HIGH;
switch (info->bus_formats[0]) {
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
/* RGB888 */
tc->bpc = 8;
break;
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
/* RGB666 */
tc->bpc = 6;
break;
default:
dev_warn(tc->dev,
"unsupported LVDS bus format 0x%04x\n",
info->bus_formats[0]);
return MODE_NOMODE;
}
return MODE_OK;
}
static int tc358775_parse_dt(struct device_node *np, struct tc_data *tc)
{
struct device_node *endpoint;
struct device_node *parent;
struct device_node *remote;
int dsi_lanes = -1;
/*
* To get the data-lanes of dsi, we need to access the dsi0_out of port1
* of dsi0 endpoint from bridge port0 of d2l_in
*/
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_DSI_IN, -1);
if (endpoint) {
/* dsi0_out node */
parent = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (parent) {
/* dsi0 port 1 */
dsi_lanes = drm_of_get_data_lanes_count_ep(parent, 1, -1, 1, 4);
of_node_put(parent);
}
}
if (dsi_lanes < 0)
return dsi_lanes;
tc->num_dsi_lanes = dsi_lanes;
tc->host_node = of_graph_get_remote_node(np, 0, 0);
if (!tc->host_node)
return -ENODEV;
of_node_put(tc->host_node);
tc->lvds_link = SINGLE_LINK;
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_LVDS_OUT1, -1);
if (endpoint) {
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (remote) {
if (of_device_is_available(remote))
tc->lvds_link = DUAL_LINK;
of_node_put(remote);
}
}
dev_dbg(tc->dev, "no.of dsi lanes: %d\n", tc->num_dsi_lanes);
dev_dbg(tc->dev, "operating in %d-link mode\n", tc->lvds_link);
return 0;
}
static int tc_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc_data *tc = bridge_to_tc(bridge);
/* Attach the panel-bridge to the dsi bridge */
return drm_bridge_attach(bridge->encoder, tc->panel_bridge,
&tc->bridge, flags);
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.pre_enable = tc_bridge_pre_enable,
.enable = tc_bridge_enable,
.mode_valid = tc_mode_valid,
.post_disable = tc_bridge_post_disable,
};
static int tc_attach_host(struct tc_data *tc)
{
struct device *dev = &tc->i2c->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
int ret;
const struct mipi_dsi_device_info info = { .type = "tc358775",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(tc->host_node);
if (!host) {
dev_err(dev, "failed to find dsi host\n");
return -EPROBE_DEFER;
}
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(dev, "failed to create dsi device\n");
return PTR_ERR(dsi);
}
tc->dsi = dsi;
dsi->lanes = tc->num_dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ret;
}
return 0;
}
static int tc_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
tc->i2c = client;
tc->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node,
TC358775_LVDS_OUT0, 0);
if (IS_ERR(tc->panel_bridge))
return PTR_ERR(tc->panel_bridge);
ret = tc358775_parse_dt(dev->of_node, tc);
if (ret)
return ret;
tc->vddio = devm_regulator_get(dev, "vddio-supply");
if (IS_ERR(tc->vddio)) {
ret = PTR_ERR(tc->vddio);
dev_err(dev, "vddio-supply not found\n");
return ret;
}
tc->vdd = devm_regulator_get(dev, "vdd-supply");
if (IS_ERR(tc->vdd)) {
ret = PTR_ERR(tc->vdd);
dev_err(dev, "vdd-supply not found\n");
return ret;
}
tc->stby_gpio = devm_gpiod_get(dev, "stby", GPIOD_OUT_HIGH);
if (IS_ERR(tc->stby_gpio)) {
ret = PTR_ERR(tc->stby_gpio);
dev_err(dev, "cannot get stby-gpio %d\n", ret);
return ret;
}
tc->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(tc->reset_gpio)) {
ret = PTR_ERR(tc->reset_gpio);
dev_err(dev, "cannot get reset-gpios %d\n", ret);
return ret;
}
tc->bridge.funcs = &tc_bridge_funcs;
tc->bridge.of_node = dev->of_node;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
ret = tc_attach_host(tc);
if (ret)
goto err_bridge_remove;
return 0;
err_bridge_remove:
drm_bridge_remove(&tc->bridge);
return ret;
}
static void tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
}
static const struct i2c_device_id tc358775_i2c_ids[] = {
{ "tc358775", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358775_i2c_ids);
static const struct of_device_id tc358775_of_ids[] = {
{ .compatible = "toshiba,tc358775", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358775_of_ids);
static struct i2c_driver tc358775_driver = {
.driver = {
.name = "tc358775",
.of_match_table = tc358775_of_ids,
},
.id_table = tc358775_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358775_driver);
MODULE_AUTHOR("Vinay Simha BN <[email protected]>");
MODULE_DESCRIPTION("TC358775 DSI/LVDS bridge driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/tc358775.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* CrOS EC ANX7688 HDMI->DP bridge driver
*
* Copyright 2020 Google LLC
*/
#include <drm/drm_bridge.h>
#include <drm/drm_print.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/types.h>
/* Register addresses */
#define ANX7688_VENDOR_ID_REG 0x00
#define ANX7688_DEVICE_ID_REG 0x02
#define ANX7688_FW_VERSION_REG 0x80
#define ANX7688_DP_BANDWIDTH_REG 0x85
#define ANX7688_DP_LANE_COUNT_REG 0x86
#define ANX7688_VENDOR_ID 0x1f29
#define ANX7688_DEVICE_ID 0x7688
/* First supported firmware version (0.85) */
#define ANX7688_MINIMUM_FW_VERSION 0x0085
static const struct regmap_config cros_ec_anx7688_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
struct cros_ec_anx7688 {
struct i2c_client *client;
struct regmap *regmap;
struct drm_bridge bridge;
bool filter;
};
static inline struct cros_ec_anx7688 *
bridge_to_cros_ec_anx7688(struct drm_bridge *bridge)
{
return container_of(bridge, struct cros_ec_anx7688, bridge);
}
static bool cros_ec_anx7688_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct cros_ec_anx7688 *anx = bridge_to_cros_ec_anx7688(bridge);
int totalbw, requiredbw;
u8 dpbw, lanecount;
u8 regs[2];
int ret;
if (!anx->filter)
return true;
/* Read both regs 0x85 (bandwidth) and 0x86 (lane count). */
ret = regmap_bulk_read(anx->regmap, ANX7688_DP_BANDWIDTH_REG, regs, 2);
if (ret < 0) {
DRM_ERROR("Failed to read bandwidth/lane count\n");
return false;
}
dpbw = regs[0];
lanecount = regs[1];
/* Maximum 0x19 bandwidth (6.75 Gbps Turbo mode), 2 lanes */
if (dpbw > 0x19 || lanecount > 2) {
DRM_ERROR("Invalid bandwidth/lane count (%02x/%d)\n", dpbw,
lanecount);
return false;
}
/* Compute available bandwidth (kHz) */
totalbw = dpbw * lanecount * 270000 * 8 / 10;
/* Required bandwidth (8 bpc, kHz) */
requiredbw = mode->clock * 8 * 3;
DRM_DEBUG_KMS("DP bandwidth: %d kHz (%02x/%d); mode requires %d Khz\n",
totalbw, dpbw, lanecount, requiredbw);
if (totalbw == 0) {
DRM_ERROR("Bandwidth/lane count are 0, not rejecting modes\n");
return true;
}
return totalbw >= requiredbw;
}
static const struct drm_bridge_funcs cros_ec_anx7688_bridge_funcs = {
.mode_fixup = cros_ec_anx7688_bridge_mode_fixup,
};
static int cros_ec_anx7688_bridge_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct cros_ec_anx7688 *anx7688;
u16 vendor, device, fw_version;
u8 buffer[4];
int ret;
anx7688 = devm_kzalloc(dev, sizeof(*anx7688), GFP_KERNEL);
if (!anx7688)
return -ENOMEM;
anx7688->client = client;
i2c_set_clientdata(client, anx7688);
anx7688->regmap = devm_regmap_init_i2c(client, &cros_ec_anx7688_regmap_config);
if (IS_ERR(anx7688->regmap)) {
ret = PTR_ERR(anx7688->regmap);
dev_err(dev, "regmap i2c init failed: %d\n", ret);
return ret;
}
/* Read both vendor and device id (4 bytes). */
ret = regmap_bulk_read(anx7688->regmap, ANX7688_VENDOR_ID_REG,
buffer, 4);
if (ret) {
dev_err(dev, "Failed to read chip vendor/device id\n");
return ret;
}
vendor = (u16)buffer[1] << 8 | buffer[0];
device = (u16)buffer[3] << 8 | buffer[2];
if (vendor != ANX7688_VENDOR_ID || device != ANX7688_DEVICE_ID) {
dev_err(dev, "Invalid vendor/device id %04x/%04x\n",
vendor, device);
return -ENODEV;
}
ret = regmap_bulk_read(anx7688->regmap, ANX7688_FW_VERSION_REG,
buffer, 2);
if (ret) {
dev_err(dev, "Failed to read firmware version\n");
return ret;
}
fw_version = (u16)buffer[0] << 8 | buffer[1];
dev_info(dev, "ANX7688 firmware version 0x%04x\n", fw_version);
anx7688->bridge.of_node = dev->of_node;
/* FW version >= 0.85 supports bandwidth/lane count registers */
if (fw_version >= ANX7688_MINIMUM_FW_VERSION)
anx7688->filter = true;
else
/* Warn, but not fail, for backwards compatibility */
DRM_WARN("Old ANX7688 FW version (0x%04x), not filtering\n",
fw_version);
anx7688->bridge.funcs = &cros_ec_anx7688_bridge_funcs;
drm_bridge_add(&anx7688->bridge);
return 0;
}
static void cros_ec_anx7688_bridge_remove(struct i2c_client *client)
{
struct cros_ec_anx7688 *anx7688 = i2c_get_clientdata(client);
drm_bridge_remove(&anx7688->bridge);
}
static const struct of_device_id cros_ec_anx7688_bridge_match_table[] = {
{ .compatible = "google,cros-ec-anx7688" },
{ }
};
MODULE_DEVICE_TABLE(of, cros_ec_anx7688_bridge_match_table);
static struct i2c_driver cros_ec_anx7688_bridge_driver = {
.probe = cros_ec_anx7688_bridge_probe,
.remove = cros_ec_anx7688_bridge_remove,
.driver = {
.name = "cros-ec-anx7688-bridge",
.of_match_table = cros_ec_anx7688_bridge_match_table,
},
};
module_i2c_driver(cros_ec_anx7688_bridge_driver);
MODULE_DESCRIPTION("ChromeOS EC ANX7688 HDMI->DP bridge driver");
MODULE_AUTHOR("Nicolas Boichat <[email protected]>");
MODULE_AUTHOR("Enric Balletbo i Serra <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/cros-ec-anx7688.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Silicon Image SiI8620 HDMI/MHL bridge driver
*
* Copyright (C) 2015, Samsung Electronics Co., Ltd.
* Andrzej Hajda <[email protected]>
*/
#include <asm/unaligned.h>
#include <drm/bridge/mhl.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/extcon.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <media/rc-core.h>
#include "sil-sii8620.h"
#define SII8620_BURST_BUF_LEN 288
#define VAL_RX_HDMI_CTRL2_DEFVAL VAL_RX_HDMI_CTRL2_IDLE_CNT(3)
#define MHL1_MAX_PCLK 75000
#define MHL1_MAX_PCLK_PP_MODE 150000
#define MHL3_MAX_PCLK 200000
#define MHL3_MAX_PCLK_PP_MODE 300000
enum sii8620_mode {
CM_DISCONNECTED,
CM_DISCOVERY,
CM_MHL1,
CM_MHL3,
CM_ECBUS_S
};
enum sii8620_sink_type {
SINK_NONE,
SINK_HDMI,
SINK_DVI
};
enum sii8620_mt_state {
MT_STATE_READY,
MT_STATE_BUSY,
MT_STATE_DONE
};
struct sii8620 {
struct drm_bridge bridge;
struct device *dev;
struct rc_dev *rc_dev;
struct clk *clk_xtal;
struct gpio_desc *gpio_reset;
struct gpio_desc *gpio_int;
struct regulator_bulk_data supplies[2];
struct mutex lock; /* context lock, protects fields below */
int error;
unsigned int use_packed_pixel:1;
enum sii8620_mode mode;
enum sii8620_sink_type sink_type;
u8 cbus_status;
u8 stat[MHL_DST_SIZE];
u8 xstat[MHL_XDS_SIZE];
u8 devcap[MHL_DCAP_SIZE];
u8 xdevcap[MHL_XDC_SIZE];
bool feature_complete;
bool devcap_read;
bool sink_detected;
struct edid *edid;
unsigned int gen2_write_burst:1;
enum sii8620_mt_state mt_state;
struct extcon_dev *extcon;
struct notifier_block extcon_nb;
struct work_struct extcon_wq;
int cable_state;
struct list_head mt_queue;
struct {
int r_size;
int r_count;
int rx_ack;
int rx_count;
u8 rx_buf[32];
int tx_count;
u8 tx_buf[32];
} burst;
};
struct sii8620_mt_msg;
typedef void (*sii8620_mt_msg_cb)(struct sii8620 *ctx,
struct sii8620_mt_msg *msg);
typedef void (*sii8620_cb)(struct sii8620 *ctx, int ret);
struct sii8620_mt_msg {
struct list_head node;
u8 reg[4];
u8 ret;
sii8620_mt_msg_cb send;
sii8620_mt_msg_cb recv;
sii8620_cb continuation;
};
static const u8 sii8620_i2c_page[] = {
0x39, /* Main System */
0x3d, /* TDM and HSIC */
0x49, /* TMDS Receiver, MHL EDID */
0x4d, /* eMSC, HDCP, HSIC */
0x5d, /* MHL Spec */
0x64, /* MHL CBUS */
0x59, /* Hardware TPI (Transmitter Programming Interface) */
0x61, /* eCBUS-S, eCBUS-D */
};
static void sii8620_fetch_edid(struct sii8620 *ctx);
static void sii8620_set_upstream_edid(struct sii8620 *ctx);
static void sii8620_enable_hpd(struct sii8620 *ctx);
static void sii8620_mhl_disconnected(struct sii8620 *ctx);
static void sii8620_disconnect(struct sii8620 *ctx);
static int sii8620_clear_error(struct sii8620 *ctx)
{
int ret = ctx->error;
ctx->error = 0;
return ret;
}
static void sii8620_read_buf(struct sii8620 *ctx, u16 addr, u8 *buf, int len)
{
struct device *dev = ctx->dev;
struct i2c_client *client = to_i2c_client(dev);
u8 data = addr;
struct i2c_msg msg[] = {
{
.addr = sii8620_i2c_page[addr >> 8],
.flags = client->flags,
.len = 1,
.buf = &data
},
{
.addr = sii8620_i2c_page[addr >> 8],
.flags = client->flags | I2C_M_RD,
.len = len,
.buf = buf
},
};
int ret;
if (ctx->error)
return;
ret = i2c_transfer(client->adapter, msg, 2);
dev_dbg(dev, "read at %04x: %*ph, %d\n", addr, len, buf, ret);
if (ret != 2) {
dev_err(dev, "Read at %#06x of %d bytes failed with code %d.\n",
addr, len, ret);
ctx->error = ret < 0 ? ret : -EIO;
}
}
static u8 sii8620_readb(struct sii8620 *ctx, u16 addr)
{
u8 ret = 0;
sii8620_read_buf(ctx, addr, &ret, 1);
return ret;
}
static void sii8620_write_buf(struct sii8620 *ctx, u16 addr, const u8 *buf,
int len)
{
struct device *dev = ctx->dev;
struct i2c_client *client = to_i2c_client(dev);
u8 data[2];
struct i2c_msg msg = {
.addr = sii8620_i2c_page[addr >> 8],
.flags = client->flags,
.len = len + 1,
};
int ret;
if (ctx->error)
return;
if (len > 1) {
msg.buf = kmalloc(len + 1, GFP_KERNEL);
if (!msg.buf) {
ctx->error = -ENOMEM;
return;
}
memcpy(msg.buf + 1, buf, len);
} else {
msg.buf = data;
msg.buf[1] = *buf;
}
msg.buf[0] = addr;
ret = i2c_transfer(client->adapter, &msg, 1);
dev_dbg(dev, "write at %04x: %*ph, %d\n", addr, len, buf, ret);
if (ret != 1) {
dev_err(dev, "Write at %#06x of %*ph failed with code %d.\n",
addr, len, buf, ret);
ctx->error = ret ?: -EIO;
}
if (len > 1)
kfree(msg.buf);
}
#define sii8620_write(ctx, addr, arr...) \
({\
u8 d[] = { arr }; \
sii8620_write_buf(ctx, addr, d, ARRAY_SIZE(d)); \
})
static void __sii8620_write_seq(struct sii8620 *ctx, const u16 *seq, int len)
{
int i;
for (i = 0; i < len; i += 2)
sii8620_write(ctx, seq[i], seq[i + 1]);
}
#define sii8620_write_seq(ctx, seq...) \
({\
const u16 d[] = { seq }; \
__sii8620_write_seq(ctx, d, ARRAY_SIZE(d)); \
})
#define sii8620_write_seq_static(ctx, seq...) \
({\
static const u16 d[] = { seq }; \
__sii8620_write_seq(ctx, d, ARRAY_SIZE(d)); \
})
static void sii8620_setbits(struct sii8620 *ctx, u16 addr, u8 mask, u8 val)
{
val = (val & mask) | (sii8620_readb(ctx, addr) & ~mask);
sii8620_write(ctx, addr, val);
}
static inline bool sii8620_is_mhl3(struct sii8620 *ctx)
{
return ctx->mode >= CM_MHL3;
}
static void sii8620_mt_cleanup(struct sii8620 *ctx)
{
struct sii8620_mt_msg *msg, *n;
list_for_each_entry_safe(msg, n, &ctx->mt_queue, node) {
list_del(&msg->node);
kfree(msg);
}
ctx->mt_state = MT_STATE_READY;
}
static void sii8620_mt_work(struct sii8620 *ctx)
{
struct sii8620_mt_msg *msg;
if (ctx->error)
return;
if (ctx->mt_state == MT_STATE_BUSY || list_empty(&ctx->mt_queue))
return;
if (ctx->mt_state == MT_STATE_DONE) {
ctx->mt_state = MT_STATE_READY;
msg = list_first_entry(&ctx->mt_queue, struct sii8620_mt_msg,
node);
list_del(&msg->node);
if (msg->recv)
msg->recv(ctx, msg);
if (msg->continuation)
msg->continuation(ctx, msg->ret);
kfree(msg);
}
if (ctx->mt_state != MT_STATE_READY || list_empty(&ctx->mt_queue))
return;
ctx->mt_state = MT_STATE_BUSY;
msg = list_first_entry(&ctx->mt_queue, struct sii8620_mt_msg, node);
if (msg->send)
msg->send(ctx, msg);
}
static void sii8620_enable_gen2_write_burst(struct sii8620 *ctx)
{
u8 ctrl = BIT_MDT_RCV_CTRL_MDT_RCV_EN;
if (ctx->gen2_write_burst)
return;
if (ctx->mode >= CM_MHL1)
ctrl |= BIT_MDT_RCV_CTRL_MDT_DELAY_RCV_EN;
sii8620_write_seq(ctx,
REG_MDT_RCV_TIMEOUT, 100,
REG_MDT_RCV_CTRL, ctrl
);
ctx->gen2_write_burst = 1;
}
static void sii8620_disable_gen2_write_burst(struct sii8620 *ctx)
{
if (!ctx->gen2_write_burst)
return;
sii8620_write_seq_static(ctx,
REG_MDT_XMIT_CTRL, 0,
REG_MDT_RCV_CTRL, 0
);
ctx->gen2_write_burst = 0;
}
static void sii8620_start_gen2_write_burst(struct sii8620 *ctx)
{
sii8620_write_seq_static(ctx,
REG_MDT_INT_1_MASK, BIT_MDT_RCV_TIMEOUT
| BIT_MDT_RCV_SM_ABORT_PKT_RCVD | BIT_MDT_RCV_SM_ERROR
| BIT_MDT_XMIT_TIMEOUT | BIT_MDT_XMIT_SM_ABORT_PKT_RCVD
| BIT_MDT_XMIT_SM_ERROR,
REG_MDT_INT_0_MASK, BIT_MDT_XFIFO_EMPTY
| BIT_MDT_IDLE_AFTER_HAWB_DISABLE
| BIT_MDT_RFIFO_DATA_RDY
);
sii8620_enable_gen2_write_burst(ctx);
}
static void sii8620_mt_msc_cmd_send(struct sii8620 *ctx,
struct sii8620_mt_msg *msg)
{
if (msg->reg[0] == MHL_SET_INT &&
msg->reg[1] == MHL_INT_REG(RCHANGE) &&
msg->reg[2] == MHL_INT_RC_FEAT_REQ)
sii8620_enable_gen2_write_burst(ctx);
else
sii8620_disable_gen2_write_burst(ctx);
switch (msg->reg[0]) {
case MHL_WRITE_STAT:
case MHL_SET_INT:
sii8620_write_buf(ctx, REG_MSC_CMD_OR_OFFSET, msg->reg + 1, 2);
sii8620_write(ctx, REG_MSC_COMMAND_START,
BIT_MSC_COMMAND_START_WRITE_STAT);
break;
case MHL_MSC_MSG:
sii8620_write_buf(ctx, REG_MSC_CMD_OR_OFFSET, msg->reg, 3);
sii8620_write(ctx, REG_MSC_COMMAND_START,
BIT_MSC_COMMAND_START_MSC_MSG);
break;
case MHL_READ_DEVCAP_REG:
case MHL_READ_XDEVCAP_REG:
sii8620_write(ctx, REG_MSC_CMD_OR_OFFSET, msg->reg[1]);
sii8620_write(ctx, REG_MSC_COMMAND_START,
BIT_MSC_COMMAND_START_READ_DEVCAP);
break;
default:
dev_err(ctx->dev, "%s: command %#x not supported\n", __func__,
msg->reg[0]);
}
}
static struct sii8620_mt_msg *sii8620_mt_msg_new(struct sii8620 *ctx)
{
struct sii8620_mt_msg *msg = kzalloc(sizeof(*msg), GFP_KERNEL);
if (!msg)
ctx->error = -ENOMEM;
else
list_add_tail(&msg->node, &ctx->mt_queue);
return msg;
}
static void sii8620_mt_set_cont(struct sii8620 *ctx, sii8620_cb cont)
{
struct sii8620_mt_msg *msg;
if (ctx->error)
return;
if (list_empty(&ctx->mt_queue)) {
ctx->error = -EINVAL;
return;
}
msg = list_last_entry(&ctx->mt_queue, struct sii8620_mt_msg, node);
msg->continuation = cont;
}
static void sii8620_mt_msc_cmd(struct sii8620 *ctx, u8 cmd, u8 arg1, u8 arg2)
{
struct sii8620_mt_msg *msg = sii8620_mt_msg_new(ctx);
if (!msg)
return;
msg->reg[0] = cmd;
msg->reg[1] = arg1;
msg->reg[2] = arg2;
msg->send = sii8620_mt_msc_cmd_send;
}
static void sii8620_mt_write_stat(struct sii8620 *ctx, u8 reg, u8 val)
{
sii8620_mt_msc_cmd(ctx, MHL_WRITE_STAT, reg, val);
}
static inline void sii8620_mt_set_int(struct sii8620 *ctx, u8 irq, u8 mask)
{
sii8620_mt_msc_cmd(ctx, MHL_SET_INT, irq, mask);
}
static void sii8620_mt_msc_msg(struct sii8620 *ctx, u8 cmd, u8 data)
{
sii8620_mt_msc_cmd(ctx, MHL_MSC_MSG, cmd, data);
}
static void sii8620_mt_rap(struct sii8620 *ctx, u8 code)
{
sii8620_mt_msc_msg(ctx, MHL_MSC_MSG_RAP, code);
}
static void sii8620_mt_rcpk(struct sii8620 *ctx, u8 code)
{
sii8620_mt_msc_msg(ctx, MHL_MSC_MSG_RCPK, code);
}
static void sii8620_mt_rcpe(struct sii8620 *ctx, u8 code)
{
sii8620_mt_msc_msg(ctx, MHL_MSC_MSG_RCPE, code);
}
static void sii8620_mt_read_devcap_send(struct sii8620 *ctx,
struct sii8620_mt_msg *msg)
{
u8 ctrl = BIT_EDID_CTRL_DEVCAP_SELECT_DEVCAP
| BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO
| BIT_EDID_CTRL_EDID_MODE_EN;
if (msg->reg[0] == MHL_READ_XDEVCAP)
ctrl |= BIT_EDID_CTRL_XDEVCAP_EN;
sii8620_write_seq(ctx,
REG_INTR9_MASK, BIT_INTR9_DEVCAP_DONE,
REG_EDID_CTRL, ctrl,
REG_TPI_CBUS_START, BIT_TPI_CBUS_START_GET_DEVCAP_START
);
}
/* copy src to dst and set changed bits in src */
static void sii8620_update_array(u8 *dst, u8 *src, int count)
{
while (--count >= 0) {
*src ^= *dst;
*dst++ ^= *src++;
}
}
static void sii8620_identify_sink(struct sii8620 *ctx)
{
static const char * const sink_str[] = {
[SINK_NONE] = "NONE",
[SINK_HDMI] = "HDMI",
[SINK_DVI] = "DVI"
};
char sink_name[20];
struct device *dev = ctx->dev;
if (!ctx->sink_detected || !ctx->devcap_read)
return;
sii8620_fetch_edid(ctx);
if (!ctx->edid) {
dev_err(ctx->dev, "Cannot fetch EDID\n");
sii8620_mhl_disconnected(ctx);
return;
}
sii8620_set_upstream_edid(ctx);
if (drm_detect_hdmi_monitor(ctx->edid))
ctx->sink_type = SINK_HDMI;
else
ctx->sink_type = SINK_DVI;
drm_edid_get_monitor_name(ctx->edid, sink_name, ARRAY_SIZE(sink_name));
dev_info(dev, "detected sink(type: %s): %s\n",
sink_str[ctx->sink_type], sink_name);
}
static void sii8620_mr_devcap(struct sii8620 *ctx)
{
u8 dcap[MHL_DCAP_SIZE];
struct device *dev = ctx->dev;
sii8620_read_buf(ctx, REG_EDID_FIFO_RD_DATA, dcap, MHL_DCAP_SIZE);
if (ctx->error < 0)
return;
dev_info(dev, "detected dongle MHL %d.%d, ChipID %02x%02x:%02x%02x\n",
dcap[MHL_DCAP_MHL_VERSION] / 16,
dcap[MHL_DCAP_MHL_VERSION] % 16,
dcap[MHL_DCAP_ADOPTER_ID_H], dcap[MHL_DCAP_ADOPTER_ID_L],
dcap[MHL_DCAP_DEVICE_ID_H], dcap[MHL_DCAP_DEVICE_ID_L]);
sii8620_update_array(ctx->devcap, dcap, MHL_DCAP_SIZE);
ctx->devcap_read = true;
sii8620_identify_sink(ctx);
}
static void sii8620_mr_xdevcap(struct sii8620 *ctx)
{
sii8620_read_buf(ctx, REG_EDID_FIFO_RD_DATA, ctx->xdevcap,
MHL_XDC_SIZE);
}
static void sii8620_mt_read_devcap_recv(struct sii8620 *ctx,
struct sii8620_mt_msg *msg)
{
u8 ctrl = BIT_EDID_CTRL_DEVCAP_SELECT_DEVCAP
| BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO
| BIT_EDID_CTRL_EDID_MODE_EN;
if (msg->reg[0] == MHL_READ_XDEVCAP)
ctrl |= BIT_EDID_CTRL_XDEVCAP_EN;
sii8620_write_seq(ctx,
REG_INTR9_MASK, BIT_INTR9_DEVCAP_DONE | BIT_INTR9_EDID_DONE
| BIT_INTR9_EDID_ERROR,
REG_EDID_CTRL, ctrl,
REG_EDID_FIFO_ADDR, 0
);
if (msg->reg[0] == MHL_READ_XDEVCAP)
sii8620_mr_xdevcap(ctx);
else
sii8620_mr_devcap(ctx);
}
static void sii8620_mt_read_devcap(struct sii8620 *ctx, bool xdevcap)
{
struct sii8620_mt_msg *msg = sii8620_mt_msg_new(ctx);
if (!msg)
return;
msg->reg[0] = xdevcap ? MHL_READ_XDEVCAP : MHL_READ_DEVCAP;
msg->send = sii8620_mt_read_devcap_send;
msg->recv = sii8620_mt_read_devcap_recv;
}
static void sii8620_mt_read_devcap_reg_recv(struct sii8620 *ctx,
struct sii8620_mt_msg *msg)
{
u8 reg = msg->reg[1] & 0x7f;
if (msg->reg[1] & 0x80)
ctx->xdevcap[reg] = msg->ret;
else
ctx->devcap[reg] = msg->ret;
}
static void sii8620_mt_read_devcap_reg(struct sii8620 *ctx, u8 reg)
{
struct sii8620_mt_msg *msg = sii8620_mt_msg_new(ctx);
if (!msg)
return;
msg->reg[0] = (reg & 0x80) ? MHL_READ_XDEVCAP_REG : MHL_READ_DEVCAP_REG;
msg->reg[1] = reg;
msg->send = sii8620_mt_msc_cmd_send;
msg->recv = sii8620_mt_read_devcap_reg_recv;
}
static inline void sii8620_mt_read_xdevcap_reg(struct sii8620 *ctx, u8 reg)
{
sii8620_mt_read_devcap_reg(ctx, reg | 0x80);
}
static void *sii8620_burst_get_tx_buf(struct sii8620 *ctx, int len)
{
u8 *buf = &ctx->burst.tx_buf[ctx->burst.tx_count];
int size = len + 2;
if (ctx->burst.tx_count + size >= ARRAY_SIZE(ctx->burst.tx_buf)) {
dev_err(ctx->dev, "TX-BLK buffer exhausted\n");
ctx->error = -EINVAL;
return NULL;
}
ctx->burst.tx_count += size;
buf[1] = len;
return buf + 2;
}
static u8 *sii8620_burst_get_rx_buf(struct sii8620 *ctx, int len)
{
u8 *buf = &ctx->burst.rx_buf[ctx->burst.rx_count];
int size = len + 1;
if (ctx->burst.rx_count + size >= ARRAY_SIZE(ctx->burst.rx_buf)) {
dev_err(ctx->dev, "RX-BLK buffer exhausted\n");
ctx->error = -EINVAL;
return NULL;
}
ctx->burst.rx_count += size;
buf[0] = len;
return buf + 1;
}
static void sii8620_burst_send(struct sii8620 *ctx)
{
int tx_left = ctx->burst.tx_count;
u8 *d = ctx->burst.tx_buf;
while (tx_left > 0) {
int len = d[1] + 2;
if (ctx->burst.r_count + len > ctx->burst.r_size)
break;
d[0] = min(ctx->burst.rx_ack, 255);
ctx->burst.rx_ack -= d[0];
sii8620_write_buf(ctx, REG_EMSC_XMIT_WRITE_PORT, d, len);
ctx->burst.r_count += len;
tx_left -= len;
d += len;
}
ctx->burst.tx_count = tx_left;
while (ctx->burst.rx_ack > 0) {
u8 b[2] = { min(ctx->burst.rx_ack, 255), 0 };
if (ctx->burst.r_count + 2 > ctx->burst.r_size)
break;
ctx->burst.rx_ack -= b[0];
sii8620_write_buf(ctx, REG_EMSC_XMIT_WRITE_PORT, b, 2);
ctx->burst.r_count += 2;
}
}
static void sii8620_burst_receive(struct sii8620 *ctx)
{
u8 buf[3], *d;
int count;
sii8620_read_buf(ctx, REG_EMSCRFIFOBCNTL, buf, 2);
count = get_unaligned_le16(buf);
while (count > 0) {
int len = min(count, 3);
sii8620_read_buf(ctx, REG_EMSC_RCV_READ_PORT, buf, len);
count -= len;
ctx->burst.rx_ack += len - 1;
ctx->burst.r_count -= buf[1];
if (ctx->burst.r_count < 0)
ctx->burst.r_count = 0;
if (len < 3 || !buf[2])
continue;
len = buf[2];
d = sii8620_burst_get_rx_buf(ctx, len);
if (!d)
continue;
sii8620_read_buf(ctx, REG_EMSC_RCV_READ_PORT, d, len);
count -= len;
ctx->burst.rx_ack += len;
}
}
static void sii8620_burst_tx_rbuf_info(struct sii8620 *ctx, int size)
{
struct mhl_burst_blk_rcv_buffer_info *d =
sii8620_burst_get_tx_buf(ctx, sizeof(*d));
if (!d)
return;
d->id = cpu_to_be16(MHL_BURST_ID_BLK_RCV_BUFFER_INFO);
d->size = cpu_to_le16(size);
}
static u8 sii8620_checksum(void *ptr, int size)
{
u8 *d = ptr, sum = 0;
while (size--)
sum += *d++;
return sum;
}
static void sii8620_mhl_burst_hdr_set(struct mhl3_burst_header *h,
enum mhl_burst_id id)
{
h->id = cpu_to_be16(id);
h->total_entries = 1;
h->sequence_index = 1;
}
static void sii8620_burst_tx_bits_per_pixel_fmt(struct sii8620 *ctx, u8 fmt)
{
struct mhl_burst_bits_per_pixel_fmt *d;
const int size = sizeof(*d) + sizeof(d->desc[0]);
d = sii8620_burst_get_tx_buf(ctx, size);
if (!d)
return;
sii8620_mhl_burst_hdr_set(&d->hdr, MHL_BURST_ID_BITS_PER_PIXEL_FMT);
d->num_entries = 1;
d->desc[0].stream_id = 0;
d->desc[0].pixel_format = fmt;
d->hdr.checksum -= sii8620_checksum(d, size);
}
static void sii8620_burst_rx_all(struct sii8620 *ctx)
{
u8 *d = ctx->burst.rx_buf;
int count = ctx->burst.rx_count;
while (count-- > 0) {
int len = *d++;
int id = get_unaligned_be16(&d[0]);
switch (id) {
case MHL_BURST_ID_BLK_RCV_BUFFER_INFO:
ctx->burst.r_size = get_unaligned_le16(&d[2]);
break;
default:
break;
}
count -= len;
d += len;
}
ctx->burst.rx_count = 0;
}
static void sii8620_fetch_edid(struct sii8620 *ctx)
{
u8 lm_ddc, ddc_cmd, int3, cbus;
unsigned long timeout;
int fetched, i;
int edid_len = EDID_LENGTH;
u8 *edid;
sii8620_readb(ctx, REG_CBUS_STATUS);
lm_ddc = sii8620_readb(ctx, REG_LM_DDC);
ddc_cmd = sii8620_readb(ctx, REG_DDC_CMD);
sii8620_write_seq(ctx,
REG_INTR9_MASK, 0,
REG_EDID_CTRL, BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO,
REG_HDCP2X_POLL_CS, 0x71,
REG_HDCP2X_CTRL_0, BIT_HDCP2X_CTRL_0_HDCP2X_HDCPTX,
REG_LM_DDC, lm_ddc | BIT_LM_DDC_SW_TPI_EN_DISABLED,
);
for (i = 0; i < 256; ++i) {
u8 ddc_stat = sii8620_readb(ctx, REG_DDC_STATUS);
if (!(ddc_stat & BIT_DDC_STATUS_DDC_I2C_IN_PROG))
break;
sii8620_write(ctx, REG_DDC_STATUS,
BIT_DDC_STATUS_DDC_FIFO_EMPTY);
}
sii8620_write(ctx, REG_DDC_ADDR, 0x50 << 1);
edid = kmalloc(EDID_LENGTH, GFP_KERNEL);
if (!edid) {
ctx->error = -ENOMEM;
return;
}
#define FETCH_SIZE 16
for (fetched = 0; fetched < edid_len; fetched += FETCH_SIZE) {
sii8620_readb(ctx, REG_DDC_STATUS);
sii8620_write_seq(ctx,
REG_DDC_CMD, ddc_cmd | VAL_DDC_CMD_DDC_CMD_ABORT,
REG_DDC_CMD, ddc_cmd | VAL_DDC_CMD_DDC_CMD_CLEAR_FIFO,
REG_DDC_STATUS, BIT_DDC_STATUS_DDC_FIFO_EMPTY
);
sii8620_write_seq(ctx,
REG_DDC_SEGM, fetched >> 8,
REG_DDC_OFFSET, fetched & 0xff,
REG_DDC_DIN_CNT1, FETCH_SIZE,
REG_DDC_DIN_CNT2, 0,
REG_DDC_CMD, ddc_cmd | VAL_DDC_CMD_ENH_DDC_READ_NO_ACK
);
int3 = 0;
timeout = jiffies + msecs_to_jiffies(200);
for (;;) {
cbus = sii8620_readb(ctx, REG_CBUS_STATUS);
if (~cbus & BIT_CBUS_STATUS_CBUS_CONNECTED) {
kfree(edid);
edid = NULL;
goto end;
}
if (int3 & BIT_DDC_CMD_DONE) {
if (sii8620_readb(ctx, REG_DDC_DOUT_CNT)
>= FETCH_SIZE)
break;
} else {
int3 = sii8620_readb(ctx, REG_INTR3);
}
if (time_is_before_jiffies(timeout)) {
ctx->error = -ETIMEDOUT;
dev_err(ctx->dev, "timeout during EDID read\n");
kfree(edid);
edid = NULL;
goto end;
}
usleep_range(10, 20);
}
sii8620_read_buf(ctx, REG_DDC_DATA, edid + fetched, FETCH_SIZE);
if (fetched + FETCH_SIZE == EDID_LENGTH) {
u8 ext = ((struct edid *)edid)->extensions;
if (ext) {
u8 *new_edid;
edid_len += ext * EDID_LENGTH;
new_edid = krealloc(edid, edid_len, GFP_KERNEL);
if (!new_edid) {
kfree(edid);
ctx->error = -ENOMEM;
return;
}
edid = new_edid;
}
}
}
sii8620_write_seq(ctx,
REG_INTR3_MASK, BIT_DDC_CMD_DONE,
REG_LM_DDC, lm_ddc
);
end:
kfree(ctx->edid);
ctx->edid = (struct edid *)edid;
}
static void sii8620_set_upstream_edid(struct sii8620 *ctx)
{
sii8620_setbits(ctx, REG_DPD, BIT_DPD_PDNRX12 | BIT_DPD_PDIDCK_N
| BIT_DPD_PD_MHL_CLK_N, 0xff);
sii8620_write_seq_static(ctx,
REG_RX_HDMI_CTRL3, 0x00,
REG_PKT_FILTER_0, 0xFF,
REG_PKT_FILTER_1, 0xFF,
REG_ALICE0_BW_I2C, 0x06
);
sii8620_setbits(ctx, REG_RX_HDMI_CLR_BUFFER,
BIT_RX_HDMI_CLR_BUFFER_VSI_CLR_EN, 0xff);
sii8620_write_seq_static(ctx,
REG_EDID_CTRL, BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO
| BIT_EDID_CTRL_EDID_MODE_EN,
REG_EDID_FIFO_ADDR, 0,
);
sii8620_write_buf(ctx, REG_EDID_FIFO_WR_DATA, (u8 *)ctx->edid,
(ctx->edid->extensions + 1) * EDID_LENGTH);
sii8620_write_seq_static(ctx,
REG_EDID_CTRL, BIT_EDID_CTRL_EDID_PRIME_VALID
| BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO
| BIT_EDID_CTRL_EDID_MODE_EN,
REG_INTR5_MASK, BIT_INTR_SCDT_CHANGE,
REG_INTR9_MASK, 0
);
}
static void sii8620_xtal_set_rate(struct sii8620 *ctx)
{
static const struct {
unsigned int rate;
u8 div;
u8 tp1;
} rates[] = {
{ 19200, 0x04, 0x53 },
{ 20000, 0x04, 0x62 },
{ 24000, 0x05, 0x75 },
{ 30000, 0x06, 0x92 },
{ 38400, 0x0c, 0xbc },
};
unsigned long rate = clk_get_rate(ctx->clk_xtal) / 1000;
int i;
for (i = 0; i < ARRAY_SIZE(rates) - 1; ++i)
if (rate <= rates[i].rate)
break;
if (rate != rates[i].rate)
dev_err(ctx->dev, "xtal clock rate(%lukHz) not supported, setting MHL for %ukHz.\n",
rate, rates[i].rate);
sii8620_write(ctx, REG_DIV_CTL_MAIN, rates[i].div);
sii8620_write(ctx, REG_HDCP2X_TP1, rates[i].tp1);
}
static int sii8620_hw_on(struct sii8620 *ctx)
{
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
if (ret)
return ret;
usleep_range(10000, 20000);
ret = clk_prepare_enable(ctx->clk_xtal);
if (ret)
return ret;
msleep(100);
gpiod_set_value(ctx->gpio_reset, 0);
msleep(100);
return 0;
}
static int sii8620_hw_off(struct sii8620 *ctx)
{
clk_disable_unprepare(ctx->clk_xtal);
gpiod_set_value(ctx->gpio_reset, 1);
return regulator_bulk_disable(ARRAY_SIZE(ctx->supplies), ctx->supplies);
}
static void sii8620_cbus_reset(struct sii8620 *ctx)
{
sii8620_write(ctx, REG_PWD_SRST, BIT_PWD_SRST_CBUS_RST
| BIT_PWD_SRST_CBUS_RST_SW_EN);
usleep_range(10000, 20000);
sii8620_write(ctx, REG_PWD_SRST, BIT_PWD_SRST_CBUS_RST_SW_EN);
}
static void sii8620_set_auto_zone(struct sii8620 *ctx)
{
if (ctx->mode != CM_MHL1) {
sii8620_write_seq_static(ctx,
REG_TX_ZONE_CTL1, 0x0,
REG_MHL_PLL_CTL0, VAL_MHL_PLL_CTL0_HDMI_CLK_RATIO_1X
| BIT_MHL_PLL_CTL0_CRYSTAL_CLK_SEL
| BIT_MHL_PLL_CTL0_ZONE_MASK_OE
);
} else {
sii8620_write_seq_static(ctx,
REG_TX_ZONE_CTL1, VAL_TX_ZONE_CTL1_TX_ZONE_CTRL_MODE,
REG_MHL_PLL_CTL0, VAL_MHL_PLL_CTL0_HDMI_CLK_RATIO_1X
| BIT_MHL_PLL_CTL0_ZONE_MASK_OE
);
}
}
static void sii8620_stop_video(struct sii8620 *ctx)
{
u8 val;
sii8620_write_seq_static(ctx,
REG_TPI_INTR_EN, 0,
REG_HDCP2X_INTR0_MASK, 0,
REG_TPI_COPP_DATA2, 0,
REG_TPI_INTR_ST0, ~0,
);
switch (ctx->sink_type) {
case SINK_DVI:
val = BIT_TPI_SC_REG_TMDS_OE_POWER_DOWN
| BIT_TPI_SC_TPI_AV_MUTE;
break;
case SINK_HDMI:
default:
val = BIT_TPI_SC_REG_TMDS_OE_POWER_DOWN
| BIT_TPI_SC_TPI_AV_MUTE
| BIT_TPI_SC_TPI_OUTPUT_MODE_0_HDMI;
break;
}
sii8620_write(ctx, REG_TPI_SC, val);
}
static void sii8620_set_format(struct sii8620 *ctx)
{
u8 out_fmt;
if (sii8620_is_mhl3(ctx)) {
sii8620_setbits(ctx, REG_M3_P0CTRL,
BIT_M3_P0CTRL_MHL3_P0_PIXEL_MODE_PACKED,
ctx->use_packed_pixel ? ~0 : 0);
} else {
if (ctx->use_packed_pixel) {
sii8620_write_seq_static(ctx,
REG_VID_MODE, BIT_VID_MODE_M1080P,
REG_MHL_TOP_CTL, BIT_MHL_TOP_CTL_MHL_PP_SEL | 1,
REG_MHLTX_CTL6, 0x60
);
} else {
sii8620_write_seq_static(ctx,
REG_VID_MODE, 0,
REG_MHL_TOP_CTL, 1,
REG_MHLTX_CTL6, 0xa0
);
}
}
if (ctx->use_packed_pixel)
out_fmt = VAL_TPI_FORMAT(YCBCR422, FULL);
else
out_fmt = VAL_TPI_FORMAT(RGB, FULL);
sii8620_write_seq(ctx,
REG_TPI_INPUT, VAL_TPI_FORMAT(RGB, FULL),
REG_TPI_OUTPUT, out_fmt,
);
}
static int mhl3_infoframe_init(struct mhl3_infoframe *frame)
{
memset(frame, 0, sizeof(*frame));
frame->version = 3;
frame->hev_format = -1;
return 0;
}
static ssize_t mhl3_infoframe_pack(struct mhl3_infoframe *frame,
void *buffer, size_t size)
{
const int frm_len = HDMI_INFOFRAME_HEADER_SIZE + MHL3_INFOFRAME_SIZE;
u8 *ptr = buffer;
if (size < frm_len)
return -ENOSPC;
memset(buffer, 0, size);
ptr[0] = HDMI_INFOFRAME_TYPE_VENDOR;
ptr[1] = frame->version;
ptr[2] = MHL3_INFOFRAME_SIZE;
ptr[4] = MHL3_IEEE_OUI & 0xff;
ptr[5] = (MHL3_IEEE_OUI >> 8) & 0xff;
ptr[6] = (MHL3_IEEE_OUI >> 16) & 0xff;
ptr[7] = frame->video_format & 0x3;
ptr[7] |= (frame->format_type & 0x7) << 2;
ptr[7] |= frame->sep_audio ? BIT(5) : 0;
if (frame->hev_format >= 0) {
ptr[9] = 1;
ptr[10] = (frame->hev_format >> 8) & 0xff;
ptr[11] = frame->hev_format & 0xff;
}
if (frame->av_delay) {
bool sign = frame->av_delay < 0;
int delay = sign ? -frame->av_delay : frame->av_delay;
ptr[12] = (delay >> 16) & 0xf;
if (sign)
ptr[12] |= BIT(4);
ptr[13] = (delay >> 8) & 0xff;
ptr[14] = delay & 0xff;
}
ptr[3] -= sii8620_checksum(buffer, frm_len);
return frm_len;
}
static void sii8620_set_infoframes(struct sii8620 *ctx,
struct drm_display_mode *mode)
{
struct mhl3_infoframe mhl_frm;
union hdmi_infoframe frm;
u8 buf[31];
int ret;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frm.avi,
NULL, mode);
if (ctx->use_packed_pixel)
frm.avi.colorspace = HDMI_COLORSPACE_YUV422;
if (!ret)
ret = hdmi_avi_infoframe_pack(&frm.avi, buf, ARRAY_SIZE(buf));
if (ret > 0)
sii8620_write_buf(ctx, REG_TPI_AVI_CHSUM, buf + 3, ret - 3);
if (!sii8620_is_mhl3(ctx) || !ctx->use_packed_pixel) {
sii8620_write(ctx, REG_TPI_SC,
BIT_TPI_SC_TPI_OUTPUT_MODE_0_HDMI);
sii8620_write(ctx, REG_PKT_FILTER_0,
BIT_PKT_FILTER_0_DROP_CEA_GAMUT_PKT |
BIT_PKT_FILTER_0_DROP_MPEG_PKT |
BIT_PKT_FILTER_0_DROP_GCP_PKT,
BIT_PKT_FILTER_1_DROP_GEN_PKT);
return;
}
sii8620_write(ctx, REG_PKT_FILTER_0,
BIT_PKT_FILTER_0_DROP_CEA_GAMUT_PKT |
BIT_PKT_FILTER_0_DROP_MPEG_PKT |
BIT_PKT_FILTER_0_DROP_AVI_PKT |
BIT_PKT_FILTER_0_DROP_GCP_PKT,
BIT_PKT_FILTER_1_VSI_OVERRIDE_DIS |
BIT_PKT_FILTER_1_DROP_GEN_PKT |
BIT_PKT_FILTER_1_DROP_VSIF_PKT);
sii8620_write(ctx, REG_TPI_INFO_FSEL, BIT_TPI_INFO_FSEL_EN
| BIT_TPI_INFO_FSEL_RPT | VAL_TPI_INFO_FSEL_VSI);
ret = mhl3_infoframe_init(&mhl_frm);
if (!ret)
ret = mhl3_infoframe_pack(&mhl_frm, buf, ARRAY_SIZE(buf));
sii8620_write_buf(ctx, REG_TPI_INFO_B0, buf, ret);
}
static void sii8620_start_video(struct sii8620 *ctx)
{
struct drm_display_mode *mode =
&ctx->bridge.encoder->crtc->state->adjusted_mode;
if (!sii8620_is_mhl3(ctx))
sii8620_stop_video(ctx);
if (ctx->sink_type == SINK_DVI && !sii8620_is_mhl3(ctx)) {
sii8620_write(ctx, REG_RX_HDMI_CTRL2,
VAL_RX_HDMI_CTRL2_DEFVAL);
sii8620_write(ctx, REG_TPI_SC, 0);
return;
}
sii8620_write_seq_static(ctx,
REG_RX_HDMI_CTRL2, VAL_RX_HDMI_CTRL2_DEFVAL
| BIT_RX_HDMI_CTRL2_USE_AV_MUTE,
REG_VID_OVRRD, BIT_VID_OVRRD_PP_AUTO_DISABLE
| BIT_VID_OVRRD_M1080P_OVRRD);
sii8620_set_format(ctx);
if (!sii8620_is_mhl3(ctx)) {
u8 link_mode = MHL_DST_LM_PATH_ENABLED;
if (ctx->use_packed_pixel)
link_mode |= MHL_DST_LM_CLK_MODE_PACKED_PIXEL;
else
link_mode |= MHL_DST_LM_CLK_MODE_NORMAL;
sii8620_mt_write_stat(ctx, MHL_DST_REG(LINK_MODE), link_mode);
sii8620_set_auto_zone(ctx);
} else {
static const struct {
int max_clk;
u8 zone;
u8 link_rate;
u8 rrp_decode;
} clk_spec[] = {
{ 150000, VAL_TX_ZONE_CTL3_TX_ZONE_1_5GBPS,
MHL_XDS_LINK_RATE_1_5_GBPS, 0x38 },
{ 300000, VAL_TX_ZONE_CTL3_TX_ZONE_3GBPS,
MHL_XDS_LINK_RATE_3_0_GBPS, 0x40 },
{ 600000, VAL_TX_ZONE_CTL3_TX_ZONE_6GBPS,
MHL_XDS_LINK_RATE_6_0_GBPS, 0x40 },
};
u8 p0_ctrl = BIT_M3_P0CTRL_MHL3_P0_PORT_EN;
int clk = mode->clock * (ctx->use_packed_pixel ? 2 : 3);
int i;
for (i = 0; i < ARRAY_SIZE(clk_spec) - 1; ++i)
if (clk < clk_spec[i].max_clk)
break;
if (100 * clk >= 98 * clk_spec[i].max_clk)
p0_ctrl |= BIT_M3_P0CTRL_MHL3_P0_UNLIMIT_EN;
sii8620_burst_tx_bits_per_pixel_fmt(ctx, ctx->use_packed_pixel);
sii8620_burst_send(ctx);
sii8620_write_seq(ctx,
REG_MHL_DP_CTL0, 0xf0,
REG_MHL3_TX_ZONE_CTL, clk_spec[i].zone);
sii8620_setbits(ctx, REG_M3_P0CTRL,
BIT_M3_P0CTRL_MHL3_P0_PORT_EN
| BIT_M3_P0CTRL_MHL3_P0_UNLIMIT_EN, p0_ctrl);
sii8620_setbits(ctx, REG_M3_POSTM, MSK_M3_POSTM_RRP_DECODE,
clk_spec[i].rrp_decode);
sii8620_write_seq_static(ctx,
REG_M3_CTRL, VAL_M3_CTRL_MHL3_VALUE
| BIT_M3_CTRL_H2M_SWRST,
REG_M3_CTRL, VAL_M3_CTRL_MHL3_VALUE
);
sii8620_mt_write_stat(ctx, MHL_XDS_REG(AVLINK_MODE_CONTROL),
clk_spec[i].link_rate);
}
sii8620_set_infoframes(ctx, mode);
}
static void sii8620_disable_hpd(struct sii8620 *ctx)
{
sii8620_setbits(ctx, REG_EDID_CTRL, BIT_EDID_CTRL_EDID_PRIME_VALID, 0);
sii8620_write_seq_static(ctx,
REG_HPD_CTRL, BIT_HPD_CTRL_HPD_OUT_OVR_EN,
REG_INTR8_MASK, 0
);
}
static void sii8620_enable_hpd(struct sii8620 *ctx)
{
sii8620_setbits(ctx, REG_TMDS_CSTAT_P3,
BIT_TMDS_CSTAT_P3_SCDT_CLR_AVI_DIS
| BIT_TMDS_CSTAT_P3_CLR_AVI, ~0);
sii8620_write_seq_static(ctx,
REG_HPD_CTRL, BIT_HPD_CTRL_HPD_OUT_OVR_EN
| BIT_HPD_CTRL_HPD_HIGH,
);
}
static void sii8620_mhl_discover(struct sii8620 *ctx)
{
sii8620_write_seq_static(ctx,
REG_DISC_CTRL9, BIT_DISC_CTRL9_WAKE_DRVFLT
| BIT_DISC_CTRL9_DISC_PULSE_PROCEED,
REG_DISC_CTRL4, VAL_DISC_CTRL4(VAL_PUP_5K, VAL_PUP_20K),
REG_CBUS_DISC_INTR0_MASK, BIT_MHL3_EST_INT
| BIT_MHL_EST_INT
| BIT_NOT_MHL_EST_INT
| BIT_CBUS_MHL3_DISCON_INT
| BIT_CBUS_MHL12_DISCON_INT
| BIT_RGND_READY_INT,
REG_MHL_PLL_CTL0, VAL_MHL_PLL_CTL0_HDMI_CLK_RATIO_1X
| BIT_MHL_PLL_CTL0_CRYSTAL_CLK_SEL
| BIT_MHL_PLL_CTL0_ZONE_MASK_OE,
REG_MHL_DP_CTL0, BIT_MHL_DP_CTL0_DP_OE
| BIT_MHL_DP_CTL0_TX_OE_OVR,
REG_M3_CTRL, VAL_M3_CTRL_MHL3_VALUE,
REG_MHL_DP_CTL1, 0xA2,
REG_MHL_DP_CTL2, 0x03,
REG_MHL_DP_CTL3, 0x35,
REG_MHL_DP_CTL5, 0x02,
REG_MHL_DP_CTL6, 0x02,
REG_MHL_DP_CTL7, 0x03,
REG_COC_CTLC, 0xFF,
REG_DPD, BIT_DPD_PWRON_PLL | BIT_DPD_PDNTX12
| BIT_DPD_OSC_EN | BIT_DPD_PWRON_HSIC,
REG_COC_INTR_MASK, BIT_COC_PLL_LOCK_STATUS_CHANGE
| BIT_COC_CALIBRATION_DONE,
REG_CBUS_INT_1_MASK, BIT_CBUS_MSC_ABORT_RCVD
| BIT_CBUS_CMD_ABORT,
REG_CBUS_INT_0_MASK, BIT_CBUS_MSC_MT_DONE
| BIT_CBUS_HPD_CHG
| BIT_CBUS_MSC_MR_WRITE_STAT
| BIT_CBUS_MSC_MR_MSC_MSG
| BIT_CBUS_MSC_MR_WRITE_BURST
| BIT_CBUS_MSC_MR_SET_INT
| BIT_CBUS_MSC_MT_DONE_NACK
);
}
static void sii8620_peer_specific_init(struct sii8620 *ctx)
{
if (sii8620_is_mhl3(ctx))
sii8620_write_seq_static(ctx,
REG_SYS_CTRL1, BIT_SYS_CTRL1_BLOCK_DDC_BY_HPD,
REG_EMSCINTRMASK1,
BIT_EMSCINTR1_EMSC_TRAINING_COMMA_ERR
);
else
sii8620_write_seq_static(ctx,
REG_HDCP2X_INTR0_MASK, 0x00,
REG_EMSCINTRMASK1, 0x00,
REG_HDCP2X_INTR0, 0xFF,
REG_INTR1, 0xFF,
REG_SYS_CTRL1, BIT_SYS_CTRL1_BLOCK_DDC_BY_HPD
| BIT_SYS_CTRL1_TX_CTRL_HDMI
);
}
#define SII8620_MHL_VERSION 0x32
#define SII8620_SCRATCHPAD_SIZE 16
#define SII8620_INT_STAT_SIZE 0x33
static void sii8620_set_dev_cap(struct sii8620 *ctx)
{
static const u8 devcap[MHL_DCAP_SIZE] = {
[MHL_DCAP_MHL_VERSION] = SII8620_MHL_VERSION,
[MHL_DCAP_CAT] = MHL_DCAP_CAT_SOURCE | MHL_DCAP_CAT_POWER,
[MHL_DCAP_ADOPTER_ID_H] = 0x01,
[MHL_DCAP_ADOPTER_ID_L] = 0x41,
[MHL_DCAP_VID_LINK_MODE] = MHL_DCAP_VID_LINK_RGB444
| MHL_DCAP_VID_LINK_PPIXEL
| MHL_DCAP_VID_LINK_16BPP,
[MHL_DCAP_AUD_LINK_MODE] = MHL_DCAP_AUD_LINK_2CH,
[MHL_DCAP_VIDEO_TYPE] = MHL_DCAP_VT_GRAPHICS,
[MHL_DCAP_LOG_DEV_MAP] = MHL_DCAP_LD_GUI,
[MHL_DCAP_BANDWIDTH] = 0x0f,
[MHL_DCAP_FEATURE_FLAG] = MHL_DCAP_FEATURE_RCP_SUPPORT
| MHL_DCAP_FEATURE_RAP_SUPPORT
| MHL_DCAP_FEATURE_SP_SUPPORT,
[MHL_DCAP_SCRATCHPAD_SIZE] = SII8620_SCRATCHPAD_SIZE,
[MHL_DCAP_INT_STAT_SIZE] = SII8620_INT_STAT_SIZE,
};
static const u8 xdcap[MHL_XDC_SIZE] = {
[MHL_XDC_ECBUS_SPEEDS] = MHL_XDC_ECBUS_S_075
| MHL_XDC_ECBUS_S_8BIT,
[MHL_XDC_TMDS_SPEEDS] = MHL_XDC_TMDS_150
| MHL_XDC_TMDS_300 | MHL_XDC_TMDS_600,
[MHL_XDC_ECBUS_ROLES] = MHL_XDC_DEV_HOST,
[MHL_XDC_LOG_DEV_MAPX] = MHL_XDC_LD_PHONE,
};
sii8620_write_buf(ctx, REG_MHL_DEVCAP_0, devcap, ARRAY_SIZE(devcap));
sii8620_write_buf(ctx, REG_MHL_EXTDEVCAP_0, xdcap, ARRAY_SIZE(xdcap));
}
static void sii8620_mhl_init(struct sii8620 *ctx)
{
sii8620_write_seq_static(ctx,
REG_DISC_CTRL4, VAL_DISC_CTRL4(VAL_PUP_OFF, VAL_PUP_20K),
REG_CBUS_MSC_COMPAT_CTRL,
BIT_CBUS_MSC_COMPAT_CTRL_XDEVCAP_EN,
);
sii8620_peer_specific_init(ctx);
sii8620_disable_hpd(ctx);
sii8620_write_seq_static(ctx,
REG_EDID_CTRL, BIT_EDID_CTRL_EDID_FIFO_ADDR_AUTO,
REG_DISC_CTRL9, BIT_DISC_CTRL9_WAKE_DRVFLT
| BIT_DISC_CTRL9_WAKE_PULSE_BYPASS,
REG_TMDS0_CCTRL1, 0x90,
REG_TMDS_CLK_EN, 0x01,
REG_TMDS_CH_EN, 0x11,
REG_BGR_BIAS, 0x87,
REG_ALICE0_ZONE_CTRL, 0xE8,
REG_ALICE0_MODE_CTRL, 0x04,
);
sii8620_setbits(ctx, REG_LM_DDC, BIT_LM_DDC_SW_TPI_EN_DISABLED, 0);
sii8620_write_seq_static(ctx,
REG_TPI_HW_OPT3, 0x76,
REG_TMDS_CCTRL, BIT_TMDS_CCTRL_TMDS_OE,
REG_TPI_DTD_B2, 79,
);
sii8620_set_dev_cap(ctx);
sii8620_write_seq_static(ctx,
REG_MDT_XMIT_TIMEOUT, 100,
REG_MDT_XMIT_CTRL, 0x03,
REG_MDT_XFIFO_STAT, 0x00,
REG_MDT_RCV_TIMEOUT, 100,
REG_CBUS_LINK_CTRL_8, 0x1D,
);
sii8620_start_gen2_write_burst(ctx);
sii8620_write_seq_static(ctx,
REG_BIST_CTRL, 0x00,
REG_COC_CTL1, 0x10,
REG_COC_CTL2, 0x18,
REG_COC_CTLF, 0x07,
REG_COC_CTL11, 0xF8,
REG_COC_CTL17, 0x61,
REG_COC_CTL18, 0x46,
REG_COC_CTL19, 0x15,
REG_COC_CTL1A, 0x01,
REG_MHL_COC_CTL3, BIT_MHL_COC_CTL3_COC_AECHO_EN,
REG_MHL_COC_CTL4, 0x2D,
REG_MHL_COC_CTL5, 0xF9,
REG_MSC_HEARTBEAT_CTRL, 0x27,
);
sii8620_disable_gen2_write_burst(ctx);
sii8620_mt_write_stat(ctx, MHL_DST_REG(VERSION), SII8620_MHL_VERSION);
sii8620_mt_write_stat(ctx, MHL_DST_REG(CONNECTED_RDY),
MHL_DST_CONN_DCAP_RDY | MHL_DST_CONN_XDEVCAPP_SUPP
| MHL_DST_CONN_POW_STAT);
sii8620_mt_set_int(ctx, MHL_INT_REG(RCHANGE), MHL_INT_RC_DCAP_CHG);
}
static void sii8620_emsc_enable(struct sii8620 *ctx)
{
u8 reg;
sii8620_setbits(ctx, REG_GENCTL, BIT_GENCTL_EMSC_EN
| BIT_GENCTL_CLR_EMSC_RFIFO
| BIT_GENCTL_CLR_EMSC_XFIFO, ~0);
sii8620_setbits(ctx, REG_GENCTL, BIT_GENCTL_CLR_EMSC_RFIFO
| BIT_GENCTL_CLR_EMSC_XFIFO, 0);
sii8620_setbits(ctx, REG_COMMECNT, BIT_COMMECNT_I2C_TO_EMSC_EN, ~0);
reg = sii8620_readb(ctx, REG_EMSCINTR);
sii8620_write(ctx, REG_EMSCINTR, reg);
sii8620_write(ctx, REG_EMSCINTRMASK, BIT_EMSCINTR_SPI_DVLD);
}
static int sii8620_wait_for_fsm_state(struct sii8620 *ctx, u8 state)
{
int i;
for (i = 0; i < 10; ++i) {
u8 s = sii8620_readb(ctx, REG_COC_STAT_0);
if ((s & MSK_COC_STAT_0_FSM_STATE) == state)
return 0;
if (!(s & BIT_COC_STAT_0_PLL_LOCKED))
return -EBUSY;
usleep_range(4000, 6000);
}
return -ETIMEDOUT;
}
static void sii8620_set_mode(struct sii8620 *ctx, enum sii8620_mode mode)
{
int ret;
if (ctx->mode == mode)
return;
switch (mode) {
case CM_MHL1:
sii8620_write_seq_static(ctx,
REG_CBUS_MSC_COMPAT_CTRL, 0x02,
REG_M3_CTRL, VAL_M3_CTRL_MHL1_2_VALUE,
REG_DPD, BIT_DPD_PWRON_PLL | BIT_DPD_PDNTX12
| BIT_DPD_OSC_EN,
REG_COC_INTR_MASK, 0
);
ctx->mode = mode;
break;
case CM_MHL3:
sii8620_write(ctx, REG_M3_CTRL, VAL_M3_CTRL_MHL3_VALUE);
ctx->mode = mode;
return;
case CM_ECBUS_S:
sii8620_emsc_enable(ctx);
sii8620_write_seq_static(ctx,
REG_TTXSPINUMS, 4,
REG_TRXSPINUMS, 4,
REG_TTXHSICNUMS, 0x14,
REG_TRXHSICNUMS, 0x14,
REG_TTXTOTNUMS, 0x18,
REG_TRXTOTNUMS, 0x18,
REG_PWD_SRST, BIT_PWD_SRST_COC_DOC_RST
| BIT_PWD_SRST_CBUS_RST_SW_EN,
REG_MHL_COC_CTL1, 0xbd,
REG_PWD_SRST, BIT_PWD_SRST_CBUS_RST_SW_EN,
REG_COC_CTLB, 0x01,
REG_COC_CTL0, 0x5c,
REG_COC_CTL14, 0x03,
REG_COC_CTL15, 0x80,
REG_MHL_DP_CTL6, BIT_MHL_DP_CTL6_DP_TAP1_SGN
| BIT_MHL_DP_CTL6_DP_TAP1_EN
| BIT_MHL_DP_CTL6_DT_PREDRV_FEEDCAP_EN,
REG_MHL_DP_CTL8, 0x03
);
ret = sii8620_wait_for_fsm_state(ctx, 0x03);
sii8620_write_seq_static(ctx,
REG_COC_CTL14, 0x00,
REG_COC_CTL15, 0x80
);
if (!ret)
sii8620_write(ctx, REG_CBUS3_CNVT, 0x85);
else
sii8620_disconnect(ctx);
return;
case CM_DISCONNECTED:
ctx->mode = mode;
break;
default:
dev_err(ctx->dev, "%s mode %d not supported\n", __func__, mode);
break;
}
sii8620_set_auto_zone(ctx);
if (mode != CM_MHL1)
return;
sii8620_write_seq_static(ctx,
REG_MHL_DP_CTL0, 0xBC,
REG_MHL_DP_CTL1, 0xBB,
REG_MHL_DP_CTL3, 0x48,
REG_MHL_DP_CTL5, 0x39,
REG_MHL_DP_CTL2, 0x2A,
REG_MHL_DP_CTL6, 0x2A,
REG_MHL_DP_CTL7, 0x08
);
}
static void sii8620_hpd_unplugged(struct sii8620 *ctx)
{
sii8620_disable_hpd(ctx);
ctx->sink_type = SINK_NONE;
ctx->sink_detected = false;
ctx->feature_complete = false;
kfree(ctx->edid);
ctx->edid = NULL;
}
static void sii8620_disconnect(struct sii8620 *ctx)
{
sii8620_disable_gen2_write_burst(ctx);
sii8620_stop_video(ctx);
msleep(100);
sii8620_cbus_reset(ctx);
sii8620_set_mode(ctx, CM_DISCONNECTED);
sii8620_write_seq_static(ctx,
REG_TX_ZONE_CTL1, 0,
REG_MHL_PLL_CTL0, 0x07,
REG_COC_CTL0, 0x40,
REG_CBUS3_CNVT, 0x84,
REG_COC_CTL14, 0x00,
REG_COC_CTL0, 0x40,
REG_HRXCTRL3, 0x07,
REG_MHL_PLL_CTL0, VAL_MHL_PLL_CTL0_HDMI_CLK_RATIO_1X
| BIT_MHL_PLL_CTL0_CRYSTAL_CLK_SEL
| BIT_MHL_PLL_CTL0_ZONE_MASK_OE,
REG_MHL_DP_CTL0, BIT_MHL_DP_CTL0_DP_OE
| BIT_MHL_DP_CTL0_TX_OE_OVR,
REG_MHL_DP_CTL1, 0xBB,
REG_MHL_DP_CTL3, 0x48,
REG_MHL_DP_CTL5, 0x3F,
REG_MHL_DP_CTL2, 0x2F,
REG_MHL_DP_CTL6, 0x2A,
REG_MHL_DP_CTL7, 0x03
);
sii8620_hpd_unplugged(ctx);
sii8620_write_seq_static(ctx,
REG_M3_CTRL, VAL_M3_CTRL_MHL3_VALUE,
REG_MHL_COC_CTL1, 0x07,
REG_DISC_CTRL4, VAL_DISC_CTRL4(VAL_PUP_OFF, VAL_PUP_20K),
REG_DISC_CTRL8, 0x00,
REG_DISC_CTRL9, BIT_DISC_CTRL9_WAKE_DRVFLT
| BIT_DISC_CTRL9_WAKE_PULSE_BYPASS,
REG_INT_CTRL, 0x00,
REG_MSC_HEARTBEAT_CTRL, 0x27,
REG_DISC_CTRL1, 0x25,
REG_CBUS_DISC_INTR0, (u8)~BIT_RGND_READY_INT,
REG_CBUS_DISC_INTR0_MASK, BIT_RGND_READY_INT,
REG_MDT_INT_1, 0xff,
REG_MDT_INT_1_MASK, 0x00,
REG_MDT_INT_0, 0xff,
REG_MDT_INT_0_MASK, 0x00,
REG_COC_INTR, 0xff,
REG_COC_INTR_MASK, 0x00,
REG_TRXINTH, 0xff,
REG_TRXINTMH, 0x00,
REG_CBUS_INT_0, 0xff,
REG_CBUS_INT_0_MASK, 0x00,
REG_CBUS_INT_1, 0xff,
REG_CBUS_INT_1_MASK, 0x00,
REG_EMSCINTR, 0xff,
REG_EMSCINTRMASK, 0x00,
REG_EMSCINTR1, 0xff,
REG_EMSCINTRMASK1, 0x00,
REG_INTR8, 0xff,
REG_INTR8_MASK, 0x00,
REG_TPI_INTR_ST0, 0xff,
REG_TPI_INTR_EN, 0x00,
REG_HDCP2X_INTR0, 0xff,
REG_HDCP2X_INTR0_MASK, 0x00,
REG_INTR9, 0xff,
REG_INTR9_MASK, 0x00,
REG_INTR3, 0xff,
REG_INTR3_MASK, 0x00,
REG_INTR5, 0xff,
REG_INTR5_MASK, 0x00,
REG_INTR2, 0xff,
REG_INTR2_MASK, 0x00,
);
memset(ctx->stat, 0, sizeof(ctx->stat));
memset(ctx->xstat, 0, sizeof(ctx->xstat));
memset(ctx->devcap, 0, sizeof(ctx->devcap));
memset(ctx->xdevcap, 0, sizeof(ctx->xdevcap));
ctx->devcap_read = false;
ctx->cbus_status = 0;
sii8620_mt_cleanup(ctx);
}
static void sii8620_mhl_disconnected(struct sii8620 *ctx)
{
sii8620_write_seq_static(ctx,
REG_DISC_CTRL4, VAL_DISC_CTRL4(VAL_PUP_OFF, VAL_PUP_20K),
REG_CBUS_MSC_COMPAT_CTRL,
BIT_CBUS_MSC_COMPAT_CTRL_XDEVCAP_EN
);
sii8620_disconnect(ctx);
}
static void sii8620_irq_disc(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_CBUS_DISC_INTR0);
if (stat & VAL_CBUS_MHL_DISCON)
sii8620_mhl_disconnected(ctx);
if (stat & BIT_RGND_READY_INT) {
u8 stat2 = sii8620_readb(ctx, REG_DISC_STAT2);
if ((stat2 & MSK_DISC_STAT2_RGND) == VAL_RGND_1K) {
sii8620_mhl_discover(ctx);
} else {
sii8620_write_seq_static(ctx,
REG_DISC_CTRL9, BIT_DISC_CTRL9_WAKE_DRVFLT
| BIT_DISC_CTRL9_NOMHL_EST
| BIT_DISC_CTRL9_WAKE_PULSE_BYPASS,
REG_CBUS_DISC_INTR0_MASK, BIT_RGND_READY_INT
| BIT_CBUS_MHL3_DISCON_INT
| BIT_CBUS_MHL12_DISCON_INT
| BIT_NOT_MHL_EST_INT
);
}
}
if (stat & BIT_MHL_EST_INT)
sii8620_mhl_init(ctx);
sii8620_write(ctx, REG_CBUS_DISC_INTR0, stat);
}
static void sii8620_read_burst(struct sii8620 *ctx)
{
u8 buf[17];
sii8620_read_buf(ctx, REG_MDT_RCV_READ_PORT, buf, ARRAY_SIZE(buf));
sii8620_write(ctx, REG_MDT_RCV_CTRL, BIT_MDT_RCV_CTRL_MDT_RCV_EN |
BIT_MDT_RCV_CTRL_MDT_DELAY_RCV_EN |
BIT_MDT_RCV_CTRL_MDT_RFIFO_CLR_CUR);
sii8620_readb(ctx, REG_MDT_RFIFO_STAT);
}
static void sii8620_irq_g2wb(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_MDT_INT_0);
if (stat & BIT_MDT_IDLE_AFTER_HAWB_DISABLE)
if (sii8620_is_mhl3(ctx))
sii8620_mt_set_int(ctx, MHL_INT_REG(RCHANGE),
MHL_INT_RC_FEAT_COMPLETE);
if (stat & BIT_MDT_RFIFO_DATA_RDY)
sii8620_read_burst(ctx);
if (stat & BIT_MDT_XFIFO_EMPTY)
sii8620_write(ctx, REG_MDT_XMIT_CTRL, 0);
sii8620_write(ctx, REG_MDT_INT_0, stat);
}
static void sii8620_status_dcap_ready(struct sii8620 *ctx)
{
enum sii8620_mode mode;
mode = ctx->stat[MHL_DST_VERSION] >= 0x30 ? CM_MHL3 : CM_MHL1;
if (mode > ctx->mode)
sii8620_set_mode(ctx, mode);
sii8620_peer_specific_init(ctx);
sii8620_write(ctx, REG_INTR9_MASK, BIT_INTR9_DEVCAP_DONE
| BIT_INTR9_EDID_DONE | BIT_INTR9_EDID_ERROR);
}
static void sii8620_status_changed_path(struct sii8620 *ctx)
{
u8 link_mode;
if (ctx->use_packed_pixel)
link_mode = MHL_DST_LM_CLK_MODE_PACKED_PIXEL;
else
link_mode = MHL_DST_LM_CLK_MODE_NORMAL;
if (ctx->stat[MHL_DST_LINK_MODE] & MHL_DST_LM_PATH_ENABLED)
link_mode |= MHL_DST_LM_PATH_ENABLED;
sii8620_mt_write_stat(ctx, MHL_DST_REG(LINK_MODE),
link_mode);
}
static void sii8620_msc_mr_write_stat(struct sii8620 *ctx)
{
u8 st[MHL_DST_SIZE], xst[MHL_XDS_SIZE];
sii8620_read_buf(ctx, REG_MHL_STAT_0, st, MHL_DST_SIZE);
sii8620_read_buf(ctx, REG_MHL_EXTSTAT_0, xst, MHL_XDS_SIZE);
sii8620_update_array(ctx->stat, st, MHL_DST_SIZE);
sii8620_update_array(ctx->xstat, xst, MHL_XDS_SIZE);
if (ctx->stat[MHL_DST_CONNECTED_RDY] & st[MHL_DST_CONNECTED_RDY] &
MHL_DST_CONN_DCAP_RDY) {
sii8620_status_dcap_ready(ctx);
if (!sii8620_is_mhl3(ctx))
sii8620_mt_read_devcap(ctx, false);
}
if (st[MHL_DST_LINK_MODE] & MHL_DST_LM_PATH_ENABLED)
sii8620_status_changed_path(ctx);
}
static void sii8620_ecbus_up(struct sii8620 *ctx, int ret)
{
if (ret < 0)
return;
sii8620_set_mode(ctx, CM_ECBUS_S);
}
static void sii8620_got_ecbus_speed(struct sii8620 *ctx, int ret)
{
if (ret < 0)
return;
sii8620_mt_write_stat(ctx, MHL_XDS_REG(CURR_ECBUS_MODE),
MHL_XDS_ECBUS_S | MHL_XDS_SLOT_MODE_8BIT);
sii8620_mt_rap(ctx, MHL_RAP_CBUS_MODE_UP);
sii8620_mt_set_cont(ctx, sii8620_ecbus_up);
}
static void sii8620_mhl_burst_emsc_support_set(struct mhl_burst_emsc_support *d,
enum mhl_burst_id id)
{
sii8620_mhl_burst_hdr_set(&d->hdr, MHL_BURST_ID_EMSC_SUPPORT);
d->num_entries = 1;
d->burst_id[0] = cpu_to_be16(id);
}
static void sii8620_send_features(struct sii8620 *ctx)
{
u8 buf[16];
sii8620_write(ctx, REG_MDT_XMIT_CTRL, BIT_MDT_XMIT_CTRL_EN
| BIT_MDT_XMIT_CTRL_FIXED_BURST_LEN);
sii8620_mhl_burst_emsc_support_set((void *)buf,
MHL_BURST_ID_HID_PAYLOAD);
sii8620_write_buf(ctx, REG_MDT_XMIT_WRITE_PORT, buf, ARRAY_SIZE(buf));
}
static bool sii8620_rcp_consume(struct sii8620 *ctx, u8 scancode)
{
bool pressed = !(scancode & MHL_RCP_KEY_RELEASED_MASK);
scancode &= MHL_RCP_KEY_ID_MASK;
if (!IS_ENABLED(CONFIG_RC_CORE) || !ctx->rc_dev)
return false;
if (pressed)
rc_keydown(ctx->rc_dev, RC_PROTO_CEC, scancode, 0);
else
rc_keyup(ctx->rc_dev);
return true;
}
static void sii8620_msc_mr_set_int(struct sii8620 *ctx)
{
u8 ints[MHL_INT_SIZE];
sii8620_read_buf(ctx, REG_MHL_INT_0, ints, MHL_INT_SIZE);
sii8620_write_buf(ctx, REG_MHL_INT_0, ints, MHL_INT_SIZE);
if (ints[MHL_INT_RCHANGE] & MHL_INT_RC_DCAP_CHG) {
switch (ctx->mode) {
case CM_MHL3:
sii8620_mt_read_xdevcap_reg(ctx, MHL_XDC_ECBUS_SPEEDS);
sii8620_mt_set_cont(ctx, sii8620_got_ecbus_speed);
break;
case CM_ECBUS_S:
sii8620_mt_read_devcap(ctx, true);
break;
default:
break;
}
}
if (ints[MHL_INT_RCHANGE] & MHL_INT_RC_FEAT_REQ)
sii8620_send_features(ctx);
if (ints[MHL_INT_RCHANGE] & MHL_INT_RC_FEAT_COMPLETE) {
ctx->feature_complete = true;
if (ctx->edid)
sii8620_enable_hpd(ctx);
}
}
static struct sii8620_mt_msg *sii8620_msc_msg_first(struct sii8620 *ctx)
{
struct device *dev = ctx->dev;
if (list_empty(&ctx->mt_queue)) {
dev_err(dev, "unexpected MSC MT response\n");
return NULL;
}
return list_first_entry(&ctx->mt_queue, struct sii8620_mt_msg, node);
}
static void sii8620_msc_mt_done(struct sii8620 *ctx)
{
struct sii8620_mt_msg *msg = sii8620_msc_msg_first(ctx);
if (!msg)
return;
msg->ret = sii8620_readb(ctx, REG_MSC_MT_RCVD_DATA0);
ctx->mt_state = MT_STATE_DONE;
}
static void sii8620_msc_mr_msc_msg(struct sii8620 *ctx)
{
struct sii8620_mt_msg *msg;
u8 buf[2];
sii8620_read_buf(ctx, REG_MSC_MR_MSC_MSG_RCVD_1ST_DATA, buf, 2);
switch (buf[0]) {
case MHL_MSC_MSG_RAPK:
msg = sii8620_msc_msg_first(ctx);
if (!msg)
return;
msg->ret = buf[1];
ctx->mt_state = MT_STATE_DONE;
break;
case MHL_MSC_MSG_RCP:
if (!sii8620_rcp_consume(ctx, buf[1]))
sii8620_mt_rcpe(ctx,
MHL_RCPE_STATUS_INEFFECTIVE_KEY_CODE);
sii8620_mt_rcpk(ctx, buf[1]);
break;
default:
dev_err(ctx->dev, "%s message type %d,%d not supported",
__func__, buf[0], buf[1]);
}
}
static void sii8620_irq_msc(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_CBUS_INT_0);
if (stat & ~BIT_CBUS_HPD_CHG)
sii8620_write(ctx, REG_CBUS_INT_0, stat & ~BIT_CBUS_HPD_CHG);
if (stat & BIT_CBUS_HPD_CHG) {
u8 cbus_stat = sii8620_readb(ctx, REG_CBUS_STATUS);
if ((cbus_stat ^ ctx->cbus_status) & BIT_CBUS_STATUS_CBUS_HPD) {
sii8620_write(ctx, REG_CBUS_INT_0, BIT_CBUS_HPD_CHG);
} else {
stat ^= BIT_CBUS_STATUS_CBUS_HPD;
cbus_stat ^= BIT_CBUS_STATUS_CBUS_HPD;
}
ctx->cbus_status = cbus_stat;
}
if (stat & BIT_CBUS_MSC_MR_WRITE_STAT)
sii8620_msc_mr_write_stat(ctx);
if (stat & BIT_CBUS_HPD_CHG) {
if (ctx->cbus_status & BIT_CBUS_STATUS_CBUS_HPD) {
ctx->sink_detected = true;
sii8620_identify_sink(ctx);
} else {
sii8620_hpd_unplugged(ctx);
}
}
if (stat & BIT_CBUS_MSC_MR_SET_INT)
sii8620_msc_mr_set_int(ctx);
if (stat & BIT_CBUS_MSC_MT_DONE)
sii8620_msc_mt_done(ctx);
if (stat & BIT_CBUS_MSC_MR_MSC_MSG)
sii8620_msc_mr_msc_msg(ctx);
}
static void sii8620_irq_coc(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_COC_INTR);
if (stat & BIT_COC_CALIBRATION_DONE) {
u8 cstat = sii8620_readb(ctx, REG_COC_STAT_0);
cstat &= BIT_COC_STAT_0_PLL_LOCKED | MSK_COC_STAT_0_FSM_STATE;
if (cstat == (BIT_COC_STAT_0_PLL_LOCKED | 0x02)) {
sii8620_write_seq_static(ctx,
REG_COC_CTLB, 0,
REG_TRXINTMH, BIT_TDM_INTR_SYNC_DATA
| BIT_TDM_INTR_SYNC_WAIT
);
}
}
sii8620_write(ctx, REG_COC_INTR, stat);
}
static void sii8620_irq_merr(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_CBUS_INT_1);
sii8620_write(ctx, REG_CBUS_INT_1, stat);
}
static void sii8620_irq_edid(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_INTR9);
sii8620_write(ctx, REG_INTR9, stat);
if (stat & BIT_INTR9_DEVCAP_DONE)
ctx->mt_state = MT_STATE_DONE;
}
static void sii8620_irq_scdt(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_INTR5);
if (stat & BIT_INTR_SCDT_CHANGE) {
u8 cstat = sii8620_readb(ctx, REG_TMDS_CSTAT_P3);
if (cstat & BIT_TMDS_CSTAT_P3_SCDT)
sii8620_start_video(ctx);
}
sii8620_write(ctx, REG_INTR5, stat);
}
static void sii8620_got_xdevcap(struct sii8620 *ctx, int ret)
{
if (ret < 0)
return;
sii8620_mt_read_devcap(ctx, false);
}
static void sii8620_irq_tdm(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_TRXINTH);
u8 tdm = sii8620_readb(ctx, REG_TRXSTA2);
if ((tdm & MSK_TDM_SYNCHRONIZED) == VAL_TDM_SYNCHRONIZED) {
ctx->mode = CM_ECBUS_S;
ctx->burst.rx_ack = 0;
ctx->burst.r_size = SII8620_BURST_BUF_LEN;
sii8620_burst_tx_rbuf_info(ctx, SII8620_BURST_BUF_LEN);
sii8620_mt_read_devcap(ctx, true);
sii8620_mt_set_cont(ctx, sii8620_got_xdevcap);
} else {
sii8620_write_seq_static(ctx,
REG_MHL_PLL_CTL2, 0,
REG_MHL_PLL_CTL2, BIT_MHL_PLL_CTL2_CLKDETECT_EN
);
}
sii8620_write(ctx, REG_TRXINTH, stat);
}
static void sii8620_irq_block(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_EMSCINTR);
if (stat & BIT_EMSCINTR_SPI_DVLD) {
u8 bstat = sii8620_readb(ctx, REG_SPIBURSTSTAT);
if (bstat & BIT_SPIBURSTSTAT_EMSC_NORMAL_MODE)
sii8620_burst_receive(ctx);
}
sii8620_write(ctx, REG_EMSCINTR, stat);
}
static void sii8620_irq_ddc(struct sii8620 *ctx)
{
u8 stat = sii8620_readb(ctx, REG_INTR3);
if (stat & BIT_DDC_CMD_DONE) {
sii8620_write(ctx, REG_INTR3_MASK, 0);
if (sii8620_is_mhl3(ctx) && !ctx->feature_complete)
sii8620_mt_set_int(ctx, MHL_INT_REG(RCHANGE),
MHL_INT_RC_FEAT_REQ);
else
sii8620_enable_hpd(ctx);
}
sii8620_write(ctx, REG_INTR3, stat);
}
/* endian agnostic, non-volatile version of test_bit */
static bool sii8620_test_bit(unsigned int nr, const u8 *addr)
{
return 1 & (addr[nr / BITS_PER_BYTE] >> (nr % BITS_PER_BYTE));
}
static irqreturn_t sii8620_irq_thread(int irq, void *data)
{
static const struct {
int bit;
void (*handler)(struct sii8620 *ctx);
} irq_vec[] = {
{ BIT_FAST_INTR_STAT_DISC, sii8620_irq_disc },
{ BIT_FAST_INTR_STAT_G2WB, sii8620_irq_g2wb },
{ BIT_FAST_INTR_STAT_COC, sii8620_irq_coc },
{ BIT_FAST_INTR_STAT_TDM, sii8620_irq_tdm },
{ BIT_FAST_INTR_STAT_MSC, sii8620_irq_msc },
{ BIT_FAST_INTR_STAT_MERR, sii8620_irq_merr },
{ BIT_FAST_INTR_STAT_BLOCK, sii8620_irq_block },
{ BIT_FAST_INTR_STAT_EDID, sii8620_irq_edid },
{ BIT_FAST_INTR_STAT_DDC, sii8620_irq_ddc },
{ BIT_FAST_INTR_STAT_SCDT, sii8620_irq_scdt },
};
struct sii8620 *ctx = data;
u8 stats[LEN_FAST_INTR_STAT];
int i, ret;
mutex_lock(&ctx->lock);
sii8620_read_buf(ctx, REG_FAST_INTR_STAT, stats, ARRAY_SIZE(stats));
for (i = 0; i < ARRAY_SIZE(irq_vec); ++i)
if (sii8620_test_bit(irq_vec[i].bit, stats))
irq_vec[i].handler(ctx);
sii8620_burst_rx_all(ctx);
sii8620_mt_work(ctx);
sii8620_burst_send(ctx);
ret = sii8620_clear_error(ctx);
if (ret) {
dev_err(ctx->dev, "Error during IRQ handling, %d.\n", ret);
sii8620_mhl_disconnected(ctx);
}
mutex_unlock(&ctx->lock);
return IRQ_HANDLED;
}
static void sii8620_cable_in(struct sii8620 *ctx)
{
struct device *dev = ctx->dev;
u8 ver[5];
int ret;
ret = sii8620_hw_on(ctx);
if (ret) {
dev_err(dev, "Error powering on, %d.\n", ret);
return;
}
sii8620_read_buf(ctx, REG_VND_IDL, ver, ARRAY_SIZE(ver));
ret = sii8620_clear_error(ctx);
if (ret) {
dev_err(dev, "Error accessing I2C bus, %d.\n", ret);
return;
}
dev_info(dev, "ChipID %02x%02x:%02x%02x rev %02x.\n", ver[1], ver[0],
ver[3], ver[2], ver[4]);
sii8620_write(ctx, REG_DPD,
BIT_DPD_PWRON_PLL | BIT_DPD_PDNTX12 | BIT_DPD_OSC_EN);
sii8620_xtal_set_rate(ctx);
sii8620_disconnect(ctx);
sii8620_write_seq_static(ctx,
REG_MHL_CBUS_CTL0, VAL_MHL_CBUS_CTL0_CBUS_DRV_SEL_STRONG
| VAL_MHL_CBUS_CTL0_CBUS_RGND_VBIAS_734,
REG_MHL_CBUS_CTL1, VAL_MHL_CBUS_CTL1_1115_OHM,
REG_DPD, BIT_DPD_PWRON_PLL | BIT_DPD_PDNTX12 | BIT_DPD_OSC_EN,
);
ret = sii8620_clear_error(ctx);
if (ret) {
dev_err(dev, "Error accessing I2C bus, %d.\n", ret);
return;
}
enable_irq(to_i2c_client(ctx->dev)->irq);
}
static void sii8620_init_rcp_input_dev(struct sii8620 *ctx)
{
struct rc_dev *rc_dev;
int ret;
if (!IS_ENABLED(CONFIG_RC_CORE))
return;
rc_dev = rc_allocate_device(RC_DRIVER_SCANCODE);
if (!rc_dev) {
dev_err(ctx->dev, "Failed to allocate RC device\n");
ctx->error = -ENOMEM;
return;
}
rc_dev->input_phys = "sii8620/input0";
rc_dev->input_id.bustype = BUS_VIRTUAL;
rc_dev->map_name = RC_MAP_CEC;
rc_dev->allowed_protocols = RC_PROTO_BIT_CEC;
rc_dev->driver_name = "sii8620";
rc_dev->device_name = "sii8620";
ret = rc_register_device(rc_dev);
if (ret) {
dev_err(ctx->dev, "Failed to register RC device\n");
ctx->error = ret;
rc_free_device(rc_dev);
return;
}
ctx->rc_dev = rc_dev;
}
static void sii8620_cable_out(struct sii8620 *ctx)
{
disable_irq(to_i2c_client(ctx->dev)->irq);
sii8620_hw_off(ctx);
}
static void sii8620_extcon_work(struct work_struct *work)
{
struct sii8620 *ctx =
container_of(work, struct sii8620, extcon_wq);
int state = extcon_get_state(ctx->extcon, EXTCON_DISP_MHL);
if (state == ctx->cable_state)
return;
ctx->cable_state = state;
if (state > 0)
sii8620_cable_in(ctx);
else
sii8620_cable_out(ctx);
}
static int sii8620_extcon_notifier(struct notifier_block *self,
unsigned long event, void *ptr)
{
struct sii8620 *ctx =
container_of(self, struct sii8620, extcon_nb);
schedule_work(&ctx->extcon_wq);
return NOTIFY_DONE;
}
static int sii8620_extcon_init(struct sii8620 *ctx)
{
struct extcon_dev *edev;
struct device_node *musb, *muic;
int ret;
/* get micro-USB connector node */
musb = of_graph_get_remote_node(ctx->dev->of_node, 1, -1);
/* next get micro-USB Interface Controller node */
muic = of_get_next_parent(musb);
if (!muic) {
dev_info(ctx->dev, "no extcon found, switching to 'always on' mode\n");
return 0;
}
edev = extcon_find_edev_by_node(muic);
of_node_put(muic);
if (IS_ERR(edev)) {
if (PTR_ERR(edev) == -EPROBE_DEFER)
return -EPROBE_DEFER;
dev_err(ctx->dev, "Invalid or missing extcon\n");
return PTR_ERR(edev);
}
ctx->extcon = edev;
ctx->extcon_nb.notifier_call = sii8620_extcon_notifier;
INIT_WORK(&ctx->extcon_wq, sii8620_extcon_work);
ret = extcon_register_notifier(edev, EXTCON_DISP_MHL, &ctx->extcon_nb);
if (ret) {
dev_err(ctx->dev, "failed to register notifier for MHL\n");
return ret;
}
return 0;
}
static inline struct sii8620 *bridge_to_sii8620(struct drm_bridge *bridge)
{
return container_of(bridge, struct sii8620, bridge);
}
static int sii8620_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct sii8620 *ctx = bridge_to_sii8620(bridge);
sii8620_init_rcp_input_dev(ctx);
return sii8620_clear_error(ctx);
}
static void sii8620_detach(struct drm_bridge *bridge)
{
struct sii8620 *ctx = bridge_to_sii8620(bridge);
if (!IS_ENABLED(CONFIG_RC_CORE))
return;
rc_unregister_device(ctx->rc_dev);
}
static int sii8620_is_packing_required(struct sii8620 *ctx,
const struct drm_display_mode *mode)
{
int max_pclk, max_pclk_pp_mode;
if (sii8620_is_mhl3(ctx)) {
max_pclk = MHL3_MAX_PCLK;
max_pclk_pp_mode = MHL3_MAX_PCLK_PP_MODE;
} else {
max_pclk = MHL1_MAX_PCLK;
max_pclk_pp_mode = MHL1_MAX_PCLK_PP_MODE;
}
if (mode->clock < max_pclk)
return 0;
else if (mode->clock < max_pclk_pp_mode)
return 1;
else
return -1;
}
static enum drm_mode_status sii8620_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct sii8620 *ctx = bridge_to_sii8620(bridge);
int pack_required = sii8620_is_packing_required(ctx, mode);
bool can_pack = ctx->devcap[MHL_DCAP_VID_LINK_MODE] &
MHL_DCAP_VID_LINK_PPIXEL;
switch (pack_required) {
case 0:
return MODE_OK;
case 1:
return (can_pack) ? MODE_OK : MODE_CLOCK_HIGH;
default:
return MODE_CLOCK_HIGH;
}
}
static bool sii8620_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct sii8620 *ctx = bridge_to_sii8620(bridge);
mutex_lock(&ctx->lock);
ctx->use_packed_pixel = sii8620_is_packing_required(ctx, adjusted_mode);
mutex_unlock(&ctx->lock);
return true;
}
static const struct drm_bridge_funcs sii8620_bridge_funcs = {
.attach = sii8620_attach,
.detach = sii8620_detach,
.mode_fixup = sii8620_mode_fixup,
.mode_valid = sii8620_mode_valid,
};
static int sii8620_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct sii8620 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
mutex_init(&ctx->lock);
INIT_LIST_HEAD(&ctx->mt_queue);
ctx->clk_xtal = devm_clk_get(dev, "xtal");
if (IS_ERR(ctx->clk_xtal))
return dev_err_probe(dev, PTR_ERR(ctx->clk_xtal),
"failed to get xtal clock from DT\n");
if (!client->irq) {
dev_err(dev, "no irq provided\n");
return -EINVAL;
}
irq_set_status_flags(client->irq, IRQ_NOAUTOEN);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
sii8620_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"sii8620", ctx);
if (ret < 0)
return dev_err_probe(dev, ret,
"failed to install IRQ handler\n");
ctx->gpio_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(ctx->gpio_reset))
return dev_err_probe(dev, PTR_ERR(ctx->gpio_reset),
"failed to get reset gpio from DT\n");
ctx->supplies[0].supply = "cvcc10";
ctx->supplies[1].supply = "iovcc18";
ret = devm_regulator_bulk_get(dev, 2, ctx->supplies);
if (ret)
return ret;
ret = sii8620_extcon_init(ctx);
if (ret < 0) {
dev_err(ctx->dev, "failed to initialize EXTCON\n");
return ret;
}
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = &sii8620_bridge_funcs;
ctx->bridge.of_node = dev->of_node;
drm_bridge_add(&ctx->bridge);
if (!ctx->extcon)
sii8620_cable_in(ctx);
return 0;
}
static void sii8620_remove(struct i2c_client *client)
{
struct sii8620 *ctx = i2c_get_clientdata(client);
if (ctx->extcon) {
extcon_unregister_notifier(ctx->extcon, EXTCON_DISP_MHL,
&ctx->extcon_nb);
flush_work(&ctx->extcon_wq);
if (ctx->cable_state > 0)
sii8620_cable_out(ctx);
} else {
sii8620_cable_out(ctx);
}
drm_bridge_remove(&ctx->bridge);
}
static const struct of_device_id sii8620_dt_match[] = {
{ .compatible = "sil,sii8620" },
{ },
};
MODULE_DEVICE_TABLE(of, sii8620_dt_match);
static const struct i2c_device_id sii8620_id[] = {
{ "sii8620", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, sii8620_id);
static struct i2c_driver sii8620_driver = {
.driver = {
.name = "sii8620",
.of_match_table = sii8620_dt_match,
},
.probe = sii8620_probe,
.remove = sii8620_remove,
.id_table = sii8620_id,
};
module_i2c_driver(sii8620_driver);
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/sil-sii8620.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Texas Instruments
* Author: Jyri Sarha <[email protected]>
*/
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define HOTPLUG_DEBOUNCE_MS 1100
struct tfp410 {
struct drm_bridge bridge;
struct drm_connector connector;
u32 bus_format;
struct delayed_work hpd_work;
struct gpio_desc *powerdown;
struct drm_bridge_timings timings;
struct drm_bridge *next_bridge;
struct device *dev;
};
static inline struct tfp410 *
drm_bridge_to_tfp410(struct drm_bridge *bridge)
{
return container_of(bridge, struct tfp410, bridge);
}
static inline struct tfp410 *
drm_connector_to_tfp410(struct drm_connector *connector)
{
return container_of(connector, struct tfp410, connector);
}
static int tfp410_get_modes(struct drm_connector *connector)
{
struct tfp410 *dvi = drm_connector_to_tfp410(connector);
struct edid *edid;
int ret;
if (dvi->next_bridge->ops & DRM_BRIDGE_OP_EDID) {
edid = drm_bridge_get_edid(dvi->next_bridge, connector);
if (!edid)
DRM_INFO("EDID read failed. Fallback to standard modes\n");
} else {
edid = NULL;
}
if (!edid) {
/*
* No EDID, fallback on the XGA standard modes and prefer a mode
* pretty much anything can handle.
*/
ret = drm_add_modes_noedid(connector, 1920, 1200);
drm_set_preferred_mode(connector, 1024, 768);
return ret;
}
drm_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
return ret;
}
static const struct drm_connector_helper_funcs tfp410_con_helper_funcs = {
.get_modes = tfp410_get_modes,
};
static enum drm_connector_status
tfp410_connector_detect(struct drm_connector *connector, bool force)
{
struct tfp410 *dvi = drm_connector_to_tfp410(connector);
return drm_bridge_detect(dvi->next_bridge);
}
static const struct drm_connector_funcs tfp410_con_funcs = {
.detect = tfp410_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static void tfp410_hpd_work_func(struct work_struct *work)
{
struct tfp410 *dvi;
dvi = container_of(work, struct tfp410, hpd_work.work);
if (dvi->bridge.dev)
drm_helper_hpd_irq_event(dvi->bridge.dev);
}
static void tfp410_hpd_callback(void *arg, enum drm_connector_status status)
{
struct tfp410 *dvi = arg;
mod_delayed_work(system_wq, &dvi->hpd_work,
msecs_to_jiffies(HOTPLUG_DEBOUNCE_MS));
}
static int tfp410_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
int ret;
ret = drm_bridge_attach(bridge->encoder, dvi->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret < 0)
return ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
if (!bridge->encoder) {
dev_err(dvi->dev, "Missing encoder\n");
return -ENODEV;
}
if (dvi->next_bridge->ops & DRM_BRIDGE_OP_DETECT)
dvi->connector.polled = DRM_CONNECTOR_POLL_HPD;
else
dvi->connector.polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT;
if (dvi->next_bridge->ops & DRM_BRIDGE_OP_HPD) {
INIT_DELAYED_WORK(&dvi->hpd_work, tfp410_hpd_work_func);
drm_bridge_hpd_enable(dvi->next_bridge, tfp410_hpd_callback,
dvi);
}
drm_connector_helper_add(&dvi->connector,
&tfp410_con_helper_funcs);
ret = drm_connector_init_with_ddc(bridge->dev, &dvi->connector,
&tfp410_con_funcs,
dvi->next_bridge->type,
dvi->next_bridge->ddc);
if (ret) {
dev_err(dvi->dev, "drm_connector_init_with_ddc() failed: %d\n",
ret);
return ret;
}
drm_display_info_set_bus_formats(&dvi->connector.display_info,
&dvi->bus_format, 1);
drm_connector_attach_encoder(&dvi->connector, bridge->encoder);
return 0;
}
static void tfp410_detach(struct drm_bridge *bridge)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
if (dvi->connector.dev && dvi->next_bridge->ops & DRM_BRIDGE_OP_HPD) {
drm_bridge_hpd_disable(dvi->next_bridge);
cancel_delayed_work_sync(&dvi->hpd_work);
}
}
static void tfp410_enable(struct drm_bridge *bridge)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
gpiod_set_value_cansleep(dvi->powerdown, 0);
}
static void tfp410_disable(struct drm_bridge *bridge)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
gpiod_set_value_cansleep(dvi->powerdown, 1);
}
static enum drm_mode_status tfp410_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (mode->clock > 165000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static u32 *tfp410_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kzalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
*num_input_fmts = 1;
input_fmts[0] = dvi->bus_format;
return input_fmts;
}
static int tfp410_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct tfp410 *dvi = drm_bridge_to_tfp410(bridge);
/*
* There might be flags negotiation supported in future.
* Set the bus flags in atomic_check statically for now.
*/
bridge_state->input_bus_cfg.flags = dvi->timings.input_bus_flags;
return 0;
}
static const struct drm_bridge_funcs tfp410_bridge_funcs = {
.attach = tfp410_attach,
.detach = tfp410_detach,
.enable = tfp410_enable,
.disable = tfp410_disable,
.mode_valid = tfp410_mode_valid,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_get_input_bus_fmts = tfp410_get_input_bus_fmts,
.atomic_check = tfp410_atomic_check,
};
static const struct drm_bridge_timings tfp410_default_timings = {
.input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE
| DRM_BUS_FLAG_DE_HIGH,
.setup_time_ps = 1200,
.hold_time_ps = 1300,
};
static int tfp410_parse_timings(struct tfp410 *dvi, bool i2c)
{
struct drm_bridge_timings *timings = &dvi->timings;
struct device_node *ep;
u32 pclk_sample = 0;
u32 bus_width = 24;
u32 deskew = 0;
/* Start with defaults. */
*timings = tfp410_default_timings;
if (i2c)
/*
* In I2C mode timings are configured through the I2C interface.
* As the driver doesn't support I2C configuration yet, we just
* go with the defaults (BSEL=1, DSEL=1, DKEN=0, EDGE=1).
*/
return 0;
/*
* In non-I2C mode, timings are configured through the BSEL, DSEL, DKEN
* and EDGE pins. They are specified in DT through endpoint properties
* and vendor-specific properties.
*/
ep = of_graph_get_endpoint_by_regs(dvi->dev->of_node, 0, 0);
if (!ep)
return -EINVAL;
/* Get the sampling edge from the endpoint. */
of_property_read_u32(ep, "pclk-sample", &pclk_sample);
of_property_read_u32(ep, "bus-width", &bus_width);
of_node_put(ep);
timings->input_bus_flags = DRM_BUS_FLAG_DE_HIGH;
switch (pclk_sample) {
case 0:
timings->input_bus_flags |= DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE
| DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE;
break;
case 1:
timings->input_bus_flags |= DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE
| DRM_BUS_FLAG_SYNC_SAMPLE_POSEDGE;
break;
default:
return -EINVAL;
}
switch (bus_width) {
case 12:
dvi->bus_format = MEDIA_BUS_FMT_RGB888_2X12_LE;
break;
case 24:
dvi->bus_format = MEDIA_BUS_FMT_RGB888_1X24;
break;
default:
return -EINVAL;
}
/* Get the setup and hold time from vendor-specific properties. */
of_property_read_u32(dvi->dev->of_node, "ti,deskew", &deskew);
if (deskew > 7)
return -EINVAL;
timings->setup_time_ps = 1200 - 350 * ((s32)deskew - 4);
timings->hold_time_ps = max(0, 1300 + 350 * ((s32)deskew - 4));
return 0;
}
static int tfp410_init(struct device *dev, bool i2c)
{
struct device_node *node;
struct tfp410 *dvi;
int ret;
if (!dev->of_node) {
dev_err(dev, "device-tree data is missing\n");
return -ENXIO;
}
dvi = devm_kzalloc(dev, sizeof(*dvi), GFP_KERNEL);
if (!dvi)
return -ENOMEM;
dvi->dev = dev;
dev_set_drvdata(dev, dvi);
dvi->bridge.funcs = &tfp410_bridge_funcs;
dvi->bridge.of_node = dev->of_node;
dvi->bridge.timings = &dvi->timings;
dvi->bridge.type = DRM_MODE_CONNECTOR_DVID;
ret = tfp410_parse_timings(dvi, i2c);
if (ret)
return ret;
/* Get the next bridge, connected to port@1. */
node = of_graph_get_remote_node(dev->of_node, 1, -1);
if (!node)
return -ENODEV;
dvi->next_bridge = of_drm_find_bridge(node);
of_node_put(node);
if (!dvi->next_bridge)
return -EPROBE_DEFER;
/* Get the powerdown GPIO. */
dvi->powerdown = devm_gpiod_get_optional(dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(dvi->powerdown)) {
dev_err(dev, "failed to parse powerdown gpio\n");
return PTR_ERR(dvi->powerdown);
}
/* Register the DRM bridge. */
drm_bridge_add(&dvi->bridge);
return 0;
}
static void tfp410_fini(struct device *dev)
{
struct tfp410 *dvi = dev_get_drvdata(dev);
drm_bridge_remove(&dvi->bridge);
}
static int tfp410_probe(struct platform_device *pdev)
{
return tfp410_init(&pdev->dev, false);
}
static void tfp410_remove(struct platform_device *pdev)
{
tfp410_fini(&pdev->dev);
}
static const struct of_device_id tfp410_match[] = {
{ .compatible = "ti,tfp410" },
{},
};
MODULE_DEVICE_TABLE(of, tfp410_match);
static struct platform_driver tfp410_platform_driver = {
.probe = tfp410_probe,
.remove_new = tfp410_remove,
.driver = {
.name = "tfp410-bridge",
.of_match_table = tfp410_match,
},
};
#if IS_ENABLED(CONFIG_I2C)
/* There is currently no i2c functionality. */
static int tfp410_i2c_probe(struct i2c_client *client)
{
int reg;
if (!client->dev.of_node ||
of_property_read_u32(client->dev.of_node, "reg", ®)) {
dev_err(&client->dev,
"Can't get i2c reg property from device-tree\n");
return -ENXIO;
}
return tfp410_init(&client->dev, true);
}
static void tfp410_i2c_remove(struct i2c_client *client)
{
tfp410_fini(&client->dev);
}
static const struct i2c_device_id tfp410_i2c_ids[] = {
{ "tfp410", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tfp410_i2c_ids);
static struct i2c_driver tfp410_i2c_driver = {
.driver = {
.name = "tfp410",
.of_match_table = tfp410_match,
},
.id_table = tfp410_i2c_ids,
.probe = tfp410_i2c_probe,
.remove = tfp410_i2c_remove,
};
#endif /* IS_ENABLED(CONFIG_I2C) */
static struct {
uint i2c:1;
uint platform:1;
} tfp410_registered_driver;
static int __init tfp410_module_init(void)
{
int ret;
#if IS_ENABLED(CONFIG_I2C)
ret = i2c_add_driver(&tfp410_i2c_driver);
if (ret)
pr_err("%s: registering i2c driver failed: %d",
__func__, ret);
else
tfp410_registered_driver.i2c = 1;
#endif
ret = platform_driver_register(&tfp410_platform_driver);
if (ret)
pr_err("%s: registering platform driver failed: %d",
__func__, ret);
else
tfp410_registered_driver.platform = 1;
if (tfp410_registered_driver.i2c ||
tfp410_registered_driver.platform)
return 0;
return ret;
}
module_init(tfp410_module_init);
static void __exit tfp410_module_exit(void)
{
#if IS_ENABLED(CONFIG_I2C)
if (tfp410_registered_driver.i2c)
i2c_del_driver(&tfp410_i2c_driver);
#endif
if (tfp410_registered_driver.platform)
platform_driver_unregister(&tfp410_platform_driver);
}
module_exit(tfp410_module_exit);
MODULE_AUTHOR("Jyri Sarha <[email protected]>");
MODULE_DESCRIPTION("TI TFP410 DVI bridge driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/ti-tfp410.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 BayLibre, SAS
* Author: Phong LE <[email protected]>
* Copyright (C) 2018-2019, Artem Mygaiev
* Copyright (C) 2017, Fresco Logic, Incorporated.
*
*/
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/bitfield.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/of_graph.h>
#include <linux/gpio/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_modes.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <sound/hdmi-codec.h>
#define IT66121_VENDOR_ID0_REG 0x00
#define IT66121_VENDOR_ID1_REG 0x01
#define IT66121_DEVICE_ID0_REG 0x02
#define IT66121_DEVICE_ID1_REG 0x03
#define IT66121_REVISION_MASK GENMASK(7, 4)
#define IT66121_DEVICE_ID1_MASK GENMASK(3, 0)
#define IT66121_MASTER_SEL_REG 0x10
#define IT66121_MASTER_SEL_HOST BIT(0)
#define IT66121_AFE_DRV_REG 0x61
#define IT66121_AFE_DRV_RST BIT(4)
#define IT66121_AFE_DRV_PWD BIT(5)
#define IT66121_INPUT_MODE_REG 0x70
#define IT66121_INPUT_MODE_RGB (0 << 6)
#define IT66121_INPUT_MODE_YUV422 BIT(6)
#define IT66121_INPUT_MODE_YUV444 (2 << 6)
#define IT66121_INPUT_MODE_CCIR656 BIT(4)
#define IT66121_INPUT_MODE_SYNCEMB BIT(3)
#define IT66121_INPUT_MODE_DDR BIT(2)
#define IT66121_INPUT_CSC_REG 0x72
#define IT66121_INPUT_CSC_ENDITHER BIT(7)
#define IT66121_INPUT_CSC_ENUDFILTER BIT(6)
#define IT66121_INPUT_CSC_DNFREE_GO BIT(5)
#define IT66121_INPUT_CSC_RGB_TO_YUV 0x02
#define IT66121_INPUT_CSC_YUV_TO_RGB 0x03
#define IT66121_INPUT_CSC_NO_CONV 0x00
#define IT66121_AFE_XP_REG 0x62
#define IT66121_AFE_XP_GAINBIT BIT(7)
#define IT66121_AFE_XP_PWDPLL BIT(6)
#define IT66121_AFE_XP_ENI BIT(5)
#define IT66121_AFE_XP_ENO BIT(4)
#define IT66121_AFE_XP_RESETB BIT(3)
#define IT66121_AFE_XP_PWDI BIT(2)
#define IT6610_AFE_XP_BYPASS BIT(0)
#define IT66121_AFE_IP_REG 0x64
#define IT66121_AFE_IP_GAINBIT BIT(7)
#define IT66121_AFE_IP_PWDPLL BIT(6)
#define IT66121_AFE_IP_CKSEL_05 (0 << 4)
#define IT66121_AFE_IP_CKSEL_1 BIT(4)
#define IT66121_AFE_IP_CKSEL_2 (2 << 4)
#define IT66121_AFE_IP_CKSEL_2OR4 (3 << 4)
#define IT66121_AFE_IP_ER0 BIT(3)
#define IT66121_AFE_IP_RESETB BIT(2)
#define IT66121_AFE_IP_ENC BIT(1)
#define IT66121_AFE_IP_EC1 BIT(0)
#define IT66121_AFE_XP_EC1_REG 0x68
#define IT66121_AFE_XP_EC1_LOWCLK BIT(4)
#define IT66121_SW_RST_REG 0x04
#define IT66121_SW_RST_REF BIT(5)
#define IT66121_SW_RST_AREF BIT(4)
#define IT66121_SW_RST_VID BIT(3)
#define IT66121_SW_RST_AUD BIT(2)
#define IT66121_SW_RST_HDCP BIT(0)
#define IT66121_DDC_COMMAND_REG 0x15
#define IT66121_DDC_COMMAND_BURST_READ 0x0
#define IT66121_DDC_COMMAND_EDID_READ 0x3
#define IT66121_DDC_COMMAND_FIFO_CLR 0x9
#define IT66121_DDC_COMMAND_SCL_PULSE 0xA
#define IT66121_DDC_COMMAND_ABORT 0xF
#define IT66121_HDCP_REG 0x20
#define IT66121_HDCP_CPDESIRED BIT(0)
#define IT66121_HDCP_EN1P1FEAT BIT(1)
#define IT66121_INT_STATUS1_REG 0x06
#define IT66121_INT_STATUS1_AUD_OVF BIT(7)
#define IT66121_INT_STATUS1_DDC_NOACK BIT(5)
#define IT66121_INT_STATUS1_DDC_FIFOERR BIT(4)
#define IT66121_INT_STATUS1_DDC_BUSHANG BIT(2)
#define IT66121_INT_STATUS1_RX_SENS_STATUS BIT(1)
#define IT66121_INT_STATUS1_HPD_STATUS BIT(0)
#define IT66121_DDC_HEADER_REG 0x11
#define IT66121_DDC_HEADER_HDCP 0x74
#define IT66121_DDC_HEADER_EDID 0xA0
#define IT66121_DDC_OFFSET_REG 0x12
#define IT66121_DDC_BYTE_REG 0x13
#define IT66121_DDC_SEGMENT_REG 0x14
#define IT66121_DDC_RD_FIFO_REG 0x17
#define IT66121_CLK_BANK_REG 0x0F
#define IT66121_CLK_BANK_PWROFF_RCLK BIT(6)
#define IT66121_CLK_BANK_PWROFF_ACLK BIT(5)
#define IT66121_CLK_BANK_PWROFF_TXCLK BIT(4)
#define IT66121_CLK_BANK_PWROFF_CRCLK BIT(3)
#define IT66121_CLK_BANK_0 0
#define IT66121_CLK_BANK_1 1
#define IT66121_INT_REG 0x05
#define IT66121_INT_ACTIVE_HIGH BIT(7)
#define IT66121_INT_OPEN_DRAIN BIT(6)
#define IT66121_INT_TX_CLK_OFF BIT(0)
#define IT66121_INT_MASK1_REG 0x09
#define IT66121_INT_MASK1_AUD_OVF BIT(7)
#define IT66121_INT_MASK1_DDC_NOACK BIT(5)
#define IT66121_INT_MASK1_DDC_FIFOERR BIT(4)
#define IT66121_INT_MASK1_DDC_BUSHANG BIT(2)
#define IT66121_INT_MASK1_RX_SENS BIT(1)
#define IT66121_INT_MASK1_HPD BIT(0)
#define IT66121_INT_CLR1_REG 0x0C
#define IT66121_INT_CLR1_PKTACP BIT(7)
#define IT66121_INT_CLR1_PKTNULL BIT(6)
#define IT66121_INT_CLR1_PKTGEN BIT(5)
#define IT66121_INT_CLR1_KSVLISTCHK BIT(4)
#define IT66121_INT_CLR1_AUTHDONE BIT(3)
#define IT66121_INT_CLR1_AUTHFAIL BIT(2)
#define IT66121_INT_CLR1_RX_SENS BIT(1)
#define IT66121_INT_CLR1_HPD BIT(0)
#define IT66121_AV_MUTE_REG 0xC1
#define IT66121_AV_MUTE_ON BIT(0)
#define IT66121_AV_MUTE_BLUESCR BIT(1)
#define IT66121_PKT_CTS_CTRL_REG 0xC5
#define IT66121_PKT_CTS_CTRL_SEL BIT(1)
#define IT66121_PKT_GEN_CTRL_REG 0xC6
#define IT66121_PKT_GEN_CTRL_ON BIT(0)
#define IT66121_PKT_GEN_CTRL_RPT BIT(1)
#define IT66121_AVIINFO_DB1_REG 0x158
#define IT66121_AVIINFO_DB2_REG 0x159
#define IT66121_AVIINFO_DB3_REG 0x15A
#define IT66121_AVIINFO_DB4_REG 0x15B
#define IT66121_AVIINFO_DB5_REG 0x15C
#define IT66121_AVIINFO_CSUM_REG 0x15D
#define IT66121_AVIINFO_DB6_REG 0x15E
#define IT66121_AVIINFO_DB7_REG 0x15F
#define IT66121_AVIINFO_DB8_REG 0x160
#define IT66121_AVIINFO_DB9_REG 0x161
#define IT66121_AVIINFO_DB10_REG 0x162
#define IT66121_AVIINFO_DB11_REG 0x163
#define IT66121_AVIINFO_DB12_REG 0x164
#define IT66121_AVIINFO_DB13_REG 0x165
#define IT66121_AVI_INFO_PKT_REG 0xCD
#define IT66121_AVI_INFO_PKT_ON BIT(0)
#define IT66121_AVI_INFO_PKT_RPT BIT(1)
#define IT66121_HDMI_MODE_REG 0xC0
#define IT66121_HDMI_MODE_HDMI BIT(0)
#define IT66121_SYS_STATUS_REG 0x0E
#define IT66121_SYS_STATUS_ACTIVE_IRQ BIT(7)
#define IT66121_SYS_STATUS_HPDETECT BIT(6)
#define IT66121_SYS_STATUS_SENDECTECT BIT(5)
#define IT66121_SYS_STATUS_VID_STABLE BIT(4)
#define IT66121_SYS_STATUS_AUD_CTS_CLR BIT(1)
#define IT66121_SYS_STATUS_CLEAR_IRQ BIT(0)
#define IT66121_DDC_STATUS_REG 0x16
#define IT66121_DDC_STATUS_TX_DONE BIT(7)
#define IT66121_DDC_STATUS_ACTIVE BIT(6)
#define IT66121_DDC_STATUS_NOACK BIT(5)
#define IT66121_DDC_STATUS_WAIT_BUS BIT(4)
#define IT66121_DDC_STATUS_ARBI_LOSE BIT(3)
#define IT66121_DDC_STATUS_FIFO_FULL BIT(2)
#define IT66121_DDC_STATUS_FIFO_EMPTY BIT(1)
#define IT66121_DDC_STATUS_FIFO_VALID BIT(0)
#define IT66121_EDID_SLEEP_US 20000
#define IT66121_EDID_TIMEOUT_US 200000
#define IT66121_EDID_FIFO_SIZE 32
#define IT66121_CLK_CTRL0_REG 0x58
#define IT66121_CLK_CTRL0_AUTO_OVER_SAMPLING BIT(4)
#define IT66121_CLK_CTRL0_EXT_MCLK_MASK GENMASK(3, 2)
#define IT66121_CLK_CTRL0_EXT_MCLK_128FS (0 << 2)
#define IT66121_CLK_CTRL0_EXT_MCLK_256FS BIT(2)
#define IT66121_CLK_CTRL0_EXT_MCLK_512FS (2 << 2)
#define IT66121_CLK_CTRL0_EXT_MCLK_1024FS (3 << 2)
#define IT66121_CLK_CTRL0_AUTO_IPCLK BIT(0)
#define IT66121_CLK_STATUS1_REG 0x5E
#define IT66121_CLK_STATUS2_REG 0x5F
#define IT66121_AUD_CTRL0_REG 0xE0
#define IT66121_AUD_SWL (3 << 6)
#define IT66121_AUD_16BIT (0 << 6)
#define IT66121_AUD_18BIT BIT(6)
#define IT66121_AUD_20BIT (2 << 6)
#define IT66121_AUD_24BIT (3 << 6)
#define IT66121_AUD_SPDIFTC BIT(5)
#define IT66121_AUD_SPDIF BIT(4)
#define IT66121_AUD_I2S (0 << 4)
#define IT66121_AUD_EN_I2S3 BIT(3)
#define IT66121_AUD_EN_I2S2 BIT(2)
#define IT66121_AUD_EN_I2S1 BIT(1)
#define IT66121_AUD_EN_I2S0 BIT(0)
#define IT66121_AUD_CTRL0_AUD_SEL BIT(4)
#define IT66121_AUD_CTRL1_REG 0xE1
#define IT66121_AUD_FIFOMAP_REG 0xE2
#define IT66121_AUD_CTRL3_REG 0xE3
#define IT66121_AUD_SRCVALID_FLAT_REG 0xE4
#define IT66121_AUD_FLAT_SRC0 BIT(4)
#define IT66121_AUD_FLAT_SRC1 BIT(5)
#define IT66121_AUD_FLAT_SRC2 BIT(6)
#define IT66121_AUD_FLAT_SRC3 BIT(7)
#define IT66121_AUD_HDAUDIO_REG 0xE5
#define IT66121_AUD_PKT_CTS0_REG 0x130
#define IT66121_AUD_PKT_CTS1_REG 0x131
#define IT66121_AUD_PKT_CTS2_REG 0x132
#define IT66121_AUD_PKT_N0_REG 0x133
#define IT66121_AUD_PKT_N1_REG 0x134
#define IT66121_AUD_PKT_N2_REG 0x135
#define IT66121_AUD_CHST_MODE_REG 0x191
#define IT66121_AUD_CHST_CAT_REG 0x192
#define IT66121_AUD_CHST_SRCNUM_REG 0x193
#define IT66121_AUD_CHST_CHTNUM_REG 0x194
#define IT66121_AUD_CHST_CA_FS_REG 0x198
#define IT66121_AUD_CHST_OFS_WL_REG 0x199
#define IT66121_AUD_PKT_CTS_CNT0_REG 0x1A0
#define IT66121_AUD_PKT_CTS_CNT1_REG 0x1A1
#define IT66121_AUD_PKT_CTS_CNT2_REG 0x1A2
#define IT66121_AUD_FS_22P05K 0x4
#define IT66121_AUD_FS_44P1K 0x0
#define IT66121_AUD_FS_88P2K 0x8
#define IT66121_AUD_FS_176P4K 0xC
#define IT66121_AUD_FS_24K 0x6
#define IT66121_AUD_FS_48K 0x2
#define IT66121_AUD_FS_96K 0xA
#define IT66121_AUD_FS_192K 0xE
#define IT66121_AUD_FS_768K 0x9
#define IT66121_AUD_FS_32K 0x3
#define IT66121_AUD_FS_OTHER 0x1
#define IT66121_AUD_SWL_21BIT 0xD
#define IT66121_AUD_SWL_24BIT 0xB
#define IT66121_AUD_SWL_23BIT 0x9
#define IT66121_AUD_SWL_22BIT 0x5
#define IT66121_AUD_SWL_20BIT 0x3
#define IT66121_AUD_SWL_17BIT 0xC
#define IT66121_AUD_SWL_19BIT 0x8
#define IT66121_AUD_SWL_18BIT 0x4
#define IT66121_AUD_SWL_16BIT 0x2
#define IT66121_AUD_SWL_NOT_INDICATED 0x0
#define IT66121_AFE_CLK_HIGH 80000 /* Khz */
enum chip_id {
ID_IT6610,
ID_IT66121,
};
struct it66121_chip_info {
enum chip_id id;
u16 vid, pid;
};
struct it66121_ctx {
struct regmap *regmap;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_connector *connector;
struct device *dev;
struct gpio_desc *gpio_reset;
struct i2c_client *client;
u32 bus_width;
struct mutex lock; /* Protects fields below and device registers */
struct hdmi_avi_infoframe hdmi_avi_infoframe;
struct {
struct platform_device *pdev;
u8 ch_enable;
u8 fs;
u8 swl;
bool auto_cts;
} audio;
const struct it66121_chip_info *info;
};
static const struct regmap_range_cfg it66121_regmap_banks[] = {
{
.name = "it66121",
.range_min = 0x00,
.range_max = 0x1FF,
.selector_reg = IT66121_CLK_BANK_REG,
.selector_mask = 0x1,
.selector_shift = 0,
.window_start = 0x00,
.window_len = 0x100,
},
};
static const struct regmap_config it66121_regmap_config = {
.val_bits = 8,
.reg_bits = 8,
.max_register = 0x1FF,
.ranges = it66121_regmap_banks,
.num_ranges = ARRAY_SIZE(it66121_regmap_banks),
};
static void it66121_hw_reset(struct it66121_ctx *ctx)
{
gpiod_set_value(ctx->gpio_reset, 1);
msleep(20);
gpiod_set_value(ctx->gpio_reset, 0);
}
static inline int it66121_preamble_ddc(struct it66121_ctx *ctx)
{
return regmap_write(ctx->regmap, IT66121_MASTER_SEL_REG, IT66121_MASTER_SEL_HOST);
}
static inline int it66121_fire_afe(struct it66121_ctx *ctx)
{
return regmap_write(ctx->regmap, IT66121_AFE_DRV_REG, 0);
}
/* TOFIX: Handle YCbCr Input & Output */
static int it66121_configure_input(struct it66121_ctx *ctx)
{
int ret;
u8 mode = IT66121_INPUT_MODE_RGB;
if (ctx->bus_width == 12)
mode |= IT66121_INPUT_MODE_DDR;
ret = regmap_write(ctx->regmap, IT66121_INPUT_MODE_REG, mode);
if (ret)
return ret;
return regmap_write(ctx->regmap, IT66121_INPUT_CSC_REG, IT66121_INPUT_CSC_NO_CONV);
}
/**
* it66121_configure_afe() - Configure the analog front end
* @ctx: it66121_ctx object
* @mode: mode to configure
*
* RETURNS:
* zero if success, a negative error code otherwise.
*/
static int it66121_configure_afe(struct it66121_ctx *ctx,
const struct drm_display_mode *mode)
{
int ret;
ret = regmap_write(ctx->regmap, IT66121_AFE_DRV_REG,
IT66121_AFE_DRV_RST);
if (ret)
return ret;
if (mode->clock > IT66121_AFE_CLK_HIGH) {
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_REG,
IT66121_AFE_XP_GAINBIT |
IT66121_AFE_XP_ENO,
IT66121_AFE_XP_GAINBIT);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_GAINBIT |
IT66121_AFE_IP_ER0,
IT66121_AFE_IP_GAINBIT);
if (ret)
return ret;
if (ctx->info->id == ID_IT66121) {
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_EC1, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_EC1_REG,
IT66121_AFE_XP_EC1_LOWCLK, 0x80);
if (ret)
return ret;
}
} else {
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_REG,
IT66121_AFE_XP_GAINBIT |
IT66121_AFE_XP_ENO,
IT66121_AFE_XP_ENO);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_GAINBIT |
IT66121_AFE_IP_ER0,
IT66121_AFE_IP_ER0);
if (ret)
return ret;
if (ctx->info->id == ID_IT66121) {
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_EC1,
IT66121_AFE_IP_EC1);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_EC1_REG,
IT66121_AFE_XP_EC1_LOWCLK,
IT66121_AFE_XP_EC1_LOWCLK);
if (ret)
return ret;
}
}
/* Clear reset flags */
ret = regmap_write_bits(ctx->regmap, IT66121_SW_RST_REG,
IT66121_SW_RST_REF | IT66121_SW_RST_VID, 0);
if (ret)
return ret;
if (ctx->info->id == ID_IT6610) {
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_REG,
IT6610_AFE_XP_BYPASS,
IT6610_AFE_XP_BYPASS);
if (ret)
return ret;
}
return it66121_fire_afe(ctx);
}
static inline int it66121_wait_ddc_ready(struct it66121_ctx *ctx)
{
int ret, val;
u32 error = IT66121_DDC_STATUS_NOACK | IT66121_DDC_STATUS_WAIT_BUS |
IT66121_DDC_STATUS_ARBI_LOSE;
u32 done = IT66121_DDC_STATUS_TX_DONE;
ret = regmap_read_poll_timeout(ctx->regmap, IT66121_DDC_STATUS_REG, val,
val & (error | done), IT66121_EDID_SLEEP_US,
IT66121_EDID_TIMEOUT_US);
if (ret)
return ret;
if (val & error)
return -EAGAIN;
return 0;
}
static int it66121_abort_ddc_ops(struct it66121_ctx *ctx)
{
int ret;
unsigned int swreset, cpdesire;
ret = regmap_read(ctx->regmap, IT66121_SW_RST_REG, &swreset);
if (ret)
return ret;
ret = regmap_read(ctx->regmap, IT66121_HDCP_REG, &cpdesire);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_HDCP_REG,
cpdesire & (~IT66121_HDCP_CPDESIRED & 0xFF));
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_SW_RST_REG,
(swreset | IT66121_SW_RST_HDCP));
if (ret)
return ret;
ret = it66121_preamble_ddc(ctx);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_DDC_COMMAND_REG,
IT66121_DDC_COMMAND_ABORT);
if (ret)
return ret;
return it66121_wait_ddc_ready(ctx);
}
static int it66121_get_edid_block(void *context, u8 *buf,
unsigned int block, size_t len)
{
struct it66121_ctx *ctx = context;
int remain = len;
int offset = 0;
int ret, cnt;
offset = (block % 2) * len;
block = block / 2;
while (remain > 0) {
cnt = (remain > IT66121_EDID_FIFO_SIZE) ?
