python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2007 Lemote, Inc. & Institute of Computing Technology * Author: Fuxin Zhang, [email protected] * Copyright (C) 2009 Lemote, Inc. * Author: Zhangjin Wu, [email protected] */ #include <linux/init.h> #include <linux/pm.h> #include <asm/idle.h> #include <asm/reboot.h> #include <loongson.h> static inline void loongson_reboot(void) { #ifndef CONFIG_CPU_JUMP_WORKAROUNDS ((void (*)(void))ioremap(LOONGSON_BOOT_BASE, 4)) (); #else void (*func)(void); func = (void *)ioremap(LOONGSON_BOOT_BASE, 4); __asm__ __volatile__( " .set noat \n" " jr %[func] \n" " .set at \n" : /* No outputs */ : [func] "r" (func)); #endif } static void loongson_restart(char *command) { /* do preparation for reboot */ mach_prepare_reboot(); /* reboot via jumping to boot base address */ loongson_reboot(); } static void loongson_poweroff(void) { mach_prepare_shutdown(); /* * It needs a wait loop here, but mips/kernel/reset.c already calls * a generic delay loop, machine_hang(), so simply return. */ return; } static void loongson_halt(void) { pr_notice("\n\n** You can safely turn off the power now **\n\n"); while (1) { if (cpu_wait) cpu_wait(); } } static int __init mips_reboot_setup(void) { _machine_restart = loongson_restart; _machine_halt = loongson_halt; pm_power_off = loongson_poweroff; return 0; } arch_initcall(mips_reboot_setup);
linux-master
arch/mips/loongson2ef/common/reset.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2007 Lemote Inc. & Institute of Computing Technology * Author: Fuxin Zhang, [email protected] */ #include <linux/export.h> #include <linux/init.h> #include <asm/wbflush.h> #include <asm/bootinfo.h> #include <loongson.h> static void wbflush_loongson(void) { asm(".set\tpush\n\t" ".set\tnoreorder\n\t" ".set mips3\n\t" "sync\n\t" "nop\n\t" ".set\tpop\n\t" ".set mips0\n\t"); } void (*__wbflush)(void) = wbflush_loongson; EXPORT_SYMBOL(__wbflush); void __init plat_mem_setup(void) { }
linux-master
arch/mips/loongson2ef/common/setup.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009 Lemote Inc. * Author: Wu Zhangjin, [email protected] */ #include <linux/export.h> #include <asm/bootinfo.h> #include <asm/setup.h> #include <loongson.h> /* raw */ unsigned long loongson_uart_base; /* ioremapped */ unsigned long _loongson_uart_base; EXPORT_SYMBOL(loongson_uart_base); EXPORT_SYMBOL(_loongson_uart_base); void prom_init_loongson_uart_base(void) { switch (mips_machtype) { case MACH_LEMOTE_FL2E: loongson_uart_base = LOONGSON_PCIIO_BASE + 0x3f8; break; case MACH_LEMOTE_FL2F: case MACH_LEMOTE_LL2F: loongson_uart_base = LOONGSON_PCIIO_BASE + 0x2f8; break; case MACH_LEMOTE_ML2F7: case MACH_LEMOTE_YL2F89: case MACH_DEXXON_GDIUM2F10: case MACH_LEMOTE_NAS: default: /* The CPU provided serial port (LPC) */ loongson_uart_base = LOONGSON_LIO1_BASE + 0x3f8; break; } _loongson_uart_base = TO_UNCAC(loongson_uart_base); setup_8250_early_printk_port(_loongson_uart_base, 0, 1024); }
linux-master
arch/mips/loongson2ef/common/uart_base.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * loongson-specific suspend support * * Copyright (C) 2009 Lemote Inc. * Author: Wu Zhangjin <[email protected]> */ #include <linux/suspend.h> #include <linux/interrupt.h> #include <linux/pm.h> #include <asm/i8259.h> #include <asm/mipsregs.h> #include <loongson.h> static unsigned int __maybe_unused cached_master_mask; /* i8259A */ static unsigned int __maybe_unused cached_slave_mask; static unsigned int __maybe_unused cached_bonito_irq_mask; /* bonito */ void arch_suspend_disable_irqs(void) { /* disable all mips events */ local_irq_disable(); #ifdef CONFIG_I8259 /* disable all events of i8259A */ cached_slave_mask = inb(PIC_SLAVE_IMR); cached_master_mask = inb(PIC_MASTER_IMR); outb(0xff, PIC_SLAVE_IMR); inb(PIC_SLAVE_IMR); outb(0xff, PIC_MASTER_IMR); inb(PIC_MASTER_IMR); #endif /* disable all events of bonito */ cached_bonito_irq_mask = LOONGSON_INTEN; LOONGSON_INTENCLR = 0xffff; (void)LOONGSON_INTENCLR; } void arch_suspend_enable_irqs(void) { /* enable all mips events */ local_irq_enable(); #ifdef CONFIG_I8259 /* only enable the cached events of i8259A */ outb(cached_slave_mask, PIC_SLAVE_IMR); outb(cached_master_mask, PIC_MASTER_IMR); #endif /* enable all cached events of bonito */ LOONGSON_INTENSET = cached_bonito_irq_mask; (void)LOONGSON_INTENSET; } /* * Setup the board-specific events for waking up loongson from wait mode */ void __weak setup_wakeup_events(void) { } /* * Check wakeup events */ int __weak wakeup_loongson(void) { return 1; } /* * If the events are really what we want to wakeup the CPU, wake it up * otherwise put the CPU asleep again. */ static void wait_for_wakeup_events(void) { while (!wakeup_loongson()) writel(readl(LOONGSON_CHIPCFG) & ~0x7, LOONGSON_CHIPCFG); } /* * Stop all perf counters * * $24 is the control register of Loongson perf counter */ static inline void stop_perf_counters(void) { __write_64bit_c0_register($24, 0, 0); } static void loongson_suspend_enter(void) { unsigned int cached_cpu_freq; /* setup wakeup events via enabling the IRQs */ setup_wakeup_events(); stop_perf_counters(); cached_cpu_freq = readl(LOONGSON_CHIPCFG); /* Put CPU into wait mode */ writel(readl(LOONGSON_CHIPCFG) & ~0x7, LOONGSON_CHIPCFG); /* wait for the given events to wakeup cpu from wait mode */ wait_for_wakeup_events(); writel(cached_cpu_freq, LOONGSON_CHIPCFG); mmiowb(); } void __weak mach_suspend(void) { } void __weak mach_resume(void) { } static int loongson_pm_enter(suspend_state_t state) { mach_suspend(); /* processor specific suspend */ loongson_suspend_enter(); mach_resume(); return 0; } static int loongson_pm_valid_state(suspend_state_t state) { switch (state) { case PM_SUSPEND_ON: case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: return 1; default: return 0; } } static const struct platform_suspend_ops loongson_pm_ops = { .valid = loongson_pm_valid_state, .enter = loongson_pm_enter, }; static int __init loongson_pm_init(void) { suspend_set_ops(&loongson_pm_ops); return 0; } arch_initcall(loongson_pm_init);
linux-master
arch/mips/loongson2ef/common/pm.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Based on Ocelot Linux port, which is * Copyright 2001 MontaVista Software Inc. * Author: [email protected] or [email protected] * * Copyright 2003 ICT CAS * Author: Michael Guo <[email protected]> * * Copyright (C) 2007 Lemote Inc. & Institute of Computing Technology * Author: Fuxin Zhang, [email protected] * * Copyright (C) 2009 Lemote Inc. * Author: Wu Zhangjin, [email protected] */ #include <linux/export.h> #include <asm/bootinfo.h> #include <asm/fw/fw.h> #include <loongson.h> u32 cpu_clock_freq; EXPORT_SYMBOL(cpu_clock_freq); void __init prom_init_env(void) { /* pmon passes arguments in 32bit pointers */ unsigned int processor_id; cpu_clock_freq = fw_getenvl("cpuclock"); memsize = fw_getenvl("memsize"); highmemsize = fw_getenvl("highmemsize"); if (memsize == 0) memsize = 256; pr_info("memsize=%u, highmemsize=%u\n", memsize, highmemsize); if (cpu_clock_freq == 0) { processor_id = (&current_cpu_data)->processor_id; switch (processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON2E: cpu_clock_freq = 533080000; break; case PRID_REV_LOONGSON2F: cpu_clock_freq = 797000000; break; default: cpu_clock_freq = 100000000; break; } } pr_info("CpuClock = %u\n", cpu_clock_freq); }
linux-master
arch/mips/loongson2ef/common/env.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2007 Lemote, Inc. & Institute of Computing Technology * Author: Fuxin Zhang, [email protected] * * Copyright (C) 2009 Lemote Inc. * Author: Wu Zhangjin, [email protected] */ #include <asm/mc146818-time.h> #include <asm/time.h> #include <asm/hpet.h> #include <loongson.h> #include <cs5536/cs5536_mfgpt.h> void __init plat_time_init(void) { /* setup mips r4k timer */ mips_hpt_frequency = cpu_clock_freq / 2; setup_mfgpt0_timer(); } void read_persistent_clock64(struct timespec64 *ts) { ts->tv_sec = mc146818_get_cmos_time(); ts->tv_nsec = 0; }
linux-master
arch/mips/loongson2ef/common/time.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * the IDE Virtual Support Module of AMD CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] */ #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> void pci_ide_write_reg(int reg, u32 value) { u32 hi = 0, lo = value; switch (reg) { case PCI_COMMAND: _rdmsr(GLIU_MSR_REG(GLIU_PAE), &hi, &lo); if (value & PCI_COMMAND_MASTER) lo |= (0x03 << 4); else lo &= ~(0x03 << 4); _wrmsr(GLIU_MSR_REG(GLIU_PAE), hi, lo); break; case PCI_STATUS: if (value & PCI_STATUS_PARITY) { _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) { lo = (lo & 0x0000ffff) | SB_PARE_ERR_FLAG; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); } } break; case PCI_CACHE_LINE_SIZE: value &= 0x0000ff00; _rdmsr(SB_MSR_REG(SB_CTRL), &hi, &lo); hi &= 0xffffff00; hi |= (value >> 8); _wrmsr(SB_MSR_REG(SB_CTRL), hi, lo); break; case PCI_BAR4_REG: if (value == PCI_BAR_RANGE_MASK) { _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); lo |= SOFT_BAR_IDE_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else if (value & 0x01) { _rdmsr(IDE_MSR_REG(IDE_IO_BAR), &hi, &lo); lo = (value & 0xfffffff0) | 0x1; _wrmsr(IDE_MSR_REG(IDE_IO_BAR), hi, lo); value &= 0xfffffffc; hi = 0x60000000 | ((value & 0x000ff000) >> 12); lo = 0x000ffff0 | ((value & 0x00000fff) << 20); _wrmsr(GLIU_MSR_REG(GLIU_IOD_BM2), hi, lo); } break; case PCI_IDE_CFG_REG: if (value == CS5536_IDE_FLASH_SIGNATURE) { _rdmsr(DIVIL_MSR_REG(DIVIL_BALL_OPTS), &hi, &lo); lo |= 0x01; _wrmsr(DIVIL_MSR_REG(DIVIL_BALL_OPTS), hi, lo); } else { _rdmsr(IDE_MSR_REG(IDE_CFG), &hi, &lo); lo = value; _wrmsr(IDE_MSR_REG(IDE_CFG), hi, lo); } break; case PCI_IDE_DTC_REG: _rdmsr(IDE_MSR_REG(IDE_DTC), &hi, &lo); lo = value; _wrmsr(IDE_MSR_REG(IDE_DTC), hi, lo); break; case PCI_IDE_CAST_REG: _rdmsr(IDE_MSR_REG(IDE_CAST), &hi, &lo); lo = value; _wrmsr(IDE_MSR_REG(IDE_CAST), hi, lo); break; case PCI_IDE_ETC_REG: _rdmsr(IDE_MSR_REG(IDE_ETC), &hi, &lo); lo = value; _wrmsr(IDE_MSR_REG(IDE_ETC), hi, lo); break; case PCI_IDE_PM_REG: _rdmsr(IDE_MSR_REG(IDE_INTERNAL_PM), &hi, &lo); lo = value; _wrmsr(IDE_MSR_REG(IDE_INTERNAL_PM), hi, lo); break; default: break; } } u32 pci_ide_read_reg(int reg) { u32 conf_data = 0; u32 hi, lo; switch (reg) { case PCI_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_IDE_DEVICE_ID, CS5536_VENDOR_ID); break; case PCI_COMMAND: _rdmsr(IDE_MSR_REG(IDE_IO_BAR), &hi, &lo); if (lo & 0xfffffff0) conf_data |= PCI_COMMAND_IO; _rdmsr(GLIU_MSR_REG(GLIU_PAE), &hi, &lo); if ((lo & 0x30) == 0x30) conf_data |= PCI_COMMAND_MASTER; break; case PCI_STATUS: conf_data |= PCI_STATUS_66MHZ; conf_data |= PCI_STATUS_FAST_BACK; _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) conf_data |= PCI_STATUS_PARITY; conf_data |= PCI_STATUS_DEVSEL_MEDIUM; break; case PCI_CLASS_REVISION: _rdmsr(IDE_MSR_REG(IDE_CAP), &hi, &lo); conf_data = lo & 0x000000ff; conf_data |= (CS5536_IDE_CLASS_CODE << 8); break; case PCI_CACHE_LINE_SIZE: _rdmsr(SB_MSR_REG(SB_CTRL), &hi, &lo); hi &= 0x000000f8; conf_data = CFG_PCI_CACHE_LINE_SIZE(PCI_NORMAL_HEADER_TYPE, hi); break; case PCI_BAR4_REG: _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); if (lo & SOFT_BAR_IDE_FLAG) { conf_data = CS5536_IDE_RANGE | PCI_BASE_ADDRESS_SPACE_IO; lo &= ~SOFT_BAR_IDE_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else { _rdmsr(IDE_MSR_REG(IDE_IO_BAR), &hi, &lo); conf_data = lo & 0xfffffff0; conf_data |= 0x01; conf_data &= ~0x02; } break; case PCI_CARDBUS_CIS: conf_data = PCI_CARDBUS_CIS_POINTER; break; case PCI_SUBSYSTEM_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_IDE_SUB_ID, CS5536_SUB_VENDOR_ID); break; case PCI_ROM_ADDRESS: conf_data = PCI_EXPANSION_ROM_BAR; break; case PCI_CAPABILITY_LIST: conf_data = PCI_CAPLIST_POINTER; break; case PCI_INTERRUPT_LINE: conf_data = CFG_PCI_INTERRUPT_LINE(PCI_DEFAULT_PIN, CS5536_IDE_INTR); break; case PCI_IDE_CFG_REG: _rdmsr(IDE_MSR_REG(IDE_CFG), &hi, &lo); conf_data = lo; break; case PCI_IDE_DTC_REG: _rdmsr(IDE_MSR_REG(IDE_DTC), &hi, &lo); conf_data = lo; break; case PCI_IDE_CAST_REG: _rdmsr(IDE_MSR_REG(IDE_CAST), &hi, &lo); conf_data = lo; break; case PCI_IDE_ETC_REG: _rdmsr(IDE_MSR_REG(IDE_ETC), &hi, &lo); conf_data = lo; break; case PCI_IDE_PM_REG: _rdmsr(IDE_MSR_REG(IDE_INTERNAL_PM), &hi, &lo); conf_data = lo; break; default: break; } return conf_data; }
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_ide.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * the OHCI Virtual Support Module of AMD CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] */ #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> void pci_ohci_write_reg(int reg, u32 value) { u32 hi = 0, lo = value; switch (reg) { case PCI_COMMAND: _rdmsr(USB_MSR_REG(USB_OHCI), &hi, &lo); if (value & PCI_COMMAND_MASTER) hi |= PCI_COMMAND_MASTER; else hi &= ~PCI_COMMAND_MASTER; if (value & PCI_COMMAND_MEMORY) hi |= PCI_COMMAND_MEMORY; else hi &= ~PCI_COMMAND_MEMORY; _wrmsr(USB_MSR_REG(USB_OHCI), hi, lo); break; case PCI_STATUS: if (value & PCI_STATUS_PARITY) { _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) { lo = (lo & 0x0000ffff) | SB_PARE_ERR_FLAG; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); } } break; case PCI_BAR0_REG: if (value == PCI_BAR_RANGE_MASK) { _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); lo |= SOFT_BAR_OHCI_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else if ((value & 0x01) == 0x00) { _rdmsr(USB_MSR_REG(USB_OHCI), &hi, &lo); lo = value; _wrmsr(USB_MSR_REG(USB_OHCI), hi, lo); value &= 0xfffffff0; hi = 0x40000000 | ((value & 0xff000000) >> 24); lo = 0x000fffff | ((value & 0x00fff000) << 8); _wrmsr(GLIU_MSR_REG(GLIU_P2D_BM3), hi, lo); } break; case PCI_OHCI_INT_REG: _rdmsr(DIVIL_MSR_REG(PIC_YSEL_LOW), &hi, &lo); lo &= ~(0xf << PIC_YSEL_LOW_USB_SHIFT); if (value) /* enable all the usb interrupt in PIC */ lo |= (CS5536_USB_INTR << PIC_YSEL_LOW_USB_SHIFT); _wrmsr(DIVIL_MSR_REG(PIC_YSEL_LOW), hi, lo); break; default: break; } } u32 pci_ohci_read_reg(int reg) { u32 conf_data = 0; u32 hi, lo; switch (reg) { case PCI_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_OHCI_DEVICE_ID, CS5536_VENDOR_ID); break; case PCI_COMMAND: _rdmsr(USB_MSR_REG(USB_OHCI), &hi, &lo); if (hi & PCI_COMMAND_MASTER) conf_data |= PCI_COMMAND_MASTER; if (hi & PCI_COMMAND_MEMORY) conf_data |= PCI_COMMAND_MEMORY; break; case PCI_STATUS: conf_data |= PCI_STATUS_66MHZ; conf_data |= PCI_STATUS_FAST_BACK; _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) conf_data |= PCI_STATUS_PARITY; conf_data |= PCI_STATUS_DEVSEL_MEDIUM; break; case PCI_CLASS_REVISION: _rdmsr(USB_MSR_REG(USB_CAP), &hi, &lo); conf_data = lo & 0x000000ff; conf_data |= (CS5536_OHCI_CLASS_CODE << 8); break; case PCI_CACHE_LINE_SIZE: conf_data = CFG_PCI_CACHE_LINE_SIZE(PCI_NORMAL_HEADER_TYPE, PCI_NORMAL_LATENCY_TIMER); break; case PCI_BAR0_REG: _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); if (lo & SOFT_BAR_OHCI_FLAG) { conf_data = CS5536_OHCI_RANGE | PCI_BASE_ADDRESS_SPACE_MEMORY; lo &= ~SOFT_BAR_OHCI_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else { _rdmsr(USB_MSR_REG(USB_OHCI), &hi, &lo); conf_data = lo & 0xffffff00; conf_data &= ~0x0000000f; /* 32bit mem */ } break; case PCI_CARDBUS_CIS: conf_data = PCI_CARDBUS_CIS_POINTER; break; case PCI_SUBSYSTEM_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_OHCI_SUB_ID, CS5536_SUB_VENDOR_ID); break; case PCI_ROM_ADDRESS: conf_data = PCI_EXPANSION_ROM_BAR; break; case PCI_CAPABILITY_LIST: conf_data = PCI_CAPLIST_USB_POINTER; break; case PCI_INTERRUPT_LINE: conf_data = CFG_PCI_INTERRUPT_LINE(PCI_DEFAULT_PIN, CS5536_USB_INTR); break; case PCI_OHCI_INT_REG: _rdmsr(DIVIL_MSR_REG(PIC_YSEL_LOW), &hi, &lo); if (((lo >> PIC_YSEL_LOW_USB_SHIFT) & 0xf) == CS5536_USB_INTR) conf_data = 1; break; default: break; } return conf_data; }
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_ohci.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * the ISA Virtual Support Module of AMD CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] */ #include <linux/pci.h> #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> /* common variables for PCI_ISA_READ/WRITE_BAR */ static const u32 divil_msr_reg[6] = { DIVIL_MSR_REG(DIVIL_LBAR_SMB), DIVIL_MSR_REG(DIVIL_LBAR_GPIO), DIVIL_MSR_REG(DIVIL_LBAR_MFGPT), DIVIL_MSR_REG(DIVIL_LBAR_IRQ), DIVIL_MSR_REG(DIVIL_LBAR_PMS), DIVIL_MSR_REG(DIVIL_LBAR_ACPI), }; static const u32 soft_bar_flag[6] = { SOFT_BAR_SMB_FLAG, SOFT_BAR_GPIO_FLAG, SOFT_BAR_MFGPT_FLAG, SOFT_BAR_IRQ_FLAG, SOFT_BAR_PMS_FLAG, SOFT_BAR_ACPI_FLAG, }; static const u32 sb_msr_reg[6] = { SB_MSR_REG(SB_R0), SB_MSR_REG(SB_R1), SB_MSR_REG(SB_R2), SB_MSR_REG(SB_R3), SB_MSR_REG(SB_R4), SB_MSR_REG(SB_R5), }; static const u32 bar_space_range[6] = { CS5536_SMB_RANGE, CS5536_GPIO_RANGE, CS5536_MFGPT_RANGE, CS5536_IRQ_RANGE, CS5536_PMS_RANGE, CS5536_ACPI_RANGE, }; static const int bar_space_len[6] = { CS5536_SMB_LENGTH, CS5536_GPIO_LENGTH, CS5536_MFGPT_LENGTH, CS5536_IRQ_LENGTH, CS5536_PMS_LENGTH, CS5536_ACPI_LENGTH, }; /* * enable the divil module bar space. * * For all the DIVIL module LBAR, you should control the DIVIL LBAR reg * and the RCONFx(0~5) reg to use the modules. */ static void divil_lbar_enable(void) { u32 hi, lo; int offset; /* * The DIVIL IRQ is not used yet. and make the RCONF0 reserved. */ for (offset = DIVIL_LBAR_SMB; offset <= DIVIL_LBAR_PMS; offset++) { _rdmsr(DIVIL_MSR_REG(offset), &hi, &lo); hi |= 0x01; _wrmsr(DIVIL_MSR_REG(offset), hi, lo); } } /* * disable the divil module bar space. */ static void divil_lbar_disable(void) { u32 hi, lo; int offset; for (offset = DIVIL_LBAR_SMB; offset <= DIVIL_LBAR_PMS; offset++) { _rdmsr(DIVIL_MSR_REG(offset), &hi, &lo); hi &= ~0x01; _wrmsr(DIVIL_MSR_REG(offset), hi, lo); } } /* * BAR write: write value to the n BAR */ void pci_isa_write_bar(int n, u32 value) { u32 hi = 0, lo = value; if (value == PCI_BAR_RANGE_MASK) { _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); lo |= soft_bar_flag[n]; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else if (value & 0x01) { /* NATIVE reg */ hi = 0x0000f001; lo &= bar_space_range[n]; _wrmsr(divil_msr_reg[n], hi, lo); /* RCONFx is 4bytes in units for I/O space */ hi = ((value & 0x000ffffc) << 12) | ((bar_space_len[n] - 4) << 12) | 0x01; lo = ((value & 0x000ffffc) << 12) | 0x01; _wrmsr(sb_msr_reg[n], hi, lo); } } /* * BAR read: read the n BAR */ u32 pci_isa_read_bar(int n) { u32 conf_data = 0; u32 hi, lo; _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); if (lo & soft_bar_flag[n]) { conf_data = bar_space_range[n] | PCI_BASE_ADDRESS_SPACE_IO; lo &= ~soft_bar_flag[n]; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else { _rdmsr(divil_msr_reg[n], &hi, &lo); conf_data = lo & bar_space_range[n]; conf_data |= 0x01; conf_data &= ~0x02; } return conf_data; } /* * isa_write: ISA write transfer * * We assume that this is not a bus master transfer. */ void pci_isa_write_reg(int reg, u32 value) { u32 hi = 0, lo = value; u32 temp; switch (reg) { case PCI_COMMAND: if (value & PCI_COMMAND_IO) divil_lbar_enable(); else divil_lbar_disable(); break; case PCI_STATUS: _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); temp = lo & 0x0000ffff; if ((value & PCI_STATUS_SIG_TARGET_ABORT) && (lo & SB_TAS_ERR_EN)) temp |= SB_TAS_ERR_FLAG; if ((value & PCI_STATUS_REC_TARGET_ABORT) && (lo & SB_TAR_ERR_EN)) temp |= SB_TAR_ERR_FLAG; if ((value & PCI_STATUS_REC_MASTER_ABORT) && (lo & SB_MAR_ERR_EN)) temp |= SB_MAR_ERR_FLAG; if ((value & PCI_STATUS_DETECTED_PARITY) && (lo & SB_PARE_ERR_EN)) temp |= SB_PARE_ERR_FLAG; lo = temp; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); break; case PCI_CACHE_LINE_SIZE: value &= 0x0000ff00; _rdmsr(SB_MSR_REG(SB_CTRL), &hi, &lo); hi &= 0xffffff00; hi |= (value >> 8); _wrmsr(SB_MSR_REG(SB_CTRL), hi, lo); break; case PCI_BAR0_REG: pci_isa_write_bar(0, value); break; case PCI_BAR1_REG: pci_isa_write_bar(1, value); break; case PCI_BAR2_REG: pci_isa_write_bar(2, value); break; case PCI_BAR3_REG: pci_isa_write_bar(3, value); break; case PCI_BAR4_REG: pci_isa_write_bar(4, value); break; case PCI_BAR5_REG: pci_isa_write_bar(5, value); break; case PCI_UART1_INT_REG: _rdmsr(DIVIL_MSR_REG(PIC_YSEL_HIGH), &hi, &lo); /* disable uart1 interrupt in PIC */ lo &= ~(0xf << 24); if (value) /* enable uart1 interrupt in PIC */ lo |= (CS5536_UART1_INTR << 24); _wrmsr(DIVIL_MSR_REG(PIC_YSEL_HIGH), hi, lo); break; case PCI_UART2_INT_REG: _rdmsr(DIVIL_MSR_REG(PIC_YSEL_HIGH), &hi, &lo); /* disable uart2 interrupt in PIC */ lo &= ~(0xf << 28); if (value) /* enable uart2 interrupt in PIC */ lo |= (CS5536_UART2_INTR << 28); _wrmsr(DIVIL_MSR_REG(PIC_YSEL_HIGH), hi, lo); break; case PCI_ISA_FIXUP_REG: if (value) { /* enable the TARGET ABORT/MASTER ABORT etc. */ _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); lo |= 0x00000063; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); } break; default: /* ALL OTHER PCI CONFIG SPACE HEADER IS NOT IMPLEMENTED. */ break; } } /* * isa_read: ISA read transfers * * We assume that this is not a bus master transfer. */ u32 pci_isa_read_reg(int reg) { u32 conf_data = 0; u32 hi, lo; switch (reg) { case PCI_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_ISA_DEVICE_ID, CS5536_VENDOR_ID); break; case PCI_COMMAND: /* we just check the first LBAR for the IO enable bit, */ /* maybe we should changed later. */ _rdmsr(DIVIL_MSR_REG(DIVIL_LBAR_SMB), &hi, &lo); if (hi & 0x01) conf_data |= PCI_COMMAND_IO; break; case PCI_STATUS: conf_data |= PCI_STATUS_66MHZ; conf_data |= PCI_STATUS_DEVSEL_MEDIUM; conf_data |= PCI_STATUS_FAST_BACK; _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_TAS_ERR_FLAG) conf_data |= PCI_STATUS_SIG_TARGET_ABORT; if (lo & SB_TAR_ERR_FLAG) conf_data |= PCI_STATUS_REC_TARGET_ABORT; if (lo & SB_MAR_ERR_FLAG) conf_data |= PCI_STATUS_REC_MASTER_ABORT; if (lo & SB_PARE_ERR_FLAG) conf_data |= PCI_STATUS_DETECTED_PARITY; break; case PCI_CLASS_REVISION: _rdmsr(GLCP_MSR_REG(GLCP_CHIP_REV_ID), &hi, &lo); conf_data = lo & 0x000000ff; conf_data |= (CS5536_ISA_CLASS_CODE << 8); break; case PCI_CACHE_LINE_SIZE: _rdmsr(SB_MSR_REG(SB_CTRL), &hi, &lo); hi &= 0x000000f8; conf_data = CFG_PCI_CACHE_LINE_SIZE(PCI_BRIDGE_HEADER_TYPE, hi); break; /* * we only use the LBAR of DIVIL, no RCONF used. * all of them are IO space. */ case PCI_BAR0_REG: return pci_isa_read_bar(0); break; case PCI_BAR1_REG: return pci_isa_read_bar(1); break; case PCI_BAR2_REG: return pci_isa_read_bar(2); break; case PCI_BAR3_REG: break; case PCI_BAR4_REG: return pci_isa_read_bar(4); break; case PCI_BAR5_REG: return pci_isa_read_bar(5); break; case PCI_CARDBUS_CIS: conf_data = PCI_CARDBUS_CIS_POINTER; break; case PCI_SUBSYSTEM_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_ISA_SUB_ID, CS5536_SUB_VENDOR_ID); break; case PCI_ROM_ADDRESS: conf_data = PCI_EXPANSION_ROM_BAR; break; case PCI_CAPABILITY_LIST: conf_data = PCI_CAPLIST_POINTER; break; case PCI_INTERRUPT_LINE: /* no interrupt used here */ conf_data = CFG_PCI_INTERRUPT_LINE(0x00, 0x00); break; default: break; } return conf_data; } /* * The mfgpt timer interrupt is running early, so we must keep the south bridge * mmio always enabled. Otherwise we may race with the PCI configuration which * may temporarily disable it. When that happens and the timer interrupt fires, * we are not able to clear it and the system will hang. */ static void cs5536_isa_mmio_always_on(struct pci_dev *dev) { dev->mmio_always_on = 1; } DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_ISA, PCI_CLASS_BRIDGE_ISA, 8, cs5536_isa_mmio_always_on);
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_isa.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * the EHCI Virtual Support Module of AMD CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] */ #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> void pci_ehci_write_reg(int reg, u32 value) { u32 hi = 0, lo = value; switch (reg) { case PCI_COMMAND: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); if (value & PCI_COMMAND_MASTER) hi |= PCI_COMMAND_MASTER; else hi &= ~PCI_COMMAND_MASTER; if (value & PCI_COMMAND_MEMORY) hi |= PCI_COMMAND_MEMORY; else hi &= ~PCI_COMMAND_MEMORY; _wrmsr(USB_MSR_REG(USB_EHCI), hi, lo); break; case PCI_STATUS: if (value & PCI_STATUS_PARITY) { _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) { lo = (lo & 0x0000ffff) | SB_PARE_ERR_FLAG; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); } } break; case PCI_BAR0_REG: if (value == PCI_BAR_RANGE_MASK) { _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); lo |= SOFT_BAR_EHCI_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else if ((value & 0x01) == 0x00) { _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); lo = value; _wrmsr(USB_MSR_REG(USB_EHCI), hi, lo); value &= 0xfffffff0; hi = 0x40000000 | ((value & 0xff000000) >> 24); lo = 0x000fffff | ((value & 0x00fff000) << 8); _wrmsr(GLIU_MSR_REG(GLIU_P2D_BM4), hi, lo); } break; case PCI_EHCI_LEGSMIEN_REG: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); hi &= 0x003f0000; hi |= (value & 0x3f) << 16; _wrmsr(USB_MSR_REG(USB_EHCI), hi, lo); break; case PCI_EHCI_FLADJ_REG: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); hi &= ~0x00003f00; hi |= value & 0x00003f00; _wrmsr(USB_MSR_REG(USB_EHCI), hi, lo); break; default: break; } } u32 pci_ehci_read_reg(int reg) { u32 conf_data = 0; u32 hi, lo; switch (reg) { case PCI_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_EHCI_DEVICE_ID, CS5536_VENDOR_ID); break; case PCI_COMMAND: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); if (hi & PCI_COMMAND_MASTER) conf_data |= PCI_COMMAND_MASTER; if (hi & PCI_COMMAND_MEMORY) conf_data |= PCI_COMMAND_MEMORY; break; case PCI_STATUS: conf_data |= PCI_STATUS_66MHZ; conf_data |= PCI_STATUS_FAST_BACK; _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) conf_data |= PCI_STATUS_PARITY; conf_data |= PCI_STATUS_DEVSEL_MEDIUM; break; case PCI_CLASS_REVISION: _rdmsr(USB_MSR_REG(USB_CAP), &hi, &lo); conf_data = lo & 0x000000ff; conf_data |= (CS5536_EHCI_CLASS_CODE << 8); break; case PCI_CACHE_LINE_SIZE: conf_data = CFG_PCI_CACHE_LINE_SIZE(PCI_NORMAL_HEADER_TYPE, PCI_NORMAL_LATENCY_TIMER); break; case PCI_BAR0_REG: _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); if (lo & SOFT_BAR_EHCI_FLAG) { conf_data = CS5536_EHCI_RANGE | PCI_BASE_ADDRESS_SPACE_MEMORY; lo &= ~SOFT_BAR_EHCI_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else { _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); conf_data = lo & 0xfffff000; } break; case PCI_CARDBUS_CIS: conf_data = PCI_CARDBUS_CIS_POINTER; break; case PCI_SUBSYSTEM_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_EHCI_SUB_ID, CS5536_SUB_VENDOR_ID); break; case PCI_ROM_ADDRESS: conf_data = PCI_EXPANSION_ROM_BAR; break; case PCI_CAPABILITY_LIST: conf_data = PCI_CAPLIST_USB_POINTER; break; case PCI_INTERRUPT_LINE: conf_data = CFG_PCI_INTERRUPT_LINE(PCI_DEFAULT_PIN, CS5536_USB_INTR); break; case PCI_EHCI_LEGSMIEN_REG: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); conf_data = (hi & 0x003f0000) >> 16; break; case PCI_EHCI_LEGSMISTS_REG: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); conf_data = (hi & 0x3f000000) >> 24; break; case PCI_EHCI_FLADJ_REG: _rdmsr(USB_MSR_REG(USB_EHCI), &hi, &lo); conf_data = hi & 0x00003f00; break; default: break; } return conf_data; }
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_ehci.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * read/write operation to the PCI config space of CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] * * the Virtual Support Module(VSM) for virtulizing the PCI * configure space are defined in cs5536_modulename.c respectively, * * after this virtulizing, user can access the PCI configure space * directly as a normal multi-function PCI device which follows * the PCI-2.2 spec. */ #include <linux/types.h> #include <cs5536/cs5536_pci.h> #include <cs5536/cs5536_vsm.h> enum { CS5536_FUNC_START = -1, CS5536_ISA_FUNC, reserved_func, CS5536_IDE_FUNC, CS5536_ACC_FUNC, CS5536_OHCI_FUNC, CS5536_EHCI_FUNC, CS5536_FUNC_END, }; static const cs5536_pci_vsm_write vsm_conf_write[] = { [CS5536_ISA_FUNC] = pci_isa_write_reg, [reserved_func] = NULL, [CS5536_IDE_FUNC] = pci_ide_write_reg, [CS5536_ACC_FUNC] = pci_acc_write_reg, [CS5536_OHCI_FUNC] = pci_ohci_write_reg, [CS5536_EHCI_FUNC] = pci_ehci_write_reg, }; static const cs5536_pci_vsm_read vsm_conf_read[] = { [CS5536_ISA_FUNC] = pci_isa_read_reg, [reserved_func] = NULL, [CS5536_IDE_FUNC] = pci_ide_read_reg, [CS5536_ACC_FUNC] = pci_acc_read_reg, [CS5536_OHCI_FUNC] = pci_ohci_read_reg, [CS5536_EHCI_FUNC] = pci_ehci_read_reg, }; /* * write to PCI config space and transfer it to MSR write. */ void cs5536_pci_conf_write4(int function, int reg, u32 value) { if ((function <= CS5536_FUNC_START) || (function >= CS5536_FUNC_END)) return; if ((reg < 0) || (reg > 0x100) || ((reg & 0x03) != 0)) return; if (vsm_conf_write[function] != NULL) vsm_conf_write[function](reg, value); } /* * read PCI config space and transfer it to MSR access. */ u32 cs5536_pci_conf_read4(int function, int reg) { u32 data = 0; if ((function <= CS5536_FUNC_START) || (function >= CS5536_FUNC_END)) return 0; if ((reg < 0) || ((reg & 0x03) != 0)) return 0; if (reg > 0x100) return 0xffffffff; if (vsm_conf_read[function] != NULL) data = vsm_conf_read[function](reg); return data; }
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_pci.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * CS5536 General timer functions * * Copyright (C) 2007 Lemote Inc. & Institute of Computing Technology * Author: Yanhua, [email protected] * * Copyright (C) 2009 Lemote Inc. * Author: Wu zhangjin, [email protected] * * Reference: AMD Geode(TM) CS5536 Companion Device Data Book */ #include <linux/io.h> #include <linux/init.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <asm/time.h> #include <cs5536/cs5536_mfgpt.h> static DEFINE_RAW_SPINLOCK(mfgpt_lock); static u32 mfgpt_base; /* * Initialize the MFGPT timer. * * This is also called after resume to bring the MFGPT into operation again. */ /* disable counter */ void disable_mfgpt0_counter(void) { outw(inw(MFGPT0_SETUP) & 0x7fff, MFGPT0_SETUP); } EXPORT_SYMBOL(disable_mfgpt0_counter); /* enable counter, comparator2 to event mode, 14.318MHz clock */ void enable_mfgpt0_counter(void) { outw(0xe310, MFGPT0_SETUP); } EXPORT_SYMBOL(enable_mfgpt0_counter); static int mfgpt_timer_set_periodic(struct clock_event_device *evt) { raw_spin_lock(&mfgpt_lock); outw(COMPARE, MFGPT0_CMP2); /* set comparator2 */ outw(0, MFGPT0_CNT); /* set counter to 0 */ enable_mfgpt0_counter(); raw_spin_unlock(&mfgpt_lock); return 0; } static int mfgpt_timer_shutdown(struct clock_event_device *evt) { if (clockevent_state_periodic(evt) || clockevent_state_oneshot(evt)) { raw_spin_lock(&mfgpt_lock); disable_mfgpt0_counter(); raw_spin_unlock(&mfgpt_lock); } return 0; } static struct clock_event_device mfgpt_clockevent = { .name = "mfgpt", .features = CLOCK_EVT_FEAT_PERIODIC, /* The oneshot mode have very high deviation, don't use it! */ .set_state_shutdown = mfgpt_timer_shutdown, .set_state_periodic = mfgpt_timer_set_periodic, .irq = CS5536_MFGPT_INTR, }; static irqreturn_t timer_interrupt(int irq, void *dev_id) { u32 basehi; /* * get MFGPT base address * * NOTE: do not remove me, it's need for the value of mfgpt_base is * variable */ _rdmsr(DIVIL_MSR_REG(DIVIL_LBAR_MFGPT), &basehi, &mfgpt_base); /* ack */ outw(inw(MFGPT0_SETUP) | 0x4000, MFGPT0_SETUP); mfgpt_clockevent.event_handler(&mfgpt_clockevent); return IRQ_HANDLED; } /* * Initialize the conversion factor and the min/max deltas of the clock event * structure and register the clock event source with the framework. */ void __init setup_mfgpt0_timer(void) { u32 basehi; struct clock_event_device *cd = &mfgpt_clockevent; unsigned int cpu = smp_processor_id(); cd->cpumask = cpumask_of(cpu); clockevent_set_clock(cd, MFGPT_TICK_RATE); cd->max_delta_ns = clockevent_delta2ns(0xffff, cd); cd->max_delta_ticks = 0xffff; cd->min_delta_ns = clockevent_delta2ns(0xf, cd); cd->min_delta_ticks = 0xf; /* Enable MFGPT0 Comparator 2 Output to the Interrupt Mapper */ _wrmsr(DIVIL_MSR_REG(MFGPT_IRQ), 0, 0x100); /* Enable Interrupt Gate 5 */ _wrmsr(DIVIL_MSR_REG(PIC_ZSEL_LOW), 0, 0x50000); /* get MFGPT base address */ _rdmsr(DIVIL_MSR_REG(DIVIL_LBAR_MFGPT), &basehi, &mfgpt_base); clockevents_register_device(cd); if (request_irq(CS5536_MFGPT_INTR, timer_interrupt, IRQF_NOBALANCING | IRQF_TIMER, "timer", NULL)) pr_err("Failed to register timer interrupt\n"); } /* * Since the MFGPT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static u64 mfgpt_read(struct clocksource *cs) { unsigned long flags; int count; u32 jifs; static int old_count; static u32 old_jifs; raw_spin_lock_irqsave(&mfgpt_lock, flags); /* * Although our caller may have the read side of xtime_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; /* read the count */ count = inw(MFGPT0_CNT); /* * It's possible for count to appear to go the wrong way for this * reason: * * The timer counter underflows, but we haven't handled the resulting * interrupt and incremented jiffies yet. * * Previous attempts to handle these cases intelligently were buggy, so * we just do the simple thing now. */ if (count < old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&mfgpt_lock, flags); return (u64) (jifs * COMPARE) + count; } static struct clocksource clocksource_mfgpt = { .name = "mfgpt", .rating = 120, /* Functional for real use, but not desired */ .read = mfgpt_read, .mask = CLOCKSOURCE_MASK(32), }; int __init init_mfgpt_clocksource(void) { if (num_possible_cpus() > 1) /* MFGPT does not scale! */ return 0; return clocksource_register_hz(&clocksource_mfgpt, MFGPT_TICK_RATE); } arch_initcall(init_mfgpt_clocksource);
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_mfgpt.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * the ACC Virtual Support Module of AMD CS5536 * * Copyright (C) 2007 Lemote, Inc. * Author : jlliu, [email protected] * * Copyright (C) 2009 Lemote, Inc. * Author: Wu Zhangjin, [email protected] */ #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> void pci_acc_write_reg(int reg, u32 value) { u32 hi = 0, lo = value; switch (reg) { case PCI_COMMAND: _rdmsr(GLIU_MSR_REG(GLIU_PAE), &hi, &lo); if (value & PCI_COMMAND_MASTER) lo |= (0x03 << 8); else lo &= ~(0x03 << 8); _wrmsr(GLIU_MSR_REG(GLIU_PAE), hi, lo); break; case PCI_STATUS: if (value & PCI_STATUS_PARITY) { _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) { lo = (lo & 0x0000ffff) | SB_PARE_ERR_FLAG; _wrmsr(SB_MSR_REG(SB_ERROR), hi, lo); } } break; case PCI_BAR0_REG: if (value == PCI_BAR_RANGE_MASK) { _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); lo |= SOFT_BAR_ACC_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else if (value & 0x01) { value &= 0xfffffffc; hi = 0xA0000000 | ((value & 0x000ff000) >> 12); lo = 0x000fff80 | ((value & 0x00000fff) << 20); _wrmsr(GLIU_MSR_REG(GLIU_IOD_BM1), hi, lo); } break; case PCI_ACC_INT_REG: _rdmsr(DIVIL_MSR_REG(PIC_YSEL_LOW), &hi, &lo); /* disable all the usb interrupt in PIC */ lo &= ~(0xf << PIC_YSEL_LOW_ACC_SHIFT); if (value) /* enable all the acc interrupt in PIC */ lo |= (CS5536_ACC_INTR << PIC_YSEL_LOW_ACC_SHIFT); _wrmsr(DIVIL_MSR_REG(PIC_YSEL_LOW), hi, lo); break; default: break; } } u32 pci_acc_read_reg(int reg) { u32 hi, lo; u32 conf_data = 0; switch (reg) { case PCI_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_ACC_DEVICE_ID, CS5536_VENDOR_ID); break; case PCI_COMMAND: _rdmsr(GLIU_MSR_REG(GLIU_IOD_BM1), &hi, &lo); if (((lo & 0xfff00000) || (hi & 0x000000ff)) && ((hi & 0xf0000000) == 0xa0000000)) conf_data |= PCI_COMMAND_IO; _rdmsr(GLIU_MSR_REG(GLIU_PAE), &hi, &lo); if ((lo & 0x300) == 0x300) conf_data |= PCI_COMMAND_MASTER; break; case PCI_STATUS: conf_data |= PCI_STATUS_66MHZ; conf_data |= PCI_STATUS_FAST_BACK; _rdmsr(SB_MSR_REG(SB_ERROR), &hi, &lo); if (lo & SB_PARE_ERR_FLAG) conf_data |= PCI_STATUS_PARITY; conf_data |= PCI_STATUS_DEVSEL_MEDIUM; break; case PCI_CLASS_REVISION: _rdmsr(ACC_MSR_REG(ACC_CAP), &hi, &lo); conf_data = lo & 0x000000ff; conf_data |= (CS5536_ACC_CLASS_CODE << 8); break; case PCI_CACHE_LINE_SIZE: conf_data = CFG_PCI_CACHE_LINE_SIZE(PCI_NORMAL_HEADER_TYPE, PCI_NORMAL_LATENCY_TIMER); break; case PCI_BAR0_REG: _rdmsr(GLCP_MSR_REG(GLCP_SOFT_COM), &hi, &lo); if (lo & SOFT_BAR_ACC_FLAG) { conf_data = CS5536_ACC_RANGE | PCI_BASE_ADDRESS_SPACE_IO; lo &= ~SOFT_BAR_ACC_FLAG; _wrmsr(GLCP_MSR_REG(GLCP_SOFT_COM), hi, lo); } else { _rdmsr(GLIU_MSR_REG(GLIU_IOD_BM1), &hi, &lo); conf_data = (hi & 0x000000ff) << 12; conf_data |= (lo & 0xfff00000) >> 20; conf_data |= 0x01; conf_data &= ~0x02; } break; case PCI_CARDBUS_CIS: conf_data = PCI_CARDBUS_CIS_POINTER; break; case PCI_SUBSYSTEM_VENDOR_ID: conf_data = CFG_PCI_VENDOR_ID(CS5536_ACC_SUB_ID, CS5536_SUB_VENDOR_ID); break; case PCI_ROM_ADDRESS: conf_data = PCI_EXPANSION_ROM_BAR; break; case PCI_CAPABILITY_LIST: conf_data = PCI_CAPLIST_USB_POINTER; break; case PCI_INTERRUPT_LINE: conf_data = CFG_PCI_INTERRUPT_LINE(PCI_DEFAULT_PIN, CS5536_ACC_INTR); break; default: break; } return conf_data; }
linux-master
arch/mips/loongson2ef/common/cs5536/cs5536_acc.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2014 Broadcom Corporation * Author: Kevin Cernekee <[email protected]> */ #include <linux/of.h> #include <linux/irqchip.h> #include <asm/bmips.h> #include <asm/irq.h> #include <asm/irq_cpu.h> #include <asm/time.h> static const struct of_device_id smp_intc_dt_match[] = { { .compatible = "brcm,bcm7038-l1-intc" }, { .compatible = "brcm,bcm6345-l1-intc" }, {} }; unsigned int get_c0_compare_int(void) { return CP0_LEGACY_COMPARE_IRQ; } void __init arch_init_irq(void) { struct device_node *dn; /* Only these controllers support SMP IRQ affinity */ dn = of_find_matching_node(NULL, smp_intc_dt_match); if (dn) of_node_put(dn); else bmips_tp1_irqs = 0; irqchip_init(); } IRQCHIP_DECLARE(mips_cpu_intc, "mti,cpu-interrupt-controller", mips_cpu_irq_of_init);
linux-master