IT66121_EDID_FIFO_SIZE : remain;
ret = regmap_write(ctx->regmap, IT66121_DDC_COMMAND_REG,
IT66121_DDC_COMMAND_FIFO_CLR);
if (ret)
return ret;
ret = it66121_wait_ddc_ready(ctx);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_DDC_OFFSET_REG, offset);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_DDC_BYTE_REG, cnt);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_DDC_SEGMENT_REG, block);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_DDC_COMMAND_REG,
IT66121_DDC_COMMAND_EDID_READ);
if (ret)
return ret;
offset += cnt;
remain -= cnt;
ret = it66121_wait_ddc_ready(ctx);
if (ret) {
it66121_abort_ddc_ops(ctx);
return ret;
}
ret = regmap_noinc_read(ctx->regmap, IT66121_DDC_RD_FIFO_REG,
buf, cnt);
if (ret)
return ret;
buf += cnt;
}
return 0;
}
static bool it66121_is_hpd_detect(struct it66121_ctx *ctx)
{
int val;
if (regmap_read(ctx->regmap, IT66121_SYS_STATUS_REG, &val))
return false;
return val & IT66121_SYS_STATUS_HPDETECT;
}
static int it66121_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
int ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
ret = drm_bridge_attach(bridge->encoder, ctx->next_bridge, bridge, flags);
if (ret)
return ret;
if (ctx->info->id == ID_IT66121) {
ret = regmap_write_bits(ctx->regmap, IT66121_CLK_BANK_REG,
IT66121_CLK_BANK_PWROFF_RCLK, 0);
if (ret)
return ret;
}
ret = regmap_write_bits(ctx->regmap, IT66121_INT_REG,
IT66121_INT_TX_CLK_OFF, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_DRV_REG,
IT66121_AFE_DRV_PWD, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_REG,
IT66121_AFE_XP_PWDI | IT66121_AFE_XP_PWDPLL, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_PWDPLL, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_DRV_REG,
IT66121_AFE_DRV_RST, 0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_XP_REG,
IT66121_AFE_XP_RESETB, IT66121_AFE_XP_RESETB);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AFE_IP_REG,
IT66121_AFE_IP_RESETB, IT66121_AFE_IP_RESETB);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_SW_RST_REG,
IT66121_SW_RST_REF,
IT66121_SW_RST_REF);
if (ret)
return ret;
/* Per programming manual, sleep here for bridge to settle */
msleep(50);
return 0;
}
static int it66121_set_mute(struct it66121_ctx *ctx, bool mute)
{
int ret;
unsigned int val = 0;
if (mute)
val = IT66121_AV_MUTE_ON;
ret = regmap_write_bits(ctx->regmap, IT66121_AV_MUTE_REG, IT66121_AV_MUTE_ON, val);
if (ret)
return ret;
return regmap_write(ctx->regmap, IT66121_PKT_GEN_CTRL_REG,
IT66121_PKT_GEN_CTRL_ON | IT66121_PKT_GEN_CTRL_RPT);
}
#define MAX_OUTPUT_SEL_FORMATS 1
static u32 *it66121_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
u32 *output_fmts;
output_fmts = kcalloc(MAX_OUTPUT_SEL_FORMATS, sizeof(*output_fmts),
GFP_KERNEL);
if (!output_fmts)
return NULL;
/* TOFIX handle more than MEDIA_BUS_FMT_RGB888_1X24 as output format */
output_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_output_fmts = 1;
return output_fmts;
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *it66121_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
if (ctx->bus_width == 12)
/* IT66121FN Datasheet specifies Little-Endian ordering */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_2X12_LE;
else
/* TOFIX support more input bus formats in 24bit width */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static void it66121_bridge_enable(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
struct drm_atomic_state *state = bridge_state->base.state;
ctx->connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
it66121_set_mute(ctx, false);
}
static void it66121_bridge_disable(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
it66121_set_mute(ctx, true);
ctx->connector = NULL;
}
static int it66121_bridge_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
if (ctx->info->id == ID_IT6610) {
/* The IT6610 only supports these settings */
bridge_state->input_bus_cfg.flags |= DRM_BUS_FLAG_DE_HIGH |
DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE;
bridge_state->input_bus_cfg.flags &=
~DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE;
}
return 0;
}
static
void it66121_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
u8 buf[HDMI_INFOFRAME_SIZE(AVI)];
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
int ret;
mutex_lock(&ctx->lock);
hdmi_avi_infoframe_init(&ctx->hdmi_avi_infoframe);
ret = drm_hdmi_avi_infoframe_from_display_mode(&ctx->hdmi_avi_infoframe, ctx->connector,
adjusted_mode);
if (ret) {
DRM_ERROR("Failed to setup AVI infoframe: %d\n", ret);
goto unlock;
}
ret = hdmi_avi_infoframe_pack(&ctx->hdmi_avi_infoframe, buf, sizeof(buf));
if (ret < 0) {
DRM_ERROR("Failed to pack infoframe: %d\n", ret);
goto unlock;
}
/* Write new AVI infoframe packet */
ret = regmap_bulk_write(ctx->regmap, IT66121_AVIINFO_DB1_REG,
&buf[HDMI_INFOFRAME_HEADER_SIZE],
HDMI_AVI_INFOFRAME_SIZE);
if (ret)
goto unlock;
if (regmap_write(ctx->regmap, IT66121_AVIINFO_CSUM_REG, buf[3]))
goto unlock;
/* Enable AVI infoframe */
if (regmap_write(ctx->regmap, IT66121_AVI_INFO_PKT_REG,
IT66121_AVI_INFO_PKT_ON | IT66121_AVI_INFO_PKT_RPT))
goto unlock;
/* Set TX mode to HDMI */
if (regmap_write(ctx->regmap, IT66121_HDMI_MODE_REG, IT66121_HDMI_MODE_HDMI))
goto unlock;
if (ctx->info->id == ID_IT66121 &&
regmap_write_bits(ctx->regmap, IT66121_CLK_BANK_REG,
IT66121_CLK_BANK_PWROFF_TXCLK,
IT66121_CLK_BANK_PWROFF_TXCLK)) {
goto unlock;
}
if (it66121_configure_input(ctx))
goto unlock;
if (it66121_configure_afe(ctx, adjusted_mode))
goto unlock;
if (ctx->info->id == ID_IT66121 &&
regmap_write_bits(ctx->regmap, IT66121_CLK_BANK_REG,
IT66121_CLK_BANK_PWROFF_TXCLK, 0)) {
goto unlock;
}
unlock:
mutex_unlock(&ctx->lock);
}
static enum drm_mode_status it66121_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
unsigned long max_clock;
max_clock = (ctx->bus_width == 12) ? 74250 : 148500;
if (mode->clock > max_clock)
return MODE_CLOCK_HIGH;
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static enum drm_connector_status it66121_bridge_detect(struct drm_bridge *bridge)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
return it66121_is_hpd_detect(ctx) ? connector_status_connected
: connector_status_disconnected;
}
static void it66121_bridge_hpd_enable(struct drm_bridge *bridge)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
int ret;
ret = regmap_write_bits(ctx->regmap, IT66121_INT_MASK1_REG, IT66121_INT_MASK1_HPD, 0);
if (ret)
dev_err(ctx->dev, "failed to enable HPD IRQ\n");
}
static void it66121_bridge_hpd_disable(struct drm_bridge *bridge)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
int ret;
ret = regmap_write_bits(ctx->regmap, IT66121_INT_MASK1_REG,
IT66121_INT_MASK1_HPD, IT66121_INT_MASK1_HPD);
if (ret)
dev_err(ctx->dev, "failed to disable HPD IRQ\n");
}
static struct edid *it66121_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct it66121_ctx *ctx = container_of(bridge, struct it66121_ctx, bridge);
struct edid *edid;
int ret;
mutex_lock(&ctx->lock);
ret = it66121_preamble_ddc(ctx);
if (ret) {
edid = ERR_PTR(ret);
goto out_unlock;
}
ret = regmap_write(ctx->regmap, IT66121_DDC_HEADER_REG,
IT66121_DDC_HEADER_EDID);
if (ret) {
edid = ERR_PTR(ret);
goto out_unlock;
}
edid = drm_do_get_edid(connector, it66121_get_edid_block, ctx);
out_unlock:
mutex_unlock(&ctx->lock);
return edid;
}
static const struct drm_bridge_funcs it66121_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = it66121_bridge_attach,
.atomic_get_output_bus_fmts = it66121_bridge_atomic_get_output_bus_fmts,
.atomic_get_input_bus_fmts = it66121_bridge_atomic_get_input_bus_fmts,
.atomic_enable = it66121_bridge_enable,
.atomic_disable = it66121_bridge_disable,
.atomic_check = it66121_bridge_check,
.mode_set = it66121_bridge_mode_set,
.mode_valid = it66121_bridge_mode_valid,
.detect = it66121_bridge_detect,
.get_edid = it66121_bridge_get_edid,
.hpd_enable = it66121_bridge_hpd_enable,
.hpd_disable = it66121_bridge_hpd_disable,
};
static irqreturn_t it66121_irq_threaded_handler(int irq, void *dev_id)
{
int ret;
unsigned int val;
struct it66121_ctx *ctx = dev_id;
struct device *dev = ctx->dev;
enum drm_connector_status status;
bool event = false;
mutex_lock(&ctx->lock);
ret = regmap_read(ctx->regmap, IT66121_SYS_STATUS_REG, &val);
if (ret)
goto unlock;
if (!(val & IT66121_SYS_STATUS_ACTIVE_IRQ))
goto unlock;
ret = regmap_read(ctx->regmap, IT66121_INT_STATUS1_REG, &val);
if (ret) {
dev_err(dev, "Cannot read STATUS1_REG %d\n", ret);
} else if (val & IT66121_INT_STATUS1_HPD_STATUS) {
regmap_write_bits(ctx->regmap, IT66121_INT_CLR1_REG,
IT66121_INT_CLR1_HPD, IT66121_INT_CLR1_HPD);
status = it66121_is_hpd_detect(ctx) ? connector_status_connected
: connector_status_disconnected;
event = true;
}
regmap_write_bits(ctx->regmap, IT66121_SYS_STATUS_REG,
IT66121_SYS_STATUS_CLEAR_IRQ,
IT66121_SYS_STATUS_CLEAR_IRQ);
unlock:
mutex_unlock(&ctx->lock);
if (event)
drm_bridge_hpd_notify(&ctx->bridge, status);
return IRQ_HANDLED;
}
static int it661221_set_chstat(struct it66121_ctx *ctx, u8 iec60958_chstat[])
{
int ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CHST_MODE_REG, iec60958_chstat[0] & 0x7C);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CHST_CAT_REG, iec60958_chstat[1]);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CHST_SRCNUM_REG, iec60958_chstat[2] & 0x0F);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CHST_CHTNUM_REG,
(iec60958_chstat[2] >> 4) & 0x0F);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CHST_CA_FS_REG, iec60958_chstat[3]);
if (ret)
return ret;
return regmap_write(ctx->regmap, IT66121_AUD_CHST_OFS_WL_REG, iec60958_chstat[4]);
}
static int it661221_set_lpcm_audio(struct it66121_ctx *ctx, u8 audio_src_num, u8 audio_swl)
{
int ret;
unsigned int audio_enable = 0;
unsigned int audio_format = 0;
switch (audio_swl) {
case 16:
audio_enable |= IT66121_AUD_16BIT;
break;
case 18:
audio_enable |= IT66121_AUD_18BIT;
break;
case 20:
audio_enable |= IT66121_AUD_20BIT;
break;
case 24:
default:
audio_enable |= IT66121_AUD_24BIT;
break;
}
audio_format |= 0x40;
switch (audio_src_num) {
case 4:
audio_enable |= IT66121_AUD_EN_I2S3 | IT66121_AUD_EN_I2S2 |
IT66121_AUD_EN_I2S1 | IT66121_AUD_EN_I2S0;
break;
case 3:
audio_enable |= IT66121_AUD_EN_I2S2 | IT66121_AUD_EN_I2S1 |
IT66121_AUD_EN_I2S0;
break;
case 2:
audio_enable |= IT66121_AUD_EN_I2S1 | IT66121_AUD_EN_I2S0;
break;
case 1:
default:
audio_format &= ~0x40;
audio_enable |= IT66121_AUD_EN_I2S0;
break;
}
audio_format |= 0x01;
ctx->audio.ch_enable = audio_enable;
ret = regmap_write(ctx->regmap, IT66121_AUD_CTRL0_REG, audio_enable & 0xF0);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CTRL1_REG, audio_format);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_FIFOMAP_REG, 0xE4);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CTRL3_REG, 0x00);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_SRCVALID_FLAT_REG, 0x00);
if (ret)
return ret;
return regmap_write(ctx->regmap, IT66121_AUD_HDAUDIO_REG, 0x00);
}
static int it661221_set_ncts(struct it66121_ctx *ctx, u8 fs)
{
int ret;
unsigned int n;
switch (fs) {
case IT66121_AUD_FS_32K:
n = 4096;
break;
case IT66121_AUD_FS_44P1K:
n = 6272;
break;
case IT66121_AUD_FS_48K:
n = 6144;
break;
case IT66121_AUD_FS_88P2K:
n = 12544;
break;
case IT66121_AUD_FS_96K:
n = 12288;
break;
case IT66121_AUD_FS_176P4K:
n = 25088;
break;
case IT66121_AUD_FS_192K:
n = 24576;
break;
case IT66121_AUD_FS_768K:
n = 24576;
break;
default:
n = 6144;
break;
}
ret = regmap_write(ctx->regmap, IT66121_AUD_PKT_N0_REG, (u8)((n) & 0xFF));
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_PKT_N1_REG, (u8)((n >> 8) & 0xFF));
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_PKT_N2_REG, (u8)((n >> 16) & 0xF));
if (ret)
return ret;
if (ctx->audio.auto_cts) {
u8 loop_cnt = 255;
u8 cts_stable_cnt = 0;
unsigned int sum_cts = 0;
unsigned int cts = 0;
unsigned int last_cts = 0;
unsigned int diff;
unsigned int val;
while (loop_cnt--) {
msleep(30);
regmap_read(ctx->regmap, IT66121_AUD_PKT_CTS_CNT2_REG, &val);
cts = val << 12;
regmap_read(ctx->regmap, IT66121_AUD_PKT_CTS_CNT1_REG, &val);
cts |= val << 4;
regmap_read(ctx->regmap, IT66121_AUD_PKT_CTS_CNT0_REG, &val);
cts |= val >> 4;
if (cts == 0) {
continue;
} else {
if (last_cts > cts)
diff = last_cts - cts;
else
diff = cts - last_cts;
last_cts = cts;
if (diff < 5) {
cts_stable_cnt++;
sum_cts += cts;
} else {
cts_stable_cnt = 0;
sum_cts = 0;
continue;
}
if (cts_stable_cnt >= 32) {
last_cts = (sum_cts >> 5);
break;
}
}
}
regmap_write(ctx->regmap, IT66121_AUD_PKT_CTS0_REG, (u8)((last_cts) & 0xFF));
regmap_write(ctx->regmap, IT66121_AUD_PKT_CTS1_REG, (u8)((last_cts >> 8) & 0xFF));
regmap_write(ctx->regmap, IT66121_AUD_PKT_CTS2_REG, (u8)((last_cts >> 16) & 0x0F));
}
ret = regmap_write(ctx->regmap, 0xF8, 0xC3);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, 0xF8, 0xA5);
if (ret)
return ret;
if (ctx->audio.auto_cts) {
ret = regmap_write_bits(ctx->regmap, IT66121_PKT_CTS_CTRL_REG,
IT66121_PKT_CTS_CTRL_SEL,
1);
} else {
ret = regmap_write_bits(ctx->regmap, IT66121_PKT_CTS_CTRL_REG,
IT66121_PKT_CTS_CTRL_SEL,
0);
}
if (ret)
return ret;
return regmap_write(ctx->regmap, 0xF8, 0xFF);
}
static int it661221_audio_output_enable(struct it66121_ctx *ctx, bool enable)
{
int ret;
if (enable) {
ret = regmap_write_bits(ctx->regmap, IT66121_SW_RST_REG,
IT66121_SW_RST_AUD | IT66121_SW_RST_AREF,
0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_AUD_CTRL0_REG,
IT66121_AUD_EN_I2S3 | IT66121_AUD_EN_I2S2 |
IT66121_AUD_EN_I2S1 | IT66121_AUD_EN_I2S0,
ctx->audio.ch_enable);
} else {
ret = regmap_write_bits(ctx->regmap, IT66121_AUD_CTRL0_REG,
IT66121_AUD_EN_I2S3 | IT66121_AUD_EN_I2S2 |
IT66121_AUD_EN_I2S1 | IT66121_AUD_EN_I2S0,
ctx->audio.ch_enable & 0xF0);
if (ret)
return ret;
ret = regmap_write_bits(ctx->regmap, IT66121_SW_RST_REG,
IT66121_SW_RST_AUD | IT66121_SW_RST_AREF,
IT66121_SW_RST_AUD | IT66121_SW_RST_AREF);
}
return ret;
}
static int it661221_audio_ch_enable(struct it66121_ctx *ctx, bool enable)
{
int ret;
if (enable) {
ret = regmap_write(ctx->regmap, IT66121_AUD_SRCVALID_FLAT_REG, 0);
if (ret)
return ret;
ret = regmap_write(ctx->regmap, IT66121_AUD_CTRL0_REG, ctx->audio.ch_enable);
} else {
ret = regmap_write(ctx->regmap, IT66121_AUD_CTRL0_REG, ctx->audio.ch_enable & 0xF0);
}
return ret;
}
static int it66121_audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
u8 fs;
u8 swl;
int ret;
struct it66121_ctx *ctx = dev_get_drvdata(dev);
static u8 iec60958_chstat[5];
unsigned int channels = params->channels;
unsigned int sample_rate = params->sample_rate;
unsigned int sample_width = params->sample_width;
mutex_lock(&ctx->lock);
dev_dbg(dev, "%s: %u, %u, %u, %u\n", __func__,
daifmt->fmt, sample_rate, sample_width, channels);
switch (daifmt->fmt) {
case HDMI_I2S:
dev_dbg(dev, "Using HDMI I2S\n");
break;
default:
dev_err(dev, "Invalid or unsupported DAI format %d\n", daifmt->fmt);
ret = -EINVAL;
goto out;
}
// Set audio clock recovery (N/CTS)
ret = regmap_write(ctx->regmap, IT66121_CLK_CTRL0_REG,
IT66121_CLK_CTRL0_AUTO_OVER_SAMPLING |
IT66121_CLK_CTRL0_EXT_MCLK_256FS |
IT66121_CLK_CTRL0_AUTO_IPCLK);
if (ret)
goto out;
ret = regmap_write_bits(ctx->regmap, IT66121_AUD_CTRL0_REG,
IT66121_AUD_CTRL0_AUD_SEL, 0); // remove spdif selection
if (ret)
goto out;
switch (sample_rate) {
case 44100L:
fs = IT66121_AUD_FS_44P1K;
break;
case 88200L:
fs = IT66121_AUD_FS_88P2K;
break;
case 176400L:
fs = IT66121_AUD_FS_176P4K;
break;
case 32000L:
fs = IT66121_AUD_FS_32K;
break;
case 48000L:
fs = IT66121_AUD_FS_48K;
break;
case 96000L:
fs = IT66121_AUD_FS_96K;
break;
case 192000L:
fs = IT66121_AUD_FS_192K;
break;
case 768000L:
fs = IT66121_AUD_FS_768K;
break;
default:
fs = IT66121_AUD_FS_48K;
break;
}
ctx->audio.fs = fs;
ret = it661221_set_ncts(ctx, fs);
if (ret) {
dev_err(dev, "Failed to set N/CTS: %d\n", ret);
goto out;
}
// Set audio format register (except audio channel enable)
ret = it661221_set_lpcm_audio(ctx, (channels + 1) / 2, sample_width);
if (ret) {
dev_err(dev, "Failed to set LPCM audio: %d\n", ret);
goto out;
}
// Set audio channel status
iec60958_chstat[0] = 0;
if ((channels + 1) / 2 == 1)
iec60958_chstat[0] |= 0x1;
iec60958_chstat[0] &= ~(1 << 1);
iec60958_chstat[1] = 0;
iec60958_chstat[2] = (channels + 1) / 2;
iec60958_chstat[2] |= (channels << 4) & 0xF0;
iec60958_chstat[3] = fs;
switch (sample_width) {
case 21L:
swl = IT66121_AUD_SWL_21BIT;
break;
case 24L:
swl = IT66121_AUD_SWL_24BIT;
break;
case 23L:
swl = IT66121_AUD_SWL_23BIT;
break;
case 22L:
swl = IT66121_AUD_SWL_22BIT;
break;
case 20L:
swl = IT66121_AUD_SWL_20BIT;
break;
case 17L:
swl = IT66121_AUD_SWL_17BIT;
break;
case 19L:
swl = IT66121_AUD_SWL_19BIT;
break;
case 18L:
swl = IT66121_AUD_SWL_18BIT;
break;
case 16L:
swl = IT66121_AUD_SWL_16BIT;
break;
default:
swl = IT66121_AUD_SWL_NOT_INDICATED;
break;
}
iec60958_chstat[4] = (((~fs) << 4) & 0xF0) | swl;
ret = it661221_set_chstat(ctx, iec60958_chstat);
if (ret) {
dev_err(dev, "Failed to set channel status: %d\n", ret);
goto out;
}
// Enable audio channel enable while input clock stable (if SPDIF).
ret = it661221_audio_ch_enable(ctx, true);
if (ret) {
dev_err(dev, "Failed to enable audio channel: %d\n", ret);
goto out;
}
ret = regmap_write_bits(ctx->regmap, IT66121_INT_MASK1_REG,
IT66121_INT_MASK1_AUD_OVF,
0);
if (ret)
goto out;
dev_dbg(dev, "HDMI audio enabled.\n");
out:
mutex_unlock(&ctx->lock);
return ret;
}
static int it66121_audio_startup(struct device *dev, void *data)
{
int ret;
struct it66121_ctx *ctx = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
mutex_lock(&ctx->lock);
ret = it661221_audio_output_enable(ctx, true);
if (ret)
dev_err(dev, "Failed to enable audio output: %d\n", ret);
mutex_unlock(&ctx->lock);
return ret;
}
static void it66121_audio_shutdown(struct device *dev, void *data)
{
int ret;
struct it66121_ctx *ctx = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
mutex_lock(&ctx->lock);
ret = it661221_audio_output_enable(ctx, false);
if (ret)
dev_err(dev, "Failed to disable audio output: %d\n", ret);
mutex_unlock(&ctx->lock);
}
static int it66121_audio_mute(struct device *dev, void *data,
bool enable, int direction)
{
int ret;
struct it66121_ctx *ctx = dev_get_drvdata(dev);
dev_dbg(dev, "%s: enable=%s, direction=%d\n",
__func__, enable ? "true" : "false", direction);
mutex_lock(&ctx->lock);
if (enable) {
ret = regmap_write_bits(ctx->regmap, IT66121_AUD_SRCVALID_FLAT_REG,
IT66121_AUD_FLAT_SRC0 | IT66121_AUD_FLAT_SRC1 |
IT66121_AUD_FLAT_SRC2 | IT66121_AUD_FLAT_SRC3,
IT66121_AUD_FLAT_SRC0 | IT66121_AUD_FLAT_SRC1 |
IT66121_AUD_FLAT_SRC2 | IT66121_AUD_FLAT_SRC3);
} else {
ret = regmap_write_bits(ctx->regmap, IT66121_AUD_SRCVALID_FLAT_REG,
IT66121_AUD_FLAT_SRC0 | IT66121_AUD_FLAT_SRC1 |
IT66121_AUD_FLAT_SRC2 | IT66121_AUD_FLAT_SRC3,
0);
}
mutex_unlock(&ctx->lock);
return ret;
}
static int it66121_audio_get_eld(struct device *dev, void *data,
u8 *buf, size_t len)
{
struct it66121_ctx *ctx = dev_get_drvdata(dev);
mutex_lock(&ctx->lock);
memcpy(buf, ctx->connector->eld,
min(sizeof(ctx->connector->eld), len));
mutex_unlock(&ctx->lock);
return 0;
}
static const struct hdmi_codec_ops it66121_audio_codec_ops = {
.hw_params = it66121_audio_hw_params,
.audio_startup = it66121_audio_startup,
.audio_shutdown = it66121_audio_shutdown,
.mute_stream = it66121_audio_mute,
.get_eld = it66121_audio_get_eld,
.no_capture_mute = 1,
};
static int it66121_audio_codec_init(struct it66121_ctx *ctx, struct device *dev)
{
struct hdmi_codec_pdata codec_data = {
.ops = &it66121_audio_codec_ops,
.i2s = 1, /* Only i2s support for now */
.spdif = 0,
.max_i2s_channels = 8,
};
dev_dbg(dev, "%s\n", __func__);
if (!of_property_read_bool(dev->of_node, "#sound-dai-cells")) {
dev_info(dev, "No \"#sound-dai-cells\", no audio\n");
return 0;
}
ctx->audio.pdev = platform_device_register_data(dev,
HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&codec_data,
sizeof(codec_data));
if (IS_ERR(ctx->audio.pdev)) {
dev_err(dev, "Failed to initialize HDMI audio codec: %d\n",
PTR_ERR_OR_ZERO(ctx->audio.pdev));
}
return PTR_ERR_OR_ZERO(ctx->audio.pdev);
}
static const char * const it66121_supplies[] = {
"vcn33", "vcn18", "vrf12"
};
static int it66121_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
u32 revision_id, vendor_ids[2] = { 0 }, device_ids[2] = { 0 };
struct device_node *ep;
int ret;
struct it66121_ctx *ctx;
struct device *dev = &client->dev;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "I2C check functionality failed.\n");
return -ENXIO;
}
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ep = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
if (!ep)
return -EINVAL;
ctx->dev = dev;
ctx->client = client;
ctx->info = (const struct it66121_chip_info *) id->driver_data;
of_property_read_u32(ep, "bus-width", &ctx->bus_width);
of_node_put(ep);
if (ctx->bus_width != 12 && ctx->bus_width != 24)
return -EINVAL;
ep = of_graph_get_remote_node(dev->of_node, 1, -1);
if (!ep) {
dev_err(ctx->dev, "The endpoint is unconnected\n");
return -EINVAL;
}
if (!of_device_is_available(ep)) {
of_node_put(ep);
dev_err(ctx->dev, "The remote device is disabled\n");
return -ENODEV;
}
ctx->next_bridge = of_drm_find_bridge(ep);
of_node_put(ep);
if (!ctx->next_bridge) {
dev_dbg(ctx->dev, "Next bridge not found, deferring probe\n");
return -EPROBE_DEFER;
}
i2c_set_clientdata(client, ctx);
mutex_init(&ctx->lock);
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(it66121_supplies),
it66121_supplies);
if (ret) {
dev_err(dev, "Failed to enable power supplies\n");
return ret;
}
it66121_hw_reset(ctx);
ctx->regmap = devm_regmap_init_i2c(client, &it66121_regmap_config);
if (IS_ERR(ctx->regmap))
return PTR_ERR(ctx->regmap);
regmap_read(ctx->regmap, IT66121_VENDOR_ID0_REG, &vendor_ids[0]);
regmap_read(ctx->regmap, IT66121_VENDOR_ID1_REG, &vendor_ids[1]);
regmap_read(ctx->regmap, IT66121_DEVICE_ID0_REG, &device_ids[0]);
regmap_read(ctx->regmap, IT66121_DEVICE_ID1_REG, &device_ids[1]);
/* Revision is shared with DEVICE_ID1 */
revision_id = FIELD_GET(IT66121_REVISION_MASK, device_ids[1]);
device_ids[1] &= IT66121_DEVICE_ID1_MASK;
if ((vendor_ids[1] << 8 | vendor_ids[0]) != ctx->info->vid ||
(device_ids[1] << 8 | device_ids[0]) != ctx->info->pid) {
return -ENODEV;
}
ctx->bridge.funcs = &it66121_bridge_funcs;
ctx->bridge.of_node = dev->of_node;
ctx->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
ctx->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_HPD;
ret = devm_request_threaded_irq(dev, client->irq, NULL, it66121_irq_threaded_handler,
IRQF_ONESHOT, dev_name(dev), ctx);
if (ret < 0) {
dev_err(dev, "Failed to request irq %d:%d\n", client->irq, ret);
return ret;
}
it66121_audio_codec_init(ctx, dev);
drm_bridge_add(&ctx->bridge);
dev_info(ctx->dev, "IT66121 revision %d probed\n", revision_id);
return 0;
}
static void it66121_remove(struct i2c_client *client)
{
struct it66121_ctx *ctx = i2c_get_clientdata(client);
drm_bridge_remove(&ctx->bridge);
mutex_destroy(&ctx->lock);
}
static const struct of_device_id it66121_dt_match[] = {
{ .compatible = "ite,it66121" },
{ .compatible = "ite,it6610" },
{ }
};
MODULE_DEVICE_TABLE(of, it66121_dt_match);
static const struct it66121_chip_info it66121_chip_info = {
.id = ID_IT66121,
.vid = 0x4954,
.pid = 0x0612,
};
static const struct it66121_chip_info it6610_chip_info = {
.id = ID_IT6610,
.vid = 0xca00,
.pid = 0x0611,
};
static const struct i2c_device_id it66121_id[] = {
{ "it66121", (kernel_ulong_t) &it66121_chip_info },
{ "it6610", (kernel_ulong_t) &it6610_chip_info },
{ }
};
MODULE_DEVICE_TABLE(i2c, it66121_id);
static struct i2c_driver it66121_driver = {
.driver = {
.name = "it66121",
.of_match_table = it66121_dt_match,
},
.probe = it66121_probe,
.remove = it66121_remove,
.id_table = it66121_id,
};
module_i2c_driver(it66121_driver);
MODULE_AUTHOR("Phong LE");
MODULE_DESCRIPTION("IT66121 HDMI transmitter driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/ite-it66121.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* adv7511_cec.c - Analog Devices ADV7511/33 cec driver
*
* Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <media/cec.h>
#include "adv7511.h"
static const u8 ADV7511_REG_CEC_RX_FRAME_HDR[] = {
ADV7511_REG_CEC_RX1_FRAME_HDR,
ADV7511_REG_CEC_RX2_FRAME_HDR,
ADV7511_REG_CEC_RX3_FRAME_HDR,
};
static const u8 ADV7511_REG_CEC_RX_FRAME_LEN[] = {
ADV7511_REG_CEC_RX1_FRAME_LEN,
ADV7511_REG_CEC_RX2_FRAME_LEN,
ADV7511_REG_CEC_RX3_FRAME_LEN,
};
#define ADV7511_INT1_CEC_MASK \
(ADV7511_INT1_CEC_TX_READY | ADV7511_INT1_CEC_TX_ARBIT_LOST | \
ADV7511_INT1_CEC_TX_RETRY_TIMEOUT | ADV7511_INT1_CEC_RX_READY1 | \
ADV7511_INT1_CEC_RX_READY2 | ADV7511_INT1_CEC_RX_READY3)
static void adv_cec_tx_raw_status(struct adv7511 *adv7511, u8 tx_raw_status)
{
unsigned int offset = adv7511->reg_cec_offset;
unsigned int val;
if (regmap_read(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_ENABLE + offset, &val))
return;
if ((val & 0x01) == 0)
return;
if (tx_raw_status & ADV7511_INT1_CEC_TX_ARBIT_LOST) {
cec_transmit_attempt_done(adv7511->cec_adap,
CEC_TX_STATUS_ARB_LOST);
return;
}
if (tx_raw_status & ADV7511_INT1_CEC_TX_RETRY_TIMEOUT) {
u8 status;
u8 err_cnt = 0;
u8 nack_cnt = 0;
u8 low_drive_cnt = 0;
unsigned int cnt;
/*
* We set this status bit since this hardware performs
* retransmissions.
*/
status = CEC_TX_STATUS_MAX_RETRIES;
if (regmap_read(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_LOW_DRV_CNT + offset, &cnt)) {
err_cnt = 1;
status |= CEC_TX_STATUS_ERROR;
} else {
nack_cnt = cnt & 0xf;
if (nack_cnt)
status |= CEC_TX_STATUS_NACK;
low_drive_cnt = cnt >> 4;
if (low_drive_cnt)
status |= CEC_TX_STATUS_LOW_DRIVE;
}
cec_transmit_done(adv7511->cec_adap, status,
0, nack_cnt, low_drive_cnt, err_cnt);
return;
}
if (tx_raw_status & ADV7511_INT1_CEC_TX_READY) {
cec_transmit_attempt_done(adv7511->cec_adap, CEC_TX_STATUS_OK);
return;
}
}
static void adv7511_cec_rx(struct adv7511 *adv7511, int rx_buf)
{
unsigned int offset = adv7511->reg_cec_offset;
struct cec_msg msg = {};
unsigned int len;
unsigned int val;
u8 i;
if (regmap_read(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_FRAME_LEN[rx_buf] + offset, &len))
return;
msg.len = len & 0x1f;
if (msg.len > 16)
msg.len = 16;
if (!msg.len)
return;
for (i = 0; i < msg.len; i++) {
regmap_read(adv7511->regmap_cec,
i + ADV7511_REG_CEC_RX_FRAME_HDR[rx_buf] + offset,
&val);
msg.msg[i] = val;
}
/* Toggle RX Ready Clear bit to re-enable this RX buffer */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_BUFFERS + offset, BIT(rx_buf),
BIT(rx_buf));
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_BUFFERS + offset, BIT(rx_buf), 0);
cec_received_msg(adv7511->cec_adap, &msg);
}
void adv7511_cec_irq_process(struct adv7511 *adv7511, unsigned int irq1)
{
unsigned int offset = adv7511->reg_cec_offset;
const u32 irq_tx_mask = ADV7511_INT1_CEC_TX_READY |
ADV7511_INT1_CEC_TX_ARBIT_LOST |
ADV7511_INT1_CEC_TX_RETRY_TIMEOUT;
const u32 irq_rx_mask = ADV7511_INT1_CEC_RX_READY1 |
ADV7511_INT1_CEC_RX_READY2 |
ADV7511_INT1_CEC_RX_READY3;
unsigned int rx_status;
int rx_order[3] = { -1, -1, -1 };
int i;
if (irq1 & irq_tx_mask)
adv_cec_tx_raw_status(adv7511, irq1);
if (!(irq1 & irq_rx_mask))
return;
if (regmap_read(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_STATUS + offset, &rx_status))
return;
/*
* ADV7511_REG_CEC_RX_STATUS[5:0] contains the reception order of RX
* buffers 0, 1, and 2 in bits [1:0], [3:2], and [5:4] respectively.
* The values are to be interpreted as follows:
*
* 0 = buffer unused
* 1 = buffer contains oldest received frame (if applicable)
* 2 = buffer contains second oldest received frame (if applicable)
* 3 = buffer contains third oldest received frame (if applicable)
*
* Fill rx_order with the sequence of RX buffer indices to
* read from in order, where -1 indicates that there are no
* more buffers to process.
*/
for (i = 0; i < 3; i++) {
unsigned int timestamp = (rx_status >> (2 * i)) & 0x3;
if (timestamp)
rx_order[timestamp - 1] = i;
}
/* Read CEC RX buffers in the appropriate order as prescribed above */
for (i = 0; i < 3; i++) {
int rx_buf = rx_order[i];
if (rx_buf < 0)
break;
adv7511_cec_rx(adv7511, rx_buf);
}
}
static int adv7511_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct adv7511 *adv7511 = cec_get_drvdata(adap);
unsigned int offset = adv7511->reg_cec_offset;
if (adv7511->i2c_cec == NULL)
return -EIO;
if (!adv7511->cec_enabled_adap && enable) {
/* power up cec section */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_CLK_DIV + offset,
0x03, 0x01);
/* non-legacy mode and clear all rx buffers */
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_BUFFERS + offset, 0x0f);
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_BUFFERS + offset, 0x08);
/* initially disable tx */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_ENABLE + offset, 1, 0);
/* enabled irqs: */
/* tx: ready */
/* tx: arbitration lost */
/* tx: retry timeout */
/* rx: ready 1-3 */
regmap_update_bits(adv7511->regmap,
ADV7511_REG_INT_ENABLE(1), 0x3f,
ADV7511_INT1_CEC_MASK);
} else if (adv7511->cec_enabled_adap && !enable) {
regmap_update_bits(adv7511->regmap,
ADV7511_REG_INT_ENABLE(1), 0x3f, 0);
/* disable address mask 1-3 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_MASK + offset,
0x70, 0x00);
/* power down cec section */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_CLK_DIV + offset,
0x03, 0x00);
adv7511->cec_valid_addrs = 0;
}
adv7511->cec_enabled_adap = enable;
return 0;
}
static int adv7511_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
{
struct adv7511 *adv7511 = cec_get_drvdata(adap);
unsigned int offset = adv7511->reg_cec_offset;
unsigned int i, free_idx = ADV7511_MAX_ADDRS;
if (!adv7511->cec_enabled_adap)
return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
if (addr == CEC_LOG_ADDR_INVALID) {
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_MASK + offset,
0x70, 0);
adv7511->cec_valid_addrs = 0;
return 0;
}
for (i = 0; i < ADV7511_MAX_ADDRS; i++) {
bool is_valid = adv7511->cec_valid_addrs & (1 << i);
if (free_idx == ADV7511_MAX_ADDRS && !is_valid)
free_idx = i;
if (is_valid && adv7511->cec_addr[i] == addr)
return 0;
}
if (i == ADV7511_MAX_ADDRS) {
i = free_idx;
if (i == ADV7511_MAX_ADDRS)
return -ENXIO;
}
adv7511->cec_addr[i] = addr;
adv7511->cec_valid_addrs |= 1 << i;
switch (i) {
case 0:
/* enable address mask 0 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_MASK + offset,
0x10, 0x10);
/* set address for mask 0 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_0_1 + offset,
0x0f, addr);
break;
case 1:
/* enable address mask 1 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_MASK + offset,
0x20, 0x20);
/* set address for mask 1 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_0_1 + offset,
0xf0, addr << 4);
break;
case 2:
/* enable address mask 2 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_MASK + offset,
0x40, 0x40);
/* set address for mask 1 */
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_LOG_ADDR_2 + offset,
0x0f, addr);
break;
}
return 0;
}
static int adv7511_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct adv7511 *adv7511 = cec_get_drvdata(adap);
unsigned int offset = adv7511->reg_cec_offset;
u8 len = msg->len;
unsigned int i;
/*
* The number of retries is the number of attempts - 1, but retry
* at least once. It's not clear if a value of 0 is allowed, so
* let's do at least one retry.
*/
regmap_update_bits(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_RETRY + offset,
0x70, max(1, attempts - 1) << 4);
/* blocking, clear cec tx irq status */
regmap_update_bits(adv7511->regmap, ADV7511_REG_INT(1), 0x38, 0x38);
/* write data */
for (i = 0; i < len; i++)
regmap_write(adv7511->regmap_cec,
i + ADV7511_REG_CEC_TX_FRAME_HDR + offset,
msg->msg[i]);
/* set length (data + header) */
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_FRAME_LEN + offset, len);
/* start transmit, enable tx */
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_TX_ENABLE + offset, 0x01);
return 0;
}
static const struct cec_adap_ops adv7511_cec_adap_ops = {
.adap_enable = adv7511_cec_adap_enable,
.adap_log_addr = adv7511_cec_adap_log_addr,
.adap_transmit = adv7511_cec_adap_transmit,
};
static int adv7511_cec_parse_dt(struct device *dev, struct adv7511 *adv7511)
{
adv7511->cec_clk = devm_clk_get(dev, "cec");
if (IS_ERR(adv7511->cec_clk)) {
int ret = PTR_ERR(adv7511->cec_clk);
adv7511->cec_clk = NULL;
return ret;
}
clk_prepare_enable(adv7511->cec_clk);
adv7511->cec_clk_freq = clk_get_rate(adv7511->cec_clk);
return 0;
}
int adv7511_cec_init(struct device *dev, struct adv7511 *adv7511)
{
unsigned int offset = adv7511->reg_cec_offset;
int ret = adv7511_cec_parse_dt(dev, adv7511);
if (ret)
goto err_cec_parse_dt;
adv7511->cec_adap = cec_allocate_adapter(&adv7511_cec_adap_ops,
adv7511, dev_name(dev), CEC_CAP_DEFAULTS, ADV7511_MAX_ADDRS);
if (IS_ERR(adv7511->cec_adap)) {
ret = PTR_ERR(adv7511->cec_adap);
goto err_cec_alloc;
}
regmap_write(adv7511->regmap, ADV7511_REG_CEC_CTRL, 0);
/* cec soft reset */
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_SOFT_RESET + offset, 0x01);
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_SOFT_RESET + offset, 0x00);
/* non-legacy mode - use all three RX buffers */
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_RX_BUFFERS + offset, 0x08);
regmap_write(adv7511->regmap_cec,
ADV7511_REG_CEC_CLK_DIV + offset,
((adv7511->cec_clk_freq / 750000) - 1) << 2);
ret = cec_register_adapter(adv7511->cec_adap, dev);
if (ret)
goto err_cec_register;
return 0;
err_cec_register:
cec_delete_adapter(adv7511->cec_adap);
adv7511->cec_adap = NULL;
err_cec_alloc:
dev_info(dev, "Initializing CEC failed with error %d, disabling CEC\n",
ret);
err_cec_parse_dt:
regmap_write(adv7511->regmap, ADV7511_REG_CEC_CTRL,
ADV7511_CEC_CTRL_POWER_DOWN);
return ret == -EPROBE_DEFER ? ret : 0;
}
| linux-master | drivers/gpu/drm/bridge/adv7511/adv7511_cec.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices ADV7511 HDMI transmitter driver
*
* Copyright 2012 Analog Devices Inc.
* Copyright (c) 2016, Linaro Limited
*/
#include <sound/core.h>
#include <sound/hdmi-codec.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <linux/of_graph.h>
#include "adv7511.h"
static void adv7511_calc_cts_n(unsigned int f_tmds, unsigned int fs,
unsigned int *cts, unsigned int *n)
{
switch (fs) {
case 32000:
case 48000:
case 96000:
case 192000:
*n = fs * 128 / 1000;
break;
case 44100:
case 88200:
case 176400:
*n = fs * 128 / 900;
break;
}
*cts = ((f_tmds * *n) / (128 * fs)) * 1000;
}
static int adv7511_update_cts_n(struct adv7511 *adv7511)
{
unsigned int cts = 0;
unsigned int n = 0;
adv7511_calc_cts_n(adv7511->f_tmds, adv7511->f_audio, &cts, &n);
regmap_write(adv7511->regmap, ADV7511_REG_N0, (n >> 16) & 0xf);
regmap_write(adv7511->regmap, ADV7511_REG_N1, (n >> 8) & 0xff);
regmap_write(adv7511->regmap, ADV7511_REG_N2, n & 0xff);
regmap_write(adv7511->regmap, ADV7511_REG_CTS_MANUAL0,
(cts >> 16) & 0xf);
regmap_write(adv7511->regmap, ADV7511_REG_CTS_MANUAL1,
(cts >> 8) & 0xff);
regmap_write(adv7511->regmap, ADV7511_REG_CTS_MANUAL2,
cts & 0xff);
return 0;
}
static int adv7511_hdmi_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *fmt,
struct hdmi_codec_params *hparms)
{
struct adv7511 *adv7511 = dev_get_drvdata(dev);
unsigned int audio_source, i2s_format = 0;
unsigned int invert_clock;
unsigned int rate;
unsigned int len;
switch (hparms->sample_rate) {
case 32000:
rate = ADV7511_SAMPLE_FREQ_32000;
break;
case 44100:
rate = ADV7511_SAMPLE_FREQ_44100;
break;
case 48000:
rate = ADV7511_SAMPLE_FREQ_48000;
break;
case 88200:
rate = ADV7511_SAMPLE_FREQ_88200;
break;
case 96000:
rate = ADV7511_SAMPLE_FREQ_96000;
break;
case 176400:
rate = ADV7511_SAMPLE_FREQ_176400;
break;
case 192000:
rate = ADV7511_SAMPLE_FREQ_192000;
break;
default:
return -EINVAL;
}
switch (hparms->sample_width) {
case 16:
len = ADV7511_I2S_SAMPLE_LEN_16;
break;
case 18:
len = ADV7511_I2S_SAMPLE_LEN_18;
break;
case 20:
len = ADV7511_I2S_SAMPLE_LEN_20;
break;
case 32:
if (fmt->bit_fmt != SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE)
return -EINVAL;
fallthrough;
case 24:
len = ADV7511_I2S_SAMPLE_LEN_24;
break;
default:
return -EINVAL;
}
switch (fmt->fmt) {
case HDMI_I2S:
audio_source = ADV7511_AUDIO_SOURCE_I2S;
i2s_format = ADV7511_I2S_FORMAT_I2S;
if (fmt->bit_fmt == SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE)
i2s_format = ADV7511_I2S_IEC958_DIRECT;
break;
case HDMI_RIGHT_J:
audio_source = ADV7511_AUDIO_SOURCE_I2S;
i2s_format = ADV7511_I2S_FORMAT_RIGHT_J;
break;
case HDMI_LEFT_J:
audio_source = ADV7511_AUDIO_SOURCE_I2S;
i2s_format = ADV7511_I2S_FORMAT_LEFT_J;
break;
case HDMI_SPDIF:
audio_source = ADV7511_AUDIO_SOURCE_SPDIF;
break;
default:
return -EINVAL;
}
invert_clock = fmt->bit_clk_inv;
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_SOURCE, 0x70,
audio_source << 4);
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CONFIG, BIT(6),
invert_clock << 6);
regmap_update_bits(adv7511->regmap, ADV7511_REG_I2S_CONFIG, 0x03,
i2s_format);
adv7511->audio_source = audio_source;
adv7511->f_audio = hparms->sample_rate;
adv7511_update_cts_n(adv7511);
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CFG3,
ADV7511_AUDIO_CFG3_LEN_MASK, len);
regmap_update_bits(adv7511->regmap, ADV7511_REG_I2C_FREQ_ID_CFG,
ADV7511_I2C_FREQ_ID_CFG_RATE_MASK, rate << 4);
regmap_write(adv7511->regmap, 0x73, 0x1);
return 0;
}
static int audio_startup(struct device *dev, void *data)
{
struct adv7511 *adv7511 = dev_get_drvdata(dev);
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CONFIG,
BIT(7), 0);
/* hide Audio infoframe updates */
regmap_update_bits(adv7511->regmap, ADV7511_REG_INFOFRAME_UPDATE,
BIT(5), BIT(5));
/* enable N/CTS, enable Audio sample packets */
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1,
BIT(5), BIT(5));
/* enable N/CTS */
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1,
BIT(6), BIT(6));
/* not copyrighted */
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CFG1,
BIT(5), BIT(5));
/* enable audio infoframes */
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1,
BIT(3), BIT(3));
/* AV mute disable */
regmap_update_bits(adv7511->regmap, ADV7511_REG_GC(0),
BIT(7) | BIT(6), BIT(7));
/* use Audio infoframe updated info */
regmap_update_bits(adv7511->regmap, ADV7511_REG_GC(1),
BIT(5), 0);
/* enable SPDIF receiver */
if (adv7511->audio_source == ADV7511_AUDIO_SOURCE_SPDIF)
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CONFIG,
BIT(7), BIT(7));
return 0;
}
static void audio_shutdown(struct device *dev, void *data)
{
struct adv7511 *adv7511 = dev_get_drvdata(dev);
if (adv7511->audio_source == ADV7511_AUDIO_SOURCE_SPDIF)
regmap_update_bits(adv7511->regmap, ADV7511_REG_AUDIO_CONFIG,
BIT(7), 0);
}
static int adv7511_hdmi_i2s_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located as reg = <2>
* Then, it is sound port 0
*/
if (of_ep.port == 2)
return 0;
return -EINVAL;
}
static const struct hdmi_codec_ops adv7511_codec_ops = {
.hw_params = adv7511_hdmi_hw_params,
.audio_shutdown = audio_shutdown,
.audio_startup = audio_startup,
.get_dai_id = adv7511_hdmi_i2s_get_dai_id,
};
static const struct hdmi_codec_pdata codec_data = {
.ops = &adv7511_codec_ops,
.max_i2s_channels = 2,
.i2s = 1,
.spdif = 1,
};
int adv7511_audio_init(struct device *dev, struct adv7511 *adv7511)
{
adv7511->audio_pdev = platform_device_register_data(dev,
HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&codec_data,
sizeof(codec_data));
return PTR_ERR_OR_ZERO(adv7511->audio_pdev);
}
void adv7511_audio_exit(struct adv7511 *adv7511)
{
if (adv7511->audio_pdev) {
platform_device_unregister(adv7511->audio_pdev);
adv7511->audio_pdev = NULL;
}
}
| linux-master | drivers/gpu/drm/bridge/adv7511/adv7511_audio.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices ADV7511 HDMI transmitter driver
*
* Copyright 2012 Analog Devices Inc.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <media/cec.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "adv7511.h"
/* ADI recommended values for proper operation. */
static const struct reg_sequence adv7511_fixed_registers[] = {
{ 0x98, 0x03 },
{ 0x9a, 0xe0 },
{ 0x9c, 0x30 },
{ 0x9d, 0x61 },
{ 0xa2, 0xa4 },
{ 0xa3, 0xa4 },
{ 0xe0, 0xd0 },
{ 0xf9, 0x00 },
{ 0x55, 0x02 },
};
/* -----------------------------------------------------------------------------
* Register access
*/
static const uint8_t adv7511_register_defaults[] = {
0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00 */
0x00, 0x00, 0x01, 0x0e, 0xbc, 0x18, 0x01, 0x13,
0x25, 0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10 */
0x46, 0x62, 0x04, 0xa8, 0x00, 0x00, 0x1c, 0x84,
0x1c, 0xbf, 0x04, 0xa8, 0x1e, 0x70, 0x02, 0x1e, /* 20 */
0x00, 0x00, 0x04, 0xa8, 0x08, 0x12, 0x1b, 0xac,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 */
0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0xb0,
0x00, 0x50, 0x90, 0x7e, 0x79, 0x70, 0x00, 0x00, /* 40 */
0x00, 0xa8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x02, 0x0d, 0x00, 0x00, 0x00, 0x00, /* 50 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 60 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 70 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 80 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00, /* 90 */
0x0b, 0x02, 0x00, 0x18, 0x5a, 0x60, 0x00, 0x00,
0x00, 0x00, 0x80, 0x80, 0x08, 0x04, 0x00, 0x00, /* a0 */
0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b0 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c0 */
0x00, 0x03, 0x00, 0x00, 0x02, 0x00, 0x01, 0x04,
0x30, 0xff, 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, /* d0 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01,
0x80, 0x75, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, /* e0 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x75, 0x11, 0x00, /* f0 */
0x00, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static bool adv7511_register_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case ADV7511_REG_CHIP_REVISION:
case ADV7511_REG_SPDIF_FREQ:
case ADV7511_REG_CTS_AUTOMATIC1:
case ADV7511_REG_CTS_AUTOMATIC2:
case ADV7511_REG_VIC_DETECTED:
case ADV7511_REG_VIC_SEND:
case ADV7511_REG_AUX_VIC_DETECTED:
case ADV7511_REG_STATUS:
case ADV7511_REG_GC(1):
case ADV7511_REG_INT(0):
case ADV7511_REG_INT(1):
case ADV7511_REG_PLL_STATUS:
case ADV7511_REG_AN(0):
case ADV7511_REG_AN(1):
case ADV7511_REG_AN(2):
case ADV7511_REG_AN(3):
case ADV7511_REG_AN(4):
case ADV7511_REG_AN(5):
case ADV7511_REG_AN(6):
case ADV7511_REG_AN(7):
case ADV7511_REG_HDCP_STATUS:
case ADV7511_REG_BCAPS:
case ADV7511_REG_BKSV(0):
case ADV7511_REG_BKSV(1):
case ADV7511_REG_BKSV(2):
case ADV7511_REG_BKSV(3):
case ADV7511_REG_BKSV(4):
case ADV7511_REG_DDC_STATUS:
case ADV7511_REG_EDID_READ_CTRL:
case ADV7511_REG_BSTATUS(0):
case ADV7511_REG_BSTATUS(1):
case ADV7511_REG_CHIP_ID_HIGH:
case ADV7511_REG_CHIP_ID_LOW:
return true;
}
return false;
}
static const struct regmap_config adv7511_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_RBTREE,
.reg_defaults_raw = adv7511_register_defaults,
.num_reg_defaults_raw = ARRAY_SIZE(adv7511_register_defaults),
.volatile_reg = adv7511_register_volatile,
};
/* -----------------------------------------------------------------------------
* Hardware configuration
*/
static void adv7511_set_colormap(struct adv7511 *adv7511, bool enable,
const uint16_t *coeff,
unsigned int scaling_factor)
{
unsigned int i;
regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(1),
ADV7511_CSC_UPDATE_MODE, ADV7511_CSC_UPDATE_MODE);
if (enable) {
for (i = 0; i < 12; ++i) {
regmap_update_bits(adv7511->regmap,
ADV7511_REG_CSC_UPPER(i),
0x1f, coeff[i] >> 8);
regmap_write(adv7511->regmap,
ADV7511_REG_CSC_LOWER(i),
coeff[i] & 0xff);
}
}
if (enable)
regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(0),
0xe0, 0x80 | (scaling_factor << 5));
else
regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(0),
0x80, 0x00);
regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(1),
ADV7511_CSC_UPDATE_MODE, 0);
}
static int adv7511_packet_enable(struct adv7511 *adv7511, unsigned int packet)
{
if (packet & 0xff)
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE0,
packet, 0xff);
if (packet & 0xff00) {
packet >>= 8;
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1,
packet, 0xff);
}
return 0;
}
static int adv7511_packet_disable(struct adv7511 *adv7511, unsigned int packet)
{
if (packet & 0xff)
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE0,
packet, 0x00);
if (packet & 0xff00) {
packet >>= 8;
regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1,
packet, 0x00);
}
return 0;
}
/* Coefficients for adv7511 color space conversion */
static const uint16_t adv7511_csc_ycbcr_to_rgb[] = {
0x0734, 0x04ad, 0x0000, 0x1c1b,
0x1ddc, 0x04ad, 0x1f24, 0x0135,
0x0000, 0x04ad, 0x087c, 0x1b77,
};
static void adv7511_set_config_csc(struct adv7511 *adv7511,
struct drm_connector *connector,
bool rgb, bool hdmi_mode)
{
struct adv7511_video_config config;
bool output_format_422, output_format_ycbcr;
unsigned int mode;
uint8_t infoframe[17];
config.hdmi_mode = hdmi_mode;
hdmi_avi_infoframe_init(&config.avi_infoframe);
config.avi_infoframe.scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
if (rgb) {
config.csc_enable = false;
config.avi_infoframe.colorspace = HDMI_COLORSPACE_RGB;
} else {
config.csc_scaling_factor = ADV7511_CSC_SCALING_4;
config.csc_coefficents = adv7511_csc_ycbcr_to_rgb;
if ((connector->display_info.color_formats &
DRM_COLOR_FORMAT_YCBCR422) &&
config.hdmi_mode) {
config.csc_enable = false;
config.avi_infoframe.colorspace =
HDMI_COLORSPACE_YUV422;
} else {
config.csc_enable = true;
config.avi_infoframe.colorspace = HDMI_COLORSPACE_RGB;
}
}
if (config.hdmi_mode) {
mode = ADV7511_HDMI_CFG_MODE_HDMI;
switch (config.avi_infoframe.colorspace) {
case HDMI_COLORSPACE_YUV444:
output_format_422 = false;
output_format_ycbcr = true;
break;
case HDMI_COLORSPACE_YUV422:
output_format_422 = true;
output_format_ycbcr = true;
break;
default:
output_format_422 = false;
output_format_ycbcr = false;
break;
}
} else {
mode = ADV7511_HDMI_CFG_MODE_DVI;
output_format_422 = false;
output_format_ycbcr = false;
}
adv7511_packet_disable(adv7511, ADV7511_PACKET_ENABLE_AVI_INFOFRAME);
adv7511_set_colormap(adv7511, config.csc_enable,
config.csc_coefficents,
config.csc_scaling_factor);
regmap_update_bits(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG1, 0x81,
(output_format_422 << 7) | output_format_ycbcr);
regmap_update_bits(adv7511->regmap, ADV7511_REG_HDCP_HDMI_CFG,
ADV7511_HDMI_CFG_MODE_MASK, mode);
hdmi_avi_infoframe_pack(&config.avi_infoframe, infoframe,
sizeof(infoframe));
/* The AVI infoframe id is not configurable */
regmap_bulk_write(adv7511->regmap, ADV7511_REG_AVI_INFOFRAME_VERSION,
infoframe + 1, sizeof(infoframe) - 1);
adv7511_packet_enable(adv7511, ADV7511_PACKET_ENABLE_AVI_INFOFRAME);
}
static void adv7511_set_link_config(struct adv7511 *adv7511,
const struct adv7511_link_config *config)
{
/*
* The input style values documented in the datasheet don't match the
* hardware register field values :-(
*/
static const unsigned int input_styles[4] = { 0, 2, 1, 3 };
unsigned int clock_delay;
unsigned int color_depth;
unsigned int input_id;
clock_delay = (config->clock_delay + 1200) / 400;
color_depth = config->input_color_depth == 8 ? 3
: (config->input_color_depth == 10 ? 1 : 2);
/* TODO Support input ID 6 */
if (config->input_colorspace != HDMI_COLORSPACE_YUV422)
input_id = config->input_clock == ADV7511_INPUT_CLOCK_DDR
? 5 : 0;
else if (config->input_clock == ADV7511_INPUT_CLOCK_DDR)
input_id = config->embedded_sync ? 8 : 7;
else if (config->input_clock == ADV7511_INPUT_CLOCK_2X)
input_id = config->embedded_sync ? 4 : 3;
else
input_id = config->embedded_sync ? 2 : 1;
regmap_update_bits(adv7511->regmap, ADV7511_REG_I2C_FREQ_ID_CFG, 0xf,
input_id);
regmap_update_bits(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG1, 0x7e,
(color_depth << 4) |
(input_styles[config->input_style] << 2));
regmap_write(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG2,
config->input_justification << 3);
regmap_write(adv7511->regmap, ADV7511_REG_TIMING_GEN_SEQ,
config->sync_pulse << 2);
regmap_write(adv7511->regmap, 0xba, clock_delay << 5);
adv7511->embedded_sync = config->embedded_sync;
adv7511->hsync_polarity = config->hsync_polarity;
adv7511->vsync_polarity = config->vsync_polarity;
adv7511->rgb = config->input_colorspace == HDMI_COLORSPACE_RGB;
}
static void __adv7511_power_on(struct adv7511 *adv7511)
{
adv7511->current_edid_segment = -1;
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER,
ADV7511_POWER_POWER_DOWN, 0);
if (adv7511->i2c_main->irq) {
/*
* Documentation says the INT_ENABLE registers are reset in
* POWER_DOWN mode. My 7511w preserved the bits, however.
* Still, let's be safe and stick to the documentation.
*/
regmap_write(adv7511->regmap, ADV7511_REG_INT_ENABLE(0),
ADV7511_INT0_EDID_READY | ADV7511_INT0_HPD);
regmap_update_bits(adv7511->regmap,
ADV7511_REG_INT_ENABLE(1),
ADV7511_INT1_DDC_ERROR,
ADV7511_INT1_DDC_ERROR);
}
/*
* Per spec it is allowed to pulse the HPD signal to indicate that the
* EDID information has changed. Some monitors do this when they wakeup
* from standby or are enabled. When the HPD goes low the adv7511 is
* reset and the outputs are disabled which might cause the monitor to
* go to standby again. To avoid this we ignore the HPD pin for the
* first few seconds after enabling the output. On the other hand
* adv7535 require to enable HPD Override bit for proper HPD.
*/
if (adv7511->type == ADV7535)
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2,
ADV7535_REG_POWER2_HPD_OVERRIDE,
ADV7535_REG_POWER2_HPD_OVERRIDE);
else
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2,
ADV7511_REG_POWER2_HPD_SRC_MASK,
ADV7511_REG_POWER2_HPD_SRC_NONE);
}
static void adv7511_power_on(struct adv7511 *adv7511)
{
__adv7511_power_on(adv7511);
/*
* Most of the registers are reset during power down or when HPD is low.
*/
regcache_sync(adv7511->regmap);
if (adv7511->type == ADV7533 || adv7511->type == ADV7535)
adv7533_dsi_power_on(adv7511);
adv7511->powered = true;
}
static void __adv7511_power_off(struct adv7511 *adv7511)
{
/* TODO: setup additional power down modes */
if (adv7511->type == ADV7535)
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2,
ADV7535_REG_POWER2_HPD_OVERRIDE, 0);
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER,
ADV7511_POWER_POWER_DOWN,
ADV7511_POWER_POWER_DOWN);
regmap_update_bits(adv7511->regmap,
ADV7511_REG_INT_ENABLE(1),
ADV7511_INT1_DDC_ERROR, 0);
regcache_mark_dirty(adv7511->regmap);
}
static void adv7511_power_off(struct adv7511 *adv7511)
{
__adv7511_power_off(adv7511);
if (adv7511->type == ADV7533 || adv7511->type == ADV7535)
adv7533_dsi_power_off(adv7511);
adv7511->powered = false;
}
/* -----------------------------------------------------------------------------
* Interrupt and hotplug detection
*/
static bool adv7511_hpd(struct adv7511 *adv7511)
{
unsigned int irq0;
int ret;
ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(0), &irq0);
if (ret < 0)
return false;
if (irq0 & ADV7511_INT0_HPD) {
regmap_write(adv7511->regmap, ADV7511_REG_INT(0),
ADV7511_INT0_HPD);
return true;
}
return false;
}
static void adv7511_hpd_work(struct work_struct *work)
{
struct adv7511 *adv7511 = container_of(work, struct adv7511, hpd_work);
enum drm_connector_status status;
unsigned int val;
int ret;
ret = regmap_read(adv7511->regmap, ADV7511_REG_STATUS, &val);
if (ret < 0)
status = connector_status_disconnected;
else if (val & ADV7511_STATUS_HPD)
status = connector_status_connected;
else
status = connector_status_disconnected;
/*
* The bridge resets its registers on unplug. So when we get a plug
* event and we're already supposed to be powered, cycle the bridge to
* restore its state.
*/
if (status == connector_status_connected &&
adv7511->connector.status == connector_status_disconnected &&
adv7511->powered) {
regcache_mark_dirty(adv7511->regmap);
adv7511_power_on(adv7511);
}
if (adv7511->connector.status != status) {
adv7511->connector.status = status;
if (adv7511->connector.dev) {
if (status == connector_status_disconnected)
cec_phys_addr_invalidate(adv7511->cec_adap);
drm_kms_helper_hotplug_event(adv7511->connector.dev);
} else {
drm_bridge_hpd_notify(&adv7511->bridge, status);
}
}
}
static int adv7511_irq_process(struct adv7511 *adv7511, bool process_hpd)
{
unsigned int irq0, irq1;
int ret;
ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(0), &irq0);
if (ret < 0)
return ret;
ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(1), &irq1);
if (ret < 0)
return ret;
regmap_write(adv7511->regmap, ADV7511_REG_INT(0), irq0);
regmap_write(adv7511->regmap, ADV7511_REG_INT(1), irq1);
if (process_hpd && irq0 & ADV7511_INT0_HPD && adv7511->bridge.encoder)
schedule_work(&adv7511->hpd_work);
if (irq0 & ADV7511_INT0_EDID_READY || irq1 & ADV7511_INT1_DDC_ERROR) {
adv7511->edid_read = true;
if (adv7511->i2c_main->irq)
wake_up_all(&adv7511->wq);
}
#ifdef CONFIG_DRM_I2C_ADV7511_CEC
adv7511_cec_irq_process(adv7511, irq1);
#endif
return 0;
}
static irqreturn_t adv7511_irq_handler(int irq, void *devid)
{
struct adv7511 *adv7511 = devid;
int ret;
ret = adv7511_irq_process(adv7511, true);
return ret < 0 ? IRQ_NONE : IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* EDID retrieval
*/
static int adv7511_wait_for_edid(struct adv7511 *adv7511, int timeout)
{
int ret;
if (adv7511->i2c_main->irq) {
ret = wait_event_interruptible_timeout(adv7511->wq,
adv7511->edid_read, msecs_to_jiffies(timeout));
} else {
for (; timeout > 0; timeout -= 25) {
ret = adv7511_irq_process(adv7511, false);
if (ret < 0)
break;
if (adv7511->edid_read)
break;
msleep(25);
}
}
return adv7511->edid_read ? 0 : -EIO;
}
static int adv7511_get_edid_block(void *data, u8 *buf, unsigned int block,
size_t len)
{
struct adv7511 *adv7511 = data;
struct i2c_msg xfer[2];
uint8_t offset;
unsigned int i;
int ret;
if (len > 128)
return -EINVAL;
if (adv7511->current_edid_segment != block / 2) {
unsigned int status;
ret = regmap_read(adv7511->regmap, ADV7511_REG_DDC_STATUS,
&status);
if (ret < 0)
return ret;
if (status != 2) {
adv7511->edid_read = false;
regmap_write(adv7511->regmap, ADV7511_REG_EDID_SEGMENT,
block);
ret = adv7511_wait_for_edid(adv7511, 200);
if (ret < 0)
return ret;
}
/* Break this apart, hopefully more I2C controllers will
* support 64 byte transfers than 256 byte transfers
*/
xfer[0].addr = adv7511->i2c_edid->addr;
xfer[0].flags = 0;
xfer[0].len = 1;
xfer[0].buf = &offset;
xfer[1].addr = adv7511->i2c_edid->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = 64;
xfer[1].buf = adv7511->edid_buf;
offset = 0;
for (i = 0; i < 4; ++i) {
ret = i2c_transfer(adv7511->i2c_edid->adapter, xfer,
ARRAY_SIZE(xfer));
if (ret < 0)
return ret;
else if (ret != 2)
return -EIO;
xfer[1].buf += 64;
offset += 64;
}
adv7511->current_edid_segment = block / 2;
}
if (block % 2 == 0)
memcpy(buf, adv7511->edid_buf, len);
else
memcpy(buf, adv7511->edid_buf + 128, len);
return 0;
}
/* -----------------------------------------------------------------------------
* ADV75xx helpers
*/
static struct edid *adv7511_get_edid(struct adv7511 *adv7511,
struct drm_connector *connector)
{
struct edid *edid;
/* Reading the EDID only works if the device is powered */
if (!adv7511->powered) {
unsigned int edid_i2c_addr =
(adv7511->i2c_edid->addr << 1);
__adv7511_power_on(adv7511);
/* Reset the EDID_I2C_ADDR register as it might be cleared */
regmap_write(adv7511->regmap, ADV7511_REG_EDID_I2C_ADDR,
edid_i2c_addr);
}
edid = drm_do_get_edid(connector, adv7511_get_edid_block, adv7511);
if (!adv7511->powered)
__adv7511_power_off(adv7511);
adv7511_set_config_csc(adv7511, connector, adv7511->rgb,
drm_detect_hdmi_monitor(edid));
cec_s_phys_addr_from_edid(adv7511->cec_adap, edid);
return edid;
}
static int adv7511_get_modes(struct adv7511 *adv7511,
struct drm_connector *connector)
{
struct edid *edid;
unsigned int count;
edid = adv7511_get_edid(adv7511, connector);
drm_connector_update_edid_property(connector, edid);
count = drm_add_edid_modes(connector, edid);
kfree(edid);
return count;
}
static enum drm_connector_status
adv7511_detect(struct adv7511 *adv7511, struct drm_connector *connector)
{
enum drm_connector_status status;
unsigned int val;
bool hpd;
int ret;
ret = regmap_read(adv7511->regmap, ADV7511_REG_STATUS, &val);
if (ret < 0)
return connector_status_disconnected;
if (val & ADV7511_STATUS_HPD)
status = connector_status_connected;
else
status = connector_status_disconnected;
hpd = adv7511_hpd(adv7511);
/* The chip resets itself when the cable is disconnected, so in case
* there is a pending HPD interrupt and the cable is connected there was
* at least one transition from disconnected to connected and the chip
* has to be reinitialized. */
if (status == connector_status_connected && hpd && adv7511->powered) {
regcache_mark_dirty(adv7511->regmap);
adv7511_power_on(adv7511);
if (connector)
adv7511_get_modes(adv7511, connector);
if (adv7511->status == connector_status_connected)
status = connector_status_disconnected;
} else {
/* Renable HPD sensing */
if (adv7511->type == ADV7535)
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2,
ADV7535_REG_POWER2_HPD_OVERRIDE,
ADV7535_REG_POWER2_HPD_OVERRIDE);
else
regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2,
ADV7511_REG_POWER2_HPD_SRC_MASK,
ADV7511_REG_POWER2_HPD_SRC_BOTH);
}
adv7511->status = status;
return status;
}
static enum drm_mode_status adv7511_mode_valid(struct adv7511 *adv7511,
const struct drm_display_mode *mode)
{
if (mode->clock > 165000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void adv7511_mode_set(struct adv7511 *adv7511,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj_mode)
{
unsigned int low_refresh_rate;
unsigned int hsync_polarity = 0;
unsigned int vsync_polarity = 0;
if (adv7511->embedded_sync) {
unsigned int hsync_offset, hsync_len;
unsigned int vsync_offset, vsync_len;
hsync_offset = adj_mode->crtc_hsync_start -
adj_mode->crtc_hdisplay;
vsync_offset = adj_mode->crtc_vsync_start -
adj_mode->crtc_vdisplay;
hsync_len = adj_mode->crtc_hsync_end -
adj_mode->crtc_hsync_start;
vsync_len = adj_mode->crtc_vsync_end -
adj_mode->crtc_vsync_start;
/* The hardware vsync generator has a off-by-one bug */
vsync_offset += 1;
regmap_write(adv7511->regmap, ADV7511_REG_HSYNC_PLACEMENT_MSB,
((hsync_offset >> 10) & 0x7) << 5);
regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(0),
(hsync_offset >> 2) & 0xff);
regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(1),
((hsync_offset & 0x3) << 6) |
((hsync_len >> 4) & 0x3f));
regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(2),
((hsync_len & 0xf) << 4) |
((vsync_offset >> 6) & 0xf));
regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(3),
((vsync_offset & 0x3f) << 2) |
((vsync_len >> 8) & 0x3));
regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(4),
vsync_len & 0xff);
hsync_polarity = !(adj_mode->flags & DRM_MODE_FLAG_PHSYNC);
vsync_polarity = !(adj_mode->flags & DRM_MODE_FLAG_PVSYNC);
} else {
enum adv7511_sync_polarity mode_hsync_polarity;
enum adv7511_sync_polarity mode_vsync_polarity;
/**
* If the input signal is always low or always high we want to
* invert or let it passthrough depending on the polarity of the
* current mode.
**/
if (adj_mode->flags & DRM_MODE_FLAG_NHSYNC)
mode_hsync_polarity = ADV7511_SYNC_POLARITY_LOW;
else
mode_hsync_polarity = ADV7511_SYNC_POLARITY_HIGH;
if (adj_mode->flags & DRM_MODE_FLAG_NVSYNC)
mode_vsync_polarity = ADV7511_SYNC_POLARITY_LOW;
else
mode_vsync_polarity = ADV7511_SYNC_POLARITY_HIGH;
if (adv7511->hsync_polarity != mode_hsync_polarity &&
adv7511->hsync_polarity !=
ADV7511_SYNC_POLARITY_PASSTHROUGH)
hsync_polarity = 1;
if (adv7511->vsync_polarity != mode_vsync_polarity &&
adv7511->vsync_polarity !=
ADV7511_SYNC_POLARITY_PASSTHROUGH)
vsync_polarity = 1;
}
if (drm_mode_vrefresh(mode) <= 24)
low_refresh_rate = ADV7511_LOW_REFRESH_RATE_24HZ;
else if (drm_mode_vrefresh(mode) <= 25)
low_refresh_rate = ADV7511_LOW_REFRESH_RATE_25HZ;
else if (drm_mode_vrefresh(mode) <= 30)
low_refresh_rate = ADV7511_LOW_REFRESH_RATE_30HZ;
else
low_refresh_rate = ADV7511_LOW_REFRESH_RATE_NONE;
if (adv7511->type == ADV7511)
regmap_update_bits(adv7511->regmap, 0xfb,
0x6, low_refresh_rate << 1);
else
regmap_update_bits(adv7511->regmap, 0x4a,
0xc, low_refresh_rate << 2);
regmap_update_bits(adv7511->regmap, 0x17,
0x60, (vsync_polarity << 6) | (hsync_polarity << 5));
drm_mode_copy(&adv7511->curr_mode, adj_mode);
/*
* TODO Test first order 4:2:2 to 4:4:4 up conversion method, which is
* supposed to give better results.
*/
adv7511->f_tmds = mode->clock;
}
/* -----------------------------------------------------------------------------
* DRM Connector Operations
*/
static struct adv7511 *connector_to_adv7511(struct drm_connector *connector)
{
return container_of(connector, struct adv7511, connector);
}
static int adv7511_connector_get_modes(struct drm_connector *connector)
{
struct adv7511 *adv = connector_to_adv7511(connector);
return adv7511_get_modes(adv, connector);
}
static enum drm_mode_status
adv7511_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct adv7511 *adv = connector_to_adv7511(connector);
return adv7511_mode_valid(adv, mode);
}
static struct drm_connector_helper_funcs adv7511_connector_helper_funcs = {
.get_modes = adv7511_connector_get_modes,
.mode_valid = adv7511_connector_mode_valid,
};
static enum drm_connector_status
adv7511_connector_detect(struct drm_connector *connector, bool force)
{
struct adv7511 *adv = connector_to_adv7511(connector);
return adv7511_detect(adv, connector);
}
static const struct drm_connector_funcs adv7511_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = adv7511_connector_detect,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int adv7511_connector_init(struct adv7511 *adv)
{
struct drm_bridge *bridge = &adv->bridge;
int ret;
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
if (adv->i2c_main->irq)
adv->connector.polled = DRM_CONNECTOR_POLL_HPD;
else
adv->connector.polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
ret = drm_connector_init(bridge->dev, &adv->connector,
&adv7511_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
if (ret < 0) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(&adv->connector,
&adv7511_connector_helper_funcs);
drm_connector_attach_encoder(&adv->connector, bridge->encoder);
return 0;
}
/* -----------------------------------------------------------------------------
* DRM Bridge Operations
*/
static struct adv7511 *bridge_to_adv7511(struct drm_bridge *bridge)
{
return container_of(bridge, struct adv7511, bridge);
}
static void adv7511_bridge_enable(struct drm_bridge *bridge)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
adv7511_power_on(adv);
}
static void adv7511_bridge_disable(struct drm_bridge *bridge)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
adv7511_power_off(adv);
}
static void adv7511_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj_mode)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
adv7511_mode_set(adv, mode, adj_mode);
}
static enum drm_mode_status adv7511_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
if (adv->type == ADV7533 || adv->type == ADV7535)
return adv7533_mode_valid(adv, mode);
else
return adv7511_mode_valid(adv, mode);
}
static int adv7511_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
int ret = 0;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
ret = adv7511_connector_init(adv);
if (ret < 0)
return ret;
}
if (adv->i2c_main->irq)
regmap_write(adv->regmap, ADV7511_REG_INT_ENABLE(0),
ADV7511_INT0_HPD);
return ret;
}
static enum drm_connector_status adv7511_bridge_detect(struct drm_bridge *bridge)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
return adv7511_detect(adv, NULL);
}
static struct edid *adv7511_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
return adv7511_get_edid(adv, connector);
}
static void adv7511_bridge_hpd_notify(struct drm_bridge *bridge,
enum drm_connector_status status)
{
struct adv7511 *adv = bridge_to_adv7511(bridge);
if (status == connector_status_disconnected)
cec_phys_addr_invalidate(adv->cec_adap);
}
static const struct drm_bridge_funcs adv7511_bridge_funcs = {
.enable = adv7511_bridge_enable,
.disable = adv7511_bridge_disable,
.mode_set = adv7511_bridge_mode_set,
.mode_valid = adv7511_bridge_mode_valid,
.attach = adv7511_bridge_attach,
.detect = adv7511_bridge_detect,
.get_edid = adv7511_bridge_get_edid,
.hpd_notify = adv7511_bridge_hpd_notify,
};
/* -----------------------------------------------------------------------------
* Probe & remove
*/
static const char * const adv7511_supply_names[] = {
"avdd",
"dvdd",
"pvdd",
"bgvdd",
"dvdd-3v",
};
static const char * const adv7533_supply_names[] = {
"avdd",
"dvdd",
"pvdd",
"a2vdd",
"v3p3",
"v1p2",
};
static int adv7511_init_regulators(struct adv7511 *adv)
{
struct device *dev = &adv->i2c_main->dev;
const char * const *supply_names;
unsigned int i;
int ret;
if (adv->type == ADV7511) {
supply_names = adv7511_supply_names;
adv->num_supplies = ARRAY_SIZE(adv7511_supply_names);
} else {
supply_names = adv7533_supply_names;
adv->num_supplies = ARRAY_SIZE(adv7533_supply_names);
}
adv->supplies = devm_kcalloc(dev, adv->num_supplies,
sizeof(*adv->supplies), GFP_KERNEL);
if (!adv->supplies)
return -ENOMEM;
for (i = 0; i < adv->num_supplies; i++)
adv->supplies[i].supply = supply_names[i];
ret = devm_regulator_bulk_get(dev, adv->num_supplies, adv->supplies);
if (ret)
return ret;
return regulator_bulk_enable(adv->num_supplies, adv->supplies);
}
static void adv7511_uninit_regulators(struct adv7511 *adv)
{
regulator_bulk_disable(adv->num_supplies, adv->supplies);
}
static bool adv7511_cec_register_volatile(struct device *dev, unsigned int reg)
{
struct i2c_client *i2c = to_i2c_client(dev);
struct adv7511 *adv7511 = i2c_get_clientdata(i2c);
reg -= adv7511->reg_cec_offset;
switch (reg) {
case ADV7511_REG_CEC_RX1_FRAME_HDR:
case ADV7511_REG_CEC_RX1_FRAME_DATA0 ... ADV7511_REG_CEC_RX1_FRAME_DATA0 + 14:
case ADV7511_REG_CEC_RX1_FRAME_LEN:
case ADV7511_REG_CEC_RX2_FRAME_HDR:
case ADV7511_REG_CEC_RX2_FRAME_DATA0 ... ADV7511_REG_CEC_RX2_FRAME_DATA0 + 14:
case ADV7511_REG_CEC_RX2_FRAME_LEN:
case ADV7511_REG_CEC_RX3_FRAME_HDR:
case ADV7511_REG_CEC_RX3_FRAME_DATA0 ... ADV7511_REG_CEC_RX3_FRAME_DATA0 + 14:
case ADV7511_REG_CEC_RX3_FRAME_LEN:
case ADV7511_REG_CEC_RX_STATUS:
case ADV7511_REG_CEC_RX_BUFFERS:
case ADV7511_REG_CEC_TX_LOW_DRV_CNT:
return true;
}
return false;
}
static const struct regmap_config adv7511_cec_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = adv7511_cec_register_volatile,
};
static int adv7511_init_cec_regmap(struct adv7511 *adv)
{
int ret;
adv->i2c_cec = i2c_new_ancillary_device(adv->i2c_main, "cec",
ADV7511_CEC_I2C_ADDR_DEFAULT);
if (IS_ERR(adv->i2c_cec))
return PTR_ERR(adv->i2c_cec);
regmap_write(adv->regmap, ADV7511_REG_CEC_I2C_ADDR,
adv->i2c_cec->addr << 1);
i2c_set_clientdata(adv->i2c_cec, adv);
adv->regmap_cec = devm_regmap_init_i2c(adv->i2c_cec,
&adv7511_cec_regmap_config);
if (IS_ERR(adv->regmap_cec)) {
ret = PTR_ERR(adv->regmap_cec);
goto err;
}
if (adv->type == ADV7533 || adv->type == ADV7535) {
ret = adv7533_patch_cec_registers(adv);
if (ret)
goto err;
adv->reg_cec_offset = ADV7533_REG_CEC_OFFSET;
}
return 0;
err:
i2c_unregister_device(adv->i2c_cec);
return ret;
}
static int adv7511_parse_dt(struct device_node *np,
struct adv7511_link_config *config)
{
const char *str;
int ret;
of_property_read_u32(np, "adi,input-depth", &config->input_color_depth);
if (config->input_color_depth != 8 && config->input_color_depth != 10 &&
config->input_color_depth != 12)
return -EINVAL;
ret = of_property_read_string(np, "adi,input-colorspace", &str);
if (ret < 0)
return ret;
if (!strcmp(str, "rgb"))
config->input_colorspace = HDMI_COLORSPACE_RGB;
else if (!strcmp(str, "yuv422"))
config->input_colorspace = HDMI_COLORSPACE_YUV422;
else if (!strcmp(str, "yuv444"))
config->input_colorspace = HDMI_COLORSPACE_YUV444;
else
return -EINVAL;
ret = of_property_read_string(np, "adi,input-clock", &str);
if (ret < 0)
return ret;
if (!strcmp(str, "1x"))
config->input_clock = ADV7511_INPUT_CLOCK_1X;
else if (!strcmp(str, "2x"))
config->input_clock = ADV7511_INPUT_CLOCK_2X;
else if (!strcmp(str, "ddr"))
config->input_clock = ADV7511_INPUT_CLOCK_DDR;
else
return -EINVAL;
if (config->input_colorspace == HDMI_COLORSPACE_YUV422 ||
config->input_clock != ADV7511_INPUT_CLOCK_1X) {
ret = of_property_read_u32(np, "adi,input-style",
&config->input_style);
if (ret)
return ret;
if (config->input_style < 1 || config->input_style > 3)
return -EINVAL;
ret = of_property_read_string(np, "adi,input-justification",
&str);
if (ret < 0)
return ret;
if (!strcmp(str, "left"))
config->input_justification =
ADV7511_INPUT_JUSTIFICATION_LEFT;
else if (!strcmp(str, "evenly"))
config->input_justification =
ADV7511_INPUT_JUSTIFICATION_EVENLY;
else if (!strcmp(str, "right"))
config->input_justification =
ADV7511_INPUT_JUSTIFICATION_RIGHT;
else
return -EINVAL;
} else {
config->input_style = 1;
config->input_justification = ADV7511_INPUT_JUSTIFICATION_LEFT;
}
of_property_read_u32(np, "adi,clock-delay", &config->clock_delay);
if (config->clock_delay < -1200 || config->clock_delay > 1600)
return -EINVAL;
config->embedded_sync = of_property_read_bool(np, "adi,embedded-sync");
/* Hardcode the sync pulse configurations for now. */
config->sync_pulse = ADV7511_INPUT_SYNC_PULSE_NONE;
config->vsync_polarity = ADV7511_SYNC_POLARITY_PASSTHROUGH;
config->hsync_polarity = ADV7511_SYNC_POLARITY_PASSTHROUGH;
return 0;
}
static int adv7511_probe(struct i2c_client *i2c)
{
const struct i2c_device_id *id = i2c_client_get_device_id(i2c);
struct adv7511_link_config link_config;
struct adv7511 *adv7511;
struct device *dev = &i2c->dev;
unsigned int val;
int ret;
if (!dev->of_node)
return -EINVAL;
adv7511 = devm_kzalloc(dev, sizeof(*adv7511), GFP_KERNEL);
if (!adv7511)
return -ENOMEM;
adv7511->i2c_main = i2c;
adv7511->powered = false;
adv7511->status = connector_status_disconnected;
if (dev->of_node)
adv7511->type = (enum adv7511_type)of_device_get_match_data(dev);
else
adv7511->type = id->driver_data;
memset(&link_config, 0, sizeof(link_config));
if (adv7511->type == ADV7511)
ret = adv7511_parse_dt(dev->of_node, &link_config);
else
ret = adv7533_parse_dt(dev->of_node, adv7511);
if (ret)
return ret;
ret = adv7511_init_regulators(adv7511);
if (ret)
return dev_err_probe(dev, ret, "failed to init regulators\n");
/*
* The power down GPIO is optional. If present, toggle it from active to
* inactive to wake up the encoder.
*/
adv7511->gpio_pd = devm_gpiod_get_optional(dev, "pd", GPIOD_OUT_HIGH);
if (IS_ERR(adv7511->gpio_pd)) {
ret = PTR_ERR(adv7511->gpio_pd);
goto uninit_regulators;
}
if (adv7511->gpio_pd) {
usleep_range(5000, 6000);
gpiod_set_value_cansleep(adv7511->gpio_pd, 0);
}
adv7511->regmap = devm_regmap_init_i2c(i2c, &adv7511_regmap_config);
if (IS_ERR(adv7511->regmap)) {
ret = PTR_ERR(adv7511->regmap);
goto uninit_regulators;
}
ret = regmap_read(adv7511->regmap, ADV7511_REG_CHIP_REVISION, &val);
if (ret)
goto uninit_regulators;
dev_dbg(dev, "Rev. %d\n", val);
if (adv7511->type == ADV7511)
ret = regmap_register_patch(adv7511->regmap,
adv7511_fixed_registers,
ARRAY_SIZE(adv7511_fixed_registers));
else
ret = adv7533_patch_registers(adv7511);
if (ret)
goto uninit_regulators;
adv7511_packet_disable(adv7511, 0xffff);
adv7511->i2c_edid = i2c_new_ancillary_device(i2c, "edid",
ADV7511_EDID_I2C_ADDR_DEFAULT);
if (IS_ERR(adv7511->i2c_edid)) {
ret = PTR_ERR(adv7511->i2c_edid);
goto uninit_regulators;
}
regmap_write(adv7511->regmap, ADV7511_REG_EDID_I2C_ADDR,
adv7511->i2c_edid->addr << 1);
adv7511->i2c_packet = i2c_new_ancillary_device(i2c, "packet",
ADV7511_PACKET_I2C_ADDR_DEFAULT);
if (IS_ERR(adv7511->i2c_packet)) {
ret = PTR_ERR(adv7511->i2c_packet);
goto err_i2c_unregister_edid;
}
regmap_write(adv7511->regmap, ADV7511_REG_PACKET_I2C_ADDR,
adv7511->i2c_packet->addr << 1);
ret = adv7511_init_cec_regmap(adv7511);
if (ret)
goto err_i2c_unregister_packet;
INIT_WORK(&adv7511->hpd_work, adv7511_hpd_work);
if (i2c->irq) {
init_waitqueue_head(&adv7511->wq);
ret = devm_request_threaded_irq(dev, i2c->irq, NULL,
adv7511_irq_handler,
IRQF_ONESHOT, dev_name(dev),
adv7511);
if (ret)
goto err_unregister_cec;
}
adv7511_power_off(adv7511);
i2c_set_clientdata(i2c, adv7511);
if (adv7511->type == ADV7511)
adv7511_set_link_config(adv7511, &link_config);
ret = adv7511_cec_init(dev, adv7511);
if (ret)
goto err_unregister_cec;
adv7511->bridge.funcs = &adv7511_bridge_funcs;
adv7511->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID;
if (adv7511->i2c_main->irq)
adv7511->bridge.ops |= DRM_BRIDGE_OP_HPD;
adv7511->bridge.of_node = dev->of_node;
adv7511->bridge.type = DRM_MODE_CONNECTOR_HDMIA;
drm_bridge_add(&adv7511->bridge);
adv7511_audio_init(dev, adv7511);
if (adv7511->type == ADV7533 || adv7511->type == ADV7535) {
ret = adv7533_attach_dsi(adv7511);
if (ret)
goto err_unregister_audio;
}
return 0;
err_unregister_audio:
adv7511_audio_exit(adv7511);
drm_bridge_remove(&adv7511->bridge);
err_unregister_cec:
cec_unregister_adapter(adv7511->cec_adap);
i2c_unregister_device(adv7511->i2c_cec);
clk_disable_unprepare(adv7511->cec_clk);
err_i2c_unregister_packet:
i2c_unregister_device(adv7511->i2c_packet);
err_i2c_unregister_edid:
i2c_unregister_device(adv7511->i2c_edid);
uninit_regulators:
adv7511_uninit_regulators(adv7511);
return ret;
}
static void adv7511_remove(struct i2c_client *i2c)
{
struct adv7511 *adv7511 = i2c_get_clientdata(i2c);
adv7511_uninit_regulators(adv7511);
drm_bridge_remove(&adv7511->bridge);
adv7511_audio_exit(adv7511);
cec_unregister_adapter(adv7511->cec_adap);
i2c_unregister_device(adv7511->i2c_cec);
clk_disable_unprepare(adv7511->cec_clk);
i2c_unregister_device(adv7511->i2c_packet);
i2c_unregister_device(adv7511->i2c_edid);
}
static const struct i2c_device_id adv7511_i2c_ids[] = {
{ "adv7511", ADV7511 },
{ "adv7511w", ADV7511 },
{ "adv7513", ADV7511 },
{ "adv7533", ADV7533 },
{ "adv7535", ADV7535 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adv7511_i2c_ids);
static const struct of_device_id adv7511_of_ids[] = {
{ .compatible = "adi,adv7511", .data = (void *)ADV7511 },
{ .compatible = "adi,adv7511w", .data = (void *)ADV7511 },
{ .compatible = "adi,adv7513", .data = (void *)ADV7511 },
{ .compatible = "adi,adv7533", .data = (void *)ADV7533 },
{ .compatible = "adi,adv7535", .data = (void *)ADV7535 },
{ }
};
MODULE_DEVICE_TABLE(of, adv7511_of_ids);
static struct mipi_dsi_driver adv7533_dsi_driver = {
.driver.name = "adv7533",
};
static struct i2c_driver adv7511_driver = {
.driver = {
.name = "adv7511",
.of_match_table = adv7511_of_ids,
},
.id_table = adv7511_i2c_ids,
.probe = adv7511_probe,
.remove = adv7511_remove,
};
static int __init adv7511_init(void)
{
int ret;
if (IS_ENABLED(CONFIG_DRM_MIPI_DSI)) {
ret = mipi_dsi_driver_register(&adv7533_dsi_driver);
if (ret)
return ret;
}
ret = i2c_add_driver(&adv7511_driver);
if (ret) {
if (IS_ENABLED(CONFIG_DRM_MIPI_DSI))
mipi_dsi_driver_unregister(&adv7533_dsi_driver);
}
return ret;
}
module_init(adv7511_init);
static void __exit adv7511_exit(void)
{
i2c_del_driver(&adv7511_driver);
if (IS_ENABLED(CONFIG_DRM_MIPI_DSI))
mipi_dsi_driver_unregister(&adv7533_dsi_driver);
}
module_exit(adv7511_exit);
MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
MODULE_DESCRIPTION("ADV7511 HDMI transmitter driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/adv7511/adv7511_drv.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
#include <linux/of_graph.h>
#include "adv7511.h"
static const struct reg_sequence adv7533_fixed_registers[] = {
{ 0x16, 0x20 },
{ 0x9a, 0xe0 },
{ 0xba, 0x70 },
{ 0xde, 0x82 },
{ 0xe4, 0x40 },
{ 0xe5, 0x80 },
};
static const struct reg_sequence adv7533_cec_fixed_registers[] = {
{ 0x15, 0xd0 },
{ 0x17, 0xd0 },
{ 0x24, 0x20 },
{ 0x57, 0x11 },
{ 0x05, 0xc8 },
};
static void adv7511_dsi_config_timing_gen(struct adv7511 *adv)
{
struct mipi_dsi_device *dsi = adv->dsi;
struct drm_display_mode *mode = &adv->curr_mode;
unsigned int hsw, hfp, hbp, vsw, vfp, vbp;
static const u8 clock_div_by_lanes[] = { 6, 4, 3 }; /* 2, 3, 4 lanes */
hsw = mode->hsync_end - mode->hsync_start;
hfp = mode->hsync_start - mode->hdisplay;
hbp = mode->htotal - mode->hsync_end;
vsw = mode->vsync_end - mode->vsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
/* set pixel clock divider mode */
regmap_write(adv->regmap_cec, 0x16,
clock_div_by_lanes[dsi->lanes - 2] << 3);
/* horizontal porch params */
regmap_write(adv->regmap_cec, 0x28, mode->htotal >> 4);
regmap_write(adv->regmap_cec, 0x29, (mode->htotal << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x2a, hsw >> 4);
regmap_write(adv->regmap_cec, 0x2b, (hsw << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x2c, hfp >> 4);
regmap_write(adv->regmap_cec, 0x2d, (hfp << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x2e, hbp >> 4);
regmap_write(adv->regmap_cec, 0x2f, (hbp << 4) & 0xff);
/* vertical porch params */
regmap_write(adv->regmap_cec, 0x30, mode->vtotal >> 4);
regmap_write(adv->regmap_cec, 0x31, (mode->vtotal << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x32, vsw >> 4);
regmap_write(adv->regmap_cec, 0x33, (vsw << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x34, vfp >> 4);
regmap_write(adv->regmap_cec, 0x35, (vfp << 4) & 0xff);
regmap_write(adv->regmap_cec, 0x36, vbp >> 4);
regmap_write(adv->regmap_cec, 0x37, (vbp << 4) & 0xff);
}
void adv7533_dsi_power_on(struct adv7511 *adv)
{
struct mipi_dsi_device *dsi = adv->dsi;
if (adv->use_timing_gen)
adv7511_dsi_config_timing_gen(adv);
/* set number of dsi lanes */
regmap_write(adv->regmap_cec, 0x1c, dsi->lanes << 4);
if (adv->use_timing_gen) {
/* reset internal timing generator */
regmap_write(adv->regmap_cec, 0x27, 0xcb);
regmap_write(adv->regmap_cec, 0x27, 0x8b);
regmap_write(adv->regmap_cec, 0x27, 0xcb);
} else {
/* disable internal timing generator */
regmap_write(adv->regmap_cec, 0x27, 0x0b);
}
/* enable hdmi */
regmap_write(adv->regmap_cec, 0x03, 0x89);
/* disable test mode */
regmap_write(adv->regmap_cec, 0x55, 0x00);
regmap_register_patch(adv->regmap_cec, adv7533_cec_fixed_registers,
ARRAY_SIZE(adv7533_cec_fixed_registers));
}
void adv7533_dsi_power_off(struct adv7511 *adv)
{
/* disable hdmi */
regmap_write(adv->regmap_cec, 0x03, 0x0b);
/* disable internal timing generator */
regmap_write(adv->regmap_cec, 0x27, 0x0b);
}
enum drm_mode_status adv7533_mode_valid(struct adv7511 *adv,
const struct drm_display_mode *mode)
{
unsigned long max_lane_freq;
struct mipi_dsi_device *dsi = adv->dsi;
u8 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
/* Check max clock for either 7533 or 7535 */
if (mode->clock > (adv->type == ADV7533 ? 80000 : 148500))
return MODE_CLOCK_HIGH;
/* Check max clock for each lane */
max_lane_freq = (adv->type == ADV7533 ? 800000 : 891000);
if (mode->clock * bpp > max_lane_freq * adv->num_dsi_lanes)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
int adv7533_patch_registers(struct adv7511 *adv)
{
return regmap_register_patch(adv->regmap,
adv7533_fixed_registers,
ARRAY_SIZE(adv7533_fixed_registers));
}
int adv7533_patch_cec_registers(struct adv7511 *adv)
{
return regmap_register_patch(adv->regmap_cec,
adv7533_cec_fixed_registers,
ARRAY_SIZE(adv7533_cec_fixed_registers));
}
int adv7533_attach_dsi(struct adv7511 *adv)
{
struct device *dev = &adv->i2c_main->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
int ret = 0;
const struct mipi_dsi_device_info info = { .type = "adv7533",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(adv->host_node);
if (!host)
return dev_err_probe(dev, -EPROBE_DEFER,
"failed to find dsi host\n");
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
adv->dsi = dsi;
dsi->lanes = adv->num_dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_NO_EOT_PACKET | MIPI_DSI_MODE_VIDEO_HSE;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to attach dsi to host\n");
return 0;
}
int adv7533_parse_dt(struct device_node *np, struct adv7511 *adv)
{
u32 num_lanes;
of_property_read_u32(np, "adi,dsi-lanes", &num_lanes);
if (num_lanes < 1 || num_lanes > 4)
return -EINVAL;
adv->num_dsi_lanes = num_lanes;
adv->host_node = of_graph_get_remote_node(np, 0, 0);
if (!adv->host_node)
return -ENODEV;
of_node_put(adv->host_node);
adv->use_timing_gen = !of_property_read_bool(np,
"adi,disable-timing-generator");
/* TODO: Check if these need to be parsed by DT or not */
adv->rgb = true;
adv->embedded_sync = false;
return 0;
}
| linux-master | drivers/gpu/drm/bridge/adv7511/adv7533.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <linux/firmware/imx/svc/misc.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <dt-bindings/firmware/imx/rsrc.h>
#define PXL2DPI_CTRL 0x40
#define CFG1_16BIT 0x0
#define CFG2_16BIT 0x1
#define CFG3_16BIT 0x2
#define CFG1_18BIT 0x3
#define CFG2_18BIT 0x4
#define CFG_24BIT 0x5
#define DRIVER_NAME "imx8qxp-pxl2dpi"
struct imx8qxp_pxl2dpi {
struct regmap *regmap;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_bridge *companion;
struct device *dev;
struct imx_sc_ipc *ipc_handle;
u32 sc_resource;
u32 in_bus_format;
u32 out_bus_format;
u32 pl_sel;
};
#define bridge_to_p2d(b) container_of(b, struct imx8qxp_pxl2dpi, bridge)
static int imx8qxp_pxl2dpi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct imx8qxp_pxl2dpi *p2d = bridge->driver_private;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
DRM_DEV_ERROR(p2d->dev,
"do not support creating a drm_connector\n");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_DEV_ERROR(p2d->dev, "missing encoder\n");
return -ENODEV;
}
return drm_bridge_attach(bridge->encoder,
p2d->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
static int
imx8qxp_pxl2dpi_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct imx8qxp_pxl2dpi *p2d = bridge->driver_private;
p2d->in_bus_format = bridge_state->input_bus_cfg.format;
p2d->out_bus_format = bridge_state->output_bus_cfg.format;
return 0;
}
static void
imx8qxp_pxl2dpi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct imx8qxp_pxl2dpi *p2d = bridge->driver_private;
struct imx8qxp_pxl2dpi *companion_p2d;
int ret;
ret = pm_runtime_get_sync(p2d->dev);
if (ret < 0)
DRM_DEV_ERROR(p2d->dev,
"failed to get runtime PM sync: %d\n", ret);
ret = imx_sc_misc_set_control(p2d->ipc_handle, p2d->sc_resource,
IMX_SC_C_PXL_LINK_SEL, p2d->pl_sel);
if (ret)
DRM_DEV_ERROR(p2d->dev,
"failed to set pixel link selection(%u): %d\n",
p2d->pl_sel, ret);
switch (p2d->out_bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
regmap_write(p2d->regmap, PXL2DPI_CTRL, CFG_24BIT);
break;
case MEDIA_BUS_FMT_RGB666_1X24_CPADHI:
regmap_write(p2d->regmap, PXL2DPI_CTRL, CFG2_18BIT);
break;
default:
DRM_DEV_ERROR(p2d->dev,
"unsupported output bus format 0x%08x\n",
p2d->out_bus_format);
}
if (p2d->companion) {
companion_p2d = bridge_to_p2d(p2d->companion);
companion_p2d->in_bus_format = p2d->in_bus_format;
companion_p2d->out_bus_format = p2d->out_bus_format;
p2d->companion->funcs->mode_set(p2d->companion, mode,
adjusted_mode);
}
}
static void
imx8qxp_pxl2dpi_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct imx8qxp_pxl2dpi *p2d = bridge->driver_private;
int ret;
ret = pm_runtime_put(p2d->dev);
if (ret < 0)
DRM_DEV_ERROR(p2d->dev, "failed to put runtime PM: %d\n", ret);
if (p2d->companion)
p2d->companion->funcs->atomic_disable(p2d->companion,
old_bridge_state);
}
static const u32 imx8qxp_pxl2dpi_bus_output_fmts[] = {
MEDIA_BUS_FMT_RGB888_1X24,
MEDIA_BUS_FMT_RGB666_1X24_CPADHI,
};
static bool imx8qxp_pxl2dpi_bus_output_fmt_supported(u32 fmt)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8qxp_pxl2dpi_bus_output_fmts); i++) {
if (imx8qxp_pxl2dpi_bus_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
imx8qxp_pxl2dpi_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
if (!imx8qxp_pxl2dpi_bus_output_fmt_supported(output_fmt))
return NULL;
*num_input_fmts = 1;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (output_fmt) {
case MEDIA_BUS_FMT_RGB888_1X24:
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X36_CPADLO;
break;
case MEDIA_BUS_FMT_RGB666_1X24_CPADHI:
input_fmts[0] = MEDIA_BUS_FMT_RGB666_1X36_CPADLO;
break;
default:
kfree(input_fmts);
input_fmts = NULL;
break;
}
return input_fmts;
}
static u32 *
imx8qxp_pxl2dpi_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
*num_output_fmts = ARRAY_SIZE(imx8qxp_pxl2dpi_bus_output_fmts);
return kmemdup(imx8qxp_pxl2dpi_bus_output_fmts,
sizeof(imx8qxp_pxl2dpi_bus_output_fmts), GFP_KERNEL);
}
static const struct drm_bridge_funcs imx8qxp_pxl2dpi_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = imx8qxp_pxl2dpi_bridge_attach,
.atomic_check = imx8qxp_pxl2dpi_bridge_atomic_check,
.mode_set = imx8qxp_pxl2dpi_bridge_mode_set,
.atomic_disable = imx8qxp_pxl2dpi_bridge_atomic_disable,
.atomic_get_input_bus_fmts =
imx8qxp_pxl2dpi_bridge_atomic_get_input_bus_fmts,
.atomic_get_output_bus_fmts =
imx8qxp_pxl2dpi_bridge_atomic_get_output_bus_fmts,
};
static struct device_node *
imx8qxp_pxl2dpi_get_available_ep_from_port(struct imx8qxp_pxl2dpi *p2d,
u32 port_id)
{
struct device_node *port, *ep;
int ep_cnt;
port = of_graph_get_port_by_id(p2d->dev->of_node, port_id);
if (!port) {
DRM_DEV_ERROR(p2d->dev, "failed to get port@%u\n", port_id);
return ERR_PTR(-ENODEV);
}
ep_cnt = of_get_available_child_count(port);
if (ep_cnt == 0) {
DRM_DEV_ERROR(p2d->dev, "no available endpoints of port@%u\n",
port_id);
ep = ERR_PTR(-ENODEV);
goto out;
} else if (ep_cnt > 1) {
DRM_DEV_ERROR(p2d->dev,
"invalid available endpoints of port@%u\n",
port_id);
ep = ERR_PTR(-EINVAL);
goto out;
}
ep = of_get_next_available_child(port, NULL);
if (!ep) {
DRM_DEV_ERROR(p2d->dev,
"failed to get available endpoint of port@%u\n",
port_id);
ep = ERR_PTR(-ENODEV);
goto out;
}
out:
of_node_put(port);
return ep;
}
static struct drm_bridge *
imx8qxp_pxl2dpi_find_next_bridge(struct imx8qxp_pxl2dpi *p2d)
{
struct device_node *ep, *remote;
struct drm_bridge *next_bridge;
int ret;
ep = imx8qxp_pxl2dpi_get_available_ep_from_port(p2d, 1);
if (IS_ERR(ep)) {
ret = PTR_ERR(ep);
return ERR_PTR(ret);
}
remote = of_graph_get_remote_port_parent(ep);
if (!remote || !of_device_is_available(remote)) {
DRM_DEV_ERROR(p2d->dev, "no available remote\n");
next_bridge = ERR_PTR(-ENODEV);
goto out;
} else if (!of_device_is_available(remote->parent)) {
DRM_DEV_ERROR(p2d->dev, "remote parent is not available\n");
next_bridge = ERR_PTR(-ENODEV);
goto out;
}
next_bridge = of_drm_find_bridge(remote);
if (!next_bridge) {
next_bridge = ERR_PTR(-EPROBE_DEFER);
goto out;
}
out:
of_node_put(remote);
of_node_put(ep);
return next_bridge;
}
static int imx8qxp_pxl2dpi_set_pixel_link_sel(struct imx8qxp_pxl2dpi *p2d)
{
struct device_node *ep;
struct of_endpoint endpoint;
int ret;
ep = imx8qxp_pxl2dpi_get_available_ep_from_port(p2d, 0);
if (IS_ERR(ep))
return PTR_ERR(ep);
ret = of_graph_parse_endpoint(ep, &endpoint);
if (ret) {
DRM_DEV_ERROR(p2d->dev,
"failed to parse endpoint of port@0: %d\n", ret);
goto out;
}
p2d->pl_sel = endpoint.id;
out:
of_node_put(ep);
return ret;
}
static int imx8qxp_pxl2dpi_parse_dt_companion(struct imx8qxp_pxl2dpi *p2d)
{
struct imx8qxp_pxl2dpi *companion_p2d;
struct device *dev = p2d->dev;
struct device_node *companion;
struct device_node *port1, *port2;
const struct of_device_id *match;
int dual_link;
int ret = 0;
/* Locate the companion PXL2DPI for dual-link operation, if any. */
companion = of_parse_phandle(dev->of_node, "fsl,companion-pxl2dpi", 0);
if (!companion)
return 0;
if (!of_device_is_available(companion)) {
DRM_DEV_ERROR(dev, "companion PXL2DPI is not available\n");
ret = -ENODEV;
goto out;
}
/*
* Sanity check: the companion bridge must have the same compatible
* string.
*/
match = of_match_device(dev->driver->of_match_table, dev);
if (!of_device_is_compatible(companion, match->compatible)) {
DRM_DEV_ERROR(dev, "companion PXL2DPI is incompatible\n");
ret = -ENXIO;
goto out;
}
p2d->companion = of_drm_find_bridge(companion);
if (!p2d->companion) {
ret = -EPROBE_DEFER;
DRM_DEV_DEBUG_DRIVER(p2d->dev,
"failed to find companion bridge: %d\n",
ret);
goto out;
}
companion_p2d = bridge_to_p2d(p2d->companion);
/*
* We need to work out if the sink is expecting us to function in
* dual-link mode. We do this by looking at the DT port nodes that
* the next bridges are connected to. If they are marked as expecting
* even pixels and odd pixels than we need to use the companion PXL2DPI.
*/
port1 = of_graph_get_port_by_id(p2d->next_bridge->of_node, 1);
port2 = of_graph_get_port_by_id(companion_p2d->next_bridge->of_node, 1);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port1, port2);
of_node_put(port1);
of_node_put(port2);
if (dual_link < 0) {
ret = dual_link;
DRM_DEV_ERROR(dev, "failed to get dual link pixel order: %d\n",
ret);
goto out;
}
DRM_DEV_DEBUG_DRIVER(dev,
"dual-link configuration detected (companion bridge %pOF)\n",
companion);
out:
of_node_put(companion);
return ret;
}
static int imx8qxp_pxl2dpi_bridge_probe(struct platform_device *pdev)
{
struct imx8qxp_pxl2dpi *p2d;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
int ret;
p2d = devm_kzalloc(dev, sizeof(*p2d), GFP_KERNEL);
if (!p2d)
return -ENOMEM;
p2d->regmap = syscon_node_to_regmap(np->parent);
if (IS_ERR(p2d->regmap)) {
ret = PTR_ERR(p2d->regmap);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get regmap: %d\n", ret);
return ret;
}
ret = imx_scu_get_handle(&p2d->ipc_handle);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get SCU ipc handle: %d\n",
ret);
return ret;
}
p2d->dev = dev;
ret = of_property_read_u32(np, "fsl,sc-resource", &p2d->sc_resource);
if (ret) {
DRM_DEV_ERROR(dev, "failed to get SC resource %d\n", ret);
return ret;
}
p2d->next_bridge = imx8qxp_pxl2dpi_find_next_bridge(p2d);
if (IS_ERR(p2d->next_bridge)) {
ret = PTR_ERR(p2d->next_bridge);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to find next bridge: %d\n",
ret);
return ret;
}
ret = imx8qxp_pxl2dpi_set_pixel_link_sel(p2d);
if (ret)
return ret;
ret = imx8qxp_pxl2dpi_parse_dt_companion(p2d);
if (ret)
return ret;
platform_set_drvdata(pdev, p2d);
pm_runtime_enable(dev);
p2d->bridge.driver_private = p2d;
p2d->bridge.funcs = &imx8qxp_pxl2dpi_bridge_funcs;
p2d->bridge.of_node = np;
drm_bridge_add(&p2d->bridge);
return ret;
}
static void imx8qxp_pxl2dpi_bridge_remove(struct platform_device *pdev)
{
struct imx8qxp_pxl2dpi *p2d = platform_get_drvdata(pdev);
drm_bridge_remove(&p2d->bridge);
pm_runtime_disable(&pdev->dev);
}
static const struct of_device_id imx8qxp_pxl2dpi_dt_ids[] = {
{ .compatible = "fsl,imx8qxp-pxl2dpi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx8qxp_pxl2dpi_dt_ids);
static struct platform_driver imx8qxp_pxl2dpi_bridge_driver = {
.probe = imx8qxp_pxl2dpi_bridge_probe,
.remove_new = imx8qxp_pxl2dpi_bridge_remove,
.driver = {
.of_match_table = imx8qxp_pxl2dpi_dt_ids,
.name = DRIVER_NAME,
},
};
module_platform_driver(imx8qxp_pxl2dpi_bridge_driver);
MODULE_DESCRIPTION("i.MX8QXP pixel link to DPI bridge driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/imx/imx8qxp-pxl2dpi.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_print.h>
#define PC_CTRL_REG 0x0
#define PC_COMBINE_ENABLE BIT(0)
#define PC_DISP_BYPASS(n) BIT(1 + 21 * (n))
#define PC_DISP_HSYNC_POLARITY(n) BIT(2 + 11 * (n))
#define PC_DISP_HSYNC_POLARITY_POS(n) DISP_HSYNC_POLARITY(n)
#define PC_DISP_VSYNC_POLARITY(n) BIT(3 + 11 * (n))
#define PC_DISP_VSYNC_POLARITY_POS(n) DISP_VSYNC_POLARITY(n)
#define PC_DISP_DVALID_POLARITY(n) BIT(4 + 11 * (n))
#define PC_DISP_DVALID_POLARITY_POS(n) DISP_DVALID_POLARITY(n)
#define PC_VSYNC_MASK_ENABLE BIT(5)
#define PC_SKIP_MODE BIT(6)
#define PC_SKIP_NUMBER_MASK GENMASK(12, 7)
#define PC_SKIP_NUMBER(n) FIELD_PREP(PC_SKIP_NUMBER_MASK, (n))
#define PC_DISP0_PIX_DATA_FORMAT_MASK GENMASK(18, 16)
#define PC_DISP0_PIX_DATA_FORMAT(fmt) \
FIELD_PREP(PC_DISP0_PIX_DATA_FORMAT_MASK, (fmt))
#define PC_DISP1_PIX_DATA_FORMAT_MASK GENMASK(21, 19)
#define PC_DISP1_PIX_DATA_FORMAT(fmt) \
FIELD_PREP(PC_DISP1_PIX_DATA_FORMAT_MASK, (fmt))
#define PC_SW_RESET_REG 0x20
#define PC_SW_RESET_N BIT(0)
#define PC_DISP_SW_RESET_N(n) BIT(1 + (n))
#define PC_FULL_RESET_N (PC_SW_RESET_N | \
PC_DISP_SW_RESET_N(0) | \
PC_DISP_SW_RESET_N(1))
#define PC_REG_SET 0x4
#define PC_REG_CLR 0x8
#define DRIVER_NAME "imx8qxp-pixel-combiner"
enum imx8qxp_pc_pix_data_format {
RGB,
YUV444,
YUV422,
SPLIT_RGB,
};
struct imx8qxp_pc_channel {
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct imx8qxp_pc *pc;
unsigned int stream_id;
bool is_available;
};
struct imx8qxp_pc {
struct device *dev;
struct imx8qxp_pc_channel ch[2];
struct clk *clk_apb;
void __iomem *base;
};
static inline u32 imx8qxp_pc_read(struct imx8qxp_pc *pc, unsigned int offset)
{
return readl(pc->base + offset);
}
static inline void
imx8qxp_pc_write(struct imx8qxp_pc *pc, unsigned int offset, u32 value)
{
writel(value, pc->base + offset);
}
static inline void
imx8qxp_pc_write_set(struct imx8qxp_pc *pc, unsigned int offset, u32 value)
{
imx8qxp_pc_write(pc, offset + PC_REG_SET, value);
}
static inline void
imx8qxp_pc_write_clr(struct imx8qxp_pc *pc, unsigned int offset, u32 value)
{
imx8qxp_pc_write(pc, offset + PC_REG_CLR, value);
}
static enum drm_mode_status
imx8qxp_pc_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->hdisplay > 2560)
return MODE_BAD_HVALUE;
return MODE_OK;
}
static int imx8qxp_pc_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct imx8qxp_pc_channel *ch = bridge->driver_private;
struct imx8qxp_pc *pc = ch->pc;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
DRM_DEV_ERROR(pc->dev,
"do not support creating a drm_connector\n");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_DEV_ERROR(pc->dev, "missing encoder\n");
return -ENODEV;
}
return drm_bridge_attach(bridge->encoder,
ch->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
static void
imx8qxp_pc_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct imx8qxp_pc_channel *ch = bridge->driver_private;
struct imx8qxp_pc *pc = ch->pc;
u32 val;
int ret;
ret = pm_runtime_get_sync(pc->dev);
if (ret < 0)
DRM_DEV_ERROR(pc->dev,
"failed to get runtime PM sync: %d\n", ret);
ret = clk_prepare_enable(pc->clk_apb);
if (ret)
DRM_DEV_ERROR(pc->dev, "%s: failed to enable apb clock: %d\n",
__func__, ret);
/* HSYNC to pixel link is active low. */
imx8qxp_pc_write_clr(pc, PC_CTRL_REG,
PC_DISP_HSYNC_POLARITY(ch->stream_id));
/* VSYNC to pixel link is active low. */
imx8qxp_pc_write_clr(pc, PC_CTRL_REG,
PC_DISP_VSYNC_POLARITY(ch->stream_id));
/* Data enable to pixel link is active high. */
imx8qxp_pc_write_set(pc, PC_CTRL_REG,
PC_DISP_DVALID_POLARITY(ch->stream_id));
/* Mask the first frame output which may be incomplete. */
imx8qxp_pc_write_set(pc, PC_CTRL_REG, PC_VSYNC_MASK_ENABLE);
/* Only support RGB currently. */
val = imx8qxp_pc_read(pc, PC_CTRL_REG);
if (ch->stream_id == 0) {
val &= ~PC_DISP0_PIX_DATA_FORMAT_MASK;
val |= PC_DISP0_PIX_DATA_FORMAT(RGB);
} else {
val &= ~PC_DISP1_PIX_DATA_FORMAT_MASK;
val |= PC_DISP1_PIX_DATA_FORMAT(RGB);
}
imx8qxp_pc_write(pc, PC_CTRL_REG, val);
/* Only support bypass mode currently. */
imx8qxp_pc_write_set(pc, PC_CTRL_REG, PC_DISP_BYPASS(ch->stream_id));
clk_disable_unprepare(pc->clk_apb);
}
static void
imx8qxp_pc_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct imx8qxp_pc_channel *ch = bridge->driver_private;
struct imx8qxp_pc *pc = ch->pc;
int ret;
ret = pm_runtime_put(pc->dev);
if (ret < 0)
DRM_DEV_ERROR(pc->dev, "failed to put runtime PM: %d\n", ret);
}
static const u32 imx8qxp_pc_bus_output_fmts[] = {
MEDIA_BUS_FMT_RGB888_1X36_CPADLO,
MEDIA_BUS_FMT_RGB666_1X36_CPADLO,
};
static bool imx8qxp_pc_bus_output_fmt_supported(u32 fmt)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8qxp_pc_bus_output_fmts); i++) {
if (imx8qxp_pc_bus_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
imx8qxp_pc_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
if (!imx8qxp_pc_bus_output_fmt_supported(output_fmt))
return NULL;
*num_input_fmts = 1;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (output_fmt) {
case MEDIA_BUS_FMT_RGB888_1X36_CPADLO:
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X30_CPADLO;
break;
case MEDIA_BUS_FMT_RGB666_1X36_CPADLO:
input_fmts[0] = MEDIA_BUS_FMT_RGB666_1X30_CPADLO;
break;
default:
kfree(input_fmts);
input_fmts = NULL;
break;
}
return input_fmts;
}
static u32 *
imx8qxp_pc_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
*num_output_fmts = ARRAY_SIZE(imx8qxp_pc_bus_output_fmts);
return kmemdup(imx8qxp_pc_bus_output_fmts,
sizeof(imx8qxp_pc_bus_output_fmts), GFP_KERNEL);
}
static const struct drm_bridge_funcs imx8qxp_pc_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.mode_valid = imx8qxp_pc_bridge_mode_valid,
.attach = imx8qxp_pc_bridge_attach,
.mode_set = imx8qxp_pc_bridge_mode_set,
.atomic_disable = imx8qxp_pc_bridge_atomic_disable,
.atomic_get_input_bus_fmts =
imx8qxp_pc_bridge_atomic_get_input_bus_fmts,
.atomic_get_output_bus_fmts =
imx8qxp_pc_bridge_atomic_get_output_bus_fmts,
};
static int imx8qxp_pc_bridge_probe(struct platform_device *pdev)
{
struct imx8qxp_pc *pc;
struct imx8qxp_pc_channel *ch;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *child, *remote;
u32 i;
int ret;
pc = devm_kzalloc(dev, sizeof(*pc), GFP_KERNEL);
if (!pc)
return -ENOMEM;
pc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pc->base))
return PTR_ERR(pc->base);
pc->dev = dev;
pc->clk_apb = devm_clk_get(dev, "apb");
if (IS_ERR(pc->clk_apb)) {
ret = PTR_ERR(pc->clk_apb);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get apb clock: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, pc);
pm_runtime_enable(dev);
for_each_available_child_of_node(np, child) {
ret = of_property_read_u32(child, "reg", &i);
if (ret || i > 1) {
ret = -EINVAL;
DRM_DEV_ERROR(dev,
"invalid channel(%u) node address\n", i);
goto free_child;
}
ch = &pc->ch[i];
ch->pc = pc;
ch->stream_id = i;
remote = of_graph_get_remote_node(child, 1, 0);
if (!remote) {
ret = -ENODEV;
DRM_DEV_ERROR(dev,
"channel%u failed to get port1's remote node: %d\n",
i, ret);
goto free_child;
}
ch->next_bridge = of_drm_find_bridge(remote);
if (!ch->next_bridge) {
of_node_put(remote);
ret = -EPROBE_DEFER;
DRM_DEV_DEBUG_DRIVER(dev,
"channel%u failed to find next bridge: %d\n",
i, ret);
goto free_child;
}
of_node_put(remote);
ch->bridge.driver_private = ch;
ch->bridge.funcs = &imx8qxp_pc_bridge_funcs;
ch->bridge.of_node = child;
ch->is_available = true;
drm_bridge_add(&ch->bridge);
}
return 0;
free_child:
of_node_put(child);
if (i == 1 && pc->ch[0].next_bridge)
drm_bridge_remove(&pc->ch[0].bridge);
pm_runtime_disable(dev);
return ret;
}
static void imx8qxp_pc_bridge_remove(struct platform_device *pdev)
{
struct imx8qxp_pc *pc = platform_get_drvdata(pdev);
struct imx8qxp_pc_channel *ch;
int i;
for (i = 0; i < 2; i++) {
ch = &pc->ch[i];
if (!ch->is_available)
continue;
drm_bridge_remove(&ch->bridge);
ch->is_available = false;
}
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused imx8qxp_pc_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct imx8qxp_pc *pc = platform_get_drvdata(pdev);
int ret;
ret = clk_prepare_enable(pc->clk_apb);
if (ret)
DRM_DEV_ERROR(pc->dev, "%s: failed to enable apb clock: %d\n",
__func__, ret);
/* Disable pixel combiner by full reset. */
imx8qxp_pc_write_clr(pc, PC_SW_RESET_REG, PC_FULL_RESET_N);
clk_disable_unprepare(pc->clk_apb);
/* Ensure the reset takes effect. */
usleep_range(10, 20);
return ret;
}
static int __maybe_unused imx8qxp_pc_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct imx8qxp_pc *pc = platform_get_drvdata(pdev);
int ret;
ret = clk_prepare_enable(pc->clk_apb);
if (ret) {
DRM_DEV_ERROR(pc->dev, "%s: failed to enable apb clock: %d\n",
__func__, ret);
return ret;
}
/* out of reset */
imx8qxp_pc_write_set(pc, PC_SW_RESET_REG, PC_FULL_RESET_N);
clk_disable_unprepare(pc->clk_apb);
return ret;
}
static const struct dev_pm_ops imx8qxp_pc_pm_ops = {
SET_RUNTIME_PM_OPS(imx8qxp_pc_runtime_suspend,
imx8qxp_pc_runtime_resume, NULL)
};
static const struct of_device_id imx8qxp_pc_dt_ids[] = {
{ .compatible = "fsl,imx8qm-pixel-combiner", },
{ .compatible = "fsl,imx8qxp-pixel-combiner", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx8qxp_pc_dt_ids);
static struct platform_driver imx8qxp_pc_bridge_driver = {
.probe = imx8qxp_pc_bridge_probe,
.remove_new = imx8qxp_pc_bridge_remove,
.driver = {
.pm = &imx8qxp_pc_pm_ops,
.name = DRIVER_NAME,
.of_match_table = imx8qxp_pc_dt_ids,
},
};
module_platform_driver(imx8qxp_pc_bridge_driver);
MODULE_DESCRIPTION("i.MX8QM/QXP pixel combiner bridge driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/imx/imx8qxp-pixel-combiner.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <linux/clk.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_connector.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include "imx-ldb-helper.h"
#define LDB_CH0_10BIT_EN BIT(22)
#define LDB_CH1_10BIT_EN BIT(23)
#define LDB_CH0_DATA_WIDTH_24BIT BIT(24)
#define LDB_CH1_DATA_WIDTH_24BIT BIT(26)
#define LDB_CH0_DATA_WIDTH_30BIT (2 << 24)
#define LDB_CH1_DATA_WIDTH_30BIT (2 << 26)
#define SS_CTRL 0x20
#define CH_HSYNC_M(id) BIT(0 + ((id) * 2))
#define CH_VSYNC_M(id) BIT(1 + ((id) * 2))
#define CH_PHSYNC(id) BIT(0 + ((id) * 2))
#define CH_PVSYNC(id) BIT(1 + ((id) * 2))
#define DRIVER_NAME "imx8qm-ldb"
struct imx8qm_ldb_channel {
struct ldb_channel base;
struct phy *phy;
};
struct imx8qm_ldb {
struct ldb base;
struct device *dev;
struct imx8qm_ldb_channel channel[MAX_LDB_CHAN_NUM];
struct clk *clk_pixel;
struct clk *clk_bypass;
int active_chno;
};
static inline struct imx8qm_ldb_channel *
base_to_imx8qm_ldb_channel(struct ldb_channel *base)
{
return container_of(base, struct imx8qm_ldb_channel, base);
}
static inline struct imx8qm_ldb *base_to_imx8qm_ldb(struct ldb *base)
{
return container_of(base, struct imx8qm_ldb, base);
}
static void imx8qm_ldb_set_phy_cfg(struct imx8qm_ldb *imx8qm_ldb,
unsigned long di_clk,
bool is_split, bool is_slave,
struct phy_configure_opts_lvds *phy_cfg)
{
phy_cfg->bits_per_lane_and_dclk_cycle = 7;
phy_cfg->lanes = 4;
phy_cfg->differential_clk_rate = is_split ? di_clk / 2 : di_clk;
phy_cfg->is_slave = is_slave;
}
static int imx8qm_ldb_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qm_ldb_channel *imx8qm_ldb_ch =
base_to_imx8qm_ldb_channel(ldb_ch);
struct imx8qm_ldb *imx8qm_ldb = base_to_imx8qm_ldb(ldb);
struct drm_display_mode *adj = &crtc_state->adjusted_mode;
unsigned long di_clk = adj->clock * 1000;
bool is_split = ldb_channel_is_split_link(ldb_ch);
union phy_configure_opts opts = { };
struct phy_configure_opts_lvds *phy_cfg = &opts.lvds;
int ret;
ret = ldb_bridge_atomic_check_helper(bridge, bridge_state,
crtc_state, conn_state);
if (ret)
return ret;
imx8qm_ldb_set_phy_cfg(imx8qm_ldb, di_clk, is_split, false, phy_cfg);
ret = phy_validate(imx8qm_ldb_ch->phy, PHY_MODE_LVDS, 0, &opts);
if (ret < 0) {
DRM_DEV_DEBUG_DRIVER(imx8qm_ldb->dev,
"failed to validate PHY: %d\n", ret);
return ret;
}
if (is_split) {
imx8qm_ldb_ch =
&imx8qm_ldb->channel[imx8qm_ldb->active_chno ^ 1];
imx8qm_ldb_set_phy_cfg(imx8qm_ldb, di_clk, is_split, true,
phy_cfg);
ret = phy_validate(imx8qm_ldb_ch->phy, PHY_MODE_LVDS, 0, &opts);
if (ret < 0) {
DRM_DEV_DEBUG_DRIVER(imx8qm_ldb->dev,
"failed to validate slave PHY: %d\n",
ret);
return ret;
}
}
return ret;
}
static void
imx8qm_ldb_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qm_ldb_channel *imx8qm_ldb_ch =
base_to_imx8qm_ldb_channel(ldb_ch);
struct imx8qm_ldb *imx8qm_ldb = base_to_imx8qm_ldb(ldb);
struct device *dev = imx8qm_ldb->dev;
unsigned long di_clk = adjusted_mode->clock * 1000;
bool is_split = ldb_channel_is_split_link(ldb_ch);
union phy_configure_opts opts = { };
struct phy_configure_opts_lvds *phy_cfg = &opts.lvds;
u32 chno = ldb_ch->chno;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to get runtime PM sync: %d\n", ret);
ret = phy_init(imx8qm_ldb_ch->phy);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to initialize PHY: %d\n", ret);
clk_set_rate(imx8qm_ldb->clk_bypass, di_clk);
clk_set_rate(imx8qm_ldb->clk_pixel, di_clk);
imx8qm_ldb_set_phy_cfg(imx8qm_ldb, di_clk, is_split, false, phy_cfg);
ret = phy_configure(imx8qm_ldb_ch->phy, &opts);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to configure PHY: %d\n", ret);
if (is_split) {
imx8qm_ldb_ch =
&imx8qm_ldb->channel[imx8qm_ldb->active_chno ^ 1];
imx8qm_ldb_set_phy_cfg(imx8qm_ldb, di_clk, is_split, true,
phy_cfg);
ret = phy_configure(imx8qm_ldb_ch->phy, &opts);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to configure slave PHY: %d\n",
ret);
}
/* input VSYNC signal from pixel link is active low */
if (ldb_ch->chno == 0 || is_split)
ldb->ldb_ctrl |= LDB_DI0_VS_POL_ACT_LOW;
if (ldb_ch->chno == 1 || is_split)
ldb->ldb_ctrl |= LDB_DI1_VS_POL_ACT_LOW;
switch (ldb_ch->out_bus_format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
if (ldb_ch->chno == 0 || is_split)
ldb->ldb_ctrl |= LDB_CH0_DATA_WIDTH_24BIT;
if (ldb_ch->chno == 1 || is_split)
ldb->ldb_ctrl |= LDB_CH1_DATA_WIDTH_24BIT;
break;
}
ldb_bridge_mode_set_helper(bridge, mode, adjusted_mode);
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL, CH_VSYNC_M(chno), 0);
else if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL,
CH_VSYNC_M(chno), CH_PVSYNC(chno));
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL, CH_HSYNC_M(chno), 0);
else if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL,
CH_HSYNC_M(chno), CH_PHSYNC(chno));
}
static void
imx8qm_ldb_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qm_ldb_channel *imx8qm_ldb_ch =
base_to_imx8qm_ldb_channel(ldb_ch);
struct imx8qm_ldb *imx8qm_ldb = base_to_imx8qm_ldb(ldb);
struct device *dev = imx8qm_ldb->dev;
bool is_split = ldb_channel_is_split_link(ldb_ch);
int ret;
clk_prepare_enable(imx8qm_ldb->clk_pixel);
clk_prepare_enable(imx8qm_ldb->clk_bypass);
/* both DI0 and DI1 connect with pixel link, so ok to use DI0 only */
if (ldb_ch->chno == 0 || is_split) {
ldb->ldb_ctrl &= ~LDB_CH0_MODE_EN_MASK;
ldb->ldb_ctrl |= LDB_CH0_MODE_EN_TO_DI0;
}
if (ldb_ch->chno == 1 || is_split) {
ldb->ldb_ctrl &= ~LDB_CH1_MODE_EN_MASK;
ldb->ldb_ctrl |= LDB_CH1_MODE_EN_TO_DI0;
}
if (is_split) {
ret = phy_power_on(imx8qm_ldb->channel[0].phy);
if (ret)
DRM_DEV_ERROR(dev,
"failed to power on channel0 PHY: %d\n",
ret);
ret = phy_power_on(imx8qm_ldb->channel[1].phy);
if (ret)
DRM_DEV_ERROR(dev,
"failed to power on channel1 PHY: %d\n",
ret);
} else {
ret = phy_power_on(imx8qm_ldb_ch->phy);
if (ret)
DRM_DEV_ERROR(dev, "failed to power on PHY: %d\n", ret);
}
ldb_bridge_enable_helper(bridge);
}
static void
imx8qm_ldb_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qm_ldb_channel *imx8qm_ldb_ch =
base_to_imx8qm_ldb_channel(ldb_ch);
struct imx8qm_ldb *imx8qm_ldb = base_to_imx8qm_ldb(ldb);
struct device *dev = imx8qm_ldb->dev;
bool is_split = ldb_channel_is_split_link(ldb_ch);
int ret;
ldb_bridge_disable_helper(bridge);
if (is_split) {
ret = phy_power_off(imx8qm_ldb->channel[0].phy);
if (ret)
DRM_DEV_ERROR(dev,
"failed to power off channel0 PHY: %d\n",
ret);
ret = phy_power_off(imx8qm_ldb->channel[1].phy);
if (ret)
DRM_DEV_ERROR(dev,
"failed to power off channel1 PHY: %d\n",
ret);
} else {
ret = phy_power_off(imx8qm_ldb_ch->phy);
if (ret)
DRM_DEV_ERROR(dev, "failed to power off PHY: %d\n", ret);
}
clk_disable_unprepare(imx8qm_ldb->clk_bypass);
clk_disable_unprepare(imx8qm_ldb->clk_pixel);
ret = pm_runtime_put(dev);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to put runtime PM: %d\n", ret);
}
static const u32 imx8qm_ldb_bus_output_fmts[] = {
MEDIA_BUS_FMT_RGB666_1X7X3_SPWG,
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG,
MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA,
MEDIA_BUS_FMT_FIXED,
};
static bool imx8qm_ldb_bus_output_fmt_supported(u32 fmt)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8qm_ldb_bus_output_fmts); i++) {
if (imx8qm_ldb_bus_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
imx8qm_ldb_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct drm_display_info *di;
const struct drm_format_info *finfo;
u32 *input_fmts;
if (!imx8qm_ldb_bus_output_fmt_supported(output_fmt))
return NULL;
*num_input_fmts = 1;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (output_fmt) {
case MEDIA_BUS_FMT_FIXED:
di = &conn_state->connector->display_info;
/*
* Look at the first bus format to determine input format.