arch/mips/bmips/irq.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> * Copyright (C) 2014 Kevin Cernekee <[email protected]> */ #include <linux/init.h> #include <linux/bitops.h> #include <linux/memblock.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_clk.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <linux/smp.h> #include <asm/addrspace.h> #include <asm/bmips.h> #include <asm/bootinfo.h> #include <asm/cpu-type.h> #include <asm/mipsregs.h> #include <asm/prom.h> #include <asm/smp-ops.h> #include <asm/time.h> #include <asm/traps.h> #include <asm/fw/cfe/cfe_api.h> #define RELO_NORMAL_VEC BIT(18) #define REG_BCM6328_OTP ((void __iomem *)CKSEG1ADDR(0x1000062c)) #define BCM6328_TP1_DISABLED BIT(9) extern bool bmips_rac_flush_disable; static const unsigned long kbase = VMLINUX_LOAD_ADDRESS & 0xfff00000; struct bmips_quirk { const char *compatible; void (*quirk_fn)(void); }; static void kbase_setup(void) { __raw_writel(kbase | RELO_NORMAL_VEC, BMIPS_GET_CBR() + BMIPS_RELO_VECTOR_CONTROL_1); ebase = kbase; } static void bcm3384_viper_quirks(void) { /* * Some experimental CM boxes are set up to let CM own the Viper TP0 * and let Linux own TP1. This requires moving the kernel * load address to a non-conflicting region (e.g. via * CONFIG_PHYSICAL_START) and supplying an alternate DTB. * If we detect this condition, we need to move the MIPS exception * vectors up to an area that we own. * * This is distinct from the OTHER special case mentioned in * smp-bmips.c (boot on TP1, but enable SMP, then TP0 becomes our * logical CPU#1). For the Viper TP1 case, SMP is off limits. * * Also note that many BMIPS435x CPUs do not have a * BMIPS_RELO_VECTOR_CONTROL_1 register, so it isn't safe to just * write VMLINUX_LOAD_ADDRESS into that register on every SoC. */ board_ebase_setup = &kbase_setup; bmips_smp_enabled = 0; } static void bcm63xx_fixup_cpu1(void) { /* * The bootloader has set up the CPU1 reset vector at * 0xa000_0200. * This conflicts with the special interrupt vector (IV). * The bootloader has also set up CPU1 to respond to the wrong * IPI interrupt. * Here we will start up CPU1 in the background and ask it to * reconfigure itself then go back to sleep. */ memcpy((void *)0xa0000200, &bmips_smp_movevec, 0x20); __sync(); set_c0_cause(C_SW0); cpumask_set_cpu(1, &bmips_booted_mask); } static void bcm6328_quirks(void) { /* Check CPU1 status in OTP (it is usually disabled) */ if (__raw_readl(REG_BCM6328_OTP) & BCM6328_TP1_DISABLED) bmips_smp_enabled = 0; else bcm63xx_fixup_cpu1(); } static void bcm6358_quirks(void) { /* * BCM3368/BCM6358 need special handling for their shared TLB, so * disable SMP for now */ bmips_smp_enabled = 0; /* * RAC flush causes kernel panics on BCM6358 when booting from TP1 * because the bootloader is not initializing it properly. */ bmips_rac_flush_disable = !!(read_c0_brcm_cmt_local() & (1 << 31)); } static void bcm6368_quirks(void) { bcm63xx_fixup_cpu1(); } static const struct bmips_quirk bmips_quirk_list[] = { { "brcm,bcm3368", &bcm6358_quirks }, { "brcm,bcm3384-viper", &bcm3384_viper_quirks }, { "brcm,bcm33843-viper", &bcm3384_viper_quirks }, { "brcm,bcm6328", &bcm6328_quirks }, { "brcm,bcm6358", &bcm6358_quirks }, { "brcm,bcm6362", &bcm6368_quirks }, { "brcm,bcm6368", &bcm6368_quirks }, { "brcm,bcm63168", &bcm6368_quirks }, { "brcm,bcm63268", &bcm6368_quirks }, { }, }; static void __init bmips_init_cfe(void) { cfe_seal = fw_arg3; if (cfe_seal != CFE_EPTSEAL) return; cfe_init(fw_arg0, fw_arg2); } void __init prom_init(void) { bmips_init_cfe(); bmips_cpu_setup(); register_bmips_smp_ops(); } const char *get_system_type(void) { return "Generic BMIPS kernel"; } void __init plat_time_init(void) { struct device_node *np; u32 freq; np = of_find_node_by_name(NULL, "cpus"); if (!np) panic("missing 'cpus' DT node"); if (of_property_read_u32(np, "mips-hpt-frequency", &freq) < 0) panic("missing 'mips-hpt-frequency' property"); of_node_put(np); mips_hpt_frequency = freq; } void __init plat_mem_setup(void) { void *dtb; const struct bmips_quirk *q; set_io_port_base(0); ioport_resource.start = 0; ioport_resource.end = ~0; /* * intended to somewhat resemble ARM; see * Documentation/arch/arm/booting.rst */ if (fw_arg0 == 0 && fw_arg1 == 0xffffffff) dtb = phys_to_virt(fw_arg2); else dtb = get_fdt(); if (!dtb) cfe_die("no dtb found"); __dt_setup_arch(dtb); for (q = bmips_quirk_list; q->quirk_fn; q++) { if (of_flat_dt_is_compatible(of_get_flat_dt_root(), q->compatible)) { q->quirk_fn(); } } } void __init device_tree_init(void) { struct device_node *np; unflatten_and_copy_device_tree(); /* Disable SMP boot unless both CPUs are listed in DT and !disabled */ np = of_find_node_by_name(NULL, "cpus"); if (np && of_get_available_child_count(np) <= 1) bmips_smp_enabled = 0; of_node_put(np); } static int __init plat_dev_init(void) { of_clk_init(NULL); return 0; } arch_initcall(plat_dev_init);
linux-master
arch/mips/bmips/setup.c
// SPDX-License-Identifier: GPL-2.0+ #include <linux/types.h> #include <linux/dma-map-ops.h> #include <asm/bmips.h> #include <asm/io.h> bool bmips_rac_flush_disable; void arch_sync_dma_for_cpu_all(void) { void __iomem *cbr = BMIPS_GET_CBR(); u32 cfg; if (boot_cpu_type() != CPU_BMIPS3300 && boot_cpu_type() != CPU_BMIPS4350 && boot_cpu_type() != CPU_BMIPS4380) return; if (unlikely(bmips_rac_flush_disable)) return; /* Flush stale data out of the readahead cache */ cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG); __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG); __raw_readl(cbr + BMIPS_RAC_CONFIG); }
linux-master
arch/mips/bmips/dma.c
// SPDX-License-Identifier: GPL-2.0 /* * MIPS accelerated ChaCha and XChaCha stream ciphers, * including ChaCha20 (RFC7539) * * Copyright (C) 2019 Linaro, Ltd. <[email protected]> */ #include <asm/byteorder.h> #include <crypto/algapi.h> #include <crypto/internal/chacha.h> #include <crypto/internal/skcipher.h> #include <linux/kernel.h> #include <linux/module.h> asmlinkage void chacha_crypt_arch(u32 *state, u8 *dst, const u8 *src, unsigned int bytes, int nrounds); EXPORT_SYMBOL(chacha_crypt_arch); asmlinkage void hchacha_block_arch(const u32 *state, u32 *stream, int nrounds); EXPORT_SYMBOL(hchacha_block_arch); void chacha_init_arch(u32 *state, const u32 *key, const u8 *iv) { chacha_init_generic(state, key, iv); } EXPORT_SYMBOL(chacha_init_arch); static int chacha_mips_stream_xor(struct skcipher_request *req, const struct chacha_ctx *ctx, const u8 *iv) { struct skcipher_walk walk; u32 state[16]; int err; err = skcipher_walk_virt(&walk, req, false); chacha_init_generic(state, ctx->key, iv); while (walk.nbytes > 0) { unsigned int nbytes = walk.nbytes; if (nbytes < walk.total) nbytes = round_down(nbytes, walk.stride); chacha_crypt(state, walk.dst.virt.addr, walk.src.virt.addr, nbytes, ctx->nrounds); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } return err; } static int chacha_mips(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); return chacha_mips_stream_xor(req, ctx, req->iv); } static int xchacha_mips(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); struct chacha_ctx subctx; u32 state[16]; u8 real_iv[16]; chacha_init_generic(state, ctx->key, req->iv); hchacha_block(state, subctx.key, ctx->nrounds); subctx.nrounds = ctx->nrounds; memcpy(&real_iv[0], req->iv + 24, 8); memcpy(&real_iv[8], req->iv + 16, 8); return chacha_mips_stream_xor(req, &subctx, real_iv); } static struct skcipher_alg algs[] = { { .base.cra_name = "chacha20", .base.cra_driver_name = "chacha20-mips", .base.cra_priority = 200, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = CHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha20_setkey, .encrypt = chacha_mips, .decrypt = chacha_mips, }, { .base.cra_name = "xchacha20", .base.cra_driver_name = "xchacha20-mips", .base.cra_priority = 200, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = XCHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha20_setkey, .encrypt = xchacha_mips, .decrypt = xchacha_mips, }, { .base.cra_name = "xchacha12", .base.cra_driver_name = "xchacha12-mips", .base.cra_priority = 200, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct chacha_ctx), .base.cra_module = THIS_MODULE, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = XCHACHA_IV_SIZE, .chunksize = CHACHA_BLOCK_SIZE, .setkey = chacha12_setkey, .encrypt = xchacha_mips, .decrypt = xchacha_mips, } }; static int __init chacha_simd_mod_init(void) { return IS_REACHABLE(CONFIG_CRYPTO_SKCIPHER) ? crypto_register_skciphers(algs, ARRAY_SIZE(algs)) : 0; } static void __exit chacha_simd_mod_fini(void) { if (IS_REACHABLE(CONFIG_CRYPTO_SKCIPHER)) crypto_unregister_skciphers(algs, ARRAY_SIZE(algs)); } module_init(chacha_simd_mod_init); module_exit(chacha_simd_mod_fini); MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (MIPS accelerated)"); MODULE_AUTHOR("Ard Biesheuvel <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("chacha20"); MODULE_ALIAS_CRYPTO("chacha20-mips"); MODULE_ALIAS_CRYPTO("xchacha20"); MODULE_ALIAS_CRYPTO("xchacha20-mips"); MODULE_ALIAS_CRYPTO("xchacha12"); MODULE_ALIAS_CRYPTO("xchacha12-mips");
linux-master
arch/mips/crypto/chacha-glue.c
// SPDX-License-Identifier: GPL-2.0 /* * OpenSSL/Cryptogams accelerated Poly1305 transform for MIPS * * Copyright (C) 2019 Linaro Ltd. <[email protected]> */ #include <asm/unaligned.h> #include <crypto/algapi.h> #include <crypto/internal/hash.h> #include <crypto/internal/poly1305.h> #include <linux/cpufeature.h> #include <linux/crypto.h> #include <linux/module.h> asmlinkage void poly1305_init_mips(void *state, const u8 *key); asmlinkage void poly1305_blocks_mips(void *state, const u8 *src, u32 len, u32 hibit); asmlinkage void poly1305_emit_mips(void *state, u8 *digest, const u32 *nonce); void poly1305_init_arch(struct poly1305_desc_ctx *dctx, const u8 key[POLY1305_KEY_SIZE]) { poly1305_init_mips(&dctx->h, key); dctx->s[0] = get_unaligned_le32(key + 16); dctx->s[1] = get_unaligned_le32(key + 20); dctx->s[2] = get_unaligned_le32(key + 24); dctx->s[3] = get_unaligned_le32(key + 28); dctx->buflen = 0; } EXPORT_SYMBOL(poly1305_init_arch); static int mips_poly1305_init(struct shash_desc *desc) { struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc); dctx->buflen = 0; dctx->rset = 0; dctx->sset = false; return 0; } static void mips_poly1305_blocks(struct poly1305_desc_ctx *dctx, const u8 *src, u32 len, u32 hibit) { if (unlikely(!dctx->sset)) { if (!dctx->rset) { poly1305_init_mips(&dctx->h, src); src += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; dctx->rset = 1; } if (len >= POLY1305_BLOCK_SIZE) { dctx->s[0] = get_unaligned_le32(src + 0); dctx->s[1] = get_unaligned_le32(src + 4); dctx->s[2] = get_unaligned_le32(src + 8); dctx->s[3] = get_unaligned_le32(src + 12); src += POLY1305_BLOCK_SIZE; len -= POLY1305_BLOCK_SIZE; dctx->sset = true; } if (len < POLY1305_BLOCK_SIZE) return; } len &= ~(POLY1305_BLOCK_SIZE - 1); poly1305_blocks_mips(&dctx->h, src, len, hibit); } static int mips_poly1305_update(struct shash_desc *desc, const u8 *src, unsigned int len) { struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc); if (unlikely(dctx->buflen)) { u32 bytes = min(len, POLY1305_BLOCK_SIZE - dctx->buflen); memcpy(dctx->buf + dctx->buflen, src, bytes); src += bytes; len -= bytes; dctx->buflen += bytes; if (dctx->buflen == POLY1305_BLOCK_SIZE) { mips_poly1305_blocks(dctx, dctx->buf, POLY1305_BLOCK_SIZE, 1); dctx->buflen = 0; } } if (likely(len >= POLY1305_BLOCK_SIZE)) { mips_poly1305_blocks(dctx, src, len, 1); src += round_down(len, POLY1305_BLOCK_SIZE); len %= POLY1305_BLOCK_SIZE; } if (unlikely(len)) { dctx->buflen = len; memcpy(dctx->buf, src, len); } return 0; } void poly1305_update_arch(struct poly1305_desc_ctx *dctx, const u8 *src, unsigned int nbytes) { if (unlikely(dctx->buflen)) { u32 bytes = min(nbytes, POLY1305_BLOCK_SIZE - dctx->buflen); memcpy(dctx->buf + dctx->buflen, src, bytes); src += bytes; nbytes -= bytes; dctx->buflen += bytes; if (dctx->buflen == POLY1305_BLOCK_SIZE) { poly1305_blocks_mips(&dctx->h, dctx->buf, POLY1305_BLOCK_SIZE, 1); dctx->buflen = 0; } } if (likely(nbytes >= POLY1305_BLOCK_SIZE)) { unsigned int len = round_down(nbytes, POLY1305_BLOCK_SIZE); poly1305_blocks_mips(&dctx->h, src, len, 1); src += len; nbytes %= POLY1305_BLOCK_SIZE; } if (unlikely(nbytes)) { dctx->buflen = nbytes; memcpy(dctx->buf, src, nbytes); } } EXPORT_SYMBOL(poly1305_update_arch); void poly1305_final_arch(struct poly1305_desc_ctx *dctx, u8 *dst) { if (unlikely(dctx->buflen)) { dctx->buf[dctx->buflen++] = 1; memset(dctx->buf + dctx->buflen, 0, POLY1305_BLOCK_SIZE - dctx->buflen); poly1305_blocks_mips(&dctx->h, dctx->buf, POLY1305_BLOCK_SIZE, 0); } poly1305_emit_mips(&dctx->h, dst, dctx->s); *dctx = (struct poly1305_desc_ctx){}; } EXPORT_SYMBOL(poly1305_final_arch); static int mips_poly1305_final(struct shash_desc *desc, u8 *dst) { struct poly1305_desc_ctx *dctx = shash_desc_ctx(desc); if (unlikely(!dctx->sset)) return -ENOKEY; poly1305_final_arch(dctx, dst); return 0; } static struct shash_alg mips_poly1305_alg = { .init = mips_poly1305_init, .update = mips_poly1305_update, .final = mips_poly1305_final, .digestsize = POLY1305_DIGEST_SIZE, .descsize = sizeof(struct poly1305_desc_ctx), .base.cra_name = "poly1305", .base.cra_driver_name = "poly1305-mips", .base.cra_priority = 200, .base.cra_blocksize = POLY1305_BLOCK_SIZE, .base.cra_module = THIS_MODULE, }; static int __init mips_poly1305_mod_init(void) { return IS_REACHABLE(CONFIG_CRYPTO_HASH) ? crypto_register_shash(&mips_poly1305_alg) : 0; } static void __exit mips_poly1305_mod_exit(void) { if (IS_REACHABLE(CONFIG_CRYPTO_HASH)) crypto_unregister_shash(&mips_poly1305_alg); } module_init(mips_poly1305_mod_init); module_exit(mips_poly1305_mod_exit); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("poly1305"); MODULE_ALIAS_CRYPTO("poly1305-mips");
linux-master
arch/mips/crypto/poly1305-glue.c
// SPDX-License-Identifier: GPL-2.0 /* * crc32-mips.c - CRC32 and CRC32C using optional MIPSr6 instructions * * Module based on arm64/crypto/crc32-arm.c * * Copyright (C) 2014 Linaro Ltd <[email protected]> * Copyright (C) 2018 MIPS Tech, LLC */ #include <linux/cpufeature.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <asm/mipsregs.h> #include <asm/unaligned.h> #include <crypto/internal/hash.h> enum crc_op_size { b, h, w, d, }; enum crc_type { crc32, crc32c, }; #ifndef TOOLCHAIN_SUPPORTS_CRC #define _ASM_SET_CRC(OP, SZ, TYPE) \ _ASM_MACRO_3R(OP, rt, rs, rt2, \ ".ifnc \\rt, \\rt2\n\t" \ ".error \"invalid operands \\\"" #OP " \\rt,\\rs,\\rt2\\\"\"\n\t" \ ".endif\n\t" \ _ASM_INSN_IF_MIPS(0x7c00000f | (__rt << 16) | (__rs << 21) | \ ((SZ) << 6) | ((TYPE) << 8)) \ _ASM_INSN32_IF_MM(0x00000030 | (__rs << 16) | (__rt << 21) | \ ((SZ) << 14) | ((TYPE) << 3))) #define _ASM_UNSET_CRC(op, SZ, TYPE) ".purgem " #op "\n\t" #else /* !TOOLCHAIN_SUPPORTS_CRC */ #define _ASM_SET_CRC(op, SZ, TYPE) ".set\tcrc\n\t" #define _ASM_UNSET_CRC(op, SZ, TYPE) #endif #define __CRC32(crc, value, op, SZ, TYPE) \ do { \ __asm__ __volatile__( \ ".set push\n\t" \ _ASM_SET_CRC(op, SZ, TYPE) \ #op " %0, %1, %0\n\t" \ _ASM_UNSET_CRC(op, SZ, TYPE) \ ".set pop" \ : "+r" (crc) \ : "r" (value)); \ } while (0) #define _CRC32_crc32b(crc, value) __CRC32(crc, value, crc32b, 0, 0) #define _CRC32_crc32h(crc, value) __CRC32(crc, value, crc32h, 1, 0) #define _CRC32_crc32w(crc, value) __CRC32(crc, value, crc32w, 2, 0) #define _CRC32_crc32d(crc, value) __CRC32(crc, value, crc32d, 3, 0) #define _CRC32_crc32cb(crc, value) __CRC32(crc, value, crc32cb, 0, 1) #define _CRC32_crc32ch(crc, value) __CRC32(crc, value, crc32ch, 1, 1) #define _CRC32_crc32cw(crc, value) __CRC32(crc, value, crc32cw, 2, 1) #define _CRC32_crc32cd(crc, value) __CRC32(crc, value, crc32cd, 3, 1) #define _CRC32(crc, value, size, op) \ _CRC32_##op##size(crc, value) #define CRC32(crc, value, size) \ _CRC32(crc, value, size, crc32) #define CRC32C(crc, value, size) \ _CRC32(crc, value, size, crc32c) static u32 crc32_mips_le_hw(u32 crc_, const u8 *p, unsigned int len) { u32 crc = crc_; #ifdef CONFIG_64BIT while (len >= sizeof(u64)) { u64 value = get_unaligned_le64(p); CRC32(crc, value, d); p += sizeof(u64); len -= sizeof(u64); } if (len & sizeof(u32)) { #else /* !CONFIG_64BIT */ while (len >= sizeof(u32)) { #endif u32 value = get_unaligned_le32(p); CRC32(crc, value, w); p += sizeof(u32); len -= sizeof(u32); } if (len & sizeof(u16)) { u16 value = get_unaligned_le16(p); CRC32(crc, value, h); p += sizeof(u16); } if (len & sizeof(u8)) { u8 value = *p++; CRC32(crc, value, b); } return crc; } static u32 crc32c_mips_le_hw(u32 crc_, const u8 *p, unsigned int len) { u32 crc = crc_; #ifdef CONFIG_64BIT while (len >= sizeof(u64)) { u64 value = get_unaligned_le64(p); CRC32C(crc, value, d); p += sizeof(u64); len -= sizeof(u64); } if (len & sizeof(u32)) { #else /* !CONFIG_64BIT */ while (len >= sizeof(u32)) { #endif u32 value = get_unaligned_le32(p); CRC32C(crc, value, w); p += sizeof(u32); len -= sizeof(u32); } if (len & sizeof(u16)) { u16 value = get_unaligned_le16(p); CRC32C(crc, value, h); p += sizeof(u16); } if (len & sizeof(u8)) { u8 value = *p++; CRC32C(crc, value, b); } return crc; } #define CHKSUM_BLOCK_SIZE 1 #define CHKSUM_DIGEST_SIZE 4 struct chksum_ctx { u32 key; }; struct chksum_desc_ctx { u32 crc; }; static int chksum_init(struct shash_desc *desc) { struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); ctx->crc = mctx->key; return 0; } /* * Setting the seed allows arbitrary accumulators and flexible XOR policy * If your algorithm starts with ~0, then XOR with ~0 before you set * the seed. */ static int chksum_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct chksum_ctx *mctx = crypto_shash_ctx(tfm); if (keylen != sizeof(mctx->key)) return -EINVAL; mctx->key = get_unaligned_le32(key); return 0; } static int chksum_update(struct shash_desc *desc, const u8 *data, unsigned int length) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); ctx->crc = crc32_mips_le_hw(ctx->crc, data, length); return 0; } static int chksumc_update(struct shash_desc *desc, const u8 *data, unsigned int length) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); ctx->crc = crc32c_mips_le_hw(ctx->crc, data, length); return 0; } static int chksum_final(struct shash_desc *desc, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); put_unaligned_le32(ctx->crc, out); return 0; } static int chksumc_final(struct shash_desc *desc, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); put_unaligned_le32(~ctx->crc, out); return 0; } static int __chksum_finup(u32 crc, const u8 *data, unsigned int len, u8 *out) { put_unaligned_le32(crc32_mips_le_hw(crc, data, len), out); return 0; } static int __chksumc_finup(u32 crc, const u8 *data, unsigned int len, u8 *out) { put_unaligned_le32(~crc32c_mips_le_hw(crc, data, len), out); return 0; } static int chksum_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); return __chksum_finup(ctx->crc, data, len, out); } static int chksumc_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); return __chksumc_finup(ctx->crc, data, len, out); } static int chksum_digest(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); return __chksum_finup(mctx->key, data, length, out); } static int chksumc_digest(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); return __chksumc_finup(mctx->key, data, length, out); } static int chksum_cra_init(struct crypto_tfm *tfm) { struct chksum_ctx *mctx = crypto_tfm_ctx(tfm); mctx->key = ~0; return 0; } static struct shash_alg crc32_alg = { .digestsize = CHKSUM_DIGEST_SIZE, .setkey = chksum_setkey, .init = chksum_init, .update = chksum_update, .final = chksum_final, .finup = chksum_finup, .digest = chksum_digest, .descsize = sizeof(struct chksum_desc_ctx), .base = { .cra_name = "crc32", .cra_driver_name = "crc32-mips-hw", .cra_priority = 300, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_alignmask = 0, .cra_ctxsize = sizeof(struct chksum_ctx), .cra_module = THIS_MODULE, .cra_init = chksum_cra_init, } }; static struct shash_alg crc32c_alg = { .digestsize = CHKSUM_DIGEST_SIZE, .setkey = chksum_setkey, .init = chksum_init, .update = chksumc_update, .final = chksumc_final, .finup = chksumc_finup, .digest = chksumc_digest, .descsize = sizeof(struct chksum_desc_ctx), .base = { .cra_name = "crc32c", .cra_driver_name = "crc32c-mips-hw", .cra_priority = 300, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_alignmask = 0, .cra_ctxsize = sizeof(struct chksum_ctx), .cra_module = THIS_MODULE, .cra_init = chksum_cra_init, } }; static int __init crc32_mod_init(void) { int err; err = crypto_register_shash(&crc32_alg); if (err) return err; err = crypto_register_shash(&crc32c_alg); if (err) { crypto_unregister_shash(&crc32_alg); return err; } return 0; } static void __exit crc32_mod_exit(void) { crypto_unregister_shash(&crc32_alg); crypto_unregister_shash(&crc32c_alg); } MODULE_AUTHOR("Marcin Nowakowski <[email protected]"); MODULE_DESCRIPTION("CRC32 and CRC32C using optional MIPS instructions"); MODULE_LICENSE("GPL v2"); module_cpu_feature_match(MIPS_CRC32, crc32_mod_init); module_exit(crc32_mod_exit);