* Default to MEDIA_BUS_FMT_RGB888_1X36_CPADLO, if no match.
*/
if (di->num_bus_formats) {
finfo = drm_format_info(di->bus_formats[0]);
input_fmts[0] = finfo->depth == 18 ?
MEDIA_BUS_FMT_RGB666_1X36_CPADLO :
MEDIA_BUS_FMT_RGB888_1X36_CPADLO;
} else {
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X36_CPADLO;
}
break;
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
input_fmts[0] = MEDIA_BUS_FMT_RGB666_1X36_CPADLO;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X36_CPADLO;
break;
default:
kfree(input_fmts);
input_fmts = NULL;
break;
}
return input_fmts;
}
static u32 *
imx8qm_ldb_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
*num_output_fmts = ARRAY_SIZE(imx8qm_ldb_bus_output_fmts);
return kmemdup(imx8qm_ldb_bus_output_fmts,
sizeof(imx8qm_ldb_bus_output_fmts), GFP_KERNEL);
}
static enum drm_mode_status
imx8qm_ldb_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
bool is_single = ldb_channel_is_single_link(ldb_ch);
if (mode->clock > 300000)
return MODE_CLOCK_HIGH;
if (mode->clock > 150000 && is_single)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_bridge_funcs imx8qm_ldb_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.mode_valid = imx8qm_ldb_bridge_mode_valid,
.attach = ldb_bridge_attach_helper,
.atomic_check = imx8qm_ldb_bridge_atomic_check,
.mode_set = imx8qm_ldb_bridge_mode_set,
.atomic_enable = imx8qm_ldb_bridge_atomic_enable,
.atomic_disable = imx8qm_ldb_bridge_atomic_disable,
.atomic_get_input_bus_fmts =
imx8qm_ldb_bridge_atomic_get_input_bus_fmts,
.atomic_get_output_bus_fmts =
imx8qm_ldb_bridge_atomic_get_output_bus_fmts,
};
static int imx8qm_ldb_get_phy(struct imx8qm_ldb *imx8qm_ldb)
{
struct imx8qm_ldb_channel *imx8qm_ldb_ch;
struct ldb_channel *ldb_ch;
struct device *dev = imx8qm_ldb->dev;
int i, ret;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
imx8qm_ldb_ch = &imx8qm_ldb->channel[i];
ldb_ch = &imx8qm_ldb_ch->base;
if (!ldb_ch->is_available)
continue;
imx8qm_ldb_ch->phy = devm_of_phy_get(dev, ldb_ch->np,
"lvds_phy");
if (IS_ERR(imx8qm_ldb_ch->phy)) {
ret = PTR_ERR(imx8qm_ldb_ch->phy);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get channel%d PHY: %d\n",
i, ret);
return ret;
}
}
return 0;
}
static int imx8qm_ldb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct imx8qm_ldb *imx8qm_ldb;
struct imx8qm_ldb_channel *imx8qm_ldb_ch;
struct ldb *ldb;
struct ldb_channel *ldb_ch;
struct device_node *port1, *port2;
int pixel_order;
int ret, i;
imx8qm_ldb = devm_kzalloc(dev, sizeof(*imx8qm_ldb), GFP_KERNEL);
if (!imx8qm_ldb)
return -ENOMEM;
imx8qm_ldb->clk_pixel = devm_clk_get(dev, "pixel");
if (IS_ERR(imx8qm_ldb->clk_pixel)) {
ret = PTR_ERR(imx8qm_ldb->clk_pixel);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get pixel clock: %d\n", ret);
return ret;
}
imx8qm_ldb->clk_bypass = devm_clk_get(dev, "bypass");
if (IS_ERR(imx8qm_ldb->clk_bypass)) {
ret = PTR_ERR(imx8qm_ldb->clk_bypass);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get bypass clock: %d\n", ret);
return ret;
}
imx8qm_ldb->dev = dev;
ldb = &imx8qm_ldb->base;
ldb->dev = dev;
ldb->ctrl_reg = 0xe0;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++)
ldb->channel[i] = &imx8qm_ldb->channel[i].base;
ret = ldb_init_helper(ldb);
if (ret)
return ret;
if (ldb->available_ch_cnt == 0) {
DRM_DEV_DEBUG_DRIVER(dev, "no available channel\n");
return 0;
}
if (ldb->available_ch_cnt == 2) {
port1 = of_graph_get_port_by_id(ldb->channel[0]->np, 1);
port2 = of_graph_get_port_by_id(ldb->channel[1]->np, 1);
pixel_order =
drm_of_lvds_get_dual_link_pixel_order(port1, port2);
of_node_put(port1);
of_node_put(port2);
if (pixel_order != DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
DRM_DEV_ERROR(dev, "invalid dual link pixel order: %d\n",
pixel_order);
return -EINVAL;
}
imx8qm_ldb->active_chno = 0;
imx8qm_ldb_ch = &imx8qm_ldb->channel[0];
ldb_ch = &imx8qm_ldb_ch->base;
ldb_ch->link_type = pixel_order;
} else {
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
imx8qm_ldb_ch = &imx8qm_ldb->channel[i];
ldb_ch = &imx8qm_ldb_ch->base;
if (ldb_ch->is_available) {
imx8qm_ldb->active_chno = ldb_ch->chno;
break;
}
}
}
ret = imx8qm_ldb_get_phy(imx8qm_ldb);
if (ret)
return ret;
ret = ldb_find_next_bridge_helper(ldb);
if (ret)
return ret;
platform_set_drvdata(pdev, imx8qm_ldb);
pm_runtime_enable(dev);
ldb_add_bridge_helper(ldb, &imx8qm_ldb_bridge_funcs);
return ret;
}
static void imx8qm_ldb_remove(struct platform_device *pdev)
{
struct imx8qm_ldb *imx8qm_ldb = platform_get_drvdata(pdev);
struct ldb *ldb = &imx8qm_ldb->base;
ldb_remove_bridge_helper(ldb);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused imx8qm_ldb_runtime_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused imx8qm_ldb_runtime_resume(struct device *dev)
{
struct imx8qm_ldb *imx8qm_ldb = dev_get_drvdata(dev);
struct ldb *ldb = &imx8qm_ldb->base;
/* disable LDB by resetting the control register to POR default */
regmap_write(ldb->regmap, ldb->ctrl_reg, 0);
return 0;
}
static const struct dev_pm_ops imx8qm_ldb_pm_ops = {
SET_RUNTIME_PM_OPS(imx8qm_ldb_runtime_suspend,
imx8qm_ldb_runtime_resume, NULL)
};
static const struct of_device_id imx8qm_ldb_dt_ids[] = {
{ .compatible = "fsl,imx8qm-ldb" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx8qm_ldb_dt_ids);
static struct platform_driver imx8qm_ldb_driver = {
.probe = imx8qm_ldb_probe,
.remove_new = imx8qm_ldb_remove,
.driver = {
.pm = &imx8qm_ldb_pm_ops,
.name = DRIVER_NAME,
.of_match_table = imx8qm_ldb_dt_ids,
},
};
module_platform_driver(imx8qm_ldb_driver);
MODULE_DESCRIPTION("i.MX8QM LVDS Display Bridge(LDB)/Pixel Mapper bridge driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/imx/imx8qm-ldb.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020,2022 NXP
*/
#include <linux/firmware/imx/svc/misc.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_print.h>
#include <dt-bindings/firmware/imx/rsrc.h>
#define DRIVER_NAME "imx8qxp-display-pixel-link"
#define PL_MAX_MST_ADDR 3
#define PL_MAX_NEXT_BRIDGES 2
struct imx8qxp_pixel_link {
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct device *dev;
struct imx_sc_ipc *ipc_handle;
u8 stream_id;
u8 dc_id;
u32 sink_rsc;
u32 mst_addr;
u8 mst_addr_ctrl;
u8 mst_en_ctrl;
u8 mst_vld_ctrl;
u8 sync_ctrl;
};
static void imx8qxp_pixel_link_enable_mst_en(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->mst_en_ctrl, true);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to enable DC%u stream%u pixel link mst_en: %d\n",
pl->dc_id, pl->stream_id, ret);
}
static void imx8qxp_pixel_link_enable_mst_vld(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->mst_vld_ctrl, true);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to enable DC%u stream%u pixel link mst_vld: %d\n",
pl->dc_id, pl->stream_id, ret);
}
static void imx8qxp_pixel_link_enable_sync(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->sync_ctrl, true);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to enable DC%u stream%u pixel link sync: %d\n",
pl->dc_id, pl->stream_id, ret);
}
static int imx8qxp_pixel_link_disable_mst_en(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->mst_en_ctrl, false);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to disable DC%u stream%u pixel link mst_en: %d\n",
pl->dc_id, pl->stream_id, ret);
return ret;
}
static int imx8qxp_pixel_link_disable_mst_vld(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->mst_vld_ctrl, false);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to disable DC%u stream%u pixel link mst_vld: %d\n",
pl->dc_id, pl->stream_id, ret);
return ret;
}
static int imx8qxp_pixel_link_disable_sync(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle, pl->sink_rsc,
pl->sync_ctrl, false);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to disable DC%u stream%u pixel link sync: %d\n",
pl->dc_id, pl->stream_id, ret);
return ret;
}
static void imx8qxp_pixel_link_set_mst_addr(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx_sc_misc_set_control(pl->ipc_handle,
pl->sink_rsc, pl->mst_addr_ctrl,
pl->mst_addr);
if (ret)
DRM_DEV_ERROR(pl->dev,
"failed to set DC%u stream%u pixel link mst addr(%u): %d\n",
pl->dc_id, pl->stream_id, pl->mst_addr, ret);
}
static int imx8qxp_pixel_link_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct imx8qxp_pixel_link *pl = bridge->driver_private;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
DRM_DEV_ERROR(pl->dev,
"do not support creating a drm_connector\n");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_DEV_ERROR(pl->dev, "missing encoder\n");
return -ENODEV;
}
return drm_bridge_attach(bridge->encoder,
pl->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
static void
imx8qxp_pixel_link_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct imx8qxp_pixel_link *pl = bridge->driver_private;
imx8qxp_pixel_link_set_mst_addr(pl);
}
static void
imx8qxp_pixel_link_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct imx8qxp_pixel_link *pl = bridge->driver_private;
imx8qxp_pixel_link_enable_mst_en(pl);
imx8qxp_pixel_link_enable_mst_vld(pl);
imx8qxp_pixel_link_enable_sync(pl);
}
static void
imx8qxp_pixel_link_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct imx8qxp_pixel_link *pl = bridge->driver_private;
imx8qxp_pixel_link_disable_mst_en(pl);
imx8qxp_pixel_link_disable_mst_vld(pl);
imx8qxp_pixel_link_disable_sync(pl);
}
static const u32 imx8qxp_pixel_link_bus_output_fmts[] = {
MEDIA_BUS_FMT_RGB888_1X36_CPADLO,
MEDIA_BUS_FMT_RGB666_1X36_CPADLO,
};
static bool imx8qxp_pixel_link_bus_output_fmt_supported(u32 fmt)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8qxp_pixel_link_bus_output_fmts); i++) {
if (imx8qxp_pixel_link_bus_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
imx8qxp_pixel_link_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
if (!imx8qxp_pixel_link_bus_output_fmt_supported(output_fmt))
return NULL;
*num_input_fmts = 1;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = output_fmt;
return input_fmts;
}
static u32 *
imx8qxp_pixel_link_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
*num_output_fmts = ARRAY_SIZE(imx8qxp_pixel_link_bus_output_fmts);
return kmemdup(imx8qxp_pixel_link_bus_output_fmts,
sizeof(imx8qxp_pixel_link_bus_output_fmts), GFP_KERNEL);
}
static const struct drm_bridge_funcs imx8qxp_pixel_link_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = imx8qxp_pixel_link_bridge_attach,
.mode_set = imx8qxp_pixel_link_bridge_mode_set,
.atomic_enable = imx8qxp_pixel_link_bridge_atomic_enable,
.atomic_disable = imx8qxp_pixel_link_bridge_atomic_disable,
.atomic_get_input_bus_fmts =
imx8qxp_pixel_link_bridge_atomic_get_input_bus_fmts,
.atomic_get_output_bus_fmts =
imx8qxp_pixel_link_bridge_atomic_get_output_bus_fmts,
};
static int imx8qxp_pixel_link_disable_all_controls(struct imx8qxp_pixel_link *pl)
{
int ret;
ret = imx8qxp_pixel_link_disable_mst_en(pl);
if (ret)
return ret;
ret = imx8qxp_pixel_link_disable_mst_vld(pl);
if (ret)
return ret;
return imx8qxp_pixel_link_disable_sync(pl);
}
static struct drm_bridge *
imx8qxp_pixel_link_find_next_bridge(struct imx8qxp_pixel_link *pl)
{
struct device_node *np = pl->dev->of_node;
struct device_node *port, *remote;
struct drm_bridge *next_bridge[PL_MAX_NEXT_BRIDGES];
u32 port_id;
bool found_port = false;
int reg, ep_cnt = 0;
/* select the first next bridge by default */
int bridge_sel = 0;
for (port_id = 1; port_id <= PL_MAX_MST_ADDR + 1; port_id++) {
port = of_graph_get_port_by_id(np, port_id);
if (!port)
continue;
if (of_device_is_available(port)) {
found_port = true;
of_node_put(port);
break;
}
of_node_put(port);
}
if (!found_port) {
DRM_DEV_ERROR(pl->dev, "no available output port\n");
return ERR_PTR(-ENODEV);
}
for (reg = 0; reg < PL_MAX_NEXT_BRIDGES; reg++) {
remote = of_graph_get_remote_node(np, port_id, reg);
if (!remote)
continue;
if (!of_device_is_available(remote->parent)) {
DRM_DEV_DEBUG(pl->dev,
"port%u endpoint%u remote parent is not available\n",
port_id, reg);
of_node_put(remote);
continue;
}
next_bridge[ep_cnt] = of_drm_find_bridge(remote);
if (!next_bridge[ep_cnt]) {
of_node_put(remote);
return ERR_PTR(-EPROBE_DEFER);
}
/* specially select the next bridge with companion PXL2DPI */
if (of_property_present(remote, "fsl,companion-pxl2dpi"))
bridge_sel = ep_cnt;
ep_cnt++;
of_node_put(remote);
}
pl->mst_addr = port_id - 1;
return next_bridge[bridge_sel];
}
static int imx8qxp_pixel_link_bridge_probe(struct platform_device *pdev)
{
struct imx8qxp_pixel_link *pl;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
int ret;
pl = devm_kzalloc(dev, sizeof(*pl), GFP_KERNEL);
if (!pl)
return -ENOMEM;
ret = imx_scu_get_handle(&pl->ipc_handle);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get SCU ipc handle: %d\n",
ret);
return ret;
}
ret = of_property_read_u8(np, "fsl,dc-id", &pl->dc_id);
if (ret) {
DRM_DEV_ERROR(dev, "failed to get DC index: %d\n", ret);
return ret;
}
ret = of_property_read_u8(np, "fsl,dc-stream-id", &pl->stream_id);
if (ret) {
DRM_DEV_ERROR(dev, "failed to get DC stream index: %d\n", ret);
return ret;
}
pl->dev = dev;
pl->sink_rsc = pl->dc_id ? IMX_SC_R_DC_1 : IMX_SC_R_DC_0;
if (pl->stream_id == 0) {
pl->mst_addr_ctrl = IMX_SC_C_PXL_LINK_MST1_ADDR;
pl->mst_en_ctrl = IMX_SC_C_PXL_LINK_MST1_ENB;
pl->mst_vld_ctrl = IMX_SC_C_PXL_LINK_MST1_VLD;
pl->sync_ctrl = IMX_SC_C_SYNC_CTRL0;
} else {
pl->mst_addr_ctrl = IMX_SC_C_PXL_LINK_MST2_ADDR;
pl->mst_en_ctrl = IMX_SC_C_PXL_LINK_MST2_ENB;
pl->mst_vld_ctrl = IMX_SC_C_PXL_LINK_MST2_VLD;
pl->sync_ctrl = IMX_SC_C_SYNC_CTRL1;
}
/* disable all controls to POR default */
ret = imx8qxp_pixel_link_disable_all_controls(pl);
if (ret)
return ret;
pl->next_bridge = imx8qxp_pixel_link_find_next_bridge(pl);
if (IS_ERR(pl->next_bridge)) {
ret = PTR_ERR(pl->next_bridge);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to find next bridge: %d\n",
ret);
return ret;
}
platform_set_drvdata(pdev, pl);
pl->bridge.driver_private = pl;
pl->bridge.funcs = &imx8qxp_pixel_link_bridge_funcs;
pl->bridge.of_node = np;
drm_bridge_add(&pl->bridge);
return ret;
}
static void imx8qxp_pixel_link_bridge_remove(struct platform_device *pdev)
{
struct imx8qxp_pixel_link *pl = platform_get_drvdata(pdev);
drm_bridge_remove(&pl->bridge);
}
static const struct of_device_id imx8qxp_pixel_link_dt_ids[] = {
{ .compatible = "fsl,imx8qm-dc-pixel-link", },
{ .compatible = "fsl,imx8qxp-dc-pixel-link", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx8qxp_pixel_link_dt_ids);
static struct platform_driver imx8qxp_pixel_link_bridge_driver = {
.probe = imx8qxp_pixel_link_bridge_probe,
.remove_new = imx8qxp_pixel_link_bridge_remove,
.driver = {
.of_match_table = imx8qxp_pixel_link_dt_ids,
.name = DRIVER_NAME,
},
};
module_platform_driver(imx8qxp_pixel_link_bridge_driver);
MODULE_DESCRIPTION("i.MX8QXP/QM display pixel link bridge driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/imx/imx8qxp-pixel-link.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020 NXP
*/
#include <linux/clk.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_connector.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include "imx-ldb-helper.h"
#define LDB_CH_SEL BIT(28)
#define SS_CTRL 0x20
#define CH_HSYNC_M(id) BIT(0 + ((id) * 2))
#define CH_VSYNC_M(id) BIT(1 + ((id) * 2))
#define CH_PHSYNC(id) BIT(0 + ((id) * 2))
#define CH_PVSYNC(id) BIT(1 + ((id) * 2))
#define DRIVER_NAME "imx8qxp-ldb"
struct imx8qxp_ldb_channel {
struct ldb_channel base;
struct phy *phy;
unsigned int di_id;
};
struct imx8qxp_ldb {
struct ldb base;
struct device *dev;
struct imx8qxp_ldb_channel channel[MAX_LDB_CHAN_NUM];
struct clk *clk_pixel;
struct clk *clk_bypass;
struct drm_bridge *companion;
int active_chno;
};
static inline struct imx8qxp_ldb_channel *
base_to_imx8qxp_ldb_channel(struct ldb_channel *base)
{
return container_of(base, struct imx8qxp_ldb_channel, base);
}
static inline struct imx8qxp_ldb *base_to_imx8qxp_ldb(struct ldb *base)
{
return container_of(base, struct imx8qxp_ldb, base);
}
static void imx8qxp_ldb_set_phy_cfg(struct imx8qxp_ldb *imx8qxp_ldb,
unsigned long di_clk, bool is_split,
struct phy_configure_opts_lvds *phy_cfg)
{
phy_cfg->bits_per_lane_and_dclk_cycle = 7;
phy_cfg->lanes = 4;
if (is_split) {
phy_cfg->differential_clk_rate = di_clk / 2;
phy_cfg->is_slave = !imx8qxp_ldb->companion;
} else {
phy_cfg->differential_clk_rate = di_clk;
phy_cfg->is_slave = false;
}
}
static int
imx8qxp_ldb_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
base_to_imx8qxp_ldb_channel(ldb_ch);
struct imx8qxp_ldb *imx8qxp_ldb = base_to_imx8qxp_ldb(ldb);
struct drm_bridge *companion = imx8qxp_ldb->companion;
struct drm_display_mode *adj = &crtc_state->adjusted_mode;
unsigned long di_clk = adj->clock * 1000;
bool is_split = ldb_channel_is_split_link(ldb_ch);
union phy_configure_opts opts = { };
struct phy_configure_opts_lvds *phy_cfg = &opts.lvds;
int ret;
ret = ldb_bridge_atomic_check_helper(bridge, bridge_state,
crtc_state, conn_state);
if (ret)
return ret;
imx8qxp_ldb_set_phy_cfg(imx8qxp_ldb, di_clk, is_split, phy_cfg);
ret = phy_validate(imx8qxp_ldb_ch->phy, PHY_MODE_LVDS, 0, &opts);
if (ret < 0) {
DRM_DEV_DEBUG_DRIVER(imx8qxp_ldb->dev,
"failed to validate PHY: %d\n", ret);
return ret;
}
if (is_split && companion) {
ret = companion->funcs->atomic_check(companion,
bridge_state, crtc_state, conn_state);
if (ret)
return ret;
}
return ret;
}
static void
imx8qxp_ldb_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb_channel *companion_ldb_ch;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
base_to_imx8qxp_ldb_channel(ldb_ch);
struct imx8qxp_ldb *imx8qxp_ldb = base_to_imx8qxp_ldb(ldb);
struct drm_bridge *companion = imx8qxp_ldb->companion;
struct device *dev = imx8qxp_ldb->dev;
unsigned long di_clk = adjusted_mode->clock * 1000;
bool is_split = ldb_channel_is_split_link(ldb_ch);
union phy_configure_opts opts = { };
struct phy_configure_opts_lvds *phy_cfg = &opts.lvds;
u32 chno = ldb_ch->chno;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to get runtime PM sync: %d\n", ret);
ret = phy_init(imx8qxp_ldb_ch->phy);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to initialize PHY: %d\n", ret);
ret = phy_set_mode(imx8qxp_ldb_ch->phy, PHY_MODE_LVDS);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to set PHY mode: %d\n", ret);
if (is_split && companion) {
companion_ldb_ch = bridge_to_ldb_ch(companion);
companion_ldb_ch->in_bus_format = ldb_ch->in_bus_format;
companion_ldb_ch->out_bus_format = ldb_ch->out_bus_format;
}
clk_set_rate(imx8qxp_ldb->clk_bypass, di_clk);
clk_set_rate(imx8qxp_ldb->clk_pixel, di_clk);
imx8qxp_ldb_set_phy_cfg(imx8qxp_ldb, di_clk, is_split, phy_cfg);
ret = phy_configure(imx8qxp_ldb_ch->phy, &opts);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to configure PHY: %d\n", ret);
if (chno == 0)
ldb->ldb_ctrl &= ~LDB_CH_SEL;
else
ldb->ldb_ctrl |= LDB_CH_SEL;
/* input VSYNC signal from pixel link is active low */
if (imx8qxp_ldb_ch->di_id == 0)
ldb->ldb_ctrl |= LDB_DI0_VS_POL_ACT_LOW;
else
ldb->ldb_ctrl |= LDB_DI1_VS_POL_ACT_LOW;
/*
* For split mode, settle input VSYNC signal polarity and
* channel selection down early.
*/
if (is_split)
regmap_write(ldb->regmap, ldb->ctrl_reg, ldb->ldb_ctrl);
ldb_bridge_mode_set_helper(bridge, mode, adjusted_mode);
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL, CH_VSYNC_M(chno), 0);
else if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL,
CH_VSYNC_M(chno), CH_PVSYNC(chno));
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL, CH_HSYNC_M(chno), 0);
else if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
regmap_update_bits(ldb->regmap, SS_CTRL,
CH_HSYNC_M(chno), CH_PHSYNC(chno));
if (is_split && companion)
companion->funcs->mode_set(companion, mode, adjusted_mode);
}
static void
imx8qxp_ldb_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qxp_ldb *imx8qxp_ldb = base_to_imx8qxp_ldb(ldb);
struct drm_bridge *companion = imx8qxp_ldb->companion;
bool is_split = ldb_channel_is_split_link(ldb_ch);
clk_prepare_enable(imx8qxp_ldb->clk_pixel);
clk_prepare_enable(imx8qxp_ldb->clk_bypass);
if (is_split && companion)
companion->funcs->atomic_pre_enable(companion, old_bridge_state);
}
static void
imx8qxp_ldb_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
base_to_imx8qxp_ldb_channel(ldb_ch);
struct imx8qxp_ldb *imx8qxp_ldb = base_to_imx8qxp_ldb(ldb);
struct drm_bridge *companion = imx8qxp_ldb->companion;
struct device *dev = imx8qxp_ldb->dev;
bool is_split = ldb_channel_is_split_link(ldb_ch);
int ret;
if (ldb_ch->chno == 0 || is_split) {
ldb->ldb_ctrl &= ~LDB_CH0_MODE_EN_MASK;
ldb->ldb_ctrl |= imx8qxp_ldb_ch->di_id == 0 ?
LDB_CH0_MODE_EN_TO_DI0 : LDB_CH0_MODE_EN_TO_DI1;
}
if (ldb_ch->chno == 1 || is_split) {
ldb->ldb_ctrl &= ~LDB_CH1_MODE_EN_MASK;
ldb->ldb_ctrl |= imx8qxp_ldb_ch->di_id == 0 ?
LDB_CH1_MODE_EN_TO_DI0 : LDB_CH1_MODE_EN_TO_DI1;
}
ldb_bridge_enable_helper(bridge);
ret = phy_power_on(imx8qxp_ldb_ch->phy);
if (ret)
DRM_DEV_ERROR(dev, "failed to power on PHY: %d\n", ret);
if (is_split && companion)
companion->funcs->atomic_enable(companion, old_bridge_state);
}
static void
imx8qxp_ldb_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
base_to_imx8qxp_ldb_channel(ldb_ch);
struct imx8qxp_ldb *imx8qxp_ldb = base_to_imx8qxp_ldb(ldb);
struct drm_bridge *companion = imx8qxp_ldb->companion;
struct device *dev = imx8qxp_ldb->dev;
bool is_split = ldb_channel_is_split_link(ldb_ch);
int ret;
ret = phy_power_off(imx8qxp_ldb_ch->phy);
if (ret)
DRM_DEV_ERROR(dev, "failed to power off PHY: %d\n", ret);
ret = phy_exit(imx8qxp_ldb_ch->phy);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to teardown PHY: %d\n", ret);
ldb_bridge_disable_helper(bridge);
clk_disable_unprepare(imx8qxp_ldb->clk_bypass);
clk_disable_unprepare(imx8qxp_ldb->clk_pixel);
if (is_split && companion)
companion->funcs->atomic_disable(companion, old_bridge_state);
ret = pm_runtime_put(dev);
if (ret < 0)
DRM_DEV_ERROR(dev, "failed to put runtime PM: %d\n", ret);
}
static const u32 imx8qxp_ldb_bus_output_fmts[] = {
MEDIA_BUS_FMT_RGB666_1X7X3_SPWG,
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG,
MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA,
MEDIA_BUS_FMT_FIXED,
};
static bool imx8qxp_ldb_bus_output_fmt_supported(u32 fmt)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8qxp_ldb_bus_output_fmts); i++) {
if (imx8qxp_ldb_bus_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
imx8qxp_ldb_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
struct drm_display_info *di;
const struct drm_format_info *finfo;
u32 *input_fmts;
if (!imx8qxp_ldb_bus_output_fmt_supported(output_fmt))
return NULL;
*num_input_fmts = 1;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (output_fmt) {
case MEDIA_BUS_FMT_FIXED:
di = &conn_state->connector->display_info;
/*
* Look at the first bus format to determine input format.
* Default to MEDIA_BUS_FMT_RGB888_1X24, if no match.
*/
if (di->num_bus_formats) {
finfo = drm_format_info(di->bus_formats[0]);
input_fmts[0] = finfo->depth == 18 ?
MEDIA_BUS_FMT_RGB666_1X24_CPADHI :
MEDIA_BUS_FMT_RGB888_1X24;
} else {
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
}
break;
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
input_fmts[0] = MEDIA_BUS_FMT_RGB666_1X24_CPADHI;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
break;
default:
kfree(input_fmts);
input_fmts = NULL;
break;
}
return input_fmts;
}
static u32 *
imx8qxp_ldb_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
*num_output_fmts = ARRAY_SIZE(imx8qxp_ldb_bus_output_fmts);
return kmemdup(imx8qxp_ldb_bus_output_fmts,
sizeof(imx8qxp_ldb_bus_output_fmts), GFP_KERNEL);
}
static enum drm_mode_status
imx8qxp_ldb_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
bool is_single = ldb_channel_is_single_link(ldb_ch);
if (mode->clock > 170000)
return MODE_CLOCK_HIGH;
if (mode->clock > 150000 && is_single)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_bridge_funcs imx8qxp_ldb_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.mode_valid = imx8qxp_ldb_bridge_mode_valid,
.attach = ldb_bridge_attach_helper,
.atomic_check = imx8qxp_ldb_bridge_atomic_check,
.mode_set = imx8qxp_ldb_bridge_mode_set,
.atomic_pre_enable = imx8qxp_ldb_bridge_atomic_pre_enable,
.atomic_enable = imx8qxp_ldb_bridge_atomic_enable,
.atomic_disable = imx8qxp_ldb_bridge_atomic_disable,
.atomic_get_input_bus_fmts =
imx8qxp_ldb_bridge_atomic_get_input_bus_fmts,
.atomic_get_output_bus_fmts =
imx8qxp_ldb_bridge_atomic_get_output_bus_fmts,
};
static int imx8qxp_ldb_set_di_id(struct imx8qxp_ldb *imx8qxp_ldb)
{
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
&imx8qxp_ldb->channel[imx8qxp_ldb->active_chno];
struct ldb_channel *ldb_ch = &imx8qxp_ldb_ch->base;
struct device_node *ep, *remote;
struct device *dev = imx8qxp_ldb->dev;
struct of_endpoint endpoint;
int ret;
ep = of_graph_get_endpoint_by_regs(ldb_ch->np, 0, -1);
if (!ep) {
DRM_DEV_ERROR(dev, "failed to get port0 endpoint\n");
return -EINVAL;
}
remote = of_graph_get_remote_endpoint(ep);
of_node_put(ep);
if (!remote) {
DRM_DEV_ERROR(dev, "failed to get port0 remote endpoint\n");
return -EINVAL;
}
ret = of_graph_parse_endpoint(remote, &endpoint);
of_node_put(remote);
if (ret) {
DRM_DEV_ERROR(dev, "failed to parse port0 remote endpoint: %d\n",
ret);
return ret;
}
imx8qxp_ldb_ch->di_id = endpoint.id;
return 0;
}
static int
imx8qxp_ldb_check_chno_and_dual_link(struct ldb_channel *ldb_ch, int link)
{
if ((link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS && ldb_ch->chno != 0) ||
(link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS && ldb_ch->chno != 1))
return -EINVAL;
return 0;
}
static int imx8qxp_ldb_parse_dt_companion(struct imx8qxp_ldb *imx8qxp_ldb)
{
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch =
&imx8qxp_ldb->channel[imx8qxp_ldb->active_chno];
struct ldb_channel *ldb_ch = &imx8qxp_ldb_ch->base;
struct ldb_channel *companion_ldb_ch;
struct device_node *companion;
struct device_node *child;
struct device_node *companion_port = NULL;
struct device_node *port1, *port2;
struct device *dev = imx8qxp_ldb->dev;
const struct of_device_id *match;
u32 i;
int dual_link;
int ret;
/* Locate the companion LDB for dual-link operation, if any. */
companion = of_parse_phandle(dev->of_node, "fsl,companion-ldb", 0);
if (!companion)
return 0;
if (!of_device_is_available(companion)) {
DRM_DEV_ERROR(dev, "companion LDB is not available\n");
ret = -ENODEV;
goto out;
}
/*
* Sanity check: the companion bridge must have the same compatible
* string.
*/
match = of_match_device(dev->driver->of_match_table, dev);
if (!of_device_is_compatible(companion, match->compatible)) {
DRM_DEV_ERROR(dev, "companion LDB is incompatible\n");
ret = -ENXIO;
goto out;
}
for_each_available_child_of_node(companion, child) {
ret = of_property_read_u32(child, "reg", &i);
if (ret || i > MAX_LDB_CHAN_NUM - 1) {
DRM_DEV_ERROR(dev,
"invalid channel node address: %u\n", i);
ret = -EINVAL;
of_node_put(child);
goto out;
}
/*
* Channel numbers have to be different, because channel0
* transmits odd pixels and channel1 transmits even pixels.
*/
if (i == (ldb_ch->chno ^ 0x1)) {
companion_port = child;
break;
}
}
if (!companion_port) {
DRM_DEV_ERROR(dev,
"failed to find companion LDB channel port\n");
ret = -EINVAL;
goto out;
}
/*
* We need to work out if the sink is expecting us to function in
* dual-link mode. We do this by looking at the DT port nodes we are
* connected to. If they are marked as expecting odd pixels and
* even pixels than we need to enable LDB split mode.
*/
port1 = of_graph_get_port_by_id(ldb_ch->np, 1);
port2 = of_graph_get_port_by_id(companion_port, 1);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port1, port2);
of_node_put(port1);
of_node_put(port2);
switch (dual_link) {
case DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS:
ldb_ch->link_type = LDB_CH_DUAL_LINK_ODD_EVEN_PIXELS;
break;
case DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS:
ldb_ch->link_type = LDB_CH_DUAL_LINK_EVEN_ODD_PIXELS;
break;
default:
ret = dual_link;
DRM_DEV_ERROR(dev,
"failed to get dual link pixel order: %d\n", ret);
goto out;
}
ret = imx8qxp_ldb_check_chno_and_dual_link(ldb_ch, dual_link);
if (ret < 0) {
DRM_DEV_ERROR(dev,
"unmatched channel number(%u) vs dual link(%d)\n",
ldb_ch->chno, dual_link);
goto out;
}
imx8qxp_ldb->companion = of_drm_find_bridge(companion_port);
if (!imx8qxp_ldb->companion) {
ret = -EPROBE_DEFER;
DRM_DEV_DEBUG_DRIVER(dev,
"failed to find bridge for companion bridge: %d\n",
ret);
goto out;
}
DRM_DEV_DEBUG_DRIVER(dev,
"dual-link configuration detected (companion bridge %pOF)\n",
companion);
companion_ldb_ch = bridge_to_ldb_ch(imx8qxp_ldb->companion);
companion_ldb_ch->link_type = ldb_ch->link_type;
out:
of_node_put(companion_port);
of_node_put(companion);
return ret;
}
static int imx8qxp_ldb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct imx8qxp_ldb *imx8qxp_ldb;
struct imx8qxp_ldb_channel *imx8qxp_ldb_ch;
struct ldb *ldb;
struct ldb_channel *ldb_ch;
int ret, i;
imx8qxp_ldb = devm_kzalloc(dev, sizeof(*imx8qxp_ldb), GFP_KERNEL);
if (!imx8qxp_ldb)
return -ENOMEM;
imx8qxp_ldb->clk_pixel = devm_clk_get(dev, "pixel");
if (IS_ERR(imx8qxp_ldb->clk_pixel)) {
ret = PTR_ERR(imx8qxp_ldb->clk_pixel);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get pixel clock: %d\n", ret);
return ret;
}
imx8qxp_ldb->clk_bypass = devm_clk_get(dev, "bypass");
if (IS_ERR(imx8qxp_ldb->clk_bypass)) {
ret = PTR_ERR(imx8qxp_ldb->clk_bypass);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get bypass clock: %d\n", ret);
return ret;
}
imx8qxp_ldb->dev = dev;
ldb = &imx8qxp_ldb->base;
ldb->dev = dev;
ldb->ctrl_reg = 0xe0;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++)
ldb->channel[i] = &imx8qxp_ldb->channel[i].base;
ret = ldb_init_helper(ldb);
if (ret)
return ret;
if (ldb->available_ch_cnt == 0) {
DRM_DEV_DEBUG_DRIVER(dev, "no available channel\n");
return 0;
} else if (ldb->available_ch_cnt > 1) {
DRM_DEV_ERROR(dev, "invalid available channel number(%u)\n",
ldb->available_ch_cnt);
return -EINVAL;
}
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
imx8qxp_ldb_ch = &imx8qxp_ldb->channel[i];
ldb_ch = &imx8qxp_ldb_ch->base;
if (ldb_ch->is_available) {
imx8qxp_ldb->active_chno = ldb_ch->chno;
break;
}
}
imx8qxp_ldb_ch->phy = devm_of_phy_get(dev, ldb_ch->np, "lvds_phy");
if (IS_ERR(imx8qxp_ldb_ch->phy)) {
ret = PTR_ERR(imx8qxp_ldb_ch->phy);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get channel%d PHY: %d\n",
imx8qxp_ldb->active_chno, ret);
return ret;
}
ret = ldb_find_next_bridge_helper(ldb);
if (ret)
return ret;
ret = imx8qxp_ldb_set_di_id(imx8qxp_ldb);
if (ret)
return ret;
ret = imx8qxp_ldb_parse_dt_companion(imx8qxp_ldb);
if (ret)
return ret;
platform_set_drvdata(pdev, imx8qxp_ldb);
pm_runtime_enable(dev);
ldb_add_bridge_helper(ldb, &imx8qxp_ldb_bridge_funcs);
return ret;
}
static void imx8qxp_ldb_remove(struct platform_device *pdev)
{
struct imx8qxp_ldb *imx8qxp_ldb = platform_get_drvdata(pdev);
struct ldb *ldb = &imx8qxp_ldb->base;
ldb_remove_bridge_helper(ldb);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused imx8qxp_ldb_runtime_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused imx8qxp_ldb_runtime_resume(struct device *dev)
{
struct imx8qxp_ldb *imx8qxp_ldb = dev_get_drvdata(dev);
struct ldb *ldb = &imx8qxp_ldb->base;
/* disable LDB by resetting the control register to POR default */
regmap_write(ldb->regmap, ldb->ctrl_reg, 0);
return 0;
}
static const struct dev_pm_ops imx8qxp_ldb_pm_ops = {
SET_RUNTIME_PM_OPS(imx8qxp_ldb_runtime_suspend,
imx8qxp_ldb_runtime_resume, NULL)
};
static const struct of_device_id imx8qxp_ldb_dt_ids[] = {
{ .compatible = "fsl,imx8qxp-ldb" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx8qxp_ldb_dt_ids);
static struct platform_driver imx8qxp_ldb_driver = {
.probe = imx8qxp_ldb_probe,
.remove_new = imx8qxp_ldb_remove,
.driver = {
.pm = &imx8qxp_ldb_pm_ops,
.name = DRIVER_NAME,
.of_match_table = imx8qxp_ldb_dt_ids,
},
};
module_platform_driver(imx8qxp_ldb_driver);
MODULE_DESCRIPTION("i.MX8QXP LVDS Display Bridge(LDB)/Pixel Mapper bridge driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/imx/imx8qxp-ldb.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2012 Sascha Hauer, Pengutronix
* Copyright 2019,2020,2022 NXP
*/
#include <linux/export.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include "imx-ldb-helper.h"
bool ldb_channel_is_single_link(struct ldb_channel *ldb_ch)
{
return ldb_ch->link_type == LDB_CH_SINGLE_LINK;
}
EXPORT_SYMBOL_GPL(ldb_channel_is_single_link);
bool ldb_channel_is_split_link(struct ldb_channel *ldb_ch)
{
return ldb_ch->link_type == LDB_CH_DUAL_LINK_EVEN_ODD_PIXELS ||
ldb_ch->link_type == LDB_CH_DUAL_LINK_ODD_EVEN_PIXELS;
}
EXPORT_SYMBOL_GPL(ldb_channel_is_split_link);
int ldb_bridge_atomic_check_helper(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
ldb_ch->in_bus_format = bridge_state->input_bus_cfg.format;
ldb_ch->out_bus_format = bridge_state->output_bus_cfg.format;
return 0;
}
EXPORT_SYMBOL_GPL(ldb_bridge_atomic_check_helper);
void ldb_bridge_mode_set_helper(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
bool is_split = ldb_channel_is_split_link(ldb_ch);
if (is_split)
ldb->ldb_ctrl |= LDB_SPLIT_MODE_EN;
switch (ldb_ch->out_bus_format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
if (ldb_ch->chno == 0 || is_split)
ldb->ldb_ctrl |= LDB_DATA_WIDTH_CH0_24;
if (ldb_ch->chno == 1 || is_split)
ldb->ldb_ctrl |= LDB_DATA_WIDTH_CH1_24;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
if (ldb_ch->chno == 0 || is_split)
ldb->ldb_ctrl |= LDB_DATA_WIDTH_CH0_24 |
LDB_BIT_MAP_CH0_JEIDA;
if (ldb_ch->chno == 1 || is_split)
ldb->ldb_ctrl |= LDB_DATA_WIDTH_CH1_24 |
LDB_BIT_MAP_CH1_JEIDA;
break;
}
}
EXPORT_SYMBOL_GPL(ldb_bridge_mode_set_helper);
void ldb_bridge_enable_helper(struct drm_bridge *bridge)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
/*
* Platform specific bridge drivers should set ldb_ctrl properly
* for the enablement, so just write the ctrl_reg here.
*/
regmap_write(ldb->regmap, ldb->ctrl_reg, ldb->ldb_ctrl);
}
EXPORT_SYMBOL_GPL(ldb_bridge_enable_helper);
void ldb_bridge_disable_helper(struct drm_bridge *bridge)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
bool is_split = ldb_channel_is_split_link(ldb_ch);
if (ldb_ch->chno == 0 || is_split)
ldb->ldb_ctrl &= ~LDB_CH0_MODE_EN_MASK;
if (ldb_ch->chno == 1 || is_split)
ldb->ldb_ctrl &= ~LDB_CH1_MODE_EN_MASK;
regmap_write(ldb->regmap, ldb->ctrl_reg, ldb->ldb_ctrl);
}
EXPORT_SYMBOL_GPL(ldb_bridge_disable_helper);
int ldb_bridge_attach_helper(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ldb_channel *ldb_ch = bridge->driver_private;
struct ldb *ldb = ldb_ch->ldb;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
DRM_DEV_ERROR(ldb->dev,
"do not support creating a drm_connector\n");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_DEV_ERROR(ldb->dev, "missing encoder\n");
return -ENODEV;
}
return drm_bridge_attach(bridge->encoder,
ldb_ch->next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
EXPORT_SYMBOL_GPL(ldb_bridge_attach_helper);
int ldb_init_helper(struct ldb *ldb)
{
struct device *dev = ldb->dev;
struct device_node *np = dev->of_node;
struct device_node *child;
int ret;
u32 i;
ldb->regmap = syscon_node_to_regmap(np->parent);
if (IS_ERR(ldb->regmap)) {
ret = PTR_ERR(ldb->regmap);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "failed to get regmap: %d\n", ret);
return ret;
}
for_each_available_child_of_node(np, child) {
struct ldb_channel *ldb_ch;
ret = of_property_read_u32(child, "reg", &i);
if (ret || i > MAX_LDB_CHAN_NUM - 1) {
ret = -EINVAL;
DRM_DEV_ERROR(dev,
"invalid channel node address: %u\n", i);
of_node_put(child);
return ret;
}
ldb_ch = ldb->channel[i];
ldb_ch->ldb = ldb;
ldb_ch->chno = i;
ldb_ch->is_available = true;
ldb_ch->np = child;
ldb->available_ch_cnt++;
}
return 0;
}
EXPORT_SYMBOL_GPL(ldb_init_helper);
int ldb_find_next_bridge_helper(struct ldb *ldb)
{
struct device *dev = ldb->dev;
struct ldb_channel *ldb_ch;
int ret, i;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
ldb_ch = ldb->channel[i];
if (!ldb_ch->is_available)
continue;
ldb_ch->next_bridge = devm_drm_of_get_bridge(dev, ldb_ch->np,
1, 0);
if (IS_ERR(ldb_ch->next_bridge)) {
ret = PTR_ERR(ldb_ch->next_bridge);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"failed to get next bridge: %d\n",
ret);
return ret;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(ldb_find_next_bridge_helper);
void ldb_add_bridge_helper(struct ldb *ldb,
const struct drm_bridge_funcs *bridge_funcs)
{
struct ldb_channel *ldb_ch;
int i;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
ldb_ch = ldb->channel[i];
if (!ldb_ch->is_available)
continue;
ldb_ch->bridge.driver_private = ldb_ch;
ldb_ch->bridge.funcs = bridge_funcs;
ldb_ch->bridge.of_node = ldb_ch->np;
drm_bridge_add(&ldb_ch->bridge);
}
}
EXPORT_SYMBOL_GPL(ldb_add_bridge_helper);
void ldb_remove_bridge_helper(struct ldb *ldb)
{
struct ldb_channel *ldb_ch;
int i;
for (i = 0; i < MAX_LDB_CHAN_NUM; i++) {
ldb_ch = ldb->channel[i];
if (!ldb_ch->is_available)
continue;
drm_bridge_remove(&ldb_ch->bridge);
}
}
EXPORT_SYMBOL_GPL(ldb_remove_bridge_helper);
MODULE_DESCRIPTION("i.MX8 LVDS Display Bridge(LDB)/Pixel Mapper bridge helper");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/bridge/imx/imx-ldb-helper.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* DesignWare HDMI audio driver
*
* Written and tested against the Designware HDMI Tx found in iMX6.
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <drm/bridge/dw_hdmi.h>
#include <drm/drm_edid.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_iec958.h>
#include "dw-hdmi-audio.h"
#define DRIVER_NAME "dw-hdmi-ahb-audio"
/* Provide some bits rather than bit offsets */
enum {
HDMI_AHB_DMA_CONF0_SW_FIFO_RST = BIT(7),
HDMI_AHB_DMA_CONF0_EN_HLOCK = BIT(3),
HDMI_AHB_DMA_START_START = BIT(0),
HDMI_AHB_DMA_STOP_STOP = BIT(0),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_ERROR = BIT(5),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_LOST = BIT(4),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_RETRY = BIT(3),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_DONE = BIT(2),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_BUFFFULL = BIT(1),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_BUFFEMPTY = BIT(0),
HDMI_IH_MUTE_AHBDMAAUD_STAT0_ALL =
HDMI_IH_MUTE_AHBDMAAUD_STAT0_ERROR |
HDMI_IH_MUTE_AHBDMAAUD_STAT0_LOST |
HDMI_IH_MUTE_AHBDMAAUD_STAT0_RETRY |
HDMI_IH_MUTE_AHBDMAAUD_STAT0_DONE |
HDMI_IH_MUTE_AHBDMAAUD_STAT0_BUFFFULL |
HDMI_IH_MUTE_AHBDMAAUD_STAT0_BUFFEMPTY,
HDMI_IH_AHBDMAAUD_STAT0_ERROR = BIT(5),
HDMI_IH_AHBDMAAUD_STAT0_LOST = BIT(4),
HDMI_IH_AHBDMAAUD_STAT0_RETRY = BIT(3),
HDMI_IH_AHBDMAAUD_STAT0_DONE = BIT(2),
HDMI_IH_AHBDMAAUD_STAT0_BUFFFULL = BIT(1),
HDMI_IH_AHBDMAAUD_STAT0_BUFFEMPTY = BIT(0),
HDMI_IH_AHBDMAAUD_STAT0_ALL =
HDMI_IH_AHBDMAAUD_STAT0_ERROR |
HDMI_IH_AHBDMAAUD_STAT0_LOST |
HDMI_IH_AHBDMAAUD_STAT0_RETRY |
HDMI_IH_AHBDMAAUD_STAT0_DONE |
HDMI_IH_AHBDMAAUD_STAT0_BUFFFULL |
HDMI_IH_AHBDMAAUD_STAT0_BUFFEMPTY,
HDMI_AHB_DMA_CONF0_INCR16 = 2 << 1,
HDMI_AHB_DMA_CONF0_INCR8 = 1 << 1,
HDMI_AHB_DMA_CONF0_INCR4 = 0,
HDMI_AHB_DMA_CONF0_BURST_MODE = BIT(0),
HDMI_AHB_DMA_MASK_DONE = BIT(7),
HDMI_REVISION_ID = 0x0001,
HDMI_IH_AHBDMAAUD_STAT0 = 0x0109,
HDMI_IH_MUTE_AHBDMAAUD_STAT0 = 0x0189,
HDMI_AHB_DMA_CONF0 = 0x3600,
HDMI_AHB_DMA_START = 0x3601,
HDMI_AHB_DMA_STOP = 0x3602,
HDMI_AHB_DMA_THRSLD = 0x3603,
HDMI_AHB_DMA_STRADDR0 = 0x3604,
HDMI_AHB_DMA_STPADDR0 = 0x3608,
HDMI_AHB_DMA_MASK = 0x3614,
HDMI_AHB_DMA_POL = 0x3615,
HDMI_AHB_DMA_CONF1 = 0x3616,
HDMI_AHB_DMA_BUFFPOL = 0x361a,
};
struct dw_hdmi_channel_conf {
u8 conf1;
u8 ca;
};
/*
* The default mapping of ALSA channels to HDMI channels and speaker
* allocation bits. Note that we can't do channel remapping here -
* channels must be in the same order.
*
* Mappings for alsa-lib pcm/surround*.conf files:
*
* Front Sur4.0 Sur4.1 Sur5.0 Sur5.1 Sur7.1
* Channels 2 4 6 6 6 8
*
* Our mapping from ALSA channel to CEA686D speaker name and HDMI channel:
*
* Number of ALSA channels
* ALSA Channel 2 3 4 5 6 7 8
* 0 FL:0 = = = = = =
* 1 FR:1 = = = = = =
* 2 FC:3 RL:4 LFE:2 = = =
* 3 RR:5 RL:4 FC:3 = =
* 4 RR:5 RL:4 = =
* 5 RR:5 = =
* 6 RC:6 =
* 7 RLC/FRC RLC/FRC
*/
static struct dw_hdmi_channel_conf default_hdmi_channel_config[7] = {
{ 0x03, 0x00 }, /* FL,FR */
{ 0x0b, 0x02 }, /* FL,FR,FC */
{ 0x33, 0x08 }, /* FL,FR,RL,RR */
{ 0x37, 0x09 }, /* FL,FR,LFE,RL,RR */
{ 0x3f, 0x0b }, /* FL,FR,LFE,FC,RL,RR */
{ 0x7f, 0x0f }, /* FL,FR,LFE,FC,RL,RR,RC */
{ 0xff, 0x13 }, /* FL,FR,LFE,FC,RL,RR,[FR]RC,[FR]LC */
};
struct snd_dw_hdmi {
struct snd_card *card;
struct snd_pcm *pcm;
spinlock_t lock;
struct dw_hdmi_audio_data data;
struct snd_pcm_substream *substream;
void (*reformat)(struct snd_dw_hdmi *, size_t, size_t);
void *buf_src;
void *buf_dst;
dma_addr_t buf_addr;
unsigned buf_offset;
unsigned buf_period;
unsigned buf_size;
unsigned channels;
u8 revision;
u8 iec_offset;
u8 cs[192][8];
};
static void dw_hdmi_writel(u32 val, void __iomem *ptr)
{
writeb_relaxed(val, ptr);
writeb_relaxed(val >> 8, ptr + 1);
writeb_relaxed(val >> 16, ptr + 2);
writeb_relaxed(val >> 24, ptr + 3);
}
/*
* Convert to hardware format: The userspace buffer contains IEC958 samples,
* with the PCUV bits in bits 31..28 and audio samples in bits 27..4. We
* need these to be in bits 27..24, with the IEC B bit in bit 28, and audio
* samples in 23..0.
*
* Default preamble in bits 3..0: 8 = block start, 4 = even 2 = odd
*
* Ideally, we could do with having the data properly formatted in userspace.
*/
static void dw_hdmi_reformat_iec958(struct snd_dw_hdmi *dw,
size_t offset, size_t bytes)
{
u32 *src = dw->buf_src + offset;
u32 *dst = dw->buf_dst + offset;
u32 *end = dw->buf_src + offset + bytes;
do {
u32 b, sample = *src++;
b = (sample & 8) << (28 - 3);
sample >>= 4;
*dst++ = sample | b;
} while (src < end);
}
static u32 parity(u32 sample)
{
sample ^= sample >> 16;
sample ^= sample >> 8;
sample ^= sample >> 4;
sample ^= sample >> 2;
sample ^= sample >> 1;
return (sample & 1) << 27;
}
static void dw_hdmi_reformat_s24(struct snd_dw_hdmi *dw,
size_t offset, size_t bytes)
{
u32 *src = dw->buf_src + offset;
u32 *dst = dw->buf_dst + offset;
u32 *end = dw->buf_src + offset + bytes;
do {
unsigned i;
u8 *cs;
cs = dw->cs[dw->iec_offset++];
if (dw->iec_offset >= 192)
dw->iec_offset = 0;
i = dw->channels;
do {
u32 sample = *src++;
sample &= ~0xff000000;
sample |= *cs++ << 24;
sample |= parity(sample & ~0xf8000000);
*dst++ = sample;
} while (--i);
} while (src < end);
}
static void dw_hdmi_create_cs(struct snd_dw_hdmi *dw,
struct snd_pcm_runtime *runtime)
{
u8 cs[4];
unsigned ch, i, j;
snd_pcm_create_iec958_consumer(runtime, cs, sizeof(cs));
memset(dw->cs, 0, sizeof(dw->cs));
for (ch = 0; ch < 8; ch++) {
cs[2] &= ~IEC958_AES2_CON_CHANNEL;
cs[2] |= (ch + 1) << 4;
for (i = 0; i < ARRAY_SIZE(cs); i++) {
unsigned c = cs[i];
for (j = 0; j < 8; j++, c >>= 1)
dw->cs[i * 8 + j][ch] = (c & 1) << 2;
}
}
dw->cs[0][0] |= BIT(4);
}
static void dw_hdmi_start_dma(struct snd_dw_hdmi *dw)
{
void __iomem *base = dw->data.base;
unsigned offset = dw->buf_offset;
unsigned period = dw->buf_period;
u32 start, stop;
dw->reformat(dw, offset, period);
/* Clear all irqs before enabling irqs and starting DMA */
writeb_relaxed(HDMI_IH_AHBDMAAUD_STAT0_ALL,
base + HDMI_IH_AHBDMAAUD_STAT0);
start = dw->buf_addr + offset;
stop = start + period - 1;
/* Setup the hardware start/stop addresses */
dw_hdmi_writel(start, base + HDMI_AHB_DMA_STRADDR0);
dw_hdmi_writel(stop, base + HDMI_AHB_DMA_STPADDR0);
writeb_relaxed((u8)~HDMI_AHB_DMA_MASK_DONE, base + HDMI_AHB_DMA_MASK);
writeb(HDMI_AHB_DMA_START_START, base + HDMI_AHB_DMA_START);
offset += period;
if (offset >= dw->buf_size)
offset = 0;
dw->buf_offset = offset;
}
static void dw_hdmi_stop_dma(struct snd_dw_hdmi *dw)
{
/* Disable interrupts before disabling DMA */
writeb_relaxed(~0, dw->data.base + HDMI_AHB_DMA_MASK);
writeb_relaxed(HDMI_AHB_DMA_STOP_STOP, dw->data.base + HDMI_AHB_DMA_STOP);
}
static irqreturn_t snd_dw_hdmi_irq(int irq, void *data)
{
struct snd_dw_hdmi *dw = data;
struct snd_pcm_substream *substream;
unsigned stat;
stat = readb_relaxed(dw->data.base + HDMI_IH_AHBDMAAUD_STAT0);
if (!stat)
return IRQ_NONE;
writeb_relaxed(stat, dw->data.base + HDMI_IH_AHBDMAAUD_STAT0);
substream = dw->substream;
if (stat & HDMI_IH_AHBDMAAUD_STAT0_DONE && substream) {
snd_pcm_period_elapsed(substream);
spin_lock(&dw->lock);
if (dw->substream)
dw_hdmi_start_dma(dw);
spin_unlock(&dw->lock);
}
return IRQ_HANDLED;
}
static const struct snd_pcm_hardware dw_hdmi_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE |
SNDRV_PCM_FMTBIT_S24_LE,
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.channels_min = 2,
.channels_max = 8,
.buffer_bytes_max = 1024 * 1024,
.period_bytes_min = 256,
.period_bytes_max = 8192, /* ERR004323: must limit to 8k */
.periods_min = 2,
.periods_max = 16,
.fifo_size = 0,
};
static int dw_hdmi_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dw_hdmi *dw = substream->private_data;
void __iomem *base = dw->data.base;
u8 *eld;
int ret;
runtime->hw = dw_hdmi_hw;
eld = dw->data.get_eld(dw->data.hdmi);
if (eld) {
ret = snd_pcm_hw_constraint_eld(runtime, eld);
if (ret < 0)
return ret;
}
ret = snd_pcm_limit_hw_rates(runtime);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (ret < 0)
return ret;
/* Limit the buffer size to the size of the preallocated buffer */
ret = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
0, substream->dma_buffer.bytes);
if (ret < 0)
return ret;
/* Clear FIFO */
writeb_relaxed(HDMI_AHB_DMA_CONF0_SW_FIFO_RST,
base + HDMI_AHB_DMA_CONF0);
/* Configure interrupt polarities */
writeb_relaxed(~0, base + HDMI_AHB_DMA_POL);
writeb_relaxed(~0, base + HDMI_AHB_DMA_BUFFPOL);
/* Keep interrupts masked, and clear any pending */
writeb_relaxed(~0, base + HDMI_AHB_DMA_MASK);
writeb_relaxed(~0, base + HDMI_IH_AHBDMAAUD_STAT0);
ret = request_irq(dw->data.irq, snd_dw_hdmi_irq, IRQF_SHARED,
"dw-hdmi-audio", dw);
if (ret)
return ret;
/* Un-mute done interrupt */
writeb_relaxed(HDMI_IH_MUTE_AHBDMAAUD_STAT0_ALL &
~HDMI_IH_MUTE_AHBDMAAUD_STAT0_DONE,
base + HDMI_IH_MUTE_AHBDMAAUD_STAT0);
return 0;
}
static int dw_hdmi_close(struct snd_pcm_substream *substream)
{
struct snd_dw_hdmi *dw = substream->private_data;
/* Mute all interrupts */
writeb_relaxed(HDMI_IH_MUTE_AHBDMAAUD_STAT0_ALL,
dw->data.base + HDMI_IH_MUTE_AHBDMAAUD_STAT0);
free_irq(dw->data.irq, dw);
return 0;
}
static int dw_hdmi_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_vmalloc_buffer(substream);
}
static int dw_hdmi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
/* Allocate the PCM runtime buffer, which is exposed to userspace. */
return snd_pcm_lib_alloc_vmalloc_buffer(substream,
params_buffer_bytes(params));
}
static int dw_hdmi_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dw_hdmi *dw = substream->private_data;
u8 threshold, conf0, conf1, ca;
/* Setup as per 3.0.5 FSL 4.1.0 BSP */
switch (dw->revision) {
case 0x0a:
conf0 = HDMI_AHB_DMA_CONF0_BURST_MODE |
HDMI_AHB_DMA_CONF0_INCR4;
if (runtime->channels == 2)
threshold = 126;
else
threshold = 124;
break;
case 0x1a:
conf0 = HDMI_AHB_DMA_CONF0_BURST_MODE |
HDMI_AHB_DMA_CONF0_INCR8;
threshold = 128;
break;
default:
/* NOTREACHED */
return -EINVAL;
}
dw_hdmi_set_sample_rate(dw->data.hdmi, runtime->rate);
/* Minimum number of bytes in the fifo. */
runtime->hw.fifo_size = threshold * 32;
conf0 |= HDMI_AHB_DMA_CONF0_EN_HLOCK;
conf1 = default_hdmi_channel_config[runtime->channels - 2].conf1;
ca = default_hdmi_channel_config[runtime->channels - 2].ca;
writeb_relaxed(threshold, dw->data.base + HDMI_AHB_DMA_THRSLD);
writeb_relaxed(conf0, dw->data.base + HDMI_AHB_DMA_CONF0);
writeb_relaxed(conf1, dw->data.base + HDMI_AHB_DMA_CONF1);
dw_hdmi_set_channel_count(dw->data.hdmi, runtime->channels);
dw_hdmi_set_channel_allocation(dw->data.hdmi, ca);
switch (runtime->format) {
case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
dw->reformat = dw_hdmi_reformat_iec958;
break;
case SNDRV_PCM_FORMAT_S24_LE:
dw_hdmi_create_cs(dw, runtime);
dw->reformat = dw_hdmi_reformat_s24;
break;
}
dw->iec_offset = 0;
dw->channels = runtime->channels;
dw->buf_src = runtime->dma_area;
dw->buf_dst = substream->dma_buffer.area;
dw->buf_addr = substream->dma_buffer.addr;
dw->buf_period = snd_pcm_lib_period_bytes(substream);
dw->buf_size = snd_pcm_lib_buffer_bytes(substream);
return 0;
}
static int dw_hdmi_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_dw_hdmi *dw = substream->private_data;
unsigned long flags;
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
spin_lock_irqsave(&dw->lock, flags);
dw->buf_offset = 0;
dw->substream = substream;
dw_hdmi_start_dma(dw);
dw_hdmi_audio_enable(dw->data.hdmi);
spin_unlock_irqrestore(&dw->lock, flags);
substream->runtime->delay = substream->runtime->period_size;
break;
case SNDRV_PCM_TRIGGER_STOP:
spin_lock_irqsave(&dw->lock, flags);
dw->substream = NULL;
dw_hdmi_stop_dma(dw);
dw_hdmi_audio_disable(dw->data.hdmi);
spin_unlock_irqrestore(&dw->lock, flags);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static snd_pcm_uframes_t dw_hdmi_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_dw_hdmi *dw = substream->private_data;
/*
* We are unable to report the exact hardware position as
* reading the 32-bit DMA position using 8-bit reads is racy.
*/
return bytes_to_frames(runtime, dw->buf_offset);
}
static const struct snd_pcm_ops snd_dw_hdmi_ops = {
.open = dw_hdmi_open,
.close = dw_hdmi_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = dw_hdmi_hw_params,
.hw_free = dw_hdmi_hw_free,
.prepare = dw_hdmi_prepare,
.trigger = dw_hdmi_trigger,
.pointer = dw_hdmi_pointer,
.page = snd_pcm_lib_get_vmalloc_page,
};
static int snd_dw_hdmi_probe(struct platform_device *pdev)
{
const struct dw_hdmi_audio_data *data = pdev->dev.platform_data;
struct device *dev = pdev->dev.parent;
struct snd_dw_hdmi *dw;
struct snd_card *card;
struct snd_pcm *pcm;
unsigned revision;
int ret;
writeb_relaxed(HDMI_IH_MUTE_AHBDMAAUD_STAT0_ALL,
data->base + HDMI_IH_MUTE_AHBDMAAUD_STAT0);
revision = readb_relaxed(data->base + HDMI_REVISION_ID);
if (revision != 0x0a && revision != 0x1a) {
dev_err(dev, "dw-hdmi-audio: unknown revision 0x%02x\n",
revision);
return -ENXIO;
}
ret = snd_card_new(dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
THIS_MODULE, sizeof(struct snd_dw_hdmi), &card);
if (ret < 0)
return ret;
strscpy(card->driver, DRIVER_NAME, sizeof(card->driver));
strscpy(card->shortname, "DW-HDMI", sizeof(card->shortname));
snprintf(card->longname, sizeof(card->longname),
"%s rev 0x%02x, irq %d", card->shortname, revision,
data->irq);
dw = card->private_data;
dw->card = card;
dw->data = *data;
dw->revision = revision;
spin_lock_init(&dw->lock);
ret = snd_pcm_new(card, "DW HDMI", 0, 1, 0, &pcm);
if (ret < 0)
goto err;
dw->pcm = pcm;
pcm->private_data = dw;
strscpy(pcm->name, DRIVER_NAME, sizeof(pcm->name));
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dw_hdmi_ops);
/*
* To support 8-channel 96kHz audio reliably, we need 512k
* to satisfy alsa with our restricted period (ERR004323).
*/
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
dev, 128 * 1024, 1024 * 1024);
ret = snd_card_register(card);
if (ret < 0)
goto err;
platform_set_drvdata(pdev, dw);
return 0;
err:
snd_card_free(card);
return ret;
}
static void snd_dw_hdmi_remove(struct platform_device *pdev)
{
struct snd_dw_hdmi *dw = platform_get_drvdata(pdev);
snd_card_free(dw->card);
}
#if defined(CONFIG_PM_SLEEP) && defined(IS_NOT_BROKEN)
/*
* This code is fine, but requires implementation in the dw_hdmi_trigger()
* method which is currently missing as I have no way to test this.
*/
static int snd_dw_hdmi_suspend(struct device *dev)
{
struct snd_dw_hdmi *dw = dev_get_drvdata(dev);
snd_power_change_state(dw->card, SNDRV_CTL_POWER_D3cold);
return 0;
}
static int snd_dw_hdmi_resume(struct device *dev)
{
struct snd_dw_hdmi *dw = dev_get_drvdata(dev);
snd_power_change_state(dw->card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(snd_dw_hdmi_pm, snd_dw_hdmi_suspend,
snd_dw_hdmi_resume);
#define PM_OPS &snd_dw_hdmi_pm
#else
#define PM_OPS NULL
#endif
static struct platform_driver snd_dw_hdmi_driver = {
.probe = snd_dw_hdmi_probe,
.remove_new = snd_dw_hdmi_remove,
.driver = {
.name = DRIVER_NAME,
.pm = PM_OPS,
},
};
module_platform_driver(snd_dw_hdmi_driver);
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("Synopsis Designware HDMI AHB ALSA interface");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-hdmi-ahb-audio.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Designware HDMI CEC driver
*
* Copyright (C) 2015-2017 Russell King.
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <drm/drm_edid.h>
#include <media/cec.h>
#include <media/cec-notifier.h>
#include "dw-hdmi-cec.h"
enum {
HDMI_IH_CEC_STAT0 = 0x0106,
HDMI_IH_MUTE_CEC_STAT0 = 0x0186,
HDMI_CEC_CTRL = 0x7d00,
CEC_CTRL_START = BIT(0),
CEC_CTRL_FRAME_TYP = 3 << 1,
CEC_CTRL_RETRY = 0 << 1,
CEC_CTRL_NORMAL = 1 << 1,
CEC_CTRL_IMMED = 2 << 1,
HDMI_CEC_STAT = 0x7d01,
CEC_STAT_DONE = BIT(0),
CEC_STAT_EOM = BIT(1),
CEC_STAT_NACK = BIT(2),
CEC_STAT_ARBLOST = BIT(3),
CEC_STAT_ERROR_INIT = BIT(4),
CEC_STAT_ERROR_FOLL = BIT(5),
CEC_STAT_WAKEUP = BIT(6),
HDMI_CEC_MASK = 0x7d02,
HDMI_CEC_POLARITY = 0x7d03,
HDMI_CEC_INT = 0x7d04,
HDMI_CEC_ADDR_L = 0x7d05,
HDMI_CEC_ADDR_H = 0x7d06,
HDMI_CEC_TX_CNT = 0x7d07,
HDMI_CEC_RX_CNT = 0x7d08,
HDMI_CEC_TX_DATA0 = 0x7d10,
HDMI_CEC_RX_DATA0 = 0x7d20,
HDMI_CEC_LOCK = 0x7d30,
HDMI_CEC_WKUPCTRL = 0x7d31,
};
struct dw_hdmi_cec {
struct dw_hdmi *hdmi;
const struct dw_hdmi_cec_ops *ops;
u32 addresses;
struct cec_adapter *adap;
struct cec_msg rx_msg;
unsigned int tx_status;
bool tx_done;
bool rx_done;
struct cec_notifier *notify;
int irq;
u8 regs_polarity;
u8 regs_mask;
u8 regs_mute_stat0;
};
static void dw_hdmi_write(struct dw_hdmi_cec *cec, u8 val, int offset)
{
cec->ops->write(cec->hdmi, val, offset);
}
static u8 dw_hdmi_read(struct dw_hdmi_cec *cec, int offset)
{
return cec->ops->read(cec->hdmi, offset);
}
static int dw_hdmi_cec_log_addr(struct cec_adapter *adap, u8 logical_addr)
{
struct dw_hdmi_cec *cec = cec_get_drvdata(adap);
if (logical_addr == CEC_LOG_ADDR_INVALID)
cec->addresses = 0;
else
cec->addresses |= BIT(logical_addr) | BIT(15);
dw_hdmi_write(cec, cec->addresses & 255, HDMI_CEC_ADDR_L);
dw_hdmi_write(cec, cec->addresses >> 8, HDMI_CEC_ADDR_H);
return 0;
}
static int dw_hdmi_cec_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct dw_hdmi_cec *cec = cec_get_drvdata(adap);
unsigned int i, ctrl;
switch (signal_free_time) {
case CEC_SIGNAL_FREE_TIME_RETRY:
ctrl = CEC_CTRL_RETRY;
break;
case CEC_SIGNAL_FREE_TIME_NEW_INITIATOR:
default:
ctrl = CEC_CTRL_NORMAL;
break;
case CEC_SIGNAL_FREE_TIME_NEXT_XFER:
ctrl = CEC_CTRL_IMMED;
break;
}
for (i = 0; i < msg->len; i++)
dw_hdmi_write(cec, msg->msg[i], HDMI_CEC_TX_DATA0 + i);
dw_hdmi_write(cec, msg->len, HDMI_CEC_TX_CNT);
dw_hdmi_write(cec, ctrl | CEC_CTRL_START, HDMI_CEC_CTRL);
return 0;
}
static irqreturn_t dw_hdmi_cec_hardirq(int irq, void *data)
{
struct cec_adapter *adap = data;
struct dw_hdmi_cec *cec = cec_get_drvdata(adap);
unsigned int stat = dw_hdmi_read(cec, HDMI_IH_CEC_STAT0);
irqreturn_t ret = IRQ_HANDLED;
if (stat == 0)
return IRQ_NONE;
dw_hdmi_write(cec, stat, HDMI_IH_CEC_STAT0);
if (stat & CEC_STAT_ERROR_INIT) {
cec->tx_status = CEC_TX_STATUS_ERROR;
cec->tx_done = true;
ret = IRQ_WAKE_THREAD;
} else if (stat & CEC_STAT_DONE) {
cec->tx_status = CEC_TX_STATUS_OK;
cec->tx_done = true;
ret = IRQ_WAKE_THREAD;
} else if (stat & CEC_STAT_NACK) {
cec->tx_status = CEC_TX_STATUS_NACK;
cec->tx_done = true;
ret = IRQ_WAKE_THREAD;
}
if (stat & CEC_STAT_EOM) {
unsigned int len, i;
len = dw_hdmi_read(cec, HDMI_CEC_RX_CNT);
if (len > sizeof(cec->rx_msg.msg))
len = sizeof(cec->rx_msg.msg);
for (i = 0; i < len; i++)
cec->rx_msg.msg[i] =
dw_hdmi_read(cec, HDMI_CEC_RX_DATA0 + i);
dw_hdmi_write(cec, 0, HDMI_CEC_LOCK);
cec->rx_msg.len = len;
smp_wmb();
cec->rx_done = true;
ret = IRQ_WAKE_THREAD;
}
return ret;
}
static irqreturn_t dw_hdmi_cec_thread(int irq, void *data)
{
struct cec_adapter *adap = data;
struct dw_hdmi_cec *cec = cec_get_drvdata(adap);
if (cec->tx_done) {
cec->tx_done = false;
cec_transmit_attempt_done(adap, cec->tx_status);
}
if (cec->rx_done) {
cec->rx_done = false;
smp_rmb();
cec_received_msg(adap, &cec->rx_msg);
}
return IRQ_HANDLED;
}
static int dw_hdmi_cec_enable(struct cec_adapter *adap, bool enable)
{
struct dw_hdmi_cec *cec = cec_get_drvdata(adap);
if (!enable) {
dw_hdmi_write(cec, ~0, HDMI_CEC_MASK);
dw_hdmi_write(cec, ~0, HDMI_IH_MUTE_CEC_STAT0);
dw_hdmi_write(cec, 0, HDMI_CEC_POLARITY);
cec->ops->disable(cec->hdmi);
} else {
unsigned int irqs;
dw_hdmi_write(cec, 0, HDMI_CEC_CTRL);
dw_hdmi_write(cec, ~0, HDMI_IH_CEC_STAT0);
dw_hdmi_write(cec, 0, HDMI_CEC_LOCK);
dw_hdmi_cec_log_addr(cec->adap, CEC_LOG_ADDR_INVALID);
cec->ops->enable(cec->hdmi);
irqs = CEC_STAT_ERROR_INIT | CEC_STAT_NACK | CEC_STAT_EOM |
CEC_STAT_DONE;
dw_hdmi_write(cec, irqs, HDMI_CEC_POLARITY);
dw_hdmi_write(cec, ~irqs, HDMI_CEC_MASK);
dw_hdmi_write(cec, ~irqs, HDMI_IH_MUTE_CEC_STAT0);
}
return 0;
}
static const struct cec_adap_ops dw_hdmi_cec_ops = {
.adap_enable = dw_hdmi_cec_enable,
.adap_log_addr = dw_hdmi_cec_log_addr,
.adap_transmit = dw_hdmi_cec_transmit,
};
static void dw_hdmi_cec_del(void *data)
{
struct dw_hdmi_cec *cec = data;
cec_delete_adapter(cec->adap);
}
static int dw_hdmi_cec_probe(struct platform_device *pdev)
{
struct dw_hdmi_cec_data *data = dev_get_platdata(&pdev->dev);
struct dw_hdmi_cec *cec;
int ret;
if (!data)
return -ENXIO;
/*
* Our device is just a convenience - we want to link to the real
* hardware device here, so that userspace can see the association
* between the HDMI hardware and its associated CEC chardev.
*/
cec = devm_kzalloc(&pdev->dev, sizeof(*cec), GFP_KERNEL);
if (!cec)
return -ENOMEM;
cec->irq = data->irq;
cec->ops = data->ops;
cec->hdmi = data->hdmi;
platform_set_drvdata(pdev, cec);
dw_hdmi_write(cec, 0, HDMI_CEC_TX_CNT);
dw_hdmi_write(cec, ~0, HDMI_CEC_MASK);
dw_hdmi_write(cec, ~0, HDMI_IH_MUTE_CEC_STAT0);
dw_hdmi_write(cec, 0, HDMI_CEC_POLARITY);
cec->adap = cec_allocate_adapter(&dw_hdmi_cec_ops, cec, "dw_hdmi",
CEC_CAP_DEFAULTS |
CEC_CAP_CONNECTOR_INFO,
CEC_MAX_LOG_ADDRS);
if (IS_ERR(cec->adap))
return PTR_ERR(cec->adap);
/* override the module pointer */
cec->adap->owner = THIS_MODULE;
ret = devm_add_action_or_reset(&pdev->dev, dw_hdmi_cec_del, cec);
if (ret)
return ret;
ret = devm_request_threaded_irq(&pdev->dev, cec->irq,
dw_hdmi_cec_hardirq,
dw_hdmi_cec_thread, IRQF_SHARED,
"dw-hdmi-cec", cec->adap);
if (ret < 0)
return ret;
cec->notify = cec_notifier_cec_adap_register(pdev->dev.parent,
NULL, cec->adap);
if (!cec->notify)
return -ENOMEM;
ret = cec_register_adapter(cec->adap, pdev->dev.parent);
if (ret < 0) {
cec_notifier_cec_adap_unregister(cec->notify, cec->adap);
return ret;
}
/*
* CEC documentation says we must not call cec_delete_adapter
* after a successful call to cec_register_adapter().
*/
devm_remove_action(&pdev->dev, dw_hdmi_cec_del, cec);
return 0;
}
static void dw_hdmi_cec_remove(struct platform_device *pdev)
{
struct dw_hdmi_cec *cec = platform_get_drvdata(pdev);
cec_notifier_cec_adap_unregister(cec->notify, cec->adap);
cec_unregister_adapter(cec->adap);
}
static int __maybe_unused dw_hdmi_cec_resume(struct device *dev)
{
struct dw_hdmi_cec *cec = dev_get_drvdata(dev);
/* Restore logical address */
dw_hdmi_write(cec, cec->addresses & 255, HDMI_CEC_ADDR_L);
dw_hdmi_write(cec, cec->addresses >> 8, HDMI_CEC_ADDR_H);
/* Restore interrupt status/mask registers */
dw_hdmi_write(cec, cec->regs_polarity, HDMI_CEC_POLARITY);
dw_hdmi_write(cec, cec->regs_mask, HDMI_CEC_MASK);
dw_hdmi_write(cec, cec->regs_mute_stat0, HDMI_IH_MUTE_CEC_STAT0);
return 0;
}
static int __maybe_unused dw_hdmi_cec_suspend(struct device *dev)
{
struct dw_hdmi_cec *cec = dev_get_drvdata(dev);
/* store interrupt status/mask registers */
cec->regs_polarity = dw_hdmi_read(cec, HDMI_CEC_POLARITY);
cec->regs_mask = dw_hdmi_read(cec, HDMI_CEC_MASK);
cec->regs_mute_stat0 = dw_hdmi_read(cec, HDMI_IH_MUTE_CEC_STAT0);
return 0;
}
static const struct dev_pm_ops dw_hdmi_cec_pm = {
SET_SYSTEM_SLEEP_PM_OPS(dw_hdmi_cec_suspend, dw_hdmi_cec_resume)
};
static struct platform_driver dw_hdmi_cec_driver = {
.probe = dw_hdmi_cec_probe,
.remove_new = dw_hdmi_cec_remove,
.driver = {
.name = "dw-hdmi-cec",
.pm = &dw_hdmi_cec_pm,
},
};
module_platform_driver(dw_hdmi_cec_driver);
MODULE_AUTHOR("Russell King <[email protected]>");
MODULE_DESCRIPTION("Synopsys Designware HDMI CEC driver for i.MX");
MODULE_LICENSE("GPL");
MODULE_ALIAS(PLATFORM_MODULE_PREFIX "dw-hdmi-cec");
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-hdmi-cec.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2016, Fuzhou Rockchip Electronics Co., Ltd
* Copyright (C) STMicroelectronics SA 2017
*
* Modified by Philippe Cornu <[email protected]>
* This generic Synopsys DesignWare MIPI DSI host driver is based on the
* Rockchip version from rockchip/dw-mipi-dsi.c with phy & bridge APIs.
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/debugfs.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <video/mipi_display.h>
#include <drm/bridge/dw_mipi_dsi.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_modes.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#define HWVER_131 0x31333100 /* IP version 1.31 */
#define DSI_VERSION 0x00
#define VERSION GENMASK(31, 8)
#define DSI_PWR_UP 0x04
#define RESET 0
#define POWERUP BIT(0)
#define DSI_CLKMGR_CFG 0x08
#define TO_CLK_DIVISION(div) (((div) & 0xff) << 8)
#define TX_ESC_CLK_DIVISION(div) ((div) & 0xff)
#define DSI_DPI_VCID 0x0c
#define DPI_VCID(vcid) ((vcid) & 0x3)
#define DSI_DPI_COLOR_CODING 0x10
#define LOOSELY18_EN BIT(8)
#define DPI_COLOR_CODING_16BIT_1 0x0
#define DPI_COLOR_CODING_16BIT_2 0x1
#define DPI_COLOR_CODING_16BIT_3 0x2
#define DPI_COLOR_CODING_18BIT_1 0x3
#define DPI_COLOR_CODING_18BIT_2 0x4
#define DPI_COLOR_CODING_24BIT 0x5
#define DSI_DPI_CFG_POL 0x14
#define COLORM_ACTIVE_LOW BIT(4)
#define SHUTD_ACTIVE_LOW BIT(3)
#define HSYNC_ACTIVE_LOW BIT(2)
#define VSYNC_ACTIVE_LOW BIT(1)
#define DATAEN_ACTIVE_LOW BIT(0)
#define DSI_DPI_LP_CMD_TIM 0x18
#define OUTVACT_LPCMD_TIME(p) (((p) & 0xff) << 16)
#define INVACT_LPCMD_TIME(p) ((p) & 0xff)
#define DSI_DBI_VCID 0x1c
#define DSI_DBI_CFG 0x20
#define DSI_DBI_PARTITIONING_EN 0x24
#define DSI_DBI_CMDSIZE 0x28
#define DSI_PCKHDL_CFG 0x2c
#define CRC_RX_EN BIT(4)
#define ECC_RX_EN BIT(3)
#define BTA_EN BIT(2)
#define EOTP_RX_EN BIT(1)
#define EOTP_TX_EN BIT(0)
#define DSI_GEN_VCID 0x30
#define DSI_MODE_CFG 0x34
#define ENABLE_VIDEO_MODE 0
#define ENABLE_CMD_MODE BIT(0)
#define DSI_VID_MODE_CFG 0x38
#define ENABLE_LOW_POWER (0x3f << 8)
#define ENABLE_LOW_POWER_MASK (0x3f << 8)
#define VID_MODE_TYPE_NON_BURST_SYNC_PULSES 0x0
#define VID_MODE_TYPE_NON_BURST_SYNC_EVENTS 0x1
#define VID_MODE_TYPE_BURST 0x2
#define VID_MODE_TYPE_MASK 0x3
#define ENABLE_LOW_POWER_CMD BIT(15)
#define VID_MODE_VPG_ENABLE BIT(16)
#define VID_MODE_VPG_MODE BIT(20)
#define VID_MODE_VPG_HORIZONTAL BIT(24)
#define DSI_VID_PKT_SIZE 0x3c
#define VID_PKT_SIZE(p) ((p) & 0x3fff)
#define DSI_VID_NUM_CHUNKS 0x40
#define VID_NUM_CHUNKS(c) ((c) & 0x1fff)
#define DSI_VID_NULL_SIZE 0x44
#define VID_NULL_SIZE(b) ((b) & 0x1fff)
#define DSI_VID_HSA_TIME 0x48
#define DSI_VID_HBP_TIME 0x4c
#define DSI_VID_HLINE_TIME 0x50
#define DSI_VID_VSA_LINES 0x54
#define DSI_VID_VBP_LINES 0x58
#define DSI_VID_VFP_LINES 0x5c
#define DSI_VID_VACTIVE_LINES 0x60
#define DSI_EDPI_CMD_SIZE 0x64
#define DSI_CMD_MODE_CFG 0x68
#define MAX_RD_PKT_SIZE_LP BIT(24)
#define DCS_LW_TX_LP BIT(19)
#define DCS_SR_0P_TX_LP BIT(18)
#define DCS_SW_1P_TX_LP BIT(17)
#define DCS_SW_0P_TX_LP BIT(16)
#define GEN_LW_TX_LP BIT(14)
#define GEN_SR_2P_TX_LP BIT(13)
#define GEN_SR_1P_TX_LP BIT(12)
#define GEN_SR_0P_TX_LP BIT(11)
#define GEN_SW_2P_TX_LP BIT(10)
#define GEN_SW_1P_TX_LP BIT(9)
#define GEN_SW_0P_TX_LP BIT(8)
#define ACK_RQST_EN BIT(1)
#define TEAR_FX_EN BIT(0)
#define CMD_MODE_ALL_LP (MAX_RD_PKT_SIZE_LP | \
DCS_LW_TX_LP | \
DCS_SR_0P_TX_LP | \
DCS_SW_1P_TX_LP | \
DCS_SW_0P_TX_LP | \
GEN_LW_TX_LP | \
GEN_SR_2P_TX_LP | \
GEN_SR_1P_TX_LP | \
GEN_SR_0P_TX_LP | \
GEN_SW_2P_TX_LP | \
GEN_SW_1P_TX_LP | \
GEN_SW_0P_TX_LP)
#define DSI_GEN_HDR 0x6c
#define DSI_GEN_PLD_DATA 0x70
#define DSI_CMD_PKT_STATUS 0x74
#define GEN_RD_CMD_BUSY BIT(6)
#define GEN_PLD_R_FULL BIT(5)
#define GEN_PLD_R_EMPTY BIT(4)
#define GEN_PLD_W_FULL BIT(3)
#define GEN_PLD_W_EMPTY BIT(2)
#define GEN_CMD_FULL BIT(1)
#define GEN_CMD_EMPTY BIT(0)
#define DSI_TO_CNT_CFG 0x78
#define HSTX_TO_CNT(p) (((p) & 0xffff) << 16)
#define LPRX_TO_CNT(p) ((p) & 0xffff)
#define DSI_HS_RD_TO_CNT 0x7c
#define DSI_LP_RD_TO_CNT 0x80
#define DSI_HS_WR_TO_CNT 0x84
#define DSI_LP_WR_TO_CNT 0x88
#define DSI_BTA_TO_CNT 0x8c
#define DSI_LPCLK_CTRL 0x94
#define AUTO_CLKLANE_CTRL BIT(1)
#define PHY_TXREQUESTCLKHS BIT(0)
#define DSI_PHY_TMR_LPCLK_CFG 0x98
#define PHY_CLKHS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16)
#define PHY_CLKLP2HS_TIME(lbcc) ((lbcc) & 0x3ff)
#define DSI_PHY_TMR_CFG 0x9c
#define PHY_HS2LP_TIME(lbcc) (((lbcc) & 0xff) << 24)
#define PHY_LP2HS_TIME(lbcc) (((lbcc) & 0xff) << 16)
#define MAX_RD_TIME(lbcc) ((lbcc) & 0x7fff)
#define PHY_HS2LP_TIME_V131(lbcc) (((lbcc) & 0x3ff) << 16)
#define PHY_LP2HS_TIME_V131(lbcc) ((lbcc) & 0x3ff)
#define DSI_PHY_RSTZ 0xa0
#define PHY_DISFORCEPLL 0
#define PHY_ENFORCEPLL BIT(3)
#define PHY_DISABLECLK 0
#define PHY_ENABLECLK BIT(2)
#define PHY_RSTZ 0
#define PHY_UNRSTZ BIT(1)
#define PHY_SHUTDOWNZ 0
#define PHY_UNSHUTDOWNZ BIT(0)
#define DSI_PHY_IF_CFG 0xa4
#define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8)
#define N_LANES(n) (((n) - 1) & 0x3)
#define DSI_PHY_ULPS_CTRL 0xa8
#define DSI_PHY_TX_TRIGGERS 0xac
#define DSI_PHY_STATUS 0xb0
#define PHY_STOP_STATE_CLK_LANE BIT(2)
#define PHY_LOCK BIT(0)
#define DSI_PHY_TST_CTRL0 0xb4
#define PHY_TESTCLK BIT(1)
#define PHY_UNTESTCLK 0
#define PHY_TESTCLR BIT(0)
#define PHY_UNTESTCLR 0
#define DSI_PHY_TST_CTRL1 0xb8
#define PHY_TESTEN BIT(16)
#define PHY_UNTESTEN 0
#define PHY_TESTDOUT(n) (((n) & 0xff) << 8)
#define PHY_TESTDIN(n) ((n) & 0xff)
#define DSI_INT_ST0 0xbc
#define DSI_INT_ST1 0xc0
#define DSI_INT_MSK0 0xc4
#define DSI_INT_MSK1 0xc8
#define DSI_PHY_TMR_RD_CFG 0xf4
#define MAX_RD_TIME_V131(lbcc) ((lbcc) & 0x7fff)
#define PHY_STATUS_TIMEOUT_US 10000
#define CMD_PKT_STATUS_TIMEOUT_US 20000
#ifdef CONFIG_DEBUG_FS
#define VPG_DEFS(name, dsi) \
((void __force *)&((*dsi).vpg_defs.name))
#define REGISTER(name, mask, dsi) \
{ #name, VPG_DEFS(name, dsi), mask, dsi }
struct debugfs_entries {
const char *name;
bool *reg;
u32 mask;
struct dw_mipi_dsi *dsi;
};
#endif /* CONFIG_DEBUG_FS */
struct dw_mipi_dsi {
struct drm_bridge bridge;
struct mipi_dsi_host dsi_host;
struct drm_bridge *panel_bridge;
struct device *dev;
void __iomem *base;
struct clk *pclk;
unsigned int lane_mbps; /* per lane */
u32 channel;
u32 lanes;
u32 format;
unsigned long mode_flags;
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs;
struct debugfs_entries *debugfs_vpg;
struct {
bool vpg;
bool vpg_horizontal;
bool vpg_ber_pattern;
} vpg_defs;
#endif /* CONFIG_DEBUG_FS */
struct dw_mipi_dsi *master; /* dual-dsi master ptr */
struct dw_mipi_dsi *slave; /* dual-dsi slave ptr */
struct drm_display_mode mode;
const struct dw_mipi_dsi_plat_data *plat_data;
};
/*
* Check if either a link to a master or slave is present
*/
static inline bool dw_mipi_is_dual_mode(struct dw_mipi_dsi *dsi)
{
return dsi->slave || dsi->master;
}
/*
* The controller should generate 2 frames before
* preparing the peripheral.
*/
static void dw_mipi_dsi_wait_for_two_frames(const struct drm_display_mode *mode)
{
int refresh, two_frames;
refresh = drm_mode_vrefresh(mode);
two_frames = DIV_ROUND_UP(MSEC_PER_SEC, refresh) * 2;
msleep(two_frames);
}
static inline struct dw_mipi_dsi *host_to_dsi(struct mipi_dsi_host *host)
{
return container_of(host, struct dw_mipi_dsi, dsi_host);
}
static inline struct dw_mipi_dsi *bridge_to_dsi(struct drm_bridge *bridge)
{
return container_of(bridge, struct dw_mipi_dsi, bridge);
}
static inline void dsi_write(struct dw_mipi_dsi *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_mipi_dsi *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static int dw_mipi_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct dw_mipi_dsi *dsi = host_to_dsi(host);
const struct dw_mipi_dsi_plat_data *pdata = dsi->plat_data;
struct drm_bridge *bridge;
int ret;
if (device->lanes > dsi->plat_data->max_data_lanes) {
dev_err(dsi->dev, "the number of data lanes(%u) is too many\n",
device->lanes);
return -EINVAL;
}
dsi->lanes = device->lanes;
dsi->channel = device->channel;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node, 1, 0);
if (IS_ERR(bridge))
return PTR_ERR(bridge);
bridge->pre_enable_prev_first = true;
dsi->panel_bridge = bridge;
drm_bridge_add(&dsi->bridge);
if (pdata->host_ops && pdata->host_ops->attach) {
ret = pdata->host_ops->attach(pdata->priv_data, device);
if (ret < 0)
return ret;
}
return 0;
}
static int dw_mipi_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct dw_mipi_dsi *dsi = host_to_dsi(host);
const struct dw_mipi_dsi_plat_data *pdata = dsi->plat_data;
int ret;
if (pdata->host_ops && pdata->host_ops->detach) {
ret = pdata->host_ops->detach(pdata->priv_data, device);
if (ret < 0)
return ret;
}
drm_of_panel_bridge_remove(host->dev->of_node, 1, 0);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static void dw_mipi_message_config(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM;
u32 val = 0;
/*
* TODO dw drv improvements
* largest packet sizes during hfp or during vsa/vpb/vfp
* should be computed according to byte lane, lane number and only
* if sending lp cmds in high speed is enable (PHY_TXREQUESTCLKHS)
*/
dsi_write(dsi, DSI_DPI_LP_CMD_TIM, OUTVACT_LPCMD_TIME(16)
| INVACT_LPCMD_TIME(4));
if (msg->flags & MIPI_DSI_MSG_REQ_ACK)
val |= ACK_RQST_EN;
if (lpm)
val |= CMD_MODE_ALL_LP;
dsi_write(dsi, DSI_CMD_MODE_CFG, val);
val = dsi_read(dsi, DSI_VID_MODE_CFG);
if (lpm)
val |= ENABLE_LOW_POWER_CMD;
else
val &= ~ENABLE_LOW_POWER_CMD;
dsi_write(dsi, DSI_VID_MODE_CFG, val);
}
static int dw_mipi_dsi_gen_pkt_hdr_write(struct dw_mipi_dsi *dsi, u32 hdr_val)
{
int ret;
u32 val, mask;
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_CMD_FULL), 1000,
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dev, "failed to get available command FIFO\n");
return ret;
}
dsi_write(dsi, DSI_GEN_HDR, hdr_val);
mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY;
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, (val & mask) == mask,
1000, CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dev, "failed to write command FIFO\n");
return ret;
}
return 0;
}
static int dw_mipi_dsi_write(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_packet *packet)
{
const u8 *tx_buf = packet->payload;
int len = packet->payload_length, pld_data_bytes = sizeof(u32), ret;
__le32 word;
u32 val;
while (len) {
if (len < pld_data_bytes) {
word = 0;
memcpy(&word, tx_buf, len);
dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word));
len = 0;
} else {
memcpy(&word, tx_buf, pld_data_bytes);
dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word));
tx_buf += pld_data_bytes;
len -= pld_data_bytes;
}
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_PLD_W_FULL), 1000,
CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dev,
"failed to get available write payload FIFO\n");
return ret;
}
}
word = 0;
memcpy(&word, packet->header, sizeof(packet->header));
return dw_mipi_dsi_gen_pkt_hdr_write(dsi, le32_to_cpu(word));
}
static int dw_mipi_dsi_read(struct dw_mipi_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
int i, j, ret, len = msg->rx_len;
u8 *buf = msg->rx_buf;
u32 val;
/* Wait end of the read operation */
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_RD_CMD_BUSY),
1000, CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dev, "Timeout during read operation\n");
return ret;
}
for (i = 0; i < len; i += 4) {
/* Read fifo must not be empty before all bytes are read */
ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_PLD_R_EMPTY),
1000, CMD_PKT_STATUS_TIMEOUT_US);
if (ret) {
dev_err(dsi->dev, "Read payload FIFO is empty\n");
return ret;
}
val = dsi_read(dsi, DSI_GEN_PLD_DATA);
for (j = 0; j < 4 && j + i < len; j++)
buf[i + j] = val >> (8 * j);
}
return ret;
}
static ssize_t dw_mipi_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct dw_mipi_dsi *dsi = host_to_dsi(host);
struct mipi_dsi_packet packet;
int ret, nb_bytes;
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
dev_err(dsi->dev, "failed to create packet: %d\n", ret);
return ret;
}
dw_mipi_message_config(dsi, msg);
if (dsi->slave)
dw_mipi_message_config(dsi->slave, msg);
ret = dw_mipi_dsi_write(dsi, &packet);
if (ret)
return ret;
if (dsi->slave) {
ret = dw_mipi_dsi_write(dsi->slave, &packet);
if (ret)
return ret;
}
if (msg->rx_buf && msg->rx_len) {
ret = dw_mipi_dsi_read(dsi, msg);
if (ret)
return ret;
nb_bytes = msg->rx_len;
} else {
nb_bytes = packet.size;
}
return nb_bytes;
}
static const struct mipi_dsi_host_ops dw_mipi_dsi_host_ops = {
.attach = dw_mipi_dsi_host_attach,
.detach = dw_mipi_dsi_host_detach,
.transfer = dw_mipi_dsi_host_transfer,
};
static void dw_mipi_dsi_video_mode_config(struct dw_mipi_dsi *dsi)
{
u32 val;
/*
* TODO dw drv improvements
* enabling low power is panel-dependent, we should use the
* panel configuration here...
*/
val = ENABLE_LOW_POWER;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
val |= VID_MODE_TYPE_BURST;
else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES;
else
val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS;
#ifdef CONFIG_DEBUG_FS
if (dsi->vpg_defs.vpg) {
val |= VID_MODE_VPG_ENABLE;
val |= dsi->vpg_defs.vpg_horizontal ?
VID_MODE_VPG_HORIZONTAL : 0;
val |= dsi->vpg_defs.vpg_ber_pattern ? VID_MODE_VPG_MODE : 0;
}
#endif /* CONFIG_DEBUG_FS */
dsi_write(dsi, DSI_VID_MODE_CFG, val);
}
static void dw_mipi_dsi_set_mode(struct dw_mipi_dsi *dsi,
unsigned long mode_flags)
{
u32 val;
dsi_write(dsi, DSI_PWR_UP, RESET);
if (mode_flags & MIPI_DSI_MODE_VIDEO) {
dsi_write(dsi, DSI_MODE_CFG, ENABLE_VIDEO_MODE);
dw_mipi_dsi_video_mode_config(dsi);
} else {
dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE);
}
val = PHY_TXREQUESTCLKHS;
if (dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
val |= AUTO_CLKLANE_CTRL;
dsi_write(dsi, DSI_LPCLK_CTRL, val);
dsi_write(dsi, DSI_PWR_UP, POWERUP);
}
static void dw_mipi_dsi_disable(struct dw_mipi_dsi *dsi)
{
dsi_write(dsi, DSI_PWR_UP, RESET);
dsi_write(dsi, DSI_PHY_RSTZ, PHY_RSTZ);
}
static void dw_mipi_dsi_init(struct dw_mipi_dsi *dsi)
{
const struct dw_mipi_dsi_phy_ops *phy_ops = dsi->plat_data->phy_ops;
unsigned int esc_rate; /* in MHz */
u32 esc_clk_division;
int ret;
/*
* The maximum permitted escape clock is 20MHz and it is derived from
* lanebyteclk, which is running at "lane_mbps / 8".
*/
if (phy_ops->get_esc_clk_rate) {
ret = phy_ops->get_esc_clk_rate(dsi->plat_data->priv_data,
&esc_rate);
if (ret)
DRM_DEBUG_DRIVER("Phy get_esc_clk_rate() failed\n");
} else
esc_rate = 20; /* Default to 20MHz */
/*
* We want :
* (lane_mbps >> 3) / esc_clk_division < X
* which is:
* (lane_mbps >> 3) / X > esc_clk_division
*/
esc_clk_division = (dsi->lane_mbps >> 3) / esc_rate + 1;
dsi_write(dsi, DSI_PWR_UP, RESET);
/*
* TODO dw drv improvements
* timeout clock division should be computed with the
* high speed transmission counter timeout and byte lane...
*/
dsi_write(dsi, DSI_CLKMGR_CFG, TO_CLK_DIVISION(10) |
TX_ESC_CLK_DIVISION(esc_clk_division));
}
static void dw_mipi_dsi_dpi_config(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
u32 val = 0, color = 0;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
color = DPI_COLOR_CODING_24BIT;
break;
case MIPI_DSI_FMT_RGB666:
color = DPI_COLOR_CODING_18BIT_2 | LOOSELY18_EN;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
color = DPI_COLOR_CODING_18BIT_1;
break;
case MIPI_DSI_FMT_RGB565:
color = DPI_COLOR_CODING_16BIT_1;
break;
}
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
val |= VSYNC_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
val |= HSYNC_ACTIVE_LOW;
dsi_write(dsi, DSI_DPI_VCID, DPI_VCID(dsi->channel));
dsi_write(dsi, DSI_DPI_COLOR_CODING, color);
dsi_write(dsi, DSI_DPI_CFG_POL, val);
}
static void dw_mipi_dsi_packet_handler_config(struct dw_mipi_dsi *dsi)
{
dsi_write(dsi, DSI_PCKHDL_CFG, CRC_RX_EN | ECC_RX_EN | BTA_EN);
}
static void dw_mipi_dsi_video_packet_config(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
/*
* TODO dw drv improvements
* only burst mode is supported here. For non-burst video modes,
* we should compute DSI_VID_PKT_SIZE, DSI_VCCR.NUMC &
* DSI_VNPCR.NPSIZE... especially because this driver supports
* non-burst video modes, see dw_mipi_dsi_video_mode_config()...
*/
dsi_write(dsi, DSI_VID_PKT_SIZE,
dw_mipi_is_dual_mode(dsi) ?
VID_PKT_SIZE(mode->hdisplay / 2) :
VID_PKT_SIZE(mode->hdisplay));
}
static void dw_mipi_dsi_command_mode_config(struct dw_mipi_dsi *dsi)
{
/*
* TODO dw drv improvements
* compute high speed transmission counter timeout according
* to the timeout clock division (TO_CLK_DIVISION) and byte lane...
*/
dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000));
/*
* TODO dw drv improvements
* the Bus-Turn-Around Timeout Counter should be computed
* according to byte lane...
*/
dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00);
dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE);
}
/* Get lane byte clock cycles. */
static u32 dw_mipi_dsi_get_hcomponent_lbcc(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *mode,
u32 hcomponent)
{
u32 frac, lbcc;
lbcc = hcomponent * dsi->lane_mbps * MSEC_PER_SEC / 8;
frac = lbcc % mode->clock;
lbcc = lbcc / mode->clock;
if (frac)
lbcc++;
return lbcc;
}
static void dw_mipi_dsi_line_timer_config(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
u32 htotal, hsa, hbp, lbcc;
htotal = mode->htotal;
hsa = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
/*
* TODO dw drv improvements
* computations below may be improved...
*/
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, htotal);
dsi_write(dsi, DSI_VID_HLINE_TIME, lbcc);
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hsa);
dsi_write(dsi, DSI_VID_HSA_TIME, lbcc);
lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hbp);
dsi_write(dsi, DSI_VID_HBP_TIME, lbcc);
}
static void dw_mipi_dsi_vertical_timing_config(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
u32 vactive, vsa, vfp, vbp;
vactive = mode->vdisplay;
vsa = mode->vsync_end - mode->vsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
dsi_write(dsi, DSI_VID_VACTIVE_LINES, vactive);
dsi_write(dsi, DSI_VID_VSA_LINES, vsa);
dsi_write(dsi, DSI_VID_VFP_LINES, vfp);
dsi_write(dsi, DSI_VID_VBP_LINES, vbp);
}
static void dw_mipi_dsi_dphy_timing_config(struct dw_mipi_dsi *dsi)
{
const struct dw_mipi_dsi_phy_ops *phy_ops = dsi->plat_data->phy_ops;
struct dw_mipi_dsi_dphy_timing timing;
u32 hw_version;
int ret;
ret = phy_ops->get_timing(dsi->plat_data->priv_data,
dsi->lane_mbps, &timing);
if (ret)
DRM_DEV_ERROR(dsi->dev, "Retrieving phy timings failed\n");
/*
* TODO dw drv improvements
* data & clock lane timers should be computed according to panel
* blankings and to the automatic clock lane control mode...
* note: DSI_PHY_TMR_CFG.MAX_RD_TIME should be in line with
* DSI_CMD_MODE_CFG.MAX_RD_PKT_SIZE_LP (see CMD_MODE_ALL_LP)
*/
hw_version = dsi_read(dsi, DSI_VERSION) & VERSION;
if (hw_version >= HWVER_131) {
dsi_write(dsi, DSI_PHY_TMR_CFG,
PHY_HS2LP_TIME_V131(timing.data_hs2lp) |
PHY_LP2HS_TIME_V131(timing.data_lp2hs));
dsi_write(dsi, DSI_PHY_TMR_RD_CFG, MAX_RD_TIME_V131(10000));
} else {
dsi_write(dsi, DSI_PHY_TMR_CFG,
PHY_HS2LP_TIME(timing.data_hs2lp) |
PHY_LP2HS_TIME(timing.data_lp2hs) |
MAX_RD_TIME(10000));
}
dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG,
PHY_CLKHS2LP_TIME(timing.clk_hs2lp) |
PHY_CLKLP2HS_TIME(timing.clk_lp2hs));
}
static void dw_mipi_dsi_dphy_interface_config(struct dw_mipi_dsi *dsi)
{
/*
* TODO dw drv improvements
* stop wait time should be the maximum between host dsi
* and panel stop wait times
*/
dsi_write(dsi, DSI_PHY_IF_CFG, PHY_STOP_WAIT_TIME(0x20) |
N_LANES(dsi->lanes));
}
static void dw_mipi_dsi_dphy_init(struct dw_mipi_dsi *dsi)
{
/* Clear PHY state */
dsi_write(dsi, DSI_PHY_RSTZ, PHY_DISFORCEPLL | PHY_DISABLECLK
| PHY_RSTZ | PHY_SHUTDOWNZ);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLR);
}
static void dw_mipi_dsi_dphy_enable(struct dw_mipi_dsi *dsi)
{
u32 val;
int ret;
dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK |
PHY_UNRSTZ | PHY_UNSHUTDOWNZ);
ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val,
val & PHY_LOCK, 1000, PHY_STATUS_TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("failed to wait phy lock state\n");
ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS,
val, val & PHY_STOP_STATE_CLK_LANE, 1000,
PHY_STATUS_TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("failed to wait phy clk lane stop state\n");
}
static void dw_mipi_dsi_clear_err(struct dw_mipi_dsi *dsi)
{
dsi_read(dsi, DSI_INT_ST0);
dsi_read(dsi, DSI_INT_ST1);
dsi_write(dsi, DSI_INT_MSK0, 0);
dsi_write(dsi, DSI_INT_MSK1, 0);
}
static void dw_mipi_dsi_bridge_post_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
const struct dw_mipi_dsi_phy_ops *phy_ops = dsi->plat_data->phy_ops;
/*
* Switch to command mode before panel-bridge post_disable &
* panel unprepare.
* Note: panel-bridge disable & panel disable has been called
* before by the drm framework.
*/
dw_mipi_dsi_set_mode(dsi, 0);
if (phy_ops->power_off)
phy_ops->power_off(dsi->plat_data->priv_data);
if (dsi->slave) {
dw_mipi_dsi_disable(dsi->slave);
clk_disable_unprepare(dsi->slave->pclk);
pm_runtime_put(dsi->slave->dev);
}
dw_mipi_dsi_disable(dsi);
clk_disable_unprepare(dsi->pclk);
pm_runtime_put(dsi->dev);
}
static unsigned int dw_mipi_dsi_get_lanes(struct dw_mipi_dsi *dsi)
{
/* this instance is the slave, so add the master's lanes */
if (dsi->master)
return dsi->master->lanes + dsi->lanes;
/* this instance is the master, so add the slave's lanes */
if (dsi->slave)
return dsi->lanes + dsi->slave->lanes;
/* single-dsi, so no other instance to consider */
return dsi->lanes;
}
static void dw_mipi_dsi_mode_set(struct dw_mipi_dsi *dsi,
const struct drm_display_mode *adjusted_mode)
{
const struct dw_mipi_dsi_phy_ops *phy_ops = dsi->plat_data->phy_ops;
void *priv_data = dsi->plat_data->priv_data;
int ret;
u32 lanes = dw_mipi_dsi_get_lanes(dsi);
clk_prepare_enable(dsi->pclk);
ret = phy_ops->get_lane_mbps(priv_data, adjusted_mode, dsi->mode_flags,
lanes, dsi->format, &dsi->lane_mbps);
if (ret)
DRM_DEBUG_DRIVER("Phy get_lane_mbps() failed\n");
pm_runtime_get_sync(dsi->dev);
dw_mipi_dsi_init(dsi);
dw_mipi_dsi_dpi_config(dsi, adjusted_mode);
dw_mipi_dsi_packet_handler_config(dsi);
dw_mipi_dsi_video_mode_config(dsi);
dw_mipi_dsi_video_packet_config(dsi, adjusted_mode);
dw_mipi_dsi_command_mode_config(dsi);
dw_mipi_dsi_line_timer_config(dsi, adjusted_mode);
dw_mipi_dsi_vertical_timing_config(dsi, adjusted_mode);
dw_mipi_dsi_dphy_init(dsi);
dw_mipi_dsi_dphy_timing_config(dsi);
dw_mipi_dsi_dphy_interface_config(dsi);
dw_mipi_dsi_clear_err(dsi);
ret = phy_ops->init(priv_data);
if (ret)
DRM_DEBUG_DRIVER("Phy init() failed\n");
dw_mipi_dsi_dphy_enable(dsi);
dw_mipi_dsi_wait_for_two_frames(adjusted_mode);
/* Switch to cmd mode for panel-bridge pre_enable & panel prepare */
dw_mipi_dsi_set_mode(dsi, 0);
if (phy_ops->power_on)
phy_ops->power_on(dsi->plat_data->priv_data);
}
static void dw_mipi_dsi_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
/* Power up the dsi ctl into a command mode */
dw_mipi_dsi_mode_set(dsi, &dsi->mode);
if (dsi->slave)
dw_mipi_dsi_mode_set(dsi->slave, &dsi->mode);
}
static void dw_mipi_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
/* Store the display mode for later use in pre_enable callback */
drm_mode_copy(&dsi->mode, adjusted_mode);
}
static void dw_mipi_dsi_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
/* Switch to video mode for panel-bridge enable & panel enable */
dw_mipi_dsi_set_mode(dsi, MIPI_DSI_MODE_VIDEO);
if (dsi->slave)
dw_mipi_dsi_set_mode(dsi->slave, MIPI_DSI_MODE_VIDEO);
}
static enum drm_mode_status
dw_mipi_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
const struct dw_mipi_dsi_plat_data *pdata = dsi->plat_data;
enum drm_mode_status mode_status = MODE_OK;
if (pdata->mode_valid)
mode_status = pdata->mode_valid(pdata->priv_data, mode,
dsi->mode_flags,
dw_mipi_dsi_get_lanes(dsi),
dsi->format);
return mode_status;
}
static int dw_mipi_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct dw_mipi_dsi *dsi = bridge_to_dsi(bridge);
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found\n");
return -ENODEV;
}
/* Set the encoder type as caller does not know it */
bridge->encoder->encoder_type = DRM_MODE_ENCODER_DSI;
/* Attach the panel-bridge to the dsi bridge */
return drm_bridge_attach(bridge->encoder, dsi->panel_bridge, bridge,
flags);
}
static const struct drm_bridge_funcs dw_mipi_dsi_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_pre_enable = dw_mipi_dsi_bridge_atomic_pre_enable,
.atomic_enable = dw_mipi_dsi_bridge_atomic_enable,
.atomic_post_disable = dw_mipi_dsi_bridge_post_atomic_disable,
.mode_set = dw_mipi_dsi_bridge_mode_set,
.mode_valid = dw_mipi_dsi_bridge_mode_valid,
.attach = dw_mipi_dsi_bridge_attach,
};
#ifdef CONFIG_DEBUG_FS
static int dw_mipi_dsi_debugfs_write(void *data, u64 val)
{
struct debugfs_entries *vpg = data;
struct dw_mipi_dsi *dsi;
u32 mode_cfg;
if (!vpg)
return -ENODEV;
dsi = vpg->dsi;
*vpg->reg = (bool)val;
mode_cfg = dsi_read(dsi, DSI_VID_MODE_CFG);
if (*vpg->reg)
mode_cfg |= vpg->mask;
else
mode_cfg &= ~vpg->mask;
dsi_write(dsi, DSI_VID_MODE_CFG, mode_cfg);
return 0;
}
static int dw_mipi_dsi_debugfs_show(void *data, u64 *val)
{
struct debugfs_entries *vpg = data;
if (!vpg)
return -ENODEV;
*val = *vpg->reg;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_x32, dw_mipi_dsi_debugfs_show,
dw_mipi_dsi_debugfs_write, "%llu\n");
static void debugfs_create_files(void *data)
{
struct dw_mipi_dsi *dsi = data;
struct debugfs_entries debugfs[] = {
REGISTER(vpg, VID_MODE_VPG_ENABLE, dsi),
REGISTER(vpg_horizontal, VID_MODE_VPG_HORIZONTAL, dsi),
REGISTER(vpg_ber_pattern, VID_MODE_VPG_MODE, dsi),
};
int i;
dsi->debugfs_vpg = kmemdup(debugfs, sizeof(debugfs), GFP_KERNEL);
if (!dsi->debugfs_vpg)
return;
for (i = 0; i < ARRAY_SIZE(debugfs); i++)
debugfs_create_file(dsi->debugfs_vpg[i].name, 0644,
dsi->debugfs, &dsi->debugfs_vpg[i],
&fops_x32);
}
static void dw_mipi_dsi_debugfs_init(struct dw_mipi_dsi *dsi)
{
dsi->debugfs = debugfs_create_dir(dev_name(dsi->dev), NULL);
if (IS_ERR(dsi->debugfs)) {
dev_err(dsi->dev, "failed to create debugfs root\n");
return;
}
debugfs_create_files(dsi);
}
static void dw_mipi_dsi_debugfs_remove(struct dw_mipi_dsi *dsi)
{
debugfs_remove_recursive(dsi->debugfs);
kfree(dsi->debugfs_vpg);
}
#else
static void dw_mipi_dsi_debugfs_init(struct dw_mipi_dsi *dsi) { }
static void dw_mipi_dsi_debugfs_remove(struct dw_mipi_dsi *dsi) { }
#endif /* CONFIG_DEBUG_FS */
static struct dw_mipi_dsi *
__dw_mipi_dsi_probe(struct platform_device *pdev,
const struct dw_mipi_dsi_plat_data *plat_data)
{
struct device *dev = &pdev->dev;
struct reset_control *apb_rst;
struct dw_mipi_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return ERR_PTR(-ENOMEM);
dsi->dev = dev;
dsi->plat_data = plat_data;
if (!plat_data->phy_ops->init || !plat_data->phy_ops->get_lane_mbps ||
!plat_data->phy_ops->get_timing) {
DRM_ERROR("Phy not properly configured\n");
return ERR_PTR(-ENODEV);
}
if (!plat_data->base) {
dsi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dsi->base))
return ERR_PTR(-ENODEV);
} else {
dsi->base = plat_data->base;
}
dsi->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(dsi->pclk)) {
ret = PTR_ERR(dsi->pclk);
dev_err(dev, "Unable to get pclk: %d\n", ret);
return ERR_PTR(ret);
}
/*
* Note that the reset was not defined in the initial device tree, so
* we have to be prepared for it not being found.
*/
apb_rst = devm_reset_control_get_optional_exclusive(dev, "apb");
if (IS_ERR(apb_rst)) {
ret = PTR_ERR(apb_rst);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Unable to get reset control: %d\n", ret);
return ERR_PTR(ret);
}
if (apb_rst) {
ret = clk_prepare_enable(dsi->pclk);
if (ret) {
dev_err(dev, "%s: Failed to enable pclk\n", __func__);
return ERR_PTR(ret);
}
reset_control_assert(apb_rst);
usleep_range(10, 20);
reset_control_deassert(apb_rst);
clk_disable_unprepare(dsi->pclk);
}
dw_mipi_dsi_debugfs_init(dsi);
pm_runtime_enable(dev);
dsi->dsi_host.ops = &dw_mipi_dsi_host_ops;
dsi->dsi_host.dev = dev;
ret = mipi_dsi_host_register(&dsi->dsi_host);
if (ret) {
dev_err(dev, "Failed to register MIPI host: %d\n", ret);
pm_runtime_disable(dev);
dw_mipi_dsi_debugfs_remove(dsi);
return ERR_PTR(ret);
}
dsi->bridge.driver_private = dsi;
dsi->bridge.funcs = &dw_mipi_dsi_bridge_funcs;
#ifdef CONFIG_OF
dsi->bridge.of_node = pdev->dev.of_node;
#endif
return dsi;
}
static void __dw_mipi_dsi_remove(struct dw_mipi_dsi *dsi)
{
mipi_dsi_host_unregister(&dsi->dsi_host);
pm_runtime_disable(dsi->dev);
dw_mipi_dsi_debugfs_remove(dsi);
}
void dw_mipi_dsi_set_slave(struct dw_mipi_dsi *dsi, struct dw_mipi_dsi *slave)
{
/* introduce controllers to each other */
dsi->slave = slave;
dsi->slave->master = dsi;
/* migrate settings for already attached displays */
dsi->slave->lanes = dsi->lanes;
dsi->slave->channel = dsi->channel;
dsi->slave->format = dsi->format;
dsi->slave->mode_flags = dsi->mode_flags;
}
EXPORT_SYMBOL_GPL(dw_mipi_dsi_set_slave);
/*
* Probe/remove API, used from platforms based on the DRM bridge API.
*/
struct dw_mipi_dsi *
dw_mipi_dsi_probe(struct platform_device *pdev,
const struct dw_mipi_dsi_plat_data *plat_data)
{
return __dw_mipi_dsi_probe(pdev, plat_data);
}
EXPORT_SYMBOL_GPL(dw_mipi_dsi_probe);
void dw_mipi_dsi_remove(struct dw_mipi_dsi *dsi)
{
__dw_mipi_dsi_remove(dsi);
}
EXPORT_SYMBOL_GPL(dw_mipi_dsi_remove);
/*
* Bind/unbind API, used from platforms based on the component framework.
*/
int dw_mipi_dsi_bind(struct dw_mipi_dsi *dsi, struct drm_encoder *encoder)
{
return drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
}
EXPORT_SYMBOL_GPL(dw_mipi_dsi_bind);
void dw_mipi_dsi_unbind(struct dw_mipi_dsi *dsi)
{
}
EXPORT_SYMBOL_GPL(dw_mipi_dsi_unbind);
MODULE_AUTHOR("Chris Zhong <[email protected]>");
MODULE_AUTHOR("Philippe Cornu <[email protected]>");
MODULE_DESCRIPTION("DW MIPI DSI host controller driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dw-mipi-dsi");
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-mipi-dsi.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* DesignWare High-Definition Multimedia Interface (HDMI) driver
*
* Copyright (C) 2013-2015 Mentor Graphics Inc.
* Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
* Copyright (C) 2010, Guennadi Liakhovetski <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <media/cec-notifier.h>
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>
#include <drm/bridge/dw_hdmi.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/display/drm_scdc_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "dw-hdmi-audio.h"
#include "dw-hdmi-cec.h"
#include "dw-hdmi.h"
#define DDC_CI_ADDR 0x37
#define DDC_SEGMENT_ADDR 0x30
#define HDMI_EDID_LEN 512
/* DW-HDMI Controller >= 0x200a are at least compliant with SCDC version 1 */
#define SCDC_MIN_SOURCE_VERSION 0x1
#define HDMI14_MAX_TMDSCLK 340000000
static const u16 csc_coeff_default[3][4] = {
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 }
};
static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
{ 0x2000, 0x6926, 0x74fd, 0x010e },
{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};
static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
{ 0x2000, 0x3264, 0x0000, 0x7e6d },
{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};
static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
{ 0x2591, 0x1322, 0x074b, 0x0000 },
{ 0x6535, 0x2000, 0x7acc, 0x0200 },
{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};
static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};
static const u16 csc_coeff_rgb_full_to_rgb_limited[3][4] = {
{ 0x1b7c, 0x0000, 0x0000, 0x0020 },
{ 0x0000, 0x1b7c, 0x0000, 0x0020 },
{ 0x0000, 0x0000, 0x1b7c, 0x0020 }
};
struct hdmi_vmode {
bool mdataenablepolarity;
unsigned int mpixelclock;
unsigned int mpixelrepetitioninput;
unsigned int mpixelrepetitionoutput;
unsigned int mtmdsclock;
};
struct hdmi_data_info {
unsigned int enc_in_bus_format;
unsigned int enc_out_bus_format;
unsigned int enc_in_encoding;
unsigned int enc_out_encoding;
unsigned int pix_repet_factor;
unsigned int hdcp_enable;
struct hdmi_vmode video_mode;
bool rgb_limited_range;
};
struct dw_hdmi_i2c {
struct i2c_adapter adap;
struct mutex lock; /* used to serialize data transfers */
struct completion cmp;
u8 stat;
u8 slave_reg;
bool is_regaddr;
bool is_segment;
};
struct dw_hdmi_phy_data {
enum dw_hdmi_phy_type type;
const char *name;
unsigned int gen;
bool has_svsret;
int (*configure)(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock);
};
struct dw_hdmi {
struct drm_connector connector;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
unsigned int version;
struct platform_device *audio;
struct platform_device *cec;
struct device *dev;
struct clk *isfr_clk;
struct clk *iahb_clk;
struct clk *cec_clk;
struct dw_hdmi_i2c *i2c;
struct hdmi_data_info hdmi_data;
const struct dw_hdmi_plat_data *plat_data;
int vic;
u8 edid[HDMI_EDID_LEN];
struct {
const struct dw_hdmi_phy_ops *ops;
const char *name;
void *data;
bool enabled;
} phy;
struct drm_display_mode previous_mode;
struct i2c_adapter *ddc;
void __iomem *regs;
bool sink_is_hdmi;
bool sink_has_audio;
struct pinctrl *pinctrl;
struct pinctrl_state *default_state;
struct pinctrl_state *unwedge_state;
struct mutex mutex; /* for state below and previous_mode */
enum drm_connector_force force; /* mutex-protected force state */
struct drm_connector *curr_conn;/* current connector (only valid when !disabled) */
bool disabled; /* DRM has disabled our bridge */
bool bridge_is_on; /* indicates the bridge is on */
bool rxsense; /* rxsense state */
u8 phy_mask; /* desired phy int mask settings */
u8 mc_clkdis; /* clock disable register */
spinlock_t audio_lock;
struct mutex audio_mutex;
unsigned int sample_non_pcm;
unsigned int sample_width;
unsigned int sample_rate;
unsigned int channels;
unsigned int audio_cts;
unsigned int audio_n;
bool audio_enable;
unsigned int reg_shift;
struct regmap *regm;
void (*enable_audio)(struct dw_hdmi *hdmi);
void (*disable_audio)(struct dw_hdmi *hdmi);
struct mutex cec_notifier_mutex;
struct cec_notifier *cec_notifier;
hdmi_codec_plugged_cb plugged_cb;
struct device *codec_dev;
enum drm_connector_status last_connector_result;
};
#define HDMI_IH_PHY_STAT0_RX_SENSE \
(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)
#define HDMI_PHY_RX_SENSE \
(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
}
static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
unsigned int val = 0;
regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);
return val;
}
static void handle_plugged_change(struct dw_hdmi *hdmi, bool plugged)
{
if (hdmi->plugged_cb && hdmi->codec_dev)
hdmi->plugged_cb(hdmi->codec_dev, plugged);
}
int dw_hdmi_set_plugged_cb(struct dw_hdmi *hdmi, hdmi_codec_plugged_cb fn,
struct device *codec_dev)
{
bool plugged;
mutex_lock(&hdmi->mutex);
hdmi->plugged_cb = fn;
hdmi->codec_dev = codec_dev;
plugged = hdmi->last_connector_result == connector_status_connected;
handle_plugged_change(hdmi, plugged);
mutex_unlock(&hdmi->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_plugged_cb);
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
{
regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
}
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
u8 shift, u8 mask)
{
hdmi_modb(hdmi, data << shift, mask, reg);
}
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
HDMI_PHY_I2CM_INT_ADDR);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
HDMI_PHY_I2CM_CTLINT_ADDR);
/* Software reset */
hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);
/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);
/* Set done, not acknowledged and arbitration interrupt polarities */
hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
HDMI_I2CM_CTLINT);
/* Clear DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_I2CM_STAT0);
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
}
static bool dw_hdmi_i2c_unwedge(struct dw_hdmi *hdmi)
{
/* If no unwedge state then give up */
if (!hdmi->unwedge_state)
return false;
dev_info(hdmi->dev, "Attempting to unwedge stuck i2c bus\n");
/*
* This is a huge hack to workaround a problem where the dw_hdmi i2c
* bus could sometimes get wedged. Once wedged there doesn't appear
* to be any way to unwedge it (including the HDMI_I2CM_SOFTRSTZ)
* other than pulsing the SDA line.
*
* We appear to be able to pulse the SDA line (in the eyes of dw_hdmi)
* by:
* 1. Remux the pin as a GPIO output, driven low.
* 2. Wait a little while. 1 ms seems to work, but we'll do 10.
* 3. Immediately jump to remux the pin as dw_hdmi i2c again.
*
* At the moment of remuxing, the line will still be low due to its
* recent stint as an output, but then it will be pulled high by the
* (presumed) external pullup. dw_hdmi seems to see this as a rising
* edge and that seems to get it out of its jam.
*
* This wedging was only ever seen on one TV, and only on one of
* its HDMI ports. It happened when the TV was powered on while the
* device was plugged in. A scope trace shows the TV bringing both SDA
* and SCL low, then bringing them both back up at roughly the same
* time. Presumably this confuses dw_hdmi because it saw activity but
* no real STOP (maybe it thinks there's another master on the bus?).
* Giving it a clean rising edge of SDA while SCL is already high
* presumably makes dw_hdmi see a STOP which seems to bring dw_hdmi out
* of its stupor.
*
* Note that after coming back alive, transfers seem to immediately
* resume, so if we unwedge due to a timeout we should wait a little
* longer for our transfer to finish, since it might have just started
* now.
*/
pinctrl_select_state(hdmi->pinctrl, hdmi->unwedge_state);
msleep(10);
pinctrl_select_state(hdmi->pinctrl, hdmi->default_state);
return true;
}
static int dw_hdmi_i2c_wait(struct dw_hdmi *hdmi)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int stat;
stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
if (!stat) {
/* If we can't unwedge, return timeout */
if (!dw_hdmi_i2c_unwedge(hdmi))
return -EAGAIN;
/* We tried to unwedge; give it another chance */
stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
if (!stat)
return -EAGAIN;
}
/* Check for error condition on the bus */
if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
return -EIO;
return 0;
}
static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int ret;
if (!i2c->is_regaddr) {
dev_dbg(hdmi->dev, "set read register address to 0\n");
i2c->slave_reg = 0x00;
i2c->is_regaddr = true;
}
while (length--) {
reinit_completion(&i2c->cmp);
hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
if (i2c->is_segment)
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
HDMI_I2CM_OPERATION);
else
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
HDMI_I2CM_OPERATION);
ret = dw_hdmi_i2c_wait(hdmi);
if (ret)
return ret;
*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
}
i2c->is_segment = false;
return 0;
}
static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int ret;
if (!i2c->is_regaddr) {
/* Use the first write byte as register address */
i2c->slave_reg = buf[0];
length--;
buf++;
i2c->is_regaddr = true;
}
while (length--) {
reinit_completion(&i2c->cmp);
hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
HDMI_I2CM_OPERATION);
ret = dw_hdmi_i2c_wait(hdmi);
if (ret)
return ret;
}
return 0;
}
static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
struct dw_hdmi_i2c *i2c = hdmi->i2c;
u8 addr = msgs[0].addr;
int i, ret = 0;
if (addr == DDC_CI_ADDR)
/*
* The internal I2C controller does not support the multi-byte
* read and write operations needed for DDC/CI.