linux-master
arch/mips/crypto/crc32-mips.c
/* * * BRIEF MODULE DESCRIPTION * Board specific pci fixups for the Toshiba rbtx4927 * * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * [email protected] or [email protected] * * Copyright (C) 2000-2001 Toshiba Corporation * * Copyright (C) 2004 MontaVista Software Inc. * Author: Manish Lachwani ([email protected]) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/types.h> #include <asm/txx9/pci.h> #include <asm/txx9/rbtx4927.h> int rbtx4927_pci_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { unsigned char irq = pin; /* IRQ rotation */ irq--; /* 0-3 */ if (slot == TX4927_PCIC_IDSEL_AD_TO_SLOT(23)) { /* PCI CardSlot (IDSEL=A23) */ /* PCIA => PCIA */ irq = (irq + 0 + slot) % 4; } else { /* PCI Backplane */ if (txx9_pci_option & TXX9_PCI_OPT_PICMG) irq = (irq + 33 - slot) % 4; else irq = (irq + 3 + slot) % 4; } irq++; /* 1-4 */ switch (irq) { case 1: irq = RBTX4927_IRQ_IOC_PCIA; break; case 2: irq = RBTX4927_IRQ_IOC_PCIB; break; case 3: irq = RBTX4927_IRQ_IOC_PCIC; break; case 4: irq = RBTX4927_IRQ_IOC_PCID; break; } return irq; }
linux-master
arch/mips/pci/fixup-rbtx4927.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007, 2008, 2009, 2010, 2011 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/moduleparam.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npei-defs.h> #include <asm/octeon/cvmx-pciercx-defs.h> #include <asm/octeon/cvmx-pescx-defs.h> #include <asm/octeon/cvmx-pexp-defs.h> #include <asm/octeon/cvmx-pemx-defs.h> #include <asm/octeon/cvmx-dpi-defs.h> #include <asm/octeon/cvmx-sli-defs.h> #include <asm/octeon/cvmx-sriox-defs.h> #include <asm/octeon/cvmx-helper-errata.h> #include <asm/octeon/pci-octeon.h> #define MRRS_CN5XXX 0 /* 128 byte Max Read Request Size */ #define MPS_CN5XXX 0 /* 128 byte Max Packet Size (Limit of most PCs) */ #define MRRS_CN6XXX 3 /* 1024 byte Max Read Request Size */ #define MPS_CN6XXX 0 /* 128 byte Max Packet Size (Limit of most PCs) */ /* Module parameter to disable PCI probing */ static int pcie_disable; module_param(pcie_disable, int, S_IRUGO); static int enable_pcie_14459_war; static int enable_pcie_bus_num_war[2]; union cvmx_pcie_address { uint64_t u64; struct { uint64_t upper:2; /* Normally 2 for XKPHYS */ uint64_t reserved_49_61:13; /* Must be zero */ uint64_t io:1; /* 1 for IO space access */ uint64_t did:5; /* PCIe DID = 3 */ uint64_t subdid:3; /* PCIe SubDID = 1 */ uint64_t reserved_36_39:4; /* Must be zero */ uint64_t es:2; /* Endian swap = 1 */ uint64_t port:2; /* PCIe port 0,1 */ uint64_t reserved_29_31:3; /* Must be zero */ /* * Selects the type of the configuration request (0 = type 0, * 1 = type 1). */ uint64_t ty:1; /* Target bus number sent in the ID in the request. */ uint64_t bus:8; /* * Target device number sent in the ID in the * request. Note that Dev must be zero for type 0 * configuration requests. */ uint64_t dev:5; /* Target function number sent in the ID in the request. */ uint64_t func:3; /* * Selects a register in the configuration space of * the target. */ uint64_t reg:12; } config; struct { uint64_t upper:2; /* Normally 2 for XKPHYS */ uint64_t reserved_49_61:13; /* Must be zero */ uint64_t io:1; /* 1 for IO space access */ uint64_t did:5; /* PCIe DID = 3 */ uint64_t subdid:3; /* PCIe SubDID = 2 */ uint64_t reserved_36_39:4; /* Must be zero */ uint64_t es:2; /* Endian swap = 1 */ uint64_t port:2; /* PCIe port 0,1 */ uint64_t address:32; /* PCIe IO address */ } io; struct { uint64_t upper:2; /* Normally 2 for XKPHYS */ uint64_t reserved_49_61:13; /* Must be zero */ uint64_t io:1; /* 1 for IO space access */ uint64_t did:5; /* PCIe DID = 3 */ uint64_t subdid:3; /* PCIe SubDID = 3-6 */ uint64_t reserved_36_39:4; /* Must be zero */ uint64_t address:36; /* PCIe Mem address */ } mem; }; static int cvmx_pcie_rc_initialize(int pcie_port); /** * Return the Core virtual base address for PCIe IO access. IOs are * read/written as an offset from this address. * * @pcie_port: PCIe port the IO is for * * Returns 64bit Octeon IO base address for read/write */ static inline uint64_t cvmx_pcie_get_io_base_address(int pcie_port) { union cvmx_pcie_address pcie_addr; pcie_addr.u64 = 0; pcie_addr.io.upper = 0; pcie_addr.io.io = 1; pcie_addr.io.did = 3; pcie_addr.io.subdid = 2; pcie_addr.io.es = 1; pcie_addr.io.port = pcie_port; return pcie_addr.u64; } /** * Size of the IO address region returned at address * cvmx_pcie_get_io_base_address() * * @pcie_port: PCIe port the IO is for * * Returns Size of the IO window */ static inline uint64_t cvmx_pcie_get_io_size(int pcie_port) { return 1ull << 32; } /** * Return the Core virtual base address for PCIe MEM access. Memory is * read/written as an offset from this address. * * @pcie_port: PCIe port the IO is for * * Returns 64bit Octeon IO base address for read/write */ static inline uint64_t cvmx_pcie_get_mem_base_address(int pcie_port) { union cvmx_pcie_address pcie_addr; pcie_addr.u64 = 0; pcie_addr.mem.upper = 0; pcie_addr.mem.io = 1; pcie_addr.mem.did = 3; pcie_addr.mem.subdid = 3 + pcie_port; return pcie_addr.u64; } /** * Size of the Mem address region returned at address * cvmx_pcie_get_mem_base_address() * * @pcie_port: PCIe port the IO is for * * Returns Size of the Mem window */ static inline uint64_t cvmx_pcie_get_mem_size(int pcie_port) { return 1ull << 36; } /** * Read a PCIe config space register indirectly. This is used for * registers of the form PCIEEP_CFG??? and PCIERC?_CFG???. * * @pcie_port: PCIe port to read from * @cfg_offset: Address to read * * Returns Value read */ static uint32_t cvmx_pcie_cfgx_read(int pcie_port, uint32_t cfg_offset) { if (octeon_has_feature(OCTEON_FEATURE_NPEI)) { union cvmx_pescx_cfg_rd pescx_cfg_rd; pescx_cfg_rd.u64 = 0; pescx_cfg_rd.s.addr = cfg_offset; cvmx_write_csr(CVMX_PESCX_CFG_RD(pcie_port), pescx_cfg_rd.u64); pescx_cfg_rd.u64 = cvmx_read_csr(CVMX_PESCX_CFG_RD(pcie_port)); return pescx_cfg_rd.s.data; } else { union cvmx_pemx_cfg_rd pemx_cfg_rd; pemx_cfg_rd.u64 = 0; pemx_cfg_rd.s.addr = cfg_offset; cvmx_write_csr(CVMX_PEMX_CFG_RD(pcie_port), pemx_cfg_rd.u64); pemx_cfg_rd.u64 = cvmx_read_csr(CVMX_PEMX_CFG_RD(pcie_port)); return pemx_cfg_rd.s.data; } } /** * Write a PCIe config space register indirectly. This is used for * registers of the form PCIEEP_CFG??? and PCIERC?_CFG???. * * @pcie_port: PCIe port to write to * @cfg_offset: Address to write * @val: Value to write */ static void cvmx_pcie_cfgx_write(int pcie_port, uint32_t cfg_offset, uint32_t val) { if (octeon_has_feature(OCTEON_FEATURE_NPEI)) { union cvmx_pescx_cfg_wr pescx_cfg_wr; pescx_cfg_wr.u64 = 0; pescx_cfg_wr.s.addr = cfg_offset; pescx_cfg_wr.s.data = val; cvmx_write_csr(CVMX_PESCX_CFG_WR(pcie_port), pescx_cfg_wr.u64); } else { union cvmx_pemx_cfg_wr pemx_cfg_wr; pemx_cfg_wr.u64 = 0; pemx_cfg_wr.s.addr = cfg_offset; pemx_cfg_wr.s.data = val; cvmx_write_csr(CVMX_PEMX_CFG_WR(pcie_port), pemx_cfg_wr.u64); } } /** * Build a PCIe config space request address for a device * * @pcie_port: PCIe port to access * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * * Returns 64bit Octeon IO address */ static inline uint64_t __cvmx_pcie_build_config_addr(int pcie_port, int bus, int dev, int fn, int reg) { union cvmx_pcie_address pcie_addr; union cvmx_pciercx_cfg006 pciercx_cfg006; pciercx_cfg006.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG006(pcie_port)); if ((bus <= pciercx_cfg006.s.pbnum) && (dev != 0)) return 0; pcie_addr.u64 = 0; pcie_addr.config.upper = 2; pcie_addr.config.io = 1; pcie_addr.config.did = 3; pcie_addr.config.subdid = 1; pcie_addr.config.es = 1; pcie_addr.config.port = pcie_port; pcie_addr.config.ty = (bus > pciercx_cfg006.s.pbnum); pcie_addr.config.bus = bus; pcie_addr.config.dev = dev; pcie_addr.config.func = fn; pcie_addr.config.reg = reg; return pcie_addr.u64; } /** * Read 8bits from a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * * Returns Result of the read */ static uint8_t cvmx_pcie_config_read8(int pcie_port, int bus, int dev, int fn, int reg) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) return cvmx_read64_uint8(address); else return 0xff; } /** * Read 16bits from a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * * Returns Result of the read */ static uint16_t cvmx_pcie_config_read16(int pcie_port, int bus, int dev, int fn, int reg) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) return le16_to_cpu(cvmx_read64_uint16(address)); else return 0xffff; } /** * Read 32bits from a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * * Returns Result of the read */ static uint32_t cvmx_pcie_config_read32(int pcie_port, int bus, int dev, int fn, int reg) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) return le32_to_cpu(cvmx_read64_uint32(address)); else return 0xffffffff; } /** * Write 8bits to a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * @val: Value to write */ static void cvmx_pcie_config_write8(int pcie_port, int bus, int dev, int fn, int reg, uint8_t val) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) cvmx_write64_uint8(address, val); } /** * Write 16bits to a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * @val: Value to write */ static void cvmx_pcie_config_write16(int pcie_port, int bus, int dev, int fn, int reg, uint16_t val) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) cvmx_write64_uint16(address, cpu_to_le16(val)); } /** * Write 32bits to a Device's config space * * @pcie_port: PCIe port the device is on * @bus: Sub bus * @dev: Device ID * @fn: Device sub function * @reg: Register to access * @val: Value to write */ static void cvmx_pcie_config_write32(int pcie_port, int bus, int dev, int fn, int reg, uint32_t val) { uint64_t address = __cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg); if (address) cvmx_write64_uint32(address, cpu_to_le32(val)); } /** * Initialize the RC config space CSRs * * @pcie_port: PCIe port to initialize */ static void __cvmx_pcie_rc_initialize_config_space(int pcie_port) { union cvmx_pciercx_cfg030 pciercx_cfg030; union cvmx_pciercx_cfg070 pciercx_cfg070; union cvmx_pciercx_cfg001 pciercx_cfg001; union cvmx_pciercx_cfg032 pciercx_cfg032; union cvmx_pciercx_cfg006 pciercx_cfg006; union cvmx_pciercx_cfg008 pciercx_cfg008; union cvmx_pciercx_cfg009 pciercx_cfg009; union cvmx_pciercx_cfg010 pciercx_cfg010; union cvmx_pciercx_cfg011 pciercx_cfg011; union cvmx_pciercx_cfg035 pciercx_cfg035; union cvmx_pciercx_cfg075 pciercx_cfg075; union cvmx_pciercx_cfg034 pciercx_cfg034; /* Max Payload Size (PCIE*_CFG030[MPS]) */ /* Max Read Request Size (PCIE*_CFG030[MRRS]) */ /* Relaxed-order, no-snoop enables (PCIE*_CFG030[RO_EN,NS_EN] */ /* Error Message Enables (PCIE*_CFG030[CE_EN,NFE_EN,FE_EN,UR_EN]) */ pciercx_cfg030.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG030(pcie_port)); if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { pciercx_cfg030.s.mps = MPS_CN5XXX; pciercx_cfg030.s.mrrs = MRRS_CN5XXX; } else { pciercx_cfg030.s.mps = MPS_CN6XXX; pciercx_cfg030.s.mrrs = MRRS_CN6XXX; } /* * Enable relaxed order processing. This will allow devices to * affect read response ordering. */ pciercx_cfg030.s.ro_en = 1; /* Enable no snoop processing. Not used by Octeon */ pciercx_cfg030.s.ns_en = 1; /* Correctable error reporting enable. */ pciercx_cfg030.s.ce_en = 1; /* Non-fatal error reporting enable. */ pciercx_cfg030.s.nfe_en = 1; /* Fatal error reporting enable. */ pciercx_cfg030.s.fe_en = 1; /* Unsupported request reporting enable. */ pciercx_cfg030.s.ur_en = 1; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG030(pcie_port), pciercx_cfg030.u32); if (octeon_has_feature(OCTEON_FEATURE_NPEI)) { union cvmx_npei_ctl_status2 npei_ctl_status2; /* * Max Payload Size (NPEI_CTL_STATUS2[MPS]) must match * PCIE*_CFG030[MPS]. Max Read Request Size * (NPEI_CTL_STATUS2[MRRS]) must not exceed * PCIE*_CFG030[MRRS] */ npei_ctl_status2.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS2); /* Max payload size = 128 bytes for best Octeon DMA performance */ npei_ctl_status2.s.mps = MPS_CN5XXX; /* Max read request size = 128 bytes for best Octeon DMA performance */ npei_ctl_status2.s.mrrs = MRRS_CN5XXX; if (pcie_port) npei_ctl_status2.s.c1_b1_s = 3; /* Port1 BAR1 Size 256MB */ else npei_ctl_status2.s.c0_b1_s = 3; /* Port0 BAR1 Size 256MB */ cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS2, npei_ctl_status2.u64); } else { /* * Max Payload Size (DPI_SLI_PRTX_CFG[MPS]) must match * PCIE*_CFG030[MPS]. Max Read Request Size * (DPI_SLI_PRTX_CFG[MRRS]) must not exceed * PCIE*_CFG030[MRRS]. */ union cvmx_dpi_sli_prtx_cfg prt_cfg; union cvmx_sli_s2m_portx_ctl sli_s2m_portx_ctl; prt_cfg.u64 = cvmx_read_csr(CVMX_DPI_SLI_PRTX_CFG(pcie_port)); prt_cfg.s.mps = MPS_CN6XXX; prt_cfg.s.mrrs = MRRS_CN6XXX; /* Max outstanding load request. */ prt_cfg.s.molr = 32; cvmx_write_csr(CVMX_DPI_SLI_PRTX_CFG(pcie_port), prt_cfg.u64); sli_s2m_portx_ctl.u64 = cvmx_read_csr(CVMX_PEXP_SLI_S2M_PORTX_CTL(pcie_port)); sli_s2m_portx_ctl.s.mrrs = MRRS_CN6XXX; cvmx_write_csr(CVMX_PEXP_SLI_S2M_PORTX_CTL(pcie_port), sli_s2m_portx_ctl.u64); } /* ECRC Generation (PCIE*_CFG070[GE,CE]) */ pciercx_cfg070.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG070(pcie_port)); pciercx_cfg070.s.ge = 1; /* ECRC generation enable. */ pciercx_cfg070.s.ce = 1; /* ECRC check enable. */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG070(pcie_port), pciercx_cfg070.u32); /* * Access Enables (PCIE*_CFG001[MSAE,ME]) * ME and MSAE should always be set. * Interrupt Disable (PCIE*_CFG001[I_DIS]) * System Error Message Enable (PCIE*_CFG001[SEE]) */ pciercx_cfg001.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG001(pcie_port)); pciercx_cfg001.s.msae = 1; /* Memory space enable. */ pciercx_cfg001.s.me = 1; /* Bus master enable. */ pciercx_cfg001.s.i_dis = 1; /* INTx assertion disable. */ pciercx_cfg001.s.see = 1; /* SERR# enable */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG001(pcie_port), pciercx_cfg001.u32); /* Advanced Error Recovery Message Enables */ /* (PCIE*_CFG066,PCIE*_CFG067,PCIE*_CFG069) */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG066(pcie_port), 0); /* Use CVMX_PCIERCX_CFG067 hardware default */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG069(pcie_port), 0); /* Active State Power Management (PCIE*_CFG032[ASLPC]) */ pciercx_cfg032.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port)); pciercx_cfg032.s.aslpc = 0; /* Active state Link PM control. */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG032(pcie_port), pciercx_cfg032.u32); /* * Link Width Mode (PCIERCn_CFG452[LME]) - Set during * cvmx_pcie_rc_initialize_link() * * Primary Bus Number (PCIERCn_CFG006[PBNUM]) * * We set the primary bus number to 1 so IDT bridges are * happy. They don't like zero. */ pciercx_cfg006.u32 = 0; pciercx_cfg006.s.pbnum = 1; pciercx_cfg006.s.sbnum = 1; pciercx_cfg006.s.subbnum = 1; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG006(pcie_port), pciercx_cfg006.u32); /* * Memory-mapped I/O BAR (PCIERCn_CFG008) * Most applications should disable the memory-mapped I/O BAR by * setting PCIERCn_CFG008[ML_ADDR] < PCIERCn_CFG008[MB_ADDR] */ pciercx_cfg008.u32 = 0; pciercx_cfg008.s.mb_addr = 0x100; pciercx_cfg008.s.ml_addr = 0; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG008(pcie_port), pciercx_cfg008.u32); /* * Prefetchable BAR (PCIERCn_CFG009,PCIERCn_CFG010,PCIERCn_CFG011) * Most applications should disable the prefetchable BAR by setting * PCIERCn_CFG011[UMEM_LIMIT],PCIERCn_CFG009[LMEM_LIMIT] < * PCIERCn_CFG010[UMEM_BASE],PCIERCn_CFG009[LMEM_BASE] */ pciercx_cfg009.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG009(pcie_port)); pciercx_cfg010.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG010(pcie_port)); pciercx_cfg011.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG011(pcie_port)); pciercx_cfg009.s.lmem_base = 0x100; pciercx_cfg009.s.lmem_limit = 0; pciercx_cfg010.s.umem_base = 0x100; pciercx_cfg011.s.umem_limit = 0; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG009(pcie_port), pciercx_cfg009.u32); cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG010(pcie_port), pciercx_cfg010.u32); cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG011(pcie_port), pciercx_cfg011.u32); /* * System Error Interrupt Enables (PCIERCn_CFG035[SECEE,SEFEE,SENFEE]) * PME Interrupt Enables (PCIERCn_CFG035[PMEIE]) */ pciercx_cfg035.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG035(pcie_port)); pciercx_cfg035.s.secee = 1; /* System error on correctable error enable. */ pciercx_cfg035.s.sefee = 1; /* System error on fatal error enable. */ pciercx_cfg035.s.senfee = 1; /* System error on non-fatal error enable. */ pciercx_cfg035.s.pmeie = 1; /* PME interrupt enable. */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG035(pcie_port), pciercx_cfg035.u32); /* * Advanced Error Recovery Interrupt Enables * (PCIERCn_CFG075[CERE,NFERE,FERE]) */ pciercx_cfg075.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG075(pcie_port)); pciercx_cfg075.s.cere = 1; /* Correctable error reporting enable. */ pciercx_cfg075.s.nfere = 1; /* Non-fatal error reporting enable. */ pciercx_cfg075.s.fere = 1; /* Fatal error reporting enable. */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG075(pcie_port), pciercx_cfg075.u32); /* * HP Interrupt Enables (PCIERCn_CFG034[HPINT_EN], * PCIERCn_CFG034[DLLS_EN,CCINT_EN]) */ pciercx_cfg034.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG034(pcie_port)); pciercx_cfg034.s.hpint_en = 1; /* Hot-plug interrupt enable. */ pciercx_cfg034.s.dlls_en = 1; /* Data Link Layer state changed enable */ pciercx_cfg034.s.ccint_en = 1; /* Command completed interrupt enable. */ cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG034(pcie_port), pciercx_cfg034.u32); } /** * Initialize a host mode PCIe gen 1 link. This function takes a PCIe * port from reset to a link up state. Software can then begin * configuring the rest of the link. * * @pcie_port: PCIe port to initialize * * Returns Zero on success */ static int __cvmx_pcie_rc_initialize_link_gen1(int pcie_port) { uint64_t start_cycle; union cvmx_pescx_ctl_status pescx_ctl_status; union cvmx_pciercx_cfg452 pciercx_cfg452; union cvmx_pciercx_cfg032 pciercx_cfg032; union cvmx_pciercx_cfg448 pciercx_cfg448; /* Set the lane width */ pciercx_cfg452.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG452(pcie_port)); pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port)); if (pescx_ctl_status.s.qlm_cfg == 0) /* We're in 8 lane (56XX) or 4 lane (54XX) mode */ pciercx_cfg452.s.lme = 0xf; else /* We're in 4 lane (56XX) or 2 lane (52XX) mode */ pciercx_cfg452.s.lme = 0x7; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG452(pcie_port), pciercx_cfg452.u32); /* * CN52XX pass 1.x has an errata where length mismatches on UR * responses can cause bus errors on 64bit memory * reads. Turning off length error checking fixes this. */ if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { union cvmx_pciercx_cfg455 pciercx_cfg455; pciercx_cfg455.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG455(pcie_port)); pciercx_cfg455.s.m_cpl_len_err = 1; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG455(pcie_port), pciercx_cfg455.u32); } /* Lane swap needs to be manually enabled for CN52XX */ if (OCTEON_IS_MODEL(OCTEON_CN52XX) && (pcie_port == 1)) { pescx_ctl_status.s.lane_swp = 1; cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port), pescx_ctl_status.u64); } /* Bring up the link */ pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port)); pescx_ctl_status.s.lnk_enb = 1; cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port), pescx_ctl_status.u64); /* * CN52XX pass 1.0: Due to a bug in 2nd order CDR, it needs to * be disabled. */ if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_0)) __cvmx_helper_errata_qlm_disable_2nd_order_cdr(0); /* Wait for the link to come up */ start_cycle = cvmx_get_cycle(); do { if (cvmx_get_cycle() - start_cycle > 2 * octeon_get_clock_rate()) { cvmx_dprintf("PCIe: Port %d link timeout\n", pcie_port); return -1; } __delay(10000); pciercx_cfg032.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port)); } while (pciercx_cfg032.s.dlla == 0); /* Clear all pending errors */ cvmx_write_csr(CVMX_PEXP_NPEI_INT_SUM, cvmx_read_csr(CVMX_PEXP_NPEI_INT_SUM)); /* * Update the Replay Time Limit. Empirically, some PCIe * devices take a little longer to respond than expected under * load. As a workaround for this we configure the Replay Time * Limit to the value expected for a 512 byte MPS instead of * our actual 256 byte MPS. The numbers below are directly * from the PCIe spec table 3-4. */ pciercx_cfg448.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG448(pcie_port)); switch (pciercx_cfg032.s.nlw) { case 1: /* 1 lane */ pciercx_cfg448.s.rtl = 1677; break; case 2: /* 2 lanes */ pciercx_cfg448.s.rtl = 867; break; case 4: /* 4 lanes */ pciercx_cfg448.s.rtl = 462; break; case 8: /* 8 lanes */ pciercx_cfg448.s.rtl = 258; break; } cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG448(pcie_port), pciercx_cfg448.u32); return 0; } static void __cvmx_increment_ba(union cvmx_sli_mem_access_subidx *pmas) { if (OCTEON_IS_MODEL(OCTEON_CN68XX)) pmas->cn68xx.ba++; else pmas->s.ba++; } /** * Initialize a PCIe gen 1 port for use in host(RC) mode. It doesn't * enumerate the bus. * * @pcie_port: PCIe port to initialize * * Returns Zero on success */ static int __cvmx_pcie_rc_initialize_gen1(int pcie_port) { int i; int base; u64 addr_swizzle; union cvmx_ciu_soft_prst ciu_soft_prst; union cvmx_pescx_bist_status pescx_bist_status; union cvmx_pescx_bist_status2 pescx_bist_status2; union cvmx_npei_ctl_status npei_ctl_status; union cvmx_npei_mem_access_ctl npei_mem_access_ctl; union cvmx_npei_mem_access_subidx mem_access_subid; union cvmx_npei_dbg_data npei_dbg_data; union cvmx_pescx_ctl_status2 pescx_ctl_status2; union cvmx_pciercx_cfg032 pciercx_cfg032; union cvmx_npei_bar1_indexx bar1_index; retry: /* * Make sure we aren't trying to setup a target mode interface * in host mode. */ npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS); if ((pcie_port == 0) && !npei_ctl_status.s.host_mode) { cvmx_dprintf("PCIe: Port %d in endpoint mode\n", pcie_port); return -1; } /* * Make sure a CN52XX isn't trying to bring up port 1 when it * is disabled. */ if (OCTEON_IS_MODEL(OCTEON_CN52XX)) { npei_dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA); if ((pcie_port == 1) && npei_dbg_data.cn52xx.qlm0_link_width) { cvmx_dprintf("PCIe: ERROR: cvmx_pcie_rc_initialize() called on port1, but port1 is disabled\n"); return -1; } } /* * PCIe switch arbitration mode. '0' == fixed priority NPEI, * PCIe0, then PCIe1. '1' == round robin. */ npei_ctl_status.s.arb = 1; /* Allow up to 0x20 config retries */ npei_ctl_status.s.cfg_rtry = 0x20; /* * CN52XX pass1.x has an errata where P0_NTAGS and P1_NTAGS * don't reset. */ if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { npei_ctl_status.s.p0_ntags = 0x20; npei_ctl_status.s.p1_ntags = 0x20; } cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS, npei_ctl_status.u64); /* Bring the PCIe out of reset */ if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_EBH5200) { /* * The EBH5200 board swapped the PCIe reset lines on * the board. As a workaround for this bug, we bring * both PCIe ports out of reset at the same time * instead of on separate calls. So for port 0, we * bring both out of reset and do nothing on port 1 */ if (pcie_port == 0) { ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); /* * After a chip reset the PCIe will also be in * reset. If it isn't, most likely someone is * trying to init it again without a proper * PCIe reset. */ if (ciu_soft_prst.s.soft_prst == 0) { /* Reset the ports */ ciu_soft_prst.s.soft_prst = 1; cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); ciu_soft_prst.s.soft_prst = 1; cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); /* Wait until pcie resets the ports. */ udelay(2000); } ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); } } else { /* * The normal case: The PCIe ports are completely * separate and can be brought out of reset * independently. */ if (pcie_port) ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); else ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); /* * After a chip reset the PCIe will also be in * reset. If it isn't, most likely someone is trying * to init it again without a proper PCIe reset. */ if (ciu_soft_prst.s.soft_prst == 0) { /* Reset the port */ ciu_soft_prst.s.soft_prst = 1; if (pcie_port) cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); else cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); /* Wait until pcie resets the ports. */ udelay(2000); } if (pcie_port) { ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); } else { ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); } } /* * Wait for PCIe reset to complete. Due to errata PCIE-700, we * don't poll PESCX_CTL_STATUS2[PCIERST], but simply wait a * fixed number of cycles. */ __delay(400000); /* * PESCX_BIST_STATUS2[PCLK_RUN] was missing on pass 1 of * CN56XX and CN52XX, so we only probe it on newer chips */ if (!OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) && !OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { /* Clear PCLK_RUN so we can check if the clock is running */ pescx_ctl_status2.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port)); pescx_ctl_status2.s.pclk_run = 1; cvmx_write_csr(CVMX_PESCX_CTL_STATUS2(pcie_port), pescx_ctl_status2.u64); /* Now that we cleared PCLK_RUN, wait for it to be set * again telling us the clock is running */ if (CVMX_WAIT_FOR_FIELD64(CVMX_PESCX_CTL_STATUS2(pcie_port), union cvmx_pescx_ctl_status2, pclk_run, ==, 1, 10000)) { cvmx_dprintf("PCIe: Port %d isn't clocked, skipping.\n", pcie_port); return -1; } } /* * Check and make sure PCIe came out of reset. If it doesn't * the board probably hasn't wired the clocks up and the * interface should be skipped. */ pescx_ctl_status2.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port)); if (pescx_ctl_status2.s.pcierst) { cvmx_dprintf("PCIe: Port %d stuck in reset, skipping.\n", pcie_port); return -1; } /* * Check BIST2 status. If any bits are set skip this * interface. This is an attempt to catch PCIE-813 on pass 1 * parts. */ pescx_bist_status2.u64 = cvmx_read_csr(CVMX_PESCX_BIST_STATUS2(pcie_port)); if (pescx_bist_status2.u64) { cvmx_dprintf("PCIe: Port %d BIST2 failed. Most likely this port isn't hooked up, skipping.\n", pcie_port); return -1; } /* Check BIST status */ pescx_bist_status.u64 = cvmx_read_csr(CVMX_PESCX_BIST_STATUS(pcie_port)); if (pescx_bist_status.u64) cvmx_dprintf("PCIe: BIST FAILED for port %d (0x%016llx)\n", pcie_port, CAST64(pescx_bist_status.u64)); /* Initialize the config space CSRs */ __cvmx_pcie_rc_initialize_config_space(pcie_port); /* Bring the link up */ if (__cvmx_pcie_rc_initialize_link_gen1(pcie_port)) { cvmx_dprintf("PCIe: Failed to initialize port %d, probably the slot is empty\n", pcie_port); return -1; } /* Store merge control (NPEI_MEM_ACCESS_CTL[TIMER,MAX_WORD]) */ npei_mem_access_ctl.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL); npei_mem_access_ctl.s.max_word = 0; /* Allow 16 words to combine */ npei_mem_access_ctl.s.timer = 127; /* Wait up to 127 cycles for more data */ cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL, npei_mem_access_ctl.u64); /* Setup Mem access SubDIDs */ mem_access_subid.u64 = 0; mem_access_subid.s.port = pcie_port; /* Port the request is sent to. */ mem_access_subid.s.nmerge = 1; /* Due to an errata on pass 1 chips, no merging is allowed. */ mem_access_subid.s.esr = 1; /* Endian-swap for Reads. */ mem_access_subid.s.esw = 1; /* Endian-swap for Writes. */ mem_access_subid.s.nsr = 0; /* Enable Snooping for Reads. Octeon doesn't care, but devices might want this more conservative setting */ mem_access_subid.s.nsw = 0; /* Enable Snoop for Writes. */ mem_access_subid.s.ror = 0; /* Disable Relaxed Ordering for Reads. */ mem_access_subid.s.row = 0; /* Disable Relaxed Ordering for Writes. */ mem_access_subid.s.ba = 0; /* PCIe Address Bits <63:34>. */ /* * Setup mem access 12-15 for port 0, 16-19 for port 1, * supplying 36 bits of address space. */ for (i = 12 + pcie_port * 4; i < 16 + pcie_port * 4; i++) { cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_SUBIDX(i), mem_access_subid.u64); mem_access_subid.s.ba += 1; /* Set each SUBID to extend the addressable range */ } /* * Disable the peer to peer forwarding register. This must be * setup by the OS after it enumerates the bus and assigns * addresses to the PCIe busses. */ for (i = 0; i < 4; i++) { cvmx_write_csr(CVMX_PESCX_P2P_BARX_START(i, pcie_port), -1); cvmx_write_csr(CVMX_PESCX_P2P_BARX_END(i, pcie_port), -1); } /* Set Octeon's BAR0 to decode 0-16KB. It overlaps with Bar2 */ cvmx_write_csr(CVMX_PESCX_P2N_BAR0_START(pcie_port), 0); /* BAR1 follows BAR2 with a gap so it has the same address as for gen2. */ cvmx_write_csr(CVMX_PESCX_P2N_BAR1_START(pcie_port), CVMX_PCIE_BAR1_RC_BASE); bar1_index.u32 = 0; bar1_index.s.addr_idx = (CVMX_PCIE_BAR1_PHYS_BASE >> 22); bar1_index.s.ca = 1; /* Not Cached */ bar1_index.s.end_swp = 1; /* Endian Swap mode */ bar1_index.s.addr_v = 1; /* Valid entry */ base = pcie_port ? 16 : 0; /* Big endian swizzle for 32-bit PEXP_NCB register. */ #ifdef __MIPSEB__ addr_swizzle = 4; #else addr_swizzle = 0; #endif for (i = 0; i < 16; i++) { cvmx_write64_uint32((CVMX_PEXP_NPEI_BAR1_INDEXX(base) ^ addr_swizzle), bar1_index.u32); base++; /* 256MB / 16 >> 22 == 4 */ bar1_index.s.addr_idx += (((1ull << 28) / 16ull) >> 22); } /* * Set Octeon's BAR2 to decode 0-2^39. Bar0 and Bar1 take * precedence where they overlap. It also overlaps with the * device addresses, so make sure the peer to peer forwarding * is set right. */ cvmx_write_csr(CVMX_PESCX_P2N_BAR2_START(pcie_port), 0); /* * Setup BAR2 attributes * * Relaxed Ordering (NPEI_CTL_PORTn[PTLP_RO,CTLP_RO, WAIT_COM]) * - PTLP_RO,CTLP_RO should normally be set (except for debug). * - WAIT_COM=0 will likely work for all applications. * * Load completion relaxed ordering (NPEI_CTL_PORTn[WAITL_COM]). */ if (pcie_port) { union cvmx_npei_ctl_port1 npei_ctl_port; npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT1); npei_ctl_port.s.bar2_enb = 1; npei_ctl_port.s.bar2_esx = 1; npei_ctl_port.s.bar2_cax = 0; npei_ctl_port.s.ptlp_ro = 1; npei_ctl_port.s.ctlp_ro = 1; npei_ctl_port.s.wait_com = 0; npei_ctl_port.s.waitl_com = 0; cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT1, npei_ctl_port.u64); } else { union cvmx_npei_ctl_port0 npei_ctl_port; npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT0); npei_ctl_port.s.bar2_enb = 1; npei_ctl_port.s.bar2_esx = 1; npei_ctl_port.s.bar2_cax = 0; npei_ctl_port.s.ptlp_ro = 1; npei_ctl_port.s.ctlp_ro = 1; npei_ctl_port.s.wait_com = 0; npei_ctl_port.s.waitl_com = 0; cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT0, npei_ctl_port.u64); } /* * Both pass 1 and pass 2 of CN52XX and CN56XX have an errata * that causes TLP ordering to not be preserved after multiple * PCIe port resets. This code detects this fault and corrects * it by aligning the TLP counters properly. Another link * reset is then performed. See PCIE-13340 */ if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS2_X) || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS2_X) || OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { union cvmx_npei_dbg_data dbg_data; int old_in_fif_p_count; int in_fif_p_count; int out_p_count; int in_p_offset = (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)) ? 4 : 1; int i; /* * Choose a write address of 1MB. It should be * harmless as all bars haven't been setup. */ uint64_t write_address = (cvmx_pcie_get_mem_base_address(pcie_port) + 0x100000) | (1ull<<63); /* * Make sure at least in_p_offset have been executed before we try and * read in_fif_p_count */ i = in_p_offset; while (i--) { cvmx_write64_uint32(write_address, 0); __delay(10000); } /* * Read the IN_FIF_P_COUNT from the debug * select. IN_FIF_P_COUNT can be unstable sometimes so * read it twice with a write between the reads. This * way we can tell the value is good as it will * increment by one due to the write */ cvmx_write_csr(CVMX_PEXP_NPEI_DBG_SELECT, (pcie_port) ? 0xd7fc : 0xcffc); cvmx_read_csr(CVMX_PEXP_NPEI_DBG_SELECT); do { dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA); old_in_fif_p_count = dbg_data.s.data & 0xff; cvmx_write64_uint32(write_address, 0); __delay(10000); dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA); in_fif_p_count = dbg_data.s.data & 0xff; } while (in_fif_p_count != ((old_in_fif_p_count+1) & 0xff)); /* Update in_fif_p_count for it's offset with respect to out_p_count */ in_fif_p_count = (in_fif_p_count + in_p_offset) & 0xff; /* Read the OUT_P_COUNT from the debug select */ cvmx_write_csr(CVMX_PEXP_NPEI_DBG_SELECT, (pcie_port) ? 0xd00f : 0xc80f); cvmx_read_csr(CVMX_PEXP_NPEI_DBG_SELECT); dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA); out_p_count = (dbg_data.s.data>>1) & 0xff; /* Check that the two counters are aligned */ if (out_p_count != in_fif_p_count) { cvmx_dprintf("PCIe: Port %d aligning TLP counters as workaround to maintain ordering\n", pcie_port); while (in_fif_p_count != 0) { cvmx_write64_uint32(write_address, 0); __delay(10000); in_fif_p_count = (in_fif_p_count + 1) & 0xff; } /* * The EBH5200 board swapped the PCIe reset * lines on the board. This means we must * bring both links down and up, which will * cause the PCIe0 to need alignment * again. Lots of messages will be displayed, * but everything should work */ if ((cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_EBH5200) && (pcie_port == 1)) cvmx_pcie_rc_initialize(0); /* Rety bringing this port up */ goto retry; } } /* Display the link status */ pciercx_cfg032.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port)); cvmx_dprintf("PCIe: Port %d link active, %d lanes\n", pcie_port, pciercx_cfg032.s.nlw); return 0; } /** * Initialize a host mode PCIe gen 2 link. This function takes a PCIe * port from reset to a link up state. Software can then begin * configuring the rest of the link. * * @pcie_port: PCIe port to initialize * * Return Zero on success. */ static int __cvmx_pcie_rc_initialize_link_gen2(int pcie_port) { uint64_t start_cycle; union cvmx_pemx_ctl_status pem_ctl_status; union cvmx_pciercx_cfg032 pciercx_cfg032; union cvmx_pciercx_cfg448 pciercx_cfg448; /* Bring up the link */ pem_ctl_status.u64 = cvmx_read_csr(CVMX_PEMX_CTL_STATUS(pcie_port)); pem_ctl_status.s.lnk_enb = 1; cvmx_write_csr(CVMX_PEMX_CTL_STATUS(pcie_port), pem_ctl_status.u64); /* Wait for the link to come up */ start_cycle = cvmx_get_cycle(); do { if (cvmx_get_cycle() - start_cycle > octeon_get_clock_rate()) return -1; __delay(10000); pciercx_cfg032.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port)); } while ((pciercx_cfg032.s.dlla == 0) || (pciercx_cfg032.s.lt == 1)); /* * Update the Replay Time Limit. Empirically, some PCIe * devices take a little longer to respond than expected under * load. As a workaround for this we configure the Replay Time * Limit to the value expected for a 512 byte MPS instead of * our actual 256 byte MPS. The numbers below are directly * from the PCIe spec table 3-4 */ pciercx_cfg448.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG448(pcie_port)); switch (pciercx_cfg032.s.nlw) { case 1: /* 1 lane */ pciercx_cfg448.s.rtl = 1677; break; case 2: /* 2 lanes */ pciercx_cfg448.s.rtl = 867; break; case 4: /* 4 lanes */ pciercx_cfg448.s.rtl = 462; break; case 8: /* 8 lanes */ pciercx_cfg448.s.rtl = 258; break; } cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG448(pcie_port), pciercx_cfg448.u32); return 0; } /** * Initialize a PCIe gen 2 port for use in host(RC) mode. It doesn't enumerate * the bus. * * @pcie_port: PCIe port to initialize * * Returns Zero on success. */ static int __cvmx_pcie_rc_initialize_gen2(int pcie_port) { int i; union cvmx_ciu_soft_prst ciu_soft_prst; union cvmx_mio_rst_ctlx mio_rst_ctl; union cvmx_pemx_bar_ctl pemx_bar_ctl; union cvmx_pemx_ctl_status pemx_ctl_status; union cvmx_pemx_bist_status pemx_bist_status; union cvmx_pemx_bist_status2 pemx_bist_status2; union cvmx_pciercx_cfg032 pciercx_cfg032; union cvmx_pciercx_cfg515 pciercx_cfg515; union cvmx_sli_ctl_portx sli_ctl_portx; union cvmx_sli_mem_access_ctl sli_mem_access_ctl; union cvmx_sli_mem_access_subidx mem_access_subid; union cvmx_sriox_status_reg sriox_status_reg; union cvmx_pemx_bar1_indexx bar1_index; if (octeon_has_feature(OCTEON_FEATURE_SRIO)) { /* Make sure this interface isn't SRIO */ if (OCTEON_IS_MODEL(OCTEON_CN66XX)) { /* * The CN66XX requires reading the * MIO_QLMX_CFG register to figure out the * port type. */ union cvmx_mio_qlmx_cfg qlmx_cfg; qlmx_cfg.u64 = cvmx_read_csr(CVMX_MIO_QLMX_CFG(pcie_port)); if (qlmx_cfg.s.qlm_spd == 15) { pr_notice("PCIe: Port %d is disabled, skipping.\n", pcie_port); return -1; } switch (qlmx_cfg.s.qlm_spd) { case 0x1: /* SRIO 1x4 short */ case 0x3: /* SRIO 1x4 long */ case 0x4: /* SRIO 2x2 short */ case 0x6: /* SRIO 2x2 long */ pr_notice("PCIe: Port %d is SRIO, skipping.\n", pcie_port); return -1; case 0x9: /* SGMII */ pr_notice("PCIe: Port %d is SGMII, skipping.\n", pcie_port); return -1; case 0xb: /* XAUI */ pr_notice("PCIe: Port %d is XAUI, skipping.\n", pcie_port); return -1; case 0x0: /* PCIE gen2 */ case 0x8: /* PCIE gen2 (alias) */ case 0x2: /* PCIE gen1 */ case 0xa: /* PCIE gen1 (alias) */ break; default: pr_notice("PCIe: Port %d is unknown, skipping.\n", pcie_port); return -1; } } else { sriox_status_reg.u64 = cvmx_read_csr(CVMX_SRIOX_STATUS_REG(pcie_port)); if (sriox_status_reg.s.srio) { pr_notice("PCIe: Port %d is SRIO, skipping.\n", pcie_port); return -1; } } } #if 0 /* This code is so that the PCIe analyzer is able to see 63XX traffic */ pr_notice("PCIE : init for pcie analyzer.