* TOFIX: Blacklist the DDC/CI address until we filter out
* unsupported I2C operations.
*/
return -EOPNOTSUPP;
dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);
for (i = 0; i < num; i++) {
if (msgs[i].len == 0) {
dev_dbg(hdmi->dev,
"unsupported transfer %d/%d, no data\n",
i + 1, num);
return -EOPNOTSUPP;
}
}
mutex_lock(&i2c->lock);
/* Unmute DONE and ERROR interrupts */
hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);
/* Set slave device address taken from the first I2C message */
hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);
/* Set slave device register address on transfer */
i2c->is_regaddr = false;
/* Set segment pointer for I2C extended read mode operation */
i2c->is_segment = false;
for (i = 0; i < num; i++) {
dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
i2c->is_segment = true;
hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
} else {
if (msgs[i].flags & I2C_M_RD)
ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
msgs[i].len);
else
ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
msgs[i].len);
}
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
mutex_unlock(&i2c->lock);
return ret;
}
static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm dw_hdmi_algorithm = {
.master_xfer = dw_hdmi_i2c_xfer,
.functionality = dw_hdmi_i2c_func,
};
static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
struct i2c_adapter *adap;
struct dw_hdmi_i2c *i2c;
int ret;
i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return ERR_PTR(-ENOMEM);
mutex_init(&i2c->lock);
init_completion(&i2c->cmp);
adap = &i2c->adap;
adap->class = I2C_CLASS_DDC;
adap->owner = THIS_MODULE;
adap->dev.parent = hdmi->dev;
adap->algo = &dw_hdmi_algorithm;
strscpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
i2c_set_adapdata(adap, hdmi);
ret = i2c_add_adapter(adap);
if (ret) {
dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
devm_kfree(hdmi->dev, i2c);
return ERR_PTR(ret);
}
hdmi->i2c = i2c;
dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);
return adap;
}
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
unsigned int n)
{
/* Must be set/cleared first */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
/* nshift factor = 0 */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
/* Use automatic CTS generation mode when CTS is not set */
if (cts)
hdmi_writeb(hdmi, ((cts >> 16) &
HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
HDMI_AUD_CTS3_CTS_MANUAL,
HDMI_AUD_CTS3);
else
hdmi_writeb(hdmi, 0, HDMI_AUD_CTS3);
hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);
hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
}
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
{
unsigned int n = (128 * freq) / 1000;
unsigned int mult = 1;
while (freq > 48000) {
mult *= 2;
freq /= 2;
}
switch (freq) {
case 32000:
if (pixel_clk == 25175000)
n = 4576;
else if (pixel_clk == 27027000)
n = 4096;
else if (pixel_clk == 74176000 || pixel_clk == 148352000)
n = 11648;
else if (pixel_clk == 297000000)
n = 3072;
else
n = 4096;
n *= mult;
break;
case 44100:
if (pixel_clk == 25175000)
n = 7007;
else if (pixel_clk == 74176000)
n = 17836;
else if (pixel_clk == 148352000)
n = 8918;
else if (pixel_clk == 297000000)
n = 4704;
else
n = 6272;
n *= mult;
break;
case 48000:
if (pixel_clk == 25175000)
n = 6864;
else if (pixel_clk == 27027000)
n = 6144;
else if (pixel_clk == 74176000)
n = 11648;
else if (pixel_clk == 148352000)
n = 5824;
else if (pixel_clk == 297000000)
n = 5120;
else
n = 6144;
n *= mult;
break;
default:
break;
}
return n;
}
/*
* When transmitting IEC60958 linear PCM audio, these registers allow to
* configure the channel status information of all the channel status
* bits in the IEC60958 frame. For the moment this configuration is only
* used when the I2S audio interface, General Purpose Audio (GPA),
* or AHB audio DMA (AHBAUDDMA) interface is active
* (for S/PDIF interface this information comes from the stream).
*/
void dw_hdmi_set_channel_status(struct dw_hdmi *hdmi,
u8 *channel_status)
{
/*
* Set channel status register for frequency and word length.
* Use default values for other registers.
*/
hdmi_writeb(hdmi, channel_status[3], HDMI_FC_AUDSCHNLS7);
hdmi_writeb(hdmi, channel_status[4], HDMI_FC_AUDSCHNLS8);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_status);
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
unsigned long pixel_clk, unsigned int sample_rate)
{
unsigned long ftdms = pixel_clk;
unsigned int n, cts;
u8 config3;
u64 tmp;
n = hdmi_compute_n(sample_rate, pixel_clk);
config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
/* Compute CTS when using internal AHB audio or General Parallel audio*/
if ((config3 & HDMI_CONFIG3_AHBAUDDMA) || (config3 & HDMI_CONFIG3_GPAUD)) {
/*
* Compute the CTS value from the N value. Note that CTS and N
* can be up to 20 bits in total, so we need 64-bit math. Also
* note that our TDMS clock is not fully accurate; it is
* accurate to kHz. This can introduce an unnecessary remainder
* in the calculation below, so we don't try to warn about that.
*/
tmp = (u64)ftdms * n;
do_div(tmp, 128 * sample_rate);
cts = tmp;
dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
__func__, sample_rate,
ftdms / 1000000, (ftdms / 1000) % 1000,
n, cts);
} else {
cts = 0;
}
spin_lock_irq(&hdmi->audio_lock);
hdmi->audio_n = n;
hdmi->audio_cts = cts;
hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
spin_unlock_irq(&hdmi->audio_lock);
}
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->audio_mutex);
hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->audio_mutex);
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
void dw_hdmi_set_sample_width(struct dw_hdmi *hdmi, unsigned int width)
{
mutex_lock(&hdmi->audio_mutex);
hdmi->sample_width = width;
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_width);
void dw_hdmi_set_sample_non_pcm(struct dw_hdmi *hdmi, unsigned int non_pcm)
{
mutex_lock(&hdmi->audio_mutex);
hdmi->sample_non_pcm = non_pcm;
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_non_pcm);
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
mutex_lock(&hdmi->audio_mutex);
hdmi->sample_rate = rate;
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);
void dw_hdmi_set_channel_count(struct dw_hdmi *hdmi, unsigned int cnt)
{
u8 layout;
mutex_lock(&hdmi->audio_mutex);
hdmi->channels = cnt;
/*
* For >2 channel PCM audio, we need to select layout 1
* and set an appropriate channel map.
*/
if (cnt > 2)
layout = HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_LAYOUT1;
else
layout = HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_LAYOUT0;
hdmi_modb(hdmi, layout, HDMI_FC_AUDSCONF_AUD_PACKET_LAYOUT_MASK,
HDMI_FC_AUDSCONF);
/* Set the audio infoframes channel count */
hdmi_modb(hdmi, (cnt - 1) << HDMI_FC_AUDICONF0_CC_OFFSET,
HDMI_FC_AUDICONF0_CC_MASK, HDMI_FC_AUDICONF0);
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_count);
void dw_hdmi_set_channel_allocation(struct dw_hdmi *hdmi, unsigned int ca)
{
mutex_lock(&hdmi->audio_mutex);
hdmi_writeb(hdmi, ca, HDMI_FC_AUDICONF2);
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_channel_allocation);
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable)
{
if (enable)
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
else
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
}
static u8 *hdmi_audio_get_eld(struct dw_hdmi *hdmi)
{
if (!hdmi->curr_conn)
return NULL;
return hdmi->curr_conn->eld;
}
static void dw_hdmi_gp_audio_enable(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
int sample_freq = 0x2, org_sample_freq = 0xD;
int ch_mask = BIT(hdmi->channels) - 1;
switch (hdmi->sample_rate) {
case 32000:
sample_freq = 0x03;
org_sample_freq = 0x0C;
break;
case 44100:
sample_freq = 0x00;
org_sample_freq = 0x0F;
break;
case 48000:
sample_freq = 0x02;
org_sample_freq = 0x0D;
break;
case 88200:
sample_freq = 0x08;
org_sample_freq = 0x07;
break;
case 96000:
sample_freq = 0x0A;
org_sample_freq = 0x05;
break;
case 176400:
sample_freq = 0x0C;
org_sample_freq = 0x03;
break;
case 192000:
sample_freq = 0x0E;
org_sample_freq = 0x01;
break;
default:
break;
}
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
hdmi_enable_audio_clk(hdmi, true);
hdmi_writeb(hdmi, 0x1, HDMI_FC_AUDSCHNLS0);
hdmi_writeb(hdmi, hdmi->channels, HDMI_FC_AUDSCHNLS2);
hdmi_writeb(hdmi, 0x22, HDMI_FC_AUDSCHNLS3);
hdmi_writeb(hdmi, 0x22, HDMI_FC_AUDSCHNLS4);
hdmi_writeb(hdmi, 0x11, HDMI_FC_AUDSCHNLS5);
hdmi_writeb(hdmi, 0x11, HDMI_FC_AUDSCHNLS6);
hdmi_writeb(hdmi, (0x3 << 4) | sample_freq, HDMI_FC_AUDSCHNLS7);
hdmi_writeb(hdmi, (org_sample_freq << 4) | 0xb, HDMI_FC_AUDSCHNLS8);
hdmi_writeb(hdmi, ch_mask, HDMI_GP_CONF1);
hdmi_writeb(hdmi, 0x02, HDMI_GP_CONF2);
hdmi_writeb(hdmi, 0x01, HDMI_GP_CONF0);
hdmi_modb(hdmi, 0x3, 0x3, HDMI_FC_DATAUTO3);
/* hbr */
if (hdmi->sample_rate == 192000 && hdmi->channels == 8 &&
hdmi->sample_width == 32 && hdmi->sample_non_pcm)
hdmi_modb(hdmi, 0x01, 0x01, HDMI_GP_CONF2);
if (pdata->enable_audio)
pdata->enable_audio(hdmi,
hdmi->channels,
hdmi->sample_width,
hdmi->sample_rate,
hdmi->sample_non_pcm);
}
static void dw_hdmi_gp_audio_disable(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
hdmi_modb(hdmi, 0, 0x3, HDMI_FC_DATAUTO3);
if (pdata->disable_audio)
pdata->disable_audio(hdmi);
hdmi_enable_audio_clk(hdmi, false);
}
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}
static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}
static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
hdmi_enable_audio_clk(hdmi, true);
}
static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi)
{
hdmi_enable_audio_clk(hdmi, false);
}
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
unsigned long flags;
spin_lock_irqsave(&hdmi->audio_lock, flags);
hdmi->audio_enable = true;
if (hdmi->enable_audio)
hdmi->enable_audio(hdmi);
spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);
void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
unsigned long flags;
spin_lock_irqsave(&hdmi->audio_lock, flags);
hdmi->audio_enable = false;
if (hdmi->disable_audio)
hdmi->disable_audio(hdmi);
spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_RGB161616_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_YUV16_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYVY12_1X24:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
return true;
default:
return false;
}
}
static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
return 8;
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
return 10;
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYVY12_1X24:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
return 12;
case MEDIA_BUS_FMT_RGB161616_1X48:
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
return 16;
default:
return 0;
}
}
/*
* this submodule is responsible for the video data synchronization.
* for example, for RGB 4:4:4 input, the data map is defined as
* pin{47~40} <==> R[7:0]
* pin{31~24} <==> G[7:0]
* pin{15~8} <==> B[7:0]
*/
static void hdmi_video_sample(struct dw_hdmi *hdmi)
{
int color_format = 0;
u8 val;
switch (hdmi->hdmi_data.enc_in_bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
color_format = 0x01;
break;
case MEDIA_BUS_FMT_RGB101010_1X30:
color_format = 0x03;
break;
case MEDIA_BUS_FMT_RGB121212_1X36:
color_format = 0x05;
break;
case MEDIA_BUS_FMT_RGB161616_1X48:
color_format = 0x07;
break;
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
color_format = 0x09;
break;
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
color_format = 0x0B;
break;
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
color_format = 0x0D;
break;
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
color_format = 0x0F;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
color_format = 0x16;
break;
case MEDIA_BUS_FMT_UYVY10_1X20:
color_format = 0x14;
break;
case MEDIA_BUS_FMT_UYVY12_1X24:
color_format = 0x12;
break;
default:
return;
}
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
hdmi_writeb(hdmi, val, HDMI_TX_INVID0);
/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}
static int is_color_space_conversion(struct dw_hdmi *hdmi)
{
struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
bool is_input_rgb, is_output_rgb;
is_input_rgb = hdmi_bus_fmt_is_rgb(hdmi_data->enc_in_bus_format);
is_output_rgb = hdmi_bus_fmt_is_rgb(hdmi_data->enc_out_bus_format);
return (is_input_rgb != is_output_rgb) ||
(is_input_rgb && is_output_rgb && hdmi_data->rgb_limited_range);
}
static int is_color_space_decimation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
return 1;
return 0;
}
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
return 1;
return 0;
}
static bool is_csc_needed(struct dw_hdmi *hdmi)
{
return is_color_space_conversion(hdmi) ||
is_color_space_decimation(hdmi) ||
is_color_space_interpolation(hdmi);
}
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
{
const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
bool is_input_rgb, is_output_rgb;
unsigned i;
u32 csc_scale = 1;
is_input_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format);
is_output_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format);
if (!is_input_rgb && is_output_rgb) {
if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_out_eitu601;
else
csc_coeff = &csc_coeff_rgb_out_eitu709;
} else if (is_input_rgb && !is_output_rgb) {
if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_in_eitu601;
else
csc_coeff = &csc_coeff_rgb_in_eitu709;
csc_scale = 0;
} else if (is_input_rgb && is_output_rgb &&
hdmi->hdmi_data.rgb_limited_range) {
csc_coeff = &csc_coeff_rgb_full_to_rgb_limited;
}
/* The CSC registers are sequential, alternating MSB then LSB */
for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
u16 coeff_a = (*csc_coeff)[0][i];
u16 coeff_b = (*csc_coeff)[1][i];
u16 coeff_c = (*csc_coeff)[2][i];
hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
}
hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
HDMI_CSC_SCALE);
}
static void hdmi_video_csc(struct dw_hdmi *hdmi)
{
int color_depth = 0;
int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
int decimation = 0;
/* YCC422 interpolation to 444 mode */
if (is_color_space_interpolation(hdmi))
interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
else if (is_color_space_decimation(hdmi))
decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;
switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
break;
case 10:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
break;
case 12:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
break;
case 16:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
break;
default:
return;
}
/* Configure the CSC registers */
hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
HDMI_CSC_SCALE);
dw_hdmi_update_csc_coeffs(hdmi);
}
/*
* HDMI video packetizer is used to packetize the data.
* for example, if input is YCC422 mode or repeater is used,
* data should be repacked this module can be bypassed.
*/
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
{
unsigned int color_depth = 0;
unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
u8 val, vp_conf;
u8 clear_gcp_auto = 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = 4;
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
clear_gcp_auto = 1;
break;
case 10:
color_depth = 5;
break;
case 12:
color_depth = 6;
break;
case 16:
color_depth = 7;
break;
default:
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
}
} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 0:
case 8:
remap_size = HDMI_VP_REMAP_YCC422_16bit;
clear_gcp_auto = 1;
break;
case 10:
remap_size = HDMI_VP_REMAP_YCC422_20bit;
break;
case 12:
remap_size = HDMI_VP_REMAP_YCC422_24bit;
break;
default:
return;
}
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
} else {
return;
}
/* set the packetizer registers */
val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
((hdmi_data->pix_repet_factor <<
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);
/* HDMI1.4b specification section 6.5.3:
* Source shall only send GCPs with non-zero CD to sinks
* that indicate support for Deep Color.
* GCP only transmit CD and do not handle AVMUTE, PP norDefault_Phase (yet).
* Disable Auto GCP when 24-bit color for sinks that not support Deep Color.
*/
val = hdmi_readb(hdmi, HDMI_FC_DATAUTO3);
if (clear_gcp_auto == 1)
val &= ~HDMI_FC_DATAUTO3_GCP_AUTO;
else
val |= HDMI_FC_DATAUTO3_GCP_AUTO;
hdmi_writeb(hdmi, val, HDMI_FC_DATAUTO3);
hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
/* Data from pixel repeater block */
if (hdmi_data->pix_repet_factor > 1) {
vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
} else { /* data from packetizer block */
vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);
if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_ENABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_ENABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else {
return;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
HDMI_VP_CONF);
}
/* -----------------------------------------------------------------------------
* Synopsys PHY Handling
*/
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
}
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
{
u32 val;
while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
if (msec-- == 0)
return false;
udelay(1000);
}
hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);
return true;
}
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
unsigned char addr)
{
hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 8),
HDMI_PHY_I2CM_DATAO_1_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 0),
HDMI_PHY_I2CM_DATAO_0_ADDR);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
HDMI_PHY_I2CM_OPERATION_ADDR);
hdmi_phy_wait_i2c_done(hdmi, 1000);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
/* Filter out invalid setups to avoid configuring SCDC and scrambling */
static bool dw_hdmi_support_scdc(struct dw_hdmi *hdmi,
const struct drm_display_info *display)
{
/* Completely disable SCDC support for older controllers */
if (hdmi->version < 0x200a)
return false;
/* Disable if no DDC bus */
if (!hdmi->ddc)
return false;
/* Disable if SCDC is not supported, or if an HF-VSDB block is absent */
if (!display->hdmi.scdc.supported ||
!display->hdmi.scdc.scrambling.supported)
return false;
/*
* Disable if display only support low TMDS rates and scrambling
* for low rates is not supported either
*/
if (!display->hdmi.scdc.scrambling.low_rates &&
display->max_tmds_clock <= 340000)
return false;
return true;
}
/*
* HDMI2.0 Specifies the following procedure for High TMDS Bit Rates:
* - The Source shall suspend transmission of the TMDS clock and data
* - The Source shall write to the TMDS_Bit_Clock_Ratio bit to change it
* from a 0 to a 1 or from a 1 to a 0
* - The Source shall allow a minimum of 1 ms and a maximum of 100 ms from
* the time the TMDS_Bit_Clock_Ratio bit is written until resuming
* transmission of TMDS clock and data
*
* To respect the 100ms maximum delay, the dw_hdmi_set_high_tmds_clock_ratio()
* helper should called right before enabling the TMDS Clock and Data in
* the PHY configuration callback.
*/
void dw_hdmi_set_high_tmds_clock_ratio(struct dw_hdmi *hdmi,
const struct drm_display_info *display)
{
unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
/* Control for TMDS Bit Period/TMDS Clock-Period Ratio */
if (dw_hdmi_support_scdc(hdmi, display)) {
if (mtmdsclock > HDMI14_MAX_TMDSCLK)
drm_scdc_set_high_tmds_clock_ratio(hdmi->curr_conn, 1);
else
drm_scdc_set_high_tmds_clock_ratio(hdmi->curr_conn, 0);
}
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_high_tmds_clock_ratio);
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
{
hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_PDZ_OFFSET,
HDMI_PHY_CONF0_PDZ_MASK);
}
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_ENTMDS_OFFSET,
HDMI_PHY_CONF0_ENTMDS_MASK);
}
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SVSRET_OFFSET,
HDMI_PHY_CONF0_SVSRET_MASK);
}
void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_pddq);
void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_txpwron);
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDIPIF_OFFSET,
HDMI_PHY_CONF0_SELDIPIF_MASK);
}
void dw_hdmi_phy_gen1_reset(struct dw_hdmi *hdmi)
{
/* PHY reset. The reset signal is active low on Gen1 PHYs. */
hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen1_reset);
void dw_hdmi_phy_gen2_reset(struct dw_hdmi *hdmi)
{
/* PHY reset. The reset signal is active high on Gen2 PHYs. */
hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_reset);
void dw_hdmi_phy_i2c_set_addr(struct dw_hdmi *hdmi, u8 address)
{
hdmi_phy_test_clear(hdmi, 1);
hdmi_writeb(hdmi, address, HDMI_PHY_I2CM_SLAVE_ADDR);
hdmi_phy_test_clear(hdmi, 0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_set_addr);
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u16 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_powerdown(hdmi, true);
return;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 0);
/*
* Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
* to low power mode.
*/
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
if (!(val & HDMI_PHY_TX_PHY_LOCK))
break;
usleep_range(1000, 2000);
}
if (val & HDMI_PHY_TX_PHY_LOCK)
dev_warn(hdmi->dev, "PHY failed to power down\n");
else
dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);
dw_hdmi_phy_gen2_pddq(hdmi, 1);
}
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u8 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_powerdown(hdmi, false);
/* Toggle TMDS enable. */
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_tmds(hdmi, 1);
return 0;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 1);
dw_hdmi_phy_gen2_pddq(hdmi, 0);
/* Wait for PHY PLL lock */
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
if (val)
break;
usleep_range(1000, 2000);
}
if (!val) {
dev_err(hdmi->dev, "PHY PLL failed to lock\n");
return -ETIMEDOUT;
}
dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
return 0;
}
/*
* PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
* information the DWC MHL PHY has the same register layout and is thus also
* supported by this function.
*/
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock)
{
const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
/* TOFIX Will need 420 specific PHY configuration tables */
/* PLL/MPLL Cfg - always match on final entry */
for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
if (mpixelclock <= mpll_config->mpixelclock)
break;
for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
if (mpixelclock <= curr_ctrl->mpixelclock)
break;
for (; phy_config->mpixelclock != ~0UL; phy_config++)
if (mpixelclock <= phy_config->mpixelclock)
break;
if (mpll_config->mpixelclock == ~0UL ||
curr_ctrl->mpixelclock == ~0UL ||
phy_config->mpixelclock == ~0UL)
return -EINVAL;
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
HDMI_3D_TX_PHY_CPCE_CTRL);
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
HDMI_3D_TX_PHY_GMPCTRL);
dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
HDMI_3D_TX_PHY_CURRCTRL);
dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
HDMI_3D_TX_PHY_MSM_CTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
HDMI_3D_TX_PHY_CKSYMTXCTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
HDMI_3D_TX_PHY_VLEVCTRL);
/* Override and disable clock termination. */
dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
HDMI_3D_TX_PHY_CKCALCTRL);
return 0;
}
static int hdmi_phy_configure(struct dw_hdmi *hdmi,
const struct drm_display_info *display)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
int ret;
dw_hdmi_phy_power_off(hdmi);
dw_hdmi_set_high_tmds_clock_ratio(hdmi, display);
/* Leave low power consumption mode by asserting SVSRET. */
if (phy->has_svsret)
dw_hdmi_phy_enable_svsret(hdmi, 1);
dw_hdmi_phy_gen2_reset(hdmi);
hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);
dw_hdmi_phy_i2c_set_addr(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
/* Write to the PHY as configured by the platform */
if (pdata->configure_phy)
ret = pdata->configure_phy(hdmi, pdata->priv_data, mpixelclock);
else
ret = phy->configure(hdmi, pdata, mpixelclock);
if (ret) {
dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
mpixelclock);
return ret;
}
/* Wait for resuming transmission of TMDS clock and data */
if (mtmdsclock > HDMI14_MAX_TMDSCLK)
msleep(100);
return dw_hdmi_phy_power_on(hdmi);
}
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
const struct drm_display_info *display,
const struct drm_display_mode *mode)
{
int i, ret;
/* HDMI Phy spec says to do the phy initialization sequence twice */
for (i = 0; i < 2; i++) {
dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
dw_hdmi_phy_sel_interface_control(hdmi, 0);
ret = hdmi_phy_configure(hdmi, display);
if (ret)
return ret;
}
return 0;
}
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
dw_hdmi_phy_power_off(hdmi);
}
enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
void *data)
{
return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
connector_status_connected : connector_status_disconnected;
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_read_hpd);
void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
bool force, bool disabled, bool rxsense)
{
u8 old_mask = hdmi->phy_mask;
if (force || disabled || !rxsense)
hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
else
hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;
if (old_mask != hdmi->phy_mask)
hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_update_hpd);
void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
{
/*
* Configure the PHY RX SENSE and HPD interrupts polarities and clear
* any pending interrupt.
*/
hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
HDMI_IH_PHY_STAT0);
/* Enable cable hot plug irq. */
hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
/* Clear and unmute interrupts. */
hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
HDMI_IH_PHY_STAT0);
hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
HDMI_IH_MUTE_PHY_STAT0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_setup_hpd);
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
.init = dw_hdmi_phy_init,
.disable = dw_hdmi_phy_disable,
.read_hpd = dw_hdmi_phy_read_hpd,
.update_hpd = dw_hdmi_phy_update_hpd,
.setup_hpd = dw_hdmi_phy_setup_hpd,
};
/* -----------------------------------------------------------------------------
* HDMI TX Setup
*/
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
{
u8 de;
if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
else
de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;
/* disable rx detect */
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
}
static void hdmi_config_AVI(struct dw_hdmi *hdmi,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
struct hdmi_avi_infoframe frame;
u8 val;
/* Initialise info frame from DRM mode */
drm_hdmi_avi_infoframe_from_display_mode(&frame, connector, mode);
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
drm_hdmi_avi_infoframe_quant_range(&frame, connector, mode,
hdmi->hdmi_data.rgb_limited_range ?
HDMI_QUANTIZATION_RANGE_LIMITED :
HDMI_QUANTIZATION_RANGE_FULL);
} else {
frame.quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
frame.ycc_quantization_range =
HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
}
if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV444;
else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV422;
else if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV420;
else
frame.colorspace = HDMI_COLORSPACE_RGB;
/* Set up colorimetry */
if (!hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi->hdmi_data.enc_out_encoding) {
case V4L2_YCBCR_ENC_601:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
case V4L2_YCBCR_ENC_709:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
break;
default: /* Carries no data */
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
}
} else {
frame.colorimetry = HDMI_COLORIMETRY_NONE;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
}
/*
* The Designware IP uses a different byte format from standard
* AVI info frames, though generally the bits are in the correct
* bytes.
*/
/*
* AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
* scan info in bits 4,5 rather than 0,1 and active aspect present in
* bit 6 rather than 4.
*/
val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
if (frame.active_aspect & 15)
val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
if (frame.top_bar || frame.bottom_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
if (frame.left_bar || frame.right_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);
/* AVI data byte 2 differences: none */
val = ((frame.colorimetry & 0x3) << 6) |
((frame.picture_aspect & 0x3) << 4) |
(frame.active_aspect & 0xf);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);
/* AVI data byte 3 differences: none */
val = ((frame.extended_colorimetry & 0x7) << 4) |
((frame.quantization_range & 0x3) << 2) |
(frame.nups & 0x3);
if (frame.itc)
val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);
/* AVI data byte 4 differences: none */
val = frame.video_code & 0x7f;
hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
/* AVI Data Byte 5- set up input and output pixel repetition */
val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);
/*
* AVI data byte 5 differences: content type in 0,1 rather than 4,5,
* ycc range in bits 2,3 rather than 6,7
*/
val = ((frame.ycc_quantization_range & 0x3) << 2) |
(frame.content_type & 0x3);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);
/* AVI Data Bytes 6-13 */
hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
}
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
struct hdmi_vendor_infoframe frame;
u8 buffer[10];
ssize_t err;
err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, connector,
mode);
if (err < 0)
/*
* Going into that statement does not means vendor infoframe
* fails. It just informed us that vendor infoframe is not
* needed for the selected mode. Only 4k or stereoscopic 3D
* mode requires vendor infoframe. So just simply return.
*/
return;
err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
err);
return;
}
hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
/* Set the length of HDMI vendor specific InfoFrame payload */
hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);
/* Set 24bit IEEE Registration Identifier */
hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);
/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);
if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);
/* Packet frame interpolation */
hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);
/* Auto packets per frame and line spacing */
hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);
/* Configures the Frame Composer On RDRB mode */
hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
}
static void hdmi_config_drm_infoframe(struct dw_hdmi *hdmi,
const struct drm_connector *connector)
{
const struct drm_connector_state *conn_state = connector->state;
struct hdmi_drm_infoframe frame;
u8 buffer[30];
ssize_t err;
int i;
if (!hdmi->plat_data->use_drm_infoframe)
return;
hdmi_modb(hdmi, HDMI_FC_PACKET_TX_EN_DRM_DISABLE,
HDMI_FC_PACKET_TX_EN_DRM_MASK, HDMI_FC_PACKET_TX_EN);
err = drm_hdmi_infoframe_set_hdr_metadata(&frame, conn_state);
if (err < 0)
return;
err = hdmi_drm_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(hdmi->dev, "Failed to pack drm infoframe: %zd\n", err);
return;
}
hdmi_writeb(hdmi, frame.version, HDMI_FC_DRM_HB0);
hdmi_writeb(hdmi, frame.length, HDMI_FC_DRM_HB1);
for (i = 0; i < frame.length; i++)
hdmi_writeb(hdmi, buffer[4 + i], HDMI_FC_DRM_PB0 + i);
hdmi_writeb(hdmi, 1, HDMI_FC_DRM_UP);
hdmi_modb(hdmi, HDMI_FC_PACKET_TX_EN_DRM_ENABLE,
HDMI_FC_PACKET_TX_EN_DRM_MASK, HDMI_FC_PACKET_TX_EN);
}
static void hdmi_av_composer(struct dw_hdmi *hdmi,
const struct drm_display_info *display,
const struct drm_display_mode *mode)
{
u8 inv_val, bytes;
const struct drm_hdmi_info *hdmi_info = &display->hdmi;
struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
unsigned int vdisplay, hdisplay;
vmode->mpixelclock = mode->clock * 1000;
dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);
vmode->mtmdsclock = vmode->mpixelclock;
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 16:
vmode->mtmdsclock = vmode->mpixelclock * 2;
break;
case 12:
vmode->mtmdsclock = vmode->mpixelclock * 3 / 2;
break;
case 10:
vmode->mtmdsclock = vmode->mpixelclock * 5 / 4;
break;
}
}
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
vmode->mtmdsclock /= 2;
dev_dbg(hdmi->dev, "final tmdsclock = %d\n", vmode->mtmdsclock);
/* Set up HDMI_FC_INVIDCONF */
inv_val = (hdmi->hdmi_data.hdcp_enable ||
(dw_hdmi_support_scdc(hdmi, display) &&
(vmode->mtmdsclock > HDMI14_MAX_TMDSCLK ||
hdmi_info->scdc.scrambling.low_rates)) ?
HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);
inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= (vmode->mdataenablepolarity ?
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);
if (hdmi->vic == 39)
inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
else
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
inv_val |= hdmi->sink_is_hdmi ?
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);
hdisplay = mode->hdisplay;
hblank = mode->htotal - mode->hdisplay;
h_de_hs = mode->hsync_start - mode->hdisplay;
hsync_len = mode->hsync_end - mode->hsync_start;
/*
* When we're setting a YCbCr420 mode, we need
* to adjust the horizontal timing to suit.
*/
if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
hdisplay /= 2;
hblank /= 2;
h_de_hs /= 2;
hsync_len /= 2;
}
vdisplay = mode->vdisplay;
vblank = mode->vtotal - mode->vdisplay;
v_de_vs = mode->vsync_start - mode->vdisplay;
vsync_len = mode->vsync_end - mode->vsync_start;
/*
* When we're setting an interlaced mode, we need
* to adjust the vertical timing to suit.
*/
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vdisplay /= 2;
vblank /= 2;
v_de_vs /= 2;
vsync_len /= 2;
}
/* Scrambling Control */
if (dw_hdmi_support_scdc(hdmi, display)) {
if (vmode->mtmdsclock > HDMI14_MAX_TMDSCLK ||
hdmi_info->scdc.scrambling.low_rates) {
/*
* HDMI2.0 Specifies the following procedure:
* After the Source Device has determined that
* SCDC_Present is set (=1), the Source Device should
* write the accurate Version of the Source Device
* to the Source Version field in the SCDCS.
* Source Devices compliant shall set the
* Source Version = 1.
*/
drm_scdc_readb(hdmi->ddc, SCDC_SINK_VERSION,
&bytes);
drm_scdc_writeb(hdmi->ddc, SCDC_SOURCE_VERSION,
min_t(u8, bytes, SCDC_MIN_SOURCE_VERSION));
/* Enabled Scrambling in the Sink */
drm_scdc_set_scrambling(hdmi->curr_conn, 1);
/*
* To activate the scrambler feature, you must ensure
* that the quasi-static configuration bit
* fc_invidconf.HDCP_keepout is set at configuration
* time, before the required mc_swrstzreq.tmdsswrst_req
* reset request is issued.
*/
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
HDMI_MC_SWRSTZ);
hdmi_writeb(hdmi, 1, HDMI_FC_SCRAMBLER_CTRL);
} else {
hdmi_writeb(hdmi, 0, HDMI_FC_SCRAMBLER_CTRL);
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
HDMI_MC_SWRSTZ);
drm_scdc_set_scrambling(hdmi->curr_conn, 0);
}
}
/* Set up horizontal active pixel width */
hdmi_writeb(hdmi, hdisplay >> 8, HDMI_FC_INHACTV1);
hdmi_writeb(hdmi, hdisplay, HDMI_FC_INHACTV0);
/* Set up vertical active lines */
hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
/* Set up horizontal blanking pixel region width */
hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);
/* Set up vertical blanking pixel region width */
hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);
/* Set up HSYNC active edge delay width (in pixel clks) */
hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);
/* Set up HSYNC active pulse width (in pixel clks) */
hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}
/* HDMI Initialization Step B.4 */
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
{
/* control period minimum duration */
hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);
/* Set to fill TMDS data channels */
hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);
/* Enable pixel clock and tmds data path */
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE |
HDMI_MC_CLKDIS_CSCCLK_DISABLE |
HDMI_MC_CLKDIS_AUDCLK_DISABLE |
HDMI_MC_CLKDIS_PREPCLK_DISABLE |
HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
/* Enable csc path */
if (is_csc_needed(hdmi)) {
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
HDMI_MC_FLOWCTRL);
} else {
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CSCCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
HDMI_MC_FLOWCTRL);
}
}
/* Workaround to clear the overflow condition */
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
{
unsigned int count;
unsigned int i;
u8 val;
/*
* Under some circumstances the Frame Composer arithmetic unit can miss
* an FC register write due to being busy processing the previous one.
* The issue can be worked around by issuing a TMDS software reset and
* then write one of the FC registers several times.
*
* The number of iterations matters and depends on the HDMI TX revision
* (and possibly on the platform).
* 4 iterations for i.MX6Q(v1.30a) and 1 iteration for others.
* i.MX6DL (v1.31a), Allwinner SoCs (v1.32a), Rockchip RK3288 SoC (v2.00a),
* Amlogic Meson GX SoCs (v2.01a), RK3328/RK3399 SoCs (v2.11a)
* and i.MX8MPlus (v2.13a) have been identified as needing the workaround
* with a single iteration.
*/
switch (hdmi->version) {
case 0x130a:
count = 4;
break;
default:
count = 1;
break;
}
/* TMDS software reset */
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);
val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
for (i = 0; i < count; i++)
hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
{
hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
HDMI_IH_MUTE_FC_STAT2);
}
static int dw_hdmi_setup(struct dw_hdmi *hdmi,
const struct drm_connector *connector,
const struct drm_display_mode *mode)
{
int ret;
hdmi_disable_overflow_interrupts(hdmi);
hdmi->vic = drm_match_cea_mode(mode);
if (!hdmi->vic) {
dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
} else {
dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
}
if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
(hdmi->vic == 21) || (hdmi->vic == 22) ||
(hdmi->vic == 2) || (hdmi->vic == 3) ||
(hdmi->vic == 17) || (hdmi->vic == 18))
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
else
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;
if (hdmi->hdmi_data.enc_in_bus_format == MEDIA_BUS_FMT_FIXED)
hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
/* TOFIX: Get input encoding from plat data or fallback to none */
if (hdmi->plat_data->input_bus_encoding)
hdmi->hdmi_data.enc_in_encoding =
hdmi->plat_data->input_bus_encoding;
else
hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
if (hdmi->hdmi_data.enc_out_bus_format == MEDIA_BUS_FMT_FIXED)
hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
hdmi->hdmi_data.rgb_limited_range = hdmi->sink_is_hdmi &&
drm_default_rgb_quant_range(mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
hdmi->hdmi_data.pix_repet_factor = 0;
hdmi->hdmi_data.hdcp_enable = 0;
hdmi->hdmi_data.video_mode.mdataenablepolarity = true;
/* HDMI Initialization Step B.1 */
hdmi_av_composer(hdmi, &connector->display_info, mode);
/* HDMI Initializateion Step B.2 */
ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data,
&connector->display_info,
&hdmi->previous_mode);
if (ret)
return ret;
hdmi->phy.enabled = true;
/* HDMI Initialization Step B.3 */
dw_hdmi_enable_video_path(hdmi);
if (hdmi->sink_has_audio) {
dev_dbg(hdmi->dev, "sink has audio support\n");
/* HDMI Initialization Step E - Configure audio */
hdmi_clk_regenerator_update_pixel_clock(hdmi);
hdmi_enable_audio_clk(hdmi, hdmi->audio_enable);
}
/* not for DVI mode */
if (hdmi->sink_is_hdmi) {
dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
/* HDMI Initialization Step F - Configure AVI InfoFrame */
hdmi_config_AVI(hdmi, connector, mode);
hdmi_config_vendor_specific_infoframe(hdmi, connector, mode);
hdmi_config_drm_infoframe(hdmi, connector);
} else {
dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
}
hdmi_video_packetize(hdmi);
hdmi_video_csc(hdmi);
hdmi_video_sample(hdmi);
hdmi_tx_hdcp_config(hdmi);
dw_hdmi_clear_overflow(hdmi);
return 0;
}
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
{
u8 ih_mute;
/*
* Boot up defaults are:
* HDMI_IH_MUTE = 0x03 (disabled)
* HDMI_IH_MUTE_* = 0x00 (enabled)
*
* Disable top level interrupt bits in HDMI block
*/
ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;
hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
/* by default mask all interrupts */
hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);
/* Disable interrupts in the IH_MUTE_* registers */
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);
/* Enable top level interrupt bits in HDMI block */
ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
{
hdmi->bridge_is_on = true;
/*
* The curr_conn field is guaranteed to be valid here, as this function
* is only be called when !hdmi->disabled.
*/
dw_hdmi_setup(hdmi, hdmi->curr_conn, &hdmi->previous_mode);
}
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
{
if (hdmi->phy.enabled) {
hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
hdmi->phy.enabled = false;
}
hdmi->bridge_is_on = false;
}
static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
int force = hdmi->force;
if (hdmi->disabled) {
force = DRM_FORCE_OFF;
} else if (force == DRM_FORCE_UNSPECIFIED) {
if (hdmi->rxsense)
force = DRM_FORCE_ON;
else
force = DRM_FORCE_OFF;
}
if (force == DRM_FORCE_OFF) {
if (hdmi->bridge_is_on)
dw_hdmi_poweroff(hdmi);
} else {
if (!hdmi->bridge_is_on)
dw_hdmi_poweron(hdmi);
}
}
/*
* Adjust the detection of RXSENSE according to whether we have a forced
* connection mode enabled, or whether we have been disabled. There is
* no point processing RXSENSE interrupts if we have a forced connection
* state, or DRM has us disabled.
*
* We also disable rxsense interrupts when we think we're disconnected
* to avoid floating TDMS signals giving false rxsense interrupts.
*
* Note: we still need to listen for HPD interrupts even when DRM has us
* disabled so that we can detect a connect event.
*/
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
if (hdmi->phy.ops->update_hpd)
hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
hdmi->force, hdmi->disabled,
hdmi->rxsense);
}
static enum drm_connector_status dw_hdmi_detect(struct dw_hdmi *hdmi)
{
enum drm_connector_status result;
result = hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
hdmi->last_connector_result = result;
return result;
}
static struct edid *dw_hdmi_get_edid(struct dw_hdmi *hdmi,
struct drm_connector *connector)
{
struct edid *edid;
if (!hdmi->ddc)
return NULL;
edid = drm_get_edid(connector, hdmi->ddc);
if (!edid) {
dev_dbg(hdmi->dev, "failed to get edid\n");
return NULL;
}
dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
edid->width_cm, edid->height_cm);
hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
return edid;
}
/* -----------------------------------------------------------------------------
* DRM Connector Operations
*/
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
return dw_hdmi_detect(hdmi);
}
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
struct edid *edid;
int ret;
edid = dw_hdmi_get_edid(hdmi, connector);
if (!edid)
return 0;
drm_connector_update_edid_property(connector, edid);
cec_notifier_set_phys_addr_from_edid(hdmi->cec_notifier, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
return ret;
}
static int dw_hdmi_connector_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct drm_connector_state *old_state =
drm_atomic_get_old_connector_state(state, connector);
struct drm_connector_state *new_state =
drm_atomic_get_new_connector_state(state, connector);
struct drm_crtc *crtc = new_state->crtc;
struct drm_crtc_state *crtc_state;
if (!crtc)
return 0;
if (!drm_connector_atomic_hdr_metadata_equal(old_state, new_state)) {
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->mode_changed = true;
}
return 0;
}
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
mutex_lock(&hdmi->mutex);
hdmi->force = connector->force;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
mutex_unlock(&hdmi->mutex);
}
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = dw_hdmi_connector_detect,
.destroy = drm_connector_cleanup,
.force = dw_hdmi_connector_force,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
.get_modes = dw_hdmi_connector_get_modes,
.atomic_check = dw_hdmi_connector_atomic_check,
};
static int dw_hdmi_connector_create(struct dw_hdmi *hdmi)
{
struct drm_connector *connector = &hdmi->connector;
struct cec_connector_info conn_info;
struct cec_notifier *notifier;
if (hdmi->version >= 0x200a)
connector->ycbcr_420_allowed =
hdmi->plat_data->ycbcr_420_allowed;
else
connector->ycbcr_420_allowed = false;
connector->interlace_allowed = 1;
connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);
drm_connector_init_with_ddc(hdmi->bridge.dev, connector,
&dw_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
hdmi->ddc);
/*
* drm_connector_attach_max_bpc_property() requires the
* connector to have a state.
*/
drm_atomic_helper_connector_reset(connector);
drm_connector_attach_max_bpc_property(connector, 8, 16);
if (hdmi->version >= 0x200a && hdmi->plat_data->use_drm_infoframe)
drm_connector_attach_hdr_output_metadata_property(connector);
drm_connector_attach_encoder(connector, hdmi->bridge.encoder);
cec_fill_conn_info_from_drm(&conn_info, connector);
notifier = cec_notifier_conn_register(hdmi->dev, NULL, &conn_info);
if (!notifier)
return -ENOMEM;
mutex_lock(&hdmi->cec_notifier_mutex);
hdmi->cec_notifier = notifier;
mutex_unlock(&hdmi->cec_notifier_mutex);
return 0;
}
/* -----------------------------------------------------------------------------
* DRM Bridge Operations
*/
/*
* Possible output formats :
* - MEDIA_BUS_FMT_UYYVYY16_0_5X48,
* - MEDIA_BUS_FMT_UYYVYY12_0_5X36,
* - MEDIA_BUS_FMT_UYYVYY10_0_5X30,
* - MEDIA_BUS_FMT_UYYVYY8_0_5X24,
* - MEDIA_BUS_FMT_YUV16_1X48,
* - MEDIA_BUS_FMT_RGB161616_1X48,
* - MEDIA_BUS_FMT_UYVY12_1X24,
* - MEDIA_BUS_FMT_YUV12_1X36,
* - MEDIA_BUS_FMT_RGB121212_1X36,
* - MEDIA_BUS_FMT_UYVY10_1X20,
* - MEDIA_BUS_FMT_YUV10_1X30,
* - MEDIA_BUS_FMT_RGB101010_1X30,
* - MEDIA_BUS_FMT_UYVY8_1X16,
* - MEDIA_BUS_FMT_YUV8_1X24,
* - MEDIA_BUS_FMT_RGB888_1X24,
*/
/* Can return a maximum of 11 possible output formats for a mode/connector */
#define MAX_OUTPUT_SEL_FORMATS 11
static u32 *dw_hdmi_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
unsigned int *num_output_fmts)
{
struct drm_connector *conn = conn_state->connector;
struct drm_display_info *info = &conn->display_info;
struct drm_display_mode *mode = &crtc_state->mode;
u8 max_bpc = conn_state->max_requested_bpc;
bool is_hdmi2_sink = info->hdmi.scdc.supported ||
(info->color_formats & DRM_COLOR_FORMAT_YCBCR420);
u32 *output_fmts;
unsigned int i = 0;
*num_output_fmts = 0;
output_fmts = kcalloc(MAX_OUTPUT_SEL_FORMATS, sizeof(*output_fmts),
GFP_KERNEL);
if (!output_fmts)
return NULL;
/* If dw-hdmi is the first or only bridge, avoid negociating with ourselves */
if (list_is_singular(&bridge->encoder->bridge_chain) ||
list_is_first(&bridge->chain_node, &bridge->encoder->bridge_chain)) {
*num_output_fmts = 1;
output_fmts[0] = MEDIA_BUS_FMT_FIXED;
return output_fmts;
}
/*
* If the current mode enforces 4:2:0, force the output but format
* to 4:2:0 and do not add the YUV422/444/RGB formats
*/
if (conn->ycbcr_420_allowed &&
(drm_mode_is_420_only(info, mode) ||
(is_hdmi2_sink && drm_mode_is_420_also(info, mode)))) {
/* Order bus formats from 16bit to 8bit if supported */
if (max_bpc >= 16 && info->bpc == 16 &&
(info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_48))
output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY16_0_5X48;
if (max_bpc >= 12 && info->bpc >= 12 &&
(info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_36))
output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY12_0_5X36;
if (max_bpc >= 10 && info->bpc >= 10 &&
(info->hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_30))
output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY10_0_5X30;
/* Default 8bit fallback */
output_fmts[i++] = MEDIA_BUS_FMT_UYYVYY8_0_5X24;
if (drm_mode_is_420_only(info, mode)) {
*num_output_fmts = i;
return output_fmts;
}
}
/*
* Order bus formats from 16bit to 8bit and from YUV422 to RGB
* if supported. In any case the default RGB888 format is added
*/
/* Default 8bit RGB fallback */
output_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24;
if (max_bpc >= 16 && info->bpc == 16) {
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444)
output_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48;
output_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48;
}
if (max_bpc >= 12 && info->bpc >= 12) {
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422)
output_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444)
output_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36;
output_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
}
if (max_bpc >= 10 && info->bpc >= 10) {
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422)
output_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444)
output_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30;
output_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30;
}
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422)
output_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
if (info->color_formats & DRM_COLOR_FORMAT_YCBCR444)
output_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24;
*num_output_fmts = i;
return output_fmts;
}
/*
* Possible input formats :
* - MEDIA_BUS_FMT_RGB888_1X24
* - MEDIA_BUS_FMT_YUV8_1X24
* - MEDIA_BUS_FMT_UYVY8_1X16
* - MEDIA_BUS_FMT_UYYVYY8_0_5X24
* - MEDIA_BUS_FMT_RGB101010_1X30
* - MEDIA_BUS_FMT_YUV10_1X30
* - MEDIA_BUS_FMT_UYVY10_1X20
* - MEDIA_BUS_FMT_UYYVYY10_0_5X30
* - MEDIA_BUS_FMT_RGB121212_1X36
* - MEDIA_BUS_FMT_YUV12_1X36
* - MEDIA_BUS_FMT_UYVY12_1X24
* - MEDIA_BUS_FMT_UYYVYY12_0_5X36
* - MEDIA_BUS_FMT_RGB161616_1X48
* - MEDIA_BUS_FMT_YUV16_1X48
* - MEDIA_BUS_FMT_UYYVYY16_0_5X48
*/
/* Can return a maximum of 3 possible input formats for an output format */
#define MAX_INPUT_SEL_FORMATS 3
static u32 *dw_hdmi_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
unsigned int i = 0;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
switch (output_fmt) {
/* If MEDIA_BUS_FMT_FIXED is tested, return default bus format */
case MEDIA_BUS_FMT_FIXED:
input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24;
break;
/* 8bit */
case MEDIA_BUS_FMT_RGB888_1X24:
input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
break;
case MEDIA_BUS_FMT_YUV8_1X24:
input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
input_fmts[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
input_fmts[i++] = MEDIA_BUS_FMT_YUV8_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_RGB888_1X24;
break;
/* 10bit */
case MEDIA_BUS_FMT_RGB101010_1X30:
input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30;
input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
break;
case MEDIA_BUS_FMT_YUV10_1X30:
input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30;
break;
case MEDIA_BUS_FMT_UYVY10_1X20:
input_fmts[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
input_fmts[i++] = MEDIA_BUS_FMT_YUV10_1X30;
input_fmts[i++] = MEDIA_BUS_FMT_RGB101010_1X30;
break;
/* 12bit */
case MEDIA_BUS_FMT_RGB121212_1X36:
input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
break;
case MEDIA_BUS_FMT_YUV12_1X36:
input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36;
input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
break;
case MEDIA_BUS_FMT_UYVY12_1X24:
input_fmts[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
input_fmts[i++] = MEDIA_BUS_FMT_YUV12_1X36;
input_fmts[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
break;
/* 16bit */
case MEDIA_BUS_FMT_RGB161616_1X48:
input_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48;
input_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48;
break;
case MEDIA_BUS_FMT_YUV16_1X48:
input_fmts[i++] = MEDIA_BUS_FMT_YUV16_1X48;
input_fmts[i++] = MEDIA_BUS_FMT_RGB161616_1X48;
break;
/*YUV 4:2:0 */
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
input_fmts[i++] = output_fmt;
break;
}
*num_input_fmts = i;
if (*num_input_fmts == 0) {
kfree(input_fmts);
input_fmts = NULL;
}
return input_fmts;
}
static int dw_hdmi_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct dw_hdmi *hdmi = bridge->driver_private;
hdmi->hdmi_data.enc_out_bus_format =
bridge_state->output_bus_cfg.format;
hdmi->hdmi_data.enc_in_bus_format =
bridge_state->input_bus_cfg.format;
dev_dbg(hdmi->dev, "input format 0x%04x, output format 0x%04x\n",
bridge_state->input_bus_cfg.format,
bridge_state->output_bus_cfg.format);
return 0;
}
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct dw_hdmi *hdmi = bridge->driver_private;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return drm_bridge_attach(bridge->encoder, hdmi->next_bridge,
bridge, flags);
return dw_hdmi_connector_create(hdmi);
}
static void dw_hdmi_bridge_detach(struct drm_bridge *bridge)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->cec_notifier_mutex);
cec_notifier_conn_unregister(hdmi->cec_notifier);
hdmi->cec_notifier = NULL;
mutex_unlock(&hdmi->cec_notifier_mutex);
}
static enum drm_mode_status
dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct dw_hdmi *hdmi = bridge->driver_private;
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
enum drm_mode_status mode_status = MODE_OK;
/* We don't support double-clocked modes */
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_BAD;
if (pdata->mode_valid)
mode_status = pdata->mode_valid(hdmi, pdata->priv_data, info,
mode);
return mode_status;
}
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *orig_mode,
const struct drm_display_mode *mode)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->mutex);
/* Store the display mode for plugin/DKMS poweron events */
drm_mode_copy(&hdmi->previous_mode, mode);
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->mutex);
hdmi->disabled = true;
hdmi->curr_conn = NULL;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
handle_plugged_change(hdmi, false);
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_state)
{
struct dw_hdmi *hdmi = bridge->driver_private;
struct drm_atomic_state *state = old_state->base.state;
struct drm_connector *connector;
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
mutex_lock(&hdmi->mutex);
hdmi->disabled = false;
hdmi->curr_conn = connector;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
handle_plugged_change(hdmi, true);
mutex_unlock(&hdmi->mutex);
}
static enum drm_connector_status dw_hdmi_bridge_detect(struct drm_bridge *bridge)
{
struct dw_hdmi *hdmi = bridge->driver_private;
return dw_hdmi_detect(hdmi);
}
static struct edid *dw_hdmi_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct dw_hdmi *hdmi = bridge->driver_private;
return dw_hdmi_get_edid(hdmi, connector);
}
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.attach = dw_hdmi_bridge_attach,
.detach = dw_hdmi_bridge_detach,
.atomic_check = dw_hdmi_bridge_atomic_check,
.atomic_get_output_bus_fmts = dw_hdmi_bridge_atomic_get_output_bus_fmts,
.atomic_get_input_bus_fmts = dw_hdmi_bridge_atomic_get_input_bus_fmts,
.atomic_enable = dw_hdmi_bridge_atomic_enable,
.atomic_disable = dw_hdmi_bridge_atomic_disable,
.mode_set = dw_hdmi_bridge_mode_set,
.mode_valid = dw_hdmi_bridge_mode_valid,
.detect = dw_hdmi_bridge_detect,
.get_edid = dw_hdmi_bridge_get_edid,
};
/* -----------------------------------------------------------------------------
* IRQ Handling
*/
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
unsigned int stat;
stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
if (!stat)
return IRQ_NONE;
hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);
i2c->stat = stat;
complete(&i2c->cmp);
return IRQ_HANDLED;
}
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
{
struct dw_hdmi *hdmi = dev_id;
u8 intr_stat;
irqreturn_t ret = IRQ_NONE;
if (hdmi->i2c)
ret = dw_hdmi_i2c_irq(hdmi);
intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
if (intr_stat) {
hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
return IRQ_WAKE_THREAD;
}
return ret;
}
void dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
{
mutex_lock(&hdmi->mutex);
if (!hdmi->force) {
/*
* If the RX sense status indicates we're disconnected,
* clear the software rxsense status.
*/
if (!rx_sense)
hdmi->rxsense = false;
/*
* Only set the software rxsense status when both
* rxsense and hpd indicates we're connected.
* This avoids what seems to be bad behaviour in
* at least iMX6S versions of the phy.
*/
if (hpd)
hdmi->rxsense = true;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
}
mutex_unlock(&hdmi->mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
{
struct dw_hdmi *hdmi = dev_id;
u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
enum drm_connector_status status = connector_status_unknown;
intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);
phy_pol_mask = 0;
if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
phy_pol_mask |= HDMI_PHY_HPD;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
phy_pol_mask |= HDMI_PHY_RX_SENSE0;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
phy_pol_mask |= HDMI_PHY_RX_SENSE1;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
phy_pol_mask |= HDMI_PHY_RX_SENSE2;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
phy_pol_mask |= HDMI_PHY_RX_SENSE3;
if (phy_pol_mask)
hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
/*
* RX sense tells us whether the TDMS transmitters are detecting
* load - in other words, there's something listening on the
* other end of the link. Use this to decide whether we should
* power on the phy as HPD may be toggled by the sink to merely
* ask the source to re-read the EDID.
*/
if (intr_stat &
(HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
dw_hdmi_setup_rx_sense(hdmi,
phy_stat & HDMI_PHY_HPD,
phy_stat & HDMI_PHY_RX_SENSE);
if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0) {
mutex_lock(&hdmi->cec_notifier_mutex);
cec_notifier_phys_addr_invalidate(hdmi->cec_notifier);
mutex_unlock(&hdmi->cec_notifier_mutex);
}
if (phy_stat & HDMI_PHY_HPD)
status = connector_status_connected;
if (!(phy_stat & (HDMI_PHY_HPD | HDMI_PHY_RX_SENSE)))
status = connector_status_disconnected;
}
if (status != connector_status_unknown) {
dev_dbg(hdmi->dev, "EVENT=%s\n",
status == connector_status_connected ?
"plugin" : "plugout");
if (hdmi->bridge.dev) {
drm_helper_hpd_irq_event(hdmi->bridge.dev);
drm_bridge_hpd_notify(&hdmi->bridge, status);
}
}
hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
HDMI_IH_MUTE_PHY_STAT0);
return IRQ_HANDLED;
}
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
{
.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
.name = "DWC HDMI TX PHY",
.gen = 1,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
.name = "DWC MHL PHY + HEAC PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY,
.name = "DWC MHL PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
.name = "DWC HDMI 3D TX PHY + HEAC PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
.name = "DWC HDMI 3D TX PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
.name = "DWC HDMI 2.0 TX PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_VENDOR_PHY,
.name = "Vendor PHY",
}
};
static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
unsigned int i;
u8 phy_type;
phy_type = hdmi->plat_data->phy_force_vendor ?
DW_HDMI_PHY_VENDOR_PHY :
hdmi_readb(hdmi, HDMI_CONFIG2_ID);
if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
/* Vendor PHYs require support from the glue layer. */
if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
dev_err(hdmi->dev,
"Vendor HDMI PHY not supported by glue layer\n");
return -ENODEV;
}
hdmi->phy.ops = hdmi->plat_data->phy_ops;
hdmi->phy.data = hdmi->plat_data->phy_data;
hdmi->phy.name = hdmi->plat_data->phy_name;
return 0;
}
/* Synopsys PHYs are handled internally. */
for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
if (dw_hdmi_phys[i].type == phy_type) {
hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
hdmi->phy.name = dw_hdmi_phys[i].name;
hdmi->phy.data = (void *)&dw_hdmi_phys[i];
if (!dw_hdmi_phys[i].configure &&
!hdmi->plat_data->configure_phy) {
dev_err(hdmi->dev, "%s requires platform support\n",
hdmi->phy.name);
return -ENODEV;
}
return 0;
}
}
dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
return -ENODEV;
}
static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->mutex);
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->mutex);
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
mutex_unlock(&hdmi->mutex);
}
static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = {
.write = hdmi_writeb,
.read = hdmi_readb,
.enable = dw_hdmi_cec_enable,
.disable = dw_hdmi_cec_disable,
};
static const struct regmap_config hdmi_regmap_8bit_config = {
.reg_bits = 32,
.val_bits = 8,
.reg_stride = 1,
.max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};
static const struct regmap_config hdmi_regmap_32bit_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};
static void dw_hdmi_init_hw(struct dw_hdmi *hdmi)
{
initialize_hdmi_ih_mutes(hdmi);
/*
* Reset HDMI DDC I2C master controller and mute I2CM interrupts.
* Even if we are using a separate i2c adapter doing this doesn't
* hurt.
*/
dw_hdmi_i2c_init(hdmi);
if (hdmi->phy.ops->setup_hpd)
hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
}
/* -----------------------------------------------------------------------------
* Probe/remove API, used from platforms based on the DRM bridge API.
*/
static int dw_hdmi_parse_dt(struct dw_hdmi *hdmi)
{
struct device_node *endpoint;
struct device_node *remote;
if (!hdmi->plat_data->output_port)
return 0;
endpoint = of_graph_get_endpoint_by_regs(hdmi->dev->of_node,
hdmi->plat_data->output_port,
-1);
if (!endpoint) {
/*
* On platforms whose bindings don't make the output port
* mandatory (such as Rockchip) the plat_data->output_port
* field isn't set, so it's safe to make this a fatal error.
*/
dev_err(hdmi->dev, "Missing endpoint in port@%u\n",
hdmi->plat_data->output_port);
return -ENODEV;
}
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (!remote) {
dev_err(hdmi->dev, "Endpoint in port@%u unconnected\n",
hdmi->plat_data->output_port);
return -ENODEV;
}
if (!of_device_is_available(remote)) {
dev_err(hdmi->dev, "port@%u remote device is disabled\n",
hdmi->plat_data->output_port);
of_node_put(remote);
return -ENODEV;
}
hdmi->next_bridge = of_drm_find_bridge(remote);
of_node_put(remote);
if (!hdmi->next_bridge)
return -EPROBE_DEFER;
return 0;
}
bool dw_hdmi_bus_fmt_is_420(struct dw_hdmi *hdmi)
{
return hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format);
}
EXPORT_SYMBOL_GPL(dw_hdmi_bus_fmt_is_420);
struct dw_hdmi *dw_hdmi_probe(struct platform_device *pdev,
const struct dw_hdmi_plat_data *plat_data)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct platform_device_info pdevinfo;
struct device_node *ddc_node;
struct dw_hdmi_cec_data cec;
struct dw_hdmi *hdmi;
struct resource *iores = NULL;
int irq;
int ret;
u32 val = 1;
u8 prod_id0;
u8 prod_id1;
u8 config0;
u8 config3;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return ERR_PTR(-ENOMEM);
hdmi->plat_data = plat_data;
hdmi->dev = dev;
hdmi->sample_rate = 48000;
hdmi->channels = 2;
hdmi->disabled = true;
hdmi->rxsense = true;
hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
hdmi->mc_clkdis = 0x7f;
hdmi->last_connector_result = connector_status_disconnected;
mutex_init(&hdmi->mutex);
mutex_init(&hdmi->audio_mutex);
mutex_init(&hdmi->cec_notifier_mutex);
spin_lock_init(&hdmi->audio_lock);
ret = dw_hdmi_parse_dt(hdmi);
if (ret < 0)
return ERR_PTR(ret);
ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
if (ddc_node) {
hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!hdmi->ddc) {
dev_dbg(hdmi->dev, "failed to read ddc node\n");
return ERR_PTR(-EPROBE_DEFER);
}
} else {
dev_dbg(hdmi->dev, "no ddc property found\n");
}
if (!plat_data->regm) {
const struct regmap_config *reg_config;
of_property_read_u32(np, "reg-io-width", &val);
switch (val) {
case 4:
reg_config = &hdmi_regmap_32bit_config;
hdmi->reg_shift = 2;
break;
case 1:
reg_config = &hdmi_regmap_8bit_config;
break;
default:
dev_err(dev, "reg-io-width must be 1 or 4\n");
return ERR_PTR(-EINVAL);
}
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hdmi->regs = devm_ioremap_resource(dev, iores);
if (IS_ERR(hdmi->regs)) {
ret = PTR_ERR(hdmi->regs);
goto err_res;
}
hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
if (IS_ERR(hdmi->regm)) {
dev_err(dev, "Failed to configure regmap\n");
ret = PTR_ERR(hdmi->regm);
goto err_res;
}
} else {
hdmi->regm = plat_data->regm;
}
hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
if (IS_ERR(hdmi->isfr_clk)) {
ret = PTR_ERR(hdmi->isfr_clk);
dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
goto err_res;
}
ret = clk_prepare_enable(hdmi->isfr_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
goto err_res;
}
hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
if (IS_ERR(hdmi->iahb_clk)) {
ret = PTR_ERR(hdmi->iahb_clk);
dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
goto err_isfr;
}
ret = clk_prepare_enable(hdmi->iahb_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
goto err_isfr;
}
hdmi->cec_clk = devm_clk_get(hdmi->dev, "cec");
if (PTR_ERR(hdmi->cec_clk) == -ENOENT) {
hdmi->cec_clk = NULL;
} else if (IS_ERR(hdmi->cec_clk)) {
ret = PTR_ERR(hdmi->cec_clk);
if (ret != -EPROBE_DEFER)
dev_err(hdmi->dev, "Cannot get HDMI cec clock: %d\n",
ret);
hdmi->cec_clk = NULL;
goto err_iahb;
} else {
ret = clk_prepare_enable(hdmi->cec_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI cec clock: %d\n",
ret);
goto err_iahb;
}
}
/* Product and revision IDs */
hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
| (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);
if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
(prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
hdmi->version, prod_id0, prod_id1);
ret = -ENODEV;
goto err_iahb;
}
ret = dw_hdmi_detect_phy(hdmi);
if (ret < 0)
goto err_iahb;
dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
hdmi->version >> 12, hdmi->version & 0xfff,
prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
hdmi->phy.name);
dw_hdmi_init_hw(hdmi);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_iahb;
}
ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
dw_hdmi_irq, IRQF_SHARED,
dev_name(dev), hdmi);
if (ret)
goto err_iahb;
/*
* To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
* N and cts values before enabling phy
*/
hdmi_init_clk_regenerator(hdmi);
/* If DDC bus is not specified, try to register HDMI I2C bus */
if (!hdmi->ddc) {
/* Look for (optional) stuff related to unwedging */
hdmi->pinctrl = devm_pinctrl_get(dev);
if (!IS_ERR(hdmi->pinctrl)) {
hdmi->unwedge_state =
pinctrl_lookup_state(hdmi->pinctrl, "unwedge");
hdmi->default_state =
pinctrl_lookup_state(hdmi->pinctrl, "default");
if (IS_ERR(hdmi->default_state) ||
IS_ERR(hdmi->unwedge_state)) {
if (!IS_ERR(hdmi->unwedge_state))
dev_warn(dev,
"Unwedge requires default pinctrl\n");
hdmi->default_state = NULL;
hdmi->unwedge_state = NULL;
}
}
hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
if (IS_ERR(hdmi->ddc))
hdmi->ddc = NULL;
}
hdmi->bridge.driver_private = hdmi;
hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
hdmi->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID
| DRM_BRIDGE_OP_HPD;
hdmi->bridge.interlace_allowed = true;
hdmi->bridge.ddc = hdmi->ddc;
#ifdef CONFIG_OF
hdmi->bridge.of_node = pdev->dev.of_node;
#endif
memset(&pdevinfo, 0, sizeof(pdevinfo));
pdevinfo.parent = dev;
pdevinfo.id = PLATFORM_DEVID_AUTO;
config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
struct dw_hdmi_audio_data audio;
audio.phys = iores->start;
audio.base = hdmi->regs;
audio.irq = irq;
audio.hdmi = hdmi;
audio.get_eld = hdmi_audio_get_eld;
hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
pdevinfo.name = "dw-hdmi-ahb-audio";
pdevinfo.data = &audio;
pdevinfo.size_data = sizeof(audio);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
hdmi->audio = platform_device_register_full(&pdevinfo);
} else if (config0 & HDMI_CONFIG0_I2S) {
struct dw_hdmi_i2s_audio_data audio;
audio.hdmi = hdmi;
audio.get_eld = hdmi_audio_get_eld;
audio.write = hdmi_writeb;
audio.read = hdmi_readb;
hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
hdmi->disable_audio = dw_hdmi_i2s_audio_disable;
pdevinfo.name = "dw-hdmi-i2s-audio";
pdevinfo.data = &audio;
pdevinfo.size_data = sizeof(audio);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
hdmi->audio = platform_device_register_full(&pdevinfo);
} else if (iores && config3 & HDMI_CONFIG3_GPAUD) {
struct dw_hdmi_audio_data audio;
audio.phys = iores->start;
audio.base = hdmi->regs;
audio.irq = irq;
audio.hdmi = hdmi;
audio.get_eld = hdmi_audio_get_eld;
hdmi->enable_audio = dw_hdmi_gp_audio_enable;
hdmi->disable_audio = dw_hdmi_gp_audio_disable;
pdevinfo.name = "dw-hdmi-gp-audio";
pdevinfo.id = PLATFORM_DEVID_NONE;
pdevinfo.data = &audio;
pdevinfo.size_data = sizeof(audio);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
hdmi->audio = platform_device_register_full(&pdevinfo);
}
if (!plat_data->disable_cec && (config0 & HDMI_CONFIG0_CEC)) {
cec.hdmi = hdmi;
cec.ops = &dw_hdmi_cec_ops;
cec.irq = irq;
pdevinfo.name = "dw-hdmi-cec";
pdevinfo.data = &cec;
pdevinfo.size_data = sizeof(cec);
pdevinfo.dma_mask = 0;
hdmi->cec = platform_device_register_full(&pdevinfo);
}
drm_bridge_add(&hdmi->bridge);
return hdmi;
err_iahb:
clk_disable_unprepare(hdmi->iahb_clk);
clk_disable_unprepare(hdmi->cec_clk);
err_isfr:
clk_disable_unprepare(hdmi->isfr_clk);
err_res:
i2c_put_adapter(hdmi->ddc);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);
void dw_hdmi_remove(struct dw_hdmi *hdmi)
{
drm_bridge_remove(&hdmi->bridge);
if (hdmi->audio && !IS_ERR(hdmi->audio))
platform_device_unregister(hdmi->audio);
if (!IS_ERR(hdmi->cec))
platform_device_unregister(hdmi->cec);
/* Disable all interrupts */
hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
clk_disable_unprepare(hdmi->iahb_clk);
clk_disable_unprepare(hdmi->isfr_clk);
clk_disable_unprepare(hdmi->cec_clk);
if (hdmi->i2c)
i2c_del_adapter(&hdmi->i2c->adap);
else
i2c_put_adapter(hdmi->ddc);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);
/* -----------------------------------------------------------------------------
* Bind/unbind API, used from platforms based on the component framework.
*/
struct dw_hdmi *dw_hdmi_bind(struct platform_device *pdev,
struct drm_encoder *encoder,
const struct dw_hdmi_plat_data *plat_data)
{
struct dw_hdmi *hdmi;
int ret;
hdmi = dw_hdmi_probe(pdev, plat_data);
if (IS_ERR(hdmi))
return hdmi;
ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL, 0);
if (ret) {
dw_hdmi_remove(hdmi);
return ERR_PTR(ret);
}
return hdmi;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);
void dw_hdmi_unbind(struct dw_hdmi *hdmi)
{
dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
void dw_hdmi_resume(struct dw_hdmi *hdmi)
{
dw_hdmi_init_hw(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_resume);
MODULE_AUTHOR("Sascha Hauer <[email protected]>");
MODULE_AUTHOR("Andy Yan <[email protected]>");
MODULE_AUTHOR("Yakir Yang <[email protected]>");
MODULE_AUTHOR("Vladimir Zapolskiy <[email protected]>");
MODULE_DESCRIPTION("DW HDMI transmitter driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dw-hdmi");
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-hdmi.c |
// SPDX-License-Identifier: GPL-2.0
/*
* dw-hdmi-i2s-audio.c
*
* Copyright (c) 2017 Renesas Solutions Corp.
* Kuninori Morimoto <[email protected]>
*/
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <drm/bridge/dw_hdmi.h>
#include <drm/drm_crtc.h>
#include <sound/hdmi-codec.h>
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
#define DRIVER_NAME "dw-hdmi-i2s-audio"
static inline void hdmi_write(struct dw_hdmi_i2s_audio_data *audio,
u8 val, int offset)
{
struct dw_hdmi *hdmi = audio->hdmi;
audio->write(hdmi, val, offset);
}
static inline u8 hdmi_read(struct dw_hdmi_i2s_audio_data *audio, int offset)
{
struct dw_hdmi *hdmi = audio->hdmi;
return audio->read(hdmi, offset);
}
static int dw_hdmi_i2s_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *fmt,
struct hdmi_codec_params *hparms)
{
struct dw_hdmi_i2s_audio_data *audio = data;
struct dw_hdmi *hdmi = audio->hdmi;
u8 conf0 = 0;
u8 conf1 = 0;
u8 inputclkfs = 0;
/* it cares I2S only */
if (fmt->bit_clk_provider | fmt->frame_clk_provider) {
dev_err(dev, "unsupported clock settings\n");
return -EINVAL;
}
/* Reset the FIFOs before applying new params */
hdmi_write(audio, HDMI_AUD_CONF0_SW_RESET, HDMI_AUD_CONF0);
hdmi_write(audio, (u8)~HDMI_MC_SWRSTZ_I2SSWRST_REQ, HDMI_MC_SWRSTZ);
inputclkfs = HDMI_AUD_INPUTCLKFS_64FS;
conf0 = (HDMI_AUD_CONF0_I2S_SELECT | HDMI_AUD_CONF0_I2S_EN0);
/* Enable the required i2s lanes */
switch (hparms->channels) {
case 7 ... 8:
conf0 |= HDMI_AUD_CONF0_I2S_EN3;
fallthrough;
case 5 ... 6:
conf0 |= HDMI_AUD_CONF0_I2S_EN2;
fallthrough;
case 3 ... 4:
conf0 |= HDMI_AUD_CONF0_I2S_EN1;
/* Fall-thru */
}
switch (hparms->sample_width) {
case 16:
conf1 = HDMI_AUD_CONF1_WIDTH_16;
break;
case 24:
case 32:
conf1 = HDMI_AUD_CONF1_WIDTH_24;
break;
}
switch (fmt->fmt) {
case HDMI_I2S:
conf1 |= HDMI_AUD_CONF1_MODE_I2S;
break;
case HDMI_RIGHT_J:
conf1 |= HDMI_AUD_CONF1_MODE_RIGHT_J;
break;
case HDMI_LEFT_J:
conf1 |= HDMI_AUD_CONF1_MODE_LEFT_J;
break;
case HDMI_DSP_A:
conf1 |= HDMI_AUD_CONF1_MODE_BURST_1;
break;
case HDMI_DSP_B:
conf1 |= HDMI_AUD_CONF1_MODE_BURST_2;
break;
default:
dev_err(dev, "unsupported format\n");
return -EINVAL;
}
dw_hdmi_set_sample_rate(hdmi, hparms->sample_rate);
dw_hdmi_set_channel_status(hdmi, hparms->iec.status);
dw_hdmi_set_channel_count(hdmi, hparms->channels);
dw_hdmi_set_channel_allocation(hdmi, hparms->cea.channel_allocation);
hdmi_write(audio, inputclkfs, HDMI_AUD_INPUTCLKFS);
hdmi_write(audio, conf0, HDMI_AUD_CONF0);
hdmi_write(audio, conf1, HDMI_AUD_CONF1);
return 0;
}
static int dw_hdmi_i2s_audio_startup(struct device *dev, void *data)
{
struct dw_hdmi_i2s_audio_data *audio = data;
struct dw_hdmi *hdmi = audio->hdmi;
dw_hdmi_audio_enable(hdmi);
return 0;
}
static void dw_hdmi_i2s_audio_shutdown(struct device *dev, void *data)
{
struct dw_hdmi_i2s_audio_data *audio = data;
struct dw_hdmi *hdmi = audio->hdmi;
dw_hdmi_audio_disable(hdmi);
}
static int dw_hdmi_i2s_get_eld(struct device *dev, void *data, uint8_t *buf,
size_t len)
{
struct dw_hdmi_i2s_audio_data *audio = data;
u8 *eld;
eld = audio->get_eld(audio->hdmi);
if (eld)
memcpy(buf, eld, min_t(size_t, MAX_ELD_BYTES, len));
else
/* Pass en empty ELD if connector not available */
memset(buf, 0, len);
return 0;
}
static int dw_hdmi_i2s_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located as reg = <2>
* Then, it is sound port 0
*/
if (of_ep.port == 2)
return 0;
return -EINVAL;
}
static int dw_hdmi_i2s_hook_plugged_cb(struct device *dev, void *data,
hdmi_codec_plugged_cb fn,
struct device *codec_dev)
{
struct dw_hdmi_i2s_audio_data *audio = data;
struct dw_hdmi *hdmi = audio->hdmi;
return dw_hdmi_set_plugged_cb(hdmi, fn, codec_dev);
}
static const struct hdmi_codec_ops dw_hdmi_i2s_ops = {
.hw_params = dw_hdmi_i2s_hw_params,
.audio_startup = dw_hdmi_i2s_audio_startup,
.audio_shutdown = dw_hdmi_i2s_audio_shutdown,
.get_eld = dw_hdmi_i2s_get_eld,
.get_dai_id = dw_hdmi_i2s_get_dai_id,
.hook_plugged_cb = dw_hdmi_i2s_hook_plugged_cb,
};
static int snd_dw_hdmi_probe(struct platform_device *pdev)
{
struct dw_hdmi_i2s_audio_data *audio = pdev->dev.platform_data;
struct platform_device_info pdevinfo;
struct hdmi_codec_pdata pdata;
struct platform_device *platform;
memset(&pdata, 0, sizeof(pdata));
pdata.ops = &dw_hdmi_i2s_ops;
pdata.i2s = 1;
pdata.max_i2s_channels = 8;
pdata.data = audio;
memset(&pdevinfo, 0, sizeof(pdevinfo));
pdevinfo.parent = pdev->dev.parent;
pdevinfo.id = PLATFORM_DEVID_AUTO;
pdevinfo.name = HDMI_CODEC_DRV_NAME;
pdevinfo.data = &pdata;
pdevinfo.size_data = sizeof(pdata);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
platform = platform_device_register_full(&pdevinfo);
if (IS_ERR(platform))
return PTR_ERR(platform);
dev_set_drvdata(&pdev->dev, platform);
return 0;
}
static void snd_dw_hdmi_remove(struct platform_device *pdev)
{
struct platform_device *platform = dev_get_drvdata(&pdev->dev);
platform_device_unregister(platform);
}
static struct platform_driver snd_dw_hdmi_driver = {
.probe = snd_dw_hdmi_probe,
.remove_new = snd_dw_hdmi_remove,
.driver = {
.name = DRIVER_NAME,
},
};
module_platform_driver(snd_dw_hdmi_driver);
MODULE_AUTHOR("Kuninori Morimoto <[email protected]>");
MODULE_DESCRIPTION("Synopsis Designware HDMI I2S ALSA SoC interface");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-hdmi-i2s-audio.c |
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* dw-hdmi-gp-audio.c
*
* Copyright 2020-2022 NXP
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <drm/bridge/dw_hdmi.h>
#include <drm/drm_edid.h>
#include <drm/drm_connector.h>
#include <sound/hdmi-codec.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_iec958.h>
#include <sound/dmaengine_pcm.h>
#include "dw-hdmi-audio.h"
#define DRIVER_NAME "dw-hdmi-gp-audio"
#define DRV_NAME "hdmi-gp-audio"
struct snd_dw_hdmi {
struct dw_hdmi_audio_data data;
struct platform_device *audio_pdev;
unsigned int pos;
};
struct dw_hdmi_channel_conf {
u8 conf1;
u8 ca;
};
/*
* The default mapping of ALSA channels to HDMI channels and speaker
* allocation bits. Note that we can't do channel remapping here -
* channels must be in the same order.
*
* Mappings for alsa-lib pcm/surround*.conf files:
*
* Front Sur4.0 Sur4.1 Sur5.0 Sur5.1 Sur7.1
* Channels 2 4 6 6 6 8
*
* Our mapping from ALSA channel to CEA686D speaker name and HDMI channel:
*
* Number of ALSA channels
* ALSA Channel 2 3 4 5 6 7 8
* 0 FL:0 = = = = = =
* 1 FR:1 = = = = = =
* 2 FC:3 RL:4 LFE:2 = = =
* 3 RR:5 RL:4 FC:3 = =
* 4 RR:5 RL:4 = =
* 5 RR:5 = =
* 6 RC:6 =
* 7 RLC/FRC RLC/FRC
*/
static struct dw_hdmi_channel_conf default_hdmi_channel_config[7] = {
{ 0x03, 0x00 }, /* FL,FR */
{ 0x0b, 0x02 }, /* FL,FR,FC */
{ 0x33, 0x08 }, /* FL,FR,RL,RR */
{ 0x37, 0x09 }, /* FL,FR,LFE,RL,RR */
{ 0x3f, 0x0b }, /* FL,FR,LFE,FC,RL,RR */
{ 0x7f, 0x0f }, /* FL,FR,LFE,FC,RL,RR,RC */
{ 0xff, 0x13 }, /* FL,FR,LFE,FC,RL,RR,[FR]RC,[FR]LC */
};
static int audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct snd_dw_hdmi *dw = dev_get_drvdata(dev);
u8 ca;
dw_hdmi_set_sample_rate(dw->data.hdmi, params->sample_rate);
ca = default_hdmi_channel_config[params->channels - 2].ca;
dw_hdmi_set_channel_count(dw->data.hdmi, params->channels);
dw_hdmi_set_channel_allocation(dw->data.hdmi, ca);
dw_hdmi_set_sample_non_pcm(dw->data.hdmi,
params->iec.status[0] & IEC958_AES0_NONAUDIO);
dw_hdmi_set_sample_width(dw->data.hdmi, params->sample_width);
return 0;
}
static void audio_shutdown(struct device *dev, void *data)
{
}
static int audio_mute_stream(struct device *dev, void *data,
bool enable, int direction)
{
struct snd_dw_hdmi *dw = dev_get_drvdata(dev);
if (!enable)
dw_hdmi_audio_enable(dw->data.hdmi);
else
dw_hdmi_audio_disable(dw->data.hdmi);
return 0;
}
static int audio_get_eld(struct device *dev, void *data,
u8 *buf, size_t len)
{
struct dw_hdmi_audio_data *audio = data;
u8 *eld;
eld = audio->get_eld(audio->hdmi);
if (eld)
memcpy(buf, eld, min_t(size_t, MAX_ELD_BYTES, len));
else
/* Pass en empty ELD if connector not available */
memset(buf, 0, len);
return 0;
}
static int audio_hook_plugged_cb(struct device *dev, void *data,
hdmi_codec_plugged_cb fn,
struct device *codec_dev)
{
struct snd_dw_hdmi *dw = dev_get_drvdata(dev);
return dw_hdmi_set_plugged_cb(dw->data.hdmi, fn, codec_dev);
}
static const struct hdmi_codec_ops audio_codec_ops = {
.hw_params = audio_hw_params,
.audio_shutdown = audio_shutdown,
.mute_stream = audio_mute_stream,
.get_eld = audio_get_eld,
.hook_plugged_cb = audio_hook_plugged_cb,
};
static int snd_dw_hdmi_probe(struct platform_device *pdev)
{
struct dw_hdmi_audio_data *data = pdev->dev.platform_data;
struct snd_dw_hdmi *dw;
const struct hdmi_codec_pdata codec_data = {
.i2s = 1,
.spdif = 0,
.ops = &audio_codec_ops,
.max_i2s_channels = 8,
.data = data,
};
dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
dw->data = *data;
platform_set_drvdata(pdev, dw);
dw->audio_pdev = platform_device_register_data(&pdev->dev,
HDMI_CODEC_DRV_NAME, 1,
&codec_data,
sizeof(codec_data));
return PTR_ERR_OR_ZERO(dw->audio_pdev);
}
static void snd_dw_hdmi_remove(struct platform_device *pdev)
{
struct snd_dw_hdmi *dw = platform_get_drvdata(pdev);
platform_device_unregister(dw->audio_pdev);
}
static struct platform_driver snd_dw_hdmi_driver = {
.probe = snd_dw_hdmi_probe,
.remove_new = snd_dw_hdmi_remove,
.driver = {
.name = DRIVER_NAME,
},
};
module_platform_driver(snd_dw_hdmi_driver);
MODULE_AUTHOR("Shengjiu Wang <[email protected]>");
MODULE_DESCRIPTION("Synopsys Designware HDMI GPA ALSA interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/gpu/drm/bridge/synopsys/dw-hdmi-gp-audio.c |
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright(c) 2016, Analogix Semiconductor.
*
* Based on anx7808 driver obtained from chromeos with copyright:
* Copyright(c) 2013, Google Inc.
*/
#include <linux/regmap.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm.h>
#include <drm/drm_print.h>
#include "analogix-i2c-dptx.h"
#define AUX_WAIT_TIMEOUT_MS 15
#define AUX_CH_BUFFER_SIZE 16
static int anx_i2c_dp_clear_bits(struct regmap *map, u8 reg, u8 mask)
{
return regmap_update_bits(map, reg, mask, 0);
}
static bool anx_dp_aux_op_finished(struct regmap *map_dptx)
{
unsigned int value;
int err;
err = regmap_read(map_dptx, SP_DP_AUX_CH_CTRL2_REG, &value);
if (err < 0)
return false;
return (value & SP_AUX_EN) == 0;
}
static int anx_dp_aux_wait(struct regmap *map_dptx)
{
unsigned long timeout;
unsigned int status;
int err;
timeout = jiffies + msecs_to_jiffies(AUX_WAIT_TIMEOUT_MS) + 1;
while (!anx_dp_aux_op_finished(map_dptx)) {
if (time_after(jiffies, timeout)) {
if (!anx_dp_aux_op_finished(map_dptx)) {
DRM_ERROR("Timed out waiting AUX to finish\n");
return -ETIMEDOUT;
}
break;
}
usleep_range(1000, 2000);
}
/* Read the AUX channel access status */
err = regmap_read(map_dptx, SP_AUX_CH_STATUS_REG, &status);
if (err < 0) {
DRM_ERROR("Failed to read from AUX channel: %d\n", err);
return err;
}
if (status & SP_AUX_STATUS) {
DRM_ERROR("Failed to wait for AUX channel (status: %02x)\n",
status);
return -ETIMEDOUT;
}
return 0;
}
static int anx_dp_aux_address(struct regmap *map_dptx, unsigned int addr)
{
int err;
err = regmap_write(map_dptx, SP_AUX_ADDR_7_0_REG, addr & 0xff);
if (err)
return err;
err = regmap_write(map_dptx, SP_AUX_ADDR_15_8_REG,
(addr & 0xff00) >> 8);
if (err)
return err;
/*
* DP AUX CH Address Register #2, only update bits[3:0]
* [7:4] RESERVED
* [3:0] AUX_ADDR[19:16], Register control AUX CH address.
*/
err = regmap_update_bits(map_dptx, SP_AUX_ADDR_19_16_REG,
SP_AUX_ADDR_19_16_MASK,
(addr & 0xf0000) >> 16);
if (err)
return err;
return 0;
}
ssize_t anx_dp_aux_transfer(struct regmap *map_dptx,
struct drm_dp_aux_msg *msg)
{
u8 ctrl1 = msg->request;
u8 ctrl2 = SP_AUX_EN;
u8 *buffer = msg->buffer;
int err;
/* The DP AUX transmit and receive buffer has 16 bytes. */
if (WARN_ON(msg->size > AUX_CH_BUFFER_SIZE))
return -E2BIG;
/* Zero-sized messages specify address-only transactions. */
if (msg->size < 1)
ctrl2 |= SP_ADDR_ONLY;
else /* For non-zero-sized set the length field. */
ctrl1 |= (msg->size - 1) << SP_AUX_LENGTH_SHIFT;
if ((msg->size > 0) && ((msg->request & DP_AUX_I2C_READ) == 0)) {
/* When WRITE | MOT write values to data buffer */
err = regmap_bulk_write(map_dptx,
SP_DP_BUF_DATA0_REG, buffer,
msg->size);
if (err)
return err;
}
/* Write address and request */
err = anx_dp_aux_address(map_dptx, msg->address);
if (err)
return err;
err = regmap_write(map_dptx, SP_DP_AUX_CH_CTRL1_REG, ctrl1);
if (err)
return err;
/* Start transaction */
err = regmap_update_bits(map_dptx, SP_DP_AUX_CH_CTRL2_REG,
SP_ADDR_ONLY | SP_AUX_EN, ctrl2);
if (err)
return err;
err = anx_dp_aux_wait(map_dptx);
if (err)
return err;
msg->reply = DP_AUX_I2C_REPLY_ACK;
if ((msg->size > 0) && (msg->request & DP_AUX_I2C_READ)) {
/* Read values from data buffer */
err = regmap_bulk_read(map_dptx,
SP_DP_BUF_DATA0_REG, buffer,
msg->size);
if (err)
return err;
}
err = anx_i2c_dp_clear_bits(map_dptx, SP_DP_AUX_CH_CTRL2_REG,
SP_ADDR_ONLY);
if (err)
return err;
return msg->size;
}
EXPORT_SYMBOL_GPL(anx_dp_aux_transfer);
| linux-master | drivers/gpu/drm/bridge/analogix/analogix-i2c-dptx.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2016, Analogix Semiconductor.
*
* Based on anx7808 driver obtained from chromeos with copyright:
* Copyright(c) 2013, Google Inc.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "analogix-anx78xx.h"
#define I2C_NUM_ADDRESSES 5
#define I2C_IDX_TX_P0 0
#define I2C_IDX_TX_P1 1
#define I2C_IDX_TX_P2 2
#define I2C_IDX_RX_P0 3
#define I2C_IDX_RX_P1 4
#define XTAL_CLK 270 /* 27M */
static const u8 anx7808_i2c_addresses[] = {
[I2C_IDX_TX_P0] = 0x78,
[I2C_IDX_TX_P1] = 0x7a,
[I2C_IDX_TX_P2] = 0x72,
[I2C_IDX_RX_P0] = 0x7e,
[I2C_IDX_RX_P1] = 0x80,
};
static const u8 anx781x_i2c_addresses[] = {
[I2C_IDX_TX_P0] = 0x70,
[I2C_IDX_TX_P1] = 0x7a,
[I2C_IDX_TX_P2] = 0x72,
[I2C_IDX_RX_P0] = 0x7e,
[I2C_IDX_RX_P1] = 0x80,
};
struct anx78xx_platform_data {
struct regulator *dvdd10;
struct gpio_desc *gpiod_hpd;
struct gpio_desc *gpiod_pd;
struct gpio_desc *gpiod_reset;
int hpd_irq;
int intp_irq;
};
struct anx78xx {
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct i2c_client *client;
struct edid *edid;
struct drm_connector connector;
struct anx78xx_platform_data pdata;
struct mutex lock;
/*
* I2C Slave addresses of ANX7814 are mapped as TX_P0, TX_P1, TX_P2,
* RX_P0 and RX_P1.
*/
struct i2c_client *i2c_dummy[I2C_NUM_ADDRESSES];
struct regmap *map[I2C_NUM_ADDRESSES];
u16 chipid;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
bool powered;
};
static inline struct anx78xx *connector_to_anx78xx(struct drm_connector *c)
{
return container_of(c, struct anx78xx, connector);
}
static inline struct anx78xx *bridge_to_anx78xx(struct drm_bridge *bridge)
{
return container_of(bridge, struct anx78xx, bridge);
}
static int anx78xx_set_bits(struct regmap *map, u8 reg, u8 mask)
{
return regmap_update_bits(map, reg, mask, mask);
}
static int anx78xx_clear_bits(struct regmap *map, u8 reg, u8 mask)
{
return regmap_update_bits(map, reg, mask, 0);
}
static ssize_t anx78xx_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct anx78xx *anx78xx = container_of(aux, struct anx78xx, aux);
return anx_dp_aux_transfer(anx78xx->map[I2C_IDX_TX_P0], msg);
}
static int anx78xx_set_hpd(struct anx78xx *anx78xx)
{
int err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_TMDS_CTRL_BASE + 7, SP_PD_RT);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL3_REG,
SP_HPD_OUT);
if (err)
return err;
return 0;
}
static int anx78xx_clear_hpd(struct anx78xx *anx78xx)
{
int err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL3_REG,
SP_HPD_OUT);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_TMDS_CTRL_BASE + 7, SP_PD_RT);
if (err)
return err;
return 0;
}
static const struct reg_sequence tmds_phy_initialization[] = {
{ SP_TMDS_CTRL_BASE + 1, 0x90 },
{ SP_TMDS_CTRL_BASE + 2, 0xa9 },
{ SP_TMDS_CTRL_BASE + 6, 0x92 },
{ SP_TMDS_CTRL_BASE + 7, 0x80 },
{ SP_TMDS_CTRL_BASE + 20, 0xf2 },
{ SP_TMDS_CTRL_BASE + 22, 0xc4 },
{ SP_TMDS_CTRL_BASE + 23, 0x18 },
};
static int anx78xx_rx_initialization(struct anx78xx *anx78xx)
{
int err;
err = regmap_write(anx78xx->map[I2C_IDX_RX_P0], SP_HDMI_MUTE_CTRL_REG,
SP_AUD_MUTE | SP_VID_MUTE);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0], SP_CHIP_CTRL_REG,
SP_MAN_HDMI5V_DET | SP_PLLLOCK_CKDT_EN |
SP_DIGITAL_CKDT_EN);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_SOFTWARE_RESET1_REG, SP_HDCP_MAN_RST |
SP_SW_MAN_RST | SP_TMDS_RST | SP_VIDEO_RST);
if (err)
return err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_SOFTWARE_RESET1_REG, SP_HDCP_MAN_RST |
SP_SW_MAN_RST | SP_TMDS_RST | SP_VIDEO_RST);
if (err)
return err;
/* Sync detect change, GP set mute */
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_AUD_EXCEPTION_ENABLE_BASE + 1, BIT(5) |
BIT(6));
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_AUD_EXCEPTION_ENABLE_BASE + 3,
SP_AEC_EN21);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0], SP_AUDVID_CTRL_REG,
SP_AVC_EN | SP_AAC_OE | SP_AAC_EN);
if (err)
return err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_SYSTEM_POWER_DOWN1_REG, SP_PWDN_CTRL);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_RX_P0],
SP_VID_DATA_RANGE_CTRL_REG, SP_R2Y_INPUT_LIMIT);
if (err)
return err;
/* Enable DDC stretch */
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_EXTRA_I2C_DEV_ADDR_REG, SP_I2C_EXTRA_ADDR);
if (err)
return err;
/* TMDS phy initialization */
err = regmap_multi_reg_write(anx78xx->map[I2C_IDX_RX_P0],
tmds_phy_initialization,
ARRAY_SIZE(tmds_phy_initialization));
if (err)
return err;
err = anx78xx_clear_hpd(anx78xx);
if (err)
return err;
return 0;
}
static const u8 dp_tx_output_precise_tune_bits[20] = {
0x01, 0x03, 0x07, 0x7f, 0x71, 0x6b, 0x7f,
0x73, 0x7f, 0x7f, 0x00, 0x00, 0x00, 0x00,
0x0c, 0x42, 0x1e, 0x3e, 0x72, 0x7e,
};
static int anx78xx_link_phy_initialization(struct anx78xx *anx78xx)
{
int err;
/*
* REVISIT : It is writing to a RESERVED bits in Analog Control 0
* register.
*/
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2], SP_ANALOG_CTRL0_REG,
0x02);
if (err)
return err;
/*
* Write DP TX output emphasis precise tune bits.
*/
err = regmap_bulk_write(anx78xx->map[I2C_IDX_TX_P1],
SP_DP_TX_LT_CTRL0_REG,
dp_tx_output_precise_tune_bits,
ARRAY_SIZE(dp_tx_output_precise_tune_bits));
if (err)
return err;
return 0;
}
static int anx78xx_xtal_clk_sel(struct anx78xx *anx78xx)
{
unsigned int value;
int err;
err = regmap_update_bits(anx78xx->map[I2C_IDX_TX_P2],
SP_ANALOG_DEBUG2_REG,
SP_XTAL_FRQ | SP_FORCE_SW_OFF_BYPASS,
SP_XTAL_FRQ_27M);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_DP_AUX_CH_CTRL3_REG,
XTAL_CLK & SP_WAIT_COUNTER_7_0_MASK);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_DP_AUX_CH_CTRL4_REG,
((XTAL_CLK & 0xff00) >> 2) | (XTAL_CLK / 10));
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_I2C_GEN_10US_TIMER0_REG, XTAL_CLK & 0xff);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_I2C_GEN_10US_TIMER1_REG,
(XTAL_CLK & 0xff00) >> 8);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_AUX_MISC_CTRL_REG,
XTAL_CLK / 10 - 1);
if (err)
return err;
err = regmap_read(anx78xx->map[I2C_IDX_RX_P0],
SP_HDMI_US_TIMER_CTRL_REG,
&value);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_RX_P0],
SP_HDMI_US_TIMER_CTRL_REG,
(value & SP_MS_TIMER_MARGIN_10_8_MASK) |
((((XTAL_CLK / 10) >> 1) - 2) << 3));
if (err)
return err;
return 0;
}
static const struct reg_sequence otp_key_protect[] = {
{ SP_OTP_KEY_PROTECT1_REG, SP_OTP_PSW1 },
{ SP_OTP_KEY_PROTECT2_REG, SP_OTP_PSW2 },
{ SP_OTP_KEY_PROTECT3_REG, SP_OTP_PSW3 },
};
static int anx78xx_tx_initialization(struct anx78xx *anx78xx)
{
int err;
/* Set terminal resistor to 50 ohm */
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_DP_AUX_CH_CTRL2_REG,
0x30);
if (err)
return err;
/* Enable aux double diff output */
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_AUX_CH_CTRL2_REG, 0x08);
if (err)
return err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_HDCP_CTRL_REG, SP_AUTO_EN |
SP_AUTO_START);
if (err)
return err;
err = regmap_multi_reg_write(anx78xx->map[I2C_IDX_TX_P0],
otp_key_protect,
ARRAY_SIZE(otp_key_protect));
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_HDCP_KEY_COMMAND_REG, SP_DISABLE_SYNC_HDCP);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL8_REG,
SP_VID_VRES_TH);
if (err)
return err;
/*
* DP HDCP auto authentication wait timer (when downstream starts to
* auth, DP side will wait for this period then do auth automatically)
*/
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_HDCP_AUTO_TIMER_REG,
0x00);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_HDCP_CTRL_REG, SP_LINK_POLLING);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_LINK_DEBUG_CTRL_REG, SP_M_VID_DEBUG);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2],
SP_ANALOG_DEBUG2_REG, SP_POWERON_TIME_1P5MS);
if (err)
return err;
err = anx78xx_xtal_clk_sel(anx78xx);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_AUX_DEFER_CTRL_REG,
SP_DEFER_CTRL_EN | 0x0c);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_POLLING_CTRL_REG,
SP_AUTO_POLLING_DISABLE);
if (err)
return err;
/*
* Short the link integrity check timer to speed up bstatus
* polling for HDCP CTS item 1A-07
*/
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_HDCP_LINK_CHECK_TIMER_REG, 0x1d);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_MISC_CTRL_REG, SP_EQ_TRAINING_LOOP);
if (err)
return err;
/* Power down the main link by default */
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_ANALOG_POWER_DOWN_REG, SP_CH0_PD);
if (err)
return err;
err = anx78xx_link_phy_initialization(anx78xx);
if (err)
return err;
/* Gen m_clk with downspreading */
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_M_CALCULATION_CTRL_REG, SP_M_GEN_CLK_SEL);
if (err)
return err;
return 0;
}
static int anx78xx_enable_interrupts(struct anx78xx *anx78xx)
{
int err;
/*
* BIT0: INT pin assertion polarity: 1 = assert high
* BIT1: INT pin output type: 0 = push/pull
*/
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2], SP_INT_CTRL_REG, 0x01);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2],
SP_COMMON_INT_MASK4_REG, SP_HPD_LOST | SP_HPD_PLUG);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2], SP_DP_INT_MASK1_REG,
SP_TRAINING_FINISH);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_RX_P0], SP_INT_MASK1_REG,
SP_CKDT_CHG | SP_SCDT_CHG);
if (err)
return err;
return 0;
}
static void anx78xx_poweron(struct anx78xx *anx78xx)
{
struct anx78xx_platform_data *pdata = &anx78xx->pdata;
int err;
if (WARN_ON(anx78xx->powered))
return;
if (pdata->dvdd10) {
err = regulator_enable(pdata->dvdd10);
if (err) {
DRM_ERROR("Failed to enable DVDD10 regulator: %d\n",
err);
return;
}
usleep_range(1000, 2000);
}
gpiod_set_value_cansleep(pdata->gpiod_reset, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(pdata->gpiod_pd, 0);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(pdata->gpiod_reset, 0);
/* Power on registers module */
anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2], SP_POWERDOWN_CTRL_REG,
SP_HDCP_PD | SP_AUDIO_PD | SP_VIDEO_PD | SP_LINK_PD);
anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2], SP_POWERDOWN_CTRL_REG,
SP_REGISTER_PD | SP_TOTAL_PD);
anx78xx->powered = true;
}
static void anx78xx_poweroff(struct anx78xx *anx78xx)
{
struct anx78xx_platform_data *pdata = &anx78xx->pdata;
int err;
if (WARN_ON(!anx78xx->powered))
return;
gpiod_set_value_cansleep(pdata->gpiod_reset, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(pdata->gpiod_pd, 1);
usleep_range(1000, 2000);
if (pdata->dvdd10) {
err = regulator_disable(pdata->dvdd10);
if (err) {
DRM_ERROR("Failed to disable DVDD10 regulator: %d\n",
err);
return;
}
usleep_range(1000, 2000);
}
anx78xx->powered = false;
}
static int anx78xx_start(struct anx78xx *anx78xx)
{
int err;
/* Power on all modules */
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2],
SP_POWERDOWN_CTRL_REG,
SP_HDCP_PD | SP_AUDIO_PD | SP_VIDEO_PD |
SP_LINK_PD);
err = anx78xx_enable_interrupts(anx78xx);
if (err) {
DRM_ERROR("Failed to enable interrupts: %d\n", err);
goto err_poweroff;
}
err = anx78xx_rx_initialization(anx78xx);
if (err) {
DRM_ERROR("Failed receiver initialization: %d\n", err);
goto err_poweroff;
}
err = anx78xx_tx_initialization(anx78xx);
if (err) {
DRM_ERROR("Failed transmitter initialization: %d\n", err);
goto err_poweroff;
}
/*
* This delay seems to help keep the hardware in a good state. Without
* it, there are times where it fails silently.
*/
usleep_range(10000, 15000);
return 0;
err_poweroff:
DRM_ERROR("Failed SlimPort transmitter initialization: %d\n", err);
anx78xx_poweroff(anx78xx);
return err;
}
static int anx78xx_init_pdata(struct anx78xx *anx78xx)
{
struct anx78xx_platform_data *pdata = &anx78xx->pdata;
struct device *dev = &anx78xx->client->dev;
/* 1.0V digital core power regulator */
pdata->dvdd10 = devm_regulator_get(dev, "dvdd10");
if (IS_ERR(pdata->dvdd10)) {
if (PTR_ERR(pdata->dvdd10) != -EPROBE_DEFER)
DRM_ERROR("DVDD10 regulator not found\n");
return PTR_ERR(pdata->dvdd10);
}
/* GPIO for HPD */
pdata->gpiod_hpd = devm_gpiod_get(dev, "hpd", GPIOD_IN);
if (IS_ERR(pdata->gpiod_hpd))
return PTR_ERR(pdata->gpiod_hpd);
/* GPIO for chip power down */
pdata->gpiod_pd = devm_gpiod_get(dev, "pd", GPIOD_OUT_HIGH);
if (IS_ERR(pdata->gpiod_pd))
return PTR_ERR(pdata->gpiod_pd);
/* GPIO for chip reset */
pdata->gpiod_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
return PTR_ERR_OR_ZERO(pdata->gpiod_reset);
}
static int anx78xx_dp_link_training(struct anx78xx *anx78xx)
{
u8 dp_bw, dpcd[2];
int err;
err = regmap_write(anx78xx->map[I2C_IDX_RX_P0], SP_HDMI_MUTE_CTRL_REG,
0x0);
if (err)
return err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2],
SP_POWERDOWN_CTRL_REG,
SP_TOTAL_PD);
if (err)
return err;
err = drm_dp_dpcd_readb(&anx78xx->aux, DP_MAX_LINK_RATE, &dp_bw);
if (err < 0)
return err;
switch (dp_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
case DP_LINK_BW_5_4:
break;
default:
DRM_DEBUG_KMS("DP bandwidth (%#02x) not supported\n", dp_bw);
return -EINVAL;
}
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL1_REG,
SP_VIDEO_MUTE);
if (err)
return err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2],
SP_VID_CTRL1_REG, SP_VIDEO_EN);
if (err)
return err;
/* Get DPCD info */
err = drm_dp_dpcd_read(&anx78xx->aux, DP_DPCD_REV,
&anx78xx->dpcd, DP_RECEIVER_CAP_SIZE);
if (err < 0) {
DRM_ERROR("Failed to read DPCD: %d\n", err);
return err;
}
/* Clear channel x SERDES power down */
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_ANALOG_POWER_DOWN_REG, SP_CH0_PD);
if (err)
return err;
/*
* Power up the sink (DP_SET_POWER register is only available on DPCD
* v1.1 and later).
*/
if (anx78xx->dpcd[DP_DPCD_REV] >= 0x11) {
err = drm_dp_dpcd_readb(&anx78xx->aux, DP_SET_POWER, &dpcd[0]);
if (err < 0) {
DRM_ERROR("Failed to read DP_SET_POWER register: %d\n",
err);
return err;
}
dpcd[0] &= ~DP_SET_POWER_MASK;
dpcd[0] |= DP_SET_POWER_D0;
err = drm_dp_dpcd_writeb(&anx78xx->aux, DP_SET_POWER, dpcd[0]);
if (err < 0) {
DRM_ERROR("Failed to power up DisplayPort link: %d\n",
err);
return err;
}
/*
* According to the DP 1.1 specification, a "Sink Device must
* exit the power saving state within 1 ms" (Section 2.5.3.1,
* Table 5-52, "Sink Control Field" (register 0x600).
*/
usleep_range(1000, 2000);
}
/* Possibly enable downspread on the sink */
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_DOWNSPREAD_CTRL1_REG, 0);
if (err)
return err;
if (anx78xx->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5) {
DRM_DEBUG("Enable downspread on the sink\n");
/* 4000PPM */
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_DOWNSPREAD_CTRL1_REG, 8);
if (err)
return err;
err = drm_dp_dpcd_writeb(&anx78xx->aux, DP_DOWNSPREAD_CTRL,
DP_SPREAD_AMP_0_5);
if (err < 0)
return err;
} else {
err = drm_dp_dpcd_writeb(&anx78xx->aux, DP_DOWNSPREAD_CTRL, 0);
if (err < 0)
return err;
}
/* Set the lane count and the link rate on the sink */
if (drm_dp_enhanced_frame_cap(anx78xx->dpcd))
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_SYSTEM_CTRL_BASE + 4,
SP_ENHANCED_MODE);
else
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_SYSTEM_CTRL_BASE + 4,
SP_ENHANCED_MODE);
if (err)
return err;
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0],
SP_DP_MAIN_LINK_BW_SET_REG,
anx78xx->dpcd[DP_MAX_LINK_RATE]);
if (err)
return err;
dpcd[1] = drm_dp_max_lane_count(anx78xx->dpcd);
if (drm_dp_enhanced_frame_cap(anx78xx->dpcd))
dpcd[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
err = drm_dp_dpcd_write(&anx78xx->aux, DP_LINK_BW_SET, dpcd,
sizeof(dpcd));
if (err < 0) {
DRM_ERROR("Failed to configure link: %d\n", err);
return err;
}
/* Start training on the source */
err = regmap_write(anx78xx->map[I2C_IDX_TX_P0], SP_DP_LT_CTRL_REG,
SP_LT_EN);
if (err)
return err;
return 0;
}
static int anx78xx_config_dp_output(struct anx78xx *anx78xx)
{
int err;
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL1_REG,
SP_VIDEO_MUTE);
if (err)
return err;
/* Enable DP output */
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2], SP_VID_CTRL1_REG,
SP_VIDEO_EN);
if (err)
return err;
return 0;
}
static int anx78xx_send_video_infoframe(struct anx78xx *anx78xx,
struct hdmi_avi_infoframe *frame)
{
u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE];
int err;
err = hdmi_avi_infoframe_pack(frame, buffer, sizeof(buffer));
if (err < 0) {
DRM_ERROR("Failed to pack AVI infoframe: %d\n", err);
return err;
}
err = anx78xx_clear_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_PACKET_SEND_CTRL_REG, SP_AVI_IF_EN);
if (err)
return err;
err = regmap_bulk_write(anx78xx->map[I2C_IDX_TX_P2],
SP_INFOFRAME_AVI_DB1_REG, buffer,
frame->length);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_PACKET_SEND_CTRL_REG, SP_AVI_IF_UD);
if (err)
return err;
err = anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P0],
SP_PACKET_SEND_CTRL_REG, SP_AVI_IF_EN);
if (err)
return err;
return 0;
}
static int anx78xx_get_downstream_info(struct anx78xx *anx78xx)
{
u8 value;
int err;
err = drm_dp_dpcd_readb(&anx78xx->aux, DP_SINK_COUNT, &value);
if (err < 0) {
DRM_ERROR("Get sink count failed %d\n", err);
return err;
}
if (!DP_GET_SINK_COUNT(value)) {
DRM_ERROR("Downstream disconnected\n");
return -EIO;
}
return 0;
}
static int anx78xx_get_modes(struct drm_connector *connector)
{
struct anx78xx *anx78xx = connector_to_anx78xx(connector);
int err, num_modes = 0;
if (WARN_ON(!anx78xx->powered))
return 0;
if (anx78xx->edid)
return drm_add_edid_modes(connector, anx78xx->edid);
mutex_lock(&anx78xx->lock);
err = anx78xx_get_downstream_info(anx78xx);
if (err) {
DRM_ERROR("Failed to get downstream info: %d\n", err);
goto unlock;
}
anx78xx->edid = drm_get_edid(connector, &anx78xx->aux.ddc);
if (!anx78xx->edid) {
DRM_ERROR("Failed to read EDID\n");
goto unlock;
}
err = drm_connector_update_edid_property(connector,
anx78xx->edid);
if (err) {
DRM_ERROR("Failed to update EDID property: %d\n", err);
goto unlock;
}
num_modes = drm_add_edid_modes(connector, anx78xx->edid);
unlock:
mutex_unlock(&anx78xx->lock);
return num_modes;
}
static const struct drm_connector_helper_funcs anx78xx_connector_helper_funcs = {
.get_modes = anx78xx_get_modes,
};
static enum drm_connector_status anx78xx_detect(struct drm_connector *connector,
bool force)
{
struct anx78xx *anx78xx = connector_to_anx78xx(connector);
if (!gpiod_get_value(anx78xx->pdata.gpiod_hpd))
return connector_status_disconnected;
return connector_status_connected;
}
static const struct drm_connector_funcs anx78xx_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = anx78xx_detect,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int anx78xx_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct anx78xx *anx78xx = bridge_to_anx78xx(bridge);
int err;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
DRM_ERROR("Fix bridge driver to make connector optional!");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
/* Register aux channel */
anx78xx->aux.name = "DP-AUX";
anx78xx->aux.dev = &anx78xx->client->dev;
anx78xx->aux.drm_dev = bridge->dev;
anx78xx->aux.transfer = anx78xx_aux_transfer;
err = drm_dp_aux_register(&anx78xx->aux);
if (err < 0) {
DRM_ERROR("Failed to register aux channel: %d\n", err);
return err;
}
err = drm_connector_init(bridge->dev, &anx78xx->connector,
&anx78xx_connector_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
if (err) {
DRM_ERROR("Failed to initialize connector: %d\n", err);
goto aux_unregister;
}
drm_connector_helper_add(&anx78xx->connector,
&anx78xx_connector_helper_funcs);
anx78xx->connector.polled = DRM_CONNECTOR_POLL_HPD;
err = drm_connector_attach_encoder(&anx78xx->connector,
bridge->encoder);
if (err) {
DRM_ERROR("Failed to link up connector to encoder: %d\n", err);
goto connector_cleanup;
}
err = drm_connector_register(&anx78xx->connector);
if (err) {
DRM_ERROR("Failed to register connector: %d\n", err);
goto connector_cleanup;
}
return 0;
connector_cleanup:
drm_connector_cleanup(&anx78xx->connector);
aux_unregister:
drm_dp_aux_unregister(&anx78xx->aux);
return err;
}
static void anx78xx_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_anx78xx(bridge)->aux);
}
static enum drm_mode_status
anx78xx_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
/* Max 1200p at 5.4 Ghz, one lane */
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void anx78xx_bridge_disable(struct drm_bridge *bridge)
{
struct anx78xx *anx78xx = bridge_to_anx78xx(bridge);
/* Power off all modules except configuration registers access */
anx78xx_set_bits(anx78xx->map[I2C_IDX_TX_P2], SP_POWERDOWN_CTRL_REG,
SP_HDCP_PD | SP_AUDIO_PD | SP_VIDEO_PD | SP_LINK_PD);
}
static void anx78xx_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct anx78xx *anx78xx = bridge_to_anx78xx(bridge);
struct hdmi_avi_infoframe frame;
int err;
if (WARN_ON(!anx78xx->powered))
return;
mutex_lock(&anx78xx->lock);
err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
&anx78xx->connector,
adjusted_mode);
if (err) {
DRM_ERROR("Failed to setup AVI infoframe: %d\n", err);
goto unlock;
}
err = anx78xx_send_video_infoframe(anx78xx, &frame);
if (err)
DRM_ERROR("Failed to send AVI infoframe: %d\n", err);
unlock:
mutex_unlock(&anx78xx->lock);
}
static void anx78xx_bridge_enable(struct drm_bridge *bridge)
{
struct anx78xx *anx78xx = bridge_to_anx78xx(bridge);
int err;
err = anx78xx_start(anx78xx);
if (err) {
DRM_ERROR("Failed to initialize: %d\n", err);
return;
}
err = anx78xx_set_hpd(anx78xx);
if (err)
DRM_ERROR("Failed to set HPD: %d\n", err);
}
static const struct drm_bridge_funcs anx78xx_bridge_funcs = {
.attach = anx78xx_bridge_attach,
.detach = anx78xx_bridge_detach,
.mode_valid = anx78xx_bridge_mode_valid,
.disable = anx78xx_bridge_disable,
.mode_set = anx78xx_bridge_mode_set,
.enable = anx78xx_bridge_enable,
};
static irqreturn_t anx78xx_hpd_threaded_handler(int irq, void *data)
{
struct anx78xx *anx78xx = data;
int err;
if (anx78xx->powered)
return IRQ_HANDLED;
mutex_lock(&anx78xx->lock);
/* Cable is pulled, power on the chip */
anx78xx_poweron(anx78xx);
err = anx78xx_enable_interrupts(anx78xx);
if (err)
DRM_ERROR("Failed to enable interrupts: %d\n", err);
mutex_unlock(&anx78xx->lock);
return IRQ_HANDLED;
}
static int anx78xx_handle_dp_int_1(struct anx78xx *anx78xx, u8 irq)
{
int err;
DRM_DEBUG_KMS("Handle DP interrupt 1: %02x\n", irq);
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2], SP_DP_INT_STATUS1_REG,
irq);
if (err)
return err;
if (irq & SP_TRAINING_FINISH) {
DRM_DEBUG_KMS("IRQ: hardware link training finished\n");
err = anx78xx_config_dp_output(anx78xx);
}
return err;
}
static bool anx78xx_handle_common_int_4(struct anx78xx *anx78xx, u8 irq)
{
bool event = false;
int err;
DRM_DEBUG_KMS("Handle common interrupt 4: %02x\n", irq);
err = regmap_write(anx78xx->map[I2C_IDX_TX_P2],
SP_COMMON_INT_STATUS4_REG, irq);
if (err) {
DRM_ERROR("Failed to write SP_COMMON_INT_STATUS4 %d\n", err);
return event;
}
if (irq & SP_HPD_LOST) {
DRM_DEBUG_KMS("IRQ: Hot plug detect - cable is pulled out\n");
event = true;
anx78xx_poweroff(anx78xx);
/* Free cached EDID */
kfree(anx78xx->edid);
anx78xx->edid = NULL;
} else if (irq & SP_HPD_PLUG) {
DRM_DEBUG_KMS("IRQ: Hot plug detect - cable plug\n");
event = true;
}
return event;
}
static void anx78xx_handle_hdmi_int_1(struct anx78xx *anx78xx, u8 irq)
{
unsigned int value;
int err;
DRM_DEBUG_KMS("Handle HDMI interrupt 1: %02x\n", irq);
err = regmap_write(anx78xx->map[I2C_IDX_RX_P0], SP_INT_STATUS1_REG,
irq);
if (err) {
DRM_ERROR("Write HDMI int 1 failed: %d\n", err);
return;
}
if ((irq & SP_CKDT_CHG) || (irq & SP_SCDT_CHG)) {
DRM_DEBUG_KMS("IRQ: HDMI input detected\n");
err = regmap_read(anx78xx->map[I2C_IDX_RX_P0],
SP_SYSTEM_STATUS_REG, &value);
if (err) {
DRM_ERROR("Read system status reg failed: %d\n", err);
return;
}
if (!(value & SP_TMDS_CLOCK_DET)) {
DRM_DEBUG_KMS("IRQ: *** Waiting for HDMI clock ***\n");
return;
}
if (!(value & SP_TMDS_DE_DET)) {
DRM_DEBUG_KMS("IRQ: *** Waiting for HDMI signal ***\n");
return;
}
err = anx78xx_dp_link_training(anx78xx);
if (err)
DRM_ERROR("Failed to start link training: %d\n", err);
}
}
static irqreturn_t anx78xx_intp_threaded_handler(int unused, void *data)
{
struct anx78xx *anx78xx = data;
bool event = false;
unsigned int irq;
int err;
mutex_lock(&anx78xx->lock);
err = regmap_read(anx78xx->map[I2C_IDX_TX_P2], SP_DP_INT_STATUS1_REG,
&irq);
if (err) {
DRM_ERROR("Failed to read DP interrupt 1 status: %d\n", err);
goto unlock;
}
if (irq)
anx78xx_handle_dp_int_1(anx78xx, irq);
err = regmap_read(anx78xx->map[I2C_IDX_TX_P2],
SP_COMMON_INT_STATUS4_REG, &irq);
if (err) {
DRM_ERROR("Failed to read common interrupt 4 status: %d\n",
err);
goto unlock;
}
if (irq)
event = anx78xx_handle_common_int_4(anx78xx, irq);
/* Make sure we are still powered after handle HPD events */
if (!anx78xx->powered)
goto unlock;
err = regmap_read(anx78xx->map[I2C_IDX_RX_P0], SP_INT_STATUS1_REG,
&irq);
if (err) {
DRM_ERROR("Failed to read HDMI int 1 status: %d\n", err);
goto unlock;
}
if (irq)
anx78xx_handle_hdmi_int_1(anx78xx, irq);
unlock:
mutex_unlock(&anx78xx->lock);
if (event)
drm_helper_hpd_irq_event(anx78xx->connector.dev);
return IRQ_HANDLED;
}
static void unregister_i2c_dummy_clients(struct anx78xx *anx78xx)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(anx78xx->i2c_dummy); i++)
i2c_unregister_device(anx78xx->i2c_dummy[i]);
}
static const struct regmap_config anx78xx_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
static const u16 anx78xx_chipid_list[] = {
0x7808,
0x7812,
0x7814,
0x7818,
};
static int anx78xx_i2c_probe(struct i2c_client *client)
{
struct anx78xx *anx78xx;
struct anx78xx_platform_data *pdata;
unsigned int i, idl, idh, version;
const u8 *i2c_addresses;
bool found = false;
int err;
anx78xx = devm_kzalloc(&client->dev, sizeof(*anx78xx), GFP_KERNEL);
if (!anx78xx)
return -ENOMEM;
pdata = &anx78xx->pdata;
mutex_init(&anx78xx->lock);
#if IS_ENABLED(CONFIG_OF)
anx78xx->bridge.of_node = client->dev.of_node;
#endif
anx78xx->client = client;
i2c_set_clientdata(client, anx78xx);
err = anx78xx_init_pdata(anx78xx);
if (err) {
if (err != -EPROBE_DEFER)
DRM_ERROR("Failed to initialize pdata: %d\n", err);
return err;
}
pdata->hpd_irq = gpiod_to_irq(pdata->gpiod_hpd);
if (pdata->hpd_irq < 0) {
DRM_ERROR("Failed to get HPD IRQ: %d\n", pdata->hpd_irq);
return -ENODEV;
}
pdata->intp_irq = client->irq;
if (!pdata->intp_irq) {
DRM_ERROR("Failed to get CABLE_DET and INTP IRQ\n");
return -ENODEV;
}
/* Map slave addresses of ANX7814 */
i2c_addresses = device_get_match_data(&client->dev);
for (i = 0; i < I2C_NUM_ADDRESSES; i++) {
struct i2c_client *i2c_dummy;
i2c_dummy = i2c_new_dummy_device(client->adapter,
i2c_addresses[i] >> 1);
if (IS_ERR(i2c_dummy)) {
err = PTR_ERR(i2c_dummy);
DRM_ERROR("Failed to reserve I2C bus %02x: %d\n",
i2c_addresses[i], err);
goto err_unregister_i2c;
}
anx78xx->i2c_dummy[i] = i2c_dummy;
anx78xx->map[i] = devm_regmap_init_i2c(anx78xx->i2c_dummy[i],
&anx78xx_regmap_config);
if (IS_ERR(anx78xx->map[i])) {
err = PTR_ERR(anx78xx->map[i]);
DRM_ERROR("Failed regmap initialization %02x\n",
i2c_addresses[i]);
goto err_unregister_i2c;
}
}
/* Look for supported chip ID */
anx78xx_poweron(anx78xx);
err = regmap_read(anx78xx->map[I2C_IDX_TX_P2], SP_DEVICE_IDL_REG,
&idl);
if (err)
goto err_poweroff;
err = regmap_read(anx78xx->map[I2C_IDX_TX_P2], SP_DEVICE_IDH_REG,
&idh);
if (err)
goto err_poweroff;
anx78xx->chipid = (u8)idl | ((u8)idh << 8);
err = regmap_read(anx78xx->map[I2C_IDX_TX_P2], SP_DEVICE_VERSION_REG,
&version);
if (err)
goto err_poweroff;
for (i = 0; i < ARRAY_SIZE(anx78xx_chipid_list); i++) {
if (anx78xx->chipid == anx78xx_chipid_list[i]) {
DRM_INFO("Found ANX%x (ver. %d) SlimPort Transmitter\n",
anx78xx->chipid, version);
found = true;
break;
}
}
if (!found) {
DRM_ERROR("ANX%x (ver. %d) not supported by this driver\n",
anx78xx->chipid, version);
err = -ENODEV;
goto err_poweroff;
}
err = devm_request_threaded_irq(&client->dev, pdata->hpd_irq, NULL,
anx78xx_hpd_threaded_handler,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"anx78xx-hpd", anx78xx);
if (err) {
DRM_ERROR("Failed to request CABLE_DET threaded IRQ: %d\n",
err);
goto err_poweroff;
}
err = devm_request_threaded_irq(&client->dev, pdata->intp_irq, NULL,
anx78xx_intp_threaded_handler,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"anx78xx-intp", anx78xx);
if (err) {
DRM_ERROR("Failed to request INTP threaded IRQ: %d\n", err);
goto err_poweroff;
}
anx78xx->bridge.funcs = &anx78xx_bridge_funcs;
drm_bridge_add(&anx78xx->bridge);
/* If cable is pulled out, just poweroff and wait for HPD event */
if (!gpiod_get_value(anx78xx->pdata.gpiod_hpd))
anx78xx_poweroff(anx78xx);
return 0;
err_poweroff:
anx78xx_poweroff(anx78xx);
err_unregister_i2c:
unregister_i2c_dummy_clients(anx78xx);
return err;
}
static void anx78xx_i2c_remove(struct i2c_client *client)
{
struct anx78xx *anx78xx = i2c_get_clientdata(client);
drm_bridge_remove(&anx78xx->bridge);
unregister_i2c_dummy_clients(anx78xx);
kfree(anx78xx->edid);
}
static const struct i2c_device_id anx78xx_id[] = {
{ "anx7814", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, anx78xx_id);
static const struct of_device_id anx78xx_match_table[] = {
{ .compatible = "analogix,anx7808", .data = anx7808_i2c_addresses },
{ .compatible = "analogix,anx7812", .data = anx781x_i2c_addresses },
{ .compatible = "analogix,anx7814", .data = anx781x_i2c_addresses },
{ .compatible = "analogix,anx7818", .data = anx781x_i2c_addresses },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, anx78xx_match_table);
static struct i2c_driver anx78xx_driver = {
.driver = {
.name = "anx7814",
.of_match_table = anx78xx_match_table,
},
.probe = anx78xx_i2c_probe,
.remove = anx78xx_i2c_remove,
.id_table = anx78xx_id,
};
module_i2c_driver(anx78xx_driver);
MODULE_DESCRIPTION("ANX78xx SlimPort Transmitter driver");
MODULE_AUTHOR("Enric Balletbo i Serra <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/analogix/analogix-anx78xx.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Analogix DP (Display port) core register interface driver.
*
* Copyright (C) 2012 Samsung Electronics Co., Ltd.
* Author: Jingoo Han <[email protected]>
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <drm/bridge/analogix_dp.h>
#include "analogix_dp_core.h"
#include "analogix_dp_reg.h"
#define COMMON_INT_MASK_1 0
#define COMMON_INT_MASK_2 0
#define COMMON_INT_MASK_3 0
#define COMMON_INT_MASK_4 (HOTPLUG_CHG | HPD_LOST | PLUG)
#define INT_STA_MASK INT_HPD
void analogix_dp_enable_video_mute(struct analogix_dp_device *dp, bool enable)
{
u32 reg;
if (enable) {
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
reg |= HDCP_VIDEO_MUTE;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
reg &= ~HDCP_VIDEO_MUTE;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
}
}
void analogix_dp_stop_video(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
reg &= ~VIDEO_EN;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
}
void analogix_dp_lane_swap(struct analogix_dp_device *dp, bool enable)
{
u32 reg;
if (enable)
reg = LANE3_MAP_LOGIC_LANE_0 | LANE2_MAP_LOGIC_LANE_1 |
LANE1_MAP_LOGIC_LANE_2 | LANE0_MAP_LOGIC_LANE_3;
else
reg = LANE3_MAP_LOGIC_LANE_3 | LANE2_MAP_LOGIC_LANE_2 |
LANE1_MAP_LOGIC_LANE_1 | LANE0_MAP_LOGIC_LANE_0;
writel(reg, dp->reg_base + ANALOGIX_DP_LANE_MAP);
}
void analogix_dp_init_analog_param(struct analogix_dp_device *dp)
{
u32 reg;
reg = TX_TERMINAL_CTRL_50_OHM;
writel(reg, dp->reg_base + ANALOGIX_DP_ANALOG_CTL_1);
reg = SEL_24M | TX_DVDD_BIT_1_0625V;
writel(reg, dp->reg_base + ANALOGIX_DP_ANALOG_CTL_2);
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type)) {
reg = REF_CLK_24M;
if (dp->plat_data->dev_type == RK3288_DP)
reg ^= REF_CLK_MASK;
writel(reg, dp->reg_base + ANALOGIX_DP_PLL_REG_1);
writel(0x95, dp->reg_base + ANALOGIX_DP_PLL_REG_2);
writel(0x40, dp->reg_base + ANALOGIX_DP_PLL_REG_3);
writel(0x58, dp->reg_base + ANALOGIX_DP_PLL_REG_4);
writel(0x22, dp->reg_base + ANALOGIX_DP_PLL_REG_5);
}
reg = DRIVE_DVDD_BIT_1_0625V | VCO_BIT_600_MICRO;
writel(reg, dp->reg_base + ANALOGIX_DP_ANALOG_CTL_3);
reg = PD_RING_OSC | AUX_TERMINAL_CTRL_50_OHM |
TX_CUR1_2X | TX_CUR_16_MA;
writel(reg, dp->reg_base + ANALOGIX_DP_PLL_FILTER_CTL_1);
reg = CH3_AMP_400_MV | CH2_AMP_400_MV |
CH1_AMP_400_MV | CH0_AMP_400_MV;
writel(reg, dp->reg_base + ANALOGIX_DP_TX_AMP_TUNING_CTL);
}
void analogix_dp_init_interrupt(struct analogix_dp_device *dp)
{
/* Set interrupt pin assertion polarity as high */
writel(INT_POL1 | INT_POL0, dp->reg_base + ANALOGIX_DP_INT_CTL);
/* Clear pending regisers */
writel(0xff, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_1);
writel(0x4f, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_2);
writel(0xe0, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_3);
writel(0xe7, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_4);
writel(0x63, dp->reg_base + ANALOGIX_DP_INT_STA);
/* 0:mask,1: unmask */
writel(0x00, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_1);
writel(0x00, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_2);
writel(0x00, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_3);
writel(0x00, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_4);
writel(0x00, dp->reg_base + ANALOGIX_DP_INT_STA_MASK);
}
void analogix_dp_reset(struct analogix_dp_device *dp)
{
u32 reg;
analogix_dp_stop_video(dp);
analogix_dp_enable_video_mute(dp, 0);
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
reg = RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N |
SW_FUNC_EN_N;
else
reg = MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N |
AUD_FIFO_FUNC_EN_N | AUD_FUNC_EN_N |
HDCP_FUNC_EN_N | SW_FUNC_EN_N;
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_1);
reg = SSC_FUNC_EN_N | AUX_FUNC_EN_N |
SERDES_FIFO_FUNC_EN_N |
LS_CLK_DOMAIN_FUNC_EN_N;
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
usleep_range(20, 30);
analogix_dp_lane_swap(dp, 0);
writel(0x0, dp->reg_base + ANALOGIX_DP_SYS_CTL_1);
writel(0x40, dp->reg_base + ANALOGIX_DP_SYS_CTL_2);
writel(0x0, dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
writel(0x0, dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
writel(0x0, dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
writel(0x0, dp->reg_base + ANALOGIX_DP_HDCP_CTL);
writel(0x5e, dp->reg_base + ANALOGIX_DP_HPD_DEGLITCH_L);
writel(0x1a, dp->reg_base + ANALOGIX_DP_HPD_DEGLITCH_H);
writel(0x10, dp->reg_base + ANALOGIX_DP_LINK_DEBUG_CTL);
writel(0x0, dp->reg_base + ANALOGIX_DP_PHY_TEST);
writel(0x0, dp->reg_base + ANALOGIX_DP_VIDEO_FIFO_THRD);
writel(0x20, dp->reg_base + ANALOGIX_DP_AUDIO_MARGIN);
writel(0x4, dp->reg_base + ANALOGIX_DP_M_VID_GEN_FILTER_TH);
writel(0x2, dp->reg_base + ANALOGIX_DP_M_AUD_GEN_FILTER_TH);
writel(0x00000101, dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
}
void analogix_dp_swreset(struct analogix_dp_device *dp)
{
writel(RESET_DP_TX, dp->reg_base + ANALOGIX_DP_TX_SW_RESET);
}
void analogix_dp_config_interrupt(struct analogix_dp_device *dp)
{
u32 reg;
/* 0: mask, 1: unmask */
reg = COMMON_INT_MASK_1;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_1);
reg = COMMON_INT_MASK_2;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_2);
reg = COMMON_INT_MASK_3;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_3);
reg = COMMON_INT_MASK_4;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_4);
reg = INT_STA_MASK;
writel(reg, dp->reg_base + ANALOGIX_DP_INT_STA_MASK);
}
void analogix_dp_mute_hpd_interrupt(struct analogix_dp_device *dp)
{
u32 reg;
/* 0: mask, 1: unmask */
reg = readl(dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_4);
reg &= ~COMMON_INT_MASK_4;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_4);
reg = readl(dp->reg_base + ANALOGIX_DP_INT_STA_MASK);
reg &= ~INT_STA_MASK;
writel(reg, dp->reg_base + ANALOGIX_DP_INT_STA_MASK);
}
void analogix_dp_unmute_hpd_interrupt(struct analogix_dp_device *dp)
{
u32 reg;
/* 0: mask, 1: unmask */
reg = COMMON_INT_MASK_4;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_MASK_4);
reg = INT_STA_MASK;
writel(reg, dp->reg_base + ANALOGIX_DP_INT_STA_MASK);
}
enum pll_status analogix_dp_get_pll_lock_status(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_DEBUG_CTL);
if (reg & PLL_LOCK)
return PLL_LOCKED;
else
return PLL_UNLOCKED;
}
void analogix_dp_set_pll_power_down(struct analogix_dp_device *dp, bool enable)
{
u32 reg;
u32 mask = DP_PLL_PD;
u32 pd_addr = ANALOGIX_DP_PLL_CTL;
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type)) {
pd_addr = ANALOGIX_DP_PD;
mask = RK_PLL_PD;
}
reg = readl(dp->reg_base + pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + pd_addr);
}
void analogix_dp_set_analog_power_down(struct analogix_dp_device *dp,
enum analog_power_block block,
bool enable)
{
u32 reg;
u32 phy_pd_addr = ANALOGIX_DP_PHY_PD;
u32 mask;
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
phy_pd_addr = ANALOGIX_DP_PD;
switch (block) {
case AUX_BLOCK:
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
mask = RK_AUX_PD;
else
mask = AUX_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
break;
case CH0_BLOCK:
mask = CH0_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
break;
case CH1_BLOCK:
mask = CH1_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
break;
case CH2_BLOCK:
mask = CH2_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
break;
case CH3_BLOCK:
mask = CH3_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
break;
case ANALOG_TOTAL:
/*
* There is no bit named DP_PHY_PD, so We used DP_INC_BG
* to power off everything instead of DP_PHY_PD in
* Rockchip
*/
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
mask = DP_INC_BG;
else
mask = DP_PHY_PD;
reg = readl(dp->reg_base + phy_pd_addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
writel(reg, dp->reg_base + phy_pd_addr);
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
usleep_range(10, 15);
break;
case POWER_ALL:
if (enable) {
reg = DP_ALL_PD;
writel(reg, dp->reg_base + phy_pd_addr);
} else {
reg = DP_ALL_PD;
writel(reg, dp->reg_base + phy_pd_addr);
usleep_range(10, 15);
reg &= ~DP_INC_BG;
writel(reg, dp->reg_base + phy_pd_addr);
usleep_range(10, 15);
writel(0x00, dp->reg_base + phy_pd_addr);
}
break;
default:
break;
}
}
int analogix_dp_init_analog_func(struct analogix_dp_device *dp)
{
u32 reg;
int timeout_loop = 0;
analogix_dp_set_analog_power_down(dp, POWER_ALL, 0);
reg = PLL_LOCK_CHG;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_1);
reg = readl(dp->reg_base + ANALOGIX_DP_DEBUG_CTL);
reg &= ~(F_PLL_LOCK | PLL_LOCK_CTRL);
writel(reg, dp->reg_base + ANALOGIX_DP_DEBUG_CTL);
/* Power up PLL */
if (analogix_dp_get_pll_lock_status(dp) == PLL_UNLOCKED) {
analogix_dp_set_pll_power_down(dp, 0);
while (analogix_dp_get_pll_lock_status(dp) == PLL_UNLOCKED) {
timeout_loop++;
if (DP_TIMEOUT_LOOP_COUNT < timeout_loop) {
dev_err(dp->dev, "failed to get pll lock status\n");
return -ETIMEDOUT;
}
usleep_range(10, 20);
}
}
/* Enable Serdes FIFO function and Link symbol clock domain module */
reg = readl(dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
reg &= ~(SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N
| AUX_FUNC_EN_N);
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
return 0;
}
void analogix_dp_clear_hotplug_interrupts(struct analogix_dp_device *dp)
{
u32 reg;
if (dp->hpd_gpiod)
return;
reg = HOTPLUG_CHG | HPD_LOST | PLUG;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_4);
reg = INT_HPD;
writel(reg, dp->reg_base + ANALOGIX_DP_INT_STA);
}
void analogix_dp_init_hpd(struct analogix_dp_device *dp)
{
u32 reg;
if (dp->hpd_gpiod)
return;
analogix_dp_clear_hotplug_interrupts(dp);
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
reg &= ~(F_HPD | HPD_CTRL);
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
}
void analogix_dp_force_hpd(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
reg = (F_HPD | HPD_CTRL);
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
}
enum dp_irq_type analogix_dp_get_irq_type(struct analogix_dp_device *dp)
{
u32 reg;
if (dp->hpd_gpiod) {
reg = gpiod_get_value(dp->hpd_gpiod);
if (reg)
return DP_IRQ_TYPE_HP_CABLE_IN;
else
return DP_IRQ_TYPE_HP_CABLE_OUT;
} else {
/* Parse hotplug interrupt status register */
reg = readl(dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_4);
if (reg & PLUG)
return DP_IRQ_TYPE_HP_CABLE_IN;
if (reg & HPD_LOST)
return DP_IRQ_TYPE_HP_CABLE_OUT;
if (reg & HOTPLUG_CHG)
return DP_IRQ_TYPE_HP_CHANGE;
return DP_IRQ_TYPE_UNKNOWN;
}
}
void analogix_dp_reset_aux(struct analogix_dp_device *dp)
{
u32 reg;
/* Disable AUX channel module */
reg = readl(dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
reg |= AUX_FUNC_EN_N;
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
}
void analogix_dp_init_aux(struct analogix_dp_device *dp)
{
u32 reg;
/* Clear inerrupts related to AUX channel */
reg = RPLY_RECEIV | AUX_ERR;
writel(reg, dp->reg_base + ANALOGIX_DP_INT_STA);
analogix_dp_set_analog_power_down(dp, AUX_BLOCK, true);
usleep_range(10, 11);
analogix_dp_set_analog_power_down(dp, AUX_BLOCK, false);
analogix_dp_reset_aux(dp);
/* AUX_BIT_PERIOD_EXPECTED_DELAY doesn't apply to Rockchip IP */
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type))
reg = 0;
else
reg = AUX_BIT_PERIOD_EXPECTED_DELAY(3);
/* Disable AUX transaction H/W retry */
reg |= AUX_HW_RETRY_COUNT_SEL(0) |
AUX_HW_RETRY_INTERVAL_600_MICROSECONDS;
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_HW_RETRY_CTL);
/* Receive AUX Channel DEFER commands equal to DEFFER_COUNT*64 */
reg = DEFER_CTRL_EN | DEFER_COUNT(1);
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_CH_DEFER_CTL);
/* Enable AUX channel module */
reg = readl(dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
reg &= ~AUX_FUNC_EN_N;
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_2);
}
int analogix_dp_get_plug_in_status(struct analogix_dp_device *dp)
{
u32 reg;
if (dp->hpd_gpiod) {
if (gpiod_get_value(dp->hpd_gpiod))
return 0;
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
if (reg & HPD_STATUS)
return 0;
}
return -EINVAL;
}
void analogix_dp_enable_sw_function(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_FUNC_EN_1);
reg &= ~SW_FUNC_EN_N;
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_1);
}
void analogix_dp_set_link_bandwidth(struct analogix_dp_device *dp, u32 bwtype)
{
u32 reg;
reg = bwtype;
if ((bwtype == DP_LINK_BW_2_7) || (bwtype == DP_LINK_BW_1_62))
writel(reg, dp->reg_base + ANALOGIX_DP_LINK_BW_SET);
}
void analogix_dp_get_link_bandwidth(struct analogix_dp_device *dp, u32 *bwtype)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LINK_BW_SET);
*bwtype = reg;
}
void analogix_dp_set_lane_count(struct analogix_dp_device *dp, u32 count)
{
u32 reg;
reg = count;
writel(reg, dp->reg_base + ANALOGIX_DP_LANE_COUNT_SET);
}
void analogix_dp_get_lane_count(struct analogix_dp_device *dp, u32 *count)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LANE_COUNT_SET);
*count = reg;
}
void analogix_dp_enable_enhanced_mode(struct analogix_dp_device *dp,
bool enable)
{
u32 reg;
if (enable) {
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
reg |= ENHANCED;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
reg &= ~ENHANCED;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
}
}
void analogix_dp_set_training_pattern(struct analogix_dp_device *dp,
enum pattern_set pattern)
{
u32 reg;
switch (pattern) {
case PRBS7:
reg = SCRAMBLING_ENABLE | LINK_QUAL_PATTERN_SET_PRBS7;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
break;
case D10_2:
reg = SCRAMBLING_ENABLE | LINK_QUAL_PATTERN_SET_D10_2;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
break;
case TRAINING_PTN1:
reg = SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN1;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
break;
case TRAINING_PTN2:
reg = SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN2;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
break;
case DP_NONE:
reg = SCRAMBLING_ENABLE |
LINK_QUAL_PATTERN_SET_DISABLE |
SW_TRAINING_PATTERN_SET_NORMAL;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
break;
default:
break;
}
}
void analogix_dp_set_lane0_pre_emphasis(struct analogix_dp_device *dp,
u32 level)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LN0_LINK_TRAINING_CTL);
reg &= ~PRE_EMPHASIS_SET_MASK;
reg |= level << PRE_EMPHASIS_SET_SHIFT;
writel(reg, dp->reg_base + ANALOGIX_DP_LN0_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane1_pre_emphasis(struct analogix_dp_device *dp,
u32 level)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LN1_LINK_TRAINING_CTL);
reg &= ~PRE_EMPHASIS_SET_MASK;
reg |= level << PRE_EMPHASIS_SET_SHIFT;
writel(reg, dp->reg_base + ANALOGIX_DP_LN1_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane2_pre_emphasis(struct analogix_dp_device *dp,
u32 level)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LN2_LINK_TRAINING_CTL);
reg &= ~PRE_EMPHASIS_SET_MASK;
reg |= level << PRE_EMPHASIS_SET_SHIFT;
writel(reg, dp->reg_base + ANALOGIX_DP_LN2_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane3_pre_emphasis(struct analogix_dp_device *dp,
u32 level)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_LN3_LINK_TRAINING_CTL);
reg &= ~PRE_EMPHASIS_SET_MASK;
reg |= level << PRE_EMPHASIS_SET_SHIFT;
writel(reg, dp->reg_base + ANALOGIX_DP_LN3_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane0_link_training(struct analogix_dp_device *dp,
u32 training_lane)
{
u32 reg;
reg = training_lane;
writel(reg, dp->reg_base + ANALOGIX_DP_LN0_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane1_link_training(struct analogix_dp_device *dp,
u32 training_lane)
{
u32 reg;
reg = training_lane;
writel(reg, dp->reg_base + ANALOGIX_DP_LN1_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane2_link_training(struct analogix_dp_device *dp,
u32 training_lane)
{
u32 reg;
reg = training_lane;
writel(reg, dp->reg_base + ANALOGIX_DP_LN2_LINK_TRAINING_CTL);
}
void analogix_dp_set_lane3_link_training(struct analogix_dp_device *dp,
u32 training_lane)
{
u32 reg;
reg = training_lane;
writel(reg, dp->reg_base + ANALOGIX_DP_LN3_LINK_TRAINING_CTL);
}
u32 analogix_dp_get_lane0_link_training(struct analogix_dp_device *dp)
{
return readl(dp->reg_base + ANALOGIX_DP_LN0_LINK_TRAINING_CTL);
}
u32 analogix_dp_get_lane1_link_training(struct analogix_dp_device *dp)
{
return readl(dp->reg_base + ANALOGIX_DP_LN1_LINK_TRAINING_CTL);
}
u32 analogix_dp_get_lane2_link_training(struct analogix_dp_device *dp)
{
return readl(dp->reg_base + ANALOGIX_DP_LN2_LINK_TRAINING_CTL);
}
u32 analogix_dp_get_lane3_link_training(struct analogix_dp_device *dp)
{
return readl(dp->reg_base + ANALOGIX_DP_LN3_LINK_TRAINING_CTL);
}
void analogix_dp_reset_macro(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_PHY_TEST);
reg |= MACRO_RST;
writel(reg, dp->reg_base + ANALOGIX_DP_PHY_TEST);
/* 10 us is the minimum reset time. */
usleep_range(10, 20);
reg &= ~MACRO_RST;
writel(reg, dp->reg_base + ANALOGIX_DP_PHY_TEST);
}
void analogix_dp_init_video(struct analogix_dp_device *dp)
{
u32 reg;
reg = VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG;
writel(reg, dp->reg_base + ANALOGIX_DP_COMMON_INT_STA_1);
reg = 0x0;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_1);
reg = CHA_CRI(4) | CHA_CTRL;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_2);
reg = 0x0;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
reg = VID_HRES_TH(2) | VID_VRES_TH(0);
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_8);
}
void analogix_dp_set_video_color_format(struct analogix_dp_device *dp)
{
u32 reg;
/* Configure the input color depth, color space, dynamic range */
reg = (dp->video_info.dynamic_range << IN_D_RANGE_SHIFT) |
(dp->video_info.color_depth << IN_BPC_SHIFT) |
(dp->video_info.color_space << IN_COLOR_F_SHIFT);
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_2);
/* Set Input Color YCbCr Coefficients to ITU601 or ITU709 */
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_3);
reg &= ~IN_YC_COEFFI_MASK;
if (dp->video_info.ycbcr_coeff)
reg |= IN_YC_COEFFI_ITU709;
else
reg |= IN_YC_COEFFI_ITU601;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_3);
}
int analogix_dp_is_slave_video_stream_clock_on(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_1);
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_1);
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_1);
if (!(reg & DET_STA)) {
dev_dbg(dp->dev, "Input stream clock not detected.\n");
return -EINVAL;
}
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_2);
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_2);
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_2);
dev_dbg(dp->dev, "wait SYS_CTL_2.\n");
if (reg & CHA_STA) {
dev_dbg(dp->dev, "Input stream clk is changing\n");
return -EINVAL;
}
return 0;
}
void analogix_dp_set_video_cr_mn(struct analogix_dp_device *dp,
enum clock_recovery_m_value_type type,
u32 m_value, u32 n_value)
{
u32 reg;
if (type == REGISTER_M) {
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
reg |= FIX_M_VID;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
reg = m_value & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_M_VID_0);
reg = (m_value >> 8) & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_M_VID_1);
reg = (m_value >> 16) & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_M_VID_2);
reg = n_value & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_N_VID_0);
reg = (n_value >> 8) & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_N_VID_1);
reg = (n_value >> 16) & 0xff;
writel(reg, dp->reg_base + ANALOGIX_DP_N_VID_2);
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
reg &= ~FIX_M_VID;
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_4);
writel(0x00, dp->reg_base + ANALOGIX_DP_N_VID_0);
writel(0x80, dp->reg_base + ANALOGIX_DP_N_VID_1);
writel(0x00, dp->reg_base + ANALOGIX_DP_N_VID_2);
}
}
void analogix_dp_set_video_timing_mode(struct analogix_dp_device *dp, u32 type)
{
u32 reg;
if (type == VIDEO_TIMING_FROM_CAPTURE) {
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg &= ~FORMAT_SEL;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg |= FORMAT_SEL;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
}
}
void analogix_dp_enable_video_master(struct analogix_dp_device *dp, bool enable)
{
u32 reg;
if (enable) {
reg = readl(dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
reg &= ~VIDEO_MODE_MASK;
reg |= VIDEO_MASTER_MODE_EN | VIDEO_MODE_MASTER_MODE;
writel(reg, dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
} else {
reg = readl(dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
reg &= ~VIDEO_MODE_MASK;
reg |= VIDEO_MODE_SLAVE_MODE;
writel(reg, dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
}
}
void analogix_dp_start_video(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
reg |= VIDEO_EN;
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_1);
}
int analogix_dp_is_video_stream_on(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
writel(reg, dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
reg = readl(dp->reg_base + ANALOGIX_DP_SYS_CTL_3);
if (!(reg & STRM_VALID)) {
dev_dbg(dp->dev, "Input video stream is not detected.\n");
return -EINVAL;
}
return 0;
}
void analogix_dp_config_video_slave_mode(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_FUNC_EN_1);
if (dp->plat_data && is_rockchip(dp->plat_data->dev_type)) {
reg &= ~(RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N);
} else {
reg &= ~(MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N);
reg |= MASTER_VID_FUNC_EN_N;
}
writel(reg, dp->reg_base + ANALOGIX_DP_FUNC_EN_1);
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg &= ~INTERACE_SCAN_CFG;
reg |= (dp->video_info.interlaced << 2);
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg &= ~VSYNC_POLARITY_CFG;
reg |= (dp->video_info.v_sync_polarity << 1);
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg &= ~HSYNC_POLARITY_CFG;
reg |= (dp->video_info.h_sync_polarity << 0);
writel(reg, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_10);
reg = AUDIO_MODE_SPDIF_MODE | VIDEO_MODE_SLAVE_MODE;
writel(reg, dp->reg_base + ANALOGIX_DP_SOC_GENERAL_CTL);
}
void analogix_dp_enable_scrambling(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
reg &= ~SCRAMBLING_DISABLE;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
}
void analogix_dp_disable_scrambling(struct analogix_dp_device *dp)
{
u32 reg;
reg = readl(dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
reg |= SCRAMBLING_DISABLE;
writel(reg, dp->reg_base + ANALOGIX_DP_TRAINING_PTN_SET);
}
void analogix_dp_enable_psr_crc(struct analogix_dp_device *dp)
{
writel(PSR_VID_CRC_ENABLE, dp->reg_base + ANALOGIX_DP_CRC_CON);
}
static ssize_t analogix_dp_get_psr_status(struct analogix_dp_device *dp)
{
ssize_t val;
u8 status;
val = drm_dp_dpcd_readb(&dp->aux, DP_PSR_STATUS, &status);
if (val < 0) {
dev_err(dp->dev, "PSR_STATUS read failed ret=%zd", val);
return val;
}
return status;
}
int analogix_dp_send_psr_spd(struct analogix_dp_device *dp,
struct dp_sdp *vsc, bool blocking)
{
unsigned int val;
int ret;
ssize_t psr_status;
/* don't send info frame */
val = readl(dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
val &= ~IF_EN;
writel(val, dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
/* configure single frame update mode */
writel(PSR_FRAME_UP_TYPE_BURST | PSR_CRC_SEL_HARDWARE,
dp->reg_base + ANALOGIX_DP_PSR_FRAME_UPDATE_CTRL);
/* configure VSC HB0~HB3 */
writel(vsc->sdp_header.HB0, dp->reg_base + ANALOGIX_DP_SPD_HB0);
writel(vsc->sdp_header.HB1, dp->reg_base + ANALOGIX_DP_SPD_HB1);
writel(vsc->sdp_header.HB2, dp->reg_base + ANALOGIX_DP_SPD_HB2);
writel(vsc->sdp_header.HB3, dp->reg_base + ANALOGIX_DP_SPD_HB3);
/* configure reused VSC PB0~PB3, magic number from vendor */
writel(0x00, dp->reg_base + ANALOGIX_DP_SPD_PB0);
writel(0x16, dp->reg_base + ANALOGIX_DP_SPD_PB1);
writel(0xCE, dp->reg_base + ANALOGIX_DP_SPD_PB2);
writel(0x5D, dp->reg_base + ANALOGIX_DP_SPD_PB3);
/* configure DB0 / DB1 values */
writel(vsc->db[0], dp->reg_base + ANALOGIX_DP_VSC_SHADOW_DB0);
writel(vsc->db[1], dp->reg_base + ANALOGIX_DP_VSC_SHADOW_DB1);
/* set reuse spd inforframe */
val = readl(dp->reg_base + ANALOGIX_DP_VIDEO_CTL_3);
val |= REUSE_SPD_EN;
writel(val, dp->reg_base + ANALOGIX_DP_VIDEO_CTL_3);
/* mark info frame update */
val = readl(dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
val = (val | IF_UP) & ~IF_EN;
writel(val, dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
/* send info frame */
val = readl(dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
val |= IF_EN;
writel(val, dp->reg_base + ANALOGIX_DP_PKT_SEND_CTL);
if (!blocking)
return 0;
/*
* db[1]!=0: entering PSR, wait for fully active remote frame buffer.
* db[1]==0: exiting PSR, wait for either
* (a) ACTIVE_RESYNC - the sink "must display the
* incoming active frames from the Source device with no visible
* glitches and/or artifacts", even though timings may still be
* re-synchronizing; or
* (b) INACTIVE - the transition is fully complete.
*/
ret = readx_poll_timeout(analogix_dp_get_psr_status, dp, psr_status,
psr_status >= 0 &&
((vsc->db[1] && psr_status == DP_PSR_SINK_ACTIVE_RFB) ||
(!vsc->db[1] && (psr_status == DP_PSR_SINK_ACTIVE_RESYNC ||
psr_status == DP_PSR_SINK_INACTIVE))),
1500, DP_TIMEOUT_PSR_LOOP_MS * 1000);
if (ret) {
dev_warn(dp->dev, "Failed to apply PSR %d\n", ret);
return ret;
}
return 0;
}
ssize_t analogix_dp_transfer(struct analogix_dp_device *dp,
struct drm_dp_aux_msg *msg)
{
u32 reg;
u32 status_reg;
u8 *buffer = msg->buffer;
unsigned int i;
int num_transferred = 0;
int ret;
/* Buffer size of AUX CH is 16 bytes */
if (WARN_ON(msg->size > 16))
return -E2BIG;
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, dp->reg_base + ANALOGIX_DP_BUFFER_DATA_CTL);
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_I2C_WRITE:
reg = AUX_TX_COMM_WRITE | AUX_TX_COMM_I2C_TRANSACTION;
if (msg->request & DP_AUX_I2C_MOT)
reg |= AUX_TX_COMM_MOT;
break;
case DP_AUX_I2C_READ:
reg = AUX_TX_COMM_READ | AUX_TX_COMM_I2C_TRANSACTION;
if (msg->request & DP_AUX_I2C_MOT)
reg |= AUX_TX_COMM_MOT;
break;
case DP_AUX_NATIVE_WRITE:
reg = AUX_TX_COMM_WRITE | AUX_TX_COMM_DP_TRANSACTION;
break;
case DP_AUX_NATIVE_READ:
reg = AUX_TX_COMM_READ | AUX_TX_COMM_DP_TRANSACTION;
break;
default:
return -EINVAL;
}
reg |= AUX_LENGTH(msg->size);
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_CH_CTL_1);
/* Select DPCD device address */
reg = AUX_ADDR_7_0(msg->address);
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_ADDR_7_0);
reg = AUX_ADDR_15_8(msg->address);
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_ADDR_15_8);
reg = AUX_ADDR_19_16(msg->address);
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_ADDR_19_16);
if (!(msg->request & DP_AUX_I2C_READ)) {
for (i = 0; i < msg->size; i++) {
reg = buffer[i];
writel(reg, dp->reg_base + ANALOGIX_DP_BUF_DATA_0 +
4 * i);
num_transferred++;
}
}
/* Enable AUX CH operation */
reg = AUX_EN;
/* Zero-sized messages specify address-only transactions. */
if (msg->size < 1)
reg |= ADDR_ONLY;
writel(reg, dp->reg_base + ANALOGIX_DP_AUX_CH_CTL_2);
ret = readx_poll_timeout(readl, dp->reg_base + ANALOGIX_DP_AUX_CH_CTL_2,
reg, !(reg & AUX_EN), 25, 500 * 1000);
if (ret) {
dev_err(dp->dev, "AUX CH enable timeout!\n");
goto aux_error;
}
/* TODO: Wait for an interrupt instead of looping? */
/* Is AUX CH command reply received? */
ret = readx_poll_timeout(readl, dp->reg_base + ANALOGIX_DP_INT_STA,
reg, reg & RPLY_RECEIV, 10, 20 * 1000);
if (ret) {
dev_err(dp->dev, "AUX CH cmd reply timeout!\n");
goto aux_error;
}
/* Clear interrupt source for AUX CH command reply */
writel(RPLY_RECEIV, dp->reg_base + ANALOGIX_DP_INT_STA);
/* Clear interrupt source for AUX CH access error */
reg = readl(dp->reg_base + ANALOGIX_DP_INT_STA);
status_reg = readl(dp->reg_base + ANALOGIX_DP_AUX_CH_STA);
if ((reg & AUX_ERR) || (status_reg & AUX_STATUS_MASK)) {
writel(AUX_ERR, dp->reg_base + ANALOGIX_DP_INT_STA);
dev_warn(dp->dev, "AUX CH error happened: %#x (%d)\n",
status_reg & AUX_STATUS_MASK, !!(reg & AUX_ERR));
goto aux_error;
}
if (msg->request & DP_AUX_I2C_READ) {
for (i = 0; i < msg->size; i++) {
reg = readl(dp->reg_base + ANALOGIX_DP_BUF_DATA_0 +
4 * i);
buffer[i] = (unsigned char)reg;
num_transferred++;
}
}
/* Check if Rx sends defer */
reg = readl(dp->reg_base + ANALOGIX_DP_AUX_RX_COMM);
if (reg == AUX_RX_COMM_AUX_DEFER)
msg->reply = DP_AUX_NATIVE_REPLY_DEFER;
else if (reg == AUX_RX_COMM_I2C_DEFER)
msg->reply = DP_AUX_I2C_REPLY_DEFER;
else if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE ||
(msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_READ)
msg->reply = DP_AUX_I2C_REPLY_ACK;
else if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE ||
(msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_READ)
msg->reply = DP_AUX_NATIVE_REPLY_ACK;
return num_transferred > 0 ? num_transferred : -EBUSY;
aux_error:
/* if aux err happen, reset aux */
analogix_dp_init_aux(dp);
return -EREMOTEIO;
}
| linux-master | drivers/gpu/drm/bridge/analogix/analogix_dp_reg.c |
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright(c) 2016, Analogix Semiconductor.
* Copyright(c) 2017, Icenowy Zheng <[email protected]>
*
* Based on anx7808 driver obtained from chromeos with copyright:
* Copyright(c) 2013, Google Inc.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "analogix-i2c-dptx.h"
#include "analogix-i2c-txcommon.h"
#define POLL_DELAY 50000 /* us */
#define POLL_TIMEOUT 5000000 /* us */
#define I2C_IDX_DPTX 0
#define I2C_IDX_TXCOM 1
static const u8 anx6345_i2c_addresses[] = {
[I2C_IDX_DPTX] = 0x70,
[I2C_IDX_TXCOM] = 0x72,
};
#define I2C_NUM_ADDRESSES ARRAY_SIZE(anx6345_i2c_addresses)
struct anx6345 {
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct i2c_client *client;
struct edid *edid;
struct drm_connector connector;
struct drm_panel *panel;
struct regulator *dvdd12;
struct regulator *dvdd25;
struct gpio_desc *gpiod_reset;
struct mutex lock; /* protect EDID access */
/* I2C Slave addresses of ANX6345 are mapped as DPTX and SYS */
struct i2c_client *i2c_clients[I2C_NUM_ADDRESSES];
struct regmap *map[I2C_NUM_ADDRESSES];
u16 chipid;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
bool powered;
};
static inline struct anx6345 *connector_to_anx6345(struct drm_connector *c)
{
return container_of(c, struct anx6345, connector);
}
static inline struct anx6345 *bridge_to_anx6345(struct drm_bridge *bridge)
{
return container_of(bridge, struct anx6345, bridge);
}
static int anx6345_set_bits(struct regmap *map, u8 reg, u8 mask)
{
return regmap_update_bits(map, reg, mask, mask);
}
static int anx6345_clear_bits(struct regmap *map, u8 reg, u8 mask)
{
return regmap_update_bits(map, reg, mask, 0);
}
static ssize_t anx6345_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct anx6345 *anx6345 = container_of(aux, struct anx6345, aux);
return anx_dp_aux_transfer(anx6345->map[I2C_IDX_DPTX], msg);
}
static int anx6345_dp_link_training(struct anx6345 *anx6345)
{
unsigned int value;
u8 dp_bw, dpcd[2];
int err;
err = anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM],
SP_POWERDOWN_CTRL_REG,
SP_TOTAL_PD);
if (err)
return err;
err = drm_dp_dpcd_readb(&anx6345->aux, DP_MAX_LINK_RATE, &dp_bw);
if (err < 0)
return err;
switch (dp_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
DRM_DEBUG_KMS("DP bandwidth (%#02x) not supported\n", dp_bw);
return -EINVAL;
}
err = anx6345_set_bits(anx6345->map[I2C_IDX_TXCOM], SP_VID_CTRL1_REG,
SP_VIDEO_MUTE);
if (err)
return err;
err = anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM],
SP_VID_CTRL1_REG, SP_VIDEO_EN);
if (err)
return err;
/* Get DPCD info */
err = drm_dp_dpcd_read(&anx6345->aux, DP_DPCD_REV,
&anx6345->dpcd, DP_RECEIVER_CAP_SIZE);
if (err < 0) {
DRM_ERROR("Failed to read DPCD: %d\n", err);
return err;
}
/* Clear channel x SERDES power down */
err = anx6345_clear_bits(anx6345->map[I2C_IDX_DPTX],
SP_DP_ANALOG_POWER_DOWN_REG, SP_CH0_PD);
if (err)
return err;
/*
* Power up the sink (DP_SET_POWER register is only available on DPCD
* v1.1 and later).
*/
if (anx6345->dpcd[DP_DPCD_REV] >= 0x11) {
err = drm_dp_dpcd_readb(&anx6345->aux, DP_SET_POWER, &dpcd[0]);
if (err < 0) {
DRM_ERROR("Failed to read DP_SET_POWER register: %d\n",
err);
return err;
}
dpcd[0] &= ~DP_SET_POWER_MASK;
dpcd[0] |= DP_SET_POWER_D0;
err = drm_dp_dpcd_writeb(&anx6345->aux, DP_SET_POWER, dpcd[0]);
if (err < 0) {
DRM_ERROR("Failed to power up DisplayPort link: %d\n",
err);
return err;
}
/*
* According to the DP 1.1 specification, a "Sink Device must
* exit the power saving state within 1 ms" (Section 2.5.3.1,
* Table 5-52, "Sink Control Field" (register 0x600).
*/
usleep_range(1000, 2000);
}
/* Possibly enable downspread on the sink */
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_DOWNSPREAD_CTRL1_REG, 0);
if (err)
return err;
if (anx6345->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5) {
DRM_DEBUG("Enable downspread on the sink\n");
/* 4000PPM */
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_DOWNSPREAD_CTRL1_REG, 8);
if (err)
return err;
err = drm_dp_dpcd_writeb(&anx6345->aux, DP_DOWNSPREAD_CTRL,
DP_SPREAD_AMP_0_5);
if (err < 0)
return err;
} else {
err = drm_dp_dpcd_writeb(&anx6345->aux, DP_DOWNSPREAD_CTRL, 0);
if (err < 0)
return err;
}
/* Set the lane count and the link rate on the sink */
if (drm_dp_enhanced_frame_cap(anx6345->dpcd))
err = anx6345_set_bits(anx6345->map[I2C_IDX_DPTX],
SP_DP_SYSTEM_CTRL_BASE + 4,
SP_ENHANCED_MODE);
else
err = anx6345_clear_bits(anx6345->map[I2C_IDX_DPTX],
SP_DP_SYSTEM_CTRL_BASE + 4,
SP_ENHANCED_MODE);
if (err)
return err;
dpcd[0] = dp_bw;
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_MAIN_LINK_BW_SET_REG, dpcd[0]);
if (err)
return err;
dpcd[1] = drm_dp_max_lane_count(anx6345->dpcd);
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_LANE_COUNT_SET_REG, dpcd[1]);
if (err)
return err;
if (drm_dp_enhanced_frame_cap(anx6345->dpcd))
dpcd[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
err = drm_dp_dpcd_write(&anx6345->aux, DP_LINK_BW_SET, dpcd,
sizeof(dpcd));
if (err < 0) {
DRM_ERROR("Failed to configure link: %d\n", err);
return err;
}
/* Start training on the source */
err = regmap_write(anx6345->map[I2C_IDX_DPTX], SP_DP_LT_CTRL_REG,
SP_LT_EN);
if (err)
return err;
return regmap_read_poll_timeout(anx6345->map[I2C_IDX_DPTX],
SP_DP_LT_CTRL_REG,
value, !(value & SP_DP_LT_INPROGRESS),
POLL_DELAY, POLL_TIMEOUT);
}
static int anx6345_tx_initialization(struct anx6345 *anx6345)
{
int err, i;
/* FIXME: colordepth is hardcoded for now */
err = regmap_write(anx6345->map[I2C_IDX_TXCOM], SP_VID_CTRL2_REG,
SP_IN_BPC_6BIT << SP_IN_BPC_SHIFT);
if (err)
return err;
err = regmap_write(anx6345->map[I2C_IDX_DPTX], SP_DP_PLL_CTRL_REG, 0);
if (err)
return err;
err = regmap_write(anx6345->map[I2C_IDX_TXCOM],
SP_ANALOG_DEBUG1_REG, 0);
if (err)
return err;
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_LINK_DEBUG_CTRL_REG,
SP_NEW_PRBS7 | SP_M_VID_DEBUG);
if (err)
return err;
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_ANALOG_POWER_DOWN_REG, 0);
if (err)
return err;
/* Force HPD */
err = anx6345_set_bits(anx6345->map[I2C_IDX_DPTX],
SP_DP_SYSTEM_CTRL_BASE + 3,
SP_HPD_FORCE | SP_HPD_CTRL);
if (err)
return err;
for (i = 0; i < 4; i++) {
/* 4 lanes */
err = regmap_write(anx6345->map[I2C_IDX_DPTX],
SP_DP_LANE0_LT_CTRL_REG + i, 0);
if (err)
return err;
}
/* Reset AUX */
err = anx6345_set_bits(anx6345->map[I2C_IDX_TXCOM],
SP_RESET_CTRL2_REG, SP_AUX_RST);
if (err)
return err;
return anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM],
SP_RESET_CTRL2_REG, SP_AUX_RST);
}
static void anx6345_poweron(struct anx6345 *anx6345)
{
int err;
/* Ensure reset is asserted before starting power on sequence */
gpiod_set_value_cansleep(anx6345->gpiod_reset, 1);
usleep_range(1000, 2000);
err = regulator_enable(anx6345->dvdd12);
if (err) {
DRM_ERROR("Failed to enable dvdd12 regulator: %d\n",
err);
return;
}
/* T1 - delay between VDD12 and VDD25 should be 0-2ms */
usleep_range(1000, 2000);
err = regulator_enable(anx6345->dvdd25);
if (err) {
DRM_ERROR("Failed to enable dvdd25 regulator: %d\n",
err);
return;
}
/* T2 - delay between RESETN and all power rail stable,
* should be 2-5ms
*/
usleep_range(2000, 5000);
gpiod_set_value_cansleep(anx6345->gpiod_reset, 0);
/* Power on registers module */
anx6345_set_bits(anx6345->map[I2C_IDX_TXCOM], SP_POWERDOWN_CTRL_REG,
SP_HDCP_PD | SP_AUDIO_PD | SP_VIDEO_PD | SP_LINK_PD);
anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM], SP_POWERDOWN_CTRL_REG,
SP_REGISTER_PD | SP_TOTAL_PD);
if (anx6345->panel)
drm_panel_prepare(anx6345->panel);
anx6345->powered = true;
}
static void anx6345_poweroff(struct anx6345 *anx6345)
{
int err;
gpiod_set_value_cansleep(anx6345->gpiod_reset, 1);
usleep_range(1000, 2000);
if (anx6345->panel)
drm_panel_unprepare(anx6345->panel);
err = regulator_disable(anx6345->dvdd25);
if (err) {
DRM_ERROR("Failed to disable dvdd25 regulator: %d\n",
err);
return;
}
usleep_range(5000, 10000);
err = regulator_disable(anx6345->dvdd12);
if (err) {
DRM_ERROR("Failed to disable dvdd12 regulator: %d\n",
err);
return;
}
usleep_range(1000, 2000);
anx6345->powered = false;
}
static int anx6345_start(struct anx6345 *anx6345)
{
int err;
if (!anx6345->powered)
anx6345_poweron(anx6345);
/* Power on needed modules */
err = anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM],
SP_POWERDOWN_CTRL_REG,
SP_VIDEO_PD | SP_LINK_PD);
err = anx6345_tx_initialization(anx6345);
if (err) {
DRM_ERROR("Failed eDP transmitter initialization: %d\n", err);
anx6345_poweroff(anx6345);
return err;
}
err = anx6345_dp_link_training(anx6345);
if (err) {
DRM_ERROR("Failed link training: %d\n", err);
anx6345_poweroff(anx6345);
return err;
}
/*
* This delay seems to help keep the hardware in a good state. Without
* it, there are times where it fails silently.
*/
usleep_range(10000, 15000);
return 0;
}
static int anx6345_config_dp_output(struct anx6345 *anx6345)
{
int err;
err = anx6345_clear_bits(anx6345->map[I2C_IDX_TXCOM], SP_VID_CTRL1_REG,
SP_VIDEO_MUTE);
if (err)
return err;
/* Enable DP output */
err = anx6345_set_bits(anx6345->map[I2C_IDX_TXCOM], SP_VID_CTRL1_REG,
SP_VIDEO_EN);
if (err)
return err;
/* Force stream valid */
return anx6345_set_bits(anx6345->map[I2C_IDX_DPTX],
SP_DP_SYSTEM_CTRL_BASE + 3,
SP_STRM_FORCE | SP_STRM_CTRL);
}
static int anx6345_get_downstream_info(struct anx6345 *anx6345)
{
u8 value;
int err;
err = drm_dp_dpcd_readb(&anx6345->aux, DP_SINK_COUNT, &value);
if (err < 0) {
DRM_ERROR("Get sink count failed %d\n", err);
return err;
}
if (!DP_GET_SINK_COUNT(value)) {
DRM_ERROR("Downstream disconnected\n");
return -EIO;
}
return 0;
}
static int anx6345_get_modes(struct drm_connector *connector)
{
struct anx6345 *anx6345 = connector_to_anx6345(connector);
int err, num_modes = 0;
bool power_off = false;
mutex_lock(&anx6345->lock);
if (!anx6345->edid) {
if (!anx6345->powered) {
anx6345_poweron(anx6345);
power_off = true;
}
err = anx6345_get_downstream_info(anx6345);
if (err) {
DRM_ERROR("Failed to get downstream info: %d\n", err);
goto unlock;
}
anx6345->edid = drm_get_edid(connector, &anx6345->aux.ddc);
if (!anx6345->edid)
DRM_ERROR("Failed to read EDID from panel\n");
err = drm_connector_update_edid_property(connector,
anx6345->edid);
if (err) {
DRM_ERROR("Failed to update EDID property: %d\n", err);
goto unlock;
}
}
num_modes += drm_add_edid_modes(connector, anx6345->edid);
/* Driver currently supports only 6bpc */
connector->display_info.bpc = 6;
unlock:
if (power_off)
anx6345_poweroff(anx6345);
mutex_unlock(&anx6345->lock);
if (!num_modes && anx6345->panel)
num_modes += drm_panel_get_modes(anx6345->panel, connector);
return num_modes;
}
static const struct drm_connector_helper_funcs anx6345_connector_helper_funcs = {
.get_modes = anx6345_get_modes,
};
static void
anx6345_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs anx6345_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = anx6345_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int anx6345_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct anx6345 *anx6345 = bridge_to_anx6345(bridge);
int err;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
DRM_ERROR("Fix bridge driver to make connector optional!");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
/* Register aux channel */
anx6345->aux.name = "DP-AUX";
anx6345->aux.dev = &anx6345->client->dev;
anx6345->aux.drm_dev = bridge->dev;
anx6345->aux.transfer = anx6345_aux_transfer;
err = drm_dp_aux_register(&anx6345->aux);
if (err < 0) {
DRM_ERROR("Failed to register aux channel: %d\n", err);
return err;
}
err = drm_connector_init(bridge->dev, &anx6345->connector,
&anx6345_connector_funcs,
DRM_MODE_CONNECTOR_eDP);
if (err) {
DRM_ERROR("Failed to initialize connector: %d\n", err);
goto aux_unregister;
}
drm_connector_helper_add(&anx6345->connector,
&anx6345_connector_helper_funcs);
anx6345->connector.polled = DRM_CONNECTOR_POLL_HPD;
err = drm_connector_attach_encoder(&anx6345->connector,
bridge->encoder);
if (err) {
DRM_ERROR("Failed to link up connector to encoder: %d\n", err);
goto connector_cleanup;
}
err = drm_connector_register(&anx6345->connector);
if (err) {
DRM_ERROR("Failed to register connector: %d\n", err);
goto connector_cleanup;
}
return 0;
connector_cleanup:
drm_connector_cleanup(&anx6345->connector);
aux_unregister:
drm_dp_aux_unregister(&anx6345->aux);
return err;
}
static void anx6345_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_anx6345(bridge)->aux);
}
static enum drm_mode_status
anx6345_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
/* Max 1200p at 5.4 Ghz, one lane */
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void anx6345_bridge_disable(struct drm_bridge *bridge)
{
struct anx6345 *anx6345 = bridge_to_anx6345(bridge);
/* Power off all modules except configuration registers access */
anx6345_set_bits(anx6345->map[I2C_IDX_TXCOM], SP_POWERDOWN_CTRL_REG,
SP_HDCP_PD | SP_AUDIO_PD | SP_VIDEO_PD | SP_LINK_PD);
if (anx6345->panel)
drm_panel_disable(anx6345->panel);
if (anx6345->powered)
anx6345_poweroff(anx6345);
}
static void anx6345_bridge_enable(struct drm_bridge *bridge)
{
struct anx6345 *anx6345 = bridge_to_anx6345(bridge);
int err;
if (anx6345->panel)
drm_panel_enable(anx6345->panel);
err = anx6345_start(anx6345);
if (err) {
DRM_ERROR("Failed to initialize: %d\n", err);
return;
}
err = anx6345_config_dp_output(anx6345);
if (err)
DRM_ERROR("Failed to enable DP output: %d\n", err);
}
static const struct drm_bridge_funcs anx6345_bridge_funcs = {
.attach = anx6345_bridge_attach,
.detach = anx6345_bridge_detach,
.mode_valid = anx6345_bridge_mode_valid,
.disable = anx6345_bridge_disable,
.enable = anx6345_bridge_enable,
};
static void unregister_i2c_dummy_clients(struct anx6345 *anx6345)
{
unsigned int i;
for (i = 1; i < ARRAY_SIZE(anx6345->i2c_clients); i++)
if (anx6345->i2c_clients[i] &&
anx6345->i2c_clients[i]->addr != anx6345->client->addr)
i2c_unregister_device(anx6345->i2c_clients[i]);
}
static const struct regmap_config anx6345_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.cache_type = REGCACHE_NONE,
};
static const u16 anx6345_chipid_list[] = {
0x6345,
};
static bool anx6345_get_chip_id(struct anx6345 *anx6345)
{
unsigned int i, idl, idh, version;
if (regmap_read(anx6345->map[I2C_IDX_TXCOM], SP_DEVICE_IDL_REG, &idl))
return false;
if (regmap_read(anx6345->map[I2C_IDX_TXCOM], SP_DEVICE_IDH_REG, &idh))
return false;
anx6345->chipid = (u8)idl | ((u8)idh << 8);
if (regmap_read(anx6345->map[I2C_IDX_TXCOM], SP_DEVICE_VERSION_REG,
&version))
return false;
for (i = 0; i < ARRAY_SIZE(anx6345_chipid_list); i++) {
if (anx6345->chipid == anx6345_chipid_list[i]) {
DRM_INFO("Found ANX%x (ver. %d) eDP Transmitter\n",
anx6345->chipid, version);
return true;
}
}
DRM_ERROR("ANX%x (ver. %d) not supported by this driver\n",
anx6345->chipid, version);
return false;
}
static int anx6345_i2c_probe(struct i2c_client *client)
{
struct anx6345 *anx6345;
struct device *dev;
int i, err;
anx6345 = devm_kzalloc(&client->dev, sizeof(*anx6345), GFP_KERNEL);
if (!anx6345)
return -ENOMEM;
mutex_init(&anx6345->lock);
anx6345->bridge.of_node = client->dev.of_node;
anx6345->client = client;
i2c_set_clientdata(client, anx6345);
dev = &anx6345->client->dev;
err = drm_of_find_panel_or_bridge(client->dev.of_node, 1, 0,
&anx6345->panel, NULL);
if (err == -EPROBE_DEFER)
return err;
if (err)
DRM_DEBUG("No panel found\n");
/* 1.2V digital core power regulator */
anx6345->dvdd12 = devm_regulator_get(dev, "dvdd12");
if (IS_ERR(anx6345->dvdd12)) {
if (PTR_ERR(anx6345->dvdd12) != -EPROBE_DEFER)
DRM_ERROR("Failed to get dvdd12 supply (%ld)\n",
PTR_ERR(anx6345->dvdd12));
return PTR_ERR(anx6345->dvdd12);
}
/* 2.5V digital core power regulator */
anx6345->dvdd25 = devm_regulator_get(dev, "dvdd25");
if (IS_ERR(anx6345->dvdd25)) {
if (PTR_ERR(anx6345->dvdd25) != -EPROBE_DEFER)
DRM_ERROR("Failed to get dvdd25 supply (%ld)\n",
PTR_ERR(anx6345->dvdd25));
return PTR_ERR(anx6345->dvdd25);
}
/* GPIO for chip reset */
anx6345->gpiod_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(anx6345->gpiod_reset)) {
DRM_ERROR("Reset gpio not found\n");
return PTR_ERR(anx6345->gpiod_reset);
}
/* Map slave addresses of ANX6345 */
for (i = 0; i < I2C_NUM_ADDRESSES; i++) {
if (anx6345_i2c_addresses[i] >> 1 != client->addr)
anx6345->i2c_clients[i] = i2c_new_dummy_device(client->adapter,
anx6345_i2c_addresses[i] >> 1);
else
anx6345->i2c_clients[i] = client;
if (IS_ERR(anx6345->i2c_clients[i])) {
err = PTR_ERR(anx6345->i2c_clients[i]);
DRM_ERROR("Failed to reserve I2C bus %02x\n",
anx6345_i2c_addresses[i]);
goto err_unregister_i2c;
}
anx6345->map[i] = devm_regmap_init_i2c(anx6345->i2c_clients[i],
&anx6345_regmap_config);
if (IS_ERR(anx6345->map[i])) {
err = PTR_ERR(anx6345->map[i]);
DRM_ERROR("Failed regmap initialization %02x\n",
anx6345_i2c_addresses[i]);
goto err_unregister_i2c;
}
}
/* Look for supported chip ID */
anx6345_poweron(anx6345);
if (anx6345_get_chip_id(anx6345)) {
anx6345->bridge.funcs = &anx6345_bridge_funcs;
drm_bridge_add(&anx6345->bridge);
return 0;
} else {
anx6345_poweroff(anx6345);
err = -ENODEV;
}
err_unregister_i2c:
unregister_i2c_dummy_clients(anx6345);
return err;
}
static void anx6345_i2c_remove(struct i2c_client *client)
{
struct anx6345 *anx6345 = i2c_get_clientdata(client);
drm_bridge_remove(&anx6345->bridge);
unregister_i2c_dummy_clients(anx6345);
kfree(anx6345->edid);
mutex_destroy(&anx6345->lock);
}
static const struct i2c_device_id anx6345_id[] = {
{ "anx6345", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, anx6345_id);
static const struct of_device_id anx6345_match_table[] = {
{ .compatible = "analogix,anx6345", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, anx6345_match_table);
static struct i2c_driver anx6345_driver = {
.driver = {
.name = "anx6345",
.of_match_table = anx6345_match_table,
},
.probe = anx6345_i2c_probe,
.remove = anx6345_i2c_remove,
.id_table = anx6345_id,
};
module_i2c_driver(anx6345_driver);
MODULE_DESCRIPTION("ANX6345 eDP Transmitter driver");
MODULE_AUTHOR("Icenowy Zheng <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/analogix/analogix-anx6345.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Analogix DP (Display Port) core interface driver.
*
* Copyright (C) 2012 Samsung Electronics Co., Ltd.
* Author: Jingoo Han <[email protected]>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <drm/bridge/analogix_dp.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_device.h>
#include <drm/drm_edid.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "analogix_dp_core.h"
#include "analogix_dp_reg.h"
#define to_dp(nm) container_of(nm, struct analogix_dp_device, nm)
static const bool verify_fast_training;
struct bridge_init {
struct i2c_client *client;
struct device_node *node;
};
static int analogix_dp_init_dp(struct analogix_dp_device *dp)
{
int ret;
analogix_dp_reset(dp);
analogix_dp_swreset(dp);
analogix_dp_init_analog_param(dp);
analogix_dp_init_interrupt(dp);
/* SW defined function Normal operation */
analogix_dp_enable_sw_function(dp);
analogix_dp_config_interrupt(dp);
ret = analogix_dp_init_analog_func(dp);
if (ret)
return ret;
analogix_dp_init_hpd(dp);
analogix_dp_init_aux(dp);
return 0;
}
static int analogix_dp_detect_hpd(struct analogix_dp_device *dp)
{
int timeout_loop = 0;
while (timeout_loop < DP_TIMEOUT_LOOP_COUNT) {
if (analogix_dp_get_plug_in_status(dp) == 0)
return 0;
timeout_loop++;
usleep_range(1000, 1100);
}
/*
* Some edp screen do not have hpd signal, so we can't just
* return failed when hpd plug in detect failed, DT property
* "force-hpd" would indicate whether driver need this.
*/
if (!dp->force_hpd)
return -ETIMEDOUT;
/*
* The eDP TRM indicate that if HPD_STATUS(RO) is 0, AUX CH
* will not work, so we need to give a force hpd action to
* set HPD_STATUS manually.
*/
dev_dbg(dp->dev, "failed to get hpd plug status, try to force hpd\n");
analogix_dp_force_hpd(dp);
if (analogix_dp_get_plug_in_status(dp) != 0) {
dev_err(dp->dev, "failed to get hpd plug in status\n");
return -EINVAL;
}
dev_dbg(dp->dev, "success to get plug in status after force hpd\n");
return 0;
}
static bool analogix_dp_detect_sink_psr(struct analogix_dp_device *dp)
{
unsigned char psr_version;
int ret;
ret = drm_dp_dpcd_readb(&dp->aux, DP_PSR_SUPPORT, &psr_version);
if (ret != 1) {
dev_err(dp->dev, "failed to get PSR version, disable it\n");
return false;
}
dev_dbg(dp->dev, "Panel PSR version : %x\n", psr_version);
return psr_version & DP_PSR_IS_SUPPORTED;
}
static int analogix_dp_enable_sink_psr(struct analogix_dp_device *dp)
{
unsigned char psr_en;
int ret;
/* Disable psr function */
ret = drm_dp_dpcd_readb(&dp->aux, DP_PSR_EN_CFG, &psr_en);
if (ret != 1) {
dev_err(dp->dev, "failed to get psr config\n");
goto end;
}
psr_en &= ~DP_PSR_ENABLE;
ret = drm_dp_dpcd_writeb(&dp->aux, DP_PSR_EN_CFG, psr_en);
if (ret != 1) {
dev_err(dp->dev, "failed to disable panel psr\n");
goto end;
}
/* Main-Link transmitter remains active during PSR active states */
psr_en = DP_PSR_CRC_VERIFICATION;
ret = drm_dp_dpcd_writeb(&dp->aux, DP_PSR_EN_CFG, psr_en);
if (ret != 1) {
dev_err(dp->dev, "failed to set panel psr\n");
goto end;
}
/* Enable psr function */
psr_en = DP_PSR_ENABLE | DP_PSR_CRC_VERIFICATION;
ret = drm_dp_dpcd_writeb(&dp->aux, DP_PSR_EN_CFG, psr_en);
if (ret != 1) {
dev_err(dp->dev, "failed to set panel psr\n");
goto end;
}
analogix_dp_enable_psr_crc(dp);
dp->psr_supported = true;
return 0;
end:
dev_err(dp->dev, "enable psr fail, force to disable psr\n");
return ret;
}
static int
analogix_dp_enable_rx_to_enhanced_mode(struct analogix_dp_device *dp,
bool enable)
{
u8 data;
int ret;
ret = drm_dp_dpcd_readb(&dp->aux, DP_LANE_COUNT_SET, &data);
if (ret != 1)
return ret;
if (enable)
ret = drm_dp_dpcd_writeb(&dp->aux, DP_LANE_COUNT_SET,
DP_LANE_COUNT_ENHANCED_FRAME_EN |
DPCD_LANE_COUNT_SET(data));
else
ret = drm_dp_dpcd_writeb(&dp->aux, DP_LANE_COUNT_SET,
DPCD_LANE_COUNT_SET(data));
return ret < 0 ? ret : 0;
}
static int analogix_dp_is_enhanced_mode_available(struct analogix_dp_device *dp,
u8 *enhanced_mode_support)
{
u8 data;
int ret;
ret = drm_dp_dpcd_readb(&dp->aux, DP_MAX_LANE_COUNT, &data);
if (ret != 1) {
*enhanced_mode_support = 0;
return ret;
}
*enhanced_mode_support = DPCD_ENHANCED_FRAME_CAP(data);
return 0;
}
static int analogix_dp_set_enhanced_mode(struct analogix_dp_device *dp)
{
u8 data;
int ret;
ret = analogix_dp_is_enhanced_mode_available(dp, &data);
if (ret < 0)
return ret;
ret = analogix_dp_enable_rx_to_enhanced_mode(dp, data);
if (ret < 0)
return ret;
analogix_dp_enable_enhanced_mode(dp, data);
return 0;
}
static int analogix_dp_training_pattern_dis(struct analogix_dp_device *dp)
{
int ret;
analogix_dp_set_training_pattern(dp, DP_NONE);
ret = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
return ret < 0 ? ret : 0;
}
static void
analogix_dp_set_lane_lane_pre_emphasis(struct analogix_dp_device *dp,
int pre_emphasis, int lane)
{
switch (lane) {
case 0:
analogix_dp_set_lane0_pre_emphasis(dp, pre_emphasis);
break;
case 1:
analogix_dp_set_lane1_pre_emphasis(dp, pre_emphasis);
break;
case 2:
analogix_dp_set_lane2_pre_emphasis(dp, pre_emphasis);
break;
case 3:
analogix_dp_set_lane3_pre_emphasis(dp, pre_emphasis);
break;
}
}
static int analogix_dp_link_start(struct analogix_dp_device *dp)
{
u8 buf[4];
int lane, lane_count, pll_tries, retval;
lane_count = dp->link_train.lane_count;
dp->link_train.lt_state = CLOCK_RECOVERY;
dp->link_train.eq_loop = 0;
for (lane = 0; lane < lane_count; lane++)
dp->link_train.cr_loop[lane] = 0;
/* Set link rate and count as you want to establish*/
analogix_dp_set_link_bandwidth(dp, dp->link_train.link_rate);
analogix_dp_set_lane_count(dp, dp->link_train.lane_count);
/* Setup RX configuration */
buf[0] = dp->link_train.link_rate;
buf[1] = dp->link_train.lane_count;
retval = drm_dp_dpcd_write(&dp->aux, DP_LINK_BW_SET, buf, 2);
if (retval < 0)
return retval;
/* set enhanced mode if available */
retval = analogix_dp_set_enhanced_mode(dp);
if (retval < 0) {
dev_err(dp->dev, "failed to set enhance mode\n");
return retval;
}
/* Set TX pre-emphasis to minimum */
for (lane = 0; lane < lane_count; lane++)
analogix_dp_set_lane_lane_pre_emphasis(dp,
PRE_EMPHASIS_LEVEL_0, lane);
/* Wait for PLL lock */
pll_tries = 0;
while (analogix_dp_get_pll_lock_status(dp) == PLL_UNLOCKED) {
if (pll_tries == DP_TIMEOUT_LOOP_COUNT) {
dev_err(dp->dev, "Wait for PLL lock timed out\n");
return -ETIMEDOUT;
}
pll_tries++;
usleep_range(90, 120);
}
/* Set training pattern 1 */
analogix_dp_set_training_pattern(dp, TRAINING_PTN1);
/* Set RX training pattern */
retval = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_1);
if (retval < 0)
return retval;
for (lane = 0; lane < lane_count; lane++)
buf[lane] = DP_TRAIN_PRE_EMPH_LEVEL_0 |
DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
retval = drm_dp_dpcd_write(&dp->aux, DP_TRAINING_LANE0_SET, buf,
lane_count);
if (retval < 0)
return retval;
return 0;
}
static unsigned char analogix_dp_get_lane_status(u8 link_status[2], int lane)
{
int shift = (lane & 1) * 4;
u8 link_value = link_status[lane >> 1];
return (link_value >> shift) & 0xf;
}
static int analogix_dp_clock_recovery_ok(u8 link_status[2], int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = analogix_dp_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return -EINVAL;
}
return 0;
}
static int analogix_dp_channel_eq_ok(u8 link_status[2], u8 link_align,
int lane_count)
{
int lane;
u8 lane_status;
if ((link_align & DP_INTERLANE_ALIGN_DONE) == 0)
return -EINVAL;
for (lane = 0; lane < lane_count; lane++) {
lane_status = analogix_dp_get_lane_status(link_status, lane);
lane_status &= DP_CHANNEL_EQ_BITS;
if (lane_status != DP_CHANNEL_EQ_BITS)
return -EINVAL;
}
return 0;
}
static unsigned char
analogix_dp_get_adjust_request_voltage(u8 adjust_request[2], int lane)
{
int shift = (lane & 1) * 4;
u8 link_value = adjust_request[lane >> 1];
return (link_value >> shift) & 0x3;
}
static unsigned char analogix_dp_get_adjust_request_pre_emphasis(
u8 adjust_request[2],
int lane)
{
int shift = (lane & 1) * 4;
u8 link_value = adjust_request[lane >> 1];
return ((link_value >> shift) & 0xc) >> 2;
}
static void analogix_dp_set_lane_link_training(struct analogix_dp_device *dp,
u8 training_lane_set, int lane)
{
switch (lane) {
case 0:
analogix_dp_set_lane0_link_training(dp, training_lane_set);
break;
case 1:
analogix_dp_set_lane1_link_training(dp, training_lane_set);
break;
case 2:
analogix_dp_set_lane2_link_training(dp, training_lane_set);
break;
case 3:
analogix_dp_set_lane3_link_training(dp, training_lane_set);
break;
}
}
static unsigned int
analogix_dp_get_lane_link_training(struct analogix_dp_device *dp,
int lane)
{
u32 reg;
switch (lane) {
case 0:
reg = analogix_dp_get_lane0_link_training(dp);
break;
case 1:
reg = analogix_dp_get_lane1_link_training(dp);
break;
case 2:
reg = analogix_dp_get_lane2_link_training(dp);
break;
case 3:
reg = analogix_dp_get_lane3_link_training(dp);
break;
default:
WARN_ON(1);
return 0;
}
return reg;
}
static void analogix_dp_reduce_link_rate(struct analogix_dp_device *dp)
{
analogix_dp_training_pattern_dis(dp);
analogix_dp_set_enhanced_mode(dp);
dp->link_train.lt_state = FAILED;
}
static void analogix_dp_get_adjust_training_lane(struct analogix_dp_device *dp,
u8 adjust_request[2])
{
int lane, lane_count;
u8 voltage_swing, pre_emphasis, training_lane;
lane_count = dp->link_train.lane_count;
for (lane = 0; lane < lane_count; lane++) {
voltage_swing = analogix_dp_get_adjust_request_voltage(
adjust_request, lane);
pre_emphasis = analogix_dp_get_adjust_request_pre_emphasis(
adjust_request, lane);
training_lane = DPCD_VOLTAGE_SWING_SET(voltage_swing) |
DPCD_PRE_EMPHASIS_SET(pre_emphasis);
if (voltage_swing == VOLTAGE_LEVEL_3)
training_lane |= DP_TRAIN_MAX_SWING_REACHED;
if (pre_emphasis == PRE_EMPHASIS_LEVEL_3)
training_lane |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
dp->link_train.training_lane[lane] = training_lane;
}
}
static int analogix_dp_process_clock_recovery(struct analogix_dp_device *dp)
{
int lane, lane_count, retval;
u8 voltage_swing, pre_emphasis, training_lane;
u8 link_status[2], adjust_request[2];
usleep_range(100, 101);
lane_count = dp->link_train.lane_count;
retval = drm_dp_dpcd_read(&dp->aux, DP_LANE0_1_STATUS, link_status, 2);
if (retval < 0)
return retval;
retval = drm_dp_dpcd_read(&dp->aux, DP_ADJUST_REQUEST_LANE0_1,
adjust_request, 2);
if (retval < 0)
return retval;
if (analogix_dp_clock_recovery_ok(link_status, lane_count) == 0) {
/* set training pattern 2 for EQ */
analogix_dp_set_training_pattern(dp, TRAINING_PTN2);
retval = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET,
DP_LINK_SCRAMBLING_DISABLE |
DP_TRAINING_PATTERN_2);
if (retval < 0)
return retval;
dev_dbg(dp->dev, "Link Training Clock Recovery success\n");
dp->link_train.lt_state = EQUALIZER_TRAINING;
} else {
for (lane = 0; lane < lane_count; lane++) {
training_lane = analogix_dp_get_lane_link_training(
dp, lane);
voltage_swing = analogix_dp_get_adjust_request_voltage(
adjust_request, lane);
pre_emphasis = analogix_dp_get_adjust_request_pre_emphasis(
adjust_request, lane);
if (DPCD_VOLTAGE_SWING_GET(training_lane) ==
voltage_swing &&
DPCD_PRE_EMPHASIS_GET(training_lane) ==
pre_emphasis)
dp->link_train.cr_loop[lane]++;
if (dp->link_train.cr_loop[lane] == MAX_CR_LOOP ||
voltage_swing == VOLTAGE_LEVEL_3 ||
pre_emphasis == PRE_EMPHASIS_LEVEL_3) {
dev_err(dp->dev, "CR Max reached (%d,%d,%d)\n",
dp->link_train.cr_loop[lane],
voltage_swing, pre_emphasis);
analogix_dp_reduce_link_rate(dp);
return -EIO;
}
}
}
analogix_dp_get_adjust_training_lane(dp, adjust_request);
for (lane = 0; lane < lane_count; lane++)
analogix_dp_set_lane_link_training(dp,
dp->link_train.training_lane[lane], lane);
retval = drm_dp_dpcd_write(&dp->aux, DP_TRAINING_LANE0_SET,
dp->link_train.training_lane, lane_count);
if (retval < 0)
return retval;
return 0;
}
static int analogix_dp_process_equalizer_training(struct analogix_dp_device *dp)
{
int lane, lane_count, retval;
u32 reg;
u8 link_align, link_status[2], adjust_request[2];
usleep_range(400, 401);
lane_count = dp->link_train.lane_count;
retval = drm_dp_dpcd_read(&dp->aux, DP_LANE0_1_STATUS, link_status, 2);
if (retval < 0)
return retval;
if (analogix_dp_clock_recovery_ok(link_status, lane_count)) {
analogix_dp_reduce_link_rate(dp);
return -EIO;
}
retval = drm_dp_dpcd_read(&dp->aux, DP_ADJUST_REQUEST_LANE0_1,
adjust_request, 2);
if (retval < 0)
return retval;
retval = drm_dp_dpcd_readb(&dp->aux, DP_LANE_ALIGN_STATUS_UPDATED,
&link_align);
if (retval < 0)
return retval;
analogix_dp_get_adjust_training_lane(dp, adjust_request);
if (!analogix_dp_channel_eq_ok(link_status, link_align, lane_count)) {
/* traing pattern Set to Normal */
retval = analogix_dp_training_pattern_dis(dp);
if (retval < 0)
return retval;
dev_dbg(dp->dev, "Link Training success!\n");
analogix_dp_get_link_bandwidth(dp, ®);
dp->link_train.link_rate = reg;
dev_dbg(dp->dev, "final bandwidth = %.2x\n",
dp->link_train.link_rate);
analogix_dp_get_lane_count(dp, ®);
dp->link_train.lane_count = reg;
dev_dbg(dp->dev, "final lane count = %.2x\n",
dp->link_train.lane_count);
dp->link_train.lt_state = FINISHED;
return 0;
}
/* not all locked */
dp->link_train.eq_loop++;
if (dp->link_train.eq_loop > MAX_EQ_LOOP) {
dev_err(dp->dev, "EQ Max loop\n");
analogix_dp_reduce_link_rate(dp);
return -EIO;
}
for (lane = 0; lane < lane_count; lane++)
analogix_dp_set_lane_link_training(dp,
dp->link_train.training_lane[lane], lane);
retval = drm_dp_dpcd_write(&dp->aux, DP_TRAINING_LANE0_SET,
dp->link_train.training_lane, lane_count);
if (retval < 0)
return retval;
return 0;
}
static void analogix_dp_get_max_rx_bandwidth(struct analogix_dp_device *dp,
u8 *bandwidth)
{
u8 data;
/*
* For DP rev.1.1, Maximum link rate of Main Link lanes
* 0x06 = 1.62 Gbps, 0x0a = 2.7 Gbps
* For DP rev.1.2, Maximum link rate of Main Link lanes
* 0x06 = 1.62 Gbps, 0x0a = 2.7 Gbps, 0x14 = 5.4Gbps
*/
drm_dp_dpcd_readb(&dp->aux, DP_MAX_LINK_RATE, &data);
*bandwidth = data;
}
static void analogix_dp_get_max_rx_lane_count(struct analogix_dp_device *dp,
u8 *lane_count)
{
u8 data;
/*
* For DP rev.1.1, Maximum number of Main Link lanes
* 0x01 = 1 lane, 0x02 = 2 lanes, 0x04 = 4 lanes
*/
drm_dp_dpcd_readb(&dp->aux, DP_MAX_LANE_COUNT, &data);
*lane_count = DPCD_MAX_LANE_COUNT(data);
}
static int analogix_dp_full_link_train(struct analogix_dp_device *dp,
u32 max_lanes, u32 max_rate)
{
int retval = 0;
bool training_finished = false;
/*
* MACRO_RST must be applied after the PLL_LOCK to avoid
* the DP inter pair skew issue for at least 10 us
*/
analogix_dp_reset_macro(dp);
/* Initialize by reading RX's DPCD */
analogix_dp_get_max_rx_bandwidth(dp, &dp->link_train.link_rate);
analogix_dp_get_max_rx_lane_count(dp, &dp->link_train.lane_count);
if ((dp->link_train.link_rate != DP_LINK_BW_1_62) &&
(dp->link_train.link_rate != DP_LINK_BW_2_7) &&
(dp->link_train.link_rate != DP_LINK_BW_5_4)) {
dev_err(dp->dev, "Rx Max Link Rate is abnormal :%x !\n",
dp->link_train.link_rate);
dp->link_train.link_rate = DP_LINK_BW_1_62;
}
if (dp->link_train.lane_count == 0) {
dev_err(dp->dev, "Rx Max Lane count is abnormal :%x !\n",
dp->link_train.lane_count);
dp->link_train.lane_count = (u8)LANE_COUNT1;
}
/* Setup TX lane count & rate */
if (dp->link_train.lane_count > max_lanes)
dp->link_train.lane_count = max_lanes;
if (dp->link_train.link_rate > max_rate)
dp->link_train.link_rate = max_rate;
/* All DP analog module power up */
analogix_dp_set_analog_power_down(dp, POWER_ALL, 0);
dp->link_train.lt_state = START;
/* Process here */
while (!retval && !training_finished) {
switch (dp->link_train.lt_state) {
case START:
retval = analogix_dp_link_start(dp);
if (retval)
dev_err(dp->dev, "LT link start failed!\n");
break;
case CLOCK_RECOVERY:
retval = analogix_dp_process_clock_recovery(dp);
if (retval)
dev_err(dp->dev, "LT CR failed!\n");
break;
case EQUALIZER_TRAINING:
retval = analogix_dp_process_equalizer_training(dp);
if (retval)
dev_err(dp->dev, "LT EQ failed!\n");
break;
case FINISHED:
training_finished = 1;
break;
case FAILED:
return -EREMOTEIO;
}
}
if (retval)
dev_err(dp->dev, "eDP link training failed (%d)\n", retval);
return retval;
}
static int analogix_dp_fast_link_train(struct analogix_dp_device *dp)
{
int i, ret;
u8 link_align, link_status[2];
enum pll_status status;
analogix_dp_reset_macro(dp);
analogix_dp_set_link_bandwidth(dp, dp->link_train.link_rate);
analogix_dp_set_lane_count(dp, dp->link_train.lane_count);
for (i = 0; i < dp->link_train.lane_count; i++) {
analogix_dp_set_lane_link_training(dp,
dp->link_train.training_lane[i], i);
}
ret = readx_poll_timeout(analogix_dp_get_pll_lock_status, dp, status,
status != PLL_UNLOCKED, 120,
120 * DP_TIMEOUT_LOOP_COUNT);
if (ret) {
DRM_DEV_ERROR(dp->dev, "Wait for pll lock failed %d\n", ret);
return ret;
}
/* source Set training pattern 1 */
analogix_dp_set_training_pattern(dp, TRAINING_PTN1);
/* From DP spec, pattern must be on-screen for a minimum 500us */
usleep_range(500, 600);
analogix_dp_set_training_pattern(dp, TRAINING_PTN2);
/* From DP spec, pattern must be on-screen for a minimum 500us */
usleep_range(500, 600);
/* TODO: enhanced_mode?*/
analogix_dp_set_training_pattern(dp, DP_NONE);
/*
* Useful for debugging issues with fast link training, disable for more
* speed
*/
if (verify_fast_training) {
ret = drm_dp_dpcd_readb(&dp->aux, DP_LANE_ALIGN_STATUS_UPDATED,
&link_align);
if (ret < 0) {
DRM_DEV_ERROR(dp->dev, "Read align status failed %d\n",
ret);
return ret;
}
ret = drm_dp_dpcd_read(&dp->aux, DP_LANE0_1_STATUS, link_status,
2);
if (ret < 0) {
DRM_DEV_ERROR(dp->dev, "Read link status failed %d\n",
ret);
return ret;
}
if (analogix_dp_clock_recovery_ok(link_status,
dp->link_train.lane_count)) {
DRM_DEV_ERROR(dp->dev, "Clock recovery failed\n");
analogix_dp_reduce_link_rate(dp);
return -EIO;
}
if (analogix_dp_channel_eq_ok(link_status, link_align,
dp->link_train.lane_count)) {
DRM_DEV_ERROR(dp->dev, "Channel EQ failed\n");
analogix_dp_reduce_link_rate(dp);
return -EIO;
}
}
return 0;
}
static int analogix_dp_train_link(struct analogix_dp_device *dp)
{
if (dp->fast_train_enable)
return analogix_dp_fast_link_train(dp);
return analogix_dp_full_link_train(dp, dp->video_info.max_lane_count,
dp->video_info.max_link_rate);
}
static int analogix_dp_config_video(struct analogix_dp_device *dp)
{
int timeout_loop = 0;
int done_count = 0;
analogix_dp_config_video_slave_mode(dp);
analogix_dp_set_video_color_format(dp);
if (analogix_dp_get_pll_lock_status(dp) == PLL_UNLOCKED) {
dev_err(dp->dev, "PLL is not locked yet.\n");
return -EINVAL;
}
for (;;) {
timeout_loop++;
if (analogix_dp_is_slave_video_stream_clock_on(dp) == 0)
break;
if (timeout_loop > DP_TIMEOUT_LOOP_COUNT) {
dev_err(dp->dev, "Timeout of slave video streamclk ok\n");
return -ETIMEDOUT;
}
usleep_range(1000, 1001);
}
/* Set to use the register calculated M/N video */
analogix_dp_set_video_cr_mn(dp, CALCULATED_M, 0, 0);
/* For video bist, Video timing must be generated by register */
analogix_dp_set_video_timing_mode(dp, VIDEO_TIMING_FROM_CAPTURE);
/* Disable video mute */
analogix_dp_enable_video_mute(dp, 0);
/* Configure video slave mode */
analogix_dp_enable_video_master(dp, 0);
/* Enable video */
analogix_dp_start_video(dp);
timeout_loop = 0;
for (;;) {
timeout_loop++;
if (analogix_dp_is_video_stream_on(dp) == 0) {
done_count++;
if (done_count > 10)
break;
} else if (done_count) {
done_count = 0;
}
if (timeout_loop > DP_TIMEOUT_LOOP_COUNT) {
dev_warn(dp->dev,
"Ignoring timeout of video streamclk ok\n");
break;
}
usleep_range(1000, 1001);
}
return 0;
}
static int analogix_dp_enable_scramble(struct analogix_dp_device *dp,
bool enable)
{
u8 data;
int ret;
if (enable) {
analogix_dp_enable_scrambling(dp);
ret = drm_dp_dpcd_readb(&dp->aux, DP_TRAINING_PATTERN_SET,
&data);
if (ret != 1)
return ret;
ret = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET,
(u8)(data & ~DP_LINK_SCRAMBLING_DISABLE));
} else {
analogix_dp_disable_scrambling(dp);
ret = drm_dp_dpcd_readb(&dp->aux, DP_TRAINING_PATTERN_SET,
&data);
if (ret != 1)
return ret;
ret = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET,
(u8)(data | DP_LINK_SCRAMBLING_DISABLE));
}
return ret < 0 ? ret : 0;
}
static irqreturn_t analogix_dp_hardirq(int irq, void *arg)
{
struct analogix_dp_device *dp = arg;
irqreturn_t ret = IRQ_NONE;
enum dp_irq_type irq_type;
irq_type = analogix_dp_get_irq_type(dp);
if (irq_type != DP_IRQ_TYPE_UNKNOWN) {
analogix_dp_mute_hpd_interrupt(dp);
ret = IRQ_WAKE_THREAD;
}
return ret;
}
static irqreturn_t analogix_dp_irq_thread(int irq, void *arg)
{
struct analogix_dp_device *dp = arg;
enum dp_irq_type irq_type;
irq_type = analogix_dp_get_irq_type(dp);
if (irq_type & DP_IRQ_TYPE_HP_CABLE_IN ||
irq_type & DP_IRQ_TYPE_HP_CABLE_OUT) {
dev_dbg(dp->dev, "Detected cable status changed!\n");
if (dp->drm_dev)
drm_helper_hpd_irq_event(dp->drm_dev);
}
if (irq_type != DP_IRQ_TYPE_UNKNOWN) {
analogix_dp_clear_hotplug_interrupts(dp);
analogix_dp_unmute_hpd_interrupt(dp);
}
return IRQ_HANDLED;
}
static int analogix_dp_fast_link_train_detection(struct analogix_dp_device *dp)
{
int ret;
u8 spread;
ret = drm_dp_dpcd_readb(&dp->aux, DP_MAX_DOWNSPREAD, &spread);
if (ret != 1) {
dev_err(dp->dev, "failed to read downspread %d\n", ret);
return ret;
}
dp->fast_train_enable = !!(spread & DP_NO_AUX_HANDSHAKE_LINK_TRAINING);
dev_dbg(dp->dev, "fast link training %s\n",
dp->fast_train_enable ? "supported" : "unsupported");
return 0;
}
static int analogix_dp_commit(struct analogix_dp_device *dp)
{
int ret;
/* Keep the panel disabled while we configure video */
if (dp->plat_data->panel) {
if (drm_panel_disable(dp->plat_data->panel))
DRM_ERROR("failed to disable the panel\n");
}
ret = analogix_dp_train_link(dp);
if (ret) {
dev_err(dp->dev, "unable to do link train, ret=%d\n", ret);
return ret;
}
ret = analogix_dp_enable_scramble(dp, 1);
if (ret < 0) {
dev_err(dp->dev, "can not enable scramble\n");
return ret;
}
analogix_dp_init_video(dp);
ret = analogix_dp_config_video(dp);
if (ret) {
dev_err(dp->dev, "unable to config video\n");
return ret;
}
/* Safe to enable the panel now */
if (dp->plat_data->panel) {
ret = drm_panel_enable(dp->plat_data->panel);
if (ret) {
DRM_ERROR("failed to enable the panel\n");
return ret;
}
}
/* Check whether panel supports fast training */
ret = analogix_dp_fast_link_train_detection(dp);
if (ret)
return ret;
if (analogix_dp_detect_sink_psr(dp)) {
ret = analogix_dp_enable_sink_psr(dp);
if (ret)
return ret;
}
return ret;
}
static int analogix_dp_enable_psr(struct analogix_dp_device *dp)
{
struct dp_sdp psr_vsc;
int ret;
u8 sink;
ret = drm_dp_dpcd_readb(&dp->aux, DP_PSR_STATUS, &sink);
if (ret != 1)
DRM_DEV_ERROR(dp->dev, "Failed to read psr status %d\n", ret);
else if (sink == DP_PSR_SINK_ACTIVE_RFB)
return 0;
/* Prepare VSC packet as per EDP 1.4 spec, Table 6.9 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
psr_vsc.db[0] = 0;
psr_vsc.db[1] = EDP_VSC_PSR_STATE_ACTIVE | EDP_VSC_PSR_CRC_VALUES_VALID;
ret = analogix_dp_send_psr_spd(dp, &psr_vsc, true);
if (!ret)
analogix_dp_set_analog_power_down(dp, POWER_ALL, true);
return ret;
}
static int analogix_dp_disable_psr(struct analogix_dp_device *dp)
{
struct dp_sdp psr_vsc;
int ret;
u8 sink;
analogix_dp_set_analog_power_down(dp, POWER_ALL, false);
ret = drm_dp_dpcd_writeb(&dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
if (ret != 1) {
DRM_DEV_ERROR(dp->dev, "Failed to set DP Power0 %d\n", ret);
return ret;
}
ret = drm_dp_dpcd_readb(&dp->aux, DP_PSR_STATUS, &sink);
if (ret != 1) {
DRM_DEV_ERROR(dp->dev, "Failed to read psr status %d\n", ret);
return ret;
} else if (sink == DP_PSR_SINK_INACTIVE) {
DRM_DEV_ERROR(dp->dev, "sink inactive, skip disable psr");
return 0;
}
ret = analogix_dp_train_link(dp);
if (ret) {
DRM_DEV_ERROR(dp->dev, "Failed to train the link %d\n", ret);
return ret;
}
/* Prepare VSC packet as per EDP 1.4 spec, Table 6.9 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
psr_vsc.db[0] = 0;
psr_vsc.db[1] = 0;
return analogix_dp_send_psr_spd(dp, &psr_vsc, true);
}
/*
* This function is a bit of a catch-all for panel preparation, hopefully
* simplifying the logic of functions that need to prepare/unprepare the panel
* below.
*
* If @prepare is true, this function will prepare the panel. Conversely, if it
* is false, the panel will be unprepared.
*
* If @is_modeset_prepare is true, the function will disregard the current state
* of the panel and either prepare/unprepare the panel based on @prepare. Once
* it finishes, it will update dp->panel_is_modeset to reflect the current state
* of the panel.
*/
static int analogix_dp_prepare_panel(struct analogix_dp_device *dp,
bool prepare, bool is_modeset_prepare)
{
int ret = 0;
if (!dp->plat_data->panel)
return 0;
mutex_lock(&dp->panel_lock);
/*
* Exit early if this is a temporary prepare/unprepare and we're already
* modeset (since we neither want to prepare twice or unprepare early).
*/
if (dp->panel_is_modeset && !is_modeset_prepare)
goto out;
if (prepare)
ret = drm_panel_prepare(dp->plat_data->panel);
else
ret = drm_panel_unprepare(dp->plat_data->panel);
if (ret)
goto out;
if (is_modeset_prepare)
dp->panel_is_modeset = prepare;
out:
mutex_unlock(&dp->panel_lock);
return ret;
}
static int analogix_dp_get_modes(struct drm_connector *connector)
{
struct analogix_dp_device *dp = to_dp(connector);
struct edid *edid;
int ret, num_modes = 0;
if (dp->plat_data->panel) {
num_modes += drm_panel_get_modes(dp->plat_data->panel, connector);
} else {
ret = analogix_dp_prepare_panel(dp, true, false);
if (ret) {
DRM_ERROR("Failed to prepare panel (%d)\n", ret);
return 0;
}
edid = drm_get_edid(connector, &dp->aux.ddc);
if (edid) {
drm_connector_update_edid_property(&dp->connector,
edid);
num_modes += drm_add_edid_modes(&dp->connector, edid);
kfree(edid);
}
ret = analogix_dp_prepare_panel(dp, false, false);
if (ret)
DRM_ERROR("Failed to unprepare panel (%d)\n", ret);
}
if (dp->plat_data->get_modes)
num_modes += dp->plat_data->get_modes(dp->plat_data, connector);
return num_modes;
}
static struct drm_encoder *
analogix_dp_best_encoder(struct drm_connector *connector)
{
struct analogix_dp_device *dp = to_dp(connector);
return dp->encoder;
}
static int analogix_dp_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct analogix_dp_device *dp = to_dp(connector);
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!conn_state))
return -ENODEV;
conn_state->self_refresh_aware = true;
if (!conn_state->crtc)
return 0;
crtc_state = drm_atomic_get_new_crtc_state(state, conn_state->crtc);
if (!crtc_state)
return 0;
if (crtc_state->self_refresh_active && !dp->psr_supported)
return -EINVAL;
return 0;
}
static const struct drm_connector_helper_funcs analogix_dp_connector_helper_funcs = {
.get_modes = analogix_dp_get_modes,
.best_encoder = analogix_dp_best_encoder,
.atomic_check = analogix_dp_atomic_check,
};
static enum drm_connector_status
analogix_dp_detect(struct drm_connector *connector, bool force)
{
struct analogix_dp_device *dp = to_dp(connector);
enum drm_connector_status status = connector_status_disconnected;
int ret;
if (dp->plat_data->panel)
return connector_status_connected;
ret = analogix_dp_prepare_panel(dp, true, false);
if (ret) {
DRM_ERROR("Failed to prepare panel (%d)\n", ret);
return connector_status_disconnected;
}
if (!analogix_dp_detect_hpd(dp))
status = connector_status_connected;
ret = analogix_dp_prepare_panel(dp, false, false);
if (ret)
DRM_ERROR("Failed to unprepare panel (%d)\n", ret);
return status;
}
static const struct drm_connector_funcs analogix_dp_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = analogix_dp_detect,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int analogix_dp_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_encoder *encoder = dp->encoder;
struct drm_connector *connector = NULL;
int ret = 0;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
DRM_ERROR("Fix bridge driver to make connector optional!");
return -EINVAL;
}
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
if (!dp->plat_data->skip_connector) {
connector = &dp->connector;
connector->polled = DRM_CONNECTOR_POLL_HPD;
ret = drm_connector_init(dp->drm_dev, connector,
&analogix_dp_connector_funcs,
DRM_MODE_CONNECTOR_eDP);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(connector,
&analogix_dp_connector_helper_funcs);
drm_connector_attach_encoder(connector, encoder);
}
/*
* NOTE: the connector registration is implemented in analogix
* platform driver, that to say connector would be exist after
* plat_data->attch return, that's why we record the connector
* point after plat attached.
*/
if (dp->plat_data->attach) {
ret = dp->plat_data->attach(dp->plat_data, bridge, connector);
if (ret) {
DRM_ERROR("Failed at platform attach func\n");
return ret;
}
}
return 0;
}
static
struct drm_crtc *analogix_dp_get_old_crtc(struct analogix_dp_device *dp,
struct drm_atomic_state *state)
{
struct drm_encoder *encoder = dp->encoder;
struct drm_connector *connector;
struct drm_connector_state *conn_state;
connector = drm_atomic_get_old_connector_for_encoder(state, encoder);
if (!connector)
return NULL;
conn_state = drm_atomic_get_old_connector_state(state, connector);
if (!conn_state)
return NULL;
return conn_state->crtc;
}
static
struct drm_crtc *analogix_dp_get_new_crtc(struct analogix_dp_device *dp,
struct drm_atomic_state *state)
{
struct drm_encoder *encoder = dp->encoder;
struct drm_connector *connector;
struct drm_connector_state *conn_state;
connector = drm_atomic_get_new_connector_for_encoder(state, encoder);
if (!connector)
return NULL;
conn_state = drm_atomic_get_new_connector_state(state, connector);
if (!conn_state)
return NULL;
return conn_state->crtc;
}
static void
analogix_dp_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct drm_atomic_state *old_state = old_bridge_state->base.state;
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int ret;
crtc = analogix_dp_get_new_crtc(dp, old_state);
if (!crtc)
return;
old_crtc_state = drm_atomic_get_old_crtc_state(old_state, crtc);
/* Don't touch the panel if we're coming back from PSR */
if (old_crtc_state && old_crtc_state->self_refresh_active)
return;
ret = analogix_dp_prepare_panel(dp, true, true);
if (ret)
DRM_ERROR("failed to setup the panel ret = %d\n", ret);
}
static int analogix_dp_set_bridge(struct analogix_dp_device *dp)
{
int ret;
pm_runtime_get_sync(dp->dev);
ret = clk_prepare_enable(dp->clock);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the clock clk [%d]\n", ret);
goto out_dp_clk_pre;
}
if (dp->plat_data->power_on_start)
dp->plat_data->power_on_start(dp->plat_data);
phy_power_on(dp->phy);
ret = analogix_dp_init_dp(dp);
if (ret)
goto out_dp_init;
/*
* According to DP spec v1.3 chap 3.5.1.2 Link Training,
* We should first make sure the HPD signal is asserted high by device
* when we want to establish a link with it.
*/
ret = analogix_dp_detect_hpd(dp);
if (ret) {
DRM_ERROR("failed to get hpd single ret = %d\n", ret);
goto out_dp_init;
}
ret = analogix_dp_commit(dp);
if (ret) {
DRM_ERROR("dp commit error, ret = %d\n", ret);
goto out_dp_init;
}
if (dp->plat_data->power_on_end)
dp->plat_data->power_on_end(dp->plat_data);
enable_irq(dp->irq);
return 0;
out_dp_init:
phy_power_off(dp->phy);
if (dp->plat_data->power_off)
dp->plat_data->power_off(dp->plat_data);
clk_disable_unprepare(dp->clock);
out_dp_clk_pre:
pm_runtime_put_sync(dp->dev);
return ret;
}
static void
analogix_dp_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct drm_atomic_state *old_state = old_bridge_state->base.state;
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state;
int timeout_loop = 0;
int ret;
crtc = analogix_dp_get_new_crtc(dp, old_state);
if (!crtc)
return;
old_crtc_state = drm_atomic_get_old_crtc_state(old_state, crtc);
/* Not a full enable, just disable PSR and continue */
if (old_crtc_state && old_crtc_state->self_refresh_active) {
ret = analogix_dp_disable_psr(dp);
if (ret)
DRM_ERROR("Failed to disable psr %d\n", ret);
return;
}
if (dp->dpms_mode == DRM_MODE_DPMS_ON)
return;
while (timeout_loop < MAX_PLL_LOCK_LOOP) {
if (analogix_dp_set_bridge(dp) == 0) {
dp->dpms_mode = DRM_MODE_DPMS_ON;
return;
}
dev_err(dp->dev, "failed to set bridge, retry: %d\n",
timeout_loop);
timeout_loop++;
usleep_range(10, 11);
}
dev_err(dp->dev, "too many times retry set bridge, give it up\n");
}
static void analogix_dp_bridge_disable(struct drm_bridge *bridge)
{
struct analogix_dp_device *dp = bridge->driver_private;
int ret;
if (dp->dpms_mode != DRM_MODE_DPMS_ON)
return;
if (dp->plat_data->panel) {
if (drm_panel_disable(dp->plat_data->panel)) {
DRM_ERROR("failed to disable the panel\n");
return;
}
}
disable_irq(dp->irq);
if (dp->plat_data->power_off)
dp->plat_data->power_off(dp->plat_data);
analogix_dp_set_analog_power_down(dp, POWER_ALL, 1);
phy_power_off(dp->phy);
clk_disable_unprepare(dp->clock);
pm_runtime_put_sync(dp->dev);
ret = analogix_dp_prepare_panel(dp, false, true);
if (ret)
DRM_ERROR("failed to setup the panel ret = %d\n", ret);
dp->fast_train_enable = false;
dp->psr_supported = false;
dp->dpms_mode = DRM_MODE_DPMS_OFF;
}
static void
analogix_dp_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct drm_atomic_state *old_state = old_bridge_state->base.state;
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_crtc *old_crtc, *new_crtc;
struct drm_crtc_state *old_crtc_state = NULL;
struct drm_crtc_state *new_crtc_state = NULL;
int ret;
new_crtc = analogix_dp_get_new_crtc(dp, old_state);
if (!new_crtc)
goto out;
new_crtc_state = drm_atomic_get_new_crtc_state(old_state, new_crtc);
if (!new_crtc_state)
goto out;
/* Don't do a full disable on PSR transitions */
if (new_crtc_state->self_refresh_active)
return;
out:
old_crtc = analogix_dp_get_old_crtc(dp, old_state);
if (old_crtc) {
old_crtc_state = drm_atomic_get_old_crtc_state(old_state,
old_crtc);
/* When moving from PSR to fully disabled, exit PSR first. */
if (old_crtc_state && old_crtc_state->self_refresh_active) {
ret = analogix_dp_disable_psr(dp);
if (ret)
DRM_ERROR("Failed to disable psr (%d)\n", ret);
}
}
analogix_dp_bridge_disable(bridge);
}
static void
analogix_dp_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct drm_atomic_state *old_state = old_bridge_state->base.state;
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_crtc *crtc;
struct drm_crtc_state *new_crtc_state;
int ret;
crtc = analogix_dp_get_new_crtc(dp, old_state);
if (!crtc)
return;
new_crtc_state = drm_atomic_get_new_crtc_state(old_state, crtc);
if (!new_crtc_state || !new_crtc_state->self_refresh_active)
return;
ret = analogix_dp_enable_psr(dp);
if (ret)
DRM_ERROR("Failed to enable psr (%d)\n", ret);
}
static void analogix_dp_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *orig_mode,
const struct drm_display_mode *mode)
{
struct analogix_dp_device *dp = bridge->driver_private;
struct drm_display_info *display_info = &dp->connector.display_info;
struct video_info *video = &dp->video_info;
struct device_node *dp_node = dp->dev->of_node;
int vic;
/* Input video interlaces & hsync pol & vsync pol */
video->interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
video->v_sync_polarity = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
video->h_sync_polarity = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
/* Input video dynamic_range & colorimetry */
vic = drm_match_cea_mode(mode);
if ((vic == 6) || (vic == 7) || (vic == 21) || (vic == 22) ||
(vic == 2) || (vic == 3) || (vic == 17) || (vic == 18)) {
video->dynamic_range = CEA;
video->ycbcr_coeff = COLOR_YCBCR601;
} else if (vic) {
video->dynamic_range = CEA;
video->ycbcr_coeff = COLOR_YCBCR709;
} else {
video->dynamic_range = VESA;
video->ycbcr_coeff = COLOR_YCBCR709;
}
/* Input vide bpc and color_formats */
switch (display_info->bpc) {
case 12:
video->color_depth = COLOR_12;
break;
case 10:
video->color_depth = COLOR_10;
break;
case 8:
video->color_depth = COLOR_8;
break;
case 6:
video->color_depth = COLOR_6;
break;
default:
video->color_depth = COLOR_8;
break;
}
if (display_info->color_formats & DRM_COLOR_FORMAT_YCBCR444)
video->color_space = COLOR_YCBCR444;
else if (display_info->color_formats & DRM_COLOR_FORMAT_YCBCR422)
video->color_space = COLOR_YCBCR422;
else
video->color_space = COLOR_RGB;
/*
* NOTE: those property parsing code is used for providing backward
* compatibility for samsung platform.
* Due to we used the "of_property_read_u32" interfaces, when this
* property isn't present, the "video_info" can keep the original
* values and wouldn't be modified.
*/
of_property_read_u32(dp_node, "samsung,color-space",
&video->color_space);
of_property_read_u32(dp_node, "samsung,dynamic-range",
&video->dynamic_range);
of_property_read_u32(dp_node, "samsung,ycbcr-coeff",
&video->ycbcr_coeff);
of_property_read_u32(dp_node, "samsung,color-depth",
&video->color_depth);
if (of_property_read_bool(dp_node, "hsync-active-high"))
video->h_sync_polarity = true;
if (of_property_read_bool(dp_node, "vsync-active-high"))
video->v_sync_polarity = true;
if (of_property_read_bool(dp_node, "interlaced"))
video->interlaced = true;
}
static const struct drm_bridge_funcs analogix_dp_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_pre_enable = analogix_dp_bridge_atomic_pre_enable,
.atomic_enable = analogix_dp_bridge_atomic_enable,
.atomic_disable = analogix_dp_bridge_atomic_disable,
.atomic_post_disable = analogix_dp_bridge_atomic_post_disable,
.mode_set = analogix_dp_bridge_mode_set,
.attach = analogix_dp_bridge_attach,
};
static int analogix_dp_create_bridge(struct drm_device *drm_dev,
struct analogix_dp_device *dp)
{
struct drm_bridge *bridge;
bridge = devm_kzalloc(drm_dev->dev, sizeof(*bridge), GFP_KERNEL);
if (!bridge) {
DRM_ERROR("failed to allocate for drm bridge\n");
return -ENOMEM;
}
dp->bridge = bridge;
bridge->driver_private = dp;
bridge->funcs = &analogix_dp_bridge_funcs;
return drm_bridge_attach(dp->encoder, bridge, NULL, 0);
}
static int analogix_dp_dt_parse_pdata(struct analogix_dp_device *dp)
{
struct device_node *dp_node = dp->dev->of_node;
struct video_info *video_info = &dp->video_info;
switch (dp->plat_data->dev_type) {
case RK3288_DP:
case RK3399_EDP:
/*
* Like Rk3288 DisplayPort TRM indicate that "Main link
* containing 4 physical lanes of 2.7/1.62 Gbps/lane".
*/
video_info->max_link_rate = 0x0A;
video_info->max_lane_count = 0x04;
break;
case EXYNOS_DP:
/*
* NOTE: those property parseing code is used for
* providing backward compatibility for samsung platform.
*/
of_property_read_u32(dp_node, "samsung,link-rate",
&video_info->max_link_rate);
of_property_read_u32(dp_node, "samsung,lane-count",
&video_info->max_lane_count);
break;
}
return 0;
}
static ssize_t analogix_dpaux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct analogix_dp_device *dp = to_dp(aux);
int ret;
pm_runtime_get_sync(dp->dev);
ret = analogix_dp_detect_hpd(dp);
if (ret)
goto out;
ret = analogix_dp_transfer(dp, msg);
out:
pm_runtime_mark_last_busy(dp->dev);
pm_runtime_put_autosuspend(dp->dev);
return ret;
}
struct analogix_dp_device *
analogix_dp_probe(struct device *dev, struct analogix_dp_plat_data *plat_data)
{
struct platform_device *pdev = to_platform_device(dev);
struct analogix_dp_device *dp;
struct resource *res;
unsigned int irq_flags;
int ret;
if (!plat_data) {
dev_err(dev, "Invalided input plat_data\n");
return ERR_PTR(-EINVAL);
}
dp = devm_kzalloc(dev, sizeof(struct analogix_dp_device), GFP_KERNEL);
if (!dp)
return ERR_PTR(-ENOMEM);
dp->dev = &pdev->dev;
dp->dpms_mode = DRM_MODE_DPMS_OFF;
mutex_init(&dp->panel_lock);
dp->panel_is_modeset = false;
/*
* platform dp driver need containor_of the plat_data to get
* the driver private data, so we need to store the point of
* plat_data, not the context of plat_data.
*/
dp->plat_data = plat_data;
ret = analogix_dp_dt_parse_pdata(dp);
if (ret)
return ERR_PTR(ret);
dp->phy = devm_phy_get(dp->dev, "dp");
if (IS_ERR(dp->phy)) {
dev_err(dp->dev, "no DP phy configured\n");
ret = PTR_ERR(dp->phy);
if (ret) {
/*
* phy itself is not enabled, so we can move forward
* assigning NULL to phy pointer.
*/
if (ret == -ENOSYS || ret == -ENODEV)
dp->phy = NULL;
else
return ERR_PTR(ret);
}
}
dp->clock = devm_clk_get(&pdev->dev, "dp");
if (IS_ERR(dp->clock)) {
dev_err(&pdev->dev, "failed to get clock\n");
return ERR_CAST(dp->clock);
}
clk_prepare_enable(dp->clock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dp->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dp->reg_base)) {
ret = PTR_ERR(dp->reg_base);
goto err_disable_clk;
}
dp->force_hpd = of_property_read_bool(dev->of_node, "force-hpd");
/* Try two different names */
dp->hpd_gpiod = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
if (!dp->hpd_gpiod)
dp->hpd_gpiod = devm_gpiod_get_optional(dev, "samsung,hpd",
GPIOD_IN);
if (IS_ERR(dp->hpd_gpiod)) {
dev_err(dev, "error getting HDP GPIO: %ld\n",
PTR_ERR(dp->hpd_gpiod));
ret = PTR_ERR(dp->hpd_gpiod);
goto err_disable_clk;
}
if (dp->hpd_gpiod) {
/*
* Set up the hotplug GPIO from the device tree as an interrupt.
* Simply specifying a different interrupt in the device tree
* doesn't work since we handle hotplug rather differently when
* using a GPIO. We also need the actual GPIO specifier so
* that we can get the current state of the GPIO.
*/
dp->irq = gpiod_to_irq(dp->hpd_gpiod);
irq_flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
} else {
dp->irq = platform_get_irq(pdev, 0);
irq_flags = 0;
}
if (dp->irq == -ENXIO) {
dev_err(&pdev->dev, "failed to get irq\n");
ret = -ENODEV;
goto err_disable_clk;
}
ret = devm_request_threaded_irq(&pdev->dev, dp->irq,
analogix_dp_hardirq,
analogix_dp_irq_thread,
irq_flags, "analogix-dp", dp);
if (ret) {
dev_err(&pdev->dev, "failed to request irq\n");
goto err_disable_clk;
}
disable_irq(dp->irq);
return dp;
err_disable_clk:
clk_disable_unprepare(dp->clock);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(analogix_dp_probe);
int analogix_dp_bind(struct analogix_dp_device *dp, struct drm_device *drm_dev)
{
int ret;
dp->drm_dev = drm_dev;
dp->encoder = dp->plat_data->encoder;
dp->aux.name = "DP-AUX";
dp->aux.transfer = analogix_dpaux_transfer;
dp->aux.dev = dp->dev;
dp->aux.drm_dev = drm_dev;
ret = drm_dp_aux_register(&dp->aux);
if (ret)
return ret;
pm_runtime_use_autosuspend(dp->dev);
pm_runtime_set_autosuspend_delay(dp->dev, 100);
pm_runtime_enable(dp->dev);
ret = analogix_dp_create_bridge(drm_dev, dp);
if (ret) {
DRM_ERROR("failed to create bridge (%d)\n", ret);
goto err_disable_pm_runtime;
}
return 0;
err_disable_pm_runtime:
pm_runtime_dont_use_autosuspend(dp->dev);
pm_runtime_disable(dp->dev);
drm_dp_aux_unregister(&dp->aux);
return ret;
}
EXPORT_SYMBOL_GPL(analogix_dp_bind);
void analogix_dp_unbind(struct analogix_dp_device *dp)
{
analogix_dp_bridge_disable(dp->bridge);
dp->connector.funcs->destroy(&dp->connector);
if (dp->plat_data->panel) {
if (drm_panel_unprepare(dp->plat_data->panel))
DRM_ERROR("failed to turnoff the panel\n");
}
drm_dp_aux_unregister(&dp->aux);
pm_runtime_dont_use_autosuspend(dp->dev);
pm_runtime_disable(dp->dev);
}
EXPORT_SYMBOL_GPL(analogix_dp_unbind);
void analogix_dp_remove(struct analogix_dp_device *dp)
{
clk_disable_unprepare(dp->clock);
}
EXPORT_SYMBOL_GPL(analogix_dp_remove);
#ifdef CONFIG_PM
int analogix_dp_suspend(struct analogix_dp_device *dp)
{
clk_disable_unprepare(dp->clock);
return 0;
}
EXPORT_SYMBOL_GPL(analogix_dp_suspend);
int analogix_dp_resume(struct analogix_dp_device *dp)
{
int ret;
ret = clk_prepare_enable(dp->clock);
if (ret < 0) {
DRM_ERROR("Failed to prepare_enable the clock clk [%d]\n", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(analogix_dp_resume);
#endif
int analogix_dp_start_crc(struct drm_connector *connector)
{
struct analogix_dp_device *dp = to_dp(connector);
if (!connector->state->crtc) {
DRM_ERROR("Connector %s doesn't currently have a CRTC.\n",
connector->name);
return -EINVAL;
}
return drm_dp_start_crc(&dp->aux, connector->state->crtc);
}
EXPORT_SYMBOL_GPL(analogix_dp_start_crc);
int analogix_dp_stop_crc(struct drm_connector *connector)
{
struct analogix_dp_device *dp = to_dp(connector);
return drm_dp_stop_crc(&dp->aux);
}
EXPORT_SYMBOL_GPL(analogix_dp_stop_crc);
MODULE_AUTHOR("Jingoo Han <[email protected]>");
MODULE_DESCRIPTION("Analogix DP Core Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/bridge/analogix/analogix_dp_core.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2020, Analogix Semiconductor. All rights reserved.
*
*/
#include <linux/gcd.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <drm/display/drm_dp_aux_bus.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_hdcp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_edid.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <media/v4l2-fwnode.h>
#include <sound/hdmi-codec.h>
#include <video/display_timing.h>
#include "anx7625.h"
/*
* There is a sync issue while access I2C register between AP(CPU) and
* internal firmware(OCM), to avoid the race condition, AP should access
* the reserved slave address before slave address occurs changes.
*/
static int i2c_access_workaround(struct anx7625_data *ctx,
struct i2c_client *client)
{
u8 offset;
struct device *dev = &client->dev;
int ret;
if (client == ctx->last_client)
return 0;
ctx->last_client = client;
if (client == ctx->i2c.tcpc_client)
offset = RSVD_00_ADDR;
else if (client == ctx->i2c.tx_p0_client)
offset = RSVD_D1_ADDR;
else if (client == ctx->i2c.tx_p1_client)
offset = RSVD_60_ADDR;
else if (client == ctx->i2c.rx_p0_client)
offset = RSVD_39_ADDR;
else if (client == ctx->i2c.rx_p1_client)
offset = RSVD_7F_ADDR;
else
offset = RSVD_00_ADDR;
ret = i2c_smbus_write_byte_data(client, offset, 0x00);
if (ret < 0)
DRM_DEV_ERROR(dev,
"fail to access i2c id=%x\n:%x",
client->addr, offset);
return ret;
}
static int anx7625_reg_read(struct anx7625_data *ctx,
struct i2c_client *client, u8 reg_addr)
{
int ret;
struct device *dev = &client->dev;
i2c_access_workaround(ctx, client);
ret = i2c_smbus_read_byte_data(client, reg_addr);
if (ret < 0)
DRM_DEV_ERROR(dev, "read i2c fail id=%x:%x\n",
client->addr, reg_addr);
return ret;
}
static int anx7625_reg_block_read(struct anx7625_data *ctx,
struct i2c_client *client,
u8 reg_addr, u8 len, u8 *buf)
{
int ret;
struct device *dev = &client->dev;
i2c_access_workaround(ctx, client);
ret = i2c_smbus_read_i2c_block_data(client, reg_addr, len, buf);
if (ret < 0)
DRM_DEV_ERROR(dev, "read i2c block fail id=%x:%x\n",
client->addr, reg_addr);
return ret;
}
static int anx7625_reg_write(struct anx7625_data *ctx,
struct i2c_client *client,
u8 reg_addr, u8 reg_val)
{
int ret;
struct device *dev = &client->dev;
i2c_access_workaround(ctx, client);
ret = i2c_smbus_write_byte_data(client, reg_addr, reg_val);
if (ret < 0)
DRM_DEV_ERROR(dev, "fail to write i2c id=%x\n:%x",
client->addr, reg_addr);
return ret;
}
static int anx7625_reg_block_write(struct anx7625_data *ctx,
struct i2c_client *client,
u8 reg_addr, u8 len, u8 *buf)
{
int ret;
struct device *dev = &client->dev;
i2c_access_workaround(ctx, client);
ret = i2c_smbus_write_i2c_block_data(client, reg_addr, len, buf);
if (ret < 0)
dev_err(dev, "write i2c block failed id=%x\n:%x",
client->addr, reg_addr);
return ret;
}
static int anx7625_write_or(struct anx7625_data *ctx,
struct i2c_client *client,
u8 offset, u8 mask)
{
int val;
val = anx7625_reg_read(ctx, client, offset);
if (val < 0)
return val;
return anx7625_reg_write(ctx, client, offset, (val | (mask)));
}
static int anx7625_write_and(struct anx7625_data *ctx,
struct i2c_client *client,
u8 offset, u8 mask)
{
int val;
val = anx7625_reg_read(ctx, client, offset);
if (val < 0)
return val;
return anx7625_reg_write(ctx, client, offset, (val & (mask)));
}
static int anx7625_write_and_or(struct anx7625_data *ctx,
struct i2c_client *client,
u8 offset, u8 and_mask, u8 or_mask)
{
int val;
val = anx7625_reg_read(ctx, client, offset);
if (val < 0)
return val;
return anx7625_reg_write(ctx, client,
offset, (val & and_mask) | (or_mask));
}
static int anx7625_config_bit_matrix(struct anx7625_data *ctx)
{
int i, ret;
ret = anx7625_write_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CONTROL_REGISTER, 0x80);
for (i = 0; i < 13; i++)
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p2_client,
VIDEO_BIT_MATRIX_12 + i,
0x18 + i);
return ret;
}
static int anx7625_read_ctrl_status_p0(struct anx7625_data *ctx)
{
return anx7625_reg_read(ctx, ctx->i2c.rx_p0_client, AP_AUX_CTRL_STATUS);
}
static int wait_aux_op_finish(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int val;
int ret;
ret = readx_poll_timeout(anx7625_read_ctrl_status_p0,
ctx, val,
(!(val & AP_AUX_CTRL_OP_EN) || (val < 0)),
2000,
2000 * 150);
if (ret) {
DRM_DEV_ERROR(dev, "aux operation fail!\n");
return -EIO;
}
val = anx7625_reg_read(ctx, ctx->i2c.rx_p0_client,
AP_AUX_CTRL_STATUS);
if (val < 0 || (val & 0x0F)) {
DRM_DEV_ERROR(dev, "aux status %02x\n", val);
return -EIO;
}
return 0;
}
static int anx7625_aux_trans(struct anx7625_data *ctx, u8 op, u32 address,
u8 len, u8 *buf)
{
struct device *dev = ctx->dev;
int ret;
u8 addrh, addrm, addrl;
u8 cmd;
bool is_write = !(op & DP_AUX_I2C_READ);
if (len > DP_AUX_MAX_PAYLOAD_BYTES) {
dev_err(dev, "exceed aux buffer len.\n");
return -EINVAL;
}
if (!len)
return len;
addrl = address & 0xFF;
addrm = (address >> 8) & 0xFF;
addrh = (address >> 16) & 0xFF;
if (!is_write)
op &= ~DP_AUX_I2C_MOT;
cmd = DPCD_CMD(len, op);
/* Set command and length */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_COMMAND, cmd);
/* Set aux access address */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_7_0, addrl);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_15_8, addrm);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_19_16, addrh);
if (is_write)
ret |= anx7625_reg_block_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_BUFF_START, len, buf);
/* Enable aux access */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
if (ret < 0) {
dev_err(dev, "cannot access aux related register.\n");
return -EIO;
}
ret = wait_aux_op_finish(ctx);
if (ret < 0) {
dev_err(dev, "aux IO error: wait aux op finish.\n");
return ret;
}
/* Write done */
if (is_write)
return len;
/* Read done, read out dpcd data */
ret = anx7625_reg_block_read(ctx, ctx->i2c.rx_p0_client,
AP_AUX_BUFF_START, len, buf);
if (ret < 0) {
dev_err(dev, "read dpcd register failed\n");
return -EIO;
}
return len;
}
static int anx7625_video_mute_control(struct anx7625_data *ctx,
u8 status)
{
int ret;
if (status) {
/* Set mute on flag */
ret = anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_MIPI_MUTE);
/* Clear mipi RX en */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, (u8)~AP_MIPI_RX_EN);
} else {
/* Mute off flag */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, (u8)~AP_MIPI_MUTE);
/* Set MIPI RX EN */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_MIPI_RX_EN);
}
return ret;
}
/* Reduction of fraction a/b */
static void anx7625_reduction_of_a_fraction(unsigned long *a, unsigned long *b)
{
unsigned long gcd_num;
unsigned long tmp_a, tmp_b;
u32 i = 1;
gcd_num = gcd(*a, *b);
*a /= gcd_num;
*b /= gcd_num;
tmp_a = *a;
tmp_b = *b;
while ((*a > MAX_UNSIGNED_24BIT) || (*b > MAX_UNSIGNED_24BIT)) {
i++;
*a = tmp_a / i;
*b = tmp_b / i;
}
/*
* In the end, make a, b larger to have higher ODFC PLL
* output frequency accuracy
*/
while ((*a < MAX_UNSIGNED_24BIT) && (*b < MAX_UNSIGNED_24BIT)) {
*a <<= 1;
*b <<= 1;
}
*a >>= 1;
*b >>= 1;
}
static int anx7625_calculate_m_n(u32 pixelclock,
unsigned long *m,
unsigned long *n,
u8 *post_divider)
{
if (pixelclock > PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN) {
/* Pixel clock frequency is too high */
DRM_ERROR("pixelclock too high, act(%d), maximum(%lu)\n",
pixelclock,
PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN);
return -EINVAL;
}
if (pixelclock < PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX) {
/* Pixel clock frequency is too low */
DRM_ERROR("pixelclock too low, act(%d), maximum(%lu)\n",
pixelclock,
PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX);
return -EINVAL;
}
for (*post_divider = 1;
pixelclock < (PLL_OUT_FREQ_MIN / (*post_divider));)
*post_divider += 1;
if (*post_divider > POST_DIVIDER_MAX) {
for (*post_divider = 1;
(pixelclock <
(PLL_OUT_FREQ_ABS_MIN / (*post_divider)));)
*post_divider += 1;
if (*post_divider > POST_DIVIDER_MAX) {
DRM_ERROR("cannot find property post_divider(%d)\n",
*post_divider);
return -EDOM;
}
}
/* Patch to improve the accuracy */
if (*post_divider == 7) {
/* 27,000,000 is not divisible by 7 */
*post_divider = 8;
} else if (*post_divider == 11) {
/* 27,000,000 is not divisible by 11 */
*post_divider = 12;
} else if ((*post_divider == 13) || (*post_divider == 14)) {
/* 27,000,000 is not divisible by 13 or 14 */
*post_divider = 15;
}
if (pixelclock * (*post_divider) > PLL_OUT_FREQ_ABS_MAX) {
DRM_ERROR("act clock(%u) large than maximum(%lu)\n",
pixelclock * (*post_divider),
PLL_OUT_FREQ_ABS_MAX);
return -EDOM;
}
*m = pixelclock;
*n = XTAL_FRQ / (*post_divider);
anx7625_reduction_of_a_fraction(m, n);
return 0;
}
static int anx7625_odfc_config(struct anx7625_data *ctx,
u8 post_divider)
{
int ret;
struct device *dev = ctx->dev;
/* Config input reference clock frequency 27MHz/19.2MHz */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_16,
~(REF_CLK_27000KHZ << MIPI_FREF_D_IND));
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_16,
(REF_CLK_27000KHZ << MIPI_FREF_D_IND));
/* Post divider */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p1_client,
MIPI_DIGITAL_PLL_8, 0x0f);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_8,
post_divider << 4);
/* Add patch for MIS2-125 (5pcs ANX7625 fail ATE MBIST test) */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_VCO_TUNE_REG_VAL);
/* Reset ODFC PLL */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_RESET_N);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_7,
MIPI_PLL_RESET_N);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error.\n");
return ret;
}
/*
* The MIPI source video data exist large variation (e.g. 59Hz ~ 61Hz),
* anx7625 defined K ratio for matching MIPI input video clock and
* DP output video clock. Increase K value can match bigger video data
* variation. IVO panel has small variation than DP CTS spec, need
* decrease the K value.