\n"); cvmx_helper_qlm_jtag_init(); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 85); cvmx_helper_qlm_jtag_shift(pcie_port, 1, 1); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 300-86); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 85); cvmx_helper_qlm_jtag_shift(pcie_port, 1, 1); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 300-86); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 85); cvmx_helper_qlm_jtag_shift(pcie_port, 1, 1); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 300-86); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 85); cvmx_helper_qlm_jtag_shift(pcie_port, 1, 1); cvmx_helper_qlm_jtag_shift_zeros(pcie_port, 300-86); cvmx_helper_qlm_jtag_update(pcie_port); #endif /* Make sure we aren't trying to setup a target mode interface in host mode */ mio_rst_ctl.u64 = cvmx_read_csr(CVMX_MIO_RST_CTLX(pcie_port)); if (!mio_rst_ctl.s.host_mode) { pr_notice("PCIe: Port %d in endpoint mode.\n", pcie_port); return -1; } /* CN63XX Pass 1.0 errata G-14395 requires the QLM De-emphasis be programmed */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_0)) { if (pcie_port) { union cvmx_ciu_qlm ciu_qlm; ciu_qlm.u64 = cvmx_read_csr(CVMX_CIU_QLM1); ciu_qlm.s.txbypass = 1; ciu_qlm.s.txdeemph = 5; ciu_qlm.s.txmargin = 0x17; cvmx_write_csr(CVMX_CIU_QLM1, ciu_qlm.u64); } else { union cvmx_ciu_qlm ciu_qlm; ciu_qlm.u64 = cvmx_read_csr(CVMX_CIU_QLM0); ciu_qlm.s.txbypass = 1; ciu_qlm.s.txdeemph = 5; ciu_qlm.s.txmargin = 0x17; cvmx_write_csr(CVMX_CIU_QLM0, ciu_qlm.u64); } } /* Bring the PCIe out of reset */ if (pcie_port) ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); else ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); /* * After a chip reset the PCIe will also be in reset. If it * isn't, most likely someone is trying to init it again * without a proper PCIe reset */ if (ciu_soft_prst.s.soft_prst == 0) { /* Reset the port */ ciu_soft_prst.s.soft_prst = 1; if (pcie_port) cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); else cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); /* Wait until pcie resets the ports. */ udelay(2000); } if (pcie_port) { ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64); } else { ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST); ciu_soft_prst.s.soft_prst = 0; cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64); } /* Wait for PCIe reset to complete */ udelay(1000); /* * Check and make sure PCIe came out of reset. If it doesn't * the board probably hasn't wired the clocks up and the * interface should be skipped. */ if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_RST_CTLX(pcie_port), union cvmx_mio_rst_ctlx, rst_done, ==, 1, 10000)) { pr_notice("PCIe: Port %d stuck in reset, skipping.\n", pcie_port); return -1; } /* Check BIST status */ pemx_bist_status.u64 = cvmx_read_csr(CVMX_PEMX_BIST_STATUS(pcie_port)); if (pemx_bist_status.u64) pr_notice("PCIe: BIST FAILED for port %d (0x%016llx)\n", pcie_port, CAST64(pemx_bist_status.u64)); pemx_bist_status2.u64 = cvmx_read_csr(CVMX_PEMX_BIST_STATUS2(pcie_port)); /* Errata PCIE-14766 may cause the lower 6 bits to be randomly set on CN63XXp1 */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) pemx_bist_status2.u64 &= ~0x3full; if (pemx_bist_status2.u64) pr_notice("PCIe: BIST2 FAILED for port %d (0x%016llx)\n", pcie_port, CAST64(pemx_bist_status2.u64)); /* Initialize the config space CSRs */ __cvmx_pcie_rc_initialize_config_space(pcie_port); /* Enable gen2 speed selection */ pciercx_cfg515.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG515(pcie_port)); pciercx_cfg515.s.dsc = 1; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG515(pcie_port), pciercx_cfg515.u32); /* Bring the link up */ if (__cvmx_pcie_rc_initialize_link_gen2(pcie_port)) { /* * Some gen1 devices don't handle the gen 2 training * correctly. Disable gen2 and try again with only * gen1 */ union cvmx_pciercx_cfg031 pciercx_cfg031; pciercx_cfg031.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG031(pcie_port)); pciercx_cfg031.s.mls = 1; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG031(pcie_port), pciercx_cfg031.u32); if (__cvmx_pcie_rc_initialize_link_gen2(pcie_port)) { pr_notice("PCIe: Link timeout on port %d, probably the slot is empty\n", pcie_port); return -1; } } /* Store merge control (SLI_MEM_ACCESS_CTL[TIMER,MAX_WORD]) */ sli_mem_access_ctl.u64 = cvmx_read_csr(CVMX_PEXP_SLI_MEM_ACCESS_CTL); sli_mem_access_ctl.s.max_word = 0; /* Allow 16 words to combine */ sli_mem_access_ctl.s.timer = 127; /* Wait up to 127 cycles for more data */ cvmx_write_csr(CVMX_PEXP_SLI_MEM_ACCESS_CTL, sli_mem_access_ctl.u64); /* Setup Mem access SubDIDs */ mem_access_subid.u64 = 0; mem_access_subid.s.port = pcie_port; /* Port the request is sent to. */ mem_access_subid.s.nmerge = 0; /* Allow merging as it works on CN6XXX. */ mem_access_subid.s.esr = 1; /* Endian-swap for Reads. */ mem_access_subid.s.esw = 1; /* Endian-swap for Writes. */ mem_access_subid.s.wtype = 0; /* "No snoop" and "Relaxed ordering" are not set */ mem_access_subid.s.rtype = 0; /* "No snoop" and "Relaxed ordering" are not set */ /* PCIe Address Bits <63:34>. */ if (OCTEON_IS_MODEL(OCTEON_CN68XX)) mem_access_subid.cn68xx.ba = 0; else mem_access_subid.s.ba = 0; /* * Setup mem access 12-15 for port 0, 16-19 for port 1, * supplying 36 bits of address space. */ for (i = 12 + pcie_port * 4; i < 16 + pcie_port * 4; i++) { cvmx_write_csr(CVMX_PEXP_SLI_MEM_ACCESS_SUBIDX(i), mem_access_subid.u64); /* Set each SUBID to extend the addressable range */ __cvmx_increment_ba(&mem_access_subid); } /* * Disable the peer to peer forwarding register. This must be * setup by the OS after it enumerates the bus and assigns * addresses to the PCIe busses. */ for (i = 0; i < 4; i++) { cvmx_write_csr(CVMX_PEMX_P2P_BARX_START(i, pcie_port), -1); cvmx_write_csr(CVMX_PEMX_P2P_BARX_END(i, pcie_port), -1); } /* Set Octeon's BAR0 to decode 0-16KB. It overlaps with Bar2 */ cvmx_write_csr(CVMX_PEMX_P2N_BAR0_START(pcie_port), 0); /* * Set Octeon's BAR2 to decode 0-2^41. Bar0 and Bar1 take * precedence where they overlap. It also overlaps with the * device addresses, so make sure the peer to peer forwarding * is set right. */ cvmx_write_csr(CVMX_PEMX_P2N_BAR2_START(pcie_port), 0); /* * Setup BAR2 attributes * Relaxed Ordering (NPEI_CTL_PORTn[PTLP_RO,CTLP_RO, WAIT_COM]) * - PTLP_RO,CTLP_RO should normally be set (except for debug). * - WAIT_COM=0 will likely work for all applications. * Load completion relaxed ordering (NPEI_CTL_PORTn[WAITL_COM]) */ pemx_bar_ctl.u64 = cvmx_read_csr(CVMX_PEMX_BAR_CTL(pcie_port)); pemx_bar_ctl.s.bar1_siz = 3; /* 256MB BAR1*/ pemx_bar_ctl.s.bar2_enb = 1; pemx_bar_ctl.s.bar2_esx = 1; pemx_bar_ctl.s.bar2_cax = 0; cvmx_write_csr(CVMX_PEMX_BAR_CTL(pcie_port), pemx_bar_ctl.u64); sli_ctl_portx.u64 = cvmx_read_csr(CVMX_PEXP_SLI_CTL_PORTX(pcie_port)); sli_ctl_portx.s.ptlp_ro = 1; sli_ctl_portx.s.ctlp_ro = 1; sli_ctl_portx.s.wait_com = 0; sli_ctl_portx.s.waitl_com = 0; cvmx_write_csr(CVMX_PEXP_SLI_CTL_PORTX(pcie_port), sli_ctl_portx.u64); /* BAR1 follows BAR2 */ cvmx_write_csr(CVMX_PEMX_P2N_BAR1_START(pcie_port), CVMX_PCIE_BAR1_RC_BASE); bar1_index.u64 = 0; bar1_index.s.addr_idx = (CVMX_PCIE_BAR1_PHYS_BASE >> 22); bar1_index.s.ca = 1; /* Not Cached */ bar1_index.s.end_swp = 1; /* Endian Swap mode */ bar1_index.s.addr_v = 1; /* Valid entry */ for (i = 0; i < 16; i++) { cvmx_write_csr(CVMX_PEMX_BAR1_INDEXX(i, pcie_port), bar1_index.u64); /* 256MB / 16 >> 22 == 4 */ bar1_index.s.addr_idx += (((1ull << 28) / 16ull) >> 22); } /* * Allow config retries for 250ms. Count is based off the 5Ghz * SERDES clock. */ pemx_ctl_status.u64 = cvmx_read_csr(CVMX_PEMX_CTL_STATUS(pcie_port)); pemx_ctl_status.s.cfg_rtry = 250 * 5000000 / 0x10000; cvmx_write_csr(CVMX_PEMX_CTL_STATUS(pcie_port), pemx_ctl_status.u64); /* Display the link status */ pciercx_cfg032.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port)); pr_notice("PCIe: Port %d link active, %d lanes, speed gen%d\n", pcie_port, pciercx_cfg032.s.nlw, pciercx_cfg032.s.ls); return 0; } /** * Initialize a PCIe port for use in host(RC) mode. It doesn't enumerate the bus. * * @pcie_port: PCIe port to initialize * * Returns Zero on success */ static int cvmx_pcie_rc_initialize(int pcie_port) { int result; if (octeon_has_feature(OCTEON_FEATURE_NPEI)) result = __cvmx_pcie_rc_initialize_gen1(pcie_port); else result = __cvmx_pcie_rc_initialize_gen2(pcie_port); return result; } /* Above was cvmx-pcie.c, below original pcie.c */ /** * Map a PCI device to the appropriate interrupt line * * @dev: The Linux PCI device structure for the device to map * @slot: The slot number for this device on __BUS 0__. Linux * enumerates through all the bridges and figures out the * slot on Bus 0 where this device eventually hooks to. * @pin: The PCI interrupt pin read from the device, then swizzled * as it goes through each bridge. * Returns Interrupt number for the device */ int octeon_pcie_pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { /* * The EBH5600 board with the PCI to PCIe bridge mistakenly * wires the first slot for both device id 2 and interrupt * A. According to the PCI spec, device id 2 should be C. The * following kludge attempts to fix this. */ if (strstr(octeon_board_type_string(), "EBH5600") && dev->bus && dev->bus->parent) { /* * Iterate all the way up the device chain and find * the root bus. */ while (dev->bus && dev->bus->parent) dev = to_pci_dev(dev->bus->bridge); /* * If the root bus is number 0 and the PEX 8114 is the * root, assume we are behind the miswired bus. We * need to correct the swizzle level by two. Yuck. */ if ((dev->bus->number == 1) && (dev->vendor == 0x10b5) && (dev->device == 0x8114)) { /* * The pin field is one based, not zero. We * need to swizzle it by minus two. */ pin = ((pin - 3) & 3) + 1; } } /* * The -1 is because pin starts with one, not zero. It might * be that this equation needs to include the slot number, but * I don't have hardware to check that against. */ return pin - 1 + OCTEON_IRQ_PCI_INT0; } static void set_cfg_read_retry(u32 retry_cnt) { union cvmx_pemx_ctl_status pemx_ctl; pemx_ctl.u64 = cvmx_read_csr(CVMX_PEMX_CTL_STATUS(1)); pemx_ctl.s.cfg_rtry = retry_cnt; cvmx_write_csr(CVMX_PEMX_CTL_STATUS(1), pemx_ctl.u64); } static u32 disable_cfg_read_retry(void) { u32 retry_cnt; union cvmx_pemx_ctl_status pemx_ctl; pemx_ctl.u64 = cvmx_read_csr(CVMX_PEMX_CTL_STATUS(1)); retry_cnt = pemx_ctl.s.cfg_rtry; pemx_ctl.s.cfg_rtry = 0; cvmx_write_csr(CVMX_PEMX_CTL_STATUS(1), pemx_ctl.u64); return retry_cnt; } static int is_cfg_retry(void) { union cvmx_pemx_int_sum pemx_int_sum; pemx_int_sum.u64 = cvmx_read_csr(CVMX_PEMX_INT_SUM(1)); if (pemx_int_sum.s.crs_dr) return 1; return 0; } /* * Read a value from configuration space * */ static int octeon_pcie_read_config(unsigned int pcie_port, struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { union octeon_cvmemctl cvmmemctl; union octeon_cvmemctl cvmmemctl_save; int bus_number = bus->number; int cfg_retry = 0; int retry_cnt = 0; int max_retry_cnt = 10; u32 cfg_retry_cnt = 0; cvmmemctl_save.u64 = 0; BUG_ON(pcie_port >= ARRAY_SIZE(enable_pcie_bus_num_war)); /* * For the top level bus make sure our hardware bus number * matches the software one */ if (bus->parent == NULL) { if (enable_pcie_bus_num_war[pcie_port]) bus_number = 0; else { union cvmx_pciercx_cfg006 pciercx_cfg006; pciercx_cfg006.u32 = cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG006(pcie_port)); if (pciercx_cfg006.s.pbnum != bus_number) { pciercx_cfg006.s.pbnum = bus_number; pciercx_cfg006.s.sbnum = bus_number; pciercx_cfg006.s.subbnum = bus_number; cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG006(pcie_port), pciercx_cfg006.u32); } } } /* * PCIe only has a single device connected to Octeon. It is * always device ID 0. Don't bother doing reads for other * device IDs on the first segment. */ if ((bus->parent == NULL) && (devfn >> 3 != 0)) return PCIBIOS_FUNC_NOT_SUPPORTED; /* * The following is a workaround for the CN57XX, CN56XX, * CN55XX, and CN54XX errata with PCIe config reads from non * existent devices. These chips will hang the PCIe link if a * config read is performed that causes a UR response. */ if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) || OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1)) { /* * For our EBH5600 board, port 0 has a bridge with two * PCI-X slots. We need a new special checks to make * sure we only probe valid stuff. The PCIe->PCI-X * bridge only respondes to device ID 0, function * 0-1 */ if ((bus->parent == NULL) && (devfn >= 2)) return PCIBIOS_FUNC_NOT_SUPPORTED; /* * The PCI-X slots are device ID 2,3. Choose one of * the below "if" blocks based on what is plugged into * the board. */ #if 1 /* Use this option if you aren't using either slot */ if (bus_number == 2) return PCIBIOS_FUNC_NOT_SUPPORTED; #elif 0 /* * Use this option if you are using the first slot but * not the second. */ if ((bus_number == 2) && (devfn >> 3 != 2)) return PCIBIOS_FUNC_NOT_SUPPORTED; #elif 0 /* * Use this option if you are using the second slot * but not the first. */ if ((bus_number == 2) && (devfn >> 3 != 3)) return PCIBIOS_FUNC_NOT_SUPPORTED; #elif 0 /* Use this opion if you are using both slots */ if ((bus_number == 2) && !((devfn == (2 << 3)) || (devfn == (3 << 3)))) return PCIBIOS_FUNC_NOT_SUPPORTED; #endif /* The following #if gives a more complicated example. This is the required checks for running a Nitrox CN16XX-NHBX in the slot of the EBH5600. This card has a PLX PCIe bridge with four Nitrox PLX parts behind it */ #if 0 /* PLX bridge with 4 ports */ if ((bus_number == 4) && !((devfn >> 3 >= 1) && (devfn >> 3 <= 4))) return PCIBIOS_FUNC_NOT_SUPPORTED; /* Nitrox behind PLX 1 */ if ((bus_number == 5) && (devfn >> 3 != 0)) return PCIBIOS_FUNC_NOT_SUPPORTED; /* Nitrox behind PLX 2 */ if ((bus_number == 6) && (devfn >> 3 != 0)) return PCIBIOS_FUNC_NOT_SUPPORTED; /* Nitrox behind PLX 3 */ if ((bus_number == 7) && (devfn >> 3 != 0)) return PCIBIOS_FUNC_NOT_SUPPORTED; /* Nitrox behind PLX 4 */ if ((bus_number == 8) && (devfn >> 3 != 0)) return PCIBIOS_FUNC_NOT_SUPPORTED; #endif /* * Shorten the DID timeout so bus errors for PCIe * config reads from non existent devices happen * faster. This allows us to continue booting even if * the above "if" checks are wrong. Once one of these * errors happens, the PCIe port is dead. */ cvmmemctl_save.u64 = __read_64bit_c0_register($11, 7); cvmmemctl.u64 = cvmmemctl_save.u64; cvmmemctl.s.didtto = 2; __write_64bit_c0_register($11, 7, cvmmemctl.u64); } if ((OCTEON_IS_MODEL(OCTEON_CN63XX)) && (enable_pcie_14459_war)) cfg_retry_cnt = disable_cfg_read_retry(); pr_debug("pcie_cfg_rd port=%d b=%d devfn=0x%03x reg=0x%03x" " size=%d ", pcie_port, bus_number, devfn, reg, size); do { switch (size) { case 4: *val = cvmx_pcie_config_read32(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg); break; case 2: *val = cvmx_pcie_config_read16(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg); break; case 1: *val = cvmx_pcie_config_read8(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg); break; default: if (OCTEON_IS_MODEL(OCTEON_CN63XX)) set_cfg_read_retry(cfg_retry_cnt); return PCIBIOS_FUNC_NOT_SUPPORTED; } if ((OCTEON_IS_MODEL(OCTEON_CN63XX)) && (enable_pcie_14459_war)) { cfg_retry = is_cfg_retry(); retry_cnt++; if (retry_cnt > max_retry_cnt) { pr_err(" pcie cfg_read retries failed. retry_cnt=%d\n", retry_cnt); cfg_retry = 0; } } } while (cfg_retry); if ((OCTEON_IS_MODEL(OCTEON_CN63XX)) && (enable_pcie_14459_war)) set_cfg_read_retry(cfg_retry_cnt); pr_debug("val=%08x : tries=%02d\n", *val, retry_cnt); if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) || OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1)) write_c0_cvmmemctl(cvmmemctl_save.u64); return PCIBIOS_SUCCESSFUL; } static int octeon_pcie0_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { return octeon_pcie_read_config(0, bus, devfn, reg, size, val); } static int octeon_pcie1_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { return octeon_pcie_read_config(1, bus, devfn, reg, size, val); } static int octeon_dummy_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { return PCIBIOS_FUNC_NOT_SUPPORTED; } /* * Write a value to PCI configuration space */ static int octeon_pcie_write_config(unsigned int pcie_port, struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { int bus_number = bus->number; BUG_ON(pcie_port >= ARRAY_SIZE(enable_pcie_bus_num_war)); if ((bus->parent == NULL) && (enable_pcie_bus_num_war[pcie_port])) bus_number = 0; pr_debug("pcie_cfg_wr port=%d b=%d devfn=0x%03x" " reg=0x%03x size=%d val=%08x\n", pcie_port, bus_number, devfn, reg, size, val); switch (size) { case 4: cvmx_pcie_config_write32(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg, val); break; case 2: cvmx_pcie_config_write16(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg, val); break; case 1: cvmx_pcie_config_write8(pcie_port, bus_number, devfn >> 3, devfn & 0x7, reg, val); break; default: return PCIBIOS_FUNC_NOT_SUPPORTED; } return PCIBIOS_SUCCESSFUL; } static int octeon_pcie0_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { return octeon_pcie_write_config(0, bus, devfn, reg, size, val); } static int octeon_pcie1_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { return octeon_pcie_write_config(1, bus, devfn, reg, size, val); } static int octeon_dummy_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { return PCIBIOS_FUNC_NOT_SUPPORTED; } static struct pci_ops octeon_pcie0_ops = { .read = octeon_pcie0_read_config, .write = octeon_pcie0_write_config, }; static struct resource octeon_pcie0_mem_resource = { .name = "Octeon PCIe0 MEM", .flags = IORESOURCE_MEM, }; static struct resource octeon_pcie0_io_resource = { .name = "Octeon PCIe0 IO", .flags = IORESOURCE_IO, }; static struct pci_controller octeon_pcie0_controller = { .pci_ops = &octeon_pcie0_ops, .mem_resource = &octeon_pcie0_mem_resource, .io_resource = &octeon_pcie0_io_resource, }; static struct pci_ops octeon_pcie1_ops = { .read = octeon_pcie1_read_config, .write = octeon_pcie1_write_config, }; static struct resource octeon_pcie1_mem_resource = { .name = "Octeon PCIe1 MEM", .flags = IORESOURCE_MEM, }; static struct resource octeon_pcie1_io_resource = { .name = "Octeon PCIe1 IO", .flags = IORESOURCE_IO, }; static struct pci_controller octeon_pcie1_controller = { .pci_ops = &octeon_pcie1_ops, .mem_resource = &octeon_pcie1_mem_resource, .io_resource = &octeon_pcie1_io_resource, }; static struct pci_ops octeon_dummy_ops = { .read = octeon_dummy_read_config, .write = octeon_dummy_write_config, }; static struct resource octeon_dummy_mem_resource = { .name = "Virtual PCIe MEM", .flags = IORESOURCE_MEM, }; static struct resource octeon_dummy_io_resource = { .name = "Virtual PCIe IO", .flags = IORESOURCE_IO, }; static struct pci_controller octeon_dummy_controller = { .pci_ops = &octeon_dummy_ops, .mem_resource = &octeon_dummy_mem_resource, .io_resource = &octeon_dummy_io_resource, }; static int device_needs_bus_num_war(uint32_t deviceid) { #define IDT_VENDOR_ID 0x111d if ((deviceid & 0xffff) == IDT_VENDOR_ID) return 1; return 0; } /** * Initialize the Octeon PCIe controllers * * Returns */ static int __init octeon_pcie_setup(void) { int result; int host_mode; int srio_war15205 = 0, port; union cvmx_sli_ctl_portx sli_ctl_portx; union cvmx_sriox_status_reg sriox_status_reg; /* These chips don't have PCIe */ if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) return 0; /* No PCIe simulation */ if (octeon_is_simulation()) return 0; /* Disable PCI if instructed on the command line */ if (pcie_disable) return 0; /* Point pcibios_map_irq() to the PCIe version of it */ octeon_pcibios_map_irq = octeon_pcie_pcibios_map_irq; /* * PCIe I/O range. It is based on port 0 but includes up until * port 1's end. */ set_io_port_base(CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(0))); ioport_resource.start = 0; ioport_resource.end = cvmx_pcie_get_io_base_address(1) - cvmx_pcie_get_io_base_address(0) + cvmx_pcie_get_io_size(1) - 1; /* * Create a dummy PCIe controller to swallow up bus 0. IDT bridges * don't work if the primary bus number is zero. Here we add a fake * PCIe controller that the kernel will give bus 0. This allows * us to not change the normal kernel bus enumeration */ octeon_dummy_controller.io_map_base = -1; octeon_dummy_controller.mem_resource->start = (1ull<<48); octeon_dummy_controller.mem_resource->end = (1ull<<48); register_pci_controller(&octeon_dummy_controller); if (octeon_has_feature(OCTEON_FEATURE_NPEI)) { union cvmx_npei_ctl_status npei_ctl_status; npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS); host_mode = npei_ctl_status.s.host_mode; octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_PCIE; } else { union cvmx_mio_rst_ctlx mio_rst_ctl; mio_rst_ctl.u64 = cvmx_read_csr(CVMX_MIO_RST_CTLX(0)); host_mode = mio_rst_ctl.s.host_mode; octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_PCIE2; } if (host_mode) { pr_notice("PCIe: Initializing port 0\n"); /* CN63XX pass 1_x/2.0 errata PCIe-15205 */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN63XX_PASS2_0)) { sriox_status_reg.u64 = cvmx_read_csr(CVMX_SRIOX_STATUS_REG(0)); if (sriox_status_reg.s.srio) { srio_war15205 += 1; /* Port is SRIO */ port = 0; } } result = cvmx_pcie_rc_initialize(0); if (result == 0) { uint32_t device0; /* Memory offsets are physical addresses */ octeon_pcie0_controller.mem_offset = cvmx_pcie_get_mem_base_address(0); /* IO offsets are Mips virtual addresses */ octeon_pcie0_controller.io_map_base = CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address (0)); octeon_pcie0_controller.io_offset = 0; /* * To keep things similar to PCI, we start * device addresses at the same place as PCI * uisng big bar support. This normally * translates to 4GB-256MB, which is the same * as most x86 PCs. */ octeon_pcie0_controller.mem_resource->start = cvmx_pcie_get_mem_base_address(0) + (4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20); octeon_pcie0_controller.mem_resource->end = cvmx_pcie_get_mem_base_address(0) + cvmx_pcie_get_mem_size(0) - 1; /* * Ports must be above 16KB for the ISA bus * filtering in the PCI-X to PCI bridge. */ octeon_pcie0_controller.io_resource->start = 4 << 10; octeon_pcie0_controller.io_resource->end = cvmx_pcie_get_io_size(0) - 1; msleep(100); /* Some devices need extra time */ register_pci_controller(&octeon_pcie0_controller); device0 = cvmx_pcie_config_read32(0, 0, 0, 0, 0); enable_pcie_bus_num_war[0] = device_needs_bus_num_war(device0); } } else { pr_notice("PCIe: Port 0 in endpoint mode, skipping.\n"); /* CN63XX pass 1_x/2.0 errata PCIe-15205 */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN63XX_PASS2_0)) { srio_war15205 += 1; port = 0; } } if (octeon_has_feature(OCTEON_FEATURE_NPEI)) { host_mode = 1; /* Skip the 2nd port on CN52XX if port 0 is in 4 lane mode */ if (OCTEON_IS_MODEL(OCTEON_CN52XX)) { union cvmx_npei_dbg_data dbg_data; dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA); if (dbg_data.cn52xx.qlm0_link_width) host_mode = 0; } } else { union cvmx_mio_rst_ctlx mio_rst_ctl; mio_rst_ctl.u64 = cvmx_read_csr(CVMX_MIO_RST_CTLX(1)); host_mode = mio_rst_ctl.s.host_mode; } if (host_mode) { pr_notice("PCIe: Initializing port 1\n"); /* CN63XX pass 1_x/2.0 errata PCIe-15205 */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN63XX_PASS2_0)) { sriox_status_reg.u64 = cvmx_read_csr(CVMX_SRIOX_STATUS_REG(1)); if (sriox_status_reg.s.srio) { srio_war15205 += 1; /* Port is SRIO */ port = 1; } } result = cvmx_pcie_rc_initialize(1); if (result == 0) { uint32_t device0; /* Memory offsets are physical addresses */ octeon_pcie1_controller.mem_offset = cvmx_pcie_get_mem_base_address(1); /* * To calculate the address for accessing the 2nd PCIe device, * either 'io_map_base' (pci_iomap()), or 'mips_io_port_base' * (ioport_map()) value is added to * pci_resource_start(dev,bar)). The 'mips_io_port_base' is set * only once based on first PCIe. Also changing 'io_map_base' * based on first slot's value so that both the routines will * work properly. */ octeon_pcie1_controller.io_map_base = CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(0)); /* IO offsets are Mips virtual addresses */ octeon_pcie1_controller.io_offset = cvmx_pcie_get_io_base_address(1) - cvmx_pcie_get_io_base_address(0); /* * To keep things similar to PCI, we start device * addresses at the same place as PCI uisng big bar * support. This normally translates to 4GB-256MB, * which is the same as most x86 PCs. */ octeon_pcie1_controller.mem_resource->start = cvmx_pcie_get_mem_base_address(1) + (4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20); octeon_pcie1_controller.mem_resource->end = cvmx_pcie_get_mem_base_address(1) + cvmx_pcie_get_mem_size(1) - 1; /* * Ports must be above 16KB for the ISA bus filtering * in the PCI-X to PCI bridge. */ octeon_pcie1_controller.io_resource->start = cvmx_pcie_get_io_base_address(1) - cvmx_pcie_get_io_base_address(0); octeon_pcie1_controller.io_resource->end = octeon_pcie1_controller.io_resource->start + cvmx_pcie_get_io_size(1) - 1; msleep(100); /* Some devices need extra time */ register_pci_controller(&octeon_pcie1_controller); device0 = cvmx_pcie_config_read32(1, 0, 0, 0, 0); enable_pcie_bus_num_war[1] = device_needs_bus_num_war(device0); } } else { pr_notice("PCIe: Port 1 not in root complex mode, skipping.\n"); /* CN63XX pass 1_x/2.0 errata PCIe-15205 */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN63XX_PASS2_0)) { srio_war15205 += 1; port = 1; } } /* * CN63XX pass 1_x/2.0 errata PCIe-15205 requires setting all * of SRIO MACs SLI_CTL_PORT*[INT*_MAP] to similar value and * all of PCIe Macs SLI_CTL_PORT*[INT*_MAP] to different value * from the previous set values */ if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN63XX_PASS2_0)) { if (srio_war15205 == 1) { sli_ctl_portx.u64 = cvmx_read_csr(CVMX_PEXP_SLI_CTL_PORTX(port)); sli_ctl_portx.s.inta_map = 1; sli_ctl_portx.s.intb_map = 1; sli_ctl_portx.s.intc_map = 1; sli_ctl_portx.s.intd_map = 1; cvmx_write_csr(CVMX_PEXP_SLI_CTL_PORTX(port), sli_ctl_portx.u64); sli_ctl_portx.u64 = cvmx_read_csr(CVMX_PEXP_SLI_CTL_PORTX(!port)); sli_ctl_portx.s.inta_map = 0; sli_ctl_portx.s.intb_map = 0; sli_ctl_portx.s.intc_map = 0; sli_ctl_portx.s.intd_map = 0; cvmx_write_csr(CVMX_PEXP_SLI_CTL_PORTX(!port), sli_ctl_portx.u64); } } octeon_pci_dma_init(); return 0; } arch_initcall(octeon_pcie_setup);
linux-master
arch/mips/pci/pcie-octeon.c
// SPDX-License-Identifier: GPL-2.0-only /* * Ralink MT7620A SoC PCI support * * Copyright (C) 2007-2013 Bruce Chang (Mediatek) * Copyright (C) 2013-2016 John Crispin <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/io.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_pci.h> #include <linux/reset.h> #include <linux/platform_device.h> #include <asm/mach-ralink/ralink_regs.h> #include <asm/mach-ralink/mt7620.h> #define RALINK_PCI_IO_MAP_BASE 0x10160000 #define RALINK_PCI_MEMORY_BASE 0x0 #define RALINK_INT_PCIE0 4 #define RALINK_CLKCFG1 0x30 #define RALINK_GPIOMODE 0x60 #define PPLL_CFG1 0x9c #define PPLL_LD BIT(23) #define PPLL_DRV 0xa0 #define PDRV_SW_SET BIT(31) #define LC_CKDRVPD BIT(19) #define LC_CKDRVOHZ BIT(18) #define LC_CKDRVHZ BIT(17) #define LC_CKTEST BIT(16) /* PCI Bridge registers */ #define RALINK_PCI_PCICFG_ADDR 0x00 #define PCIRST BIT(1) #define RALINK_PCI_PCIENA 0x0C #define PCIINT2 BIT(20) #define RALINK_PCI_CONFIG_ADDR 0x20 #define RALINK_PCI_CONFIG_DATA_VIRT_REG 0x24 #define RALINK_PCI_MEMBASE 0x28 #define RALINK_PCI_IOBASE 0x2C /* PCI RC registers */ #define RALINK_PCI0_BAR0SETUP_ADDR 0x10 #define RALINK_PCI0_IMBASEBAR0_ADDR 0x18 #define RALINK_PCI0_ID 0x30 #define RALINK_PCI0_CLASS 0x34 #define RALINK_PCI0_SUBID 0x38 #define RALINK_PCI0_STATUS 0x50 #define PCIE_LINK_UP_ST BIT(0) #define PCIEPHY0_CFG 0x90 #define RALINK_PCIEPHY_P0_CTL_OFFSET 0x7498 #define RALINK_PCIE0_CLK_EN BIT(26) #define BUSY 0x80000000 #define WAITRETRY_MAX 10 #define WRITE_MODE (1UL << 23) #define DATA_SHIFT 0 #define ADDR_SHIFT 8 static void __iomem *bridge_base; static void __iomem *pcie_base; static struct reset_control *rstpcie0; static inline void bridge_w32(u32 val, unsigned reg) { iowrite32(val, bridge_base + reg); } static inline u32 bridge_r32(unsigned reg) { return ioread32(bridge_base + reg); } static inline void pcie_w32(u32 val, unsigned reg) { iowrite32(val, pcie_base + reg); } static inline u32 pcie_r32(unsigned reg) { return ioread32(pcie_base + reg); } static inline void pcie_m32(u32 clr, u32 set, unsigned reg) { u32 val = pcie_r32(reg); val &= ~clr; val |= set; pcie_w32(val, reg); } static int wait_pciephy_busy(void) { unsigned long reg_value = 0x0, retry = 0; while (1) { reg_value = pcie_r32(PCIEPHY0_CFG); if (reg_value & BUSY) mdelay(100); else break; if (retry++ > WAITRETRY_MAX) { pr_warn("PCIE-PHY retry failed.\n"); return -1; } } return 0; } static void pcie_phy(unsigned long addr, unsigned long val) { wait_pciephy_busy(); pcie_w32(WRITE_MODE | (val << DATA_SHIFT) | (addr << ADDR_SHIFT), PCIEPHY0_CFG); mdelay(1); wait_pciephy_busy(); } static int pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { unsigned int slot = PCI_SLOT(devfn); u8 func = PCI_FUNC(devfn); u32 address; u32 data; u32 num = 0; if (bus) num = bus->number; address = (((where & 0xF00) >> 8) << 24) | (num << 16) | (slot << 11) | (func << 8) | (where & 0xfc) | 0x80000000; bridge_w32(address, RALINK_PCI_CONFIG_ADDR); data = bridge_r32(RALINK_PCI_CONFIG_DATA_VIRT_REG); switch (size) { case 1: *val = (data >> ((where & 3) << 3)) & 0xff; break; case 2: *val = (data >> ((where & 3) << 3)) & 0xffff; break; case 4: *val = data; break; } return PCIBIOS_SUCCESSFUL; } static int pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { unsigned int slot = PCI_SLOT(devfn); u8 func = PCI_FUNC(devfn); u32 address; u32 data; u32 num = 0; if (bus) num = bus->number; address = (((where & 0xF00) >> 8) << 24) | (num << 16) | (slot << 11) | (func << 8) | (where & 0xfc) | 0x80000000; bridge_w32(address, RALINK_PCI_CONFIG_ADDR); data = bridge_r32(RALINK_PCI_CONFIG_DATA_VIRT_REG); switch (size) { case 1: data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 2: data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 4: data = val; break; } bridge_w32(data, RALINK_PCI_CONFIG_DATA_VIRT_REG); return PCIBIOS_SUCCESSFUL; } struct pci_ops mt7620_pci_ops = { .read = pci_config_read, .write = pci_config_write, }; static struct resource mt7620_res_pci_mem1; static struct resource mt7620_res_pci_io1; struct pci_controller mt7620_controller = { .pci_ops = &mt7620_pci_ops, .mem_resource = &mt7620_res_pci_mem1, .mem_offset = 0x00000000UL, .io_resource = &mt7620_res_pci_io1, .io_offset = 0x00000000UL, .io_map_base = 0xa0000000, }; static int mt7620_pci_hw_init(struct platform_device *pdev) { /* bypass PCIe DLL */ pcie_phy(0x0, 0x80); pcie_phy(0x1, 0x04); /* Elastic buffer control */ pcie_phy(0x68, 0xB4); /* put core into reset */ pcie_m32(0, PCIRST, RALINK_PCI_PCICFG_ADDR); reset_control_assert(rstpcie0); /* disable power and all clocks */ rt_sysc_m32(RALINK_PCIE0_CLK_EN, 0, RALINK_CLKCFG1); rt_sysc_m32(LC_CKDRVPD, PDRV_SW_SET, PPLL_DRV); /* bring core out of reset */ reset_control_deassert(rstpcie0); rt_sysc_m32(0, RALINK_PCIE0_CLK_EN, RALINK_CLKCFG1); mdelay(100); if (!(rt_sysc_r32(PPLL_CFG1) & PPLL_LD)) { dev_err(&pdev->dev, "pcie PLL not locked, aborting init\n"); reset_control_assert(rstpcie0); rt_sysc_m32(RALINK_PCIE0_CLK_EN, 0, RALINK_CLKCFG1); return -1; } /* power up the bus */ rt_sysc_m32(LC_CKDRVHZ | LC_CKDRVOHZ, LC_CKDRVPD | PDRV_SW_SET, PPLL_DRV); return 0; } static int mt7628_pci_hw_init(struct platform_device *pdev) { u32 val = 0; /* bring the core out of reset */ rt_sysc_m32(BIT(16), 0, RALINK_GPIOMODE); reset_control_deassert(rstpcie0); /* enable the pci clk */ rt_sysc_m32(0, RALINK_PCIE0_CLK_EN, RALINK_CLKCFG1); mdelay(100); /* voodoo from the SDK driver */ pcie_m32(~0xff, 0x5, RALINK_PCIEPHY_P0_CTL_OFFSET); pci_config_read(NULL, 0, 0x70c, 4, &val); val &= ~(0xff) << 8; val |= 0x50 << 8; pci_config_write(NULL, 0, 0x70c, 4, val); return 0; } static int mt7620_pci_probe(struct platform_device *pdev) { u32 val = 0; rstpcie0 = devm_reset_control_get_exclusive(&pdev->dev, "pcie0"); if (IS_ERR(rstpcie0)) return PTR_ERR(rstpcie0); bridge_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(bridge_base)) return PTR_ERR(bridge_base); pcie_base = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); if (IS_ERR(pcie_base)) return PTR_ERR(pcie_base); iomem_resource.start = 0; iomem_resource.end = ~0; ioport_resource.start = 0; ioport_resource.end = ~0; /* bring up the pci core */ switch (ralink_soc) { case MT762X_SOC_MT7620A: if (mt7620_pci_hw_init(pdev)) return -1; break; case MT762X_SOC_MT7628AN: case MT762X_SOC_MT7688: if (mt7628_pci_hw_init(pdev)) return -1; break; default: dev_err(&pdev->dev, "pcie is not supported on this hardware\n"); return -1; } mdelay(50); /* enable write access */ pcie_m32(PCIRST, 0, RALINK_PCI_PCICFG_ADDR); mdelay(100); /* check if there is a card present */ if ((pcie_r32(RALINK_PCI0_STATUS) & PCIE_LINK_UP_ST) == 0) { reset_control_assert(rstpcie0); rt_sysc_m32(RALINK_PCIE0_CLK_EN, 0, RALINK_CLKCFG1); if (ralink_soc == MT762X_SOC_MT7620A) rt_sysc_m32(LC_CKDRVPD, PDRV_SW_SET, PPLL_DRV); dev_info(&pdev->dev, "PCIE0 no card, disable it(RST&CLK)\n"); return -1; } /* setup ranges */ bridge_w32(0xffffffff, RALINK_PCI_MEMBASE); bridge_w32(RALINK_PCI_IO_MAP_BASE, RALINK_PCI_IOBASE); pcie_w32(0x7FFF0001, RALINK_PCI0_BAR0SETUP_ADDR); pcie_w32(RALINK_PCI_MEMORY_BASE, RALINK_PCI0_IMBASEBAR0_ADDR); pcie_w32(0x06040001, RALINK_PCI0_CLASS); /* enable interrupts */ pcie_m32(0, PCIINT2, RALINK_PCI_PCIENA); /* voodoo from the SDK driver */ pci_config_read(NULL, 0, 4, 4, &val); pci_config_write(NULL, 0, 4, 4, val | 0x7); pci_load_of_ranges(&mt7620_controller, pdev->dev.of_node); register_pci_controller(&mt7620_controller); return 0; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { u16 cmd; u32 val; int irq = 0; if ((dev->bus->number == 0) && (slot == 0)) { pcie_w32(0x7FFF0001, RALINK_PCI0_BAR0SETUP_ADDR); pci_config_write(dev->bus, 0, PCI_BASE_ADDRESS_0, 4, RALINK_PCI_MEMORY_BASE); pci_config_read(dev->bus, 0, PCI_BASE_ADDRESS_0, 4, &val); } else if ((dev->bus->number == 1) && (slot == 0x0)) { irq = RALINK_INT_PCIE0; } else { dev_err(&dev->dev, "no irq found - bus=0x%x, slot = 0x%x\n", dev->bus->number, slot); return 0; } dev_info(&dev->dev, "card - bus=0x%x, slot = 0x%x irq=%d\n", dev->bus->number, slot, irq); /* configure the cache line size to 0x14 */ pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 0x14); /* configure latency timer to 0xff */ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xff); pci_read_config_word(dev, PCI_COMMAND, &cmd); /* setup the slot */ cmd = cmd | PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY; pci_write_config_word(dev, PCI_COMMAND, cmd); pci_write_config_byte(dev, PCI_INTERRUPT_LINE, dev->irq); return irq; } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } static const struct of_device_id mt7620_pci_ids[] = { { .compatible = "mediatek,mt7620-pci" }, {}, }; static struct platform_driver mt7620_pci_driver = { .probe = mt7620_pci_probe, .driver = { .name = "mt7620-pci", .of_match_table = of_match_ptr(mt7620_pci_ids), }, }; static int __init mt7620_pci_init(void) { return platform_driver_register(&mt7620_pci_driver); } arch_initcall(mt7620_pci_init);
linux-master
arch/mips/pci/pci-mt7620.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000, 2001 Keith M Wesolowski * Copyright (C) 2004 by Ralf Baechle ([email protected]) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/types.h> #include <asm/ip32/mace.h> #include <asm/ip32/ip32_ints.h> #undef DEBUG_MACE_PCI /* * Handle errors from the bridge. This includes master and target aborts, * various command and address errors, and the interrupt test. This gets * registered on the bridge error irq. It's conceivable that some of these * conditions warrant a panic. Anybody care to say which ones? */ static irqreturn_t macepci_error(int irq, void *dev) { char s; unsigned int flags = mace->pci.error; unsigned int addr = mace->pci.error_addr; if (flags & MACEPCI_ERROR_MEMORY_ADDR) s = 'M'; else if (flags & MACEPCI_ERROR_CONFIG_ADDR) s = 'C'; else s = 'X'; if (flags & MACEPCI_ERROR_MASTER_ABORT) { printk("MACEPCI: Master abort at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_MASTER_ABORT; } if (flags & MACEPCI_ERROR_TARGET_ABORT) { printk("MACEPCI: Target abort at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_TARGET_ABORT; } if (flags & MACEPCI_ERROR_DATA_PARITY_ERR) { printk("MACEPCI: Data parity error at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_DATA_PARITY_ERR; } if (flags & MACEPCI_ERROR_RETRY_ERR) { printk("MACEPCI: Retry error at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_RETRY_ERR; } if (flags & MACEPCI_ERROR_ILLEGAL_CMD) { printk("MACEPCI: Illegal command at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_ILLEGAL_CMD; } if (flags & MACEPCI_ERROR_SYSTEM_ERR) { printk("MACEPCI: System error at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_SYSTEM_ERR; } if (flags & MACEPCI_ERROR_PARITY_ERR) { printk("MACEPCI: Parity error at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_PARITY_ERR; } if (flags & MACEPCI_ERROR_OVERRUN) { printk("MACEPCI: Overrun error at 0x%08x (%c)\n", addr, s); flags &= ~MACEPCI_ERROR_OVERRUN; } if (flags & MACEPCI_ERROR_SIG_TABORT) { printk("MACEPCI: Signaled target abort (clearing)\n"); flags &= ~MACEPCI_ERROR_SIG_TABORT; } if (flags & MACEPCI_ERROR_INTERRUPT_TEST) { printk("MACEPCI: Interrupt test triggered (clearing)\n"); flags &= ~MACEPCI_ERROR_INTERRUPT_TEST; } mace->pci.error = flags; return IRQ_HANDLED; } extern struct pci_ops mace_pci_ops; #ifdef CONFIG_64BIT static struct resource mace_pci_mem_resource = { .name = "SGI O2 PCI MEM", .start = MACEPCI_HI_MEMORY, .end = 0x2FFFFFFFFUL, .flags = IORESOURCE_MEM, }; static struct resource mace_pci_io_resource = { .name = "SGI O2 PCI IO", .start = 0x00000000UL, .end = 0xffffffffUL, .flags = IORESOURCE_IO, }; #define MACE_PCI_MEM_OFFSET 0x200000000 #else static struct resource mace_pci_mem_resource = { .name = "SGI O2 PCI MEM", .start = MACEPCI_LOW_MEMORY, .end = MACEPCI_LOW_MEMORY + 0x2000000 - 1, .flags = IORESOURCE_MEM, }; static struct resource mace_pci_io_resource = { .name = "SGI O2 PCI IO", .start = 0x00000000, .end = 0xFFFFFFFF, .flags = IORESOURCE_IO, }; #define MACE_PCI_MEM_OFFSET (MACEPCI_LOW_MEMORY - 0x80000000) #endif static struct pci_controller mace_pci_controller = { .pci_ops = &mace_pci_ops, .mem_resource = &mace_pci_mem_resource, .io_resource = &mace_pci_io_resource, .mem_offset = MACE_PCI_MEM_OFFSET, .io_offset = 0, .io_map_base = CKSEG1ADDR(MACEPCI_LOW_IO), }; static int __init mace_init(void) { PCIBIOS_MIN_IO = 0x1000; /* Clear any outstanding errors and enable interrupts */ mace->pci.error_addr = 0; mace->pci.error = 0; mace->pci.control = 0xff008500; printk("MACE PCI rev %d\n", mace->pci.rev); BUG_ON(request_irq(MACE_PCI_BRIDGE_IRQ, macepci_error, 0, "MACE PCI error", NULL)); /* extend memory resources */ iomem_resource.end = mace_pci_mem_resource.end; ioport_resource = mace_pci_io_resource; register_pci_controller(&mace_pci_controller); return 0; } arch_initcall(mace_init);