*/
static int anx7625_set_k_value(struct anx7625_data *ctx)
{
struct edid *edid = (struct edid *)ctx->slimport_edid_p.edid_raw_data;
if (edid->mfg_id[0] == IVO_MID0 && edid->mfg_id[1] == IVO_MID1)
return anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_DIGITAL_ADJ_1, 0x3B);
return anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_DIGITAL_ADJ_1, 0x3D);
}
static int anx7625_dsi_video_timing_config(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
unsigned long m, n;
u16 htotal;
int ret;
u8 post_divider = 0;
ret = anx7625_calculate_m_n(ctx->dt.pixelclock.min * 1000,
&m, &n, &post_divider);
if (ret) {
DRM_DEV_ERROR(dev, "cannot get property m n value.\n");
return ret;
}
DRM_DEV_DEBUG_DRIVER(dev, "compute M(%lu), N(%lu), divider(%d).\n",
m, n, post_divider);
/* Configure pixel clock */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client, PIXEL_CLOCK_L,
(ctx->dt.pixelclock.min / 1000) & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client, PIXEL_CLOCK_H,
(ctx->dt.pixelclock.min / 1000) >> 8);
/* Lane count */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p1_client,
MIPI_LANE_CTRL_0, 0xfc);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client,
MIPI_LANE_CTRL_0, ctx->pdata.mipi_lanes - 1);
/* Htotal */
htotal = ctx->dt.hactive.min + ctx->dt.hfront_porch.min +
ctx->dt.hback_porch.min + ctx->dt.hsync_len.min;
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_TOTAL_PIXELS_L, htotal & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_TOTAL_PIXELS_H, htotal >> 8);
/* Hactive */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_ACTIVE_PIXELS_L, ctx->dt.hactive.min & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_ACTIVE_PIXELS_H, ctx->dt.hactive.min >> 8);
/* HFP */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_FRONT_PORCH_L, ctx->dt.hfront_porch.min);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_FRONT_PORCH_H,
ctx->dt.hfront_porch.min >> 8);
/* HWS */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_SYNC_WIDTH_L, ctx->dt.hsync_len.min);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_SYNC_WIDTH_H, ctx->dt.hsync_len.min >> 8);
/* HBP */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_BACK_PORCH_L, ctx->dt.hback_porch.min);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
HORIZONTAL_BACK_PORCH_H, ctx->dt.hback_porch.min >> 8);
/* Vactive */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client, ACTIVE_LINES_L,
ctx->dt.vactive.min);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client, ACTIVE_LINES_H,
ctx->dt.vactive.min >> 8);
/* VFP */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
VERTICAL_FRONT_PORCH, ctx->dt.vfront_porch.min);
/* VWS */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
VERTICAL_SYNC_WIDTH, ctx->dt.vsync_len.min);
/* VBP */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p2_client,
VERTICAL_BACK_PORCH, ctx->dt.vback_porch.min);
/* M value */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PLL_M_NUM_23_16, (m >> 16) & 0xff);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PLL_M_NUM_15_8, (m >> 8) & 0xff);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PLL_M_NUM_7_0, (m & 0xff));
/* N value */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PLL_N_NUM_23_16, (n >> 16) & 0xff);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PLL_N_NUM_15_8, (n >> 8) & 0xff);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client, MIPI_PLL_N_NUM_7_0,
(n & 0xff));
anx7625_set_k_value(ctx);
ret |= anx7625_odfc_config(ctx, post_divider - 1);
if (ret < 0)
DRM_DEV_ERROR(dev, "mipi dsi setup IO error.\n");
return ret;
}
static int anx7625_swap_dsi_lane3(struct anx7625_data *ctx)
{
int val;
struct device *dev = ctx->dev;
/* Swap MIPI-DSI data lane 3 P and N */
val = anx7625_reg_read(ctx, ctx->i2c.rx_p1_client, MIPI_SWAP);
if (val < 0) {
DRM_DEV_ERROR(dev, "IO error : access MIPI_SWAP.\n");
return -EIO;
}
val |= (1 << MIPI_SWAP_CH3);
return anx7625_reg_write(ctx, ctx->i2c.rx_p1_client, MIPI_SWAP, val);
}
static int anx7625_api_dsi_config(struct anx7625_data *ctx)
{
int val, ret;
struct device *dev = ctx->dev;
/* Swap MIPI-DSI data lane 3 P and N */
ret = anx7625_swap_dsi_lane3(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "IO error : swap dsi lane 3 fail.\n");
return ret;
}
/* DSI clock settings */
val = (0 << MIPI_HS_PWD_CLK) |
(0 << MIPI_HS_RT_CLK) |
(0 << MIPI_PD_CLK) |
(1 << MIPI_CLK_RT_MANUAL_PD_EN) |
(1 << MIPI_CLK_HS_MANUAL_PD_EN) |
(0 << MIPI_CLK_DET_DET_BYPASS) |
(0 << MIPI_CLK_MISS_CTRL) |
(0 << MIPI_PD_LPTX_CH_MANUAL_PD_EN);
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_PHY_CONTROL_3, val);
/*
* Decreased HS prepare timing delay from 160ns to 80ns work with
* a) Dragon board 810 series (Qualcomm AP)
* b) Moving Pixel DSI source (PG3A pattern generator +
* P332 D-PHY Probe) default D-PHY timing
* 5ns/step
*/
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_TIME_HS_PRPR, 0x10);
/* Enable DSI mode*/
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_18,
SELECT_DSI << MIPI_DPI_SELECT);
ret |= anx7625_dsi_video_timing_config(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "dsi video timing config fail\n");
return ret;
}
/* Toggle m, n ready */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_6,
~(MIPI_M_NUM_READY | MIPI_N_NUM_READY));
usleep_range(1000, 1100);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, MIPI_DIGITAL_PLL_6,
MIPI_M_NUM_READY | MIPI_N_NUM_READY);
/* Configure integer stable register */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_VIDEO_STABLE_CNT, 0x02);
/* Power on MIPI RX */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_LANE_CTRL_10, 0x00);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_LANE_CTRL_10, 0x80);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error : mipi dsi enable init fail.\n");
return ret;
}
static int anx7625_dsi_config(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
DRM_DEV_DEBUG_DRIVER(dev, "config dsi.\n");
/* DSC disable */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
R_DSC_CTRL_0, ~DSC_EN);
ret |= anx7625_api_dsi_config(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "IO error : api dsi config error.\n");
return ret;
}
/* Set MIPI RX EN */
ret = anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_MIPI_RX_EN);
/* Clear mute flag */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, (u8)~AP_MIPI_MUTE);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error : enable mipi rx fail.\n");
else
DRM_DEV_DEBUG_DRIVER(dev, "success to config DSI\n");
return ret;
}
static int anx7625_api_dpi_config(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
u16 freq = ctx->dt.pixelclock.min / 1000;
int ret;
/* configure pixel clock */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
PIXEL_CLOCK_L, freq & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
PIXEL_CLOCK_H, (freq >> 8));
/* set DPI mode */
/* set to DPI PLL module sel */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_DIGITAL_PLL_9, 0x20);
/* power down MIPI */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_LANE_CTRL_10, 0x08);
/* enable DPI mode */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p1_client,
MIPI_DIGITAL_PLL_18, 0x1C);
/* set first edge */
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p2_client,
VIDEO_CONTROL_0, 0x06);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error : dpi phy set failed.\n");
return ret;
}
static int anx7625_dpi_config(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
DRM_DEV_DEBUG_DRIVER(dev, "config dpi\n");
/* DSC disable */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
R_DSC_CTRL_0, ~DSC_EN);
if (ret < 0) {
DRM_DEV_ERROR(dev, "IO error : disable dsc failed.\n");
return ret;
}
ret = anx7625_config_bit_matrix(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "config bit matrix failed.\n");
return ret;
}
ret = anx7625_api_dpi_config(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "mipi phy(dpi) setup failed.\n");
return ret;
}
/* set MIPI RX EN */
ret = anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_MIPI_RX_EN);
/* clear mute flag */
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, (u8)~AP_MIPI_MUTE);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error : enable mipi rx failed.\n");
return ret;
}
static int anx7625_read_flash_status(struct anx7625_data *ctx)
{
return anx7625_reg_read(ctx, ctx->i2c.rx_p0_client, R_RAM_CTRL);
}
static int anx7625_hdcp_key_probe(struct anx7625_data *ctx)
{
int ret, val;
struct device *dev = ctx->dev;
u8 ident[FLASH_BUF_LEN];
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_ADDR_HIGH, 0x91);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_ADDR_LOW, 0xA0);
if (ret < 0) {
dev_err(dev, "IO error : set key flash address.\n");
return ret;
}
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_LEN_HIGH, (FLASH_BUF_LEN - 1) >> 8);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_LEN_LOW, (FLASH_BUF_LEN - 1) & 0xFF);
if (ret < 0) {
dev_err(dev, "IO error : set key flash len.\n");
return ret;
}
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_FLASH_RW_CTRL, FLASH_READ);
ret |= readx_poll_timeout(anx7625_read_flash_status,
ctx, val,
((val & FLASH_DONE) || (val < 0)),
2000,
2000 * 150);
if (ret) {
dev_err(dev, "flash read access fail!\n");
return -EIO;
}
ret = anx7625_reg_block_read(ctx, ctx->i2c.rx_p0_client,
FLASH_BUF_BASE_ADDR,
FLASH_BUF_LEN, ident);
if (ret < 0) {
dev_err(dev, "read flash data fail!\n");
return -EIO;
}
if (ident[29] == 0xFF && ident[30] == 0xFF && ident[31] == 0xFF)
return -EINVAL;
return 0;
}
static int anx7625_hdcp_key_load(struct anx7625_data *ctx)
{
int ret;
struct device *dev = ctx->dev;
/* Select HDCP 1.4 KEY */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_BOOT_RETRY, 0x12);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_ADDR_HIGH, HDCP14KEY_START_ADDR >> 8);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
FLASH_ADDR_LOW, HDCP14KEY_START_ADDR & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_RAM_LEN_H, HDCP14KEY_SIZE >> 12);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_RAM_LEN_L, HDCP14KEY_SIZE >> 4);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_RAM_ADDR_H, 0);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_RAM_ADDR_L, 0);
/* Enable HDCP 1.4 KEY load */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
R_RAM_CTRL, DECRYPT_EN | LOAD_START);
dev_dbg(dev, "load HDCP 1.4 key done\n");
return ret;
}
static int anx7625_hdcp_disable(struct anx7625_data *ctx)
{
int ret;
struct device *dev = ctx->dev;
dev_dbg(dev, "disable HDCP 1.4\n");
/* Disable HDCP */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p1_client, 0xee, 0x9f);
/* Try auth flag */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xec, 0x10);
/* Interrupt for DRM */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xff, 0x01);
if (ret < 0)
dev_err(dev, "fail to disable HDCP\n");
return anx7625_write_and(ctx, ctx->i2c.tx_p0_client,
TX_HDCP_CTRL0, ~HARD_AUTH_EN & 0xFF);
}
static int anx7625_hdcp_enable(struct anx7625_data *ctx)
{
u8 bcap;
int ret;
struct device *dev = ctx->dev;
ret = anx7625_hdcp_key_probe(ctx);
if (ret) {
dev_dbg(dev, "no key found, not to do hdcp\n");
return ret;
}
/* Read downstream capability */
ret = anx7625_aux_trans(ctx, DP_AUX_NATIVE_READ, DP_AUX_HDCP_BCAPS, 1, &bcap);
if (ret < 0)
return ret;
if (!(bcap & DP_BCAPS_HDCP_CAPABLE)) {
pr_warn("downstream not support HDCP 1.4, cap(%x).\n", bcap);
return 0;
}
dev_dbg(dev, "enable HDCP 1.4\n");
/* First clear HDCP state */
ret = anx7625_reg_write(ctx, ctx->i2c.tx_p0_client,
TX_HDCP_CTRL0,
KSVLIST_VLD | BKSV_SRM_PASS | RE_AUTHEN);
usleep_range(1000, 1100);
/* Second clear HDCP state */
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p0_client,
TX_HDCP_CTRL0,
KSVLIST_VLD | BKSV_SRM_PASS | RE_AUTHEN);
/* Set time for waiting KSVR */
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p0_client,
SP_TX_WAIT_KSVR_TIME, 0xc8);
/* Set time for waiting R0 */
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p0_client,
SP_TX_WAIT_R0_TIME, 0xb0);
ret |= anx7625_hdcp_key_load(ctx);
if (ret) {
pr_warn("prepare HDCP key failed.\n");
return ret;
}
ret = anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xee, 0x20);
/* Try auth flag */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xec, 0x10);
/* Interrupt for DRM */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xff, 0x01);
if (ret < 0)
dev_err(dev, "fail to enable HDCP\n");
return anx7625_write_or(ctx, ctx->i2c.tx_p0_client,
TX_HDCP_CTRL0, HARD_AUTH_EN);
}
static void anx7625_dp_start(struct anx7625_data *ctx)
{
int ret;
struct device *dev = ctx->dev;
u8 data;
if (!ctx->display_timing_valid) {
DRM_DEV_ERROR(dev, "mipi not set display timing yet.\n");
return;
}
dev_dbg(dev, "set downstream sink into normal\n");
/* Downstream sink enter into normal mode */
data = DP_SET_POWER_D0;
ret = anx7625_aux_trans(ctx, DP_AUX_NATIVE_WRITE, DP_SET_POWER, 1, &data);
if (ret < 0)
dev_err(dev, "IO error : set sink into normal mode fail\n");
/* Disable HDCP */
anx7625_write_and(ctx, ctx->i2c.rx_p1_client, 0xee, 0x9f);
if (ctx->pdata.is_dpi)
ret = anx7625_dpi_config(ctx);
else
ret = anx7625_dsi_config(ctx);
if (ret < 0)
DRM_DEV_ERROR(dev, "MIPI phy setup error.\n");
ctx->hdcp_cp = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
ctx->dp_en = 1;
}
static void anx7625_dp_stop(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
u8 data;
DRM_DEV_DEBUG_DRIVER(dev, "stop dp output\n");
/*
* Video disable: 0x72:08 bit 7 = 0;
* Audio disable: 0x70:87 bit 0 = 0;
*/
ret = anx7625_write_and(ctx, ctx->i2c.tx_p0_client, 0x87, 0xfe);
ret |= anx7625_write_and(ctx, ctx->i2c.tx_p2_client, 0x08, 0x7f);
ret |= anx7625_video_mute_control(ctx, 1);
dev_dbg(dev, "notify downstream enter into standby\n");
/* Downstream monitor enter into standby mode */
data = DP_SET_POWER_D3;
ret |= anx7625_aux_trans(ctx, DP_AUX_NATIVE_WRITE, DP_SET_POWER, 1, &data);
if (ret < 0)
DRM_DEV_ERROR(dev, "IO error : mute video fail\n");
ctx->hdcp_cp = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
ctx->dp_en = 0;
}
static int sp_tx_rst_aux(struct anx7625_data *ctx)
{
int ret;
ret = anx7625_write_or(ctx, ctx->i2c.tx_p2_client, RST_CTRL2,
AUX_RST);
ret |= anx7625_write_and(ctx, ctx->i2c.tx_p2_client, RST_CTRL2,
~AUX_RST);
return ret;
}
static int sp_tx_aux_wr(struct anx7625_data *ctx, u8 offset)
{
int ret;
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_BUFF_START, offset);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_COMMAND, 0x04);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return (ret | wait_aux_op_finish(ctx));
}
static int sp_tx_aux_rd(struct anx7625_data *ctx, u8 len_cmd)
{
int ret;
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_COMMAND, len_cmd);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return (ret | wait_aux_op_finish(ctx));
}
static int sp_tx_get_edid_block(struct anx7625_data *ctx)
{
int c = 0;
struct device *dev = ctx->dev;
sp_tx_aux_wr(ctx, 0x7e);
sp_tx_aux_rd(ctx, 0x01);
c = anx7625_reg_read(ctx, ctx->i2c.rx_p0_client, AP_AUX_BUFF_START);
if (c < 0) {
DRM_DEV_ERROR(dev, "IO error : access AUX BUFF.\n");
return -EIO;
}
DRM_DEV_DEBUG_DRIVER(dev, " EDID Block = %d\n", c + 1);
if (c > MAX_EDID_BLOCK)
c = 1;
return c;
}
static int edid_read(struct anx7625_data *ctx,
u8 offset, u8 *pblock_buf)
{
int ret, cnt;
struct device *dev = ctx->dev;
for (cnt = 0; cnt <= EDID_TRY_CNT; cnt++) {
sp_tx_aux_wr(ctx, offset);
/* Set I2C read com 0x01 mot = 0 and read 16 bytes */
ret = sp_tx_aux_rd(ctx, 0xf1);
if (ret) {
ret = sp_tx_rst_aux(ctx);
DRM_DEV_DEBUG_DRIVER(dev, "edid read fail, reset!\n");
} else {
ret = anx7625_reg_block_read(ctx, ctx->i2c.rx_p0_client,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE,
pblock_buf);
if (ret > 0)
break;
}
}
if (cnt > EDID_TRY_CNT)
return -EIO;
return ret;
}
static int segments_edid_read(struct anx7625_data *ctx,
u8 segment, u8 *buf, u8 offset)
{
u8 cnt;
int ret;
struct device *dev = ctx->dev;
/* Write address only */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_7_0, 0x30);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_COMMAND, 0x04);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_CTRL_STATUS,
AP_AUX_CTRL_ADDRONLY | AP_AUX_CTRL_OP_EN);
ret |= wait_aux_op_finish(ctx);
/* Write segment address */
ret |= sp_tx_aux_wr(ctx, segment);
/* Data read */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_7_0, 0x50);
if (ret) {
DRM_DEV_ERROR(dev, "IO error : aux initial fail.\n");
return ret;
}
for (cnt = 0; cnt <= EDID_TRY_CNT; cnt++) {
sp_tx_aux_wr(ctx, offset);
/* Set I2C read com 0x01 mot = 0 and read 16 bytes */
ret = sp_tx_aux_rd(ctx, 0xf1);
if (ret) {
ret = sp_tx_rst_aux(ctx);
DRM_DEV_ERROR(dev, "segment read fail, reset!\n");
} else {
ret = anx7625_reg_block_read(ctx, ctx->i2c.rx_p0_client,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE, buf);
if (ret > 0)
break;
}
}
if (cnt > EDID_TRY_CNT)
return -EIO;
return ret;
}
static int sp_tx_edid_read(struct anx7625_data *ctx,
u8 *pedid_blocks_buf)
{
u8 offset;
int edid_pos;
int count, blocks_num;
u8 pblock_buf[MAX_DPCD_BUFFER_SIZE];
u8 i, j;
int g_edid_break = 0;
int ret;
struct device *dev = ctx->dev;
/* Address initial */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_7_0, 0x50);
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_15_8, 0);
ret |= anx7625_write_and(ctx, ctx->i2c.rx_p0_client,
AP_AUX_ADDR_19_16, 0xf0);
if (ret < 0) {
DRM_DEV_ERROR(dev, "access aux channel IO error.\n");
return -EIO;
}
blocks_num = sp_tx_get_edid_block(ctx);
if (blocks_num < 0)
return blocks_num;
count = 0;
do {
switch (count) {
case 0:
case 1:
for (i = 0; i < 8; i++) {
offset = (i + count * 8) * MAX_DPCD_BUFFER_SIZE;
g_edid_break = edid_read(ctx, offset,
pblock_buf);
if (g_edid_break < 0)
break;
memcpy(&pedid_blocks_buf[offset],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
}
break;
case 2:
offset = 0x00;
for (j = 0; j < 8; j++) {
edid_pos = (j + count * 8) *
MAX_DPCD_BUFFER_SIZE;
if (g_edid_break == 1)
break;
ret = segments_edid_read(ctx, count / 2,
pblock_buf, offset);
if (ret < 0)
return ret;
memcpy(&pedid_blocks_buf[edid_pos],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
offset = offset + 0x10;
}
break;
case 3:
offset = 0x80;
for (j = 0; j < 8; j++) {
edid_pos = (j + count * 8) *
MAX_DPCD_BUFFER_SIZE;
if (g_edid_break == 1)
break;
ret = segments_edid_read(ctx, count / 2,
pblock_buf, offset);
if (ret < 0)
return ret;
memcpy(&pedid_blocks_buf[edid_pos],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
offset = offset + 0x10;
}
break;
default:
break;
}
count++;
} while (blocks_num >= count);
/* Check edid data */
if (!drm_edid_is_valid((struct edid *)pedid_blocks_buf)) {
DRM_DEV_ERROR(dev, "WARNING! edid check fail!\n");
return -EINVAL;
}
/* Reset aux channel */
ret = sp_tx_rst_aux(ctx);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to reset aux channel!\n");
return ret;
}
return (blocks_num + 1);
}
static void anx7625_power_on(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret, i;
if (!ctx->pdata.low_power_mode) {
DRM_DEV_DEBUG_DRIVER(dev, "not low power mode!\n");
return;
}
for (i = 0; i < ARRAY_SIZE(ctx->pdata.supplies); i++) {
ret = regulator_enable(ctx->pdata.supplies[i].consumer);
if (ret < 0) {
DRM_DEV_DEBUG_DRIVER(dev, "cannot enable supply %d: %d\n",
i, ret);
goto reg_err;
}
usleep_range(2000, 2100);
}
usleep_range(11000, 12000);
/* Power on pin enable */
gpiod_set_value(ctx->pdata.gpio_p_on, 1);
usleep_range(10000, 11000);
/* Power reset pin enable */
gpiod_set_value(ctx->pdata.gpio_reset, 1);
usleep_range(10000, 11000);
DRM_DEV_DEBUG_DRIVER(dev, "power on !\n");
return;
reg_err:
for (--i; i >= 0; i--)
regulator_disable(ctx->pdata.supplies[i].consumer);
}
static void anx7625_power_standby(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
if (!ctx->pdata.low_power_mode) {
DRM_DEV_DEBUG_DRIVER(dev, "not low power mode!\n");
return;
}
gpiod_set_value(ctx->pdata.gpio_reset, 0);
usleep_range(1000, 1100);
gpiod_set_value(ctx->pdata.gpio_p_on, 0);
usleep_range(1000, 1100);
ret = regulator_bulk_disable(ARRAY_SIZE(ctx->pdata.supplies),
ctx->pdata.supplies);
if (ret < 0)
DRM_DEV_DEBUG_DRIVER(dev, "cannot disable supplies %d\n", ret);
DRM_DEV_DEBUG_DRIVER(dev, "power down\n");
}
/* Basic configurations of ANX7625 */
static void anx7625_config(struct anx7625_data *ctx)
{
anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
XTAL_FRQ_SEL, XTAL_FRQ_27M);
}
static void anx7625_disable_pd_protocol(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
/* Reset main ocm */
ret = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client, 0x88, 0x40);
/* Disable PD */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_DISABLE_PD);
/* Release main ocm */
ret |= anx7625_reg_write(ctx, ctx->i2c.rx_p0_client, 0x88, 0x00);
if (ret < 0)
DRM_DEV_DEBUG_DRIVER(dev, "disable PD feature fail.\n");
else
DRM_DEV_DEBUG_DRIVER(dev, "disable PD feature succeeded.\n");
}
static int anx7625_ocm_loading_check(struct anx7625_data *ctx)
{
int ret;
struct device *dev = ctx->dev;
/* Check interface workable */
ret = anx7625_reg_read(ctx, ctx->i2c.rx_p0_client,
FLASH_LOAD_STA);
if (ret < 0) {
DRM_DEV_ERROR(dev, "IO error : access flash load.\n");
return ret;
}
if ((ret & FLASH_LOAD_STA_CHK) != FLASH_LOAD_STA_CHK)
return -ENODEV;
anx7625_disable_pd_protocol(ctx);
DRM_DEV_DEBUG_DRIVER(dev, "Firmware ver %02x%02x,",
anx7625_reg_read(ctx,
ctx->i2c.rx_p0_client,
OCM_FW_VERSION),
anx7625_reg_read(ctx,
ctx->i2c.rx_p0_client,
OCM_FW_REVERSION));
DRM_DEV_DEBUG_DRIVER(dev, "Driver version %s\n",
ANX7625_DRV_VERSION);
return 0;
}
static void anx7625_power_on_init(struct anx7625_data *ctx)
{
int retry_count, i;
for (retry_count = 0; retry_count < 3; retry_count++) {
anx7625_power_on(ctx);
anx7625_config(ctx);
for (i = 0; i < OCM_LOADING_TIME; i++) {
if (!anx7625_ocm_loading_check(ctx))
return;
usleep_range(1000, 1100);
}
anx7625_power_standby(ctx);
}
}
static void anx7625_init_gpio(struct anx7625_data *platform)
{
struct device *dev = platform->dev;
DRM_DEV_DEBUG_DRIVER(dev, "init gpio\n");
/* Gpio for chip power enable */
platform->pdata.gpio_p_on =
devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR_OR_NULL(platform->pdata.gpio_p_on)) {
DRM_DEV_DEBUG_DRIVER(dev, "no enable gpio found\n");
platform->pdata.gpio_p_on = NULL;
}
/* Gpio for chip reset */
platform->pdata.gpio_reset =
devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR_OR_NULL(platform->pdata.gpio_reset)) {
DRM_DEV_DEBUG_DRIVER(dev, "no reset gpio found\n");
platform->pdata.gpio_reset = NULL;
}
if (platform->pdata.gpio_p_on && platform->pdata.gpio_reset) {
platform->pdata.low_power_mode = 1;
DRM_DEV_DEBUG_DRIVER(dev, "low power mode, pon %d, reset %d.\n",
desc_to_gpio(platform->pdata.gpio_p_on),
desc_to_gpio(platform->pdata.gpio_reset));
} else {
platform->pdata.low_power_mode = 0;
DRM_DEV_DEBUG_DRIVER(dev, "not low power mode.\n");
}
}
static void anx7625_stop_dp_work(struct anx7625_data *ctx)
{
ctx->hpd_status = 0;
ctx->hpd_high_cnt = 0;
}
static void anx7625_start_dp_work(struct anx7625_data *ctx)
{
int ret;
struct device *dev = ctx->dev;
if (ctx->hpd_high_cnt >= 2) {
DRM_DEV_DEBUG_DRIVER(dev, "filter useless HPD\n");
return;
}
ctx->hpd_status = 1;
ctx->hpd_high_cnt++;
/* Not support HDCP */
ret = anx7625_write_and(ctx, ctx->i2c.rx_p1_client, 0xee, 0x9f);
/* Try auth flag */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xec, 0x10);
/* Interrupt for DRM */
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p1_client, 0xff, 0x01);
if (ret < 0) {
DRM_DEV_ERROR(dev, "fail to setting HDCP/auth\n");
return;
}
ret = anx7625_reg_read(ctx, ctx->i2c.rx_p1_client, 0x86);
if (ret < 0)
return;
DRM_DEV_DEBUG_DRIVER(dev, "Secure OCM version=%02x\n", ret);
}
static int anx7625_read_hpd_status_p0(struct anx7625_data *ctx)
{
int ret;
/* Set irq detect window to 2ms */
ret = anx7625_reg_write(ctx, ctx->i2c.tx_p2_client,
HPD_DET_TIMER_BIT0_7, HPD_TIME & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p2_client,
HPD_DET_TIMER_BIT8_15,
(HPD_TIME >> 8) & 0xFF);
ret |= anx7625_reg_write(ctx, ctx->i2c.tx_p2_client,
HPD_DET_TIMER_BIT16_23,
(HPD_TIME >> 16) & 0xFF);
if (ret < 0)
return ret;
return anx7625_reg_read(ctx, ctx->i2c.rx_p0_client, SYSTEM_STSTUS);
}
static int _anx7625_hpd_polling(struct anx7625_data *ctx,
unsigned long wait_us)
{
int ret, val;
struct device *dev = ctx->dev;
/* Interrupt mode, no need poll HPD status, just return */
if (ctx->pdata.intp_irq)
return 0;
ret = readx_poll_timeout(anx7625_read_hpd_status_p0,
ctx, val,
((val & HPD_STATUS) || (val < 0)),
wait_us / 100,
wait_us);
if (ret) {
DRM_DEV_ERROR(dev, "no hpd.\n");
return ret;
}
DRM_DEV_DEBUG_DRIVER(dev, "system status: 0x%x. HPD raise up.\n", val);
anx7625_reg_write(ctx, ctx->i2c.tcpc_client,
INTR_ALERT_1, 0xFF);
anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
INTERFACE_CHANGE_INT, 0);
anx7625_start_dp_work(ctx);
if (!ctx->pdata.panel_bridge && ctx->bridge_attached)
drm_helper_hpd_irq_event(ctx->bridge.dev);
return 0;
}
static int anx7625_wait_hpd_asserted(struct drm_dp_aux *aux,
unsigned long wait_us)
{
struct anx7625_data *ctx = container_of(aux, struct anx7625_data, aux);
struct device *dev = ctx->dev;
int ret;
pm_runtime_get_sync(dev);
ret = _anx7625_hpd_polling(ctx, wait_us);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static void anx7625_remove_edid(struct anx7625_data *ctx)
{
ctx->slimport_edid_p.edid_block_num = -1;
}
static void anx7625_dp_adjust_swing(struct anx7625_data *ctx)
{
int i;
for (i = 0; i < ctx->pdata.dp_lane0_swing_reg_cnt; i++)
anx7625_reg_write(ctx, ctx->i2c.tx_p1_client,
DP_TX_LANE0_SWING_REG0 + i,
ctx->pdata.lane0_reg_data[i]);
for (i = 0; i < ctx->pdata.dp_lane1_swing_reg_cnt; i++)
anx7625_reg_write(ctx, ctx->i2c.tx_p1_client,
DP_TX_LANE1_SWING_REG0 + i,
ctx->pdata.lane1_reg_data[i]);
}
static void dp_hpd_change_handler(struct anx7625_data *ctx, bool on)
{
struct device *dev = ctx->dev;
/* HPD changed */
DRM_DEV_DEBUG_DRIVER(dev, "dp_hpd_change_default_func: %d\n",
(u32)on);
if (on == 0) {
DRM_DEV_DEBUG_DRIVER(dev, " HPD low\n");
anx7625_remove_edid(ctx);
anx7625_stop_dp_work(ctx);
} else {
DRM_DEV_DEBUG_DRIVER(dev, " HPD high\n");
anx7625_start_dp_work(ctx);
anx7625_dp_adjust_swing(ctx);
}
}
static int anx7625_hpd_change_detect(struct anx7625_data *ctx)
{
int intr_vector, status;
struct device *dev = ctx->dev;
status = anx7625_reg_write(ctx, ctx->i2c.tcpc_client,
INTR_ALERT_1, 0xFF);
if (status < 0) {
DRM_DEV_ERROR(dev, "cannot clear alert reg.\n");
return status;
}
intr_vector = anx7625_reg_read(ctx, ctx->i2c.rx_p0_client,
INTERFACE_CHANGE_INT);
if (intr_vector < 0) {
DRM_DEV_ERROR(dev, "cannot access interrupt change reg.\n");
return intr_vector;
}
DRM_DEV_DEBUG_DRIVER(dev, "0x7e:0x44=%x\n", intr_vector);
status = anx7625_reg_write(ctx, ctx->i2c.rx_p0_client,
INTERFACE_CHANGE_INT,
intr_vector & (~intr_vector));
if (status < 0) {
DRM_DEV_ERROR(dev, "cannot clear interrupt change reg.\n");
return status;
}
if (!(intr_vector & HPD_STATUS_CHANGE))
return -ENOENT;
status = anx7625_reg_read(ctx, ctx->i2c.rx_p0_client,
SYSTEM_STSTUS);
if (status < 0) {
DRM_DEV_ERROR(dev, "cannot clear interrupt status.\n");
return status;
}
DRM_DEV_DEBUG_DRIVER(dev, "0x7e:0x45=%x\n", status);
dp_hpd_change_handler(ctx, status & HPD_STATUS);
return 0;
}
static void anx7625_work_func(struct work_struct *work)
{
int event;
struct anx7625_data *ctx = container_of(work,
struct anx7625_data, work);
mutex_lock(&ctx->lock);
if (pm_runtime_suspended(ctx->dev)) {
mutex_unlock(&ctx->lock);
return;
}
event = anx7625_hpd_change_detect(ctx);
mutex_unlock(&ctx->lock);
if (event < 0)
return;
if (ctx->bridge_attached)
drm_helper_hpd_irq_event(ctx->bridge.dev);
}
static irqreturn_t anx7625_intr_hpd_isr(int irq, void *data)
{
struct anx7625_data *ctx = (struct anx7625_data *)data;
queue_work(ctx->workqueue, &ctx->work);
return IRQ_HANDLED;
}
static int anx7625_get_swing_setting(struct device *dev,
struct anx7625_platform_data *pdata)
{
int num_regs;
if (of_get_property(dev->of_node,
"analogix,lane0-swing", &num_regs)) {
if (num_regs > DP_TX_SWING_REG_CNT)
num_regs = DP_TX_SWING_REG_CNT;
pdata->dp_lane0_swing_reg_cnt = num_regs;
of_property_read_u8_array(dev->of_node, "analogix,lane0-swing",
pdata->lane0_reg_data, num_regs);
}
if (of_get_property(dev->of_node,
"analogix,lane1-swing", &num_regs)) {
if (num_regs > DP_TX_SWING_REG_CNT)
num_regs = DP_TX_SWING_REG_CNT;
pdata->dp_lane1_swing_reg_cnt = num_regs;
of_property_read_u8_array(dev->of_node, "analogix,lane1-swing",
pdata->lane1_reg_data, num_regs);
}
return 0;
}
static int anx7625_parse_dt(struct device *dev,
struct anx7625_platform_data *pdata)
{
struct device_node *np = dev->of_node, *ep0;
int bus_type, mipi_lanes;
anx7625_get_swing_setting(dev, pdata);
pdata->is_dpi = 0; /* default dsi mode */
of_node_put(pdata->mipi_host_node);
pdata->mipi_host_node = of_graph_get_remote_node(np, 0, 0);
if (!pdata->mipi_host_node) {
DRM_DEV_ERROR(dev, "fail to get internal panel.\n");
return -ENODEV;
}
bus_type = 0;
mipi_lanes = MAX_LANES_SUPPORT;
ep0 = of_graph_get_endpoint_by_regs(np, 0, 0);
if (ep0) {
if (of_property_read_u32(ep0, "bus-type", &bus_type))
bus_type = 0;
mipi_lanes = drm_of_get_data_lanes_count(ep0, 1, MAX_LANES_SUPPORT);
of_node_put(ep0);
}
if (bus_type == V4L2_FWNODE_BUS_TYPE_DPI) /* bus type is DPI */
pdata->is_dpi = 1;
pdata->mipi_lanes = MAX_LANES_SUPPORT;
if (mipi_lanes > 0)
pdata->mipi_lanes = mipi_lanes;
if (pdata->is_dpi)
DRM_DEV_DEBUG_DRIVER(dev, "found MIPI DPI host node.\n");
else
DRM_DEV_DEBUG_DRIVER(dev, "found MIPI DSI host node.\n");
if (of_property_read_bool(np, "analogix,audio-enable"))
pdata->audio_en = 1;
return 0;
}
static int anx7625_parse_dt_panel(struct device *dev,
struct anx7625_platform_data *pdata)
{
struct device_node *np = dev->of_node;
pdata->panel_bridge = devm_drm_of_get_bridge(dev, np, 1, 0);
if (IS_ERR(pdata->panel_bridge)) {
if (PTR_ERR(pdata->panel_bridge) == -ENODEV) {
pdata->panel_bridge = NULL;
return 0;
}
return PTR_ERR(pdata->panel_bridge);
}
DRM_DEV_DEBUG_DRIVER(dev, "get panel node.\n");
return 0;
}
static bool anx7625_of_panel_on_aux_bus(struct device *dev)
{
struct device_node *bus, *panel;
bus = of_get_child_by_name(dev->of_node, "aux-bus");
if (!bus)
return false;
panel = of_get_child_by_name(bus, "panel");
of_node_put(bus);
if (!panel)
return false;
of_node_put(panel);
return true;
}
static inline struct anx7625_data *bridge_to_anx7625(struct drm_bridge *bridge)
{
return container_of(bridge, struct anx7625_data, bridge);
}
static ssize_t anx7625_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct anx7625_data *ctx = container_of(aux, struct anx7625_data, aux);
struct device *dev = ctx->dev;
u8 request = msg->request & ~DP_AUX_I2C_MOT;
int ret = 0;
pm_runtime_get_sync(dev);
msg->reply = 0;
switch (request) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
break;
default:
ret = -EINVAL;
}
if (!ret)
ret = anx7625_aux_trans(ctx, msg->request, msg->address,
msg->size, msg->buffer);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static struct edid *anx7625_get_edid(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
struct s_edid_data *p_edid = &ctx->slimport_edid_p;
int edid_num;
u8 *edid;
edid = kmalloc(FOUR_BLOCK_SIZE, GFP_KERNEL);
if (!edid) {
DRM_DEV_ERROR(dev, "Fail to allocate buffer\n");
return NULL;
}
if (ctx->slimport_edid_p.edid_block_num > 0) {
memcpy(edid, ctx->slimport_edid_p.edid_raw_data,
FOUR_BLOCK_SIZE);
return (struct edid *)edid;
}
pm_runtime_get_sync(dev);
_anx7625_hpd_polling(ctx, 5000 * 100);
edid_num = sp_tx_edid_read(ctx, p_edid->edid_raw_data);
pm_runtime_put_sync(dev);
if (edid_num < 1) {
DRM_DEV_ERROR(dev, "Fail to read EDID: %d\n", edid_num);
kfree(edid);
return NULL;
}
p_edid->edid_block_num = edid_num;
memcpy(edid, ctx->slimport_edid_p.edid_raw_data, FOUR_BLOCK_SIZE);
return (struct edid *)edid;
}
static enum drm_connector_status anx7625_sink_detect(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "sink detect\n");
if (ctx->pdata.panel_bridge)
return connector_status_connected;
return ctx->hpd_status ? connector_status_connected :
connector_status_disconnected;
}
static int anx7625_audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *fmt,
struct hdmi_codec_params *params)
{
struct anx7625_data *ctx = dev_get_drvdata(dev);
int wl, ch, rate;
int ret = 0;
if (anx7625_sink_detect(ctx) == connector_status_disconnected) {
DRM_DEV_DEBUG_DRIVER(dev, "DP not connected\n");
return 0;
}
if (fmt->fmt != HDMI_DSP_A && fmt->fmt != HDMI_I2S) {
DRM_DEV_ERROR(dev, "only supports DSP_A & I2S\n");
return -EINVAL;
}
DRM_DEV_DEBUG_DRIVER(dev, "setting %d Hz, %d bit, %d channels\n",
params->sample_rate, params->sample_width,
params->cea.channels);
if (fmt->fmt == HDMI_DSP_A)
ret = anx7625_write_and_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_6,
~I2S_SLAVE_MODE,
TDM_SLAVE_MODE);
else
ret = anx7625_write_and_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_6,
~TDM_SLAVE_MODE,
I2S_SLAVE_MODE);
/* Word length */
switch (params->sample_width) {
case 16:
wl = AUDIO_W_LEN_16_20MAX;
break;
case 18:
wl = AUDIO_W_LEN_18_20MAX;
break;
case 20:
wl = AUDIO_W_LEN_20_20MAX;
break;
case 24:
wl = AUDIO_W_LEN_24_24MAX;
break;
default:
DRM_DEV_DEBUG_DRIVER(dev, "wordlength: %d bit not support",
params->sample_width);
return -EINVAL;
}
ret |= anx7625_write_and_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_5,
0xf0, wl);
/* Channel num */
switch (params->cea.channels) {
case 2:
ch = I2S_CH_2;
break;
case 4:
ch = TDM_CH_4;
break;
case 6:
ch = TDM_CH_6;
break;
case 8:
ch = TDM_CH_8;
break;
default:
DRM_DEV_DEBUG_DRIVER(dev, "channel number: %d not support",
params->cea.channels);
return -EINVAL;
}
ret |= anx7625_write_and_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_6, 0x1f, ch << 5);
if (ch > I2S_CH_2)
ret |= anx7625_write_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_6, AUDIO_LAYOUT);
else
ret |= anx7625_write_and(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_6, ~AUDIO_LAYOUT);
/* FS */
switch (params->sample_rate) {
case 32000:
rate = AUDIO_FS_32K;
break;
case 44100:
rate = AUDIO_FS_441K;
break;
case 48000:
rate = AUDIO_FS_48K;
break;
case 88200:
rate = AUDIO_FS_882K;
break;
case 96000:
rate = AUDIO_FS_96K;
break;
case 176400:
rate = AUDIO_FS_1764K;
break;
case 192000:
rate = AUDIO_FS_192K;
break;
default:
DRM_DEV_DEBUG_DRIVER(dev, "sample rate: %d not support",
params->sample_rate);
return -EINVAL;
}
ret |= anx7625_write_and_or(ctx, ctx->i2c.tx_p2_client,
AUDIO_CHANNEL_STATUS_4,
0xf0, rate);
ret |= anx7625_write_or(ctx, ctx->i2c.rx_p0_client,
AP_AV_STATUS, AP_AUDIO_CHG);
if (ret < 0) {
DRM_DEV_ERROR(dev, "IO error : config audio.\n");
return -EIO;
}
return 0;
}
static void anx7625_audio_shutdown(struct device *dev, void *data)
{
DRM_DEV_DEBUG_DRIVER(dev, "stop audio\n");
}
static int anx7625_hdmi_i2s_get_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
struct of_endpoint of_ep;
int ret;
ret = of_graph_parse_endpoint(endpoint, &of_ep);
if (ret < 0)
return ret;
/*
* HDMI sound should be located at external DPI port
* Didn't have good way to check where is internal(DSI)
* or external(DPI) bridge
*/
return 0;
}
static void
anx7625_audio_update_connector_status(struct anx7625_data *ctx,
enum drm_connector_status status)
{
if (ctx->plugged_cb && ctx->codec_dev) {
ctx->plugged_cb(ctx->codec_dev,
status == connector_status_connected);
}
}
static int anx7625_audio_hook_plugged_cb(struct device *dev, void *data,
hdmi_codec_plugged_cb fn,
struct device *codec_dev)
{
struct anx7625_data *ctx = data;
ctx->plugged_cb = fn;
ctx->codec_dev = codec_dev;
anx7625_audio_update_connector_status(ctx, anx7625_sink_detect(ctx));
return 0;
}
static int anx7625_audio_get_eld(struct device *dev, void *data,
u8 *buf, size_t len)
{
struct anx7625_data *ctx = dev_get_drvdata(dev);
if (!ctx->connector) {
/* Pass en empty ELD if connector not available */
memset(buf, 0, len);
} else {
dev_dbg(dev, "audio copy eld\n");
memcpy(buf, ctx->connector->eld,
min(sizeof(ctx->connector->eld), len));
}
return 0;
}
static const struct hdmi_codec_ops anx7625_codec_ops = {
.hw_params = anx7625_audio_hw_params,
.audio_shutdown = anx7625_audio_shutdown,
.get_eld = anx7625_audio_get_eld,
.get_dai_id = anx7625_hdmi_i2s_get_dai_id,
.hook_plugged_cb = anx7625_audio_hook_plugged_cb,
};
static void anx7625_unregister_audio(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
if (ctx->audio_pdev) {
platform_device_unregister(ctx->audio_pdev);
ctx->audio_pdev = NULL;
}
DRM_DEV_DEBUG_DRIVER(dev, "unbound to %s", HDMI_CODEC_DRV_NAME);
}
static int anx7625_register_audio(struct device *dev, struct anx7625_data *ctx)
{
struct hdmi_codec_pdata codec_data = {
.ops = &anx7625_codec_ops,
.max_i2s_channels = 8,
.i2s = 1,
.data = ctx,
};
ctx->audio_pdev = platform_device_register_data(dev,
HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&codec_data,
sizeof(codec_data));
if (IS_ERR(ctx->audio_pdev))
return PTR_ERR(ctx->audio_pdev);
DRM_DEV_DEBUG_DRIVER(dev, "bound to %s", HDMI_CODEC_DRV_NAME);
return 0;
}
static int anx7625_setup_dsi_device(struct anx7625_data *ctx)
{
struct mipi_dsi_device *dsi;
struct device *dev = ctx->dev;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = {
.type = "anx7625",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(ctx->pdata.mipi_host_node);
if (!host) {
DRM_DEV_ERROR(dev, "fail to find dsi host.\n");
return -EPROBE_DEFER;
}
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
DRM_DEV_ERROR(dev, "fail to create dsi device.\n");
return -EINVAL;
}
dsi->lanes = ctx->pdata.mipi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_SYNC_PULSE |
MIPI_DSI_MODE_VIDEO_HSE |
MIPI_DSI_HS_PKT_END_ALIGNED;
ctx->dsi = dsi;
return 0;
}
static int anx7625_attach_dsi(struct anx7625_data *ctx)
{
struct device *dev = ctx->dev;
int ret;
DRM_DEV_DEBUG_DRIVER(dev, "attach dsi\n");
ret = devm_mipi_dsi_attach(dev, ctx->dsi);
if (ret) {
DRM_DEV_ERROR(dev, "fail to attach dsi to host.\n");
return ret;
}
DRM_DEV_DEBUG_DRIVER(dev, "attach dsi succeeded.\n");
return 0;
}
static void hdcp_check_work_func(struct work_struct *work)
{
u8 status;
struct delayed_work *dwork;
struct anx7625_data *ctx;
struct device *dev;
struct drm_device *drm_dev;
dwork = to_delayed_work(work);
ctx = container_of(dwork, struct anx7625_data, hdcp_work);
dev = ctx->dev;
if (!ctx->connector) {
dev_err(dev, "HDCP connector is null!");
return;
}
drm_dev = ctx->connector->dev;
drm_modeset_lock(&drm_dev->mode_config.connection_mutex, NULL);
mutex_lock(&ctx->hdcp_wq_lock);
status = anx7625_reg_read(ctx, ctx->i2c.tx_p0_client, 0);
dev_dbg(dev, "sink HDCP status check: %.02x\n", status);
if (status & BIT(1)) {
ctx->hdcp_cp = DRM_MODE_CONTENT_PROTECTION_ENABLED;
drm_hdcp_update_content_protection(ctx->connector,
ctx->hdcp_cp);
dev_dbg(dev, "update CP to ENABLE\n");
}
mutex_unlock(&ctx->hdcp_wq_lock);
drm_modeset_unlock(&drm_dev->mode_config.connection_mutex);
}
static int anx7625_connector_atomic_check(struct anx7625_data *ctx,
struct drm_connector_state *state)
{
struct device *dev = ctx->dev;
int cp;
dev_dbg(dev, "hdcp state check\n");
cp = state->content_protection;
if (cp == ctx->hdcp_cp)
return 0;
if (cp == DRM_MODE_CONTENT_PROTECTION_DESIRED) {
if (ctx->dp_en) {
dev_dbg(dev, "enable HDCP\n");
anx7625_hdcp_enable(ctx);
queue_delayed_work(ctx->hdcp_workqueue,
&ctx->hdcp_work,
msecs_to_jiffies(2000));
}
}
if (cp == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
if (ctx->hdcp_cp != DRM_MODE_CONTENT_PROTECTION_ENABLED) {
dev_err(dev, "current CP is not ENABLED\n");
return -EINVAL;
}
anx7625_hdcp_disable(ctx);
ctx->hdcp_cp = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
drm_hdcp_update_content_protection(ctx->connector,
ctx->hdcp_cp);
dev_dbg(dev, "update CP to UNDESIRE\n");
}
if (cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
dev_err(dev, "Userspace illegal set to PROTECTION ENABLE\n");
return -EINVAL;
}
return 0;
}
static int anx7625_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
int err;
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "drm attach\n");
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
if (!bridge->encoder) {
DRM_DEV_ERROR(dev, "Parent encoder object not found");
return -ENODEV;
}
ctx->aux.drm_dev = bridge->dev;
err = drm_dp_aux_register(&ctx->aux);
if (err) {
dev_err(dev, "failed to register aux channel: %d\n", err);
return err;
}
if (ctx->pdata.panel_bridge) {
err = drm_bridge_attach(bridge->encoder,
ctx->pdata.panel_bridge,
&ctx->bridge, flags);
if (err)
return err;
}
ctx->bridge_attached = 1;
return 0;
}
static void anx7625_bridge_detach(struct drm_bridge *bridge)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
drm_dp_aux_unregister(&ctx->aux);
}
static enum drm_mode_status
anx7625_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "drm mode checking\n");
/* Max 1200p at 5.4 Ghz, one lane, pixel clock 300M */
if (mode->clock > SUPPORT_PIXEL_CLOCK) {
DRM_DEV_DEBUG_DRIVER(dev,
"drm mode invalid, pixelclock too high.\n");
return MODE_CLOCK_HIGH;
}
DRM_DEV_DEBUG_DRIVER(dev, "drm mode valid.\n");
return MODE_OK;
}
static void anx7625_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *old_mode,
const struct drm_display_mode *mode)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "drm mode set\n");
ctx->dt.pixelclock.min = mode->clock;
ctx->dt.hactive.min = mode->hdisplay;
ctx->dt.hsync_len.min = mode->hsync_end - mode->hsync_start;
ctx->dt.hfront_porch.min = mode->hsync_start - mode->hdisplay;
ctx->dt.hback_porch.min = mode->htotal - mode->hsync_end;
ctx->dt.vactive.min = mode->vdisplay;
ctx->dt.vsync_len.min = mode->vsync_end - mode->vsync_start;
ctx->dt.vfront_porch.min = mode->vsync_start - mode->vdisplay;
ctx->dt.vback_porch.min = mode->vtotal - mode->vsync_end;
ctx->display_timing_valid = 1;
DRM_DEV_DEBUG_DRIVER(dev, "pixelclock(%d).\n", ctx->dt.pixelclock.min);
DRM_DEV_DEBUG_DRIVER(dev, "hactive(%d), hsync(%d), hfp(%d), hbp(%d)\n",
ctx->dt.hactive.min,
ctx->dt.hsync_len.min,
ctx->dt.hfront_porch.min,
ctx->dt.hback_porch.min);
DRM_DEV_DEBUG_DRIVER(dev, "vactive(%d), vsync(%d), vfp(%d), vbp(%d)\n",
ctx->dt.vactive.min,
ctx->dt.vsync_len.min,
ctx->dt.vfront_porch.min,
ctx->dt.vback_porch.min);
DRM_DEV_DEBUG_DRIVER(dev, "hdisplay(%d),hsync_start(%d).\n",
mode->hdisplay,
mode->hsync_start);
DRM_DEV_DEBUG_DRIVER(dev, "hsync_end(%d),htotal(%d).\n",
mode->hsync_end,
mode->htotal);
DRM_DEV_DEBUG_DRIVER(dev, "vdisplay(%d),vsync_start(%d).\n",
mode->vdisplay,
mode->vsync_start);
DRM_DEV_DEBUG_DRIVER(dev, "vsync_end(%d),vtotal(%d).\n",
mode->vsync_end,
mode->vtotal);
}
static bool anx7625_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
u32 hsync, hfp, hbp, hblanking;
u32 adj_hsync, adj_hfp, adj_hbp, adj_hblanking, delta_adj;
u32 vref, adj_clock;
DRM_DEV_DEBUG_DRIVER(dev, "drm mode fixup set\n");
/* No need fixup for external monitor */
if (!ctx->pdata.panel_bridge)
return true;
hsync = mode->hsync_end - mode->hsync_start;
hfp = mode->hsync_start - mode->hdisplay;
hbp = mode->htotal - mode->hsync_end;
hblanking = mode->htotal - mode->hdisplay;
DRM_DEV_DEBUG_DRIVER(dev, "before mode fixup\n");
DRM_DEV_DEBUG_DRIVER(dev, "hsync(%d), hfp(%d), hbp(%d), clock(%d)\n",
hsync, hfp, hbp, adj->clock);
DRM_DEV_DEBUG_DRIVER(dev, "hsync_start(%d), hsync_end(%d), htot(%d)\n",
adj->hsync_start, adj->hsync_end, adj->htotal);
adj_hfp = hfp;
adj_hsync = hsync;
adj_hbp = hbp;
adj_hblanking = hblanking;
/* HFP needs to be even */
if (hfp & 0x1) {
adj_hfp += 1;
adj_hblanking += 1;
}
/* HBP needs to be even */
if (hbp & 0x1) {
adj_hbp -= 1;
adj_hblanking -= 1;
}
/* HSYNC needs to be even */
if (hsync & 0x1) {
if (adj_hblanking < hblanking)
adj_hsync += 1;
else
adj_hsync -= 1;
}
/*
* Once illegal timing detected, use default HFP, HSYNC, HBP
* This adjusting made for built-in eDP panel, for the externel
* DP monitor, may need return false.
*/
if (hblanking < HBLANKING_MIN || (hfp < HP_MIN && hbp < HP_MIN)) {
adj_hsync = SYNC_LEN_DEF;
adj_hfp = HFP_HBP_DEF;
adj_hbp = HFP_HBP_DEF;
vref = adj->clock * 1000 / (adj->htotal * adj->vtotal);
if (hblanking < HBLANKING_MIN) {
delta_adj = HBLANKING_MIN - hblanking;
adj_clock = vref * delta_adj * adj->vtotal;
adj->clock += DIV_ROUND_UP(adj_clock, 1000);
} else {
delta_adj = hblanking - HBLANKING_MIN;
adj_clock = vref * delta_adj * adj->vtotal;
adj->clock -= DIV_ROUND_UP(adj_clock, 1000);
}
DRM_WARN("illegal hblanking timing, use default.\n");
DRM_WARN("hfp(%d), hbp(%d), hsync(%d).\n", hfp, hbp, hsync);
} else if (adj_hfp < HP_MIN) {
/* Adjust hfp if hfp less than HP_MIN */
delta_adj = HP_MIN - adj_hfp;
adj_hfp = HP_MIN;
/*
* Balance total HBlanking pixel, if HBP does not have enough
* space, adjust HSYNC length, otherwise adjust HBP
*/
if ((adj_hbp - delta_adj) < HP_MIN)
/* HBP not enough space */
adj_hsync -= delta_adj;
else
adj_hbp -= delta_adj;
} else if (adj_hbp < HP_MIN) {
delta_adj = HP_MIN - adj_hbp;
adj_hbp = HP_MIN;
/*
* Balance total HBlanking pixel, if HBP hasn't enough space,
* adjust HSYNC length, otherwize adjust HBP
*/
if ((adj_hfp - delta_adj) < HP_MIN)
/* HFP not enough space */
adj_hsync -= delta_adj;
else
adj_hfp -= delta_adj;
}
DRM_DEV_DEBUG_DRIVER(dev, "after mode fixup\n");
DRM_DEV_DEBUG_DRIVER(dev, "hsync(%d), hfp(%d), hbp(%d), clock(%d)\n",
adj_hsync, adj_hfp, adj_hbp, adj->clock);
/* Reconstruct timing */
adj->hsync_start = adj->hdisplay + adj_hfp;
adj->hsync_end = adj->hsync_start + adj_hsync;
adj->htotal = adj->hsync_end + adj_hbp;
DRM_DEV_DEBUG_DRIVER(dev, "hsync_start(%d), hsync_end(%d), htot(%d)\n",
adj->hsync_start, adj->hsync_end, adj->htotal);
return true;
}
static int anx7625_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
dev_dbg(dev, "drm bridge atomic check\n");
anx7625_bridge_mode_fixup(bridge, &crtc_state->mode,
&crtc_state->adjusted_mode);
return anx7625_connector_atomic_check(ctx, conn_state);
}
static void anx7625_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *state)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
struct drm_connector *connector;
dev_dbg(dev, "drm atomic enable\n");
if (!bridge->encoder) {
dev_err(dev, "Parent encoder object not found");
return;
}
connector = drm_atomic_get_new_connector_for_encoder(state->base.state,
bridge->encoder);
if (!connector)
return;
ctx->connector = connector;
pm_runtime_get_sync(dev);
_anx7625_hpd_polling(ctx, 5000 * 100);
anx7625_dp_start(ctx);
}
static void anx7625_bridge_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
dev_dbg(dev, "drm atomic disable\n");
ctx->connector = NULL;
anx7625_dp_stop(ctx);
pm_runtime_put_sync(dev);
}
static enum drm_connector_status
anx7625_bridge_detect(struct drm_bridge *bridge)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "drm bridge detect\n");
return anx7625_sink_detect(ctx);
}
static struct edid *anx7625_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct anx7625_data *ctx = bridge_to_anx7625(bridge);
struct device *dev = ctx->dev;
DRM_DEV_DEBUG_DRIVER(dev, "drm bridge get edid\n");
return anx7625_get_edid(ctx);
}
static const struct drm_bridge_funcs anx7625_bridge_funcs = {
.attach = anx7625_bridge_attach,
.detach = anx7625_bridge_detach,
.mode_valid = anx7625_bridge_mode_valid,
.mode_set = anx7625_bridge_mode_set,
.atomic_check = anx7625_bridge_atomic_check,
.atomic_enable = anx7625_bridge_atomic_enable,
.atomic_disable = anx7625_bridge_atomic_disable,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.detect = anx7625_bridge_detect,
.get_edid = anx7625_bridge_get_edid,
};
static int anx7625_register_i2c_dummy_clients(struct anx7625_data *ctx,
struct i2c_client *client)
{
struct device *dev = ctx->dev;
ctx->i2c.tx_p0_client = devm_i2c_new_dummy_device(dev, client->adapter,
TX_P0_ADDR >> 1);
if (IS_ERR(ctx->i2c.tx_p0_client))
return PTR_ERR(ctx->i2c.tx_p0_client);
ctx->i2c.tx_p1_client = devm_i2c_new_dummy_device(dev, client->adapter,
TX_P1_ADDR >> 1);
if (IS_ERR(ctx->i2c.tx_p1_client))
return PTR_ERR(ctx->i2c.tx_p1_client);
ctx->i2c.tx_p2_client = devm_i2c_new_dummy_device(dev, client->adapter,
TX_P2_ADDR >> 1);
if (IS_ERR(ctx->i2c.tx_p2_client))
return PTR_ERR(ctx->i2c.tx_p2_client);
ctx->i2c.rx_p0_client = devm_i2c_new_dummy_device(dev, client->adapter,
RX_P0_ADDR >> 1);
if (IS_ERR(ctx->i2c.rx_p0_client))
return PTR_ERR(ctx->i2c.rx_p0_client);
ctx->i2c.rx_p1_client = devm_i2c_new_dummy_device(dev, client->adapter,
RX_P1_ADDR >> 1);
if (IS_ERR(ctx->i2c.rx_p1_client))
return PTR_ERR(ctx->i2c.rx_p1_client);
ctx->i2c.rx_p2_client = devm_i2c_new_dummy_device(dev, client->adapter,
RX_P2_ADDR >> 1);
if (IS_ERR(ctx->i2c.rx_p2_client))
return PTR_ERR(ctx->i2c.rx_p2_client);
ctx->i2c.tcpc_client = devm_i2c_new_dummy_device(dev, client->adapter,
TCPC_INTERFACE_ADDR >> 1);
if (IS_ERR(ctx->i2c.tcpc_client))
return PTR_ERR(ctx->i2c.tcpc_client);
return 0;
}
static int __maybe_unused anx7625_runtime_pm_suspend(struct device *dev)
{
struct anx7625_data *ctx = dev_get_drvdata(dev);
mutex_lock(&ctx->lock);
anx7625_stop_dp_work(ctx);
anx7625_power_standby(ctx);
mutex_unlock(&ctx->lock);
return 0;
}
static int __maybe_unused anx7625_runtime_pm_resume(struct device *dev)
{
struct anx7625_data *ctx = dev_get_drvdata(dev);
mutex_lock(&ctx->lock);
anx7625_power_on_init(ctx);
mutex_unlock(&ctx->lock);
return 0;
}
static const struct dev_pm_ops anx7625_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(anx7625_runtime_pm_suspend,
anx7625_runtime_pm_resume, NULL)
};
static void anx7625_runtime_disable(void *data)
{
pm_runtime_dont_use_autosuspend(data);
pm_runtime_disable(data);
}
static int anx7625_link_bridge(struct drm_dp_aux *aux)
{
struct anx7625_data *platform = container_of(aux, struct anx7625_data, aux);
struct device *dev = aux->dev;
int ret;
ret = anx7625_parse_dt_panel(dev, &platform->pdata);
if (ret) {
DRM_DEV_ERROR(dev, "fail to parse DT for panel : %d\n", ret);
return ret;
}
platform->bridge.funcs = &anx7625_bridge_funcs;
platform->bridge.of_node = dev->of_node;
if (!anx7625_of_panel_on_aux_bus(dev))
platform->bridge.ops |= DRM_BRIDGE_OP_EDID;
if (!platform->pdata.panel_bridge)
platform->bridge.ops |= DRM_BRIDGE_OP_HPD |
DRM_BRIDGE_OP_DETECT;
platform->bridge.type = platform->pdata.panel_bridge ?
DRM_MODE_CONNECTOR_eDP :
DRM_MODE_CONNECTOR_DisplayPort;
drm_bridge_add(&platform->bridge);
if (!platform->pdata.is_dpi) {
ret = anx7625_attach_dsi(platform);
if (ret)
drm_bridge_remove(&platform->bridge);
}
return ret;
}
static int anx7625_i2c_probe(struct i2c_client *client)
{
struct anx7625_data *platform;
struct anx7625_platform_data *pdata;
int ret = 0;
struct device *dev = &client->dev;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_I2C_BLOCK)) {
DRM_DEV_ERROR(dev, "anx7625's i2c bus doesn't support\n");
return -ENODEV;
}
platform = devm_kzalloc(dev, sizeof(*platform), GFP_KERNEL);
if (!platform) {
DRM_DEV_ERROR(dev, "fail to allocate driver data\n");
return -ENOMEM;
}
pdata = &platform->pdata;
platform->dev = &client->dev;
i2c_set_clientdata(client, platform);
pdata->supplies[0].supply = "vdd10";
pdata->supplies[1].supply = "vdd18";
pdata->supplies[2].supply = "vdd33";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(pdata->supplies),
pdata->supplies);
if (ret) {
DRM_DEV_ERROR(dev, "fail to get power supplies: %d\n", ret);
return ret;
}
anx7625_init_gpio(platform);
mutex_init(&platform->lock);
mutex_init(&platform->hdcp_wq_lock);
INIT_DELAYED_WORK(&platform->hdcp_work, hdcp_check_work_func);
platform->hdcp_workqueue = create_workqueue("hdcp workqueue");
if (!platform->hdcp_workqueue) {
dev_err(dev, "fail to create work queue\n");
ret = -ENOMEM;
return ret;
}
platform->pdata.intp_irq = client->irq;
if (platform->pdata.intp_irq) {
INIT_WORK(&platform->work, anx7625_work_func);
platform->workqueue = alloc_workqueue("anx7625_work",
WQ_FREEZABLE | WQ_MEM_RECLAIM, 1);
if (!platform->workqueue) {
DRM_DEV_ERROR(dev, "fail to create work queue\n");
ret = -ENOMEM;
goto free_hdcp_wq;
}
ret = devm_request_threaded_irq(dev, platform->pdata.intp_irq,
NULL, anx7625_intr_hpd_isr,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"anx7625-intp", platform);
if (ret) {
DRM_DEV_ERROR(dev, "fail to request irq\n");
goto free_wq;
}
}
platform->aux.name = "anx7625-aux";
platform->aux.dev = dev;
platform->aux.transfer = anx7625_aux_transfer;
platform->aux.wait_hpd_asserted = anx7625_wait_hpd_asserted;
drm_dp_aux_init(&platform->aux);
ret = anx7625_parse_dt(dev, pdata);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "fail to parse DT : %d\n", ret);
goto free_wq;
}
if (!platform->pdata.is_dpi) {
ret = anx7625_setup_dsi_device(platform);
if (ret < 0)
goto free_wq;
}
/*
* Registering the i2c devices will retrigger deferred probe, so it
* needs to be done after calls that might return EPROBE_DEFER,
* otherwise we can get an infinite loop.
*/
if (anx7625_register_i2c_dummy_clients(platform, client) != 0) {
ret = -ENOMEM;
DRM_DEV_ERROR(dev, "fail to reserve I2C bus.\n");
goto free_wq;
}
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_use_autosuspend(dev);
pm_suspend_ignore_children(dev, true);
ret = devm_add_action_or_reset(dev, anx7625_runtime_disable, dev);
if (ret)
goto free_wq;
/*
* Populating the aux bus will retrigger deferred probe, so it needs to
* be done after calls that might return EPROBE_DEFER, otherwise we can
* get an infinite loop.
*/
ret = devm_of_dp_aux_populate_bus(&platform->aux, anx7625_link_bridge);
if (ret) {
if (ret != -ENODEV) {
DRM_DEV_ERROR(dev, "failed to populate aux bus : %d\n", ret);
goto free_wq;
}
ret = anx7625_link_bridge(&platform->aux);
if (ret)
goto free_wq;
}
if (!platform->pdata.low_power_mode) {
anx7625_disable_pd_protocol(platform);
pm_runtime_get_sync(dev);
_anx7625_hpd_polling(platform, 5000 * 100);
}
/* Add work function */
if (platform->pdata.intp_irq)
queue_work(platform->workqueue, &platform->work);
if (platform->pdata.audio_en)
anx7625_register_audio(dev, platform);
DRM_DEV_DEBUG_DRIVER(dev, "probe done\n");
return 0;
free_wq:
if (platform->workqueue)
destroy_workqueue(platform->workqueue);
free_hdcp_wq:
if (platform->hdcp_workqueue)
destroy_workqueue(platform->hdcp_workqueue);
return ret;
}
static void anx7625_i2c_remove(struct i2c_client *client)
{
struct anx7625_data *platform = i2c_get_clientdata(client);
drm_bridge_remove(&platform->bridge);
if (platform->pdata.intp_irq)
destroy_workqueue(platform->workqueue);
if (platform->hdcp_workqueue) {
cancel_delayed_work(&platform->hdcp_work);
flush_workqueue(platform->hdcp_workqueue);
destroy_workqueue(platform->hdcp_workqueue);
}
if (!platform->pdata.low_power_mode)
pm_runtime_put_sync_suspend(&client->dev);
if (platform->pdata.audio_en)
anx7625_unregister_audio(platform);
}
static const struct i2c_device_id anx7625_id[] = {
{"anx7625", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, anx7625_id);
static const struct of_device_id anx_match_table[] = {
{.compatible = "analogix,anx7625",},
{},
};
MODULE_DEVICE_TABLE(of, anx_match_table);
static struct i2c_driver anx7625_driver = {
.driver = {
.name = "anx7625",
.of_match_table = anx_match_table,
.pm = &anx7625_pm_ops,
},
.probe = anx7625_i2c_probe,
.remove = anx7625_i2c_remove,
.id_table = anx7625_id,
};
module_i2c_driver(anx7625_driver);
MODULE_DESCRIPTION("MIPI2DP anx7625 driver");
MODULE_AUTHOR("Xin Ji <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(ANX7625_DRV_VERSION);
| linux-master | drivers/gpu/drm/bridge/analogix/anx7625.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright: 2017 Cadence Design Systems, Inc.
*
* Author: Boris Brezillon <[email protected]>
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_probe_helper.h>
#include <video/mipi_display.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/phy/phy-mipi-dphy.h>
#include "cdns-dsi-core.h"
#ifdef CONFIG_DRM_CDNS_DSI_J721E
#include "cdns-dsi-j721e.h"
#endif
#define IP_CONF 0x0
#define SP_HS_FIFO_DEPTH(x) (((x) & GENMASK(30, 26)) >> 26)
#define SP_LP_FIFO_DEPTH(x) (((x) & GENMASK(25, 21)) >> 21)
#define VRS_FIFO_DEPTH(x) (((x) & GENMASK(20, 16)) >> 16)
#define DIRCMD_FIFO_DEPTH(x) (((x) & GENMASK(15, 13)) >> 13)
#define SDI_IFACE_32 BIT(12)
#define INTERNAL_DATAPATH_32 (0 << 10)
#define INTERNAL_DATAPATH_16 (1 << 10)
#define INTERNAL_DATAPATH_8 (3 << 10)
#define INTERNAL_DATAPATH_SIZE ((x) & GENMASK(11, 10))
#define NUM_IFACE(x) ((((x) & GENMASK(9, 8)) >> 8) + 1)
#define MAX_LANE_NB(x) (((x) & GENMASK(7, 6)) >> 6)
#define RX_FIFO_DEPTH(x) ((x) & GENMASK(5, 0))
#define MCTL_MAIN_DATA_CTL 0x4
#define TE_MIPI_POLLING_EN BIT(25)
#define TE_HW_POLLING_EN BIT(24)
#define DISP_EOT_GEN BIT(18)
#define HOST_EOT_GEN BIT(17)
#define DISP_GEN_CHECKSUM BIT(16)
#define DISP_GEN_ECC BIT(15)
#define BTA_EN BIT(14)
#define READ_EN BIT(13)
#define REG_TE_EN BIT(12)
#define IF_TE_EN(x) BIT(8 + (x))
#define TVG_SEL BIT(6)
#define VID_EN BIT(5)
#define IF_VID_SELECT(x) ((x) << 2)
#define IF_VID_SELECT_MASK GENMASK(3, 2)
#define IF_VID_MODE BIT(1)
#define LINK_EN BIT(0)
#define MCTL_MAIN_PHY_CTL 0x8
#define HS_INVERT_DAT(x) BIT(19 + ((x) * 2))
#define SWAP_PINS_DAT(x) BIT(18 + ((x) * 2))
#define HS_INVERT_CLK BIT(17)
#define SWAP_PINS_CLK BIT(16)
#define HS_SKEWCAL_EN BIT(15)
#define WAIT_BURST_TIME(x) ((x) << 10)
#define DATA_ULPM_EN(x) BIT(6 + (x))
#define CLK_ULPM_EN BIT(5)
#define CLK_CONTINUOUS BIT(4)
#define DATA_LANE_EN(x) BIT((x) - 1)
#define MCTL_MAIN_EN 0xc
#define DATA_FORCE_STOP BIT(17)
#define CLK_FORCE_STOP BIT(16)
#define IF_EN(x) BIT(13 + (x))
#define DATA_LANE_ULPM_REQ(l) BIT(9 + (l))
#define CLK_LANE_ULPM_REQ BIT(8)
#define DATA_LANE_START(x) BIT(4 + (x))
#define CLK_LANE_EN BIT(3)
#define PLL_START BIT(0)
#define MCTL_DPHY_CFG0 0x10
#define DPHY_C_RSTB BIT(20)
#define DPHY_D_RSTB(x) GENMASK(15 + (x), 16)
#define DPHY_PLL_PDN BIT(10)
#define DPHY_CMN_PDN BIT(9)
#define DPHY_C_PDN BIT(8)
#define DPHY_D_PDN(x) GENMASK(3 + (x), 4)
#define DPHY_ALL_D_PDN GENMASK(7, 4)
#define DPHY_PLL_PSO BIT(1)
#define DPHY_CMN_PSO BIT(0)
#define MCTL_DPHY_TIMEOUT1 0x14
#define HSTX_TIMEOUT(x) ((x) << 4)
#define HSTX_TIMEOUT_MAX GENMASK(17, 0)
#define CLK_DIV(x) (x)
#define CLK_DIV_MAX GENMASK(3, 0)
#define MCTL_DPHY_TIMEOUT2 0x18
#define LPRX_TIMEOUT(x) (x)
#define MCTL_ULPOUT_TIME 0x1c
#define DATA_LANE_ULPOUT_TIME(x) ((x) << 9)
#define CLK_LANE_ULPOUT_TIME(x) (x)
#define MCTL_3DVIDEO_CTL 0x20
#define VID_VSYNC_3D_EN BIT(7)
#define VID_VSYNC_3D_LR BIT(5)
#define VID_VSYNC_3D_SECOND_EN BIT(4)
#define VID_VSYNC_3DFORMAT_LINE (0 << 2)
#define VID_VSYNC_3DFORMAT_FRAME (1 << 2)
#define VID_VSYNC_3DFORMAT_PIXEL (2 << 2)
#define VID_VSYNC_3DMODE_OFF 0
#define VID_VSYNC_3DMODE_PORTRAIT 1
#define VID_VSYNC_3DMODE_LANDSCAPE 2
#define MCTL_MAIN_STS 0x24
#define MCTL_MAIN_STS_CTL 0x130
#define MCTL_MAIN_STS_CLR 0x150
#define MCTL_MAIN_STS_FLAG 0x170
#define HS_SKEWCAL_DONE BIT(11)
#define IF_UNTERM_PKT_ERR(x) BIT(8 + (x))
#define LPRX_TIMEOUT_ERR BIT(7)
#define HSTX_TIMEOUT_ERR BIT(6)
#define DATA_LANE_RDY(l) BIT(2 + (l))
#define CLK_LANE_RDY BIT(1)
#define PLL_LOCKED BIT(0)
#define MCTL_DPHY_ERR 0x28
#define MCTL_DPHY_ERR_CTL1 0x148
#define MCTL_DPHY_ERR_CLR 0x168
#define MCTL_DPHY_ERR_FLAG 0x188
#define ERR_CONT_LP(x, l) BIT(18 + ((x) * 4) + (l))
#define ERR_CONTROL(l) BIT(14 + (l))
#define ERR_SYNESC(l) BIT(10 + (l))
#define ERR_ESC(l) BIT(6 + (l))
#define MCTL_DPHY_ERR_CTL2 0x14c
#define ERR_CONT_LP_EDGE(x, l) BIT(12 + ((x) * 4) + (l))
#define ERR_CONTROL_EDGE(l) BIT(8 + (l))
#define ERR_SYN_ESC_EDGE(l) BIT(4 + (l))
#define ERR_ESC_EDGE(l) BIT(0 + (l))
#define MCTL_LANE_STS 0x2c
#define PPI_C_TX_READY_HS BIT(18)
#define DPHY_PLL_LOCK BIT(17)
#define PPI_D_RX_ULPS_ESC(x) (((x) & GENMASK(15, 12)) >> 12)
#define LANE_STATE_START 0
#define LANE_STATE_IDLE 1
#define LANE_STATE_WRITE 2
#define LANE_STATE_ULPM 3
#define LANE_STATE_READ 4
#define DATA_LANE_STATE(l, val) \
(((val) >> (2 + 2 * (l) + ((l) ? 1 : 0))) & GENMASK((l) ? 1 : 2, 0))
#define CLK_LANE_STATE_HS 2
#define CLK_LANE_STATE(val) ((val) & GENMASK(1, 0))
#define DSC_MODE_CTL 0x30
#define DSC_MODE_EN BIT(0)
#define DSC_CMD_SEND 0x34
#define DSC_SEND_PPS BIT(0)
#define DSC_EXECUTE_QUEUE BIT(1)
#define DSC_PPS_WRDAT 0x38
#define DSC_MODE_STS 0x3c
#define DSC_PPS_DONE BIT(1)
#define DSC_EXEC_DONE BIT(2)
#define CMD_MODE_CTL 0x70
#define IF_LP_EN(x) BIT(9 + (x))
#define IF_VCHAN_ID(x, c) ((c) << ((x) * 2))
#define CMD_MODE_CTL2 0x74
#define TE_TIMEOUT(x) ((x) << 11)
#define FILL_VALUE(x) ((x) << 3)
#define ARB_IF_WITH_HIGHEST_PRIORITY(x) ((x) << 1)
#define ARB_ROUND_ROBIN_MODE BIT(0)
#define CMD_MODE_STS 0x78
#define CMD_MODE_STS_CTL 0x134
#define CMD_MODE_STS_CLR 0x154
#define CMD_MODE_STS_FLAG 0x174
#define ERR_IF_UNDERRUN(x) BIT(4 + (x))
#define ERR_UNWANTED_READ BIT(3)
#define ERR_TE_MISS BIT(2)
#define ERR_NO_TE BIT(1)
#define CSM_RUNNING BIT(0)
#define DIRECT_CMD_SEND 0x80
#define DIRECT_CMD_MAIN_SETTINGS 0x84
#define TRIGGER_VAL(x) ((x) << 25)
#define CMD_LP_EN BIT(24)
#define CMD_SIZE(x) ((x) << 16)
#define CMD_VCHAN_ID(x) ((x) << 14)
#define CMD_DATATYPE(x) ((x) << 8)
#define CMD_LONG BIT(3)
#define WRITE_CMD 0
#define READ_CMD 1
#define TE_REQ 4
#define TRIGGER_REQ 5
#define BTA_REQ 6
#define DIRECT_CMD_STS 0x88
#define DIRECT_CMD_STS_CTL 0x138
#define DIRECT_CMD_STS_CLR 0x158
#define DIRECT_CMD_STS_FLAG 0x178
#define RCVD_ACK_VAL(val) ((val) >> 16)
#define RCVD_TRIGGER_VAL(val) (((val) & GENMASK(14, 11)) >> 11)
#define READ_COMPLETED_WITH_ERR BIT(10)
#define BTA_FINISHED BIT(9)
#define BTA_COMPLETED BIT(8)
#define TE_RCVD BIT(7)
#define TRIGGER_RCVD BIT(6)
#define ACK_WITH_ERR_RCVD BIT(5)
#define ACK_RCVD BIT(4)
#define READ_COMPLETED BIT(3)
#define TRIGGER_COMPLETED BIT(2)
#define WRITE_COMPLETED BIT(1)
#define SENDING_CMD BIT(0)
#define DIRECT_CMD_STOP_READ 0x8c
#define DIRECT_CMD_WRDATA 0x90
#define DIRECT_CMD_FIFO_RST 0x94
#define DIRECT_CMD_RDDATA 0xa0
#define DIRECT_CMD_RD_PROPS 0xa4
#define RD_DCS BIT(18)
#define RD_VCHAN_ID(val) (((val) >> 16) & GENMASK(1, 0))
#define RD_SIZE(val) ((val) & GENMASK(15, 0))
#define DIRECT_CMD_RD_STS 0xa8
#define DIRECT_CMD_RD_STS_CTL 0x13c
#define DIRECT_CMD_RD_STS_CLR 0x15c
#define DIRECT_CMD_RD_STS_FLAG 0x17c
#define ERR_EOT_WITH_ERR BIT(8)
#define ERR_MISSING_EOT BIT(7)
#define ERR_WRONG_LENGTH BIT(6)
#define ERR_OVERSIZE BIT(5)
#define ERR_RECEIVE BIT(4)
#define ERR_UNDECODABLE BIT(3)
#define ERR_CHECKSUM BIT(2)
#define ERR_UNCORRECTABLE BIT(1)
#define ERR_FIXED BIT(0)
#define VID_MAIN_CTL 0xb0
#define VID_IGNORE_MISS_VSYNC BIT(31)
#define VID_FIELD_SW BIT(28)
#define VID_INTERLACED_EN BIT(27)
#define RECOVERY_MODE(x) ((x) << 25)
#define RECOVERY_MODE_NEXT_HSYNC 0
#define RECOVERY_MODE_NEXT_STOP_POINT 2
#define RECOVERY_MODE_NEXT_VSYNC 3
#define REG_BLKEOL_MODE(x) ((x) << 23)
#define REG_BLKLINE_MODE(x) ((x) << 21)
#define REG_BLK_MODE_NULL_PKT 0
#define REG_BLK_MODE_BLANKING_PKT 1
#define REG_BLK_MODE_LP 2
#define SYNC_PULSE_HORIZONTAL BIT(20)
#define SYNC_PULSE_ACTIVE BIT(19)
#define BURST_MODE BIT(18)
#define VID_PIXEL_MODE_MASK GENMASK(17, 14)
#define VID_PIXEL_MODE_RGB565 (0 << 14)
#define VID_PIXEL_MODE_RGB666_PACKED (1 << 14)
#define VID_PIXEL_MODE_RGB666 (2 << 14)
#define VID_PIXEL_MODE_RGB888 (3 << 14)
#define VID_PIXEL_MODE_RGB101010 (4 << 14)
#define VID_PIXEL_MODE_RGB121212 (5 << 14)
#define VID_PIXEL_MODE_YUV420 (8 << 14)
#define VID_PIXEL_MODE_YUV422_PACKED (9 << 14)
#define VID_PIXEL_MODE_YUV422 (10 << 14)
#define VID_PIXEL_MODE_YUV422_24B (11 << 14)
#define VID_PIXEL_MODE_DSC_COMP (12 << 14)
#define VID_DATATYPE(x) ((x) << 8)
#define VID_VIRTCHAN_ID(iface, x) ((x) << (4 + (iface) * 2))
#define STOP_MODE(x) ((x) << 2)
#define START_MODE(x) (x)
#define VID_VSIZE1 0xb4
#define VFP_LEN(x) ((x) << 12)
#define VBP_LEN(x) ((x) << 6)
#define VSA_LEN(x) (x)
#define VID_VSIZE2 0xb8
#define VACT_LEN(x) (x)
#define VID_HSIZE1 0xc0
#define HBP_LEN(x) ((x) << 16)
#define HSA_LEN(x) (x)
#define VID_HSIZE2 0xc4
#define HFP_LEN(x) ((x) << 16)
#define HACT_LEN(x) (x)
#define VID_BLKSIZE1 0xcc
#define BLK_EOL_PKT_LEN(x) ((x) << 15)
#define BLK_LINE_EVENT_PKT_LEN(x) (x)
#define VID_BLKSIZE2 0xd0
#define BLK_LINE_PULSE_PKT_LEN(x) (x)
#define VID_PKT_TIME 0xd8
#define BLK_EOL_DURATION(x) (x)
#define VID_DPHY_TIME 0xdc
#define REG_WAKEUP_TIME(x) ((x) << 17)
#define REG_LINE_DURATION(x) (x)
#define VID_ERR_COLOR1 0xe0
#define COL_GREEN(x) ((x) << 12)
#define COL_RED(x) (x)
#define VID_ERR_COLOR2 0xe4
#define PAD_VAL(x) ((x) << 12)
#define COL_BLUE(x) (x)
#define VID_VPOS 0xe8
#define LINE_VAL(val) (((val) & GENMASK(14, 2)) >> 2)
#define LINE_POS(val) ((val) & GENMASK(1, 0))
#define VID_HPOS 0xec
#define HORIZ_VAL(val) (((val) & GENMASK(17, 3)) >> 3)
#define HORIZ_POS(val) ((val) & GENMASK(2, 0))
#define VID_MODE_STS 0xf0
#define VID_MODE_STS_CTL 0x140
#define VID_MODE_STS_CLR 0x160
#define VID_MODE_STS_FLAG 0x180
#define VSG_RECOVERY BIT(10)
#define ERR_VRS_WRONG_LEN BIT(9)
#define ERR_LONG_READ BIT(8)
#define ERR_LINE_WRITE BIT(7)
#define ERR_BURST_WRITE BIT(6)
#define ERR_SMALL_HEIGHT BIT(5)
#define ERR_SMALL_LEN BIT(4)
#define ERR_MISSING_VSYNC BIT(3)
#define ERR_MISSING_HSYNC BIT(2)
#define ERR_MISSING_DATA BIT(1)
#define VSG_RUNNING BIT(0)
#define VID_VCA_SETTING1 0xf4
#define BURST_LP BIT(16)
#define MAX_BURST_LIMIT(x) (x)
#define VID_VCA_SETTING2 0xf8
#define MAX_LINE_LIMIT(x) ((x) << 16)
#define EXACT_BURST_LIMIT(x) (x)
#define TVG_CTL 0xfc
#define TVG_STRIPE_SIZE(x) ((x) << 5)
#define TVG_MODE_MASK GENMASK(4, 3)
#define TVG_MODE_SINGLE_COLOR (0 << 3)
#define TVG_MODE_VSTRIPES (2 << 3)
#define TVG_MODE_HSTRIPES (3 << 3)
#define TVG_STOPMODE_MASK GENMASK(2, 1)
#define TVG_STOPMODE_EOF (0 << 1)
#define TVG_STOPMODE_EOL (1 << 1)
#define TVG_STOPMODE_NOW (2 << 1)
#define TVG_RUN BIT(0)
#define TVG_IMG_SIZE 0x100
#define TVG_NBLINES(x) ((x) << 16)
#define TVG_LINE_SIZE(x) (x)
#define TVG_COLOR1 0x104
#define TVG_COL1_GREEN(x) ((x) << 12)
#define TVG_COL1_RED(x) (x)
#define TVG_COLOR1_BIS 0x108
#define TVG_COL1_BLUE(x) (x)
#define TVG_COLOR2 0x10c
#define TVG_COL2_GREEN(x) ((x) << 12)
#define TVG_COL2_RED(x) (x)
#define TVG_COLOR2_BIS 0x110
#define TVG_COL2_BLUE(x) (x)
#define TVG_STS 0x114
#define TVG_STS_CTL 0x144
#define TVG_STS_CLR 0x164
#define TVG_STS_FLAG 0x184
#define TVG_STS_RUNNING BIT(0)
#define STS_CTL_EDGE(e) ((e) << 16)
#define DPHY_LANES_MAP 0x198
#define DAT_REMAP_CFG(b, l) ((l) << ((b) * 8))
#define DPI_IRQ_EN 0x1a0
#define DPI_IRQ_CLR 0x1a4
#define DPI_IRQ_STS 0x1a8
#define PIXEL_BUF_OVERFLOW BIT(0)
#define DPI_CFG 0x1ac
#define DPI_CFG_FIFO_DEPTH(x) ((x) >> 16)
#define DPI_CFG_FIFO_LEVEL(x) ((x) & GENMASK(15, 0))
#define TEST_GENERIC 0x1f0
#define TEST_STATUS(x) ((x) >> 16)
#define TEST_CTRL(x) (x)
#define ID_REG 0x1fc
#define REV_VENDOR_ID(x) (((x) & GENMASK(31, 20)) >> 20)
#define REV_PRODUCT_ID(x) (((x) & GENMASK(19, 12)) >> 12)
#define REV_HW(x) (((x) & GENMASK(11, 8)) >> 8)
#define REV_MAJOR(x) (((x) & GENMASK(7, 4)) >> 4)
#define REV_MINOR(x) ((x) & GENMASK(3, 0))
#define DSI_OUTPUT_PORT 0
#define DSI_INPUT_PORT(inputid) (1 + (inputid))
#define DSI_HBP_FRAME_OVERHEAD 12
#define DSI_HSA_FRAME_OVERHEAD 14
#define DSI_HFP_FRAME_OVERHEAD 6
#define DSI_HSS_VSS_VSE_FRAME_OVERHEAD 4
#define DSI_BLANKING_FRAME_OVERHEAD 6
#define DSI_NULL_FRAME_OVERHEAD 6
#define DSI_EOT_PKT_SIZE 4
static inline struct cdns_dsi *input_to_dsi(struct cdns_dsi_input *input)
{
return container_of(input, struct cdns_dsi, input);
}
static inline struct cdns_dsi *to_cdns_dsi(struct mipi_dsi_host *host)
{
return container_of(host, struct cdns_dsi, base);
}
static inline struct cdns_dsi_input *
bridge_to_cdns_dsi_input(struct drm_bridge *bridge)
{
return container_of(bridge, struct cdns_dsi_input, bridge);
}
static unsigned int mode_to_dpi_hfp(const struct drm_display_mode *mode,
bool mode_valid_check)
{
if (mode_valid_check)
return mode->hsync_start - mode->hdisplay;
return mode->crtc_hsync_start - mode->crtc_hdisplay;
}
static unsigned int dpi_to_dsi_timing(unsigned int dpi_timing,
unsigned int dpi_bpp,
unsigned int dsi_pkt_overhead)
{
unsigned int dsi_timing = DIV_ROUND_UP(dpi_timing * dpi_bpp, 8);
if (dsi_timing < dsi_pkt_overhead)
dsi_timing = 0;
else
dsi_timing -= dsi_pkt_overhead;
return dsi_timing;
}
static int cdns_dsi_mode2cfg(struct cdns_dsi *dsi,
const struct drm_display_mode *mode,
struct cdns_dsi_cfg *dsi_cfg,
bool mode_valid_check)
{
struct cdns_dsi_output *output = &dsi->output;
unsigned int tmp;
bool sync_pulse = false;
int bpp;
memset(dsi_cfg, 0, sizeof(*dsi_cfg));
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
sync_pulse = true;
bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format);
if (mode_valid_check)
tmp = mode->htotal -
(sync_pulse ? mode->hsync_end : mode->hsync_start);
else
tmp = mode->crtc_htotal -
(sync_pulse ?
mode->crtc_hsync_end : mode->crtc_hsync_start);
dsi_cfg->hbp = dpi_to_dsi_timing(tmp, bpp, DSI_HBP_FRAME_OVERHEAD);
if (sync_pulse) {
if (mode_valid_check)
tmp = mode->hsync_end - mode->hsync_start;
else
tmp = mode->crtc_hsync_end - mode->crtc_hsync_start;
dsi_cfg->hsa = dpi_to_dsi_timing(tmp, bpp,
DSI_HSA_FRAME_OVERHEAD);
}
dsi_cfg->hact = dpi_to_dsi_timing(mode_valid_check ?
mode->hdisplay : mode->crtc_hdisplay,
bpp, 0);
dsi_cfg->hfp = dpi_to_dsi_timing(mode_to_dpi_hfp(mode, mode_valid_check),
bpp, DSI_HFP_FRAME_OVERHEAD);
return 0;
}
static int cdns_dsi_adjust_phy_config(struct cdns_dsi *dsi,
struct cdns_dsi_cfg *dsi_cfg,
struct phy_configure_opts_mipi_dphy *phy_cfg,
const struct drm_display_mode *mode,
bool mode_valid_check)
{
struct cdns_dsi_output *output = &dsi->output;
unsigned long long dlane_bps;
unsigned long adj_dsi_htotal;
unsigned long dsi_htotal;
unsigned long dpi_htotal;
unsigned long dpi_hz;
unsigned int dsi_hfp_ext;
unsigned int lanes = output->dev->lanes;
dsi_htotal = dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD;
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
dsi_htotal += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD;
dsi_htotal += dsi_cfg->hact;
dsi_htotal += dsi_cfg->hfp + DSI_HFP_FRAME_OVERHEAD;
/*
* Make sure DSI htotal is aligned on a lane boundary when calculating
* the expected data rate. This is done by extending HFP in case of
* misalignment.
*/
adj_dsi_htotal = dsi_htotal;
if (dsi_htotal % lanes)
adj_dsi_htotal += lanes - (dsi_htotal % lanes);
dpi_hz = (mode_valid_check ? mode->clock : mode->crtc_clock) * 1000;
dlane_bps = (unsigned long long)dpi_hz * adj_dsi_htotal;
/* data rate in bytes/sec is not an integer, refuse the mode. */
dpi_htotal = mode_valid_check ? mode->htotal : mode->crtc_htotal;
if (do_div(dlane_bps, lanes * dpi_htotal))
return -EINVAL;
/* data rate was in bytes/sec, convert to bits/sec. */
phy_cfg->hs_clk_rate = dlane_bps * 8;
dsi_hfp_ext = adj_dsi_htotal - dsi_htotal;
dsi_cfg->hfp += dsi_hfp_ext;
dsi_cfg->htotal = dsi_htotal + dsi_hfp_ext;
return 0;
}
static int cdns_dsi_check_conf(struct cdns_dsi *dsi,
const struct drm_display_mode *mode,
struct cdns_dsi_cfg *dsi_cfg,
bool mode_valid_check)
{
struct cdns_dsi_output *output = &dsi->output;
struct phy_configure_opts_mipi_dphy *phy_cfg = &output->phy_opts.mipi_dphy;
unsigned long dsi_hss_hsa_hse_hbp;
unsigned int nlanes = output->dev->lanes;
int ret;
ret = cdns_dsi_mode2cfg(dsi, mode, dsi_cfg, mode_valid_check);
if (ret)
return ret;
phy_mipi_dphy_get_default_config(mode->crtc_clock * 1000,
mipi_dsi_pixel_format_to_bpp(output->dev->format),
nlanes, phy_cfg);
ret = cdns_dsi_adjust_phy_config(dsi, dsi_cfg, phy_cfg, mode, mode_valid_check);
if (ret)
return ret;
ret = phy_validate(dsi->dphy, PHY_MODE_MIPI_DPHY, 0, &output->phy_opts);
if (ret)
return ret;
dsi_hss_hsa_hse_hbp = dsi_cfg->hbp + DSI_HBP_FRAME_OVERHEAD;
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
dsi_hss_hsa_hse_hbp += dsi_cfg->hsa + DSI_HSA_FRAME_OVERHEAD;
/*
* Make sure DPI(HFP) > DSI(HSS+HSA+HSE+HBP) to guarantee that the FIFO
* is empty before we start a receiving a new line on the DPI
* interface.
*/
if ((u64)phy_cfg->hs_clk_rate *
mode_to_dpi_hfp(mode, mode_valid_check) * nlanes <
(u64)dsi_hss_hsa_hse_hbp *
(mode_valid_check ? mode->clock : mode->crtc_clock) * 1000)
return -EINVAL;
return 0;
}
static int cdns_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
if (!drm_core_check_feature(bridge->dev, DRIVER_ATOMIC)) {
dev_err(dsi->base.dev,
"cdns-dsi driver is only compatible with DRM devices supporting atomic updates");
return -ENOTSUPP;
}
return drm_bridge_attach(bridge->encoder, output->bridge, bridge,
flags);
}
static enum drm_mode_status
cdns_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dsi_cfg dsi_cfg;
int bpp, ret;
/*
* VFP_DSI should be less than VFP_DPI and VFP_DSI should be at
* least 1.
*/
if (mode->vtotal - mode->vsync_end < 2)
return MODE_V_ILLEGAL;
/* VSA_DSI = VSA_DPI and must be at least 2. */
if (mode->vsync_end - mode->vsync_start < 2)
return MODE_V_ILLEGAL;
/* HACT must be 32-bits aligned. */
bpp = mipi_dsi_pixel_format_to_bpp(output->dev->format);
if ((mode->hdisplay * bpp) % 32)
return MODE_H_ILLEGAL;
ret = cdns_dsi_check_conf(dsi, mode, &dsi_cfg, true);
if (ret)
return MODE_BAD;
return MODE_OK;
}
static void cdns_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
u32 val;
val = readl(dsi->regs + MCTL_MAIN_DATA_CTL);
val &= ~(IF_VID_SELECT_MASK | IF_VID_MODE | VID_EN | HOST_EOT_GEN |
DISP_EOT_GEN);
writel(val, dsi->regs + MCTL_MAIN_DATA_CTL);
val = readl(dsi->regs + MCTL_MAIN_EN) & ~IF_EN(input->id);
writel(val, dsi->regs + MCTL_MAIN_EN);
if (dsi->platform_ops && dsi->platform_ops->disable)
dsi->platform_ops->disable(dsi);
pm_runtime_put(dsi->base.dev);
}
static void cdns_dsi_bridge_post_disable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
pm_runtime_put(dsi->base.dev);
}
static void cdns_dsi_hs_init(struct cdns_dsi *dsi)
{
struct cdns_dsi_output *output = &dsi->output;
u32 status;
if (dsi->phy_initialized)
return;
/*
* Power all internal DPHY blocks down and maintain their reset line
* asserted before changing the DPHY config.
*/
writel(DPHY_CMN_PSO | DPHY_PLL_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN |
DPHY_CMN_PDN | DPHY_PLL_PDN,
dsi->regs + MCTL_DPHY_CFG0);
phy_init(dsi->dphy);
phy_set_mode(dsi->dphy, PHY_MODE_MIPI_DPHY);
phy_configure(dsi->dphy, &output->phy_opts);
phy_power_on(dsi->dphy);
/* Activate the PLL and wait until it's locked. */
writel(PLL_LOCKED, dsi->regs + MCTL_MAIN_STS_CLR);
writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN,
dsi->regs + MCTL_DPHY_CFG0);
WARN_ON_ONCE(readl_poll_timeout(dsi->regs + MCTL_MAIN_STS, status,
status & PLL_LOCKED, 100, 100));
/* De-assert data and clock reset lines. */
writel(DPHY_CMN_PSO | DPHY_ALL_D_PDN | DPHY_C_PDN | DPHY_CMN_PDN |
DPHY_D_RSTB(output->dev->lanes) | DPHY_C_RSTB,
dsi->regs + MCTL_DPHY_CFG0);
dsi->phy_initialized = true;
}
static void cdns_dsi_init_link(struct cdns_dsi *dsi)
{
struct cdns_dsi_output *output = &dsi->output;
unsigned long sysclk_period, ulpout;
u32 val;
int i;
if (dsi->link_initialized)
return;
val = 0;
for (i = 1; i < output->dev->lanes; i++)
val |= DATA_LANE_EN(i);
if (!(output->dev->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
val |= CLK_CONTINUOUS;
writel(val, dsi->regs + MCTL_MAIN_PHY_CTL);
/* ULPOUT should be set to 1ms and is expressed in sysclk cycles. */
sysclk_period = NSEC_PER_SEC / clk_get_rate(dsi->dsi_sys_clk);
ulpout = DIV_ROUND_UP(NSEC_PER_MSEC, sysclk_period);
writel(CLK_LANE_ULPOUT_TIME(ulpout) | DATA_LANE_ULPOUT_TIME(ulpout),
dsi->regs + MCTL_ULPOUT_TIME);
writel(LINK_EN, dsi->regs + MCTL_MAIN_DATA_CTL);
val = CLK_LANE_EN | PLL_START;
for (i = 0; i < output->dev->lanes; i++)
val |= DATA_LANE_START(i);
writel(val, dsi->regs + MCTL_MAIN_EN);
dsi->link_initialized = true;
}
static void cdns_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
struct cdns_dsi_output *output = &dsi->output;
struct drm_display_mode *mode;
struct phy_configure_opts_mipi_dphy *phy_cfg = &output->phy_opts.mipi_dphy;
unsigned long tx_byte_period;
struct cdns_dsi_cfg dsi_cfg;
u32 tmp, reg_wakeup, div;
int nlanes;
if (WARN_ON(pm_runtime_get_sync(dsi->base.dev) < 0))
return;
if (dsi->platform_ops && dsi->platform_ops->enable)
dsi->platform_ops->enable(dsi);
mode = &bridge->encoder->crtc->state->adjusted_mode;
nlanes = output->dev->lanes;
WARN_ON_ONCE(cdns_dsi_check_conf(dsi, mode, &dsi_cfg, false));
cdns_dsi_hs_init(dsi);
cdns_dsi_init_link(dsi);
writel(HBP_LEN(dsi_cfg.hbp) | HSA_LEN(dsi_cfg.hsa),
dsi->regs + VID_HSIZE1);
writel(HFP_LEN(dsi_cfg.hfp) | HACT_LEN(dsi_cfg.hact),
dsi->regs + VID_HSIZE2);
writel(VBP_LEN(mode->crtc_vtotal - mode->crtc_vsync_end - 1) |
VFP_LEN(mode->crtc_vsync_start - mode->crtc_vdisplay) |
VSA_LEN(mode->crtc_vsync_end - mode->crtc_vsync_start + 1),
dsi->regs + VID_VSIZE1);
writel(mode->crtc_vdisplay, dsi->regs + VID_VSIZE2);
tmp = dsi_cfg.htotal -
(dsi_cfg.hsa + DSI_BLANKING_FRAME_OVERHEAD +
DSI_HSA_FRAME_OVERHEAD);
writel(BLK_LINE_PULSE_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE2);
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD),
dsi->regs + VID_VCA_SETTING2);
tmp = dsi_cfg.htotal -
(DSI_HSS_VSS_VSE_FRAME_OVERHEAD + DSI_BLANKING_FRAME_OVERHEAD);
writel(BLK_LINE_EVENT_PKT_LEN(tmp), dsi->regs + VID_BLKSIZE1);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE))
writel(MAX_LINE_LIMIT(tmp - DSI_NULL_FRAME_OVERHEAD),
dsi->regs + VID_VCA_SETTING2);
tmp = DIV_ROUND_UP(dsi_cfg.htotal, nlanes) -
DIV_ROUND_UP(dsi_cfg.hsa, nlanes);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET))
tmp -= DIV_ROUND_UP(DSI_EOT_PKT_SIZE, nlanes);
tx_byte_period = DIV_ROUND_DOWN_ULL((u64)NSEC_PER_SEC * 8,
phy_cfg->hs_clk_rate);
reg_wakeup = (phy_cfg->hs_prepare + phy_cfg->hs_zero) / tx_byte_period;
writel(REG_WAKEUP_TIME(reg_wakeup) | REG_LINE_DURATION(tmp),
dsi->regs + VID_DPHY_TIME);
/*
* HSTX and LPRX timeouts are both expressed in TX byte clk cycles and
* both should be set to at least the time it takes to transmit a
* frame.
*/
tmp = NSEC_PER_SEC / drm_mode_vrefresh(mode);
tmp /= tx_byte_period;
for (div = 0; div <= CLK_DIV_MAX; div++) {
if (tmp <= HSTX_TIMEOUT_MAX)
break;
tmp >>= 1;
}
if (tmp > HSTX_TIMEOUT_MAX)
tmp = HSTX_TIMEOUT_MAX;
writel(CLK_DIV(div) | HSTX_TIMEOUT(tmp),
dsi->regs + MCTL_DPHY_TIMEOUT1);
writel(LPRX_TIMEOUT(tmp), dsi->regs + MCTL_DPHY_TIMEOUT2);
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO) {
switch (output->dev->format) {
case MIPI_DSI_FMT_RGB888:
tmp = VID_PIXEL_MODE_RGB888 |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_24);
break;
case MIPI_DSI_FMT_RGB666:
tmp = VID_PIXEL_MODE_RGB666 |
VID_DATATYPE(MIPI_DSI_PIXEL_STREAM_3BYTE_18);
break;
case MIPI_DSI_FMT_RGB666_PACKED:
tmp = VID_PIXEL_MODE_RGB666_PACKED |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_18);
break;
case MIPI_DSI_FMT_RGB565:
tmp = VID_PIXEL_MODE_RGB565 |
VID_DATATYPE(MIPI_DSI_PACKED_PIXEL_STREAM_16);
break;
default:
dev_err(dsi->base.dev, "Unsupported DSI format\n");
return;
}
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
tmp |= SYNC_PULSE_ACTIVE | SYNC_PULSE_HORIZONTAL;
tmp |= REG_BLKLINE_MODE(REG_BLK_MODE_BLANKING_PKT) |
REG_BLKEOL_MODE(REG_BLK_MODE_BLANKING_PKT) |
RECOVERY_MODE(RECOVERY_MODE_NEXT_HSYNC) |
VID_IGNORE_MISS_VSYNC;
writel(tmp, dsi->regs + VID_MAIN_CTL);
}
tmp = readl(dsi->regs + MCTL_MAIN_DATA_CTL);
tmp &= ~(IF_VID_SELECT_MASK | HOST_EOT_GEN | IF_VID_MODE);
if (!(output->dev->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET))
tmp |= HOST_EOT_GEN;
if (output->dev->mode_flags & MIPI_DSI_MODE_VIDEO)
tmp |= IF_VID_MODE | IF_VID_SELECT(input->id) | VID_EN;
writel(tmp, dsi->regs + MCTL_MAIN_DATA_CTL);
tmp = readl(dsi->regs + MCTL_MAIN_EN) | IF_EN(input->id);
writel(tmp, dsi->regs + MCTL_MAIN_EN);
}
static void cdns_dsi_bridge_pre_enable(struct drm_bridge *bridge)
{
struct cdns_dsi_input *input = bridge_to_cdns_dsi_input(bridge);
struct cdns_dsi *dsi = input_to_dsi(input);
if (WARN_ON(pm_runtime_get_sync(dsi->base.dev) < 0))
return;
cdns_dsi_init_link(dsi);
cdns_dsi_hs_init(dsi);
}
static const struct drm_bridge_funcs cdns_dsi_bridge_funcs = {
.attach = cdns_dsi_bridge_attach,
.mode_valid = cdns_dsi_bridge_mode_valid,
.disable = cdns_dsi_bridge_disable,
.pre_enable = cdns_dsi_bridge_pre_enable,
.enable = cdns_dsi_bridge_enable,
.post_disable = cdns_dsi_bridge_post_disable,
};
static int cdns_dsi_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dsi_input *input = &dsi->input;
struct drm_bridge *bridge;
struct drm_panel *panel;
struct device_node *np;
int ret;
/*
* We currently do not support connecting several DSI devices to the
* same host. In order to support that we'd need the DRM bridge
* framework to allow dynamic reconfiguration of the bridge chain.
*/
if (output->dev)
return -EBUSY;
/* We do not support burst mode yet. */
if (dev->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
return -ENOTSUPP;
/*
* The host <-> device link might be described using an OF-graph
* representation, in this case we extract the device of_node from
* this representation, otherwise we use dsidev->dev.of_node which
* should have been filled by the core.
*/
np = of_graph_get_remote_node(dsi->base.dev->of_node, DSI_OUTPUT_PORT,
dev->channel);
if (!np)
np = of_node_get(dev->dev.of_node);
panel = of_drm_find_panel(np);
if (!IS_ERR(panel)) {
bridge = drm_panel_bridge_add_typed(panel,
DRM_MODE_CONNECTOR_DSI);
} else {
bridge = of_drm_find_bridge(dev->dev.of_node);
if (!bridge)
bridge = ERR_PTR(-EINVAL);
}
of_node_put(np);
if (IS_ERR(bridge)) {
ret = PTR_ERR(bridge);
dev_err(host->dev, "failed to add DSI device %s (err = %d)",
dev->name, ret);
return ret;
}
output->dev = dev;
output->bridge = bridge;
output->panel = panel;
/*
* The DSI output has been properly configured, we can now safely
* register the input to the bridge framework so that it can take place
* in a display pipeline.
*/
drm_bridge_add(&input->bridge);
return 0;
}
static int cdns_dsi_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
struct cdns_dsi_output *output = &dsi->output;
struct cdns_dsi_input *input = &dsi->input;
drm_bridge_remove(&input->bridge);
if (output->panel)
drm_panel_bridge_remove(output->bridge);
return 0;
}
static irqreturn_t cdns_dsi_interrupt(int irq, void *data)
{
struct cdns_dsi *dsi = data;
irqreturn_t ret = IRQ_NONE;
u32 flag, ctl;
flag = readl(dsi->regs + DIRECT_CMD_STS_FLAG);
if (flag) {
ctl = readl(dsi->regs + DIRECT_CMD_STS_CTL);
ctl &= ~flag;
writel(ctl, dsi->regs + DIRECT_CMD_STS_CTL);
complete(&dsi->direct_cmd_comp);
ret = IRQ_HANDLED;
}
return ret;
}
static ssize_t cdns_dsi_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct cdns_dsi *dsi = to_cdns_dsi(host);
u32 cmd, sts, val, wait = WRITE_COMPLETED, ctl = 0;
struct mipi_dsi_packet packet;
int ret, i, tx_len, rx_len;
ret = pm_runtime_resume_and_get(host->dev);
if (ret < 0)
return ret;
cdns_dsi_init_link(dsi);
ret = mipi_dsi_create_packet(&packet, msg);
if (ret)
goto out;
tx_len = msg->tx_buf ? msg->tx_len : 0;
rx_len = msg->rx_buf ? msg->rx_len : 0;
/* For read operations, the maximum TX len is 2. */
if (rx_len && tx_len > 2) {
ret = -ENOTSUPP;
goto out;
}
/* TX len is limited by the CMD FIFO depth. */
if (tx_len > dsi->direct_cmd_fifo_depth) {
ret = -ENOTSUPP;
goto out;
}
/* RX len is limited by the RX FIFO depth. */
if (rx_len > dsi->rx_fifo_depth) {
ret = -ENOTSUPP;
goto out;
}
cmd = CMD_SIZE(tx_len) | CMD_VCHAN_ID(msg->channel) |
CMD_DATATYPE(msg->type);
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
cmd |= CMD_LP_EN;
if (mipi_dsi_packet_format_is_long(msg->type))
cmd |= CMD_LONG;
if (rx_len) {
cmd |= READ_CMD;
wait = READ_COMPLETED_WITH_ERR | READ_COMPLETED;
ctl = READ_EN | BTA_EN;
} else if (msg->flags & MIPI_DSI_MSG_REQ_ACK) {
cmd |= BTA_REQ;
wait = ACK_WITH_ERR_RCVD | ACK_RCVD;
ctl = BTA_EN;
}
writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) | ctl,
dsi->regs + MCTL_MAIN_DATA_CTL);
writel(cmd, dsi->regs + DIRECT_CMD_MAIN_SETTINGS);
for (i = 0; i < tx_len; i += 4) {
const u8 *buf = msg->tx_buf;
int j;
val = 0;
for (j = 0; j < 4 && j + i < tx_len; j++)
val |= (u32)buf[i + j] << (8 * j);
writel(val, dsi->regs + DIRECT_CMD_WRDATA);
}
/* Clear status flags before sending the command. */
writel(wait, dsi->regs + DIRECT_CMD_STS_CLR);
writel(wait, dsi->regs + DIRECT_CMD_STS_CTL);
reinit_completion(&dsi->direct_cmd_comp);
writel(0, dsi->regs + DIRECT_CMD_SEND);
wait_for_completion_timeout(&dsi->direct_cmd_comp,
msecs_to_jiffies(1000));
sts = readl(dsi->regs + DIRECT_CMD_STS);
writel(wait, dsi->regs + DIRECT_CMD_STS_CLR);
writel(0, dsi->regs + DIRECT_CMD_STS_CTL);
writel(readl(dsi->regs + MCTL_MAIN_DATA_CTL) & ~ctl,
dsi->regs + MCTL_MAIN_DATA_CTL);
/* We did not receive the events we were waiting for. */
if (!(sts & wait)) {
ret = -ETIMEDOUT;
goto out;
}
/* 'READ' or 'WRITE with ACK' failed. */
if (sts & (READ_COMPLETED_WITH_ERR | ACK_WITH_ERR_RCVD)) {
ret = -EIO;
goto out;
}
for (i = 0; i < rx_len; i += 4) {
u8 *buf = msg->rx_buf;
int j;
val = readl(dsi->regs + DIRECT_CMD_RDDATA);
for (j = 0; j < 4 && j + i < rx_len; j++)
buf[i + j] = val >> (8 * j);
}
out:
pm_runtime_put(host->dev);
return ret;
}
static const struct mipi_dsi_host_ops cdns_dsi_ops = {
.attach = cdns_dsi_attach,
.detach = cdns_dsi_detach,
.transfer = cdns_dsi_transfer,
};
static int __maybe_unused cdns_dsi_resume(struct device *dev)
{
struct cdns_dsi *dsi = dev_get_drvdata(dev);
reset_control_deassert(dsi->dsi_p_rst);
clk_prepare_enable(dsi->dsi_p_clk);
clk_prepare_enable(dsi->dsi_sys_clk);
return 0;
}
static int __maybe_unused cdns_dsi_suspend(struct device *dev)
{
struct cdns_dsi *dsi = dev_get_drvdata(dev);
clk_disable_unprepare(dsi->dsi_sys_clk);
clk_disable_unprepare(dsi->dsi_p_clk);
reset_control_assert(dsi->dsi_p_rst);
dsi->link_initialized = false;
return 0;
}
static UNIVERSAL_DEV_PM_OPS(cdns_dsi_pm_ops, cdns_dsi_suspend, cdns_dsi_resume,
NULL);
static int cdns_dsi_drm_probe(struct platform_device *pdev)
{
struct cdns_dsi *dsi;
struct cdns_dsi_input *input;
int ret, irq;
u32 val;
dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
platform_set_drvdata(pdev, dsi);
input = &dsi->input;
dsi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dsi->regs))
return PTR_ERR(dsi->regs);
dsi->dsi_p_clk = devm_clk_get(&pdev->dev, "dsi_p_clk");
if (IS_ERR(dsi->dsi_p_clk))
return PTR_ERR(dsi->dsi_p_clk);
dsi->dsi_p_rst = devm_reset_control_get_optional_exclusive(&pdev->dev,
"dsi_p_rst");
if (IS_ERR(dsi->dsi_p_rst))
return PTR_ERR(dsi->dsi_p_rst);
dsi->dsi_sys_clk = devm_clk_get(&pdev->dev, "dsi_sys_clk");
if (IS_ERR(dsi->dsi_sys_clk))
return PTR_ERR(dsi->dsi_sys_clk);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
dsi->dphy = devm_phy_get(&pdev->dev, "dphy");
if (IS_ERR(dsi->dphy))
return PTR_ERR(dsi->dphy);
ret = clk_prepare_enable(dsi->dsi_p_clk);
if (ret)
return ret;
val = readl(dsi->regs + ID_REG);
if (REV_VENDOR_ID(val) != 0xcad) {
dev_err(&pdev->dev, "invalid vendor id\n");
ret = -EINVAL;
goto err_disable_pclk;
}
dsi->platform_ops = of_device_get_match_data(&pdev->dev);
val = readl(dsi->regs + IP_CONF);
dsi->direct_cmd_fifo_depth = 1 << (DIRCMD_FIFO_DEPTH(val) + 2);
dsi->rx_fifo_depth = RX_FIFO_DEPTH(val);
init_completion(&dsi->direct_cmd_comp);
writel(0, dsi->regs + MCTL_MAIN_DATA_CTL);
writel(0, dsi->regs + MCTL_MAIN_EN);
writel(0, dsi->regs + MCTL_MAIN_PHY_CTL);
/*
* We only support the DPI input, so force input->id to
* CDNS_DPI_INPUT.
*/
input->id = CDNS_DPI_INPUT;
input->bridge.funcs = &cdns_dsi_bridge_funcs;
input->bridge.of_node = pdev->dev.of_node;
/* Mask all interrupts before registering the IRQ handler. */
writel(0, dsi->regs + MCTL_MAIN_STS_CTL);
writel(0, dsi->regs + MCTL_DPHY_ERR_CTL1);
writel(0, dsi->regs + CMD_MODE_STS_CTL);
writel(0, dsi->regs + DIRECT_CMD_STS_CTL);
writel(0, dsi->regs + DIRECT_CMD_RD_STS_CTL);
writel(0, dsi->regs + VID_MODE_STS_CTL);
writel(0, dsi->regs + TVG_STS_CTL);
writel(0, dsi->regs + DPI_IRQ_EN);
ret = devm_request_irq(&pdev->dev, irq, cdns_dsi_interrupt, 0,
dev_name(&pdev->dev), dsi);
if (ret)
goto err_disable_pclk;
pm_runtime_enable(&pdev->dev);
dsi->base.dev = &pdev->dev;
dsi->base.ops = &cdns_dsi_ops;
if (dsi->platform_ops && dsi->platform_ops->init) {
ret = dsi->platform_ops->init(dsi);
if (ret != 0) {
dev_err(&pdev->dev, "platform initialization failed: %d\n",
ret);
goto err_disable_runtime_pm;
}
}
ret = mipi_dsi_host_register(&dsi->base);
if (ret)
goto err_deinit_platform;
clk_disable_unprepare(dsi->dsi_p_clk);
return 0;
err_deinit_platform:
if (dsi->platform_ops && dsi->platform_ops->deinit)
dsi->platform_ops->deinit(dsi);
err_disable_runtime_pm:
pm_runtime_disable(&pdev->dev);
err_disable_pclk:
clk_disable_unprepare(dsi->dsi_p_clk);
return ret;
}
static void cdns_dsi_drm_remove(struct platform_device *pdev)
{
struct cdns_dsi *dsi = platform_get_drvdata(pdev);
mipi_dsi_host_unregister(&dsi->base);
if (dsi->platform_ops && dsi->platform_ops->deinit)
dsi->platform_ops->deinit(dsi);
pm_runtime_disable(&pdev->dev);
}
static const struct of_device_id cdns_dsi_of_match[] = {
{ .compatible = "cdns,dsi" },
#ifdef CONFIG_DRM_CDNS_DSI_J721E
{ .compatible = "ti,j721e-dsi", .data = &dsi_ti_j721e_ops, },
#endif
{ },
};
MODULE_DEVICE_TABLE(of, cdns_dsi_of_match);
static struct platform_driver cdns_dsi_platform_driver = {
.probe = cdns_dsi_drm_probe,
.remove_new = cdns_dsi_drm_remove,
.driver = {
.name = "cdns-dsi",
.of_match_table = cdns_dsi_of_match,
.pm = &cdns_dsi_pm_ops,
},
};
module_platform_driver(cdns_dsi_platform_driver);
MODULE_AUTHOR("Boris Brezillon <[email protected]>");
MODULE_DESCRIPTION("Cadence DSI driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:cdns-dsi");
| linux-master | drivers/gpu/drm/bridge/cadence/cdns-dsi-core.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Cadence MHDP8546 DP bridge driver.
*
* Copyright (C) 2020 Cadence Design Systems, Inc.
*
*/
#include <linux/io.h>
#include <linux/iopoll.h>
#include <asm/unaligned.h>
#include <drm/display/drm_hdcp_helper.h>
#include "cdns-mhdp8546-hdcp.h"
static int cdns_mhdp_secure_mailbox_read(struct cdns_mhdp_device *mhdp)
{
int ret, empty;
WARN_ON(!mutex_is_locked(&mhdp->mbox_mutex));
ret = readx_poll_timeout(readl, mhdp->sapb_regs + CDNS_MAILBOX_EMPTY,
empty, !empty, MAILBOX_RETRY_US,
MAILBOX_TIMEOUT_US);
if (ret < 0)
return ret;
return readl(mhdp->sapb_regs + CDNS_MAILBOX_RX_DATA) & 0xff;
}
static int cdns_mhdp_secure_mailbox_write(struct cdns_mhdp_device *mhdp,
u8 val)
{
int ret, full;
WARN_ON(!mutex_is_locked(&mhdp->mbox_mutex));
ret = readx_poll_timeout(readl, mhdp->sapb_regs + CDNS_MAILBOX_FULL,
full, !full, MAILBOX_RETRY_US,
MAILBOX_TIMEOUT_US);
if (ret < 0)
return ret;
writel(val, mhdp->sapb_regs + CDNS_MAILBOX_TX_DATA);
return 0;
}
static int cdns_mhdp_secure_mailbox_recv_header(struct cdns_mhdp_device *mhdp,
u8 module_id,
u8 opcode,
u16 req_size)
{
u32 mbox_size, i;
u8 header[4];
int ret;
/* read the header of the message */
for (i = 0; i < sizeof(header); i++) {
ret = cdns_mhdp_secure_mailbox_read(mhdp);
if (ret < 0)
return ret;
header[i] = ret;
}
mbox_size = get_unaligned_be16(header + 2);
if (opcode != header[0] || module_id != header[1] ||
(opcode != HDCP_TRAN_IS_REC_ID_VALID && req_size != mbox_size)) {
for (i = 0; i < mbox_size; i++)
if (cdns_mhdp_secure_mailbox_read(mhdp) < 0)
break;
return -EINVAL;
}
return 0;
}
static int cdns_mhdp_secure_mailbox_recv_data(struct cdns_mhdp_device *mhdp,
u8 *buff, u16 buff_size)
{
int ret;
u32 i;
for (i = 0; i < buff_size; i++) {
ret = cdns_mhdp_secure_mailbox_read(mhdp);
if (ret < 0)
return ret;
buff[i] = ret;
}
return 0;
}
static int cdns_mhdp_secure_mailbox_send(struct cdns_mhdp_device *mhdp,
u8 module_id,
u8 opcode,
u16 size,
u8 *message)
{
u8 header[4];
int ret;
u32 i;
header[0] = opcode;
header[1] = module_id;
put_unaligned_be16(size, header + 2);
for (i = 0; i < sizeof(header); i++) {
ret = cdns_mhdp_secure_mailbox_write(mhdp, header[i]);
if (ret)
return ret;
}
for (i = 0; i < size; i++) {
ret = cdns_mhdp_secure_mailbox_write(mhdp, message[i]);
if (ret)
return ret;
}
return 0;
}
static int cdns_mhdp_hdcp_get_status(struct cdns_mhdp_device *mhdp,
u16 *hdcp_port_status)
{
u8 hdcp_status[HDCP_STATUS_SIZE];
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_STATUS_CHANGE, 0, NULL);
if (ret)
goto err_get_hdcp_status;
ret = cdns_mhdp_secure_mailbox_recv_header(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_STATUS_CHANGE,
sizeof(hdcp_status));
if (ret)
goto err_get_hdcp_status;
ret = cdns_mhdp_secure_mailbox_recv_data(mhdp, hdcp_status,
sizeof(hdcp_status));
if (ret)
goto err_get_hdcp_status;
*hdcp_port_status = ((u16)(hdcp_status[0] << 8) | hdcp_status[1]);
err_get_hdcp_status:
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static u8 cdns_mhdp_hdcp_handle_status(struct cdns_mhdp_device *mhdp,
u16 status)
{
u8 err = GET_HDCP_PORT_STS_LAST_ERR(status);
if (err)
dev_dbg(mhdp->dev, "HDCP Error = %d", err);
return err;
}
static int cdns_mhdp_hdcp_rx_id_valid_response(struct cdns_mhdp_device *mhdp,
u8 valid)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_RESPOND_RECEIVER_ID_VALID,
1, &valid);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static int cdns_mhdp_hdcp_rx_id_valid(struct cdns_mhdp_device *mhdp,
u8 *recv_num, u8 *hdcp_rx_id)
{
u8 rec_id_hdr[2];
u8 status;
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_IS_REC_ID_VALID, 0, NULL);
if (ret)
goto err_rx_id_valid;
ret = cdns_mhdp_secure_mailbox_recv_header(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_IS_REC_ID_VALID,
sizeof(status));
if (ret)
goto err_rx_id_valid;
ret = cdns_mhdp_secure_mailbox_recv_data(mhdp, rec_id_hdr, 2);
if (ret)
goto err_rx_id_valid;
*recv_num = rec_id_hdr[0];
ret = cdns_mhdp_secure_mailbox_recv_data(mhdp, hdcp_rx_id, 5 * *recv_num);
err_rx_id_valid:
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static int cdns_mhdp_hdcp_km_stored_resp(struct cdns_mhdp_device *mhdp,
u32 size, u8 *km)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP2X_TX_RESPOND_KM, size, km);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static int cdns_mhdp_hdcp_tx_is_km_stored(struct cdns_mhdp_device *mhdp,
u8 *resp, u32 size)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP2X_TX_IS_KM_STORED, 0, NULL);
if (ret)
goto err_is_km_stored;
ret = cdns_mhdp_secure_mailbox_recv_header(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP2X_TX_IS_KM_STORED,
size);
if (ret)
goto err_is_km_stored;
ret = cdns_mhdp_secure_mailbox_recv_data(mhdp, resp, size);
err_is_km_stored:
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static int cdns_mhdp_hdcp_tx_config(struct cdns_mhdp_device *mhdp,
u8 hdcp_cfg)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP_TRAN_CONFIGURATION, 1, &hdcp_cfg);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static int cdns_mhdp_hdcp_set_config(struct cdns_mhdp_device *mhdp,
u8 hdcp_config, bool enable)
{
u16 hdcp_port_status;
u32 ret_event;
u8 hdcp_cfg;
int ret;
hdcp_cfg = hdcp_config | (enable ? 0x04 : 0) |
(HDCP_CONTENT_TYPE_0 << 3);
cdns_mhdp_hdcp_tx_config(mhdp, hdcp_cfg);
ret_event = cdns_mhdp_wait_for_sw_event(mhdp, CDNS_HDCP_TX_STATUS);
if (!ret_event)
return -1;
ret = cdns_mhdp_hdcp_get_status(mhdp, &hdcp_port_status);
if (ret || cdns_mhdp_hdcp_handle_status(mhdp, hdcp_port_status))
return -1;
return 0;
}
static int cdns_mhdp_hdcp_auth_check(struct cdns_mhdp_device *mhdp)
{
u16 hdcp_port_status;
u32 ret_event;
int ret;
ret_event = cdns_mhdp_wait_for_sw_event(mhdp, CDNS_HDCP_TX_STATUS);
if (!ret_event)
return -1;
ret = cdns_mhdp_hdcp_get_status(mhdp, &hdcp_port_status);
if (ret || cdns_mhdp_hdcp_handle_status(mhdp, hdcp_port_status))
return -1;
if (hdcp_port_status & 1) {
dev_dbg(mhdp->dev, "Authentication completed successfully!\n");
return 0;
}
dev_dbg(mhdp->dev, "Authentication failed\n");
return -1;
}
static int cdns_mhdp_hdcp_check_receviers(struct cdns_mhdp_device *mhdp)
{
u8 hdcp_rec_id[HDCP_MAX_RECEIVERS][HDCP_RECEIVER_ID_SIZE_BYTES];
u8 hdcp_num_rec;
u32 ret_event;
ret_event = cdns_mhdp_wait_for_sw_event(mhdp,
CDNS_HDCP_TX_IS_RCVR_ID_VALID);
if (!ret_event)
return -1;
hdcp_num_rec = 0;
memset(&hdcp_rec_id, 0, sizeof(hdcp_rec_id));
cdns_mhdp_hdcp_rx_id_valid(mhdp, &hdcp_num_rec, (u8 *)hdcp_rec_id);
cdns_mhdp_hdcp_rx_id_valid_response(mhdp, 1);
return 0;
}
static int cdns_mhdp_hdcp_auth_22(struct cdns_mhdp_device *mhdp)
{
u8 resp[HDCP_STATUS_SIZE];
u16 hdcp_port_status;
u32 ret_event;
int ret;
dev_dbg(mhdp->dev, "HDCP: Start 2.2 Authentication\n");
ret_event = cdns_mhdp_wait_for_sw_event(mhdp,
CDNS_HDCP2_TX_IS_KM_STORED);
if (!ret_event)
return -1;
if (ret_event & CDNS_HDCP_TX_STATUS) {
mhdp->sw_events &= ~CDNS_HDCP_TX_STATUS;
ret = cdns_mhdp_hdcp_get_status(mhdp, &hdcp_port_status);
if (ret || cdns_mhdp_hdcp_handle_status(mhdp, hdcp_port_status))
return -1;
}
cdns_mhdp_hdcp_tx_is_km_stored(mhdp, resp, sizeof(resp));
cdns_mhdp_hdcp_km_stored_resp(mhdp, 0, NULL);
if (cdns_mhdp_hdcp_check_receviers(mhdp))
return -1;
return 0;
}
static inline int cdns_mhdp_hdcp_auth_14(struct cdns_mhdp_device *mhdp)
{
dev_dbg(mhdp->dev, "HDCP: Starting 1.4 Authentication\n");
return cdns_mhdp_hdcp_check_receviers(mhdp);
}
static int cdns_mhdp_hdcp_auth(struct cdns_mhdp_device *mhdp,
u8 hdcp_config)
{
int ret;
ret = cdns_mhdp_hdcp_set_config(mhdp, hdcp_config, true);
if (ret)
goto auth_failed;
if (hdcp_config == HDCP_TX_1)
ret = cdns_mhdp_hdcp_auth_14(mhdp);
else
ret = cdns_mhdp_hdcp_auth_22(mhdp);
if (ret)
goto auth_failed;
ret = cdns_mhdp_hdcp_auth_check(mhdp);
if (ret)
ret = cdns_mhdp_hdcp_auth_check(mhdp);
auth_failed:
return ret;
}
static int _cdns_mhdp_hdcp_disable(struct cdns_mhdp_device *mhdp)
{
int ret;
dev_dbg(mhdp->dev, "[%s:%d] HDCP is being disabled...\n",
mhdp->connector.name, mhdp->connector.base.id);
ret = cdns_mhdp_hdcp_set_config(mhdp, 0, false);
return ret;
}
static int _cdns_mhdp_hdcp_enable(struct cdns_mhdp_device *mhdp, u8 content_type)
{
int ret, tries = 3;
u32 i;
for (i = 0; i < tries; i++) {
if (content_type == DRM_MODE_HDCP_CONTENT_TYPE0 ||
content_type == DRM_MODE_HDCP_CONTENT_TYPE1) {
ret = cdns_mhdp_hdcp_auth(mhdp, HDCP_TX_2);
if (!ret)
return 0;
_cdns_mhdp_hdcp_disable(mhdp);
}
if (content_type == DRM_MODE_HDCP_CONTENT_TYPE0) {
ret = cdns_mhdp_hdcp_auth(mhdp, HDCP_TX_1);
if (!ret)
return 0;
_cdns_mhdp_hdcp_disable(mhdp);
}
}
dev_err(mhdp->dev, "HDCP authentication failed (%d tries/%d)\n",
tries, ret);
return ret;
}
static int cdns_mhdp_hdcp_check_link(struct cdns_mhdp_device *mhdp)
{
u16 hdcp_port_status;
int ret = 0;
mutex_lock(&mhdp->hdcp.mutex);
if (mhdp->hdcp.value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
goto out;
ret = cdns_mhdp_hdcp_get_status(mhdp, &hdcp_port_status);
if (!ret && hdcp_port_status & HDCP_PORT_STS_AUTH)
goto out;
dev_err(mhdp->dev,
"[%s:%d] HDCP link failed, retrying authentication\n",
mhdp->connector.name, mhdp->connector.base.id);
ret = _cdns_mhdp_hdcp_disable(mhdp);
if (ret) {
mhdp->hdcp.value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&mhdp->hdcp.prop_work);
goto out;
}
ret = _cdns_mhdp_hdcp_enable(mhdp, mhdp->hdcp.hdcp_content_type);
if (ret) {
mhdp->hdcp.value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
schedule_work(&mhdp->hdcp.prop_work);
}
out:
mutex_unlock(&mhdp->hdcp.mutex);
return ret;
}
static void cdns_mhdp_hdcp_check_work(struct work_struct *work)
{
struct delayed_work *d_work = to_delayed_work(work);
struct cdns_mhdp_hdcp *hdcp = container_of(d_work,
struct cdns_mhdp_hdcp,
check_work);
struct cdns_mhdp_device *mhdp = container_of(hdcp,
struct cdns_mhdp_device,
hdcp);
if (!cdns_mhdp_hdcp_check_link(mhdp))
schedule_delayed_work(&hdcp->check_work,
DRM_HDCP_CHECK_PERIOD_MS);
}
static void cdns_mhdp_hdcp_prop_work(struct work_struct *work)
{
struct cdns_mhdp_hdcp *hdcp = container_of(work,
struct cdns_mhdp_hdcp,
prop_work);
struct cdns_mhdp_device *mhdp = container_of(hdcp,
struct cdns_mhdp_device,
hdcp);
struct drm_device *dev = mhdp->connector.dev;
struct drm_connector_state *state;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
mutex_lock(&mhdp->hdcp.mutex);
if (mhdp->hdcp.value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
state = mhdp->connector.state;
state->content_protection = mhdp->hdcp.value;
}
mutex_unlock(&mhdp->hdcp.mutex);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
}
int cdns_mhdp_hdcp_set_lc(struct cdns_mhdp_device *mhdp, u8 *val)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_GENERAL,
HDCP_GENERAL_SET_LC_128,
16, val);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
int
cdns_mhdp_hdcp_set_public_key_param(struct cdns_mhdp_device *mhdp,
struct cdns_hdcp_tx_public_key_param *val)
{
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_secure_mailbox_send(mhdp, MB_MODULE_ID_HDCP_TX,
HDCP2X_TX_SET_PUBLIC_KEY_PARAMS,
sizeof(*val), (u8 *)val);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
int cdns_mhdp_hdcp_enable(struct cdns_mhdp_device *mhdp, u8 content_type)
{
int ret;
mutex_lock(&mhdp->hdcp.mutex);
ret = _cdns_mhdp_hdcp_enable(mhdp, content_type);
if (ret)
goto out;
mhdp->hdcp.hdcp_content_type = content_type;
mhdp->hdcp.value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
schedule_work(&mhdp->hdcp.prop_work);
schedule_delayed_work(&mhdp->hdcp.check_work,
DRM_HDCP_CHECK_PERIOD_MS);
out:
mutex_unlock(&mhdp->hdcp.mutex);
return ret;
}
int cdns_mhdp_hdcp_disable(struct cdns_mhdp_device *mhdp)
{
int ret = 0;
mutex_lock(&mhdp->hdcp.mutex);
if (mhdp->hdcp.value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
mhdp->hdcp.value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
schedule_work(&mhdp->hdcp.prop_work);
ret = _cdns_mhdp_hdcp_disable(mhdp);
}
mutex_unlock(&mhdp->hdcp.mutex);
cancel_delayed_work_sync(&mhdp->hdcp.check_work);
return ret;
}
void cdns_mhdp_hdcp_init(struct cdns_mhdp_device *mhdp)
{
INIT_DELAYED_WORK(&mhdp->hdcp.check_work, cdns_mhdp_hdcp_check_work);
INIT_WORK(&mhdp->hdcp.prop_work, cdns_mhdp_hdcp_prop_work);
mutex_init(&mhdp->hdcp.mutex);
}
| linux-master | drivers/gpu/drm/bridge/cadence/cdns-mhdp8546-hdcp.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Cadence MHDP8546 DP bridge driver.
*
* Copyright (C) 2020 Cadence Design Systems, Inc.
*
* Authors: Quentin Schulz <[email protected]>
* Swapnil Jakhade <[email protected]>
* Yuti Amonkar <[email protected]>
* Tomi Valkeinen <[email protected]>
* Jyri Sarha <[email protected]>
*
* TODO:
* - Implement optimized mailbox communication using mailbox interrupts
* - Add support for power management
* - Add support for features like audio, MST and fast link training
* - Implement request_fw_cancel to handle HW_STATE
* - Fix asynchronous loading of firmware implementation
* - Add DRM helper function for cdns_mhdp_lower_link_rate
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-dp.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_hdcp_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_state_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_connector.h>
#include <drm/drm_edid.h>
#include <drm/drm_modeset_helper_vtables.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <asm/unaligned.h>
#include "cdns-mhdp8546-core.h"
#include "cdns-mhdp8546-hdcp.h"
#include "cdns-mhdp8546-j721e.h"
static void cdns_mhdp_bridge_hpd_enable(struct drm_bridge *bridge)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
/* Enable SW event interrupts */
if (mhdp->bridge_attached)
writel(readl(mhdp->regs + CDNS_APB_INT_MASK) &
~CDNS_APB_INT_MASK_SW_EVENT_INT,
mhdp->regs + CDNS_APB_INT_MASK);
}
static void cdns_mhdp_bridge_hpd_disable(struct drm_bridge *bridge)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
writel(readl(mhdp->regs + CDNS_APB_INT_MASK) |
CDNS_APB_INT_MASK_SW_EVENT_INT,
mhdp->regs + CDNS_APB_INT_MASK);
}
static int cdns_mhdp_mailbox_read(struct cdns_mhdp_device *mhdp)
{
int ret, empty;
WARN_ON(!mutex_is_locked(&mhdp->mbox_mutex));
ret = readx_poll_timeout(readl, mhdp->regs + CDNS_MAILBOX_EMPTY,
empty, !empty, MAILBOX_RETRY_US,
MAILBOX_TIMEOUT_US);
if (ret < 0)
return ret;
return readl(mhdp->regs + CDNS_MAILBOX_RX_DATA) & 0xff;
}
static int cdns_mhdp_mailbox_write(struct cdns_mhdp_device *mhdp, u8 val)
{
int ret, full;
WARN_ON(!mutex_is_locked(&mhdp->mbox_mutex));
ret = readx_poll_timeout(readl, mhdp->regs + CDNS_MAILBOX_FULL,
full, !full, MAILBOX_RETRY_US,
MAILBOX_TIMEOUT_US);
if (ret < 0)
return ret;
writel(val, mhdp->regs + CDNS_MAILBOX_TX_DATA);
return 0;
}
static int cdns_mhdp_mailbox_recv_header(struct cdns_mhdp_device *mhdp,
u8 module_id, u8 opcode,
u16 req_size)
{
u32 mbox_size, i;
u8 header[4];
int ret;
/* read the header of the message */
for (i = 0; i < sizeof(header); i++) {
ret = cdns_mhdp_mailbox_read(mhdp);
if (ret < 0)
return ret;
header[i] = ret;
}
mbox_size = get_unaligned_be16(header + 2);
if (opcode != header[0] || module_id != header[1] ||
req_size != mbox_size) {
/*
* If the message in mailbox is not what we want, we need to
* clear the mailbox by reading its contents.
*/
for (i = 0; i < mbox_size; i++)
if (cdns_mhdp_mailbox_read(mhdp) < 0)
break;
return -EINVAL;
}
return 0;
}
static int cdns_mhdp_mailbox_recv_data(struct cdns_mhdp_device *mhdp,
u8 *buff, u16 buff_size)
{
u32 i;
int ret;
for (i = 0; i < buff_size; i++) {
ret = cdns_mhdp_mailbox_read(mhdp);
if (ret < 0)
return ret;
buff[i] = ret;
}
return 0;
}
static int cdns_mhdp_mailbox_send(struct cdns_mhdp_device *mhdp, u8 module_id,
u8 opcode, u16 size, u8 *message)
{
u8 header[4];
int ret, i;
header[0] = opcode;
header[1] = module_id;
put_unaligned_be16(size, header + 2);
for (i = 0; i < sizeof(header); i++) {
ret = cdns_mhdp_mailbox_write(mhdp, header[i]);
if (ret)
return ret;
}
for (i = 0; i < size; i++) {
ret = cdns_mhdp_mailbox_write(mhdp, message[i]);
if (ret)
return ret;
}
return 0;
}
static
int cdns_mhdp_reg_read(struct cdns_mhdp_device *mhdp, u32 addr, u32 *value)
{
u8 msg[4], resp[8];
int ret;
put_unaligned_be32(addr, msg);
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_GENERAL,
GENERAL_REGISTER_READ,
sizeof(msg), msg);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_GENERAL,
GENERAL_REGISTER_READ,
sizeof(resp));
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, resp, sizeof(resp));
if (ret)
goto out;
/* Returned address value should be the same as requested */
if (memcmp(msg, resp, sizeof(msg))) {
ret = -EINVAL;
goto out;
}
*value = get_unaligned_be32(resp + 4);
out:
mutex_unlock(&mhdp->mbox_mutex);
if (ret) {
dev_err(mhdp->dev, "Failed to read register\n");
*value = 0;
}
return ret;
}
static
int cdns_mhdp_reg_write(struct cdns_mhdp_device *mhdp, u16 addr, u32 val)
{
u8 msg[6];
int ret;
put_unaligned_be16(addr, msg);
put_unaligned_be32(val, msg + 2);
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_WRITE_REGISTER, sizeof(msg), msg);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static
int cdns_mhdp_reg_write_bit(struct cdns_mhdp_device *mhdp, u16 addr,
u8 start_bit, u8 bits_no, u32 val)
{
u8 field[8];
int ret;
put_unaligned_be16(addr, field);
field[2] = start_bit;
field[3] = bits_no;
put_unaligned_be32(val, field + 4);
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_WRITE_FIELD, sizeof(field), field);
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static
int cdns_mhdp_dpcd_read(struct cdns_mhdp_device *mhdp,
u32 addr, u8 *data, u16 len)
{
u8 msg[5], reg[5];
int ret;
put_unaligned_be16(len, msg);
put_unaligned_be24(addr, msg + 2);
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_READ_DPCD, sizeof(msg), msg);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_READ_DPCD,
sizeof(reg) + len);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, reg, sizeof(reg));
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, data, len);
out:
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static
int cdns_mhdp_dpcd_write(struct cdns_mhdp_device *mhdp, u32 addr, u8 value)
{
u8 msg[6], reg[5];
int ret;
put_unaligned_be16(1, msg);
put_unaligned_be24(addr, msg + 2);
msg[5] = value;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_WRITE_DPCD, sizeof(msg), msg);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_WRITE_DPCD, sizeof(reg));
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, reg, sizeof(reg));
if (ret)
goto out;
if (addr != get_unaligned_be24(reg + 2))
ret = -EINVAL;
out:
mutex_unlock(&mhdp->mbox_mutex);
if (ret)
dev_err(mhdp->dev, "dpcd write failed: %d\n", ret);
return ret;
}
static
int cdns_mhdp_set_firmware_active(struct cdns_mhdp_device *mhdp, bool enable)
{
u8 msg[5];
int ret, i;
msg[0] = GENERAL_MAIN_CONTROL;
msg[1] = MB_MODULE_ID_GENERAL;
msg[2] = 0;
msg[3] = 1;
msg[4] = enable ? FW_ACTIVE : FW_STANDBY;
mutex_lock(&mhdp->mbox_mutex);
for (i = 0; i < sizeof(msg); i++) {
ret = cdns_mhdp_mailbox_write(mhdp, msg[i]);
if (ret)
goto out;
}
/* read the firmware state */
ret = cdns_mhdp_mailbox_recv_data(mhdp, msg, sizeof(msg));
if (ret)
goto out;
ret = 0;
out:
mutex_unlock(&mhdp->mbox_mutex);
if (ret < 0)
dev_err(mhdp->dev, "set firmware active failed\n");
return ret;
}
static
int cdns_mhdp_get_hpd_status(struct cdns_mhdp_device *mhdp)
{
u8 status;
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_HPD_STATE, 0, NULL);
if (ret)
goto err_get_hpd;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_HPD_STATE,
sizeof(status));
if (ret)
goto err_get_hpd;
ret = cdns_mhdp_mailbox_recv_data(mhdp, &status, sizeof(status));
if (ret)
goto err_get_hpd;
mutex_unlock(&mhdp->mbox_mutex);
dev_dbg(mhdp->dev, "%s: HPD %splugged\n", __func__,
status ? "" : "un");
return status;
err_get_hpd:
mutex_unlock(&mhdp->mbox_mutex);
return ret;
}
static
int cdns_mhdp_get_edid_block(void *data, u8 *edid,
unsigned int block, size_t length)
{
struct cdns_mhdp_device *mhdp = data;
u8 msg[2], reg[2], i;
int ret;
mutex_lock(&mhdp->mbox_mutex);
for (i = 0; i < 4; i++) {
msg[0] = block / 2;
msg[1] = block % 2;
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_GET_EDID, sizeof(msg), msg);
if (ret)
continue;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_GET_EDID,
sizeof(reg) + length);
if (ret)
continue;
ret = cdns_mhdp_mailbox_recv_data(mhdp, reg, sizeof(reg));
if (ret)
continue;
ret = cdns_mhdp_mailbox_recv_data(mhdp, edid, length);
if (ret)
continue;
if (reg[0] == length && reg[1] == block / 2)
break;
}
mutex_unlock(&mhdp->mbox_mutex);
if (ret)
dev_err(mhdp->dev, "get block[%d] edid failed: %d\n",
block, ret);
return ret;
}
static
int cdns_mhdp_read_hpd_event(struct cdns_mhdp_device *mhdp)
{
u8 event = 0;
int ret;
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_READ_EVENT, 0, NULL);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_READ_EVENT, sizeof(event));
if (ret < 0)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, &event, sizeof(event));
out:
mutex_unlock(&mhdp->mbox_mutex);
if (ret < 0)
return ret;
dev_dbg(mhdp->dev, "%s: %s%s%s%s\n", __func__,
(event & DPTX_READ_EVENT_HPD_TO_HIGH) ? "TO_HIGH " : "",
(event & DPTX_READ_EVENT_HPD_TO_LOW) ? "TO_LOW " : "",
(event & DPTX_READ_EVENT_HPD_PULSE) ? "PULSE " : "",
(event & DPTX_READ_EVENT_HPD_STATE) ? "HPD_STATE " : "");
return event;
}
static
int cdns_mhdp_adjust_lt(struct cdns_mhdp_device *mhdp, unsigned int nlanes,
unsigned int udelay, const u8 *lanes_data,
u8 link_status[DP_LINK_STATUS_SIZE])
{
u8 payload[7];
u8 hdr[5]; /* For DPCD read response header */
u32 addr;
int ret;
if (nlanes != 4 && nlanes != 2 && nlanes != 1) {
dev_err(mhdp->dev, "invalid number of lanes: %u\n", nlanes);
ret = -EINVAL;
goto out;
}
payload[0] = nlanes;
put_unaligned_be16(udelay, payload + 1);
memcpy(payload + 3, lanes_data, nlanes);
mutex_lock(&mhdp->mbox_mutex);
ret = cdns_mhdp_mailbox_send(mhdp, MB_MODULE_ID_DP_TX,
DPTX_ADJUST_LT,
sizeof(payload), payload);
if (ret)
goto out;
/* Yes, read the DPCD read command response */
ret = cdns_mhdp_mailbox_recv_header(mhdp, MB_MODULE_ID_DP_TX,
DPTX_READ_DPCD,
sizeof(hdr) + DP_LINK_STATUS_SIZE);
if (ret)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, hdr, sizeof(hdr));
if (ret)
goto out;
addr = get_unaligned_be24(hdr + 2);
if (addr != DP_LANE0_1_STATUS)
goto out;
ret = cdns_mhdp_mailbox_recv_data(mhdp, link_status,
DP_LINK_STATUS_SIZE);
out:
mutex_unlock(&mhdp->mbox_mutex);
if (ret)
dev_err(mhdp->dev, "Failed to adjust Link Training.\n");
return ret;
}
/**
* cdns_mhdp_link_power_up() - power up a DisplayPort link
* @aux: DisplayPort AUX channel
* @link: pointer to a structure containing the link configuration
*
* Returns 0 on success or a negative error code on failure.
*/
static
int cdns_mhdp_link_power_up(struct drm_dp_aux *aux, struct cdns_mhdp_link *link)
{
u8 value;
int err;
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
if (link->revision < 0x11)
return 0;
err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
if (err < 0)
return err;
value &= ~DP_SET_POWER_MASK;
value |= DP_SET_POWER_D0;
err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
if (err < 0)
return err;
/*
* According to the DP 1.1 specification, a "Sink Device must exit the
* power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
* Control Field" (register 0x600).
*/
usleep_range(1000, 2000);
return 0;
}
/**
* cdns_mhdp_link_power_down() - power down a DisplayPort link
* @aux: DisplayPort AUX channel
* @link: pointer to a structure containing the link configuration
*
* Returns 0 on success or a negative error code on failure.
*/
static
int cdns_mhdp_link_power_down(struct drm_dp_aux *aux,
struct cdns_mhdp_link *link)
{
u8 value;
int err;
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
if (link->revision < 0x11)
return 0;
err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
if (err < 0)
return err;
value &= ~DP_SET_POWER_MASK;
value |= DP_SET_POWER_D3;
err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
if (err < 0)
return err;
return 0;
}
/**
* cdns_mhdp_link_configure() - configure a DisplayPort link
* @aux: DisplayPort AUX channel
* @link: pointer to a structure containing the link configuration
*
* Returns 0 on success or a negative error code on failure.
*/
static
int cdns_mhdp_link_configure(struct drm_dp_aux *aux,
struct cdns_mhdp_link *link)
{
u8 values[2];
int err;
values[0] = drm_dp_link_rate_to_bw_code(link->rate);
values[1] = link->num_lanes;
if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
values[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, values, sizeof(values));
if (err < 0)
return err;
return 0;
}
static unsigned int cdns_mhdp_max_link_rate(struct cdns_mhdp_device *mhdp)
{
return min(mhdp->host.link_rate, mhdp->sink.link_rate);
}
static u8 cdns_mhdp_max_num_lanes(struct cdns_mhdp_device *mhdp)
{
return min(mhdp->sink.lanes_cnt, mhdp->host.lanes_cnt);
}
static u8 cdns_mhdp_eq_training_pattern_supported(struct cdns_mhdp_device *mhdp)
{
return fls(mhdp->host.pattern_supp & mhdp->sink.pattern_supp);
}
static bool cdns_mhdp_get_ssc_supported(struct cdns_mhdp_device *mhdp)
{
/* Check if SSC is supported by both sides */
return mhdp->host.ssc && mhdp->sink.ssc;
}
static enum drm_connector_status cdns_mhdp_detect(struct cdns_mhdp_device *mhdp)
{
dev_dbg(mhdp->dev, "%s: %d\n", __func__, mhdp->plugged);
if (mhdp->plugged)
return connector_status_connected;
else
return connector_status_disconnected;
}
static int cdns_mhdp_check_fw_version(struct cdns_mhdp_device *mhdp)
{
u32 major_num, minor_num, revision;
u32 fw_ver, lib_ver;
fw_ver = (readl(mhdp->regs + CDNS_VER_H) << 8)
| readl(mhdp->regs + CDNS_VER_L);
lib_ver = (readl(mhdp->regs + CDNS_LIB_H_ADDR) << 8)
| readl(mhdp->regs + CDNS_LIB_L_ADDR);
if (lib_ver < 33984) {
/*
* Older FW versions with major number 1, used to store FW
* version information by storing repository revision number
* in registers. This is for identifying these FW versions.
*/
major_num = 1;
minor_num = 2;
if (fw_ver == 26098) {
revision = 15;
} else if (lib_ver == 0 && fw_ver == 0) {
revision = 17;
} else {
dev_err(mhdp->dev, "Unsupported FW version: fw_ver = %u, lib_ver = %u\n",
fw_ver, lib_ver);
return -ENODEV;
}
} else {
/* To identify newer FW versions with major number 2 onwards. */
major_num = fw_ver / 10000;
minor_num = (fw_ver / 100) % 100;
revision = (fw_ver % 10000) % 100;
}
dev_dbg(mhdp->dev, "FW version: v%u.%u.%u\n", major_num, minor_num,
revision);
return 0;
}
static int cdns_mhdp_fw_activate(const struct firmware *fw,
struct cdns_mhdp_device *mhdp)
{
unsigned int reg;
int ret;
/* Release uCPU reset and stall it. */
writel(CDNS_CPU_STALL, mhdp->regs + CDNS_APB_CTRL);
memcpy_toio(mhdp->regs + CDNS_MHDP_IMEM, fw->data, fw->size);
/* Leave debug mode, release stall */
writel(0, mhdp->regs + CDNS_APB_CTRL);
/*
* Wait for the KEEP_ALIVE "message" on the first 8 bits.
* Updated each sched "tick" (~2ms)
*/
ret = readl_poll_timeout(mhdp->regs + CDNS_KEEP_ALIVE, reg,
reg & CDNS_KEEP_ALIVE_MASK, 500,
CDNS_KEEP_ALIVE_TIMEOUT);
if (ret) {
dev_err(mhdp->dev,
"device didn't give any life sign: reg %d\n", reg);
return ret;
}
ret = cdns_mhdp_check_fw_version(mhdp);
if (ret)
return ret;
/* Init events to 0 as it's not cleared by FW at boot but on read */
readl(mhdp->regs + CDNS_SW_EVENT0);
readl(mhdp->regs + CDNS_SW_EVENT1);
readl(mhdp->regs + CDNS_SW_EVENT2);
readl(mhdp->regs + CDNS_SW_EVENT3);
/* Activate uCPU */
ret = cdns_mhdp_set_firmware_active(mhdp, true);
if (ret)
return ret;
spin_lock(&mhdp->start_lock);
mhdp->hw_state = MHDP_HW_READY;
/*
* Here we must keep the lock while enabling the interrupts
* since it would otherwise be possible that interrupt enable
* code is executed after the bridge is detached. The similar
* situation is not possible in attach()/detach() callbacks
* since the hw_state changes from MHDP_HW_READY to
* MHDP_HW_STOPPED happens only due to driver removal when
* bridge should already be detached.
*/
cdns_mhdp_bridge_hpd_enable(&mhdp->bridge);
spin_unlock(&mhdp->start_lock);
wake_up(&mhdp->fw_load_wq);
dev_dbg(mhdp->dev, "DP FW activated\n");
return 0;
}
static void cdns_mhdp_fw_cb(const struct firmware *fw, void *context)
{
struct cdns_mhdp_device *mhdp = context;
bool bridge_attached;
int ret;
dev_dbg(mhdp->dev, "firmware callback\n");
if (!fw || !fw->data) {
dev_err(mhdp->dev, "%s: No firmware.\n", __func__);
return;
}
ret = cdns_mhdp_fw_activate(fw, mhdp);
release_firmware(fw);
if (ret)
return;
/*
* XXX how to make sure the bridge is still attached when
* calling drm_kms_helper_hotplug_event() after releasing
* the lock? We should not hold the spin lock when
* calling drm_kms_helper_hotplug_event() since it may
* cause a dead lock. FB-dev console calls detect from the
* same thread just down the call stack started here.
*/
spin_lock(&mhdp->start_lock);
bridge_attached = mhdp->bridge_attached;
spin_unlock(&mhdp->start_lock);
if (bridge_attached) {
if (mhdp->connector.dev)
drm_kms_helper_hotplug_event(mhdp->bridge.dev);
else
drm_bridge_hpd_notify(&mhdp->bridge, cdns_mhdp_detect(mhdp));
}
}
static int cdns_mhdp_load_firmware(struct cdns_mhdp_device *mhdp)
{
int ret;
ret = request_firmware_nowait(THIS_MODULE, true, FW_NAME, mhdp->dev,
GFP_KERNEL, mhdp, cdns_mhdp_fw_cb);
if (ret) {
dev_err(mhdp->dev, "failed to load firmware (%s), ret: %d\n",
FW_NAME, ret);
return ret;
}
return 0;
}
static ssize_t cdns_mhdp_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct cdns_mhdp_device *mhdp = dev_get_drvdata(aux->dev);
int ret;
if (msg->request != DP_AUX_NATIVE_WRITE &&
msg->request != DP_AUX_NATIVE_READ)
return -EOPNOTSUPP;
if (msg->request == DP_AUX_NATIVE_WRITE) {
const u8 *buf = msg->buffer;
unsigned int i;
for (i = 0; i < msg->size; ++i) {
ret = cdns_mhdp_dpcd_write(mhdp,
msg->address + i, buf[i]);
if (!ret)
continue;
dev_err(mhdp->dev,
"Failed to write DPCD addr %u\n",
msg->address + i);
return ret;
}
} else {
ret = cdns_mhdp_dpcd_read(mhdp, msg->address,
msg->buffer, msg->size);
if (ret) {
dev_err(mhdp->dev,
"Failed to read DPCD addr %u\n",
msg->address);
return ret;
}
}
return msg->size;
}
static int cdns_mhdp_link_training_init(struct cdns_mhdp_device *mhdp)
{
union phy_configure_opts phy_cfg;
u32 reg32;
int ret;
drm_dp_dpcd_writeb(&mhdp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
/* Reset PHY configuration */
reg32 = CDNS_PHY_COMMON_CONFIG | CDNS_PHY_TRAINING_TYPE(1);
if (!mhdp->host.scrambler)
reg32 |= CDNS_PHY_SCRAMBLER_BYPASS;
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_PHY_CONFIG, reg32);
cdns_mhdp_reg_write(mhdp, CDNS_DP_ENHNCD,
mhdp->sink.enhanced & mhdp->host.enhanced);
cdns_mhdp_reg_write(mhdp, CDNS_DP_LANE_EN,
CDNS_DP_LANE_EN_LANES(mhdp->link.num_lanes));
cdns_mhdp_link_configure(&mhdp->aux, &mhdp->link);
phy_cfg.dp.link_rate = mhdp->link.rate / 100;
phy_cfg.dp.lanes = mhdp->link.num_lanes;
memset(phy_cfg.dp.voltage, 0, sizeof(phy_cfg.dp.voltage));
memset(phy_cfg.dp.pre, 0, sizeof(phy_cfg.dp.pre));
phy_cfg.dp.ssc = cdns_mhdp_get_ssc_supported(mhdp);
phy_cfg.dp.set_lanes = true;
phy_cfg.dp.set_rate = true;
phy_cfg.dp.set_voltages = true;
ret = phy_configure(mhdp->phy, &phy_cfg);
if (ret) {
dev_err(mhdp->dev, "%s: phy_configure() failed: %d\n",
__func__, ret);
return ret;
}
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_PHY_CONFIG,
CDNS_PHY_COMMON_CONFIG |
CDNS_PHY_TRAINING_EN |
CDNS_PHY_TRAINING_TYPE(1) |
CDNS_PHY_SCRAMBLER_BYPASS);
drm_dp_dpcd_writeb(&mhdp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE);
return 0;
}
static void cdns_mhdp_get_adjust_train(struct cdns_mhdp_device *mhdp,
u8 link_status[DP_LINK_STATUS_SIZE],
u8 lanes_data[CDNS_DP_MAX_NUM_LANES],
union phy_configure_opts *phy_cfg)
{
u8 adjust, max_pre_emph, max_volt_swing;
u8 set_volt, set_pre;
unsigned int i;
max_pre_emph = CDNS_PRE_EMPHASIS(mhdp->host.pre_emphasis)
<< DP_TRAIN_PRE_EMPHASIS_SHIFT;
max_volt_swing = CDNS_VOLT_SWING(mhdp->host.volt_swing);
for (i = 0; i < mhdp->link.num_lanes; i++) {
/* Check if Voltage swing and pre-emphasis are within limits */
adjust = drm_dp_get_adjust_request_voltage(link_status, i);
set_volt = min(adjust, max_volt_swing);
adjust = drm_dp_get_adjust_request_pre_emphasis(link_status, i);
set_pre = min(adjust, max_pre_emph)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT;
/*
* Voltage swing level and pre-emphasis level combination is
* not allowed: leaving pre-emphasis as-is, and adjusting
* voltage swing.
*/
if (set_volt + set_pre > 3)
set_volt = 3 - set_pre;
phy_cfg->dp.voltage[i] = set_volt;
lanes_data[i] = set_volt;
if (set_volt == max_volt_swing)
lanes_data[i] |= DP_TRAIN_MAX_SWING_REACHED;
phy_cfg->dp.pre[i] = set_pre;
lanes_data[i] |= (set_pre << DP_TRAIN_PRE_EMPHASIS_SHIFT);
if (set_pre == (max_pre_emph >> DP_TRAIN_PRE_EMPHASIS_SHIFT))
lanes_data[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
}
}
static
void cdns_mhdp_set_adjust_request_voltage(u8 link_status[DP_LINK_STATUS_SIZE],
unsigned int lane, u8 volt)
{
unsigned int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
unsigned int idx = DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS + (lane >> 1);
link_status[idx] &= ~(DP_ADJUST_VOLTAGE_SWING_LANE0_MASK << s);
link_status[idx] |= volt << s;
}
static
void cdns_mhdp_set_adjust_request_pre_emphasis(u8 link_status[DP_LINK_STATUS_SIZE],
unsigned int lane, u8 pre_emphasis)
{
unsigned int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
unsigned int idx = DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS + (lane >> 1);
link_status[idx] &= ~(DP_ADJUST_PRE_EMPHASIS_LANE0_MASK << s);
link_status[idx] |= pre_emphasis << s;
}
static void cdns_mhdp_adjust_requested_eq(struct cdns_mhdp_device *mhdp,
u8 link_status[DP_LINK_STATUS_SIZE])
{
u8 max_pre = CDNS_PRE_EMPHASIS(mhdp->host.pre_emphasis);
u8 max_volt = CDNS_VOLT_SWING(mhdp->host.volt_swing);
unsigned int i;
u8 volt, pre;
for (i = 0; i < mhdp->link.num_lanes; i++) {
volt = drm_dp_get_adjust_request_voltage(link_status, i);
pre = drm_dp_get_adjust_request_pre_emphasis(link_status, i);
if (volt + pre > 3)
cdns_mhdp_set_adjust_request_voltage(link_status, i,
3 - pre);
if (mhdp->host.volt_swing & CDNS_FORCE_VOLT_SWING)
cdns_mhdp_set_adjust_request_voltage(link_status, i,
max_volt);
if (mhdp->host.pre_emphasis & CDNS_FORCE_PRE_EMPHASIS)
cdns_mhdp_set_adjust_request_pre_emphasis(link_status,
i, max_pre);
}
}
static void cdns_mhdp_print_lt_status(const char *prefix,
struct cdns_mhdp_device *mhdp,
union phy_configure_opts *phy_cfg)
{
char vs[8] = "0/0/0/0";
char pe[8] = "0/0/0/0";
unsigned int i;
for (i = 0; i < mhdp->link.num_lanes; i++) {
vs[i * 2] = '0' + phy_cfg->dp.voltage[i];
pe[i * 2] = '0' + phy_cfg->dp.pre[i];
}
vs[i * 2 - 1] = '\0';
pe[i * 2 - 1] = '\0';
dev_dbg(mhdp->dev, "%s, %u lanes, %u Mbps, vs %s, pe %s\n",
prefix,
mhdp->link.num_lanes, mhdp->link.rate / 100,
vs, pe);
}
static bool cdns_mhdp_link_training_channel_eq(struct cdns_mhdp_device *mhdp,
u8 eq_tps,
unsigned int training_interval)
{
u8 lanes_data[CDNS_DP_MAX_NUM_LANES], fail_counter_short = 0;
u8 link_status[DP_LINK_STATUS_SIZE];
union phy_configure_opts phy_cfg;
u32 reg32;
int ret;
bool r;
dev_dbg(mhdp->dev, "Starting EQ phase\n");
/* Enable link training TPS[eq_tps] in PHY */
reg32 = CDNS_PHY_COMMON_CONFIG | CDNS_PHY_TRAINING_EN |
CDNS_PHY_TRAINING_TYPE(eq_tps);
if (eq_tps != 4)
reg32 |= CDNS_PHY_SCRAMBLER_BYPASS;
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_PHY_CONFIG, reg32);
drm_dp_dpcd_writeb(&mhdp->aux, DP_TRAINING_PATTERN_SET,
(eq_tps != 4) ? eq_tps | DP_LINK_SCRAMBLING_DISABLE :
CDNS_DP_TRAINING_PATTERN_4);
drm_dp_dpcd_read_link_status(&mhdp->aux, link_status);
do {
cdns_mhdp_get_adjust_train(mhdp, link_status, lanes_data,
&phy_cfg);
phy_cfg.dp.lanes = mhdp->link.num_lanes;
phy_cfg.dp.ssc = cdns_mhdp_get_ssc_supported(mhdp);
phy_cfg.dp.set_lanes = false;
phy_cfg.dp.set_rate = false;
phy_cfg.dp.set_voltages = true;
ret = phy_configure(mhdp->phy, &phy_cfg);
if (ret) {
dev_err(mhdp->dev, "%s: phy_configure() failed: %d\n",
__func__, ret);
goto err;
}
cdns_mhdp_adjust_lt(mhdp, mhdp->link.num_lanes,
training_interval, lanes_data, link_status);
r = drm_dp_clock_recovery_ok(link_status, mhdp->link.num_lanes);
if (!r)
goto err;
if (drm_dp_channel_eq_ok(link_status, mhdp->link.num_lanes)) {
cdns_mhdp_print_lt_status("EQ phase ok", mhdp,
&phy_cfg);
return true;
}
fail_counter_short++;
cdns_mhdp_adjust_requested_eq(mhdp, link_status);
} while (fail_counter_short < 5);
err:
cdns_mhdp_print_lt_status("EQ phase failed", mhdp, &phy_cfg);
return false;
}
static void cdns_mhdp_adjust_requested_cr(struct cdns_mhdp_device *mhdp,
u8 link_status[DP_LINK_STATUS_SIZE],
u8 *req_volt, u8 *req_pre)
{
const u8 max_volt = CDNS_VOLT_SWING(mhdp->host.volt_swing);
const u8 max_pre = CDNS_PRE_EMPHASIS(mhdp->host.pre_emphasis);
unsigned int i;
for (i = 0; i < mhdp->link.num_lanes; i++) {
u8 val;
val = mhdp->host.volt_swing & CDNS_FORCE_VOLT_SWING ?
max_volt : req_volt[i];
cdns_mhdp_set_adjust_request_voltage(link_status, i, val);
val = mhdp->host.pre_emphasis & CDNS_FORCE_PRE_EMPHASIS ?
max_pre : req_pre[i];
cdns_mhdp_set_adjust_request_pre_emphasis(link_status, i, val);
}
}
static
void cdns_mhdp_validate_cr(struct cdns_mhdp_device *mhdp, bool *cr_done,
bool *same_before_adjust, bool *max_swing_reached,
u8 before_cr[CDNS_DP_MAX_NUM_LANES],
u8 after_cr[DP_LINK_STATUS_SIZE], u8 *req_volt,
u8 *req_pre)
{
const u8 max_volt = CDNS_VOLT_SWING(mhdp->host.volt_swing);
const u8 max_pre = CDNS_PRE_EMPHASIS(mhdp->host.pre_emphasis);
bool same_pre, same_volt;
unsigned int i;
u8 adjust;
*same_before_adjust = false;
*max_swing_reached = false;
*cr_done = drm_dp_clock_recovery_ok(after_cr, mhdp->link.num_lanes);
for (i = 0; i < mhdp->link.num_lanes; i++) {
adjust = drm_dp_get_adjust_request_voltage(after_cr, i);
req_volt[i] = min(adjust, max_volt);
adjust = drm_dp_get_adjust_request_pre_emphasis(after_cr, i) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
req_pre[i] = min(adjust, max_pre);
same_pre = (before_cr[i] & DP_TRAIN_PRE_EMPHASIS_MASK) ==
req_pre[i] << DP_TRAIN_PRE_EMPHASIS_SHIFT;
same_volt = (before_cr[i] & DP_TRAIN_VOLTAGE_SWING_MASK) ==
req_volt[i];
if (same_pre && same_volt)
*same_before_adjust = true;
/* 3.1.5.2 in DP Standard v1.4. Table 3-1 */
if (!*cr_done && req_volt[i] + req_pre[i] >= 3) {
*max_swing_reached = true;
return;
}
}
}
static bool cdns_mhdp_link_training_cr(struct cdns_mhdp_device *mhdp)
{
u8 lanes_data[CDNS_DP_MAX_NUM_LANES],
fail_counter_short = 0, fail_counter_cr_long = 0;
u8 link_status[DP_LINK_STATUS_SIZE];
bool cr_done;
union phy_configure_opts phy_cfg;
int ret;
dev_dbg(mhdp->dev, "Starting CR phase\n");
ret = cdns_mhdp_link_training_init(mhdp);
if (ret)
goto err;
drm_dp_dpcd_read_link_status(&mhdp->aux, link_status);
do {
u8 requested_adjust_volt_swing[CDNS_DP_MAX_NUM_LANES] = {};
u8 requested_adjust_pre_emphasis[CDNS_DP_MAX_NUM_LANES] = {};
bool same_before_adjust, max_swing_reached;
cdns_mhdp_get_adjust_train(mhdp, link_status, lanes_data,
&phy_cfg);
phy_cfg.dp.lanes = mhdp->link.num_lanes;
phy_cfg.dp.ssc = cdns_mhdp_get_ssc_supported(mhdp);
phy_cfg.dp.set_lanes = false;
phy_cfg.dp.set_rate = false;
phy_cfg.dp.set_voltages = true;
ret = phy_configure(mhdp->phy, &phy_cfg);
if (ret) {
dev_err(mhdp->dev, "%s: phy_configure() failed: %d\n",
__func__, ret);
goto err;
}
cdns_mhdp_adjust_lt(mhdp, mhdp->link.num_lanes, 100,
lanes_data, link_status);
cdns_mhdp_validate_cr(mhdp, &cr_done, &same_before_adjust,
&max_swing_reached, lanes_data,
link_status,
requested_adjust_volt_swing,
requested_adjust_pre_emphasis);
if (max_swing_reached) {
dev_err(mhdp->dev, "CR: max swing reached\n");
goto err;
}
if (cr_done) {
cdns_mhdp_print_lt_status("CR phase ok", mhdp,
&phy_cfg);
return true;
}
/* Not all CR_DONE bits set */
fail_counter_cr_long++;
if (same_before_adjust) {
fail_counter_short++;
continue;
}
fail_counter_short = 0;
/*
* Voltage swing/pre-emphasis adjust requested
* during CR phase
*/
cdns_mhdp_adjust_requested_cr(mhdp, link_status,
requested_adjust_volt_swing,
requested_adjust_pre_emphasis);
} while (fail_counter_short < 5 && fail_counter_cr_long < 10);
err:
cdns_mhdp_print_lt_status("CR phase failed", mhdp, &phy_cfg);
return false;
}
static void cdns_mhdp_lower_link_rate(struct cdns_mhdp_link *link)
{
switch (drm_dp_link_rate_to_bw_code(link->rate)) {
case DP_LINK_BW_2_7:
link->rate = drm_dp_bw_code_to_link_rate(DP_LINK_BW_1_62);
break;
case DP_LINK_BW_5_4:
link->rate = drm_dp_bw_code_to_link_rate(DP_LINK_BW_2_7);
break;
case DP_LINK_BW_8_1:
link->rate = drm_dp_bw_code_to_link_rate(DP_LINK_BW_5_4);
break;
}
}
static int cdns_mhdp_link_training(struct cdns_mhdp_device *mhdp,
unsigned int training_interval)
{
u32 reg32;
const u8 eq_tps = cdns_mhdp_eq_training_pattern_supported(mhdp);
int ret;
while (1) {
if (!cdns_mhdp_link_training_cr(mhdp)) {
if (drm_dp_link_rate_to_bw_code(mhdp->link.rate) !=
DP_LINK_BW_1_62) {
dev_dbg(mhdp->dev,
"Reducing link rate during CR phase\n");
cdns_mhdp_lower_link_rate(&mhdp->link);
continue;
} else if (mhdp->link.num_lanes > 1) {
dev_dbg(mhdp->dev,
"Reducing lanes number during CR phase\n");
mhdp->link.num_lanes >>= 1;
mhdp->link.rate = cdns_mhdp_max_link_rate(mhdp);
continue;
}
dev_err(mhdp->dev,
"Link training failed during CR phase\n");
goto err;
}
if (cdns_mhdp_link_training_channel_eq(mhdp, eq_tps,
training_interval))
break;
if (mhdp->link.num_lanes > 1) {
dev_dbg(mhdp->dev,
"Reducing lanes number during EQ phase\n");
mhdp->link.num_lanes >>= 1;
continue;
} else if (drm_dp_link_rate_to_bw_code(mhdp->link.rate) !=
DP_LINK_BW_1_62) {
dev_dbg(mhdp->dev,
"Reducing link rate during EQ phase\n");
cdns_mhdp_lower_link_rate(&mhdp->link);
mhdp->link.num_lanes = cdns_mhdp_max_num_lanes(mhdp);
continue;
}
dev_err(mhdp->dev, "Link training failed during EQ phase\n");
goto err;
}
dev_dbg(mhdp->dev, "Link training ok. Lanes: %u, Rate %u Mbps\n",
mhdp->link.num_lanes, mhdp->link.rate / 100);
drm_dp_dpcd_writeb(&mhdp->aux, DP_TRAINING_PATTERN_SET,
mhdp->host.scrambler ? 0 :
DP_LINK_SCRAMBLING_DISABLE);
ret = cdns_mhdp_reg_read(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, ®32);
if (ret < 0) {
dev_err(mhdp->dev,
"Failed to read CDNS_DP_FRAMER_GLOBAL_CONFIG %d\n",
ret);
return ret;
}
reg32 &= ~GENMASK(1, 0);
reg32 |= CDNS_DP_NUM_LANES(mhdp->link.num_lanes);
reg32 |= CDNS_DP_WR_FAILING_EDGE_VSYNC;
reg32 |= CDNS_DP_FRAMER_EN;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, reg32);
/* Reset PHY config */
reg32 = CDNS_PHY_COMMON_CONFIG | CDNS_PHY_TRAINING_TYPE(1);
if (!mhdp->host.scrambler)
reg32 |= CDNS_PHY_SCRAMBLER_BYPASS;
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_PHY_CONFIG, reg32);
return 0;
err:
/* Reset PHY config */
reg32 = CDNS_PHY_COMMON_CONFIG | CDNS_PHY_TRAINING_TYPE(1);
if (!mhdp->host.scrambler)
reg32 |= CDNS_PHY_SCRAMBLER_BYPASS;
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_PHY_CONFIG, reg32);
drm_dp_dpcd_writeb(&mhdp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
return -EIO;
}
static u32 cdns_mhdp_get_training_interval_us(struct cdns_mhdp_device *mhdp,
u32 interval)
{
if (interval == 0)
return 400;
if (interval < 5)
return 4000 << (interval - 1);
dev_err(mhdp->dev,
"wrong training interval returned by DPCD: %d\n", interval);
return 0;
}
static void cdns_mhdp_fill_host_caps(struct cdns_mhdp_device *mhdp)
{
unsigned int link_rate;
/* Get source capabilities based on PHY attributes */
mhdp->host.lanes_cnt = mhdp->phy->attrs.bus_width;
if (!mhdp->host.lanes_cnt)
mhdp->host.lanes_cnt = 4;
link_rate = mhdp->phy->attrs.max_link_rate;
if (!link_rate)
link_rate = drm_dp_bw_code_to_link_rate(DP_LINK_BW_8_1);
else
/* PHY uses Mb/s, DRM uses tens of kb/s. */
link_rate *= 100;
mhdp->host.link_rate = link_rate;
mhdp->host.volt_swing = CDNS_VOLT_SWING(3);
mhdp->host.pre_emphasis = CDNS_PRE_EMPHASIS(3);
mhdp->host.pattern_supp = CDNS_SUPPORT_TPS(1) |
CDNS_SUPPORT_TPS(2) | CDNS_SUPPORT_TPS(3) |
CDNS_SUPPORT_TPS(4);
mhdp->host.lane_mapping = CDNS_LANE_MAPPING_NORMAL;
mhdp->host.fast_link = false;
mhdp->host.enhanced = true;
mhdp->host.scrambler = true;
mhdp->host.ssc = false;
}
static void cdns_mhdp_fill_sink_caps(struct cdns_mhdp_device *mhdp,
u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
mhdp->sink.link_rate = mhdp->link.rate;
mhdp->sink.lanes_cnt = mhdp->link.num_lanes;
mhdp->sink.enhanced = !!(mhdp->link.capabilities &
DP_LINK_CAP_ENHANCED_FRAMING);
/* Set SSC support */
mhdp->sink.ssc = !!(dpcd[DP_MAX_DOWNSPREAD] &
DP_MAX_DOWNSPREAD_0_5);
/* Set TPS support */
mhdp->sink.pattern_supp = CDNS_SUPPORT_TPS(1) | CDNS_SUPPORT_TPS(2);
if (drm_dp_tps3_supported(dpcd))
mhdp->sink.pattern_supp |= CDNS_SUPPORT_TPS(3);
if (drm_dp_tps4_supported(dpcd))
mhdp->sink.pattern_supp |= CDNS_SUPPORT_TPS(4);
/* Set fast link support */
mhdp->sink.fast_link = !!(dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING);
}
static int cdns_mhdp_link_up(struct cdns_mhdp_device *mhdp)
{
u8 dpcd[DP_RECEIVER_CAP_SIZE], amp[2];
u32 resp, interval, interval_us;
u8 ext_cap_chk = 0;
unsigned int addr;
int err;
WARN_ON(!mutex_is_locked(&mhdp->link_mutex));
drm_dp_dpcd_readb(&mhdp->aux, DP_TRAINING_AUX_RD_INTERVAL,
&ext_cap_chk);
if (ext_cap_chk & DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)
addr = DP_DP13_DPCD_REV;
else
addr = DP_DPCD_REV;
err = drm_dp_dpcd_read(&mhdp->aux, addr, dpcd, DP_RECEIVER_CAP_SIZE);
if (err < 0) {
dev_err(mhdp->dev, "Failed to read receiver capabilities\n");
return err;
}
mhdp->link.revision = dpcd[0];
mhdp->link.rate = drm_dp_bw_code_to_link_rate(dpcd[1]);
mhdp->link.num_lanes = dpcd[2] & DP_MAX_LANE_COUNT_MASK;
if (dpcd[2] & DP_ENHANCED_FRAME_CAP)
mhdp->link.capabilities |= DP_LINK_CAP_ENHANCED_FRAMING;
dev_dbg(mhdp->dev, "Set sink device power state via DPCD\n");
cdns_mhdp_link_power_up(&mhdp->aux, &mhdp->link);
cdns_mhdp_fill_sink_caps(mhdp, dpcd);
mhdp->link.rate = cdns_mhdp_max_link_rate(mhdp);
mhdp->link.num_lanes = cdns_mhdp_max_num_lanes(mhdp);
/* Disable framer for link training */
err = cdns_mhdp_reg_read(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, &resp);
if (err < 0) {
dev_err(mhdp->dev,
"Failed to read CDNS_DP_FRAMER_GLOBAL_CONFIG %d\n",
err);
return err;
}
resp &= ~CDNS_DP_FRAMER_EN;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, resp);
/* Spread AMP if required, enable 8b/10b coding */
amp[0] = cdns_mhdp_get_ssc_supported(mhdp) ? DP_SPREAD_AMP_0_5 : 0;
amp[1] = DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&mhdp->aux, DP_DOWNSPREAD_CTRL, amp, 2);
if (mhdp->host.fast_link & mhdp->sink.fast_link) {
dev_err(mhdp->dev, "fastlink not supported\n");
return -EOPNOTSUPP;
}
interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_TRAINING_AUX_RD_MASK;
interval_us = cdns_mhdp_get_training_interval_us(mhdp, interval);
if (!interval_us ||
cdns_mhdp_link_training(mhdp, interval_us)) {
dev_err(mhdp->dev, "Link training failed. Exiting.\n");
return -EIO;
}
mhdp->link_up = true;
return 0;
}
static void cdns_mhdp_link_down(struct cdns_mhdp_device *mhdp)
{
WARN_ON(!mutex_is_locked(&mhdp->link_mutex));
if (mhdp->plugged)
cdns_mhdp_link_power_down(&mhdp->aux, &mhdp->link);
mhdp->link_up = false;
}
static struct edid *cdns_mhdp_get_edid(struct cdns_mhdp_device *mhdp,
struct drm_connector *connector)
{
if (!mhdp->plugged)
return NULL;
return drm_do_get_edid(connector, cdns_mhdp_get_edid_block, mhdp);
}
static int cdns_mhdp_get_modes(struct drm_connector *connector)
{
struct cdns_mhdp_device *mhdp = connector_to_mhdp(connector);
struct edid *edid;
int num_modes;
if (!mhdp->plugged)
return 0;
edid = cdns_mhdp_get_edid(mhdp, connector);
if (!edid) {
dev_err(mhdp->dev, "Failed to read EDID\n");
return 0;
}
drm_connector_update_edid_property(connector, edid);
num_modes = drm_add_edid_modes(connector, edid);
kfree(edid);
/*
* HACK: Warn about unsupported display formats until we deal
* with them correctly.
*/
if (connector->display_info.color_formats &&
!(connector->display_info.color_formats &
mhdp->display_fmt.color_format))
dev_warn(mhdp->dev,
"%s: No supported color_format found (0x%08x)\n",
__func__, connector->display_info.color_formats);
if (connector->display_info.bpc &&
connector->display_info.bpc < mhdp->display_fmt.bpc)
dev_warn(mhdp->dev, "%s: Display bpc only %d < %d\n",
__func__, connector->display_info.bpc,
mhdp->display_fmt.bpc);
return num_modes;
}
static int cdns_mhdp_connector_detect(struct drm_connector *conn,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct cdns_mhdp_device *mhdp = connector_to_mhdp(conn);
return cdns_mhdp_detect(mhdp);
}
static u32 cdns_mhdp_get_bpp(struct cdns_mhdp_display_fmt *fmt)
{
u32 bpp;
if (fmt->y_only)
return fmt->bpc;
switch (fmt->color_format) {
case DRM_COLOR_FORMAT_RGB444:
case DRM_COLOR_FORMAT_YCBCR444:
bpp = fmt->bpc * 3;
break;
case DRM_COLOR_FORMAT_YCBCR422:
bpp = fmt->bpc * 2;
break;
case DRM_COLOR_FORMAT_YCBCR420:
bpp = fmt->bpc * 3 / 2;
break;
default:
bpp = fmt->bpc * 3;
WARN_ON(1);
}
return bpp;
}
static
bool cdns_mhdp_bandwidth_ok(struct cdns_mhdp_device *mhdp,
const struct drm_display_mode *mode,
unsigned int lanes, unsigned int rate)
{
u32 max_bw, req_bw, bpp;
/*
* mode->clock is expressed in kHz. Multiplying by bpp and dividing by 8
* we get the number of kB/s. DisplayPort applies a 8b-10b encoding, the
* value thus equals the bandwidth in 10kb/s units, which matches the
* units of the rate parameter.
*/
bpp = cdns_mhdp_get_bpp(&mhdp->display_fmt);
req_bw = mode->clock * bpp / 8;
max_bw = lanes * rate;
if (req_bw > max_bw) {
dev_dbg(mhdp->dev,
"Unsupported Mode: %s, Req BW: %u, Available Max BW:%u\n",
mode->name, req_bw, max_bw);
return false;
}
return true;
}
static
enum drm_mode_status cdns_mhdp_mode_valid(struct drm_connector *conn,
struct drm_display_mode *mode)
{
struct cdns_mhdp_device *mhdp = connector_to_mhdp(conn);
mutex_lock(&mhdp->link_mutex);
if (!cdns_mhdp_bandwidth_ok(mhdp, mode, mhdp->link.num_lanes,
mhdp->link.rate)) {
mutex_unlock(&mhdp->link_mutex);
return MODE_CLOCK_HIGH;
}
mutex_unlock(&mhdp->link_mutex);
return MODE_OK;
}
static int cdns_mhdp_connector_atomic_check(struct drm_connector *conn,
struct drm_atomic_state *state)
{
struct cdns_mhdp_device *mhdp = connector_to_mhdp(conn);
struct drm_connector_state *old_state, *new_state;
struct drm_crtc_state *crtc_state;
u64 old_cp, new_cp;
if (!mhdp->hdcp_supported)
return 0;
old_state = drm_atomic_get_old_connector_state(state, conn);
new_state = drm_atomic_get_new_connector_state(state, conn);
old_cp = old_state->content_protection;
new_cp = new_state->content_protection;
if (old_state->hdcp_content_type != new_state->hdcp_content_type &&
new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
new_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
goto mode_changed;
}
if (!new_state->crtc) {
if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
new_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED;
return 0;
}
if (old_cp == new_cp ||
(old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
return 0;
mode_changed:
crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc);
crtc_state->mode_changed = true;
return 0;
}
static const struct drm_connector_helper_funcs cdns_mhdp_conn_helper_funcs = {
.detect_ctx = cdns_mhdp_connector_detect,
.get_modes = cdns_mhdp_get_modes,
.mode_valid = cdns_mhdp_mode_valid,
.atomic_check = cdns_mhdp_connector_atomic_check,
};
static const struct drm_connector_funcs cdns_mhdp_conn_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.reset = drm_atomic_helper_connector_reset,
.destroy = drm_connector_cleanup,
};
static int cdns_mhdp_connector_init(struct cdns_mhdp_device *mhdp)
{
u32 bus_format = MEDIA_BUS_FMT_RGB121212_1X36;
struct drm_connector *conn = &mhdp->connector;
struct drm_bridge *bridge = &mhdp->bridge;
int ret;
if (!bridge->encoder) {
dev_err(mhdp->dev, "Parent encoder object not found");
return -ENODEV;
}
conn->polled = DRM_CONNECTOR_POLL_HPD;
ret = drm_connector_init(bridge->dev, conn, &cdns_mhdp_conn_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
dev_err(mhdp->dev, "Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(conn, &cdns_mhdp_conn_helper_funcs);
ret = drm_display_info_set_bus_formats(&conn->display_info,
&bus_format, 1);
if (ret)
return ret;
ret = drm_connector_attach_encoder(conn, bridge->encoder);
if (ret) {
dev_err(mhdp->dev, "Failed to attach connector to encoder\n");
return ret;
}
if (mhdp->hdcp_supported)
ret = drm_connector_attach_content_protection_property(conn, true);
return ret;
}
static int cdns_mhdp_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
bool hw_ready;
int ret;
dev_dbg(mhdp->dev, "%s\n", __func__);
mhdp->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&mhdp->aux);
if (ret < 0)
return ret;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)) {
ret = cdns_mhdp_connector_init(mhdp);
if (ret)
goto aux_unregister;
}
spin_lock(&mhdp->start_lock);
mhdp->bridge_attached = true;
hw_ready = mhdp->hw_state == MHDP_HW_READY;
spin_unlock(&mhdp->start_lock);
/* Enable SW event interrupts */
if (hw_ready)
cdns_mhdp_bridge_hpd_enable(bridge);
return 0;
aux_unregister:
drm_dp_aux_unregister(&mhdp->aux);
return ret;
}
static void cdns_mhdp_configure_video(struct cdns_mhdp_device *mhdp,
const struct drm_display_mode *mode)
{
unsigned int dp_framer_sp = 0, msa_horizontal_1,
msa_vertical_1, bnd_hsync2vsync, hsync2vsync_pol_ctrl,
misc0 = 0, misc1 = 0, pxl_repr,
front_porch, back_porch, msa_h0, msa_v0, hsync, vsync,
dp_vertical_1;
u8 stream_id = mhdp->stream_id;
u32 bpp, bpc, pxlfmt, framer;
int ret;
pxlfmt = mhdp->display_fmt.color_format;
bpc = mhdp->display_fmt.bpc;
/*
* If YCBCR supported and stream not SD, use ITU709
* Need to handle ITU version with YCBCR420 when supported
*/
if ((pxlfmt == DRM_COLOR_FORMAT_YCBCR444 ||
pxlfmt == DRM_COLOR_FORMAT_YCBCR422) && mode->crtc_vdisplay >= 720)
misc0 = DP_YCBCR_COEFFICIENTS_ITU709;
bpp = cdns_mhdp_get_bpp(&mhdp->display_fmt);
switch (pxlfmt) {
case DRM_COLOR_FORMAT_RGB444:
pxl_repr = CDNS_DP_FRAMER_RGB << CDNS_DP_FRAMER_PXL_FORMAT;
misc0 |= DP_COLOR_FORMAT_RGB;
break;
case DRM_COLOR_FORMAT_YCBCR444:
pxl_repr = CDNS_DP_FRAMER_YCBCR444 << CDNS_DP_FRAMER_PXL_FORMAT;
misc0 |= DP_COLOR_FORMAT_YCbCr444 | DP_TEST_DYNAMIC_RANGE_CEA;
break;
case DRM_COLOR_FORMAT_YCBCR422:
pxl_repr = CDNS_DP_FRAMER_YCBCR422 << CDNS_DP_FRAMER_PXL_FORMAT;
misc0 |= DP_COLOR_FORMAT_YCbCr422 | DP_TEST_DYNAMIC_RANGE_CEA;
break;
case DRM_COLOR_FORMAT_YCBCR420:
pxl_repr = CDNS_DP_FRAMER_YCBCR420 << CDNS_DP_FRAMER_PXL_FORMAT;
break;
default:
pxl_repr = CDNS_DP_FRAMER_Y_ONLY << CDNS_DP_FRAMER_PXL_FORMAT;
}
switch (bpc) {
case 6:
misc0 |= DP_TEST_BIT_DEPTH_6;
pxl_repr |= CDNS_DP_FRAMER_6_BPC;
break;
case 8:
misc0 |= DP_TEST_BIT_DEPTH_8;
pxl_repr |= CDNS_DP_FRAMER_8_BPC;
break;
case 10:
misc0 |= DP_TEST_BIT_DEPTH_10;
pxl_repr |= CDNS_DP_FRAMER_10_BPC;
break;
case 12:
misc0 |= DP_TEST_BIT_DEPTH_12;
pxl_repr |= CDNS_DP_FRAMER_12_BPC;
break;
case 16:
misc0 |= DP_TEST_BIT_DEPTH_16;
pxl_repr |= CDNS_DP_FRAMER_16_BPC;
break;
}
bnd_hsync2vsync = CDNS_IP_BYPASS_V_INTERFACE;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
bnd_hsync2vsync |= CDNS_IP_DET_INTERLACE_FORMAT;
cdns_mhdp_reg_write(mhdp, CDNS_BND_HSYNC2VSYNC(stream_id),
bnd_hsync2vsync);
hsync2vsync_pol_ctrl = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
hsync2vsync_pol_ctrl |= CDNS_H2V_HSYNC_POL_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
hsync2vsync_pol_ctrl |= CDNS_H2V_VSYNC_POL_ACTIVE_LOW;
cdns_mhdp_reg_write(mhdp, CDNS_HSYNC2VSYNC_POL_CTRL(stream_id),
hsync2vsync_pol_ctrl);
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_PXL_REPR(stream_id), pxl_repr);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
dp_framer_sp |= CDNS_DP_FRAMER_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
dp_framer_sp |= CDNS_DP_FRAMER_HSYNC_POL_LOW;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
dp_framer_sp |= CDNS_DP_FRAMER_VSYNC_POL_LOW;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_SP(stream_id), dp_framer_sp);
front_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
back_porch = mode->crtc_htotal - mode->crtc_hsync_end;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRONT_BACK_PORCH(stream_id),
CDNS_DP_FRONT_PORCH(front_porch) |
CDNS_DP_BACK_PORCH(back_porch));
cdns_mhdp_reg_write(mhdp, CDNS_DP_BYTE_COUNT(stream_id),
mode->crtc_hdisplay * bpp / 8);
msa_h0 = mode->crtc_htotal - mode->crtc_hsync_start;
cdns_mhdp_reg_write(mhdp, CDNS_DP_MSA_HORIZONTAL_0(stream_id),
CDNS_DP_MSAH0_H_TOTAL(mode->crtc_htotal) |
CDNS_DP_MSAH0_HSYNC_START(msa_h0));
hsync = mode->crtc_hsync_end - mode->crtc_hsync_start;
msa_horizontal_1 = CDNS_DP_MSAH1_HSYNC_WIDTH(hsync) |
CDNS_DP_MSAH1_HDISP_WIDTH(mode->crtc_hdisplay);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
msa_horizontal_1 |= CDNS_DP_MSAH1_HSYNC_POL_LOW;
cdns_mhdp_reg_write(mhdp, CDNS_DP_MSA_HORIZONTAL_1(stream_id),
msa_horizontal_1);
msa_v0 = mode->crtc_vtotal - mode->crtc_vsync_start;
cdns_mhdp_reg_write(mhdp, CDNS_DP_MSA_VERTICAL_0(stream_id),
CDNS_DP_MSAV0_V_TOTAL(mode->crtc_vtotal) |
CDNS_DP_MSAV0_VSYNC_START(msa_v0));
vsync = mode->crtc_vsync_end - mode->crtc_vsync_start;
msa_vertical_1 = CDNS_DP_MSAV1_VSYNC_WIDTH(vsync) |
CDNS_DP_MSAV1_VDISP_WIDTH(mode->crtc_vdisplay);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
msa_vertical_1 |= CDNS_DP_MSAV1_VSYNC_POL_LOW;
cdns_mhdp_reg_write(mhdp, CDNS_DP_MSA_VERTICAL_1(stream_id),
msa_vertical_1);
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) &&
mode->crtc_vtotal % 2 == 0)
misc1 = DP_TEST_INTERLACED;
if (mhdp->display_fmt.y_only)
misc1 |= CDNS_DP_TEST_COLOR_FORMAT_RAW_Y_ONLY;
/* Use VSC SDP for Y420 */
if (pxlfmt == DRM_COLOR_FORMAT_YCBCR420)
misc1 = CDNS_DP_TEST_VSC_SDP;
cdns_mhdp_reg_write(mhdp, CDNS_DP_MSA_MISC(stream_id),
misc0 | (misc1 << 8));
cdns_mhdp_reg_write(mhdp, CDNS_DP_HORIZONTAL(stream_id),
CDNS_DP_H_HSYNC_WIDTH(hsync) |
CDNS_DP_H_H_TOTAL(mode->crtc_hdisplay));
cdns_mhdp_reg_write(mhdp, CDNS_DP_VERTICAL_0(stream_id),
CDNS_DP_V0_VHEIGHT(mode->crtc_vdisplay) |
CDNS_DP_V0_VSTART(msa_v0));
dp_vertical_1 = CDNS_DP_V1_VTOTAL(mode->crtc_vtotal);
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) &&
mode->crtc_vtotal % 2 == 0)
dp_vertical_1 |= CDNS_DP_V1_VTOTAL_EVEN;
cdns_mhdp_reg_write(mhdp, CDNS_DP_VERTICAL_1(stream_id), dp_vertical_1);
cdns_mhdp_reg_write_bit(mhdp, CDNS_DP_VB_ID(stream_id), 2, 1,
(mode->flags & DRM_MODE_FLAG_INTERLACE) ?
CDNS_DP_VB_ID_INTERLACED : 0);
ret = cdns_mhdp_reg_read(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, &framer);
if (ret < 0) {
dev_err(mhdp->dev,
"Failed to read CDNS_DP_FRAMER_GLOBAL_CONFIG %d\n",
ret);
return;
}
framer |= CDNS_DP_FRAMER_EN;
framer &= ~CDNS_DP_NO_VIDEO_MODE;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, framer);
}
static void cdns_mhdp_sst_enable(struct cdns_mhdp_device *mhdp,
const struct drm_display_mode *mode)
{
u32 rate, vs, required_bandwidth, available_bandwidth;
s32 line_thresh1, line_thresh2, line_thresh = 0;
int pxlclock = mode->crtc_clock;
u32 tu_size = 64;
u32 bpp;
/* Get rate in MSymbols per second per lane */
rate = mhdp->link.rate / 1000;
bpp = cdns_mhdp_get_bpp(&mhdp->display_fmt);
required_bandwidth = pxlclock * bpp / 8;
available_bandwidth = mhdp->link.num_lanes * rate;
vs = tu_size * required_bandwidth / available_bandwidth;
vs /= 1000;
if (vs == tu_size)
vs = tu_size - 1;
line_thresh1 = ((vs + 1) << 5) * 8 / bpp;
line_thresh2 = (pxlclock << 5) / 1000 / rate * (vs + 1) - (1 << 5);
line_thresh = line_thresh1 - line_thresh2 / (s32)mhdp->link.num_lanes;
line_thresh = (line_thresh >> 5) + 2;
mhdp->stream_id = 0;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_TU,
CDNS_DP_FRAMER_TU_VS(vs) |
CDNS_DP_FRAMER_TU_SIZE(tu_size) |
CDNS_DP_FRAMER_TU_CNT_RST_EN);
cdns_mhdp_reg_write(mhdp, CDNS_DP_LINE_THRESH(0),
line_thresh & GENMASK(5, 0));
cdns_mhdp_reg_write(mhdp, CDNS_DP_STREAM_CONFIG_2(0),
CDNS_DP_SC2_TU_VS_DIFF((tu_size - vs > 3) ?
0 : tu_size - vs));
cdns_mhdp_configure_video(mhdp, mode);
}
static void cdns_mhdp_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
struct drm_atomic_state *state = bridge_state->base.state;
struct cdns_mhdp_bridge_state *mhdp_state;
struct drm_crtc_state *crtc_state;
struct drm_connector *connector;
struct drm_connector_state *conn_state;
struct drm_bridge_state *new_state;
const struct drm_display_mode *mode;
u32 resp;
int ret;
dev_dbg(mhdp->dev, "bridge enable\n");
mutex_lock(&mhdp->link_mutex);
if (mhdp->plugged && !mhdp->link_up) {
ret = cdns_mhdp_link_up(mhdp);
if (ret < 0)
goto out;
}
if (mhdp->info && mhdp->info->ops && mhdp->info->ops->enable)
mhdp->info->ops->enable(mhdp);
/* Enable VIF clock for stream 0 */
ret = cdns_mhdp_reg_read(mhdp, CDNS_DPTX_CAR, &resp);
if (ret < 0) {
dev_err(mhdp->dev, "Failed to read CDNS_DPTX_CAR %d\n", ret);
goto out;
}
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_CAR,
resp | CDNS_VIF_CLK_EN | CDNS_VIF_CLK_RSTN);
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
if (WARN_ON(!connector))
goto out;
conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!conn_state))
goto out;
if (mhdp->hdcp_supported &&
mhdp->hw_state == MHDP_HW_READY &&
conn_state->content_protection ==
DRM_MODE_CONTENT_PROTECTION_DESIRED) {
mutex_unlock(&mhdp->link_mutex);
cdns_mhdp_hdcp_enable(mhdp, conn_state->hdcp_content_type);
mutex_lock(&mhdp->link_mutex);
}
crtc_state = drm_atomic_get_new_crtc_state(state, conn_state->crtc);
if (WARN_ON(!crtc_state))
goto out;
mode = &crtc_state->adjusted_mode;
new_state = drm_atomic_get_new_bridge_state(state, bridge);
if (WARN_ON(!new_state))
goto out;
if (!cdns_mhdp_bandwidth_ok(mhdp, mode, mhdp->link.num_lanes,
mhdp->link.rate)) {
ret = -EINVAL;
goto out;
}
cdns_mhdp_sst_enable(mhdp, mode);
mhdp_state = to_cdns_mhdp_bridge_state(new_state);
mhdp_state->current_mode = drm_mode_duplicate(bridge->dev, mode);
drm_mode_set_name(mhdp_state->current_mode);
dev_dbg(mhdp->dev, "%s: Enabling mode %s\n", __func__, mode->name);
mhdp->bridge_enabled = true;
out:
mutex_unlock(&mhdp->link_mutex);
if (ret < 0)
schedule_work(&mhdp->modeset_retry_work);
}
static void cdns_mhdp_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
u32 resp;
dev_dbg(mhdp->dev, "%s\n", __func__);
mutex_lock(&mhdp->link_mutex);
if (mhdp->hdcp_supported)
cdns_mhdp_hdcp_disable(mhdp);
mhdp->bridge_enabled = false;
cdns_mhdp_reg_read(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, &resp);
resp &= ~CDNS_DP_FRAMER_EN;
resp |= CDNS_DP_NO_VIDEO_MODE;
cdns_mhdp_reg_write(mhdp, CDNS_DP_FRAMER_GLOBAL_CONFIG, resp);
cdns_mhdp_link_down(mhdp);
/* Disable VIF clock for stream 0 */
cdns_mhdp_reg_read(mhdp, CDNS_DPTX_CAR, &resp);
cdns_mhdp_reg_write(mhdp, CDNS_DPTX_CAR,
resp & ~(CDNS_VIF_CLK_EN | CDNS_VIF_CLK_RSTN));
if (mhdp->info && mhdp->info->ops && mhdp->info->ops->disable)
mhdp->info->ops->disable(mhdp);
mutex_unlock(&mhdp->link_mutex);
}
static void cdns_mhdp_detach(struct drm_bridge *bridge)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
dev_dbg(mhdp->dev, "%s\n", __func__);
drm_dp_aux_unregister(&mhdp->aux);
spin_lock(&mhdp->start_lock);
mhdp->bridge_attached = false;
spin_unlock(&mhdp->start_lock);
writel(~0, mhdp->regs + CDNS_APB_INT_MASK);
}
static struct drm_bridge_state *
cdns_mhdp_bridge_atomic_duplicate_state(struct drm_bridge *bridge)
{
struct cdns_mhdp_bridge_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_bridge_duplicate_state(bridge, &state->base);
return &state->base;
}
static void
cdns_mhdp_bridge_atomic_destroy_state(struct drm_bridge *bridge,
struct drm_bridge_state *state)
{
struct cdns_mhdp_bridge_state *cdns_mhdp_state;
cdns_mhdp_state = to_cdns_mhdp_bridge_state(state);
if (cdns_mhdp_state->current_mode) {
drm_mode_destroy(bridge->dev, cdns_mhdp_state->current_mode);
cdns_mhdp_state->current_mode = NULL;
}
kfree(cdns_mhdp_state);
}
static struct drm_bridge_state *
cdns_mhdp_bridge_atomic_reset(struct drm_bridge *bridge)
{
struct cdns_mhdp_bridge_state *cdns_mhdp_state;
cdns_mhdp_state = kzalloc(sizeof(*cdns_mhdp_state), GFP_KERNEL);
if (!cdns_mhdp_state)
return NULL;
__drm_atomic_helper_bridge_reset(bridge, &cdns_mhdp_state->base);
return &cdns_mhdp_state->base;
}
static u32 *cdns_mhdp_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kzalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
*num_input_fmts = 1;
input_fmts[0] = MEDIA_BUS_FMT_RGB121212_1X36;
return input_fmts;
}
static int cdns_mhdp_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
mutex_lock(&mhdp->link_mutex);
if (!cdns_mhdp_bandwidth_ok(mhdp, mode, mhdp->link.num_lanes,
mhdp->link.rate)) {
dev_err(mhdp->dev, "%s: Not enough BW for %s (%u lanes at %u Mbps)\n",
__func__, mode->name, mhdp->link.num_lanes,
mhdp->link.rate / 100);
mutex_unlock(&mhdp->link_mutex);
return -EINVAL;
}
/*
* There might be flags negotiation supported in future.
* Set the bus flags in atomic_check statically for now.
*/
if (mhdp->info)
bridge_state->input_bus_cfg.flags = *mhdp->info->input_bus_flags;
mutex_unlock(&mhdp->link_mutex);
return 0;
}
static enum drm_connector_status cdns_mhdp_bridge_detect(struct drm_bridge *bridge)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
return cdns_mhdp_detect(mhdp);
}
static struct edid *cdns_mhdp_bridge_get_edid(struct drm_bridge *bridge,
struct drm_connector *connector)
{
struct cdns_mhdp_device *mhdp = bridge_to_mhdp(bridge);
return cdns_mhdp_get_edid(mhdp, connector);
}
static const struct drm_bridge_funcs cdns_mhdp_bridge_funcs = {
.atomic_enable = cdns_mhdp_atomic_enable,
.atomic_disable = cdns_mhdp_atomic_disable,
.atomic_check = cdns_mhdp_atomic_check,
.attach = cdns_mhdp_attach,
.detach = cdns_mhdp_detach,
.atomic_duplicate_state = cdns_mhdp_bridge_atomic_duplicate_state,
.atomic_destroy_state = cdns_mhdp_bridge_atomic_destroy_state,
.atomic_reset = cdns_mhdp_bridge_atomic_reset,
.atomic_get_input_bus_fmts = cdns_mhdp_get_input_bus_fmts,
.detect = cdns_mhdp_bridge_detect,
.get_edid = cdns_mhdp_bridge_get_edid,
.hpd_enable = cdns_mhdp_bridge_hpd_enable,
.hpd_disable = cdns_mhdp_bridge_hpd_disable,
};
static bool cdns_mhdp_detect_hpd(struct cdns_mhdp_device *mhdp, bool *hpd_pulse)
{
int hpd_event, hpd_status;
*hpd_pulse = false;
hpd_event = cdns_mhdp_read_hpd_event(mhdp);
/* Getting event bits failed, bail out */
if (hpd_event < 0) {
dev_warn(mhdp->dev, "%s: read event failed: %d\n",
__func__, hpd_event);
return false;
}
hpd_status = cdns_mhdp_get_hpd_status(mhdp);
if (hpd_status < 0) {
dev_warn(mhdp->dev, "%s: get hpd status failed: %d\n",
__func__, hpd_status);
return false;
}
if (hpd_event & DPTX_READ_EVENT_HPD_PULSE)
*hpd_pulse = true;
return !!hpd_status;
}
static int cdns_mhdp_update_link_status(struct cdns_mhdp_device *mhdp)
{
struct cdns_mhdp_bridge_state *cdns_bridge_state;
struct drm_display_mode *current_mode;
bool old_plugged = mhdp->plugged;
struct drm_bridge_state *state;
u8 status[DP_LINK_STATUS_SIZE];
bool hpd_pulse;
int ret = 0;
mutex_lock(&mhdp->link_mutex);
mhdp->plugged = cdns_mhdp_detect_hpd(mhdp, &hpd_pulse);
if (!mhdp->plugged) {
cdns_mhdp_link_down(mhdp);
mhdp->link.rate = mhdp->host.link_rate;
mhdp->link.num_lanes = mhdp->host.lanes_cnt;
goto out;
}
/*
* If we get a HPD pulse event and we were and still are connected,
* check the link status. If link status is ok, there's nothing to do
* as we don't handle DP interrupts. If link status is bad, continue
* with full link setup.
*/
if (hpd_pulse && old_plugged == mhdp->plugged) {
ret = drm_dp_dpcd_read_link_status(&mhdp->aux, status);
/*
* If everything looks fine, just return, as we don't handle
* DP IRQs.
*/
if (ret > 0 &&
drm_dp_channel_eq_ok(status, mhdp->link.num_lanes) &&
drm_dp_clock_recovery_ok(status, mhdp->link.num_lanes))
goto out;
/* If link is bad, mark link as down so that we do a new LT */
mhdp->link_up = false;
}
if (!mhdp->link_up) {
ret = cdns_mhdp_link_up(mhdp);
if (ret < 0)
goto out;
}
if (mhdp->bridge_enabled) {
state = drm_priv_to_bridge_state(mhdp->bridge.base.state);
if (!state) {
ret = -EINVAL;
goto out;
}
cdns_bridge_state = to_cdns_mhdp_bridge_state(state);
if (!cdns_bridge_state) {
ret = -EINVAL;
goto out;
}
current_mode = cdns_bridge_state->current_mode;
if (!current_mode) {
ret = -EINVAL;
goto out;
}
if (!cdns_mhdp_bandwidth_ok(mhdp, current_mode, mhdp->link.num_lanes,
mhdp->link.rate)) {
ret = -EINVAL;
goto out;
}
dev_dbg(mhdp->dev, "%s: Enabling mode %s\n", __func__,
current_mode->name);
cdns_mhdp_sst_enable(mhdp, current_mode);
}
out:
mutex_unlock(&mhdp->link_mutex);
return ret;
}
static void cdns_mhdp_modeset_retry_fn(struct work_struct *work)
{
struct cdns_mhdp_device *mhdp;
struct drm_connector *conn;
mhdp = container_of(work, typeof(*mhdp), modeset_retry_work);
conn = &mhdp->connector;
/* Grab the locks before changing connector property */
mutex_lock(&conn->dev->mode_config.mutex);
/*
* Set connector link status to BAD and send a Uevent to notify
* userspace to do a modeset.
*/
drm_connector_set_link_status_property(conn, DRM_MODE_LINK_STATUS_BAD);
mutex_unlock(&conn->dev->mode_config.mutex);
/* Send Hotplug uevent so userspace can reprobe */
drm_kms_helper_hotplug_event(mhdp->bridge.dev);
}
static irqreturn_t cdns_mhdp_irq_handler(int irq, void *data)
{
struct cdns_mhdp_device *mhdp = data;
u32 apb_stat, sw_ev0;
bool bridge_attached;
apb_stat = readl(mhdp->regs + CDNS_APB_INT_STATUS);
if (!(apb_stat & CDNS_APB_INT_MASK_SW_EVENT_INT))
return IRQ_NONE;
sw_ev0 = readl(mhdp->regs + CDNS_SW_EVENT0);
/*
* Calling drm_kms_helper_hotplug_event() when not attached
* to drm device causes an oops because the drm_bridge->dev
* is NULL. See cdns_mhdp_fw_cb() comments for details about the
* problems related drm_kms_helper_hotplug_event() call.
*/
spin_lock(&mhdp->start_lock);
bridge_attached = mhdp->bridge_attached;
spin_unlock(&mhdp->start_lock);
if (bridge_attached && (sw_ev0 & CDNS_DPTX_HPD)) {
schedule_work(&mhdp->hpd_work);
}
if (sw_ev0 & ~CDNS_DPTX_HPD) {
mhdp->sw_events |= (sw_ev0 & ~CDNS_DPTX_HPD);
wake_up(&mhdp->sw_events_wq);
}
return IRQ_HANDLED;
}
u32 cdns_mhdp_wait_for_sw_event(struct cdns_mhdp_device *mhdp, u32 event)
{
u32 ret;
ret = wait_event_timeout(mhdp->sw_events_wq,
mhdp->sw_events & event,
msecs_to_jiffies(500));
if (!ret) {
dev_dbg(mhdp->dev, "SW event 0x%x timeout\n", event);
goto sw_event_out;
}
ret = mhdp->sw_events;
mhdp->sw_events &= ~event;
sw_event_out:
return ret;
}
static void cdns_mhdp_hpd_work(struct work_struct *work)
{
struct cdns_mhdp_device *mhdp = container_of(work,
struct cdns_mhdp_device,
hpd_work);
int ret;
ret = cdns_mhdp_update_link_status(mhdp);
if (mhdp->connector.dev) {
if (ret < 0)
schedule_work(&mhdp->modeset_retry_work);
else
drm_kms_helper_hotplug_event(mhdp->bridge.dev);
} else {
drm_bridge_hpd_notify(&mhdp->bridge, cdns_mhdp_detect(mhdp));
}
}
static int cdns_mhdp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cdns_mhdp_device *mhdp;
unsigned long rate;
struct clk *clk;
int ret;
int irq;
mhdp = devm_kzalloc(dev, sizeof(*mhdp), GFP_KERNEL);
if (!mhdp)
return -ENOMEM;
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk)) {
dev_err(dev, "couldn't get clk: %ld\n", PTR_ERR(clk));
return PTR_ERR(clk);
}
mhdp->clk = clk;
mhdp->dev = dev;
mutex_init(&mhdp->mbox_mutex);
mutex_init(&mhdp->link_mutex);
spin_lock_init(&mhdp->start_lock);
drm_dp_aux_init(&mhdp->aux);
mhdp->aux.dev = dev;
mhdp->aux.transfer = cdns_mhdp_transfer;
mhdp->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mhdp->regs)) {
dev_err(dev, "Failed to get memory resource\n");
return PTR_ERR(mhdp->regs);
}
mhdp->sapb_regs = devm_platform_ioremap_resource_byname(pdev, "mhdptx-sapb");
if (IS_ERR(mhdp->sapb_regs)) {
mhdp->hdcp_supported = false;
dev_warn(dev,
"Failed to get SAPB memory resource, HDCP not supported\n");
} else {
mhdp->hdcp_supported = true;
}
mhdp->phy = devm_of_phy_get_by_index(dev, pdev->dev.of_node, 0);
if (IS_ERR(mhdp->phy)) {
dev_err(dev, "no PHY configured\n");
return PTR_ERR(mhdp->phy);
}
platform_set_drvdata(pdev, mhdp);
mhdp->info = of_device_get_match_data(dev);
clk_prepare_enable(clk);
pm_runtime_enable(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "pm_runtime_resume_and_get failed\n");
pm_runtime_disable(dev);
goto clk_disable;
}
if (mhdp->info && mhdp->info->ops && mhdp->info->ops->init) {
ret = mhdp->info->ops->init(mhdp);
if (ret != 0) {
dev_err(dev, "MHDP platform initialization failed: %d\n",
ret);
goto runtime_put;
}
}
rate = clk_get_rate(clk);
writel(rate % 1000000, mhdp->regs + CDNS_SW_CLK_L);
writel(rate / 1000000, mhdp->regs + CDNS_SW_CLK_H);
dev_dbg(dev, "func clk rate %lu Hz\n", rate);
writel(~0, mhdp->regs + CDNS_APB_INT_MASK);
irq = platform_get_irq(pdev, 0);
ret = devm_request_threaded_irq(mhdp->dev, irq, NULL,
cdns_mhdp_irq_handler, IRQF_ONESHOT,
"mhdp8546", mhdp);
if (ret) {
dev_err(dev, "cannot install IRQ %d\n", irq);
ret = -EIO;
goto plat_fini;
}
cdns_mhdp_fill_host_caps(mhdp);
/* Initialize link rate and num of lanes to host values */
mhdp->link.rate = mhdp->host.link_rate;
mhdp->link.num_lanes = mhdp->host.lanes_cnt;
/* The only currently supported format */
mhdp->display_fmt.y_only = false;
mhdp->display_fmt.color_format = DRM_COLOR_FORMAT_RGB444;
mhdp->display_fmt.bpc = 8;
mhdp->bridge.of_node = pdev->dev.of_node;
mhdp->bridge.funcs = &cdns_mhdp_bridge_funcs;
mhdp->bridge.ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID |
DRM_BRIDGE_OP_HPD;
mhdp->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
ret = phy_init(mhdp->phy);
if (ret) {
dev_err(mhdp->dev, "Failed to initialize PHY: %d\n", ret);
goto plat_fini;
}
/* Initialize the work for modeset in case of link train failure */
INIT_WORK(&mhdp->modeset_retry_work, cdns_mhdp_modeset_retry_fn);
INIT_WORK(&mhdp->hpd_work, cdns_mhdp_hpd_work);
init_waitqueue_head(&mhdp->fw_load_wq);
init_waitqueue_head(&mhdp->sw_events_wq);
ret = cdns_mhdp_load_firmware(mhdp);
if (ret)
goto phy_exit;
if (mhdp->hdcp_supported)
cdns_mhdp_hdcp_init(mhdp);
drm_bridge_add(&mhdp->bridge);
return 0;
phy_exit:
phy_exit(mhdp->phy);
plat_fini:
if (mhdp->info && mhdp->info->ops && mhdp->info->ops->exit)
mhdp->info->ops->exit(mhdp);
runtime_put:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
clk_disable:
clk_disable_unprepare(mhdp->clk);
return ret;
}
static int cdns_mhdp_remove(struct platform_device *pdev)
{
struct cdns_mhdp_device *mhdp = platform_get_drvdata(pdev);
unsigned long timeout = msecs_to_jiffies(100);
bool stop_fw = false;
int ret;
drm_bridge_remove(&mhdp->bridge);
ret = wait_event_timeout(mhdp->fw_load_wq,
mhdp->hw_state == MHDP_HW_READY,
timeout);
if (ret == 0)
dev_err(mhdp->dev, "%s: Timeout waiting for fw loading\n",
__func__);
else
stop_fw = true;
spin_lock(&mhdp->start_lock);
mhdp->hw_state = MHDP_HW_STOPPED;
spin_unlock(&mhdp->start_lock);
if (stop_fw)
ret = cdns_mhdp_set_firmware_active(mhdp, false);
phy_exit(mhdp->phy);
if (mhdp->info && mhdp->info->ops && mhdp->info->ops->exit)
mhdp->info->ops->exit(mhdp);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
cancel_work_sync(&mhdp->modeset_retry_work);
flush_work(&mhdp->hpd_work);
/* Ignoring mhdp->hdcp.check_work and mhdp->hdcp.prop_work here. */
clk_disable_unprepare(mhdp->clk);
return ret;
}
static const struct of_device_id mhdp_ids[] = {
{ .compatible = "cdns,mhdp8546", },
#ifdef CONFIG_DRM_CDNS_MHDP8546_J721E
{ .compatible = "ti,j721e-mhdp8546",
.data = &(const struct cdns_mhdp_platform_info) {
.input_bus_flags = &mhdp_ti_j721e_bridge_input_bus_flags,
.ops = &mhdp_ti_j721e_ops,
},
},
#endif
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mhdp_ids);
static struct platform_driver mhdp_driver = {
.driver = {
.name = "cdns-mhdp8546",
.of_match_table = mhdp_ids,
},
.probe = cdns_mhdp_probe,
.remove = cdns_mhdp_remove,
};
module_platform_driver(mhdp_driver);
MODULE_FIRMWARE(FW_NAME);
MODULE_AUTHOR("Quentin Schulz <[email protected]>");
MODULE_AUTHOR("Swapnil Jakhade <[email protected]>");
MODULE_AUTHOR("Yuti Amonkar <[email protected]>");
MODULE_AUTHOR("Tomi Valkeinen <[email protected]>");
MODULE_AUTHOR("Jyri Sarha <[email protected]>");
MODULE_DESCRIPTION("Cadence MHDP8546 DP bridge driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:cdns-mhdp8546");
| linux-master | drivers/gpu/drm/bridge/cadence/cdns-mhdp8546-core.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TI j721e Cadence DSI wrapper
*
* Copyright (C) 2022 Texas Instruments Incorporated - http://www.ti.com/
* Author: Rahul T R <[email protected]>
*/
#include <linux/io.h>
#include <linux/platform_device.h>
#include "cdns-dsi-j721e.h"
#define DSI_WRAP_REVISION 0x0
#define DSI_WRAP_DPI_CONTROL 0x4
#define DSI_WRAP_DSC_CONTROL 0x8
#define DSI_WRAP_DPI_SECURE 0xc
#define DSI_WRAP_DSI_0_ASF_STATUS 0x10
#define DSI_WRAP_DPI_0_EN BIT(0)
#define DSI_WRAP_DSI2_MUX_SEL BIT(4)
static int cdns_dsi_j721e_init(struct cdns_dsi *dsi)
{
struct platform_device *pdev = to_platform_device(dsi->base.dev);
dsi->j721e_regs = devm_platform_ioremap_resource(pdev, 1);
return PTR_ERR_OR_ZERO(dsi->j721e_regs);
}
static void cdns_dsi_j721e_enable(struct cdns_dsi *dsi)
{
/*
* Enable DPI0 as its input. DSS0 DPI2 is connected
* to DSI DPI0. This is the only supported configuration on
* J721E.
*/
writel(DSI_WRAP_DPI_0_EN, dsi->j721e_regs + DSI_WRAP_DPI_CONTROL);
}
static void cdns_dsi_j721e_disable(struct cdns_dsi *dsi)
{
/* Put everything to defaults */
writel(0, dsi->j721e_regs + DSI_WRAP_DPI_CONTROL);
}
const struct cdns_dsi_platform_ops dsi_ti_j721e_ops = {
.init = cdns_dsi_j721e_init,
.enable = cdns_dsi_j721e_enable,
.disable = cdns_dsi_j721e_disable,
};
| linux-master | drivers/gpu/drm/bridge/cadence/cdns-dsi-j721e.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TI j721e Cadence MHDP8546 DP wrapper
*
* Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/
* Author: Jyri Sarha <[email protected]>
*/
#include <linux/io.h>
#include <linux/platform_device.h>
#include "cdns-mhdp8546-j721e.h"
#define REVISION 0x00
#define DPTX_IPCFG 0x04
#define ECC_MEM_CFG 0x08
#define DPTX_DSC_CFG 0x0c
#define DPTX_SRC_CFG 0x10
#define DPTX_VIF_SECURE_MODE_CFG 0x14
#define DPTX_VIF_CONN_STATUS 0x18
#define PHY_CLK_STATUS 0x1c
#define DPTX_SRC_AIF_EN BIT(16)
#define DPTX_SRC_VIF_3_IN30B BIT(11)
#define DPTX_SRC_VIF_2_IN30B BIT(10)
#define DPTX_SRC_VIF_1_IN30B BIT(9)
#define DPTX_SRC_VIF_0_IN30B BIT(8)
#define DPTX_SRC_VIF_3_SEL_DPI5 BIT(7)
#define DPTX_SRC_VIF_3_SEL_DPI3 0
#define DPTX_SRC_VIF_2_SEL_DPI4 BIT(6)
#define DPTX_SRC_VIF_2_SEL_DPI2 0
#define DPTX_SRC_VIF_1_SEL_DPI3 BIT(5)
#define DPTX_SRC_VIF_1_SEL_DPI1 0
#define DPTX_SRC_VIF_0_SEL_DPI2 BIT(4)
#define DPTX_SRC_VIF_0_SEL_DPI0 0
#define DPTX_SRC_VIF_3_EN BIT(3)
#define DPTX_SRC_VIF_2_EN BIT(2)
#define DPTX_SRC_VIF_1_EN BIT(1)
#define DPTX_SRC_VIF_0_EN BIT(0)
/* TODO turn DPTX_IPCFG fw_mem_clk_en at pm_runtime_suspend. */
static int cdns_mhdp_j721e_init(struct cdns_mhdp_device *mhdp)
{
struct platform_device *pdev = to_platform_device(mhdp->dev);
mhdp->j721e_regs = devm_platform_ioremap_resource(pdev, 1);
return PTR_ERR_OR_ZERO(mhdp->j721e_regs);
}
static void cdns_mhdp_j721e_enable(struct cdns_mhdp_device *mhdp)
{
/*
* Enable VIF_0 and select DPI2 as its input. DSS0 DPI0 is connected
* to eDP DPI2. This is the only supported SST configuration on
* J721E.
*/
writel(DPTX_SRC_VIF_0_EN | DPTX_SRC_VIF_0_SEL_DPI2,
mhdp->j721e_regs + DPTX_SRC_CFG);
}
static void cdns_mhdp_j721e_disable(struct cdns_mhdp_device *mhdp)
{
/* Put everything to defaults */
writel(0, mhdp->j721e_regs + DPTX_DSC_CFG);
}
const struct mhdp_platform_ops mhdp_ti_j721e_ops = {
.init = cdns_mhdp_j721e_init,
.enable = cdns_mhdp_j721e_enable,
.disable = cdns_mhdp_j721e_disable,
};
const u32
mhdp_ti_j721e_bridge_input_bus_flags = DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE |
DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE |
DRM_BUS_FLAG_DE_HIGH;
| linux-master | drivers/gpu/drm/bridge/cadence/cdns-mhdp8546-j721e.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2013-2017 Oracle Corporation
* This file is based on ast_drv.c
* Copyright 2012 Red Hat Inc.
* Authors: Dave Airlie <[email protected]>
* Michael Thayer <[email protected],
* Hans de Goede <[email protected]>
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/vt_kern.h>
#include <drm/drm_aperture.h>
#include <drm/drm_drv.h>
#include <drm/drm_fbdev_generic.h>
#include <drm/drm_file.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_managed.h>
#include <drm/drm_modeset_helper.h>
#include <drm/drm_module.h>
#include "vbox_drv.h"
static int vbox_modeset = -1;
MODULE_PARM_DESC(modeset, "Disable/Enable modesetting");
module_param_named(modeset, vbox_modeset, int, 0400);
static const struct drm_driver driver;
static const struct pci_device_id pciidlist[] = {
{ PCI_DEVICE(0x80ee, 0xbeef) },
{ }
};
MODULE_DEVICE_TABLE(pci, pciidlist);
static int vbox_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct vbox_private *vbox;
int ret = 0;
if (!vbox_check_supported(VBE_DISPI_ID_HGSMI))
return -ENODEV;
ret = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
if (ret)
return ret;
vbox = devm_drm_dev_alloc(&pdev->dev, &driver,
struct vbox_private, ddev);
if (IS_ERR(vbox))
return PTR_ERR(vbox);
pci_set_drvdata(pdev, vbox);
mutex_init(&vbox->hw_mutex);
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = vbox_hw_init(vbox);
if (ret)
return ret;
ret = vbox_mm_init(vbox);
if (ret)
goto err_hw_fini;
ret = vbox_mode_init(vbox);
if (ret)
goto err_hw_fini;
ret = vbox_irq_init(vbox);
if (ret)
goto err_mode_fini;
ret = drm_dev_register(&vbox->ddev, 0);
if (ret)
goto err_irq_fini;
drm_fbdev_generic_setup(&vbox->ddev, 32);
return 0;
err_irq_fini:
vbox_irq_fini(vbox);
err_mode_fini:
vbox_mode_fini(vbox);
err_hw_fini:
vbox_hw_fini(vbox);
return ret;
}
static void vbox_pci_remove(struct pci_dev *pdev)
{
struct vbox_private *vbox = pci_get_drvdata(pdev);
drm_dev_unregister(&vbox->ddev);
vbox_irq_fini(vbox);
vbox_mode_fini(vbox);
vbox_hw_fini(vbox);
}
static int vbox_pm_suspend(struct device *dev)
{
struct vbox_private *vbox = dev_get_drvdata(dev);
struct pci_dev *pdev = to_pci_dev(dev);
int error;
error = drm_mode_config_helper_suspend(&vbox->ddev);
if (error)
return error;
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int vbox_pm_resume(struct device *dev)
{
struct vbox_private *vbox = dev_get_drvdata(dev);
struct pci_dev *pdev = to_pci_dev(dev);
if (pci_enable_device(pdev))
return -EIO;
return drm_mode_config_helper_resume(&vbox->ddev);
}
static int vbox_pm_freeze(struct device *dev)
{
struct vbox_private *vbox = dev_get_drvdata(dev);
return drm_mode_config_helper_suspend(&vbox->ddev);
}
static int vbox_pm_thaw(struct device *dev)
{
struct vbox_private *vbox = dev_get_drvdata(dev);
return drm_mode_config_helper_resume(&vbox->ddev);
}
static int vbox_pm_poweroff(struct device *dev)
{
struct vbox_private *vbox = dev_get_drvdata(dev);
return drm_mode_config_helper_suspend(&vbox->ddev);
}
static const struct dev_pm_ops vbox_pm_ops = {
.suspend = vbox_pm_suspend,
.resume = vbox_pm_resume,
.freeze = vbox_pm_freeze,
.thaw = vbox_pm_thaw,
.poweroff = vbox_pm_poweroff,
.restore = vbox_pm_resume,
};
static struct pci_driver vbox_pci_driver = {
.name = DRIVER_NAME,
.id_table = pciidlist,
.probe = vbox_pci_probe,
.remove = vbox_pci_remove,
.driver.pm = pm_sleep_ptr(&vbox_pm_ops),
};
DEFINE_DRM_GEM_FOPS(vbox_fops);
static const struct drm_driver driver = {
.driver_features =
DRIVER_MODESET | DRIVER_GEM | DRIVER_ATOMIC,
.fops = &vbox_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
DRM_GEM_VRAM_DRIVER,
};
drm_module_pci_driver_if_modeset(vbox_pci_driver, vbox_modeset);
MODULE_AUTHOR("Oracle Corporation");
MODULE_AUTHOR("Hans de Goede <[email protected]>");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL and additional rights");
| linux-master | drivers/gpu/drm/vboxvideo/vbox_drv.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2013-2017 Oracle Corporation
* This file is based on ast_main.c
* Copyright 2012 Red Hat Inc.
* Authors: Dave Airlie <[email protected]>,
* Michael Thayer <[email protected],
* Hans de Goede <[email protected]>
*/
#include <linux/pci.h>
#include <linux/vbox_err.h>
#include <drm/drm_damage_helper.h>
#include "vbox_drv.h"
#include "vboxvideo_guest.h"
#include "vboxvideo_vbe.h"
void vbox_report_caps(struct vbox_private *vbox)
{
u32 caps = VBVACAPS_DISABLE_CURSOR_INTEGRATION |
VBVACAPS_IRQ | VBVACAPS_USE_VBVA_ONLY;
/* The host only accepts VIDEO_MODE_HINTS if it is send separately. */
hgsmi_send_caps_info(vbox->guest_pool, caps);
caps |= VBVACAPS_VIDEO_MODE_HINTS;
hgsmi_send_caps_info(vbox->guest_pool, caps);
}
static int vbox_accel_init(struct vbox_private *vbox)
{
struct pci_dev *pdev = to_pci_dev(vbox->ddev.dev);
struct vbva_buffer *vbva;
unsigned int i;
vbox->vbva_info = devm_kcalloc(vbox->ddev.dev, vbox->num_crtcs,
sizeof(*vbox->vbva_info), GFP_KERNEL);
if (!vbox->vbva_info)
return -ENOMEM;
/* Take a command buffer for each screen from the end of usable VRAM. */
vbox->available_vram_size -= vbox->num_crtcs * VBVA_MIN_BUFFER_SIZE;
vbox->vbva_buffers = pci_iomap_range(pdev, 0,
vbox->available_vram_size,
vbox->num_crtcs *
VBVA_MIN_BUFFER_SIZE);
if (!vbox->vbva_buffers)
return -ENOMEM;
for (i = 0; i < vbox->num_crtcs; ++i) {
vbva_setup_buffer_context(&vbox->vbva_info[i],
vbox->available_vram_size +
i * VBVA_MIN_BUFFER_SIZE,
VBVA_MIN_BUFFER_SIZE);
vbva = (void __force *)vbox->vbva_buffers +
i * VBVA_MIN_BUFFER_SIZE;
if (!vbva_enable(&vbox->vbva_info[i],
vbox->guest_pool, vbva, i)) {
/* very old host or driver error. */
DRM_ERROR("vboxvideo: vbva_enable failed\n");
}
}
return 0;
}
static void vbox_accel_fini(struct vbox_private *vbox)
{
unsigned int i;
for (i = 0; i < vbox->num_crtcs; ++i)
vbva_disable(&vbox->vbva_info[i], vbox->guest_pool, i);
}
/* Do we support the 4.3 plus mode hint reporting interface? */
static bool have_hgsmi_mode_hints(struct vbox_private *vbox)
{
u32 have_hints, have_cursor;
int ret;
ret = hgsmi_query_conf(vbox->guest_pool,
VBOX_VBVA_CONF32_MODE_HINT_REPORTING,
&have_hints);
if (ret)
return false;
ret = hgsmi_query_conf(vbox->guest_pool,
VBOX_VBVA_CONF32_GUEST_CURSOR_REPORTING,
&have_cursor);
if (ret)
return false;
return have_hints == VINF_SUCCESS && have_cursor == VINF_SUCCESS;
}
bool vbox_check_supported(u16 id)
{
u16 dispi_id;
vbox_write_ioport(VBE_DISPI_INDEX_ID, id);
dispi_id = inw(VBE_DISPI_IOPORT_DATA);
return dispi_id == id;
}
int vbox_hw_init(struct vbox_private *vbox)
{
struct pci_dev *pdev = to_pci_dev(vbox->ddev.dev);
int ret = -ENOMEM;
vbox->full_vram_size = inl(VBE_DISPI_IOPORT_DATA);
vbox->any_pitch = vbox_check_supported(VBE_DISPI_ID_ANYX);
DRM_INFO("VRAM %08x\n", vbox->full_vram_size);
/* Map guest-heap at end of vram */
vbox->guest_heap =
pci_iomap_range(pdev, 0, GUEST_HEAP_OFFSET(vbox),
GUEST_HEAP_SIZE);
if (!vbox->guest_heap)
return -ENOMEM;
/* Create guest-heap mem-pool use 2^4 = 16 byte chunks */
vbox->guest_pool = devm_gen_pool_create(vbox->ddev.dev, 4, -1,
"vboxvideo-accel");
if (IS_ERR(vbox->guest_pool))
return PTR_ERR(vbox->guest_pool);
ret = gen_pool_add_virt(vbox->guest_pool,
(unsigned long)vbox->guest_heap,
GUEST_HEAP_OFFSET(vbox),
GUEST_HEAP_USABLE_SIZE, -1);
if (ret)
return ret;
ret = hgsmi_test_query_conf(vbox->guest_pool);
if (ret) {
DRM_ERROR("vboxvideo: hgsmi_test_query_conf failed\n");
return ret;
}
/* Reduce available VRAM size to reflect the guest heap. */
vbox->available_vram_size = GUEST_HEAP_OFFSET(vbox);
/* Linux drm represents monitors as a 32-bit array. */
hgsmi_query_conf(vbox->guest_pool, VBOX_VBVA_CONF32_MONITOR_COUNT,
&vbox->num_crtcs);
vbox->num_crtcs = clamp_t(u32, vbox->num_crtcs, 1, VBOX_MAX_SCREENS);
if (!have_hgsmi_mode_hints(vbox)) {
ret = -ENOTSUPP;
return ret;
}
vbox->last_mode_hints = devm_kcalloc(vbox->ddev.dev, vbox->num_crtcs,
sizeof(struct vbva_modehint),
GFP_KERNEL);
if (!vbox->last_mode_hints)
return -ENOMEM;
ret = vbox_accel_init(vbox);
if (ret)
return ret;
return 0;
}
void vbox_hw_fini(struct vbox_private *vbox)
{
vbox_accel_fini(vbox);
}
| linux-master | drivers/gpu/drm/vboxvideo/vbox_main.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2013-2017 Oracle Corporation
* This file is based on ast_ttm.c
* Copyright 2012 Red Hat Inc.
* Authors: Dave Airlie <[email protected]>
* Michael Thayer <[email protected]>
*/
#include <linux/pci.h>
#include <drm/drm_file.h>
#include "vbox_drv.h"
int vbox_mm_init(struct vbox_private *vbox)
{
int ret;
resource_size_t base, size;
struct drm_device *dev = &vbox->ddev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
base = pci_resource_start(pdev, 0);
size = pci_resource_len(pdev, 0);
/* Don't fail on errors, but performance might be reduced. */
devm_arch_phys_wc_add(&pdev->dev, base, size);
ret = drmm_vram_helper_init(dev, base, vbox->available_vram_size);
if (ret) {
DRM_ERROR("Error initializing VRAM MM; %d\n", ret);
return ret;
}
return 0;
}
| linux-master | drivers/gpu/drm/vboxvideo/vbox_ttm.c |
// SPDX-License-Identifier: MIT
/* Copyright (C) 2006-2017 Oracle Corporation */
#include <linux/vbox_err.h>
#include "vbox_drv.h"
#include "vboxvideo_guest.h"
#include "hgsmi_channels.h"
/*
* There is a hardware ring buffer in the graphics device video RAM, formerly
* in the VBox VMMDev PCI memory space.
* All graphics commands go there serialized by vbva_buffer_begin_update.
* and vbva_buffer_end_update.
*
* free_offset is writing position. data_offset is reading position.
* free_offset == data_offset means buffer is empty.
* There must be always gap between data_offset and free_offset when data
* are in the buffer.
* Guest only changes free_offset, host changes data_offset.
*/
static u32 vbva_buffer_available(const struct vbva_buffer *vbva)
{
s32 diff = vbva->data_offset - vbva->free_offset;
return diff > 0 ? diff : vbva->data_len + diff;
}
static void vbva_buffer_place_data_at(struct vbva_buf_ctx *vbva_ctx,
const void *p, u32 len, u32 offset)
{
struct vbva_buffer *vbva = vbva_ctx->vbva;
u32 bytes_till_boundary = vbva->data_len - offset;
u8 *dst = &vbva->data[offset];
s32 diff = len - bytes_till_boundary;
if (diff <= 0) {
/* Chunk will not cross buffer boundary. */
memcpy(dst, p, len);
} else {
/* Chunk crosses buffer boundary. */
memcpy(dst, p, bytes_till_boundary);
memcpy(&vbva->data[0], (u8 *)p + bytes_till_boundary, diff);
}
}
static void vbva_buffer_flush(struct gen_pool *ctx)
{
struct vbva_flush *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA, VBVA_FLUSH);
if (!p)
return;
p->reserved = 0;
hgsmi_buffer_submit(ctx, p);
hgsmi_buffer_free(ctx, p);
}
bool vbva_write(struct vbva_buf_ctx *vbva_ctx, struct gen_pool *ctx,
const void *p, u32 len)
{
struct vbva_record *record;
struct vbva_buffer *vbva;
u32 available;
vbva = vbva_ctx->vbva;
record = vbva_ctx->record;
if (!vbva || vbva_ctx->buffer_overflow ||
!record || !(record->len_and_flags & VBVA_F_RECORD_PARTIAL))
return false;
available = vbva_buffer_available(vbva);
while (len > 0) {
u32 chunk = len;
if (chunk >= available) {
vbva_buffer_flush(ctx);
available = vbva_buffer_available(vbva);
}
if (chunk >= available) {
if (WARN_ON(available <= vbva->partial_write_tresh)) {
vbva_ctx->buffer_overflow = true;
return false;
}
chunk = available - vbva->partial_write_tresh;
}
vbva_buffer_place_data_at(vbva_ctx, p, chunk,
vbva->free_offset);
vbva->free_offset = (vbva->free_offset + chunk) %
vbva->data_len;
record->len_and_flags += chunk;
available -= chunk;
len -= chunk;
p += chunk;
}
return true;
}
static bool vbva_inform_host(struct vbva_buf_ctx *vbva_ctx,
struct gen_pool *ctx, s32 screen, bool enable)
{
struct vbva_enable_ex *p;
bool ret;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA, VBVA_ENABLE);
if (!p)
return false;
p->base.flags = enable ? VBVA_F_ENABLE : VBVA_F_DISABLE;
p->base.offset = vbva_ctx->buffer_offset;
p->base.result = VERR_NOT_SUPPORTED;
if (screen >= 0) {
p->base.flags |= VBVA_F_EXTENDED | VBVA_F_ABSOFFSET;
p->screen_id = screen;
}
hgsmi_buffer_submit(ctx, p);
if (enable)
ret = p->base.result >= 0;
else
ret = true;
hgsmi_buffer_free(ctx, p);
return ret;
}
bool vbva_enable(struct vbva_buf_ctx *vbva_ctx, struct gen_pool *ctx,
struct vbva_buffer *vbva, s32 screen)
{
bool ret = false;
memset(vbva, 0, sizeof(*vbva));
vbva->partial_write_tresh = 256;
vbva->data_len = vbva_ctx->buffer_length - sizeof(struct vbva_buffer);
vbva_ctx->vbva = vbva;
ret = vbva_inform_host(vbva_ctx, ctx, screen, true);
if (!ret)
vbva_disable(vbva_ctx, ctx, screen);
return ret;
}
void vbva_disable(struct vbva_buf_ctx *vbva_ctx, struct gen_pool *ctx,
s32 screen)
{
vbva_ctx->buffer_overflow = false;
vbva_ctx->record = NULL;
vbva_ctx->vbva = NULL;
vbva_inform_host(vbva_ctx, ctx, screen, false);
}
bool vbva_buffer_begin_update(struct vbva_buf_ctx *vbva_ctx,
struct gen_pool *ctx)
{
struct vbva_record *record;
u32 next;
if (!vbva_ctx->vbva ||
!(vbva_ctx->vbva->host_flags.host_events & VBVA_F_MODE_ENABLED))
return false;
WARN_ON(vbva_ctx->buffer_overflow || vbva_ctx->record);
next = (vbva_ctx->vbva->record_free_index + 1) % VBVA_MAX_RECORDS;
/* Flush if all slots in the records queue are used */
if (next == vbva_ctx->vbva->record_first_index)
vbva_buffer_flush(ctx);
/* If even after flush there is no place then fail the request */
if (next == vbva_ctx->vbva->record_first_index)
return false;
record = &vbva_ctx->vbva->records[vbva_ctx->vbva->record_free_index];
record->len_and_flags = VBVA_F_RECORD_PARTIAL;
vbva_ctx->vbva->record_free_index = next;
/* Remember which record we are using. */
vbva_ctx->record = record;
return true;
}
void vbva_buffer_end_update(struct vbva_buf_ctx *vbva_ctx)
{
struct vbva_record *record = vbva_ctx->record;
WARN_ON(!vbva_ctx->vbva || !record ||
!(record->len_and_flags & VBVA_F_RECORD_PARTIAL));
/* Mark the record completed. */
record->len_and_flags &= ~VBVA_F_RECORD_PARTIAL;
vbva_ctx->buffer_overflow = false;
vbva_ctx->record = NULL;
}
void vbva_setup_buffer_context(struct vbva_buf_ctx *vbva_ctx,
u32 buffer_offset, u32 buffer_length)
{
vbva_ctx->buffer_offset = buffer_offset;
vbva_ctx->buffer_length = buffer_length;
}
| linux-master | drivers/gpu/drm/vboxvideo/vbva_base.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2016-2017 Oracle Corporation
* This file is based on qxl_irq.c
* Copyright 2013 Red Hat Inc.
* Authors: Dave Airlie
* Alon Levy
* Michael Thayer <[email protected],
* Hans de Goede <[email protected]>
*/
#include <linux/pci.h>
#include <drm/drm_drv.h>
#include <drm/drm_probe_helper.h>
#include "vbox_drv.h"
#include "vboxvideo.h"
static void vbox_clear_irq(void)
{
outl((u32)~0, VGA_PORT_HGSMI_HOST);
}
static u32 vbox_get_flags(struct vbox_private *vbox)
{
return readl(vbox->guest_heap + HOST_FLAGS_OFFSET);
}
void vbox_report_hotplug(struct vbox_private *vbox)
{
schedule_work(&vbox->hotplug_work);
}
static irqreturn_t vbox_irq_handler(int irq, void *arg)
{
struct drm_device *dev = (struct drm_device *)arg;
struct vbox_private *vbox = to_vbox_dev(dev);
u32 host_flags = vbox_get_flags(vbox);
if (!(host_flags & HGSMIHOSTFLAGS_IRQ))
return IRQ_NONE;
/*
* Due to a bug in the initial host implementation of hot-plug irqs,
* the hot-plug and cursor capability flags were never cleared.
* Fortunately we can tell when they would have been set by checking
* that the VSYNC flag is not set.
*/
if (host_flags &
(HGSMIHOSTFLAGS_HOTPLUG | HGSMIHOSTFLAGS_CURSOR_CAPABILITIES) &&
!(host_flags & HGSMIHOSTFLAGS_VSYNC))
vbox_report_hotplug(vbox);
vbox_clear_irq();
return IRQ_HANDLED;
}
/*
* Check that the position hints provided by the host are suitable for GNOME
* shell (i.e. all screens disjoint and hints for all enabled screens) and if
* not replace them with default ones. Providing valid hints improves the
* chances that we will get a known screen layout for pointer mapping.
*/
static void validate_or_set_position_hints(struct vbox_private *vbox)
{
struct vbva_modehint *hintsi, *hintsj;
bool valid = true;
u16 currentx = 0;
int i, j;
for (i = 0; i < vbox->num_crtcs; ++i) {
for (j = 0; j < i; ++j) {
hintsi = &vbox->last_mode_hints[i];
hintsj = &vbox->last_mode_hints[j];
if (hintsi->enabled && hintsj->enabled) {
if (hintsi->dx >= 0xffff ||
hintsi->dy >= 0xffff ||
hintsj->dx >= 0xffff ||
hintsj->dy >= 0xffff ||
(hintsi->dx <
hintsj->dx + (hintsj->cx & 0x8fff) &&
hintsi->dx + (hintsi->cx & 0x8fff) >
hintsj->dx) ||
(hintsi->dy <
hintsj->dy + (hintsj->cy & 0x8fff) &&
hintsi->dy + (hintsi->cy & 0x8fff) >
hintsj->dy))
valid = false;
}
}
}
if (!valid)
for (i = 0; i < vbox->num_crtcs; ++i) {
if (vbox->last_mode_hints[i].enabled) {
vbox->last_mode_hints[i].dx = currentx;
vbox->last_mode_hints[i].dy = 0;
currentx +=
vbox->last_mode_hints[i].cx & 0x8fff;
}
}
}
/* Query the host for the most recent video mode hints. */
static void vbox_update_mode_hints(struct vbox_private *vbox)
{
struct drm_connector_list_iter conn_iter;
struct drm_device *dev = &vbox->ddev;
struct drm_connector *connector;
struct vbox_connector *vbox_conn;
struct vbva_modehint *hints;
u16 flags;
bool disconnected;
unsigned int crtc_id;
int ret;
ret = hgsmi_get_mode_hints(vbox->guest_pool, vbox->num_crtcs,
vbox->last_mode_hints);
if (ret) {
DRM_ERROR("vboxvideo: hgsmi_get_mode_hints failed: %d\n", ret);
return;
}
validate_or_set_position_hints(vbox);
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
drm_connector_list_iter_begin(dev, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
vbox_conn = to_vbox_connector(connector);
hints = &vbox->last_mode_hints[vbox_conn->vbox_crtc->crtc_id];
if (hints->magic != VBVAMODEHINT_MAGIC)
continue;
disconnected = !(hints->enabled);
crtc_id = vbox_conn->vbox_crtc->crtc_id;
vbox_conn->mode_hint.width = hints->cx;
vbox_conn->mode_hint.height = hints->cy;
vbox_conn->vbox_crtc->x_hint = hints->dx;
vbox_conn->vbox_crtc->y_hint = hints->dy;
vbox_conn->mode_hint.disconnected = disconnected;
if (vbox_conn->vbox_crtc->disconnected == disconnected)
continue;
if (disconnected)
flags = VBVA_SCREEN_F_ACTIVE | VBVA_SCREEN_F_DISABLED;
else
flags = VBVA_SCREEN_F_ACTIVE | VBVA_SCREEN_F_BLANK;
hgsmi_process_display_info(vbox->guest_pool, crtc_id, 0, 0, 0,
hints->cx * 4, hints->cx,
hints->cy, 0, flags);
vbox_conn->vbox_crtc->disconnected = disconnected;
}
drm_connector_list_iter_end(&conn_iter);
drm_modeset_unlock(&dev->mode_config.connection_mutex);
}
static void vbox_hotplug_worker(struct work_struct *work)
{
struct vbox_private *vbox = container_of(work, struct vbox_private,
hotplug_work);
vbox_update_mode_hints(vbox);
drm_kms_helper_hotplug_event(&vbox->ddev);
}
int vbox_irq_init(struct vbox_private *vbox)
{
struct drm_device *dev = &vbox->ddev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
INIT_WORK(&vbox->hotplug_work, vbox_hotplug_worker);
vbox_update_mode_hints(vbox);
/* PCI devices require shared interrupts. */
return request_irq(pdev->irq, vbox_irq_handler, IRQF_SHARED, dev->driver->name, dev);
}
void vbox_irq_fini(struct vbox_private *vbox)
{
struct drm_device *dev = &vbox->ddev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
free_irq(pdev->irq, dev);
flush_work(&vbox->hotplug_work);
}
| linux-master | drivers/gpu/drm/vboxvideo/vbox_irq.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2013-2017 Oracle Corporation
* This file is based on ast_mode.c
* Copyright 2012 Red Hat Inc.
* Parts based on xf86-video-ast
* Copyright (c) 2005 ASPEED Technology Inc.
* Authors: Dave Airlie <[email protected]>
* Michael Thayer <[email protected],
* Hans de Goede <[email protected]>
*/
#include <linux/iosys-map.h>
#include <linux/export.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include "hgsmi_channels.h"
#include "vbox_drv.h"
#include "vboxvideo.h"
/*
* Set a graphics mode. Poke any required values into registers, do an HGSMI
* mode set and tell the host we support advanced graphics functions.
*/
static void vbox_do_modeset(struct drm_crtc *crtc)
{
struct drm_framebuffer *fb = crtc->primary->state->fb;
struct vbox_crtc *vbox_crtc = to_vbox_crtc(crtc);
struct vbox_private *vbox;
int width, height, bpp, pitch;
u16 flags;
s32 x_offset, y_offset;
vbox = to_vbox_dev(crtc->dev);
width = vbox_crtc->width ? vbox_crtc->width : 640;
height = vbox_crtc->height ? vbox_crtc->height : 480;
bpp = fb ? fb->format->cpp[0] * 8 : 32;
pitch = fb ? fb->pitches[0] : width * bpp / 8;
x_offset = vbox->single_framebuffer ? vbox_crtc->x : vbox_crtc->x_hint;
y_offset = vbox->single_framebuffer ? vbox_crtc->y : vbox_crtc->y_hint;
/*
* This is the old way of setting graphics modes. It assumed one screen
* and a frame-buffer at the start of video RAM. On older versions of
* VirtualBox, certain parts of the code still assume that the first
* screen is programmed this way, so try to fake it.
*/
if (vbox_crtc->crtc_id == 0 && fb &&
vbox_crtc->fb_offset / pitch < 0xffff - crtc->y &&
vbox_crtc->fb_offset % (bpp / 8) == 0) {
vbox_write_ioport(VBE_DISPI_INDEX_XRES, width);
vbox_write_ioport(VBE_DISPI_INDEX_YRES, height);
vbox_write_ioport(VBE_DISPI_INDEX_VIRT_WIDTH, pitch * 8 / bpp);
vbox_write_ioport(VBE_DISPI_INDEX_BPP, bpp);
vbox_write_ioport(VBE_DISPI_INDEX_ENABLE, VBE_DISPI_ENABLED);
vbox_write_ioport(VBE_DISPI_INDEX_X_OFFSET,
vbox_crtc->fb_offset % pitch / bpp * 8 + vbox_crtc->x);
vbox_write_ioport(VBE_DISPI_INDEX_Y_OFFSET,
vbox_crtc->fb_offset / pitch + vbox_crtc->y);
}
flags = VBVA_SCREEN_F_ACTIVE;
flags |= (fb && crtc->state->enable) ? 0 : VBVA_SCREEN_F_BLANK;
flags |= vbox_crtc->disconnected ? VBVA_SCREEN_F_DISABLED : 0;
hgsmi_process_display_info(vbox->guest_pool, vbox_crtc->crtc_id,
x_offset, y_offset,
vbox_crtc->x * bpp / 8 +
vbox_crtc->y * pitch,
pitch, width, height, bpp, flags);
}
static int vbox_set_view(struct drm_crtc *crtc)
{
struct vbox_crtc *vbox_crtc = to_vbox_crtc(crtc);
struct vbox_private *vbox = to_vbox_dev(crtc->dev);
struct vbva_infoview *p;
/*
* Tell the host about the view. This design originally targeted the
* Windows XP driver architecture and assumed that each screen would
* have a dedicated frame buffer with the command buffer following it,
* the whole being a "view". The host works out which screen a command
* buffer belongs to by checking whether it is in the first view, then
* whether it is in the second and so on. The first match wins. We
* cheat around this by making the first view be the managed memory
* plus the first command buffer, the second the same plus the second
* buffer and so on.
*/
p = hgsmi_buffer_alloc(vbox->guest_pool, sizeof(*p),
HGSMI_CH_VBVA, VBVA_INFO_VIEW);
if (!p)
return -ENOMEM;
p->view_index = vbox_crtc->crtc_id;
p->view_offset = vbox_crtc->fb_offset;
p->view_size = vbox->available_vram_size - vbox_crtc->fb_offset +
vbox_crtc->crtc_id * VBVA_MIN_BUFFER_SIZE;
p->max_screen_size = vbox->available_vram_size - vbox_crtc->fb_offset;
hgsmi_buffer_submit(vbox->guest_pool, p);
hgsmi_buffer_free(vbox->guest_pool, p);
return 0;
}
/*
* Try to map the layout of virtual screens to the range of the input device.
* Return true if we need to re-set the crtc modes due to screen offset
* changes.
*/
static bool vbox_set_up_input_mapping(struct vbox_private *vbox)
{
struct drm_crtc *crtci;
struct drm_connector *connectori;
struct drm_framebuffer *fb, *fb1 = NULL;
bool single_framebuffer = true;
bool old_single_framebuffer = vbox->single_framebuffer;
u16 width = 0, height = 0;
/*
* Are we using an X.Org-style single large frame-buffer for all crtcs?
* If so then screen layout can be deduced from the crtc offsets.
* Same fall-back if this is the fbdev frame-buffer.
*/
list_for_each_entry(crtci, &vbox->ddev.mode_config.crtc_list, head) {
fb = crtci->primary->state->fb;
if (!fb)
continue;
if (!fb1) {
fb1 = fb;
if (fb1 == vbox->ddev.fb_helper->fb)
break;
} else if (fb != fb1) {
single_framebuffer = false;
}
}
if (!fb1)
return false;
if (single_framebuffer) {
vbox->single_framebuffer = true;
vbox->input_mapping_width = fb1->width;
vbox->input_mapping_height = fb1->height;
return old_single_framebuffer != vbox->single_framebuffer;
}
/* Otherwise calculate the total span of all screens. */
list_for_each_entry(connectori, &vbox->ddev.mode_config.connector_list,
head) {
struct vbox_connector *vbox_connector =
to_vbox_connector(connectori);
struct vbox_crtc *vbox_crtc = vbox_connector->vbox_crtc;
width = max_t(u16, width, vbox_crtc->x_hint +
vbox_connector->mode_hint.width);
height = max_t(u16, height, vbox_crtc->y_hint +
vbox_connector->mode_hint.height);
}
vbox->single_framebuffer = false;
vbox->input_mapping_width = width;
vbox->input_mapping_height = height;
return old_single_framebuffer != vbox->single_framebuffer;
}
static void vbox_crtc_set_base_and_mode(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_gem_vram_object *gbo = drm_gem_vram_of_gem(fb->obj[0]);
struct vbox_private *vbox = to_vbox_dev(crtc->dev);
struct vbox_crtc *vbox_crtc = to_vbox_crtc(crtc);
bool needs_modeset = drm_atomic_crtc_needs_modeset(crtc->state);
mutex_lock(&vbox->hw_mutex);
if (crtc->state->enable) {
vbox_crtc->width = crtc->state->mode.hdisplay;
vbox_crtc->height = crtc->state->mode.vdisplay;
}
vbox_crtc->x = x;
vbox_crtc->y = y;
vbox_crtc->fb_offset = drm_gem_vram_offset(gbo);
/* vbox_do_modeset() checks vbox->single_framebuffer so update it now */
if (needs_modeset && vbox_set_up_input_mapping(vbox)) {
struct drm_crtc *crtci;
list_for_each_entry(crtci, &vbox->ddev.mode_config.crtc_list,
head) {
if (crtci == crtc)
continue;
vbox_do_modeset(crtci);
}
}
vbox_set_view(crtc);
vbox_do_modeset(crtc);
if (needs_modeset)
hgsmi_update_input_mapping(vbox->guest_pool, 0, 0,
vbox->input_mapping_width,
vbox->input_mapping_height);
mutex_unlock(&vbox->hw_mutex);
}
static void vbox_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
}
static void vbox_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
}
static void vbox_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
}
static const struct drm_crtc_helper_funcs vbox_crtc_helper_funcs = {
.atomic_enable = vbox_crtc_atomic_enable,
.atomic_disable = vbox_crtc_atomic_disable,
.atomic_flush = vbox_crtc_atomic_flush,
};
static void vbox_crtc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_funcs vbox_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
/* .gamma_set = vbox_crtc_gamma_set, */
.destroy = vbox_crtc_destroy,
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
};
static int vbox_primary_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc_state *crtc_state = NULL;
if (new_state->crtc) {
crtc_state = drm_atomic_get_existing_crtc_state(state,
new_state->crtc);
if (WARN_ON(!crtc_state))
return -EINVAL;
}
return drm_atomic_helper_check_plane_state(new_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, true);
}
static void vbox_primary_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc *crtc = new_state->crtc;
struct drm_framebuffer *fb = new_state->fb;
struct vbox_private *vbox = to_vbox_dev(fb->dev);
struct drm_mode_rect *clips;
uint32_t num_clips, i;
vbox_crtc_set_base_and_mode(crtc, fb,
new_state->src_x >> 16,
new_state->src_y >> 16);
/* Send information about dirty rectangles to VBVA. */
clips = drm_plane_get_damage_clips(new_state);
num_clips = drm_plane_get_damage_clips_count(new_state);
if (!num_clips)
return;
mutex_lock(&vbox->hw_mutex);
for (i = 0; i < num_clips; ++i, ++clips) {
struct vbva_cmd_hdr cmd_hdr;
unsigned int crtc_id = to_vbox_crtc(crtc)->crtc_id;
cmd_hdr.x = (s16)clips->x1;
cmd_hdr.y = (s16)clips->y1;
cmd_hdr.w = (u16)clips->x2 - clips->x1;
cmd_hdr.h = (u16)clips->y2 - clips->y1;
if (!vbva_buffer_begin_update(&vbox->vbva_info[crtc_id],
vbox->guest_pool))
continue;
vbva_write(&vbox->vbva_info[crtc_id], vbox->guest_pool,
&cmd_hdr, sizeof(cmd_hdr));
vbva_buffer_end_update(&vbox->vbva_info[crtc_id]);
}
mutex_unlock(&vbox->hw_mutex);
}
static void vbox_primary_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct drm_crtc *crtc = old_state->crtc;
/* vbox_do_modeset checks plane->state->fb and will disable if NULL */
vbox_crtc_set_base_and_mode(crtc, old_state->fb,
old_state->src_x >> 16,
old_state->src_y >> 16);
}
static int vbox_cursor_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_crtc_state *crtc_state = NULL;
u32 width = new_state->crtc_w;
u32 height = new_state->crtc_h;
int ret;
if (new_state->crtc) {
crtc_state = drm_atomic_get_existing_crtc_state(state,
new_state->crtc);
if (WARN_ON(!crtc_state))
return -EINVAL;
}
ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
true, true);
if (ret)
return ret;
if (!new_state->fb)
return 0;
if (width > VBOX_MAX_CURSOR_WIDTH || height > VBOX_MAX_CURSOR_HEIGHT ||
width == 0 || height == 0)
return -EINVAL;
return 0;
}
/*
* Copy the ARGB image and generate the mask, which is needed in case the host
* does not support ARGB cursors. The mask is a 1BPP bitmap with the bit set
* if the corresponding alpha value in the ARGB image is greater than 0xF0.
*/
static void copy_cursor_image(u8 *src, u8 *dst, u32 width, u32 height,
size_t mask_size)
{
size_t line_size = (width + 7) / 8;
u32 i, j;
memcpy(dst + mask_size, src, width * height * 4);
for (i = 0; i < height; ++i)
for (j = 0; j < width; ++j)
if (((u32 *)src)[i * width + j] > 0xf0000000)
dst[i * line_size + j / 8] |= (0x80 >> (j % 8));
}
static void vbox_cursor_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct vbox_private *vbox =
container_of(plane->dev, struct vbox_private, ddev);
struct vbox_crtc *vbox_crtc = to_vbox_crtc(new_state->crtc);
struct drm_framebuffer *fb = new_state->fb;
u32 width = new_state->crtc_w;
u32 height = new_state->crtc_h;
struct drm_shadow_plane_state *shadow_plane_state =
to_drm_shadow_plane_state(new_state);
struct iosys_map map = shadow_plane_state->data[0];
u8 *src = map.vaddr; /* TODO: Use mapping abstraction properly */
size_t data_size, mask_size;
u32 flags;
/*
* VirtualBox uses the host windowing system to draw the cursor so
* moves are a no-op, we only need to upload new cursor sprites.
*/
if (fb == old_state->fb)
return;
mutex_lock(&vbox->hw_mutex);
vbox_crtc->cursor_enabled = true;
/*
* The mask must be calculated based on the alpha
* channel, one bit per ARGB word, and must be 32-bit
* padded.
*/
mask_size = ((width + 7) / 8 * height + 3) & ~3;
data_size = width * height * 4 + mask_size;
copy_cursor_image(src, vbox->cursor_data, width, height, mask_size);
flags = VBOX_MOUSE_POINTER_VISIBLE | VBOX_MOUSE_POINTER_SHAPE |
VBOX_MOUSE_POINTER_ALPHA;
hgsmi_update_pointer_shape(vbox->guest_pool, flags,
min_t(u32, max(fb->hot_x, 0), width),
min_t(u32, max(fb->hot_y, 0), height),
width, height, vbox->cursor_data, data_size);
mutex_unlock(&vbox->hw_mutex);
}
static void vbox_cursor_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct vbox_private *vbox =
container_of(plane->dev, struct vbox_private, ddev);
struct vbox_crtc *vbox_crtc = to_vbox_crtc(old_state->crtc);
bool cursor_enabled = false;
struct drm_crtc *crtci;
mutex_lock(&vbox->hw_mutex);
vbox_crtc->cursor_enabled = false;
list_for_each_entry(crtci, &vbox->ddev.mode_config.crtc_list, head) {
if (to_vbox_crtc(crtci)->cursor_enabled)
cursor_enabled = true;
}
if (!cursor_enabled)
hgsmi_update_pointer_shape(vbox->guest_pool, 0, 0, 0,
0, 0, NULL, 0);
mutex_unlock(&vbox->hw_mutex);
}
static const u32 vbox_cursor_plane_formats[] = {
DRM_FORMAT_ARGB8888,
};
static const struct drm_plane_helper_funcs vbox_cursor_helper_funcs = {
.atomic_check = vbox_cursor_atomic_check,
.atomic_update = vbox_cursor_atomic_update,
.atomic_disable = vbox_cursor_atomic_disable,
DRM_GEM_SHADOW_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs vbox_cursor_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_plane_helper_destroy,
DRM_GEM_SHADOW_PLANE_FUNCS,
};
static const u32 vbox_primary_plane_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
};
static const struct drm_plane_helper_funcs vbox_primary_helper_funcs = {
.atomic_check = vbox_primary_atomic_check,
.atomic_update = vbox_primary_atomic_update,
.atomic_disable = vbox_primary_atomic_disable,
DRM_GEM_VRAM_PLANE_HELPER_FUNCS,
};
static const struct drm_plane_funcs vbox_primary_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_plane_helper_destroy,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
};
static struct drm_plane *vbox_create_plane(struct vbox_private *vbox,
unsigned int possible_crtcs,
enum drm_plane_type type)
{
const struct drm_plane_helper_funcs *helper_funcs = NULL;
const struct drm_plane_funcs *funcs;
struct drm_plane *plane;
const u32 *formats;
int num_formats;
int err;
if (type == DRM_PLANE_TYPE_PRIMARY) {
funcs = &vbox_primary_plane_funcs;
formats = vbox_primary_plane_formats;
helper_funcs = &vbox_primary_helper_funcs;
num_formats = ARRAY_SIZE(vbox_primary_plane_formats);
} else if (type == DRM_PLANE_TYPE_CURSOR) {
funcs = &vbox_cursor_plane_funcs;
formats = vbox_cursor_plane_formats;
helper_funcs = &vbox_cursor_helper_funcs;
num_formats = ARRAY_SIZE(vbox_cursor_plane_formats);
} else {
return ERR_PTR(-EINVAL);
}
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
err = drm_universal_plane_init(&vbox->ddev, plane, possible_crtcs,
funcs, formats, num_formats,
NULL, type, NULL);
if (err)
goto free_plane;
drm_plane_helper_add(plane, helper_funcs);
return plane;
free_plane:
kfree(plane);
return ERR_PTR(-EINVAL);
}
static struct vbox_crtc *vbox_crtc_init(struct drm_device *dev, unsigned int i)
{
struct vbox_private *vbox =
container_of(dev, struct vbox_private, ddev);
struct drm_plane *cursor = NULL;
struct vbox_crtc *vbox_crtc;
struct drm_plane *primary;
u32 caps = 0;
int ret;
ret = hgsmi_query_conf(vbox->guest_pool,
VBOX_VBVA_CONF32_CURSOR_CAPABILITIES, &caps);
if (ret)
return ERR_PTR(ret);
vbox_crtc = kzalloc(sizeof(*vbox_crtc), GFP_KERNEL);
if (!vbox_crtc)
return ERR_PTR(-ENOMEM);
primary = vbox_create_plane(vbox, 1 << i, DRM_PLANE_TYPE_PRIMARY);
if (IS_ERR(primary)) {
ret = PTR_ERR(primary);
goto free_mem;
}
if ((caps & VBOX_VBVA_CURSOR_CAPABILITY_HARDWARE)) {
cursor = vbox_create_plane(vbox, 1 << i, DRM_PLANE_TYPE_CURSOR);
if (IS_ERR(cursor)) {
ret = PTR_ERR(cursor);
goto clean_primary;
}
} else {
DRM_WARN("VirtualBox host is too old, no cursor support\n");
}
vbox_crtc->crtc_id = i;
ret = drm_crtc_init_with_planes(dev, &vbox_crtc->base, primary, cursor,
&vbox_crtc_funcs, NULL);
if (ret)
goto clean_cursor;
drm_mode_crtc_set_gamma_size(&vbox_crtc->base, 256);
drm_crtc_helper_add(&vbox_crtc->base, &vbox_crtc_helper_funcs);
return vbox_crtc;
clean_cursor:
if (cursor) {
drm_plane_cleanup(cursor);
kfree(cursor);
}
clean_primary:
drm_plane_cleanup(primary);
kfree(primary);
free_mem:
kfree(vbox_crtc);
return ERR_PTR(ret);
}
static void vbox_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs vbox_enc_funcs = {
.destroy = vbox_encoder_destroy,
};
static struct drm_encoder *vbox_encoder_init(struct drm_device *dev,
unsigned int i)
{
struct vbox_encoder *vbox_encoder;
vbox_encoder = kzalloc(sizeof(*vbox_encoder), GFP_KERNEL);
if (!vbox_encoder)
return NULL;
drm_encoder_init(dev, &vbox_encoder->base, &vbox_enc_funcs,
DRM_MODE_ENCODER_DAC, NULL);
vbox_encoder->base.possible_crtcs = 1 << i;
return &vbox_encoder->base;
}
/*
* Generate EDID data with a mode-unique serial number for the virtual
* monitor to try to persuade Unity that different modes correspond to
* different monitors and it should not try to force the same resolution on
* them.
*/
static void vbox_set_edid(struct drm_connector *connector, int width,
int height)
{
enum { EDID_SIZE = 128 };
unsigned char edid[EDID_SIZE] = {
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, /* header */
0x58, 0x58, /* manufacturer (VBX) */
0x00, 0x00, /* product code */
0x00, 0x00, 0x00, 0x00, /* serial number goes here */
0x01, /* week of manufacture */
0x00, /* year of manufacture */
0x01, 0x03, /* EDID version */
0x80, /* capabilities - digital */
0x00, /* horiz. res in cm, zero for projectors */
0x00, /* vert. res in cm */
0x78, /* display gamma (120 == 2.2). */
0xEE, /* features (standby, suspend, off, RGB, std */
/* colour space, preferred timing mode) */
0xEE, 0x91, 0xA3, 0x54, 0x4C, 0x99, 0x26, 0x0F, 0x50, 0x54,
/* chromaticity for standard colour space. */
0x00, 0x00, 0x00, /* no default timings */
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01,
0x01, 0x01, 0x01, 0x01, /* no standard timings */
0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x06, 0x00, 0x02, 0x02,
0x02, 0x02,
/* descriptor block 1 goes below */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* descriptor block 2, monitor ranges */
0x00, 0x00, 0x00, 0xFD, 0x00,
0x00, 0xC8, 0x00, 0xC8, 0x64, 0x00, 0x0A, 0x20, 0x20, 0x20,
0x20, 0x20,
/* 0-200Hz vertical, 0-200KHz horizontal, 1000MHz pixel clock */
0x20,
/* descriptor block 3, monitor name */
0x00, 0x00, 0x00, 0xFC, 0x00,
'V', 'B', 'O', 'X', ' ', 'm', 'o', 'n', 'i', 't', 'o', 'r',
'\n',
/* descriptor block 4: dummy data */
0x00, 0x00, 0x00, 0x10, 0x00,
0x0A, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20,
0x00, /* number of extensions */
0x00 /* checksum goes here */
};
int clock = (width + 6) * (height + 6) * 60 / 10000;
unsigned int i, sum = 0;
edid[12] = width & 0xff;
edid[13] = width >> 8;
edid[14] = height & 0xff;
edid[15] = height >> 8;
edid[54] = clock & 0xff;
edid[55] = clock >> 8;
edid[56] = width & 0xff;
edid[58] = (width >> 4) & 0xf0;
edid[59] = height & 0xff;
edid[61] = (height >> 4) & 0xf0;
for (i = 0; i < EDID_SIZE - 1; ++i)
sum += edid[i];
edid[EDID_SIZE - 1] = (0x100 - (sum & 0xFF)) & 0xFF;
drm_connector_update_edid_property(connector, (struct edid *)edid);
}
static int vbox_get_modes(struct drm_connector *connector)
{
struct vbox_connector *vbox_connector = NULL;
struct drm_display_mode *mode = NULL;
struct vbox_private *vbox = NULL;
unsigned int num_modes = 0;
int preferred_width, preferred_height;
vbox_connector = to_vbox_connector(connector);
vbox = to_vbox_dev(connector->dev);
hgsmi_report_flags_location(vbox->guest_pool, GUEST_HEAP_OFFSET(vbox) +
HOST_FLAGS_OFFSET);
if (vbox_connector->vbox_crtc->crtc_id == 0)
vbox_report_caps(vbox);
num_modes = drm_add_modes_noedid(connector, 2560, 1600);
preferred_width = vbox_connector->mode_hint.width ?
vbox_connector->mode_hint.width : 1024;
preferred_height = vbox_connector->mode_hint.height ?
vbox_connector->mode_hint.height : 768;
mode = drm_cvt_mode(connector->dev, preferred_width, preferred_height,
60, false, false, false);
if (mode) {
mode->type |= DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(connector, mode);
++num_modes;
}
vbox_set_edid(connector, preferred_width, preferred_height);
if (vbox_connector->vbox_crtc->x_hint != -1)
drm_object_property_set_value(&connector->base,
vbox->ddev.mode_config.suggested_x_property,
vbox_connector->vbox_crtc->x_hint);
else
drm_object_property_set_value(&connector->base,
vbox->ddev.mode_config.suggested_x_property, 0);
if (vbox_connector->vbox_crtc->y_hint != -1)
drm_object_property_set_value(&connector->base,
vbox->ddev.mode_config.suggested_y_property,
vbox_connector->vbox_crtc->y_hint);
else
drm_object_property_set_value(&connector->base,
vbox->ddev.mode_config.suggested_y_property, 0);
return num_modes;
}
static void vbox_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static enum drm_connector_status
vbox_connector_detect(struct drm_connector *connector, bool force)
{
struct vbox_connector *vbox_connector;
vbox_connector = to_vbox_connector(connector);
return vbox_connector->mode_hint.disconnected ?
connector_status_disconnected : connector_status_connected;
}
static int vbox_fill_modes(struct drm_connector *connector, u32 max_x,
u32 max_y)
{
struct vbox_connector *vbox_connector;
struct drm_device *dev;
struct drm_display_mode *mode, *iterator;
vbox_connector = to_vbox_connector(connector);
dev = vbox_connector->base.dev;
list_for_each_entry_safe(mode, iterator, &connector->modes, head) {
list_del(&mode->head);
drm_mode_destroy(dev, mode);
}
return drm_helper_probe_single_connector_modes(connector, max_x, max_y);
}
static const struct drm_connector_helper_funcs vbox_connector_helper_funcs = {
.get_modes = vbox_get_modes,
};
static const struct drm_connector_funcs vbox_connector_funcs = {
.detect = vbox_connector_detect,
.fill_modes = vbox_fill_modes,
.destroy = vbox_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int vbox_connector_init(struct drm_device *dev,
struct vbox_crtc *vbox_crtc,
struct drm_encoder *encoder)
{
struct vbox_connector *vbox_connector;
struct drm_connector *connector;
vbox_connector = kzalloc(sizeof(*vbox_connector), GFP_KERNEL);
if (!vbox_connector)
return -ENOMEM;
connector = &vbox_connector->base;
vbox_connector->vbox_crtc = vbox_crtc;
drm_connector_init(dev, connector, &vbox_connector_funcs,
DRM_MODE_CONNECTOR_VGA);
drm_connector_helper_add(connector, &vbox_connector_helper_funcs);
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_mode_create_suggested_offset_properties(dev);
drm_object_attach_property(&connector->base,
dev->mode_config.suggested_x_property, 0);
drm_object_attach_property(&connector->base,
dev->mode_config.suggested_y_property, 0);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
static const struct drm_mode_config_funcs vbox_mode_funcs = {
.fb_create = drm_gem_fb_create_with_dirty,
.mode_valid = drm_vram_helper_mode_valid,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
int vbox_mode_init(struct vbox_private *vbox)
{
struct drm_device *dev = &vbox->ddev;
struct drm_encoder *encoder;
struct vbox_crtc *vbox_crtc;
unsigned int i;
int ret;
drm_mode_config_init(dev);
dev->mode_config.funcs = (void *)&vbox_mode_funcs;
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.max_width = VBE_DISPI_MAX_XRES;
dev->mode_config.max_height = VBE_DISPI_MAX_YRES;
for (i = 0; i < vbox->num_crtcs; ++i) {
vbox_crtc = vbox_crtc_init(dev, i);
if (IS_ERR(vbox_crtc)) {
ret = PTR_ERR(vbox_crtc);
goto err_drm_mode_cleanup;
}
encoder = vbox_encoder_init(dev, i);
if (!encoder) {
ret = -ENOMEM;
goto err_drm_mode_cleanup;
}
ret = vbox_connector_init(dev, vbox_crtc, encoder);
if (ret)
goto err_drm_mode_cleanup;
}
drm_mode_config_reset(dev);
return 0;
err_drm_mode_cleanup:
drm_mode_config_cleanup(dev);
return ret;
}
void vbox_mode_fini(struct vbox_private *vbox)
{
drm_mode_config_cleanup(&vbox->ddev);
}
| linux-master | drivers/gpu/drm/vboxvideo/vbox_mode.c |
// SPDX-License-Identifier: MIT
/* Copyright (C) 2006-2017 Oracle Corporation */
#include <linux/vbox_err.h>
#include "vbox_drv.h"
#include "vboxvideo_guest.h"
#include "vboxvideo_vbe.h"
#include "hgsmi_channels.h"
/**
* hgsmi_process_display_info - Set a video mode via an HGSMI request.
* The views must have been initialised first
* using @a VBoxHGSMISendViewInfo and if the mode
* is being set on the first display then it must
* be set first using registers.
* @ctx: The context containing the heap to use.
* @display: The screen number.
* @origin_x: The horizontal displacement relative to the first scrn.
* @origin_y: The vertical displacement relative to the first screen.
* @start_offset: The offset of the visible area of the framebuffer
* relative to the framebuffer start.
* @pitch: The offset in bytes between the starts of two adjecent
* scan lines in video RAM.
* @width: The mode width.
* @height: The mode height.
* @bpp: The colour depth of the mode.
* @flags: Flags.
*/
void hgsmi_process_display_info(struct gen_pool *ctx, u32 display,
s32 origin_x, s32 origin_y, u32 start_offset,
u32 pitch, u32 width, u32 height,
u16 bpp, u16 flags)
{
struct vbva_infoscreen *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA,
VBVA_INFO_SCREEN);
if (!p)
return;
p->view_index = display;
p->origin_x = origin_x;
p->origin_y = origin_y;
p->start_offset = start_offset;
p->line_size = pitch;
p->width = width;
p->height = height;
p->bits_per_pixel = bpp;
p->flags = flags;
hgsmi_buffer_submit(ctx, p);
hgsmi_buffer_free(ctx, p);
}
/**
* hgsmi_update_input_mapping - Report the rectangle relative to which absolute
* pointer events should be expressed. This
* information remains valid until the next VBVA
* resize event for any screen, at which time it is
* reset to the bounding rectangle of all virtual
* screens.
* Return: 0 or negative errno value.
* @ctx: The context containing the heap to use.
* @origin_x: Upper left X co-ordinate relative to the first screen.
* @origin_y: Upper left Y co-ordinate relative to the first screen.
* @width: Rectangle width.
* @height: Rectangle height.
*/
int hgsmi_update_input_mapping(struct gen_pool *ctx, s32 origin_x, s32 origin_y,
u32 width, u32 height)
{
struct vbva_report_input_mapping *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA,
VBVA_REPORT_INPUT_MAPPING);
if (!p)
return -ENOMEM;
p->x = origin_x;
p->y = origin_y;
p->cx = width;
p->cy = height;
hgsmi_buffer_submit(ctx, p);
hgsmi_buffer_free(ctx, p);
return 0;
}
/**
* hgsmi_get_mode_hints - Get most recent video mode hints.
* Return: 0 or negative errno value.
* @ctx: The context containing the heap to use.
* @screens: The number of screens to query hints for, starting at 0.
* @hints: Array of vbva_modehint structures for receiving the hints.
*/
int hgsmi_get_mode_hints(struct gen_pool *ctx, unsigned int screens,
struct vbva_modehint *hints)
{
struct vbva_query_mode_hints *p;
size_t size;
if (WARN_ON(!hints))
return -EINVAL;
size = screens * sizeof(struct vbva_modehint);
p = hgsmi_buffer_alloc(ctx, sizeof(*p) + size, HGSMI_CH_VBVA,
VBVA_QUERY_MODE_HINTS);
if (!p)
return -ENOMEM;
p->hints_queried_count = screens;
p->hint_structure_guest_size = sizeof(struct vbva_modehint);
p->rc = VERR_NOT_SUPPORTED;
hgsmi_buffer_submit(ctx, p);
if (p->rc < 0) {
hgsmi_buffer_free(ctx, p);
return -EIO;
}
memcpy(hints, ((u8 *)p) + sizeof(struct vbva_query_mode_hints), size);
hgsmi_buffer_free(ctx, p);
return 0;
}
| linux-master | drivers/gpu/drm/vboxvideo/modesetting.c |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2017 Oracle Corporation
* Authors: Hans de Goede <[email protected]>
*/
#include "vbox_drv.h"
#include "vboxvideo_vbe.h"
#include "hgsmi_defs.h"
/* One-at-a-Time Hash from https://www.burtleburtle.net/bob/hash/doobs.html */
static u32 hgsmi_hash_process(u32 hash, const u8 *data, int size)
{
while (size--) {
hash += *data++;
hash += (hash << 10);
hash ^= (hash >> 6);
}
return hash;
}
static u32 hgsmi_hash_end(u32 hash)
{
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
/* Not really a checksum but that is the naming used in all vbox code */
static u32 hgsmi_checksum(u32 offset,
const struct hgsmi_buffer_header *header,
const struct hgsmi_buffer_tail *tail)
{
u32 checksum;
checksum = hgsmi_hash_process(0, (u8 *)&offset, sizeof(offset));
checksum = hgsmi_hash_process(checksum, (u8 *)header, sizeof(*header));
/* 4 -> Do not checksum the checksum itself */
checksum = hgsmi_hash_process(checksum, (u8 *)tail, 4);
return hgsmi_hash_end(checksum);
}
void *hgsmi_buffer_alloc(struct gen_pool *guest_pool, size_t size,
u8 channel, u16 channel_info)
{
struct hgsmi_buffer_header *h;
struct hgsmi_buffer_tail *t;
size_t total_size;
dma_addr_t offset;
total_size = size + sizeof(*h) + sizeof(*t);
h = gen_pool_dma_alloc(guest_pool, total_size, &offset);
if (!h)
return NULL;
t = (struct hgsmi_buffer_tail *)((u8 *)h + sizeof(*h) + size);
h->flags = HGSMI_BUFFER_HEADER_F_SEQ_SINGLE;
h->data_size = size;
h->channel = channel;
h->channel_info = channel_info;
memset(&h->u.header_data, 0, sizeof(h->u.header_data));
t->reserved = 0;
t->checksum = hgsmi_checksum(offset, h, t);
return (u8 *)h + sizeof(*h);
}
void hgsmi_buffer_free(struct gen_pool *guest_pool, void *buf)
{
struct hgsmi_buffer_header *h =
(struct hgsmi_buffer_header *)((u8 *)buf - sizeof(*h));
size_t total_size = h->data_size + sizeof(*h) +
sizeof(struct hgsmi_buffer_tail);
gen_pool_free(guest_pool, (unsigned long)h, total_size);
}
int hgsmi_buffer_submit(struct gen_pool *guest_pool, void *buf)
{
phys_addr_t offset;
offset = gen_pool_virt_to_phys(guest_pool, (unsigned long)buf -
sizeof(struct hgsmi_buffer_header));
outl(offset, VGA_PORT_HGSMI_GUEST);
/* Make the compiler aware that the host has changed memory. */
mb();
return 0;
}
| linux-master | drivers/gpu/drm/vboxvideo/vbox_hgsmi.c |
// SPDX-License-Identifier: MIT
/* Copyright (C) 2006-2017 Oracle Corporation */
#include <linux/vbox_err.h>
#include "vbox_drv.h"
#include "vboxvideo_guest.h"
#include "vboxvideo_vbe.h"
#include "hgsmi_channels.h"
#include "hgsmi_ch_setup.h"
/**
* hgsmi_report_flags_location - Inform the host of the location of
* the host flags in VRAM via an HGSMI cmd.
* Return: 0 or negative errno value.
* @ctx: The context of the guest heap to use.
* @location: The offset chosen for the flags within guest VRAM.
*/
int hgsmi_report_flags_location(struct gen_pool *ctx, u32 location)
{
struct hgsmi_buffer_location *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_HGSMI,
HGSMI_CC_HOST_FLAGS_LOCATION);
if (!p)
return -ENOMEM;
p->buf_location = location;
p->buf_len = sizeof(struct hgsmi_host_flags);
hgsmi_buffer_submit(ctx, p);
hgsmi_buffer_free(ctx, p);
return 0;
}
/**
* hgsmi_send_caps_info - Notify the host of HGSMI-related guest capabilities
* via an HGSMI command.
* Return: 0 or negative errno value.
* @ctx: The context of the guest heap to use.
* @caps: The capabilities to report, see vbva_caps.
*/
int hgsmi_send_caps_info(struct gen_pool *ctx, u32 caps)
{
struct vbva_caps *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA, VBVA_INFO_CAPS);
if (!p)
return -ENOMEM;
p->rc = VERR_NOT_IMPLEMENTED;
p->caps = caps;
hgsmi_buffer_submit(ctx, p);
WARN_ON_ONCE(p->rc < 0);
hgsmi_buffer_free(ctx, p);
return 0;
}
int hgsmi_test_query_conf(struct gen_pool *ctx)
{
u32 value = 0;
int ret;
ret = hgsmi_query_conf(ctx, U32_MAX, &value);
if (ret)
return ret;
return value == U32_MAX ? 0 : -EIO;
}
/**
* hgsmi_query_conf - Query the host for an HGSMI configuration
* parameter via an HGSMI command.
* Return: 0 or negative errno value.
* @ctx: The context containing the heap used.
* @index: The index of the parameter to query.
* @value_ret: Where to store the value of the parameter on success.
*/
int hgsmi_query_conf(struct gen_pool *ctx, u32 index, u32 *value_ret)
{
struct vbva_conf32 *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA,
VBVA_QUERY_CONF32);
if (!p)
return -ENOMEM;
p->index = index;
p->value = U32_MAX;
hgsmi_buffer_submit(ctx, p);
*value_ret = p->value;
hgsmi_buffer_free(ctx, p);
return 0;
}
/**
* hgsmi_update_pointer_shape - Pass the host a new mouse pointer shape
* via an HGSMI command.
* Return: 0 or negative errno value.
* @ctx: The context containing the heap to be used.
* @flags: Cursor flags.
* @hot_x: Horizontal position of the hot spot.
* @hot_y: Vertical position of the hot spot.
* @width: Width in pixels of the cursor.
* @height: Height in pixels of the cursor.
* @pixels: Pixel data, @see VMMDevReqMousePointer for the format.
* @len: Size in bytes of the pixel data.
*/
int hgsmi_update_pointer_shape(struct gen_pool *ctx, u32 flags,
u32 hot_x, u32 hot_y, u32 width, u32 height,
u8 *pixels, u32 len)
{
struct vbva_mouse_pointer_shape *p;
u32 pixel_len = 0;
int rc;
if (flags & VBOX_MOUSE_POINTER_SHAPE) {
/*
* Size of the pointer data:
* sizeof (AND mask) + sizeof (XOR_MASK)
*/
pixel_len = ((((width + 7) / 8) * height + 3) & ~3) +
width * 4 * height;
if (pixel_len > len)
return -EINVAL;
/*
* If shape is supplied, then always create the pointer visible.
* See comments in 'vboxUpdatePointerShape'
*/
flags |= VBOX_MOUSE_POINTER_VISIBLE;
}
p = hgsmi_buffer_alloc(ctx, sizeof(*p) + pixel_len, HGSMI_CH_VBVA,
VBVA_MOUSE_POINTER_SHAPE);
if (!p)
return -ENOMEM;
p->result = VINF_SUCCESS;
p->flags = flags;
p->hot_X = hot_x;
p->hot_y = hot_y;
p->width = width;
p->height = height;
if (pixel_len)
memcpy(p->data, pixels, pixel_len);
hgsmi_buffer_submit(ctx, p);
switch (p->result) {
case VINF_SUCCESS:
rc = 0;
break;
case VERR_NO_MEMORY:
rc = -ENOMEM;
break;
case VERR_NOT_SUPPORTED:
rc = -EBUSY;
break;
default:
rc = -EINVAL;
}
hgsmi_buffer_free(ctx, p);
return rc;
}
/**
* hgsmi_cursor_position - Report the guest cursor position. The host may
* wish to use this information to re-position its
* own cursor (though this is currently unlikely).
* The current host cursor position is returned.
* Return: 0 or negative errno value.
* @ctx: The context containing the heap used.
* @report_position: Are we reporting a position?
* @x: Guest cursor X position.
* @y: Guest cursor Y position.
* @x_host: Host cursor X position is stored here. Optional.
* @y_host: Host cursor Y position is stored here. Optional.
*/
int hgsmi_cursor_position(struct gen_pool *ctx, bool report_position,
u32 x, u32 y, u32 *x_host, u32 *y_host)
{
struct vbva_cursor_position *p;
p = hgsmi_buffer_alloc(ctx, sizeof(*p), HGSMI_CH_VBVA,
VBVA_CURSOR_POSITION);
if (!p)
return -ENOMEM;
p->report_position = report_position;
p->x = x;
p->y = y;
hgsmi_buffer_submit(ctx, p);
*x_host = p->x;
*y_host = p->y;
hgsmi_buffer_free(ctx, p);
return 0;
}
| linux-master | drivers/gpu/drm/vboxvideo/hgsmi_base.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <linux/platform_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_print.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_irq.h"
#include "tidss_plane.h"
/* call with wait_lock and dispc runtime held */
static void tidss_irq_update(struct tidss_device *tidss)
{
assert_spin_locked(&tidss->wait_lock);
dispc_set_irqenable(tidss->dispc, tidss->irq_mask);
}
void tidss_irq_enable_vblank(struct drm_crtc *crtc)
{
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
u32 hw_videoport = tcrtc->hw_videoport;
unsigned long flags;
spin_lock_irqsave(&tidss->wait_lock, flags);
tidss->irq_mask |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport) |
DSS_IRQ_VP_VSYNC_ODD(hw_videoport);
tidss_irq_update(tidss);
spin_unlock_irqrestore(&tidss->wait_lock, flags);
}
void tidss_irq_disable_vblank(struct drm_crtc *crtc)
{
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
u32 hw_videoport = tcrtc->hw_videoport;
unsigned long flags;
spin_lock_irqsave(&tidss->wait_lock, flags);
tidss->irq_mask &= ~(DSS_IRQ_VP_VSYNC_EVEN(hw_videoport) |
DSS_IRQ_VP_VSYNC_ODD(hw_videoport));
tidss_irq_update(tidss);
spin_unlock_irqrestore(&tidss->wait_lock, flags);
}
static irqreturn_t tidss_irq_handler(int irq, void *arg)
{
struct drm_device *ddev = (struct drm_device *)arg;
struct tidss_device *tidss = to_tidss(ddev);
unsigned int id;
dispc_irq_t irqstatus;
irqstatus = dispc_read_and_clear_irqstatus(tidss->dispc);
for (id = 0; id < tidss->num_crtcs; id++) {
struct drm_crtc *crtc = tidss->crtcs[id];
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
u32 hw_videoport = tcrtc->hw_videoport;
if (irqstatus & (DSS_IRQ_VP_VSYNC_EVEN(hw_videoport) |
DSS_IRQ_VP_VSYNC_ODD(hw_videoport)))
tidss_crtc_vblank_irq(crtc);
if (irqstatus & (DSS_IRQ_VP_FRAME_DONE(hw_videoport)))
tidss_crtc_framedone_irq(crtc);
if (irqstatus & DSS_IRQ_VP_SYNC_LOST(hw_videoport))
tidss_crtc_error_irq(crtc, irqstatus);
}
if (irqstatus & DSS_IRQ_DEVICE_OCP_ERR)
dev_err_ratelimited(tidss->dev, "OCP error\n");
return IRQ_HANDLED;
}
void tidss_irq_resume(struct tidss_device *tidss)
{
unsigned long flags;
spin_lock_irqsave(&tidss->wait_lock, flags);
tidss_irq_update(tidss);
spin_unlock_irqrestore(&tidss->wait_lock, flags);
}
static void tidss_irq_preinstall(struct drm_device *ddev)
{
struct tidss_device *tidss = to_tidss(ddev);
spin_lock_init(&tidss->wait_lock);
tidss_runtime_get(tidss);
dispc_set_irqenable(tidss->dispc, 0);
dispc_read_and_clear_irqstatus(tidss->dispc);
tidss_runtime_put(tidss);
}
static void tidss_irq_postinstall(struct drm_device *ddev)
{
struct tidss_device *tidss = to_tidss(ddev);
unsigned long flags;
unsigned int i;
tidss_runtime_get(tidss);
spin_lock_irqsave(&tidss->wait_lock, flags);
tidss->irq_mask = DSS_IRQ_DEVICE_OCP_ERR;
for (i = 0; i < tidss->num_crtcs; ++i) {
struct tidss_crtc *tcrtc = to_tidss_crtc(tidss->crtcs[i]);
tidss->irq_mask |= DSS_IRQ_VP_SYNC_LOST(tcrtc->hw_videoport);
tidss->irq_mask |= DSS_IRQ_VP_FRAME_DONE(tcrtc->hw_videoport);
}
tidss_irq_update(tidss);
spin_unlock_irqrestore(&tidss->wait_lock, flags);
tidss_runtime_put(tidss);
}
int tidss_irq_install(struct drm_device *ddev, unsigned int irq)
{
int ret;
if (irq == IRQ_NOTCONNECTED)
return -ENOTCONN;
tidss_irq_preinstall(ddev);
ret = request_irq(irq, tidss_irq_handler, 0, ddev->driver->name, ddev);
if (ret)
return ret;
tidss_irq_postinstall(ddev);
return 0;
}
void tidss_irq_uninstall(struct drm_device *ddev)
{
struct tidss_device *tidss = to_tidss(ddev);
tidss_runtime_get(tidss);
dispc_set_irqenable(tidss->dispc, 0);
tidss_runtime_put(tidss);
free_irq(tidss->irq, ddev);
}
| linux-master | drivers/gpu/drm/tidss/tidss_irq.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Jyri Sarha <[email protected]>
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include "tidss_scale_coefs.h"
/*
* These are interpolated with a custom python script from DSS5
* (drivers/gpu/drm/omapdrm/dss/dispc_coef.c) coefficients.
*/
static const struct tidss_scale_coefs coef5_m32 = {
.c2 = { 28, 34, 40, 46, 52, 58, 64, 70, 0, 2, 4, 8, 12, 16, 20, 24, },
.c1 = { 132, 138, 144, 150, 156, 162, 168, 174, 76, 84, 92, 98, 104, 110, 116, 124, },
.c0 = { 192, 192, 192, 190, 188, 186, 184, 182, 180, },
};
static const struct tidss_scale_coefs coef5_m26 = {
.c2 = { 24, 28, 32, 38, 44, 50, 56, 64, 0, 2, 4, 6, 8, 12, 16, 20, },
.c1 = { 132, 138, 144, 152, 160, 166, 172, 178, 72, 80, 88, 94, 100, 108, 116, 124, },
.c0 = { 200, 202, 204, 202, 200, 196, 192, 188, 184, },
};
static const struct tidss_scale_coefs coef5_m22 = {
.c2 = { 16, 20, 24, 30, 36, 42, 48, 56, 0, 0, 0, 2, 4, 8, 12, 14, },
.c1 = { 132, 140, 148, 156, 164, 172, 180, 186, 64, 72, 80, 88, 96, 104, 112, 122, },
.c0 = { 216, 216, 216, 214, 212, 208, 204, 198, 192, },
};
static const struct tidss_scale_coefs coef5_m19 = {
.c2 = { 12, 14, 16, 22, 28, 34, 40, 48, 0, 0, 0, 2, 4, 4, 4, 8, },
.c1 = { 128, 140, 152, 160, 168, 176, 184, 192, 56, 64, 72, 82, 92, 100, 108, 118, },
.c0 = { 232, 232, 232, 226, 220, 218, 216, 208, 200, },
};
static const struct tidss_scale_coefs coef5_m16 = {
.c2 = { 0, 2, 4, 8, 12, 18, 24, 32, 0, 0, 0, -2, -4, -4, -4, -2, },
.c1 = { 124, 138, 152, 164, 176, 186, 196, 206, 40, 48, 56, 68, 80, 90, 100, 112, },
.c0 = { 264, 262, 260, 254, 248, 242, 236, 226, 216, },
};
static const struct tidss_scale_coefs coef5_m14 = {
.c2 = { -8, -6, -4, -2, 0, 6, 12, 18, 0, -2, -4, -6, -8, -8, -8, -8, },
.c1 = { 120, 134, 148, 164, 180, 194, 208, 220, 24, 32, 40, 52, 64, 78, 92, 106, },
.c0 = { 288, 286, 284, 280, 276, 266, 256, 244, 232, },
};
static const struct tidss_scale_coefs coef5_m13 = {
.c2 = { -12, -12, -12, -10, -8, -4, 0, 6, 0, -2, -4, -6, -8, -10, -12, -12, },
.c1 = { 112, 130, 148, 164, 180, 196, 212, 228, 12, 22, 32, 44, 56, 70, 84, 98, },
.c0 = { 312, 308, 304, 298, 292, 282, 272, 258, 244, },
};
static const struct tidss_scale_coefs coef5_m12 = {
.c2 = { -16, -18, -20, -18, -16, -14, -12, -6, 0, -2, -4, -6, -8, -10, -12, -14, },
.c1 = { 104, 124, 144, 164, 184, 202, 220, 238, 0, 10, 20, 30, 40, 56, 72, 88, },
.c0 = { 336, 332, 328, 320, 312, 300, 288, 272, 256, },
};
static const struct tidss_scale_coefs coef5_m11 = {
.c2 = { -20, -22, -24, -24, -24, -24, -24, -20, 0, -2, -4, -6, -8, -10, -12, -16, },
.c1 = { 92, 114, 136, 158, 180, 204, 228, 250, -16, -8, 0, 12, 24, 38, 52, 72, },
.c0 = { 368, 364, 360, 350, 340, 326, 312, 292, 272, },
};
static const struct tidss_scale_coefs coef5_m10 = {
.c2 = { -16, -20, -24, -28, -32, -34, -36, -34, 0, 0, 0, -2, -4, -8, -12, -14, },
.c1 = { 72, 96, 120, 148, 176, 204, 232, 260, -32, -26, -20, -10, 0, 16, 32, 52, },
.c0 = { 400, 398, 396, 384, 372, 354, 336, 312, 288, },
};
static const struct tidss_scale_coefs coef5_m9 = {
.c2 = { -12, -18, -24, -28, -32, -38, -44, -46, 0, 2, 4, 2, 0, -2, -4, -8, },
.c1 = { 40, 68, 96, 128, 160, 196, 232, 268, -48, -46, -44, -36, -28, -14, 0, 20, },
.c0 = { 456, 450, 444, 428, 412, 388, 364, 334, 304, },
};
static const struct tidss_scale_coefs coef5_m8 = {
.c2 = { 0, -4, -8, -16, -24, -32, -40, -48, 0, 2, 4, 6, 8, 6, 4, 2, },
.c1 = { 0, 28, 56, 94, 132, 176, 220, 266, -56, -60, -64, -62, -60, -50, -40, -20, },
.c0 = { 512, 506, 500, 478, 456, 424, 392, 352, 312, },
};
static const struct tidss_scale_coefs coef3_m32 = {
.c1 = { 108, 92, 76, 62, 48, 36, 24, 140, 256, 236, 216, 198, 180, 162, 144, 126, },
.c0 = { 296, 294, 292, 288, 284, 278, 272, 136, 256, },
};
static const struct tidss_scale_coefs coef3_m26 = {
.c1 = { 104, 90, 76, 60, 44, 32, 20, 138, 256, 236, 216, 198, 180, 160, 140, 122, },
.c0 = { 304, 300, 296, 292, 288, 282, 276, 138, 256, },
};
static const struct tidss_scale_coefs coef3_m22 = {
.c1 = { 100, 84, 68, 54, 40, 30, 20, 138, 256, 236, 216, 196, 176, 156, 136, 118, },
.c0 = { 312, 310, 308, 302, 296, 286, 276, 138, 256, },
};
static const struct tidss_scale_coefs coef3_m19 = {
.c1 = { 96, 80, 64, 50, 36, 26, 16, 136, 256, 236, 216, 194, 172, 152, 132, 114, },
.c0 = { 320, 318, 316, 310, 304, 292, 280, 140, 256, },
};
static const struct tidss_scale_coefs coef3_m16 = {
.c1 = { 88, 72, 56, 44, 32, 22, 12, 134, 256, 234, 212, 190, 168, 148, 128, 108, },
.c0 = { 336, 332, 328, 320, 312, 300, 288, 144, 256, },
};
static const struct tidss_scale_coefs coef3_m14 = {
.c1 = { 80, 64, 48, 36, 24, 16, 8, 132, 256, 232, 208, 186, 164, 142, 120, 100, },
.c0 = { 352, 348, 344, 334, 324, 310, 296, 148, 256, },
};
static const struct tidss_scale_coefs coef3_m13 = {
.c1 = { 72, 56, 40, 30, 20, 12, 4, 130, 256, 232, 208, 184, 160, 136, 112, 92, },
.c0 = { 368, 364, 360, 346, 332, 316, 300, 150, 256, },
};
static const struct tidss_scale_coefs coef3_m12 = {
.c1 = { 64, 50, 36, 26, 16, 10, 4, 130, 256, 230, 204, 178, 152, 128, 104, 84, },
.c0 = { 384, 378, 372, 358, 344, 324, 304, 152, 256, },
};
static const struct tidss_scale_coefs coef3_m11 = {
.c1 = { 56, 40, 24, 16, 8, 4, 0, 128, 256, 228, 200, 172, 144, 120, 96, 76, },
.c0 = { 400, 396, 392, 376, 360, 336, 312, 156, 256, },
};
static const struct tidss_scale_coefs coef3_m10 = {
.c1 = { 40, 26, 12, 6, 0, -2, -4, 126, 256, 226, 196, 166, 136, 110, 84, 62, },
.c0 = { 432, 424, 416, 396, 376, 348, 320, 160, 256, },
};
static const struct tidss_scale_coefs coef3_m9 = {
.c1 = { 24, 12, 0, -4, -8, -8, -8, 124, 256, 222, 188, 154, 120, 92, 64, 44, },
.c0 = { 464, 456, 448, 424, 400, 366, 332, 166, 256, },
};
static const struct tidss_scale_coefs coef3_m8 = {
.c1 = { 0, -8, -16, -16, -16, -12, -8, 124, 256, 214, 172, 134, 96, 66, 36, 18, },
.c0 = { 512, 502, 492, 462, 432, 390, 348, 174, 256, },
};
const struct tidss_scale_coefs *tidss_get_scale_coefs(struct device *dev,
u32 firinc,
bool five_taps)
{
int i;
int inc;
static const struct {
int mmin;
int mmax;
const struct tidss_scale_coefs *coef3;
const struct tidss_scale_coefs *coef5;
const char *name;
} coefs[] = {
{ 27, 32, &coef3_m32, &coef5_m32, "M32" },
{ 23, 26, &coef3_m26, &coef5_m26, "M26" },
{ 20, 22, &coef3_m22, &coef5_m22, "M22" },
{ 17, 19, &coef3_m19, &coef5_m19, "M19" },
{ 15, 16, &coef3_m16, &coef5_m16, "M16" },
{ 14, 14, &coef3_m14, &coef5_m14, "M14" },
{ 13, 13, &coef3_m13, &coef5_m13, "M13" },
{ 12, 12, &coef3_m12, &coef5_m12, "M12" },
{ 11, 11, &coef3_m11, &coef5_m11, "M11" },
{ 10, 10, &coef3_m10, &coef5_m10, "M10" },
{ 9, 9, &coef3_m9, &coef5_m9, "M9" },
{ 4, 8, &coef3_m8, &coef5_m8, "M8" },
/*
* When upscaling more than two times, blockiness and outlines
* around the image are observed when M8 tables are used. M11,
* M16 and M19 tables are used to prevent this.
*/
{ 3, 3, &coef3_m11, &coef5_m11, "M11" },
{ 2, 2, &coef3_m16, &coef5_m16, "M16" },
{ 0, 1, &coef3_m19, &coef5_m19, "M19" },
};
/*
* inc is result of 0x200000 * in_size / out_size. This dividing
* by 0x40000 scales it down to 8 * in_size / out_size. After
* division the actual scaling factor is 8/inc.
*/
inc = firinc / 0x40000;
for (i = 0; i < ARRAY_SIZE(coefs); ++i) {
if (inc >= coefs[i].mmin && inc <= coefs[i].mmax) {
if (five_taps)
return coefs[i].coef5;
else
return coefs[i].coef3;
}
}
dev_err(dev, "%s: Coefficients not found for firinc 0x%08x, inc %d\n",
__func__, firinc, inc);
return NULL;
}
| linux-master | drivers/gpu/drm/tidss/tidss_scale_coefs.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <linux/dma-fence.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_vblank.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_encoder.h"
#include "tidss_kms.h"
#include "tidss_plane.h"
static void tidss_atomic_commit_tail(struct drm_atomic_state *old_state)
{
struct drm_device *ddev = old_state->dev;
struct tidss_device *tidss = to_tidss(ddev);
bool fence_cookie = dma_fence_begin_signalling();
dev_dbg(ddev->dev, "%s\n", __func__);
tidss_runtime_get(tidss);
drm_atomic_helper_commit_modeset_disables(ddev, old_state);
drm_atomic_helper_commit_planes(ddev, old_state, 0);
drm_atomic_helper_commit_modeset_enables(ddev, old_state);
drm_atomic_helper_commit_hw_done(old_state);
dma_fence_end_signalling(fence_cookie);
drm_atomic_helper_wait_for_flip_done(ddev, old_state);
drm_atomic_helper_cleanup_planes(ddev, old_state);
tidss_runtime_put(tidss);
}
static const struct drm_mode_config_helper_funcs mode_config_helper_funcs = {
.atomic_commit_tail = tidss_atomic_commit_tail,
};
static int tidss_atomic_check(struct drm_device *ddev,
struct drm_atomic_state *state)
{
struct drm_plane_state *opstate;
struct drm_plane_state *npstate;
struct drm_plane *plane;
struct drm_crtc_state *cstate;
struct drm_crtc *crtc;
int ret, i;
ret = drm_atomic_helper_check(ddev, state);
if (ret)
return ret;
/*
* Add all active planes on a CRTC to the atomic state, if
* x/y/z position or activity of any plane on that CRTC
* changes. This is needed for updating the plane positions in
* tidss_crtc_position_planes() which is called from
* crtc_atomic_enable() and crtc_atomic_flush(). We have an
* extra flag to mark x,y-position changes and together
* with zpos_changed the condition recognizes all the above
* cases.
*/
for_each_oldnew_plane_in_state(state, plane, opstate, npstate, i) {
if (!npstate->crtc || !npstate->visible)
continue;
if (!opstate->crtc || opstate->crtc_x != npstate->crtc_x ||
opstate->crtc_y != npstate->crtc_y) {
cstate = drm_atomic_get_crtc_state(state,
npstate->crtc);
if (IS_ERR(cstate))
return PTR_ERR(cstate);
to_tidss_crtc_state(cstate)->plane_pos_changed = true;
}
}
for_each_new_crtc_in_state(state, crtc, cstate, i) {
if (to_tidss_crtc_state(cstate)->plane_pos_changed ||
cstate->zpos_changed) {
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
}
return 0;
}
static const struct drm_mode_config_funcs mode_config_funcs = {
.fb_create = drm_gem_fb_create,
.atomic_check = tidss_atomic_check,
.atomic_commit = drm_atomic_helper_commit,
};
static int tidss_dispc_modeset_init(struct tidss_device *tidss)
{
struct device *dev = tidss->dev;
unsigned int fourccs_len;
const u32 *fourccs = dispc_plane_formats(tidss->dispc, &fourccs_len);
unsigned int i;
struct pipe {
u32 hw_videoport;
struct drm_bridge *bridge;
u32 enc_type;
};
const struct dispc_features *feat = tidss->feat;
u32 max_vps = feat->num_vps;
u32 max_planes = feat->num_planes;
struct pipe pipes[TIDSS_MAX_PORTS];
u32 num_pipes = 0;
u32 crtc_mask;
/* first find all the connected panels & bridges */
for (i = 0; i < max_vps; i++) {
struct drm_panel *panel;
struct drm_bridge *bridge;
u32 enc_type = DRM_MODE_ENCODER_NONE;
int ret;
ret = drm_of_find_panel_or_bridge(dev->of_node, i, 0,
&panel, &bridge);
if (ret == -ENODEV) {
dev_dbg(dev, "no panel/bridge for port %d\n", i);
continue;
} else if (ret) {
dev_dbg(dev, "port %d probe returned %d\n", i, ret);
return ret;
}
if (panel) {
u32 conn_type;
dev_dbg(dev, "Setting up panel for port %d\n", i);
switch (feat->vp_bus_type[i]) {
case DISPC_VP_OLDI:
enc_type = DRM_MODE_ENCODER_LVDS;
conn_type = DRM_MODE_CONNECTOR_LVDS;
break;
case DISPC_VP_DPI:
enc_type = DRM_MODE_ENCODER_DPI;
conn_type = DRM_MODE_CONNECTOR_DPI;
break;
default:
WARN_ON(1);
return -EINVAL;
}
if (panel->connector_type != conn_type) {
dev_err(dev,
"%s: Panel %s has incompatible connector type for vp%d (%d != %d)\n",
__func__, dev_name(panel->dev), i,
panel->connector_type, conn_type);
return -EINVAL;
}
bridge = devm_drm_panel_bridge_add(dev, panel);
if (IS_ERR(bridge)) {
dev_err(dev,
"failed to set up panel bridge for port %d\n",
i);
return PTR_ERR(bridge);
}
}
pipes[num_pipes].hw_videoport = i;
pipes[num_pipes].bridge = bridge;
pipes[num_pipes].enc_type = enc_type;
num_pipes++;
}
/* all planes can be on any crtc */
crtc_mask = (1 << num_pipes) - 1;
/* then create a plane, a crtc and an encoder for each panel/bridge */
for (i = 0; i < num_pipes; ++i) {
struct tidss_plane *tplane;
struct tidss_crtc *tcrtc;
u32 hw_plane_id = feat->vid_order[tidss->num_planes];
int ret;
tplane = tidss_plane_create(tidss, hw_plane_id,
DRM_PLANE_TYPE_PRIMARY, crtc_mask,
fourccs, fourccs_len);
if (IS_ERR(tplane)) {
dev_err(tidss->dev, "plane create failed\n");
return PTR_ERR(tplane);
}
tidss->planes[tidss->num_planes++] = &tplane->plane;
tcrtc = tidss_crtc_create(tidss, pipes[i].hw_videoport,
&tplane->plane);
if (IS_ERR(tcrtc)) {
dev_err(tidss->dev, "crtc create failed\n");
return PTR_ERR(tcrtc);
}
tidss->crtcs[tidss->num_crtcs++] = &tcrtc->crtc;
ret = tidss_encoder_create(tidss, pipes[i].bridge,
pipes[i].enc_type,
1 << tcrtc->crtc.index);
if (ret) {
dev_err(tidss->dev, "encoder create failed\n");
return ret;
}
}
/* create overlay planes of the leftover planes */
while (tidss->num_planes < max_planes) {
struct tidss_plane *tplane;
u32 hw_plane_id = feat->vid_order[tidss->num_planes];
tplane = tidss_plane_create(tidss, hw_plane_id,
DRM_PLANE_TYPE_OVERLAY, crtc_mask,
fourccs, fourccs_len);
if (IS_ERR(tplane)) {
dev_err(tidss->dev, "plane create failed\n");
return PTR_ERR(tplane);
}
tidss->planes[tidss->num_planes++] = &tplane->plane;
}
return 0;
}
int tidss_modeset_init(struct tidss_device *tidss)
{
struct drm_device *ddev = &tidss->ddev;
int ret;
dev_dbg(tidss->dev, "%s\n", __func__);
ret = drmm_mode_config_init(ddev);
if (ret)
return ret;
ddev->mode_config.min_width = 8;
ddev->mode_config.min_height = 8;
ddev->mode_config.max_width = 8096;
ddev->mode_config.max_height = 8096;
ddev->mode_config.normalize_zpos = true;
ddev->mode_config.funcs = &mode_config_funcs;
ddev->mode_config.helper_private = &mode_config_helper_funcs;
ret = tidss_dispc_modeset_init(tidss);
if (ret)
return ret;
ret = drm_vblank_init(ddev, tidss->num_crtcs);
if (ret)
return ret;
drm_mode_config_reset(ddev);
dev_dbg(tidss->dev, "%s done\n", __func__);
return 0;
}
| linux-master | drivers/gpu/drm/tidss/tidss_kms.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <linux/console.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_drv.h>
#include <drm/drm_fbdev_dma.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_managed.h>
#include <drm/drm_module.h>
#include <drm/drm_probe_helper.h>
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_kms.h"
#include "tidss_irq.h"
/* Power management */
int tidss_runtime_get(struct tidss_device *tidss)
{
int r;
dev_dbg(tidss->dev, "%s\n", __func__);
r = pm_runtime_get_sync(tidss->dev);
WARN_ON(r < 0);
return r < 0 ? r : 0;
}
void tidss_runtime_put(struct tidss_device *tidss)
{
int r;
dev_dbg(tidss->dev, "%s\n", __func__);
r = pm_runtime_put_sync(tidss->dev);
WARN_ON(r < 0);
}
static int __maybe_unused tidss_pm_runtime_suspend(struct device *dev)
{
struct tidss_device *tidss = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
return dispc_runtime_suspend(tidss->dispc);
}
static int __maybe_unused tidss_pm_runtime_resume(struct device *dev)
{
struct tidss_device *tidss = dev_get_drvdata(dev);
int r;
dev_dbg(dev, "%s\n", __func__);
r = dispc_runtime_resume(tidss->dispc);
if (r)
return r;
return 0;
}
static int __maybe_unused tidss_suspend(struct device *dev)
{
struct tidss_device *tidss = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
return drm_mode_config_helper_suspend(&tidss->ddev);
}
static int __maybe_unused tidss_resume(struct device *dev)
{
struct tidss_device *tidss = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
return drm_mode_config_helper_resume(&tidss->ddev);
}
static __maybe_unused const struct dev_pm_ops tidss_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tidss_suspend, tidss_resume)
SET_RUNTIME_PM_OPS(tidss_pm_runtime_suspend, tidss_pm_runtime_resume, NULL)
};
/* DRM device Information */
static void tidss_release(struct drm_device *ddev)
{
drm_kms_helper_poll_fini(ddev);
}
DEFINE_DRM_GEM_DMA_FOPS(tidss_fops);
static const struct drm_driver tidss_driver = {
.driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
.fops = &tidss_fops,
.release = tidss_release,
DRM_GEM_DMA_DRIVER_OPS_VMAP,
.name = "tidss",
.desc = "TI Keystone DSS",
.date = "20180215",
.major = 1,
.minor = 0,
};
static int tidss_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tidss_device *tidss;
struct drm_device *ddev;
int ret;
int irq;
dev_dbg(dev, "%s\n", __func__);
tidss = devm_drm_dev_alloc(&pdev->dev, &tidss_driver,
struct tidss_device, ddev);
if (IS_ERR(tidss))
return PTR_ERR(tidss);
ddev = &tidss->ddev;
tidss->dev = dev;
tidss->feat = of_device_get_match_data(dev);
platform_set_drvdata(pdev, tidss);
ret = dispc_init(tidss);
if (ret) {
dev_err(dev, "failed to initialize dispc: %d\n", ret);
return ret;
}
pm_runtime_enable(dev);
#ifndef CONFIG_PM
/* If we don't have PM, we need to call resume manually */
dispc_runtime_resume(tidss->dispc);
#endif
ret = tidss_modeset_init(tidss);
if (ret < 0) {
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to init DRM/KMS (%d)\n", ret);
goto err_runtime_suspend;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_runtime_suspend;
}
tidss->irq = irq;
ret = tidss_irq_install(ddev, irq);
if (ret) {
dev_err(dev, "tidss_irq_install failed: %d\n", ret);
goto err_runtime_suspend;
}
drm_kms_helper_poll_init(ddev);
drm_mode_config_reset(ddev);
ret = drm_dev_register(ddev, 0);
if (ret) {
dev_err(dev, "failed to register DRM device\n");
goto err_irq_uninstall;
}
drm_fbdev_dma_setup(ddev, 32);
dev_dbg(dev, "%s done\n", __func__);
return 0;
err_irq_uninstall:
tidss_irq_uninstall(ddev);
err_runtime_suspend:
#ifndef CONFIG_PM
dispc_runtime_suspend(tidss->dispc);
#endif
pm_runtime_disable(dev);
return ret;
}
static void tidss_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tidss_device *tidss = platform_get_drvdata(pdev);
struct drm_device *ddev = &tidss->ddev;
dev_dbg(dev, "%s\n", __func__);
drm_dev_unregister(ddev);
drm_atomic_helper_shutdown(ddev);
tidss_irq_uninstall(ddev);
#ifndef CONFIG_PM
/* If we don't have PM, we need to call suspend manually */
dispc_runtime_suspend(tidss->dispc);
#endif
pm_runtime_disable(dev);
/* devm allocated dispc goes away with the dev so mark it NULL */
dispc_remove(tidss);
dev_dbg(dev, "%s done\n", __func__);
}
static void tidss_shutdown(struct platform_device *pdev)
{
drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
}
static const struct of_device_id tidss_of_table[] = {
{ .compatible = "ti,k2g-dss", .data = &dispc_k2g_feats, },
{ .compatible = "ti,am625-dss", .data = &dispc_am625_feats, },
{ .compatible = "ti,am65x-dss", .data = &dispc_am65x_feats, },
{ .compatible = "ti,j721e-dss", .data = &dispc_j721e_feats, },
{ }
};
MODULE_DEVICE_TABLE(of, tidss_of_table);
static struct platform_driver tidss_platform_driver = {
.probe = tidss_probe,
.remove_new = tidss_remove,
.shutdown = tidss_shutdown,
.driver = {
.name = "tidss",
.pm = pm_ptr(&tidss_pm_ops),
.of_match_table = tidss_of_table,
.suppress_bind_attrs = true,
},
};
drm_module_platform_driver(tidss_platform_driver);
MODULE_AUTHOR("Tomi Valkeinen <[email protected]>");
MODULE_DESCRIPTION("TI Keystone DSS Driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/gpu/drm/tidss/tidss_drv.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Jyri Sarha <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sys_soc.h>
#include <drm/drm_blend.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_panel.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_irq.h"
#include "tidss_plane.h"
#include "tidss_dispc_regs.h"
#include "tidss_scale_coefs.h"
static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x00,
[DSS_SYSCONFIG_OFF] = 0x04,
[DSS_SYSSTATUS_OFF] = 0x08,
[DISPC_IRQ_EOI_OFF] = 0x20,
[DISPC_IRQSTATUS_RAW_OFF] = 0x24,
[DISPC_IRQSTATUS_OFF] = 0x28,
[DISPC_IRQENABLE_SET_OFF] = 0x2c,
[DISPC_IRQENABLE_CLR_OFF] = 0x30,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40,
[DISPC_GLOBAL_BUFFER_OFF] = 0x44,
[DISPC_DBG_CONTROL_OFF] = 0x4c,
[DISPC_DBG_STATUS_OFF] = 0x50,
[DISPC_CLKGATING_DISABLE_OFF] = 0x54,
};
const struct dispc_features dispc_k2g_feats = {
.min_pclk_khz = 4375,
.max_pclk_khz = {
[DISPC_VP_DPI] = 150000,
},
/*
* XXX According TRM the RGB input buffer width up to 2560 should
* work on 3 taps, but in practice it only works up to 1280.
*/
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 1280,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 2560,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_K2G,
.common = "common",
.common_regs = tidss_k2g_common_regs,
.num_vps = 1,
.vp_name = { "vp1" },
.ovr_name = { "ovr1" },
.vpclk_name = { "vp1" },
.vp_bus_type = { DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 1,
.vid_name = { "vid1" },
.vid_lite = { false },
.vid_order = { 0 },
};
static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x4,
[DSS_SYSCONFIG_OFF] = 0x8,
[DSS_SYSSTATUS_OFF] = 0x20,
[DISPC_IRQ_EOI_OFF] = 0x24,
[DISPC_IRQSTATUS_RAW_OFF] = 0x28,
[DISPC_IRQSTATUS_OFF] = 0x2c,
[DISPC_IRQENABLE_SET_OFF] = 0x30,
[DISPC_IRQENABLE_CLR_OFF] = 0x40,
[DISPC_VID_IRQENABLE_OFF] = 0x44,
[DISPC_VID_IRQSTATUS_OFF] = 0x58,
[DISPC_VP_IRQENABLE_OFF] = 0x70,
[DISPC_VP_IRQSTATUS_OFF] = 0x7c,
[WB_IRQENABLE_OFF] = 0x88,
[WB_IRQSTATUS_OFF] = 0x8c,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90,
[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94,
[DISPC_GLOBAL_BUFFER_OFF] = 0x98,
[DSS_CBA_CFG_OFF] = 0x9c,
[DISPC_DBG_CONTROL_OFF] = 0xa0,
[DISPC_DBG_STATUS_OFF] = 0xa4,
[DISPC_CLKGATING_DISABLE_OFF] = 0xa8,
[DISPC_SECURE_DISABLE_OFF] = 0xac,
};
const struct dispc_features dispc_am65x_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 165000,
[DISPC_VP_OLDI] = 165000,
},
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 2560,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_AM65X,
.common = "common",
.common_regs = tidss_am65x_common_regs,
.num_vps = 2,
.vp_name = { "vp1", "vp2" },
.ovr_name = { "ovr1", "ovr2" },
.vpclk_name = { "vp1", "vp2" },
.vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 2,
/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
.vid_name = { "vid", "vidl1" },
.vid_lite = { false, true, },
.vid_order = { 1, 0 },
};
static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
[DSS_REVISION_OFF] = 0x4,
[DSS_SYSCONFIG_OFF] = 0x8,
[DSS_SYSSTATUS_OFF] = 0x20,
[DISPC_IRQ_EOI_OFF] = 0x80,
[DISPC_IRQSTATUS_RAW_OFF] = 0x28,
[DISPC_IRQSTATUS_OFF] = 0x2c,
[DISPC_IRQENABLE_SET_OFF] = 0x30,
[DISPC_IRQENABLE_CLR_OFF] = 0x34,
[DISPC_VID_IRQENABLE_OFF] = 0x38,
[DISPC_VID_IRQSTATUS_OFF] = 0x48,
[DISPC_VP_IRQENABLE_OFF] = 0x58,
[DISPC_VP_IRQSTATUS_OFF] = 0x68,
[WB_IRQENABLE_OFF] = 0x78,
[WB_IRQSTATUS_OFF] = 0x7c,
[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98,
[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c,
[DISPC_GLOBAL_BUFFER_OFF] = 0xa0,
[DSS_CBA_CFG_OFF] = 0xa4,
[DISPC_DBG_CONTROL_OFF] = 0xa8,
[DISPC_DBG_STATUS_OFF] = 0xac,
[DISPC_CLKGATING_DISABLE_OFF] = 0xb0,
[DISPC_SECURE_DISABLE_OFF] = 0x90,
[FBDC_REVISION_1_OFF] = 0xb8,
[FBDC_REVISION_2_OFF] = 0xbc,
[FBDC_REVISION_3_OFF] = 0xc0,
[FBDC_REVISION_4_OFF] = 0xc4,
[FBDC_REVISION_5_OFF] = 0xc8,
[FBDC_REVISION_6_OFF] = 0xcc,
[FBDC_COMMON_CONTROL_OFF] = 0xd0,
[FBDC_CONSTANT_COLOR_0_OFF] = 0xd4,
[FBDC_CONSTANT_COLOR_1_OFF] = 0xd8,
[DISPC_CONNECTIONS_OFF] = 0xe4,
[DISPC_MSS_VP1_OFF] = 0xe8,
[DISPC_MSS_VP3_OFF] = 0xec,
};
const struct dispc_features dispc_j721e_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 170000,
[DISPC_VP_INTERNAL] = 600000,
},
.scaling = {
.in_width_max_5tap_rgb = 2048,
.in_width_max_3tap_rgb = 4096,
.in_width_max_5tap_yuv = 4096,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_J721E,
.common = "common_m",
.common_regs = tidss_j721e_common_regs,
.num_vps = 4,
.vp_name = { "vp1", "vp2", "vp3", "vp4" },
.ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" },
.vpclk_name = { "vp1", "vp2", "vp3", "vp4" },
/* Currently hard coded VP routing (see dispc_initial_config()) */
.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI,
DISPC_VP_INTERNAL, DISPC_VP_DPI, },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 1024,
.gamma_type = TIDSS_GAMMA_10BIT,
},
},
.num_planes = 4,
.vid_name = { "vid1", "vidl1", "vid2", "vidl2" },
.vid_lite = { 0, 1, 0, 1, },
.vid_order = { 1, 3, 0, 2 },
};
const struct dispc_features dispc_am625_feats = {
.max_pclk_khz = {
[DISPC_VP_DPI] = 165000,
[DISPC_VP_INTERNAL] = 170000,
},
.scaling = {
.in_width_max_5tap_rgb = 1280,
.in_width_max_3tap_rgb = 2560,
.in_width_max_5tap_yuv = 2560,
.in_width_max_3tap_yuv = 4096,
.upscale_limit = 16,
.downscale_limit_5tap = 4,
.downscale_limit_3tap = 2,
/*
* The max supported pixel inc value is 255. The value
* of pixel inc is calculated like this: 1+(xinc-1)*bpp.
* The maximum bpp of all formats supported by the HW
* is 8. So the maximum supported xinc value is 32,
* because 1+(32-1)*8 < 255 < 1+(33-1)*4.
*/
.xinc_max = 32,
},
.subrev = DISPC_AM625,
.common = "common",
.common_regs = tidss_am65x_common_regs,
.num_vps = 2,
.vp_name = { "vp1", "vp2" },
.ovr_name = { "ovr1", "ovr2" },
.vpclk_name = { "vp1", "vp2" },
.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI },
.vp_feat = { .color = {
.has_ctm = true,
.gamma_size = 256,
.gamma_type = TIDSS_GAMMA_8BIT,
},
},
.num_planes = 2,
/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
.vid_name = { "vid", "vidl1" },
.vid_lite = { false, true, },
.vid_order = { 1, 0 },
};
static const u16 *dispc_common_regmap;
struct dss_vp_data {
u32 *gamma_table;
};
struct dispc_device {
struct tidss_device *tidss;
struct device *dev;
void __iomem *base_common;
void __iomem *base_vid[TIDSS_MAX_PLANES];
void __iomem *base_ovr[TIDSS_MAX_PORTS];
void __iomem *base_vp[TIDSS_MAX_PORTS];
struct regmap *oldi_io_ctrl;
struct clk *vp_clk[TIDSS_MAX_PORTS];
const struct dispc_features *feat;
struct clk *fclk;
bool is_enabled;
struct dss_vp_data vp_data[TIDSS_MAX_PORTS];
u32 *fourccs;
u32 num_fourccs;
u32 memory_bandwidth_limit;
struct dispc_errata errata;
};
static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val)
{
iowrite32(val, dispc->base_common + reg);
}
static u32 dispc_read(struct dispc_device *dispc, u16 reg)
{
return ioread32(dispc->base_common + reg);
}
static
void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val)
{
void __iomem *base = dispc->base_vid[hw_plane];
iowrite32(val, base + reg);
}
static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg)
{
void __iomem *base = dispc->base_vid[hw_plane];
return ioread32(base + reg);
}
static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport,
u16 reg, u32 val)
{
void __iomem *base = dispc->base_ovr[hw_videoport];
iowrite32(val, base + reg);
}
static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
{
void __iomem *base = dispc->base_ovr[hw_videoport];
return ioread32(base + reg);
}
static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport,
u16 reg, u32 val)
{
void __iomem *base = dispc->base_vp[hw_videoport];
iowrite32(val, base + reg);
}
static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
{
void __iomem *base = dispc->base_vp[hw_videoport];
return ioread32(base + reg);
}
/*
* TRM gives bitfields as start:end, where start is the higher bit
* number. For example 7:0
*/
static u32 FLD_MASK(u32 start, u32 end)
{
return ((1 << (start - end + 1)) - 1) << end;
}
static u32 FLD_VAL(u32 val, u32 start, u32 end)
{
return (val << end) & FLD_MASK(start, end);
}
static u32 FLD_GET(u32 val, u32 start, u32 end)
{
return (val & FLD_MASK(start, end)) >> end;
}
static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end)
{
return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end);
}
static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end)
{
return FLD_GET(dispc_read(dispc, idx), start, end);
}
static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val,
u32 start, u32 end)
{
dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val,
start, end));
}
static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end);
}
static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx,
u32 val, u32 start, u32 end)
{
dispc_vid_write(dispc, hw_plane, idx,
FLD_MOD(dispc_vid_read(dispc, hw_plane, idx),
val, start, end));
}
static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end);
}
static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val,
u32 start, u32 end)
{
dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx),
val, start, end));
}
__maybe_unused
static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx,
u32 start, u32 end)
{
return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end);
}
static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx,
u32 val, u32 start, u32 end)
{
dispc_ovr_write(dispc, ovr, idx,
FLD_MOD(dispc_ovr_read(dispc, ovr, idx),
val, start, end));
}
static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport)
{
dispc_irq_t vp_stat = 0;
if (stat & BIT(0))
vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport);
if (stat & BIT(1))
vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport);
if (stat & BIT(2))
vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport);
if (stat & BIT(4))
vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport);
return vp_stat;
}
static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport)
{
u32 stat = 0;
if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport))
stat |= BIT(0);
if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport))
stat |= BIT(1);
if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport))
stat |= BIT(2);
if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport))
stat |= BIT(4);
return stat;
}
static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane)
{
dispc_irq_t vid_stat = 0;
if (stat & BIT(0))
vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane);
return vid_stat;
}
static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane)
{
u32 stat = 0;
if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane))
stat |= BIT(0);
return stat;
}
static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS);
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat);
}
static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS);
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat);
}
static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE);
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat);
}
static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE);
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat);
}
static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc,
dispc_irq_t mask)
{
dispc_k2g_vp_write_irqstatus(dispc, 0, mask);
dispc_k2g_vid_write_irqstatus(dispc, 0, mask);
}
static
dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc)
{
dispc_irq_t stat = 0;
/* always clear the top level irqstatus */
dispc_write(dispc, DISPC_IRQSTATUS,
dispc_read(dispc, DISPC_IRQSTATUS));
stat |= dispc_k2g_vp_read_irqstatus(dispc, 0);
stat |= dispc_k2g_vid_read_irqstatus(dispc, 0);
dispc_k2g_clear_irqstatus(dispc, stat);
return stat;
}
static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc)
{
dispc_irq_t stat = 0;
stat |= dispc_k2g_vp_read_irqenable(dispc, 0);
stat |= dispc_k2g_vid_read_irqenable(dispc, 0);
return stat;
}
static
void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
{
dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc);
/* clear the irqstatus for newly enabled irqs */
dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
dispc_k2g_vp_set_irqenable(dispc, 0, mask);
dispc_k2g_vid_set_irqenable(dispc, 0, mask);
dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7));
/* flush posted write */
dispc_k2g_read_irqenable(dispc);
}
static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport));
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat);
}
static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane));
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat);
}
static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport));
return dispc_vp_irq_from_raw(stat, hw_videoport);
}
static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc,
u32 hw_videoport, dispc_irq_t vpstat)
{
u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat);
}
static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc,
u32 hw_plane)
{
u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane));
return dispc_vid_irq_from_raw(stat, hw_plane);
}
static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc,
u32 hw_plane, dispc_irq_t vidstat)
{
u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat);
}
static
void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask)
{
unsigned int i;
u32 top_clear = 0;
for (i = 0; i < dispc->feat->num_vps; ++i) {
if (clearmask & DSS_IRQ_VP_MASK(i)) {
dispc_k3_vp_write_irqstatus(dispc, i, clearmask);
top_clear |= BIT(i);
}
}
for (i = 0; i < dispc->feat->num_planes; ++i) {
if (clearmask & DSS_IRQ_PLANE_MASK(i)) {
dispc_k3_vid_write_irqstatus(dispc, i, clearmask);
top_clear |= BIT(4 + i);
}
}
if (dispc->feat->subrev == DISPC_K2G)
return;
dispc_write(dispc, DISPC_IRQSTATUS, top_clear);
/* Flush posted writes */
dispc_read(dispc, DISPC_IRQSTATUS);
}
static
dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc)
{
dispc_irq_t status = 0;
unsigned int i;
for (i = 0; i < dispc->feat->num_vps; ++i)
status |= dispc_k3_vp_read_irqstatus(dispc, i);
for (i = 0; i < dispc->feat->num_planes; ++i)
status |= dispc_k3_vid_read_irqstatus(dispc, i);
dispc_k3_clear_irqstatus(dispc, status);
return status;
}
static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc)
{
dispc_irq_t enable = 0;
unsigned int i;
for (i = 0; i < dispc->feat->num_vps; ++i)
enable |= dispc_k3_vp_read_irqenable(dispc, i);
for (i = 0; i < dispc->feat->num_planes; ++i)
enable |= dispc_k3_vid_read_irqenable(dispc, i);
return enable;
}
static void dispc_k3_set_irqenable(struct dispc_device *dispc,
dispc_irq_t mask)
{
unsigned int i;
u32 main_enable = 0, main_disable = 0;
dispc_irq_t old_mask;
old_mask = dispc_k3_read_irqenable(dispc);
/* clear the irqstatus for newly enabled irqs */
dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask);
for (i = 0; i < dispc->feat->num_vps; ++i) {
dispc_k3_vp_set_irqenable(dispc, i, mask);
if (mask & DSS_IRQ_VP_MASK(i))
main_enable |= BIT(i); /* VP IRQ */
else
main_disable |= BIT(i); /* VP IRQ */
}
for (i = 0; i < dispc->feat->num_planes; ++i) {
dispc_k3_vid_set_irqenable(dispc, i, mask);
if (mask & DSS_IRQ_PLANE_MASK(i))
main_enable |= BIT(i + 4); /* VID IRQ */
else
main_disable |= BIT(i + 4); /* VID IRQ */
}
if (main_enable)
dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable);
if (main_disable)
dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable);
/* Flush posted writes */
dispc_read(dispc, DISPC_IRQENABLE_SET);
}
dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
return dispc_k2g_read_and_clear_irqstatus(dispc);
case DISPC_AM625:
case DISPC_AM65X:
case DISPC_J721E:
return dispc_k3_read_and_clear_irqstatus(dispc);
default:
WARN_ON(1);
return 0;
}
}
void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_set_irqenable(dispc, mask);
break;
case DISPC_AM625:
case DISPC_AM65X:
case DISPC_J721E:
dispc_k3_set_irqenable(dispc, mask);
break;
default:
WARN_ON(1);
break;
}
}
enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 };
struct dispc_bus_format {
u32 bus_fmt;
u32 data_width;
bool is_oldi_fmt;
enum dispc_oldi_mode_reg_val oldi_mode_reg_val;
};
static const struct dispc_bus_format dispc_bus_formats[] = {
{ MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 },
{ MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 },
{ MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 },
{ MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 },
{ MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 },
{ MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 },
{ MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 },
{ MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 },
{ MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 },
};
static const
struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc,
u32 hw_videoport,
u32 bus_fmt, u32 bus_flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) {
if (dispc_bus_formats[i].bus_fmt == bus_fmt)
return &dispc_bus_formats[i];
}
return NULL;
}
int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
const struct dispc_bus_format *fmt;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (!fmt) {
dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n",
__func__, tstate->bus_format);
return -EINVAL;
}
if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI &&
fmt->is_oldi_fmt) {
dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n",
__func__, dispc->feat->vp_name[hw_videoport]);
return -EINVAL;
}
return 0;
}
static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power)
{
u32 val = power ? 0 : OLDI_PWRDN_TX;
if (WARN_ON(!dispc->oldi_io_ctrl))
return;
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL,
OLDI_PWRDN_TX, val);
regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL,
OLDI_PWRDN_TX, val);
}
static void dispc_set_num_datalines(struct dispc_device *dispc,
u32 hw_videoport, int num_lines)
{
int v;
switch (num_lines) {
case 12:
v = 0; break;
case 16:
v = 1; break;
case 18:
v = 2; break;
case 24:
v = 3; break;
case 30:
v = 4; break;
case 36:
v = 5; break;
default:
WARN_ON(1);
v = 3;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8);
}
static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_bus_format *fmt)
{
u32 oldi_cfg = 0;
u32 oldi_reset_bit = BIT(5 + hw_videoport);
int count = 0;
/*
* For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC
* bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0.
*/
if (fmt->data_width == 24)
oldi_cfg |= BIT(8); /* MSB */
else if (fmt->data_width != 18)
dev_warn(dispc->dev, "%s: %d port width not supported\n",
__func__, fmt->data_width);
oldi_cfg |= BIT(7); /* DEPOL */
oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1);
oldi_cfg |= BIT(12); /* SOFTRST */
oldi_cfg |= BIT(0); /* ENABLE */
dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg);
while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) &&
count < 10000)
count++;
if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)))
dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n",
__func__);
}
void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
const struct dispc_bus_format *fmt;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (WARN_ON(!fmt))
return;
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
dispc_oldi_tx_power(dispc, true);
dispc_enable_oldi(dispc, hw_videoport, fmt);
}
}
void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state)
{
const struct drm_display_mode *mode = &state->adjusted_mode;
const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
bool align, onoff, rf, ieo, ipc, ihs, ivs;
const struct dispc_bus_format *fmt;
u32 hsw, hfp, hbp, vsw, vfp, vbp;
fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
tstate->bus_flags);
if (WARN_ON(!fmt))
return;
dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width);
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
vbp = mode->vtotal - mode->vsync_end;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H,
FLD_VAL(hsw - 1, 7, 0) |
FLD_VAL(hfp - 1, 19, 8) |
FLD_VAL(hbp - 1, 31, 20));
dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V,
FLD_VAL(vsw - 1, 7, 0) |
FLD_VAL(vfp, 19, 8) |
FLD_VAL(vbp, 31, 20));
ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW);
ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE);
/* always use the 'rf' setting */
onoff = true;
rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE);
/* always use aligned syncs */
align = true;
/* always use DE_HIGH for OLDI */
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI)
ieo = false;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ,
FLD_VAL(align, 18, 18) |
FLD_VAL(onoff, 17, 17) |
FLD_VAL(rf, 16, 16) |
FLD_VAL(ieo, 15, 15) |
FLD_VAL(ipc, 14, 14) |
FLD_VAL(ihs, 13, 13) |
FLD_VAL(ivs, 12, 12));
dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN,
FLD_VAL(mode->hdisplay - 1, 11, 0) |
FLD_VAL(mode->vdisplay - 1, 27, 16));
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0);
}
void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport)
{
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0);
}
void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport)
{
if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0);
dispc_oldi_tx_power(dispc, false);
}
}
bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport)
{
return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5);
}
void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport)
{
WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5));
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5);
}
enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN };
static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode)
{
u16 c12;
c12 = c8 << 4;
switch (mode) {
case C8_TO_C12_REPLICATE:
/* Copy c8 4 MSB to 4 LSB for full scale c12 */
c12 |= c8 >> 4;
break;
case C8_TO_C12_MAX:
c12 |= 0xF;
break;
default:
case C8_TO_C12_MIN:
break;
}
return c12;
}
static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m)
{
u8 a, r, g, b;
u64 v;
a = (argb8888 >> 24) & 0xff;
r = (argb8888 >> 16) & 0xff;
g = (argb8888 >> 8) & 0xff;
b = (argb8888 >> 0) & 0xff;
v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) |
((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m);
return v;
}
static void dispc_vp_set_default_color(struct dispc_device *dispc,
u32 hw_videoport, u32 default_color)
{
u64 v;
v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE);
dispc_ovr_write(dispc, hw_videoport,
DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff);
dispc_ovr_write(dispc, hw_videoport,
DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff);
}
enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_display_mode *mode)
{
u32 hsw, hfp, hbp, vsw, vfp, vbp;
enum dispc_vp_bus_type bus_type;
int max_pclk;
bus_type = dispc->feat->vp_bus_type[hw_videoport];
max_pclk = dispc->feat->max_pclk_khz[bus_type];
if (WARN_ON(max_pclk == 0))
return MODE_BAD;
if (mode->clock < dispc->feat->min_pclk_khz)
return MODE_CLOCK_LOW;
if (mode->clock > max_pclk)
return MODE_CLOCK_HIGH;
if (mode->hdisplay > 4096)
return MODE_BAD;
if (mode->vdisplay > 4096)
return MODE_BAD;
/* TODO: add interlace support */
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
/*
* Enforce the output width is divisible by 2. Actually this
* is only needed in following cases:
* - YUV output selected (BT656, BT1120)
* - Dithering enabled
* - TDM with TDMCycleFormat == 3
* But for simplicity we enforce that always.
*/
if ((mode->hdisplay % 2) != 0)
return MODE_BAD_HVALUE;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
vbp = mode->vtotal - mode->vsync_end;
if (hsw < 1 || hsw > 256 ||
hfp < 1 || hfp > 4096 ||
hbp < 1 || hbp > 4096)
return MODE_BAD_HVALUE;
if (vsw < 1 || vsw > 256 ||
vfp > 4095 || vbp > 4095)
return MODE_BAD_VVALUE;
if (dispc->memory_bandwidth_limit) {
const unsigned int bpp = 4;
u64 bandwidth;
bandwidth = 1000 * mode->clock;
bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp;
bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal);
if (dispc->memory_bandwidth_limit < bandwidth)
return MODE_BAD;
}
return MODE_OK;
}
int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport)
{
int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]);
if (ret)
dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__,
ret);
return ret;
}
void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport)
{
clk_disable_unprepare(dispc->vp_clk[hw_videoport]);
}
/*
* Calculate the percentage difference between the requested pixel clock rate
* and the effective rate resulting from calculating the clock divider value.
*/
static
unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate)
{
int r = rate / 100, rr = real_rate / 100;
return (unsigned int)(abs(((rr - r) * 100) / r));
}
int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport,
unsigned long rate)
{
int r;
unsigned long new_rate;
r = clk_set_rate(dispc->vp_clk[hw_videoport], rate);
if (r) {
dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n",
hw_videoport, rate);
return r;
}
new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]);
if (dispc_pclk_diff(rate, new_rate) > 5)
dev_warn(dispc->dev,
"vp%d: Clock rate %lu differs over 5%% from requested %lu\n",
hw_videoport, new_rate, rate);
dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n",
hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate);
return 0;
}
/* OVR */
static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
/* On k2g there is only one plane and no need for ovr */
dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION,
x | (y << 16));
}
static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
hw_plane, 4, 1);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
x, 17, 6);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
y, 30, 19);
}
static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc,
u32 hw_plane, u32 hw_videoport,
u32 x, u32 y, u32 layer)
{
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
hw_plane, 4, 1);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
x, 13, 0);
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
y, 29, 16);
}
void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane,
u32 hw_videoport, u32 x, u32 y, u32 layer)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
case DISPC_AM625:
case DISPC_AM65X:
dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
case DISPC_J721E:
dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport,
x, y, layer);
break;
default:
WARN_ON(1);
break;
}
}
void dispc_ovr_enable_layer(struct dispc_device *dispc,
u32 hw_videoport, u32 layer, bool enable)
{
if (dispc->feat->subrev == DISPC_K2G)
return;
OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
!!enable, 0, 0);
}
/* CSC */
enum csc_ctm {
CSC_RR, CSC_RG, CSC_RB,
CSC_GR, CSC_GG, CSC_GB,
CSC_BR, CSC_BG, CSC_BB,
};
enum csc_yuv2rgb {
CSC_RY, CSC_RCB, CSC_RCR,
CSC_GY, CSC_GCB, CSC_GCR,
CSC_BY, CSC_BCB, CSC_BCR,
};
enum csc_rgb2yuv {
CSC_YR, CSC_YG, CSC_YB,
CSC_CBR, CSC_CBG, CSC_CBB,
CSC_CRR, CSC_CRG, CSC_CRB,
};
struct dispc_csc_coef {
void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval);
int m[9];
int preoffset[3];
int postoffset[3];
enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping;
const char *name;
};
#define DISPC_CSC_REGVAL_LEN 8
static
void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
#define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19))
regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]);
regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]);
regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]);
#undef OVAL
}
#define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16))
static
void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]);
regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]);
regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]);
regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]);
regval[4] = CVAL(csc->m[CSC_BCB], 0);
dispc_csc_offset_regval(csc, regval);
}
__maybe_unused static
void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]);
regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]);
regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]);
regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]);
regval[4] = CVAL(csc->m[CSC_CBB], 0);
dispc_csc_offset_regval(csc, regval);
}
static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc,
u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]);
regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]);
regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]);
regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]);
regval[4] = CVAL(csc->m[CSC_BB], 0);
dispc_csc_offset_regval(csc, regval);
}
#undef CVAL
static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vid_csc_coef_reg[] = {
DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
if (regval[7] != 0)
dev_warn(dispc->dev, "%s: No post offset support for %s\n",
__func__, csc->name);
for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
regval[i]);
}
static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7,
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
regval[i]);
}
/* YUV -> RGB, ITU-R BT.601, full range */
static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = {
dispc_csc_yuv2rgb_regval,
{ 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/
256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/
256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/
{ 0, -2048, -2048, }, /* full range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.601 Full",
};
/* YUV -> RGB, ITU-R BT.601, limited range */
static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = {
dispc_csc_yuv2rgb_regval,
{ 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/
298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/
298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/
{ -256, -2048, -2048, }, /* limited range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.601 Limited",
};
/* YUV -> RGB, ITU-R BT.709, full range */
static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = {
dispc_csc_yuv2rgb_regval,
{ 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/
256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/
{ 0, -2048, -2048, }, /* full range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.709 Full",
};
/* YUV -> RGB, ITU-R BT.709, limited range */
static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = {
dispc_csc_yuv2rgb_regval,
{ 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/
298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/
298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/
{ -256, -2048, -2048, }, /* limited range */
{ 0, 0, 0, },
CLIP_FULL_RANGE,
"BT.709 Limited",
};
static const struct {
enum drm_color_encoding encoding;
enum drm_color_range range;
const struct dispc_csc_coef *csc;
} dispc_csc_table[] = {
{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE,
&csc_yuv2rgb_bt601_full, },
{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE,
&csc_yuv2rgb_bt601_lim, },
{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE,
&csc_yuv2rgb_bt709_full, },
{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE,
&csc_yuv2rgb_bt709_lim, },
};
static const
struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding,
enum drm_color_range range)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) {
if (dispc_csc_table[i].encoding == encoding &&
dispc_csc_table[i].range == range) {
return dispc_csc_table[i].csc;
}
}
return NULL;
}
static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state)
{
const struct dispc_csc_coef *coef;
coef = dispc_find_csc(state->color_encoding, state->color_range);
if (!coef) {
dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n",
__func__, state->color_encoding, state->color_range);
return;
}
if (dispc->feat->subrev == DISPC_K2G)
dispc_k2g_vid_write_csc(dispc, hw_plane, coef);
else
dispc_k3_vid_write_csc(dispc, hw_plane, coef);
}
static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane,
bool enable)
{
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9);
}
/* SCALER */
static u32 dispc_calc_fir_inc(u32 in, u32 out)
{
return (u32)div_u64(0x200000ull * in, out);
}
enum dispc_vid_fir_coef_set {
DISPC_VID_FIR_COEF_HORIZ,
DISPC_VID_FIR_COEF_HORIZ_UV,
DISPC_VID_FIR_COEF_VERT,
DISPC_VID_FIR_COEF_VERT_UV,
};
static void dispc_vid_write_fir_coefs(struct dispc_device *dispc,
u32 hw_plane,
enum dispc_vid_fir_coef_set coef_set,
const struct tidss_scale_coefs *coefs)
{
static const u16 c0_regs[] = {
[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0,
[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C,
[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0,
[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C,
};
static const u16 c12_regs[] = {
[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12,
[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C,
[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12,
[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C,
};
const u16 c0_base = c0_regs[coef_set];
const u16 c12_base = c12_regs[coef_set];
int phase;
if (!coefs) {
dev_err(dispc->dev, "%s: No coefficients given.\n", __func__);
return;
}
for (phase = 0; phase <= 8; ++phase) {
u16 reg = c0_base + phase * 4;
u16 c0 = coefs->c0[phase];
dispc_vid_write(dispc, hw_plane, reg, c0);
}
for (phase = 0; phase <= 15; ++phase) {
u16 reg = c12_base + phase * 4;
s16 c1, c2;
u32 c12;
c1 = coefs->c1[phase];
c2 = coefs->c2[phase];
c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20);
dispc_vid_write(dispc, hw_plane, reg, c12);
}
}
static bool dispc_fourcc_is_yuv(u32 fourcc)
{
switch (fourcc) {
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_NV12:
return true;
default:
return false;
}
}
struct dispc_scaling_params {
int xinc, yinc;
u32 in_w, in_h, in_w_uv, in_h_uv;
u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv;
bool scale_x, scale_y;
const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv;
bool five_taps;
};
static int dispc_vid_calc_scaling(struct dispc_device *dispc,
const struct drm_plane_state *state,
struct dispc_scaling_params *sp,
bool lite_plane)
{
const struct dispc_features_scaling *f = &dispc->feat->scaling;
u32 fourcc = state->fb->format->format;
u32 in_width_max_5tap = f->in_width_max_5tap_rgb;
u32 in_width_max_3tap = f->in_width_max_3tap_rgb;
u32 downscale_limit;
u32 in_width_max;
memset(sp, 0, sizeof(*sp));
sp->xinc = 1;
sp->yinc = 1;
sp->in_w = state->src_w >> 16;
sp->in_w_uv = sp->in_w;
sp->in_h = state->src_h >> 16;
sp->in_h_uv = sp->in_h;
sp->scale_x = sp->in_w != state->crtc_w;
sp->scale_y = sp->in_h != state->crtc_h;
if (dispc_fourcc_is_yuv(fourcc)) {
in_width_max_5tap = f->in_width_max_5tap_yuv;
in_width_max_3tap = f->in_width_max_3tap_yuv;
sp->in_w_uv >>= 1;
sp->scale_x = true;
if (fourcc == DRM_FORMAT_NV12) {
sp->in_h_uv >>= 1;
sp->scale_y = true;
}
}
/* Skip the rest if no scaling is used */
if ((!sp->scale_x && !sp->scale_y) || lite_plane)
return 0;
if (sp->in_w > in_width_max_5tap) {
sp->five_taps = false;
in_width_max = in_width_max_3tap;
downscale_limit = f->downscale_limit_3tap;
} else {
sp->five_taps = true;
in_width_max = in_width_max_5tap;
downscale_limit = f->downscale_limit_5tap;
}
if (sp->scale_x) {
sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
dev_dbg(dispc->dev,
"%s: X-scaling factor %u/%u > %u\n",
__func__, state->crtc_w, state->src_w >> 16,
f->upscale_limit);
return -EINVAL;
}
if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w,
state->crtc_w),
downscale_limit);
if (sp->xinc > f->xinc_max) {
dev_dbg(dispc->dev,
"%s: X-scaling factor %u/%u < 1/%u\n",
__func__, state->crtc_w,
state->src_w >> 16,
downscale_limit * f->xinc_max);
return -EINVAL;
}
sp->in_w = (state->src_w >> 16) / sp->xinc;
}
while (sp->in_w > in_width_max) {
sp->xinc++;
sp->in_w = (state->src_w >> 16) / sp->xinc;
}
if (sp->xinc > f->xinc_max) {
dev_dbg(dispc->dev,
"%s: Too wide input buffer %u > %u\n", __func__,
state->src_w >> 16, in_width_max * f->xinc_max);
return -EINVAL;
}
/*
* We need even line length for YUV formats. Decimation
* can lead to odd length, so we need to make it even
* again.
*/
if (dispc_fourcc_is_yuv(fourcc))
sp->in_w &= ~1;
sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
}
if (sp->scale_y) {
sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h);
if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
dev_dbg(dispc->dev,
"%s: Y-scaling factor %u/%u > %u\n",
__func__, state->crtc_h, state->src_h >> 16,
f->upscale_limit);
return -EINVAL;
}
if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h,
state->crtc_h),
downscale_limit);
sp->in_h /= sp->yinc;
sp->fir_yinc = dispc_calc_fir_inc(sp->in_h,
state->crtc_h);
}
}
dev_dbg(dispc->dev,
"%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n",
__func__, state->src_w >> 16, state->src_h >> 16,
sp->xinc, sp->yinc, sp->in_w, sp->in_h,
sp->fir_xinc / 0x200000u,
((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
sp->fir_yinc / 0x200000u,
((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
sp->five_taps ? 5 : 3,
state->crtc_w, state->crtc_h);
if (dispc_fourcc_is_yuv(fourcc)) {
if (sp->scale_x) {
sp->in_w_uv /= sp->xinc;
sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv,
state->crtc_w);
sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev,
sp->fir_xinc_uv,
true);
}
if (sp->scale_y) {
sp->in_h_uv /= sp->yinc;
sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv,
state->crtc_h);
sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev,
sp->fir_yinc_uv,
sp->five_taps);
}
}
if (sp->scale_x)
sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc,
true);
if (sp->scale_y)
sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc,
sp->five_taps);
return 0;
}
static void dispc_vid_set_scaling(struct dispc_device *dispc,
u32 hw_plane,
struct dispc_scaling_params *sp,
u32 fourcc)
{
/* HORIZONTAL RESIZE ENABLE */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->scale_x, 7, 7);
/* VERTICAL RESIZE ENABLE */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->scale_y, 8, 8);
/* Skip the rest if no scaling is used */
if (!sp->scale_x && !sp->scale_y)
return;
/* VERTICAL 5-TAPS */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
sp->five_taps, 21, 21);
if (dispc_fourcc_is_yuv(fourcc)) {
if (sp->scale_x) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2,
sp->fir_xinc_uv);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_HORIZ_UV,
sp->xcoef_uv);
}
if (sp->scale_y) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2,
sp->fir_yinc_uv);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_VERT_UV,
sp->ycoef_uv);
}
}
if (sp->scale_x) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_HORIZ,
sp->xcoef);
}
if (sp->scale_y) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc);
dispc_vid_write_fir_coefs(dispc, hw_plane,
DISPC_VID_FIR_COEF_VERT, sp->ycoef);
}
}
/* OTHER */
static const struct {
u32 fourcc;
u8 dss_code;
} dispc_color_formats[] = {
{ DRM_FORMAT_ARGB4444, 0x0, },
{ DRM_FORMAT_ABGR4444, 0x1, },
{ DRM_FORMAT_RGBA4444, 0x2, },
{ DRM_FORMAT_RGB565, 0x3, },
{ DRM_FORMAT_BGR565, 0x4, },
{ DRM_FORMAT_ARGB1555, 0x5, },
{ DRM_FORMAT_ABGR1555, 0x6, },
{ DRM_FORMAT_ARGB8888, 0x7, },
{ DRM_FORMAT_ABGR8888, 0x8, },
{ DRM_FORMAT_RGBA8888, 0x9, },
{ DRM_FORMAT_BGRA8888, 0xa, },
{ DRM_FORMAT_RGB888, 0xb, },
{ DRM_FORMAT_BGR888, 0xc, },
{ DRM_FORMAT_ARGB2101010, 0xe, },
{ DRM_FORMAT_ABGR2101010, 0xf, },
{ DRM_FORMAT_XRGB4444, 0x20, },
{ DRM_FORMAT_XBGR4444, 0x21, },
{ DRM_FORMAT_RGBX4444, 0x22, },
{ DRM_FORMAT_XRGB1555, 0x25, },
{ DRM_FORMAT_XBGR1555, 0x26, },
{ DRM_FORMAT_XRGB8888, 0x27, },
{ DRM_FORMAT_XBGR8888, 0x28, },
{ DRM_FORMAT_RGBX8888, 0x29, },
{ DRM_FORMAT_BGRX8888, 0x2a, },
{ DRM_FORMAT_XRGB2101010, 0x2e, },
{ DRM_FORMAT_XBGR2101010, 0x2f, },
{ DRM_FORMAT_YUYV, 0x3e, },
{ DRM_FORMAT_UYVY, 0x3f, },
{ DRM_FORMAT_NV12, 0x3d, },
};
static void dispc_plane_set_pixel_format(struct dispc_device *dispc,
u32 hw_plane, u32 fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
if (dispc_color_formats[i].fourcc == fourcc) {
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
dispc_color_formats[i].dss_code,
6, 1);
return;
}
}
WARN_ON(1);
}
const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len)
{
WARN_ON(!dispc->fourccs);
*len = dispc->num_fourccs;
return dispc->fourccs;
}
static s32 pixinc(int pixels, u8 ps)
{
if (pixels == 1)
return 1;
else if (pixels > 1)
return 1 + (pixels - 1) * ps;
else if (pixels < 0)
return 1 - (-pixels + 1) * ps;
WARN_ON(1);
return 0;
}
int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state,
u32 hw_videoport)
{
bool lite = dispc->feat->vid_lite[hw_plane];
u32 fourcc = state->fb->format->format;
bool need_scaling = state->src_w >> 16 != state->crtc_w ||
state->src_h >> 16 != state->crtc_h;
struct dispc_scaling_params scaling;
int ret;
if (dispc_fourcc_is_yuv(fourcc)) {
if (!dispc_find_csc(state->color_encoding,
state->color_range)) {
dev_dbg(dispc->dev,
"%s: Unsupported CSC (%u,%u) for HW plane %u\n",
__func__, state->color_encoding,
state->color_range, hw_plane);
return -EINVAL;
}
}
if (need_scaling) {
if (lite) {
dev_dbg(dispc->dev,
"%s: Lite plane %u can't scale %ux%u!=%ux%u\n",
__func__, hw_plane,
state->src_w >> 16, state->src_h >> 16,
state->crtc_w, state->crtc_h);
return -EINVAL;
}
ret = dispc_vid_calc_scaling(dispc, state, &scaling, false);
if (ret)
return ret;
}
return 0;
}
static
dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state)
{
struct drm_framebuffer *fb = state->fb;
struct drm_gem_dma_object *gem;
u32 x = state->src_x >> 16;
u32 y = state->src_y >> 16;
gem = drm_fb_dma_get_gem_obj(state->fb, 0);
return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] +
y * fb->pitches[0];
}
static
dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state)
{
struct drm_framebuffer *fb = state->fb;
struct drm_gem_dma_object *gem;
u32 x = state->src_x >> 16;
u32 y = state->src_y >> 16;
if (WARN_ON(state->fb->format->num_planes != 2))
return 0;
gem = drm_fb_dma_get_gem_obj(fb, 1);
return gem->dma_addr + fb->offsets[1] +
(x * fb->format->cpp[1] / fb->format->hsub) +
(y * fb->pitches[1] / fb->format->vsub);
}
void dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane,
const struct drm_plane_state *state,
u32 hw_videoport)
{
bool lite = dispc->feat->vid_lite[hw_plane];
u32 fourcc = state->fb->format->format;
u16 cpp = state->fb->format->cpp[0];
u32 fb_width = state->fb->pitches[0] / cpp;
dma_addr_t dma_addr = dispc_plane_state_dma_addr(state);
struct dispc_scaling_params scale;
dispc_vid_calc_scaling(dispc, state, &scale, lite);
dispc_plane_set_pixel_format(dispc, hw_plane, fourcc);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE,
(scale.in_w - 1) | ((scale.in_h - 1) << 16));
/* For YUV422 format we use the macropixel size for pixel inc */
if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
pixinc(scale.xinc, cpp * 2));
else
dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
pixinc(scale.xinc, cpp));
dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC,
pixinc(1 + (scale.yinc * fb_width -
scale.xinc * scale.in_w),
cpp));
if (state->fb->format->num_planes == 2) {
u16 cpp_uv = state->fb->format->cpp[1];
u32 fb_width_uv = state->fb->pitches[1] / cpp_uv;
dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff);
dispc_vid_write(dispc, hw_plane,
DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32);
dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV,
pixinc(1 + (scale.yinc * fb_width_uv -
scale.xinc * scale.in_w_uv),
cpp_uv));
}
if (!lite) {
dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE,
(state->crtc_w - 1) |
((state->crtc_h - 1) << 16));
dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc);
}
/* enable YUV->RGB color conversion */
if (dispc_fourcc_is_yuv(fourcc)) {
dispc_vid_csc_setup(dispc, hw_plane, state);
dispc_vid_csc_enable(dispc, hw_plane, true);
} else {
dispc_vid_csc_enable(dispc, hw_plane, false);
}
dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA,
0xFF & (state->alpha >> 8));
if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI)
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
28, 28);
else
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
28, 28);
}
void dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable)
{
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0);
}
static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane)
{
return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0);
}
static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc,
u32 hw_plane, u32 low, u32 high)
{
dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD,
FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
}
static void dispc_vid_set_buf_threshold(struct dispc_device *dispc,
u32 hw_plane, u32 low, u32 high)
{
dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD,
FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
}
static void dispc_k2g_plane_init(struct dispc_device *dispc)
{
unsigned int hw_plane;
dev_dbg(dispc->dev, "%s()\n", __func__);
/* MFLAG_CTRL = ENABLED */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
/* MFLAG_START = MFLAGNORMALSTARTMODE */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
u32 thr_low, thr_high;
u32 mflag_low, mflag_high;
u32 preload;
thr_high = size - 1;
thr_low = size / 2;
mflag_high = size * 2 / 3;
mflag_low = size / 3;
preload = thr_low;
dev_dbg(dispc->dev,
"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
dispc->feat->vid_name[hw_plane],
size,
thr_high, thr_low,
mflag_high, mflag_low,
preload);
dispc_vid_set_buf_threshold(dispc, hw_plane,
thr_low, thr_high);
dispc_vid_set_mflag_threshold(dispc, hw_plane,
mflag_low, mflag_high);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
/*
* Prefetch up to fifo high-threshold value to minimize the
* possibility of underflows. Note that this means the PRELOAD
* register is ignored.
*/
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
19, 19);
}
}
static void dispc_k3_plane_init(struct dispc_device *dispc)
{
unsigned int hw_plane;
u32 cba_lo_pri = 1;
u32 cba_hi_pri = 0;
dev_dbg(dispc->dev, "%s()\n", __func__);
REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0);
REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3);
/* MFLAG_CTRL = ENABLED */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
/* MFLAG_START = MFLAGNORMALSTARTMODE */
REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
u32 thr_low, thr_high;
u32 mflag_low, mflag_high;
u32 preload;
thr_high = size - 1;
thr_low = size / 2;
mflag_high = size * 2 / 3;
mflag_low = size / 3;
preload = thr_low;
dev_dbg(dispc->dev,
"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
dispc->feat->vid_name[hw_plane],
size,
thr_high, thr_low,
mflag_high, mflag_low,
preload);
dispc_vid_set_buf_threshold(dispc, hw_plane,
thr_low, thr_high);
dispc_vid_set_mflag_threshold(dispc, hw_plane,
mflag_low, mflag_high);
dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
/* Prefech up to PRELOAD value */
VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
19, 19);
}
}
static void dispc_plane_init(struct dispc_device *dispc)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_plane_init(dispc);
break;
case DISPC_AM625:
case DISPC_AM65X:
case DISPC_J721E:
dispc_k3_plane_init(dispc);
break;
default:
WARN_ON(1);
}
}
static void dispc_vp_init(struct dispc_device *dispc)
{
unsigned int i;
dev_dbg(dispc->dev, "%s()\n", __func__);
/* Enable the gamma Shadow bit-field for all VPs*/
for (i = 0; i < dispc->feat->num_vps; i++)
VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2);
}
static void dispc_initial_config(struct dispc_device *dispc)
{
dispc_plane_init(dispc);
dispc_vp_init(dispc);
/* Note: Hardcoded DPI routing on J721E for now */
if (dispc->feat->subrev == DISPC_J721E) {
dispc_write(dispc, DISPC_CONNECTIONS,
FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */
FLD_VAL(8, 7, 4) /* VP3 to DPI1 */
);
}
}
static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
v |= i << 24;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE,
v);
}
}
static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
v |= i << 24;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
}
}
static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT))
return;
for (i = 0; i < hwlen; ++i) {
u32 v = table[i];
if (i == 0)
v |= 1 << 31;
dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
}
}
static void dispc_vp_write_gamma_table(struct dispc_device *dispc,
u32 hw_videoport)
{
switch (dispc->feat->subrev) {
case DISPC_K2G:
dispc_k2g_vp_write_gamma_table(dispc, hw_videoport);
break;
case DISPC_AM625:
case DISPC_AM65X:
dispc_am65x_vp_write_gamma_table(dispc, hw_videoport);
break;
case DISPC_J721E:
dispc_j721e_vp_write_gamma_table(dispc, hw_videoport);
break;
default:
WARN_ON(1);
break;
}
}
static const struct drm_color_lut dispc_vp_gamma_default_lut[] = {
{ .red = 0, .green = 0, .blue = 0, },
{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
};
static void dispc_vp_set_gamma(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_color_lut *lut,
unsigned int length)
{
u32 *table = dispc->vp_data[hw_videoport].gamma_table;
u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
u32 hwbits;
unsigned int i;
dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n",
__func__, hw_videoport, length, hwlen);
if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT)
hwbits = 10;
else
hwbits = 8;
if (!lut || length < 2) {
lut = dispc_vp_gamma_default_lut;
length = ARRAY_SIZE(dispc_vp_gamma_default_lut);
}
for (i = 0; i < length - 1; ++i) {
unsigned int first = i * (hwlen - 1) / (length - 1);
unsigned int last = (i + 1) * (hwlen - 1) / (length - 1);
unsigned int w = last - first;
u16 r, g, b;
unsigned int j;
if (w == 0)
continue;
for (j = 0; j <= w; j++) {
r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w;
g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w;
b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w;
r >>= 16 - hwbits;
g >>= 16 - hwbits;
b >>= 16 - hwbits;
table[first + j] = (r << (hwbits * 2)) |
(g << hwbits) | b;
}
}
dispc_vp_write_gamma_table(dispc, hw_videoport);
}
static s16 dispc_S31_32_to_s2_8(s64 coef)
{
u64 sign_bit = 1ULL << 63;
u64 cbits = (u64)coef;
s16 ret;
if (cbits & sign_bit)
ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200);
else
ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF);
return ret;
}
static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm,
struct dispc_csc_coef *cpr)
{
memset(cpr, 0, sizeof(*cpr));
cpr->to_regval = dispc_csc_cpr_regval;
cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]);
cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]);
cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]);
cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]);
cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]);
cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]);
cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]);
cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]);
cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]);
}
#define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \
FLD_VAL(xB, 31, 22))
static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc,
u32 *regval)
{
regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]);
regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]);
regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]);
}
#undef CVAL
static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vp_cpr_coef_reg[] = {
DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
/* K2G CPR is packed to three registers. */
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
dispc_k2g_vp_csc_cpr_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++)
dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i],
regval[i]);
}
static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
struct drm_color_ctm *ctm)
{
u32 cprenable = 0;
if (ctm) {
struct dispc_csc_coef cpr;
dispc_k2g_cpr_from_ctm(ctm, &cpr);
dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr);
cprenable = 1;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
cprenable, 15, 15);
}
static s16 dispc_S31_32_to_s3_8(s64 coef)
{
u64 sign_bit = 1ULL << 63;
u64 cbits = (u64)coef;
s16 ret;
if (cbits & sign_bit)
ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400);
else
ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF);
return ret;
}
static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm,
struct dispc_csc_coef *cpr)
{
memset(cpr, 0, sizeof(*cpr));
cpr->to_regval = dispc_csc_cpr_regval;
cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]);
cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]);
cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]);
cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]);
cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]);
cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]);
cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]);
cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]);
cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]);
}
static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
const struct dispc_csc_coef *csc)
{
static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5,
DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7,
};
u32 regval[DISPC_CSC_REGVAL_LEN];
unsigned int i;
csc->to_regval(csc, regval);
for (i = 0; i < ARRAY_SIZE(regval); i++)
dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i],
regval[i]);
}
static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
struct drm_color_ctm *ctm)
{
u32 colorconvenable = 0;
if (ctm) {
struct dispc_csc_coef csc;
dispc_csc_from_ctm(ctm, &csc);
dispc_k3_vp_write_csc(dispc, hw_videoport, &csc);
colorconvenable = 1;
}
VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
colorconvenable, 24, 24);
}
static void dispc_vp_set_color_mgmt(struct dispc_device *dispc,
u32 hw_videoport,
const struct drm_crtc_state *state,
bool newmodeset)
{
struct drm_color_lut *lut = NULL;
struct drm_color_ctm *ctm = NULL;
unsigned int length = 0;
if (!(state->color_mgmt_changed || newmodeset))
return;
if (state->gamma_lut) {
lut = (struct drm_color_lut *)state->gamma_lut->data;
length = state->gamma_lut->length / sizeof(*lut);
}
dispc_vp_set_gamma(dispc, hw_videoport, lut, length);
if (state->ctm)
ctm = (struct drm_color_ctm *)state->ctm->data;
if (dispc->feat->subrev == DISPC_K2G)
dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm);
else
dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm);
}
void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport,
const struct drm_crtc_state *state, bool newmodeset)
{
dispc_vp_set_default_color(dispc, hw_videoport, 0);
dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset);
}
int dispc_runtime_suspend(struct dispc_device *dispc)
{
dev_dbg(dispc->dev, "suspend\n");
dispc->is_enabled = false;
clk_disable_unprepare(dispc->fclk);
return 0;
}
int dispc_runtime_resume(struct dispc_device *dispc)
{
dev_dbg(dispc->dev, "resume\n");
clk_prepare_enable(dispc->fclk);
if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0)
dev_warn(dispc->dev, "DSS FUNC RESET not done!\n");
dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n",
dispc_read(dispc, DSS_REVISION));
dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n",
REG_GET(dispc, DSS_SYSSTATUS, 1, 1),
REG_GET(dispc, DSS_SYSSTATUS, 2, 2),
REG_GET(dispc, DSS_SYSSTATUS, 3, 3));
if (dispc->feat->subrev == DISPC_AM625 ||
dispc->feat->subrev == DISPC_AM65X)
dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n",
REG_GET(dispc, DSS_SYSSTATUS, 5, 5),
REG_GET(dispc, DSS_SYSSTATUS, 6, 6),
REG_GET(dispc, DSS_SYSSTATUS, 7, 7));
dev_dbg(dispc->dev, "DISPC IDLE %d\n",
REG_GET(dispc, DSS_SYSSTATUS, 9, 9));
dispc_initial_config(dispc);
dispc->is_enabled = true;
tidss_irq_resume(dispc->tidss);
return 0;
}
void dispc_remove(struct tidss_device *tidss)
{
dev_dbg(tidss->dev, "%s\n", __func__);
tidss->dispc = NULL;
}
static int dispc_iomap_resource(struct platform_device *pdev, const char *name,
void __iomem **base)
{
void __iomem *b;
b = devm_platform_ioremap_resource_byname(pdev, name);
if (IS_ERR(b)) {
dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name);
return PTR_ERR(b);
}
*base = b;
return 0;
}
static int dispc_init_am65x_oldi_io_ctrl(struct device *dev,
struct dispc_device *dispc)
{
dispc->oldi_io_ctrl =
syscon_regmap_lookup_by_phandle(dev->of_node,
"ti,am65x-oldi-io-ctrl");
if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) {
dispc->oldi_io_ctrl = NULL;
} else if (IS_ERR(dispc->oldi_io_ctrl)) {
dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n",
__func__, PTR_ERR(dispc->oldi_io_ctrl));
return PTR_ERR(dispc->oldi_io_ctrl);
}
return 0;
}
static void dispc_init_errata(struct dispc_device *dispc)
{
static const struct soc_device_attribute am65x_sr10_soc_devices[] = {
{ .family = "AM65X", .revision = "SR1.0" },
{ /* sentinel */ }
};
if (soc_device_match(am65x_sr10_soc_devices)) {
dispc->errata.i2000 = true;
dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n");
}
}
static void dispc_softreset(struct dispc_device *dispc)
{
u32 val;
int ret = 0;
/* Soft reset */
REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1);
/* Wait for reset to complete */
ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS,
val, val & 1, 100, 5000);
if (ret)
dev_warn(dispc->dev, "failed to reset dispc\n");
}
int dispc_init(struct tidss_device *tidss)
{
struct device *dev = tidss->dev;
struct platform_device *pdev = to_platform_device(dev);
struct dispc_device *dispc;
const struct dispc_features *feat;
unsigned int i, num_fourccs;
int r = 0;
dev_dbg(dev, "%s\n", __func__);
feat = tidss->feat;
if (feat->subrev != DISPC_K2G) {
r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (r)
dev_warn(dev, "cannot set DMA masks to 48-bit\n");
}
dma_set_max_seg_size(dev, UINT_MAX);
dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL);
if (!dispc)
return -ENOMEM;
dispc->tidss = tidss;
dispc->dev = dev;
dispc->feat = feat;
dispc_init_errata(dispc);
dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats),
sizeof(*dispc->fourccs), GFP_KERNEL);
if (!dispc->fourccs)
return -ENOMEM;
num_fourccs = 0;
for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
if (dispc->errata.i2000 &&
dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) {
continue;
}
dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc;
}
dispc->num_fourccs = num_fourccs;
dispc_common_regmap = dispc->feat->common_regs;
r = dispc_iomap_resource(pdev, dispc->feat->common,
&dispc->base_common);
if (r)
return r;
for (i = 0; i < dispc->feat->num_planes; i++) {
r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i],
&dispc->base_vid[i]);
if (r)
return r;
}
/* K2G display controller does not support soft reset */
if (feat->subrev != DISPC_K2G)
dispc_softreset(dispc);
for (i = 0; i < dispc->feat->num_vps; i++) {
u32 gamma_size = dispc->feat->vp_feat.color.gamma_size;
u32 *gamma_table;
struct clk *clk;
r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i],
&dispc->base_ovr[i]);
if (r)
return r;
r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i],
&dispc->base_vp[i]);
if (r)
return r;
clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]);
if (IS_ERR(clk)) {
dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__,
dispc->feat->vpclk_name[i], PTR_ERR(clk));
return PTR_ERR(clk);
}
dispc->vp_clk[i] = clk;
gamma_table = devm_kmalloc_array(dev, gamma_size,
sizeof(*gamma_table),
GFP_KERNEL);
if (!gamma_table)
return -ENOMEM;
dispc->vp_data[i].gamma_table = gamma_table;
}
if (feat->subrev == DISPC_AM65X) {
r = dispc_init_am65x_oldi_io_ctrl(dev, dispc);
if (r)
return r;
}
dispc->fclk = devm_clk_get(dev, "fck");
if (IS_ERR(dispc->fclk)) {
dev_err(dev, "%s: Failed to get fclk: %ld\n",
__func__, PTR_ERR(dispc->fclk));
return PTR_ERR(dispc->fclk);
}
dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk));
of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth",
&dispc->memory_bandwidth_limit);
tidss->dispc = dispc;
return 0;
}
| linux-master | drivers/gpu/drm/tidss/tidss_dispc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_vblank.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_irq.h"
#include "tidss_plane.h"
/* Page flip and frame done IRQs */
static void tidss_crtc_finish_page_flip(struct tidss_crtc *tcrtc)
{
struct drm_device *ddev = tcrtc->crtc.dev;
struct tidss_device *tidss = to_tidss(ddev);
struct drm_pending_vblank_event *event;
unsigned long flags;
bool busy;
spin_lock_irqsave(&ddev->event_lock, flags);
/*
* New settings are taken into use at VFP, and GO bit is cleared at
* the same time. This happens before the vertical blank interrupt.
* So there is a small change that the driver sets GO bit after VFP, but
* before vblank, and we have to check for that case here.
*/
busy = dispc_vp_go_busy(tidss->dispc, tcrtc->hw_videoport);
if (busy) {
spin_unlock_irqrestore(&ddev->event_lock, flags);
return;
}
event = tcrtc->event;
tcrtc->event = NULL;
if (!event) {
spin_unlock_irqrestore(&ddev->event_lock, flags);
return;
}
drm_crtc_send_vblank_event(&tcrtc->crtc, event);
spin_unlock_irqrestore(&ddev->event_lock, flags);
drm_crtc_vblank_put(&tcrtc->crtc);
}
void tidss_crtc_vblank_irq(struct drm_crtc *crtc)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
drm_crtc_handle_vblank(crtc);
tidss_crtc_finish_page_flip(tcrtc);
}
void tidss_crtc_framedone_irq(struct drm_crtc *crtc)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
complete(&tcrtc->framedone_completion);
}
void tidss_crtc_error_irq(struct drm_crtc *crtc, u64 irqstatus)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
dev_err_ratelimited(crtc->dev->dev, "CRTC%u SYNC LOST: (irq %llx)\n",
tcrtc->hw_videoport, irqstatus);
}
/* drm_crtc_helper_funcs */
static int tidss_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct dispc_device *dispc = tidss->dispc;
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
u32 hw_videoport = tcrtc->hw_videoport;
const struct drm_display_mode *mode;
enum drm_mode_status ok;
dev_dbg(ddev->dev, "%s\n", __func__);
if (!crtc_state->enable)
return 0;
mode = &crtc_state->adjusted_mode;
ok = dispc_vp_mode_valid(dispc, hw_videoport, mode);
if (ok != MODE_OK) {
dev_dbg(ddev->dev, "%s: bad mode: %ux%u pclk %u kHz\n",
__func__, mode->hdisplay, mode->vdisplay, mode->clock);
return -EINVAL;
}
return dispc_vp_bus_check(dispc, hw_videoport, crtc_state);
}
/*
* This needs all affected planes to be present in the atomic
* state. The untouched planes are added to the state in
* tidss_atomic_check().
*/
static void tidss_crtc_position_planes(struct tidss_device *tidss,
struct drm_crtc *crtc,
struct drm_crtc_state *old_state,
bool newmodeset)
{
struct drm_atomic_state *ostate = old_state->state;
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
struct drm_crtc_state *cstate = crtc->state;
int layer;
if (!newmodeset && !cstate->zpos_changed &&
!to_tidss_crtc_state(cstate)->plane_pos_changed)
return;
for (layer = 0; layer < tidss->feat->num_planes; layer++) {
struct drm_plane_state *pstate;
struct drm_plane *plane;
bool layer_active = false;
int i;
for_each_new_plane_in_state(ostate, plane, pstate, i) {
if (pstate->crtc != crtc || !pstate->visible)
continue;
if (pstate->normalized_zpos == layer) {
layer_active = true;
break;
}
}
if (layer_active) {
struct tidss_plane *tplane = to_tidss_plane(plane);
dispc_ovr_set_plane(tidss->dispc, tplane->hw_plane_id,
tcrtc->hw_videoport,
pstate->crtc_x, pstate->crtc_y,
layer);
}
dispc_ovr_enable_layer(tidss->dispc, tcrtc->hw_videoport, layer,
layer_active);
}
}
static void tidss_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
unsigned long flags;
dev_dbg(ddev->dev,
"%s: %s enabled %d, needs modeset %d, event %p\n", __func__,
crtc->name, drm_atomic_crtc_needs_modeset(crtc->state),
crtc->state->enable, crtc->state->event);
/* There is nothing to do if CRTC is not going to be enabled. */
if (!crtc->state->enable)
return;
/*
* Flush CRTC changes with go bit only if new modeset is not
* coming, so CRTC is enabled trough out the commit.
*/
if (drm_atomic_crtc_needs_modeset(crtc->state))
return;
/* If the GO bit is stuck we better quit here. */
if (WARN_ON(dispc_vp_go_busy(tidss->dispc, tcrtc->hw_videoport)))
return;
/* We should have event if CRTC is enabled through out this commit. */
if (WARN_ON(!crtc->state->event))
return;
/* Write vp properties to HW if needed. */
dispc_vp_setup(tidss->dispc, tcrtc->hw_videoport, crtc->state, false);
/* Update plane positions if needed. */
tidss_crtc_position_planes(tidss, crtc, old_crtc_state, false);
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
spin_lock_irqsave(&ddev->event_lock, flags);
dispc_vp_go(tidss->dispc, tcrtc->hw_videoport);
WARN_ON(tcrtc->event);
tcrtc->event = crtc->state->event;
crtc->state->event = NULL;
spin_unlock_irqrestore(&ddev->event_lock, flags);
}
static void tidss_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
const struct drm_display_mode *mode = &crtc->state->adjusted_mode;
unsigned long flags;
int r;
dev_dbg(ddev->dev, "%s, event %p\n", __func__, crtc->state->event);
tidss_runtime_get(tidss);
r = dispc_vp_set_clk_rate(tidss->dispc, tcrtc->hw_videoport,
mode->clock * 1000);
if (r != 0)
return;
r = dispc_vp_enable_clk(tidss->dispc, tcrtc->hw_videoport);
if (r != 0)
return;
dispc_vp_setup(tidss->dispc, tcrtc->hw_videoport, crtc->state, true);
tidss_crtc_position_planes(tidss, crtc, old_state, true);
/* Turn vertical blanking interrupt reporting on. */
drm_crtc_vblank_on(crtc);
dispc_vp_prepare(tidss->dispc, tcrtc->hw_videoport, crtc->state);
dispc_vp_enable(tidss->dispc, tcrtc->hw_videoport, crtc->state);
spin_lock_irqsave(&ddev->event_lock, flags);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irqrestore(&ddev->event_lock, flags);
}
static void tidss_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
unsigned long flags;
dev_dbg(ddev->dev, "%s, event %p\n", __func__, crtc->state->event);
reinit_completion(&tcrtc->framedone_completion);
dispc_vp_disable(tidss->dispc, tcrtc->hw_videoport);
if (!wait_for_completion_timeout(&tcrtc->framedone_completion,
msecs_to_jiffies(500)))
dev_err(tidss->dev, "Timeout waiting for framedone on crtc %d",
tcrtc->hw_videoport);
dispc_vp_unprepare(tidss->dispc, tcrtc->hw_videoport);
spin_lock_irqsave(&ddev->event_lock, flags);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irqrestore(&ddev->event_lock, flags);
drm_crtc_vblank_off(crtc);
dispc_vp_disable_clk(tidss->dispc, tcrtc->hw_videoport);
tidss_runtime_put(tidss);
}
static
enum drm_mode_status tidss_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
return dispc_vp_mode_valid(tidss->dispc, tcrtc->hw_videoport, mode);
}
static const struct drm_crtc_helper_funcs tidss_crtc_helper_funcs = {
.atomic_check = tidss_crtc_atomic_check,
.atomic_flush = tidss_crtc_atomic_flush,
.atomic_enable = tidss_crtc_atomic_enable,
.atomic_disable = tidss_crtc_atomic_disable,
.mode_valid = tidss_crtc_mode_valid,
};
/* drm_crtc_funcs */
static int tidss_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
dev_dbg(ddev->dev, "%s\n", __func__);
tidss_runtime_get(tidss);
tidss_irq_enable_vblank(crtc);
return 0;
}
static void tidss_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct drm_device *ddev = crtc->dev;
struct tidss_device *tidss = to_tidss(ddev);
dev_dbg(ddev->dev, "%s\n", __func__);
tidss_irq_disable_vblank(crtc);
tidss_runtime_put(tidss);
}
static void tidss_crtc_reset(struct drm_crtc *crtc)
{
struct tidss_crtc_state *tcrtc;
if (crtc->state)
__drm_atomic_helper_crtc_destroy_state(crtc->state);
kfree(crtc->state);
tcrtc = kzalloc(sizeof(*tcrtc), GFP_KERNEL);
if (!tcrtc) {
crtc->state = NULL;
return;
}
__drm_atomic_helper_crtc_reset(crtc, &tcrtc->base);
}
static struct drm_crtc_state *tidss_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct tidss_crtc_state *state, *current_state;
if (WARN_ON(!crtc->state))
return NULL;
current_state = to_tidss_crtc_state(crtc->state);
state = kmalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
state->plane_pos_changed = false;
state->bus_format = current_state->bus_format;
state->bus_flags = current_state->bus_flags;
return &state->base;
}
static void tidss_crtc_destroy(struct drm_crtc *crtc)
{
struct tidss_crtc *tcrtc = to_tidss_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(tcrtc);
}
static const struct drm_crtc_funcs tidss_crtc_funcs = {
.reset = tidss_crtc_reset,
.destroy = tidss_crtc_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = tidss_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.enable_vblank = tidss_crtc_enable_vblank,
.disable_vblank = tidss_crtc_disable_vblank,
};
struct tidss_crtc *tidss_crtc_create(struct tidss_device *tidss,
u32 hw_videoport,
struct drm_plane *primary)
{
struct tidss_crtc *tcrtc;
struct drm_crtc *crtc;
unsigned int gamma_lut_size = 0;
bool has_ctm = tidss->feat->vp_feat.color.has_ctm;
int ret;
tcrtc = kzalloc(sizeof(*tcrtc), GFP_KERNEL);
if (!tcrtc)
return ERR_PTR(-ENOMEM);
tcrtc->hw_videoport = hw_videoport;
init_completion(&tcrtc->framedone_completion);
crtc = &tcrtc->crtc;
ret = drm_crtc_init_with_planes(&tidss->ddev, crtc, primary,
NULL, &tidss_crtc_funcs, NULL);
if (ret < 0) {
kfree(tcrtc);
return ERR_PTR(ret);
}
drm_crtc_helper_add(crtc, &tidss_crtc_helper_funcs);
/*
* The dispc gamma functions adapt to what ever size we ask
* from it no matter what HW supports. X-server assumes 256
* element gamma tables so lets use that.
*/
if (tidss->feat->vp_feat.color.gamma_size)
gamma_lut_size = 256;
drm_crtc_enable_color_mgmt(crtc, 0, has_ctm, gamma_lut_size);
if (gamma_lut_size)
drm_mode_crtc_set_gamma_size(crtc, gamma_lut_size);
return tcrtc;
}
| linux-master | drivers/gpu/drm/tidss/tidss_crtc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_crtc.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include "tidss_crtc.h"
#include "tidss_dispc.h"
#include "tidss_drv.h"
#include "tidss_plane.h"
/* drm_plane_helper_funcs */
static int tidss_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_device *ddev = plane->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_plane *tplane = to_tidss_plane(plane);
const struct drm_format_info *finfo;
struct drm_crtc_state *crtc_state;
u32 hw_plane = tplane->hw_plane_id;
u32 hw_videoport;
int ret;
dev_dbg(ddev->dev, "%s\n", __func__);
if (!new_plane_state->crtc) {
/*
* The visible field is not reset by the DRM core but only
* updated by drm_atomic_helper_check_plane_state(), set it
* manually.
*/
new_plane_state->visible = false;
return 0;
}
crtc_state = drm_atomic_get_crtc_state(state,
new_plane_state->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
0,
INT_MAX, true, true);
if (ret < 0)
return ret;
/*
* The HW is only able to start drawing at subpixel boundary
* (the two first checks bellow). At the end of a row the HW
* can only jump integer number of subpixels forward to the
* beginning of the next row. So we can only show picture with
* integer subpixel width (the third check). However, after
* reaching the end of the drawn picture the drawing starts
* again at the absolute memory address where top left corner
* position of the drawn picture is (so there is no need to
* check for odd height).
*/
finfo = drm_format_info(new_plane_state->fb->format->format);
if ((new_plane_state->src_x >> 16) % finfo->hsub != 0) {
dev_dbg(ddev->dev,
"%s: x-position %u not divisible subpixel size %u\n",
__func__, (new_plane_state->src_x >> 16), finfo->hsub);
return -EINVAL;
}
if ((new_plane_state->src_y >> 16) % finfo->vsub != 0) {
dev_dbg(ddev->dev,
"%s: y-position %u not divisible subpixel size %u\n",
__func__, (new_plane_state->src_y >> 16), finfo->vsub);
return -EINVAL;
}
if ((new_plane_state->src_w >> 16) % finfo->hsub != 0) {
dev_dbg(ddev->dev,
"%s: src width %u not divisible by subpixel size %u\n",
__func__, (new_plane_state->src_w >> 16),
finfo->hsub);
return -EINVAL;
}
if (!new_plane_state->visible)
return 0;
hw_videoport = to_tidss_crtc(new_plane_state->crtc)->hw_videoport;
ret = dispc_plane_check(tidss->dispc, hw_plane, new_plane_state,
hw_videoport);
if (ret)
return ret;
return 0;
}
static void tidss_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *ddev = plane->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_plane *tplane = to_tidss_plane(plane);
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
u32 hw_videoport;
dev_dbg(ddev->dev, "%s\n", __func__);
if (!new_state->visible) {
dispc_plane_enable(tidss->dispc, tplane->hw_plane_id, false);
return;
}
hw_videoport = to_tidss_crtc(new_state->crtc)->hw_videoport;
dispc_plane_setup(tidss->dispc, tplane->hw_plane_id, new_state, hw_videoport);
}
static void tidss_plane_atomic_enable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *ddev = plane->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_plane *tplane = to_tidss_plane(plane);
dev_dbg(ddev->dev, "%s\n", __func__);
dispc_plane_enable(tidss->dispc, tplane->hw_plane_id, true);
}
static void tidss_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *ddev = plane->dev;
struct tidss_device *tidss = to_tidss(ddev);
struct tidss_plane *tplane = to_tidss_plane(plane);
dev_dbg(ddev->dev, "%s\n", __func__);
dispc_plane_enable(tidss->dispc, tplane->hw_plane_id, false);
}
static void drm_plane_destroy(struct drm_plane *plane)
{
struct tidss_plane *tplane = to_tidss_plane(plane);
drm_plane_cleanup(plane);
kfree(tplane);
}
static const struct drm_plane_helper_funcs tidss_plane_helper_funcs = {
.atomic_check = tidss_plane_atomic_check,
.atomic_update = tidss_plane_atomic_update,
.atomic_enable = tidss_plane_atomic_enable,
.atomic_disable = tidss_plane_atomic_disable,
};
static const struct drm_plane_funcs tidss_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = drm_atomic_helper_plane_reset,
.destroy = drm_plane_destroy,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
};
struct tidss_plane *tidss_plane_create(struct tidss_device *tidss,
u32 hw_plane_id, u32 plane_type,
u32 crtc_mask, const u32 *formats,
u32 num_formats)
{
struct tidss_plane *tplane;
enum drm_plane_type type;
u32 possible_crtcs;
u32 num_planes = tidss->feat->num_planes;
u32 color_encodings = (BIT(DRM_COLOR_YCBCR_BT601) |
BIT(DRM_COLOR_YCBCR_BT709));
u32 color_ranges = (BIT(DRM_COLOR_YCBCR_FULL_RANGE) |
BIT(DRM_COLOR_YCBCR_LIMITED_RANGE));
u32 default_encoding = DRM_COLOR_YCBCR_BT601;
u32 default_range = DRM_COLOR_YCBCR_FULL_RANGE;
u32 blend_modes = (BIT(DRM_MODE_BLEND_PREMULTI) |
BIT(DRM_MODE_BLEND_COVERAGE));
int ret;
tplane = kzalloc(sizeof(*tplane), GFP_KERNEL);
if (!tplane)
return ERR_PTR(-ENOMEM);
tplane->hw_plane_id = hw_plane_id;
possible_crtcs = crtc_mask;
type = plane_type;
ret = drm_universal_plane_init(&tidss->ddev, &tplane->plane,
possible_crtcs,
&tidss_plane_funcs,
formats, num_formats,
NULL, type, NULL);
if (ret < 0)
goto err;
drm_plane_helper_add(&tplane->plane, &tidss_plane_helper_funcs);
drm_plane_create_zpos_property(&tplane->plane, hw_plane_id, 0,
num_planes - 1);
ret = drm_plane_create_color_properties(&tplane->plane,
color_encodings,
color_ranges,
default_encoding,
default_range);
if (ret)
goto err;
ret = drm_plane_create_alpha_property(&tplane->plane);
if (ret)
goto err;
ret = drm_plane_create_blend_mode_property(&tplane->plane, blend_modes);
if (ret)
goto err;
return tplane;
err:
kfree(tplane);
return ERR_PTR(ret);
}
| linux-master | drivers/gpu/drm/tidss/tidss_plane.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com/
* Author: Tomi Valkeinen <[email protected]>
*/
#include <linux/export.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_bridge_connector.h>
#include <drm/drm_crtc.h>
#include <drm/drm_modeset_helper_vtables.h>
#include <drm/drm_panel.h>
#include <drm/drm_of.h>
#include <drm/drm_simple_kms_helper.h>
#include "tidss_crtc.h"
#include "tidss_drv.h"
#include "tidss_encoder.h"
struct tidss_encoder {
struct drm_bridge bridge;
struct drm_encoder encoder;
struct drm_connector *connector;
struct drm_bridge *next_bridge;
struct tidss_device *tidss;
};
static inline struct tidss_encoder
*bridge_to_tidss_encoder(struct drm_bridge *b)
{
return container_of(b, struct tidss_encoder, bridge);
}
static int tidss_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tidss_encoder *t_enc = bridge_to_tidss_encoder(bridge);
return drm_bridge_attach(bridge->encoder, t_enc->next_bridge,
bridge, flags);
}
static int tidss_bridge_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct tidss_encoder *t_enc = bridge_to_tidss_encoder(bridge);
struct tidss_device *tidss = t_enc->tidss;
struct tidss_crtc_state *tcrtc_state = to_tidss_crtc_state(crtc_state);
struct drm_display_info *di = &conn_state->connector->display_info;
struct drm_bridge_state *next_bridge_state = NULL;
if (t_enc->next_bridge)
next_bridge_state = drm_atomic_get_new_bridge_state(crtc_state->state,
t_enc->next_bridge);
if (next_bridge_state) {
tcrtc_state->bus_flags = next_bridge_state->input_bus_cfg.flags;
tcrtc_state->bus_format = next_bridge_state->input_bus_cfg.format;
} else if (di->num_bus_formats) {
tcrtc_state->bus_format = di->bus_formats[0];
tcrtc_state->bus_flags = di->bus_flags;
} else {
dev_err(tidss->dev, "%s: No bus_formats in connected display\n",
__func__);
return -EINVAL;
}
return 0;
}
static const struct drm_bridge_funcs tidss_bridge_funcs = {
.attach = tidss_bridge_attach,
.atomic_check = tidss_bridge_atomic_check,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
};
int tidss_encoder_create(struct tidss_device *tidss,
struct drm_bridge *next_bridge,
u32 encoder_type, u32 possible_crtcs)
{
struct tidss_encoder *t_enc;
struct drm_encoder *enc;
struct drm_connector *connector;
int ret;
t_enc = drmm_simple_encoder_alloc(&tidss->ddev, struct tidss_encoder,
encoder, encoder_type);
if (IS_ERR(t_enc))
return PTR_ERR(t_enc);
t_enc->tidss = tidss;
t_enc->next_bridge = next_bridge;
t_enc->bridge.funcs = &tidss_bridge_funcs;
enc = &t_enc->encoder;
enc->possible_crtcs = possible_crtcs;
/* Attaching first bridge to the encoder */
ret = drm_bridge_attach(enc, &t_enc->bridge, NULL,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret) {
dev_err(tidss->dev, "bridge attach failed: %d\n", ret);
return ret;
}
/* Initializing the connector at the end of bridge-chain */
connector = drm_bridge_connector_init(&tidss->ddev, enc);
if (IS_ERR(connector)) {
dev_err(tidss->dev, "bridge_connector create failed\n");
return PTR_ERR(connector);
}
ret = drm_connector_attach_encoder(connector, enc);
if (ret) {
dev_err(tidss->dev, "attaching encoder to connector failed\n");
return ret;
}
t_enc->connector = connector;
dev_dbg(tidss->dev, "Encoder create done\n");
return ret;
}
| linux-master | drivers/gpu/drm/tidss/tidss_encoder.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) COPYRIGHT 2012-2013 ARM Limited. All rights reserved.
*
* Parts of this file were based on sources as follows:
*
* Copyright (c) 2006-2008 Intel Corporation
* Copyright (c) 2007 Dave Airlie <[email protected]>
* Copyright (C) 2011 Texas Instruments
*/
/**
* DOC: ARM PrimeCell PL110 and PL111 CLCD Driver
*
* The PL110/PL111 is a simple LCD controller that can support TFT
* and STN displays. This driver exposes a standard KMS interface
* for them.
*
* The driver currently doesn't expose the cursor. The DRM API for
* cursors requires support for 64x64 ARGB8888 cursor images, while
* the hardware can only support 64x64 monochrome with masking
* cursors. While one could imagine trying to hack something together
* to look at the ARGB8888 and program reasonable in monochrome, we
* just don't expose the cursor at all instead, and leave cursor
* support to the application software cursor layer.
*
* TODO:
*
* - Fix race between setting plane base address and getting IRQ for
* vsync firing the pageflip completion.
*
* - Read back hardware state at boot to skip reprogramming the
* hardware when doing a no-op modeset.
*
* - Use the CLKSEL bit to support switching between the two external
* clock parents.
*/
#include <linux/amba/bus.h>
#include <linux/dma-buf.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/of_reserved_mem.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_drv.h>
#include <drm/drm_fbdev_dma.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "pl111_drm.h"
#include "pl111_versatile.h"
#include "pl111_nomadik.h"
#define DRIVER_DESC "DRM module for PL111"
static const struct drm_mode_config_funcs mode_config_funcs = {
.fb_create = drm_gem_fb_create,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static int pl111_modeset_init(struct drm_device *dev)
{
struct drm_mode_config *mode_config;
struct pl111_drm_dev_private *priv = dev->dev_private;
struct device_node *np = dev->dev->of_node;
struct device_node *remote;
struct drm_panel *panel = NULL;
struct drm_bridge *bridge = NULL;
bool defer = false;
int ret;
int i;
ret = drmm_mode_config_init(dev);
if (ret)
return ret;
mode_config = &dev->mode_config;
mode_config->funcs = &mode_config_funcs;
mode_config->min_width = 1;
mode_config->max_width = 1024;
mode_config->min_height = 1;
mode_config->max_height = 768;
i = 0;
for_each_endpoint_of_node(np, remote) {
struct drm_panel *tmp_panel;
struct drm_bridge *tmp_bridge;
dev_dbg(dev->dev, "checking endpoint %d\n", i);
ret = drm_of_find_panel_or_bridge(dev->dev->of_node,
0, i,
&tmp_panel,
&tmp_bridge);
if (ret) {
if (ret == -EPROBE_DEFER) {
/*
* Something deferred, but that is often just
* another way of saying -ENODEV, but let's
* cast a vote for later deferral.
*/
defer = true;
} else if (ret != -ENODEV) {
/* Continue, maybe something else is working */
dev_err(dev->dev,
"endpoint %d returns %d\n", i, ret);
}
}
if (tmp_panel) {
dev_info(dev->dev,
"found panel on endpoint %d\n", i);
panel = tmp_panel;
}
if (tmp_bridge) {
dev_info(dev->dev,
"found bridge on endpoint %d\n", i);
bridge = tmp_bridge;
}
i++;
}
/*
* If we can't find neither panel nor bridge on any of the
* endpoints, and any of them retured -EPROBE_DEFER, then
* let's defer this driver too.
*/
if ((!panel && !bridge) && defer)
return -EPROBE_DEFER;
if (panel) {
bridge = drm_panel_bridge_add_typed(panel,
DRM_MODE_CONNECTOR_Unknown);
if (IS_ERR(bridge)) {
ret = PTR_ERR(bridge);
goto finish;
}
} else if (bridge) {
dev_info(dev->dev, "Using non-panel bridge\n");
} else {
dev_err(dev->dev, "No bridge, exiting\n");
return -ENODEV;
}
priv->bridge = bridge;
if (panel) {
priv->panel = panel;
priv->connector = drm_panel_bridge_connector(bridge);
}
ret = pl111_display_init(dev);
if (ret != 0) {
dev_err(dev->dev, "Failed to init display\n");
goto out_bridge;
}
ret = drm_simple_display_pipe_attach_bridge(&priv->pipe,
bridge);
if (ret)
return ret;
if (!priv->variant->broken_vblank) {
ret = drm_vblank_init(dev, 1);
if (ret != 0) {
dev_err(dev->dev, "Failed to init vblank\n");
goto out_bridge;
}
}
drm_mode_config_reset(dev);
drm_kms_helper_poll_init(dev);
goto finish;
out_bridge:
if (panel)
drm_panel_bridge_remove(bridge);
finish:
return ret;
}
static struct drm_gem_object *
pl111_gem_import_sg_table(struct drm_device *dev,
struct dma_buf_attachment *attach,
struct sg_table *sgt)
{
struct pl111_drm_dev_private *priv = dev->dev_private;
/*
* When using device-specific reserved memory we can't import
* DMA buffers: those are passed by reference in any global
* memory and we can only handle a specific range of memory.
*/
if (priv->use_device_memory)
return ERR_PTR(-EINVAL);
return drm_gem_dma_prime_import_sg_table(dev, attach, sgt);
}
DEFINE_DRM_GEM_DMA_FOPS(drm_fops);
static const struct drm_driver pl111_drm_driver = {
.driver_features =
DRIVER_MODESET | DRIVER_GEM | DRIVER_ATOMIC,
.ioctls = NULL,
.fops = &drm_fops,
.name = "pl111",
.desc = DRIVER_DESC,
.date = "20170317",
.major = 1,
.minor = 0,
.patchlevel = 0,
.dumb_create = drm_gem_dma_dumb_create,
.gem_prime_import_sg_table = pl111_gem_import_sg_table,
#if defined(CONFIG_DEBUG_FS)
.debugfs_init = pl111_debugfs_init,
#endif
};
static int pl111_amba_probe(struct amba_device *amba_dev,
const struct amba_id *id)
{
struct device *dev = &amba_dev->dev;
struct pl111_drm_dev_private *priv;
const struct pl111_variant_data *variant = id->data;
struct drm_device *drm;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
drm = drm_dev_alloc(&pl111_drm_driver, dev);
if (IS_ERR(drm))
return PTR_ERR(drm);
amba_set_drvdata(amba_dev, drm);
priv->drm = drm;
drm->dev_private = priv;
priv->variant = variant;
ret = of_reserved_mem_device_init(dev);
if (!ret) {
dev_info(dev, "using device-specific reserved memory\n");
priv->use_device_memory = true;
}
if (of_property_read_u32(dev->of_node, "max-memory-bandwidth",
&priv->memory_bw)) {
dev_info(dev, "no max memory bandwidth specified, assume unlimited\n");
priv->memory_bw = 0;
}
/* The two main variants swap this register */
if (variant->is_pl110 || variant->is_lcdc) {
priv->ienb = CLCD_PL110_IENB;
priv->ctrl = CLCD_PL110_CNTL;
} else {
priv->ienb = CLCD_PL111_IENB;
priv->ctrl = CLCD_PL111_CNTL;
}
priv->regs = devm_ioremap_resource(dev, &amba_dev->res);
if (IS_ERR(priv->regs)) {
dev_err(dev, "%s failed mmio\n", __func__);
ret = PTR_ERR(priv->regs);
goto dev_put;
}
/* This may override some variant settings */
ret = pl111_versatile_init(dev, priv);
if (ret)
goto dev_put;
pl111_nomadik_init(dev);
/* turn off interrupts before requesting the irq */
writel(0, priv->regs + priv->ienb);
ret = devm_request_irq(dev, amba_dev->irq[0], pl111_irq, 0,
variant->name, priv);
if (ret != 0) {
dev_err(dev, "%s failed irq %d\n", __func__, ret);
return ret;
}
ret = pl111_modeset_init(drm);
if (ret != 0)
goto dev_put;
ret = drm_dev_register(drm, 0);
if (ret < 0)
goto dev_put;
drm_fbdev_dma_setup(drm, priv->variant->fb_depth);
return 0;
dev_put:
drm_dev_put(drm);
of_reserved_mem_device_release(dev);
return ret;
}
static void pl111_amba_remove(struct amba_device *amba_dev)
{
struct device *dev = &amba_dev->dev;
struct drm_device *drm = amba_get_drvdata(amba_dev);
struct pl111_drm_dev_private *priv = drm->dev_private;
drm_dev_unregister(drm);
if (priv->panel)
drm_panel_bridge_remove(priv->bridge);
drm_dev_put(drm);
of_reserved_mem_device_release(dev);
}
/*
* This early variant lacks the 565 and 444 pixel formats.
*/
static const u32 pl110_pixel_formats[] = {
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
};
static const struct pl111_variant_data pl110_variant = {
.name = "PL110",
.is_pl110 = true,
.formats = pl110_pixel_formats,
.nformats = ARRAY_SIZE(pl110_pixel_formats),
.fb_depth = 16,
};
/* RealView, Versatile Express etc use this modern variant */
static const u32 pl111_pixel_formats[] = {
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_BGR565,
DRM_FORMAT_RGB565,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ABGR4444,
DRM_FORMAT_XBGR4444,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB4444,
};
static const struct pl111_variant_data pl111_variant = {
.name = "PL111",
.formats = pl111_pixel_formats,
.nformats = ARRAY_SIZE(pl111_pixel_formats),
.fb_depth = 32,
};
static const u32 pl110_nomadik_pixel_formats[] = {
DRM_FORMAT_RGB888,
DRM_FORMAT_BGR888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_BGR565,
DRM_FORMAT_RGB565,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ABGR4444,
DRM_FORMAT_XBGR4444,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB4444,
};
static const struct pl111_variant_data pl110_nomadik_variant = {
.name = "LCDC (PL110 Nomadik)",
.formats = pl110_nomadik_pixel_formats,
.nformats = ARRAY_SIZE(pl110_nomadik_pixel_formats),
.is_lcdc = true,
.st_bitmux_control = true,
.broken_vblank = true,
.fb_depth = 16,
};
static const struct amba_id pl111_id_table[] = {
{
.id = 0x00041110,
.mask = 0x000fffff,
.data = (void *)&pl110_variant,
},
{
.id = 0x00180110,
.mask = 0x00fffffe,
.data = (void *)&pl110_nomadik_variant,
},
{
.id = 0x00041111,
.mask = 0x000fffff,
.data = (void *)&pl111_variant,
},
{0, 0},
};
MODULE_DEVICE_TABLE(amba, pl111_id_table);
static struct amba_driver pl111_amba_driver __maybe_unused = {
.drv = {
.name = "drm-clcd-pl111",
},
.probe = pl111_amba_probe,
.remove = pl111_amba_remove,
.id_table = pl111_id_table,
};
#ifdef CONFIG_ARM_AMBA
module_amba_driver(pl111_amba_driver);
#endif
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("ARM Ltd.");
MODULE_LICENSE("GPL");
| linux-master | drivers/gpu/drm/pl111/pl111_drv.c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.