linux-master
arch/mips/pci/pci-ip32.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2010 John Crispin <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/mm.h> #include <asm/addrspace.h> #include <linux/vmalloc.h> #include <lantiq_soc.h> #include "pci-lantiq.h" #define LTQ_PCI_CFG_BUSNUM_SHF 16 #define LTQ_PCI_CFG_DEVNUM_SHF 11 #define LTQ_PCI_CFG_FUNNUM_SHF 8 #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 static int ltq_pci_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, unsigned int where, u32 *data) { unsigned long cfg_base; unsigned long flags; u32 temp; /* we support slot from 0 to 15 dev_fn & 0x68 (AD29) is the SoC itself */ if ((bus->number != 0) || ((devfn & 0xf8) > 0x78) || ((devfn & 0xf8) == 0) || ((devfn & 0xf8) == 0x68)) return 1; spin_lock_irqsave(&ebu_lock, flags); cfg_base = (unsigned long) ltq_pci_mapped_cfg; cfg_base |= (bus->number << LTQ_PCI_CFG_BUSNUM_SHF) | (devfn << LTQ_PCI_CFG_FUNNUM_SHF) | (where & ~0x3); /* Perform access */ if (access_type == PCI_ACCESS_WRITE) { ltq_w32(swab32(*data), ((u32 *)cfg_base)); } else { *data = ltq_r32(((u32 *)(cfg_base))); *data = swab32(*data); } wmb(); /* clean possible Master abort */ cfg_base = (unsigned long) ltq_pci_mapped_cfg; cfg_base |= (0x0 << LTQ_PCI_CFG_FUNNUM_SHF) + 4; temp = ltq_r32(((u32 *)(cfg_base))); temp = swab32(temp); cfg_base = (unsigned long) ltq_pci_mapped_cfg; cfg_base |= (0x68 << LTQ_PCI_CFG_FUNNUM_SHF) + 4; ltq_w32(temp, ((u32 *)cfg_base)); spin_unlock_irqrestore(&ebu_lock, flags); if (((*data) == 0xffffffff) && (access_type == PCI_ACCESS_READ)) return 1; return 0; } int ltq_pci_read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 data = 0; if (ltq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } int ltq_pci_write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data = 0; if (size == 4) { data = val; } else { if (ltq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); } if (ltq_pci_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; }
linux-master
arch/mips/pci/ops-lantiq.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2003, 04, 11 Ralf Baechle ([email protected]) * Copyright (C) 2011 Wind River Systems, * written by Ralf Baechle ([email protected]) */ #include <linux/bug.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/memblock.h> #include <linux/export.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/of_address.h> #include <asm/cpu-info.h> /* * If PCI_PROBE_ONLY in pci_flags is set, we don't change any PCI resource * assignments. */ /* * The PCI controller list. */ static LIST_HEAD(controllers); static int pci_initialized; /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { struct pci_dev *dev = data; struct pci_controller *hose = dev->sysdata; resource_size_t start = res->start; if (res->flags & IORESOURCE_IO) { /* Make sure we start at our min on all hoses */ if (start < PCIBIOS_MIN_IO + hose->io_resource->start) start = PCIBIOS_MIN_IO + hose->io_resource->start; /* * Put everything into 0x00-0xff region modulo 0x400 */ if (start & 0x300) start = (start + 0x3ff) & ~0x3ff; } else if (res->flags & IORESOURCE_MEM) { /* Make sure we start at our min on all hoses */ if (start < PCIBIOS_MIN_MEM + hose->mem_resource->start) start = PCIBIOS_MIN_MEM + hose->mem_resource->start; } return start; } static void pcibios_scanbus(struct pci_controller *hose) { static int next_busno; static int need_domain_info; LIST_HEAD(resources); struct pci_bus *bus; struct pci_host_bridge *bridge; int ret; bridge = pci_alloc_host_bridge(0); if (!bridge) return; if (hose->get_busno && pci_has_flag(PCI_PROBE_ONLY)) next_busno = (*hose->get_busno)(); pci_add_resource_offset(&resources, hose->mem_resource, hose->mem_offset); pci_add_resource_offset(&resources, hose->io_resource, hose->io_offset); list_splice_init(&resources, &bridge->windows); bridge->dev.parent = NULL; bridge->sysdata = hose; bridge->busnr = next_busno; bridge->ops = hose->pci_ops; bridge->swizzle_irq = pci_common_swizzle; bridge->map_irq = pcibios_map_irq; ret = pci_scan_root_bus_bridge(bridge); if (ret) { pci_free_host_bridge(bridge); return; } hose->bus = bus = bridge->bus; need_domain_info = need_domain_info || pci_domain_nr(bus); set_pci_need_domain_info(hose, need_domain_info); next_busno = bus->busn_res.end + 1; /* Don't allow 8-bit bus number overflow inside the hose - reserve some space for bridges. */ if (next_busno > 224) { next_busno = 0; need_domain_info = 1; } /* * We insert PCI resources into the iomem_resource and * ioport_resource trees in either pci_bus_claim_resources() * or pci_bus_assign_resources(). */ if (pci_has_flag(PCI_PROBE_ONLY)) { pci_bus_claim_resources(bus); } else { struct pci_bus *child; pci_bus_size_bridges(bus); pci_bus_assign_resources(bus); list_for_each_entry(child, &bus->children, node) pcie_bus_configure_settings(child); } pci_bus_add_devices(bus); } #ifdef CONFIG_OF void pci_load_of_ranges(struct pci_controller *hose, struct device_node *node) { struct of_pci_range range; struct of_pci_range_parser parser; hose->of_node = node; if (of_pci_range_parser_init(&parser, node)) return; for_each_of_pci_range(&parser, &range) { struct resource *res = NULL; switch (range.flags & IORESOURCE_TYPE_BITS) { case IORESOURCE_IO: hose->io_map_base = (unsigned long)ioremap(range.cpu_addr, range.size); res = hose->io_resource; break; case IORESOURCE_MEM: res = hose->mem_resource; break; } if (res != NULL) { res->name = node->full_name; res->flags = range.flags; res->start = range.cpu_addr; res->end = range.cpu_addr + range.size - 1; res->parent = res->child = res->sibling = NULL; } } } struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; return of_node_get(hose->of_node); } #endif static DEFINE_MUTEX(pci_scan_mutex); void register_pci_controller(struct pci_controller *hose) { struct resource *parent; parent = hose->mem_resource->parent; if (!parent) parent = &iomem_resource; if (request_resource(parent, hose->mem_resource) < 0) goto out; parent = hose->io_resource->parent; if (!parent) parent = &ioport_resource; if (request_resource(parent, hose->io_resource) < 0) { release_resource(hose->mem_resource); goto out; } INIT_LIST_HEAD(&hose->list); list_add_tail(&hose->list, &controllers); /* * Do not panic here but later - this might happen before console init. */ if (!hose->io_map_base) { printk(KERN_WARNING "registering PCI controller with io_map_base unset\n"); } /* * Scan the bus if it is register after the PCI subsystem * initialization. */ if (pci_initialized) { mutex_lock(&pci_scan_mutex); pcibios_scanbus(hose); mutex_unlock(&pci_scan_mutex); } return; out: printk(KERN_WARNING "Skipping PCI bus scan due to resource conflict\n"); } static int __init pcibios_init(void) { struct pci_controller *hose; /* Scan all of the recorded PCI controllers. */ list_for_each_entry(hose, &controllers, list) pcibios_scanbus(hose); pci_initialized = 1; return 0; } subsys_initcall(pcibios_init); static int pcibios_enable_resources(struct pci_dev *dev, int mask) { u16 cmd, old_cmd; int idx; struct resource *r; pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; pci_dev_for_each_resource(dev, r, idx) { /* Only set up the requested stuff */ if (!(mask & (1<<idx))) continue; if (!(r->flags & (IORESOURCE_IO | IORESOURCE_MEM))) continue; if ((idx == PCI_ROM_RESOURCE) && (!(r->flags & IORESOURCE_ROM_ENABLE))) continue; if (!r->start && r->end) { pci_err(dev, "can't enable device: resource collisions\n"); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } if (cmd != old_cmd) { pci_info(dev, "enabling device (%04x -> %04x)\n", old_cmd, cmd); pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0; } int pcibios_enable_device(struct pci_dev *dev, int mask) { int err = pcibios_enable_resources(dev, mask); if (err < 0) return err; return pcibios_plat_dev_init(dev); } void pcibios_fixup_bus(struct pci_bus *bus) { struct pci_dev *dev = bus->self; if (pci_has_flag(PCI_PROBE_ONLY) && dev && (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { pci_read_bridge_bases(bus); } } char * (*pcibios_plat_setup)(char *str) __initdata; char *__init pcibios_setup(char *str) { if (pcibios_plat_setup) return pcibios_plat_setup(str); return str; }
linux-master
arch/mips/pci/pci-legacy.c
/* * Based on linux/arch/mips/txx9/rbtx4938/setup.c, * and RBTX49xx patch from CELF patch archive. * * Copyright 2001, 2003-2005 MontaVista Software Inc. * Copyright (C) 2004 by Ralf Baechle ([email protected]) * (C) Copyright TOSHIBA CORPORATION 2000-2001, 2004-2007 * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <asm/txx9/generic.h> #include <asm/txx9/tx4927.h> int __init tx4927_report_pciclk(void) { int pciclk = 0; pr_info("PCIC --%s PCICLK:", (__raw_readq(&tx4927_ccfgptr->ccfg) & TX4927_CCFG_PCI66) ? " PCI66" : ""); if (__raw_readq(&tx4927_ccfgptr->pcfg) & TX4927_PCFG_PCICLKEN_ALL) { u64 ccfg = __raw_readq(&tx4927_ccfgptr->ccfg); switch ((unsigned long)ccfg & TX4927_CCFG_PCIDIVMODE_MASK) { case TX4927_CCFG_PCIDIVMODE_2_5: pciclk = txx9_cpu_clock * 2 / 5; break; case TX4927_CCFG_PCIDIVMODE_3: pciclk = txx9_cpu_clock / 3; break; case TX4927_CCFG_PCIDIVMODE_5: pciclk = txx9_cpu_clock / 5; break; case TX4927_CCFG_PCIDIVMODE_6: pciclk = txx9_cpu_clock / 6; break; } pr_cont("Internal(%u.%uMHz)", (pciclk + 50000) / 1000000, ((pciclk + 50000) / 100000) % 10); } else { pr_cont("External"); pciclk = -1; } pr_cont("\n"); return pciclk; } int __init tx4927_pciclk66_setup(void) { int pciclk; /* Assert M66EN */ tx4927_ccfg_set(TX4927_CCFG_PCI66); /* Double PCICLK (if possible) */ if (__raw_readq(&tx4927_ccfgptr->pcfg) & TX4927_PCFG_PCICLKEN_ALL) { unsigned int pcidivmode = 0; u64 ccfg = __raw_readq(&tx4927_ccfgptr->ccfg); pcidivmode = (unsigned long)ccfg & TX4927_CCFG_PCIDIVMODE_MASK; switch (pcidivmode) { case TX4927_CCFG_PCIDIVMODE_5: case TX4927_CCFG_PCIDIVMODE_2_5: pcidivmode = TX4927_CCFG_PCIDIVMODE_2_5; pciclk = txx9_cpu_clock * 2 / 5; break; case TX4927_CCFG_PCIDIVMODE_6: case TX4927_CCFG_PCIDIVMODE_3: default: pcidivmode = TX4927_CCFG_PCIDIVMODE_3; pciclk = txx9_cpu_clock / 3; } tx4927_ccfg_change(TX4927_CCFG_PCIDIVMODE_MASK, pcidivmode); pr_debug("PCICLK: ccfg:%08lx\n", (unsigned long)__raw_readq(&tx4927_ccfgptr->ccfg)); } else pciclk = -1; return pciclk; } void __init tx4927_setup_pcierr_irq(void) { if (request_irq(TXX9_IRQ_BASE + TX4927_IR_PCIERR, tx4927_pcierr_interrupt, 0, "PCI error", (void *)TX4927_PCIC_REG)) pr_warn("Failed to request irq for PCIERR\n"); }
linux-master
arch/mips/pci/pci-tx4927.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1999, 2000, 2004 MIPS Technologies, Inc. * All rights reserved. * Authors: Carsten Langgaard <[email protected]> * Maciej W. Rozycki <[email protected]> * * Copyright (C) 2009 Lemote Inc. * Author: Wu Zhangjin <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/export.h> #include <loongson.h> #ifdef CONFIG_CS5536 #include <cs5536/cs5536_pci.h> #include <cs5536/cs5536.h> #endif #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 #define CFG_SPACE_REG(offset) \ (void *)CKSEG1ADDR(LOONGSON_PCICFG_BASE | (offset)) #define ID_SEL_BEGIN 11 #define MAX_DEV_NUM (31 - ID_SEL_BEGIN) static int loongson_pcibios_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 *data) { u32 busnum = bus->number; u32 addr, type; u32 dummy; void *addrp; int device = PCI_SLOT(devfn); int function = PCI_FUNC(devfn); int reg = where & ~3; if (busnum == 0) { /* board-specific part,currently,only fuloong2f,yeeloong2f * use CS5536, fuloong2e use via686b, gdium has no * south bridge */ #ifdef CONFIG_CS5536 /* cs5536_pci_conf_read4/write4() will call _rdmsr/_wrmsr() to * access the regsters PCI_MSR_ADDR, PCI_MSR_DATA_LO, * PCI_MSR_DATA_HI, which is bigger than PCI_MSR_CTRL, so, it * will not go this branch, but the others. so, no calling dead * loop here. */ if ((PCI_IDSEL_CS5536 == device) && (reg < PCI_MSR_CTRL)) { switch (access_type) { case PCI_ACCESS_READ: *data = cs5536_pci_conf_read4(function, reg); break; case PCI_ACCESS_WRITE: cs5536_pci_conf_write4(function, reg, *data); break; } return 0; } #endif /* Type 0 configuration for onboard PCI bus */ if (device > MAX_DEV_NUM) return -1; addr = (1 << (device + ID_SEL_BEGIN)) | (function << 8) | reg; type = 0; } else { /* Type 1 configuration for offboard PCI bus */ addr = (busnum << 16) | (device << 11) | (function << 8) | reg; type = 0x10000; } /* Clear aborts */ LOONGSON_PCICMD |= LOONGSON_PCICMD_MABORT_CLR | \ LOONGSON_PCICMD_MTABORT_CLR; LOONGSON_PCIMAP_CFG = (addr >> 16) | type; /* Flush Bonito register block */ dummy = LOONGSON_PCIMAP_CFG; mmiowb(); addrp = CFG_SPACE_REG(addr & 0xffff); if (access_type == PCI_ACCESS_WRITE) writel(cpu_to_le32(*data), addrp); else *data = le32_to_cpu(readl(addrp)); /* Detect Master/Target abort */ if (LOONGSON_PCICMD & (LOONGSON_PCICMD_MABORT_CLR | LOONGSON_PCICMD_MTABORT_CLR)) { /* Error occurred */ /* Clear bits */ LOONGSON_PCICMD |= (LOONGSON_PCICMD_MABORT_CLR | LOONGSON_PCICMD_MTABORT_CLR); return -1; } return 0; } /* * We can't address 8 and 16 bit words directly. Instead we have to * read/write a 32bit word and mask/modify the data we actually want. */ static int loongson_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (loongson_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int loongson_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (size == 4) data = val; else { if (loongson_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); } if (loongson_pcibios_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } struct pci_ops loongson_pci_ops = { .read = loongson_pcibios_read, .write = loongson_pcibios_write }; #ifdef CONFIG_CS5536 DEFINE_RAW_SPINLOCK(msr_lock); void _rdmsr(u32 msr, u32 *hi, u32 *lo) { struct pci_bus bus = { .number = PCI_BUS_CS5536 }; u32 devfn = PCI_DEVFN(PCI_IDSEL_CS5536, 0); unsigned long flags; raw_spin_lock_irqsave(&msr_lock, flags); loongson_pcibios_write(&bus, devfn, PCI_MSR_ADDR, 4, msr); loongson_pcibios_read(&bus, devfn, PCI_MSR_DATA_LO, 4, lo); loongson_pcibios_read(&bus, devfn, PCI_MSR_DATA_HI, 4, hi); raw_spin_unlock_irqrestore(&msr_lock, flags); } EXPORT_SYMBOL(_rdmsr); void _wrmsr(u32 msr, u32 hi, u32 lo) { struct pci_bus bus = { .number = PCI_BUS_CS5536 }; u32 devfn = PCI_DEVFN(PCI_IDSEL_CS5536, 0); unsigned long flags; raw_spin_lock_irqsave(&msr_lock, flags); loongson_pcibios_write(&bus, devfn, PCI_MSR_ADDR, 4, msr); loongson_pcibios_write(&bus, devfn, PCI_MSR_DATA_LO, 4, lo); loongson_pcibios_write(&bus, devfn, PCI_MSR_DATA_HI, 4, hi); raw_spin_unlock_irqrestore(&msr_lock, flags); } EXPORT_SYMBOL(_wrmsr); #endif
linux-master
arch/mips/pci/ops-loongson2.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001,2002,2005 Broadcom Corporation * Copyright (C) 2004 by Ralf Baechle ([email protected]) */ /* * BCM1480/1455-specific HT support (looking like PCI) * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we use ioremap. In the 32-bit * kernel, this consumes either 4 or 8 page table pages, and 16MB of * kernel mapped memory. Hopefully neither of these should be a huge * problem. * */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/console.h> #include <linux/tty.h> #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/board.h> #include <asm/io.h> /* * Macros for calculating offsets into config space given a device * structure or dev/fun/reg */ #define CFGOFFSET(bus, devfn, where) (((bus)<<16)+((devfn)<<8)+(where)) #define CFGADDR(bus, devfn, where) CFGOFFSET((bus)->number, (devfn), where) static void *ht_cfg_space; #define PCI_BUS_ENABLED 1 #define PCI_DEVICE_MODE 2 static int bcm1480ht_bus_status; #define PCI_BRIDGE_DEVICE 0 #define HT_BRIDGE_DEVICE 1 /* * HT's level-sensitive interrupts require EOI, which is generated * through a 4MB memory-mapped region */ unsigned long ht_eoi_space; /* * Read/write 32-bit values in config space. */ static inline u32 READCFG32(u32 addr) { return *(u32 *)(ht_cfg_space + (addr&~3)); } static inline void WRITECFG32(u32 addr, u32 data) { *(u32 *)(ht_cfg_space + (addr & ~3)) = data; } /* * Some checks before doing config cycles: * In PCI Device Mode, hide everything on bus 0 except the LDT host * bridge. Otherwise, access is controlled by bridge MasterEn bits. */ static int bcm1480ht_can_access(struct pci_bus *bus, int devfn) { u32 devno; if (!(bcm1480ht_bus_status & (PCI_BUS_ENABLED | PCI_DEVICE_MODE))) return 0; if (bus->number == 0) { devno = PCI_SLOT(devfn); if (bcm1480ht_bus_status & PCI_DEVICE_MODE) return 0; } return 1; } /* * Read/write access functions for various sizes of values * in config space. Return all 1's for disallowed accesses * for a kludgy but adequate simulation of master aborts. */ static int bcm1480ht_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (bcm1480ht_can_access(bus, devfn)) data = READCFG32(CFGADDR(bus, devfn, where)); else data = 0xFFFFFFFF; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int bcm1480ht_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 cfgaddr = CFGADDR(bus, devfn, where); u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (!bcm1480ht_can_access(bus, devfn)) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } static int bcm1480ht_pcibios_get_busno(void) { return 0; } struct pci_ops bcm1480ht_pci_ops = { .read = bcm1480ht_pcibios_read, .write = bcm1480ht_pcibios_write, }; static struct resource bcm1480ht_mem_resource = { .name = "BCM1480 HT MEM", .start = A_BCM1480_PHYS_HT_MEM_MATCH_BYTES, .end = A_BCM1480_PHYS_HT_MEM_MATCH_BYTES + 0x1fffffffUL, .flags = IORESOURCE_MEM, }; static struct resource bcm1480ht_io_resource = { .name = "BCM1480 HT I/O", .start = A_BCM1480_PHYS_HT_IO_MATCH_BYTES, .end = A_BCM1480_PHYS_HT_IO_MATCH_BYTES + 0x01ffffffUL, .flags = IORESOURCE_IO, }; struct pci_controller bcm1480ht_controller = { .pci_ops = &bcm1480ht_pci_ops, .mem_resource = &bcm1480ht_mem_resource, .io_resource = &bcm1480ht_io_resource, .index = 1, .get_busno = bcm1480ht_pcibios_get_busno, .io_offset = A_BCM1480_PHYS_HT_IO_MATCH_BYTES, }; static int __init bcm1480ht_pcibios_init(void) { ht_cfg_space = ioremap(A_BCM1480_PHYS_HT_CFG_MATCH_BITS, 16*1024*1024); /* CFE doesn't always init all HT paths, so we always scan */ bcm1480ht_bus_status |= PCI_BUS_ENABLED; ht_eoi_space = (unsigned long) ioremap(A_BCM1480_PHYS_HT_SPECIAL_MATCH_BYTES, 4 * 1024 * 1024); bcm1480ht_controller.io_map_base = (unsigned long) ioremap(A_BCM1480_PHYS_HT_IO_MATCH_BYTES, 65536); bcm1480ht_controller.io_map_base -= bcm1480ht_controller.io_offset; register_pci_controller(&bcm1480ht_controller); return 0; } arch_initcall(bcm1480ht_pcibios_init);
linux-master
arch/mips/pci/pci-bcm1480ht.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008 Lemote Technology * Copyright (C) 2004 ICT CAS * Author: Li xiaoyu, [email protected] * * Copyright (C) 2007 Lemote, Inc. * Author: Fuxin Zhang, [email protected] */ #include <linux/init.h> #include <linux/pci.h> #include <loongson.h> #include <cs5536/cs5536.h> #include <cs5536/cs5536_pci.h> /* PCI interrupt pins * * These should not be changed, or you should consider loongson2f interrupt * register and your pci card dispatch */ #define PCIA 4 #define PCIB 5 #define PCIC 6 #define PCID 7 /* all the pci device has the PCIA pin, check the datasheet. */ static char irq_tab[][5] = { /* INTA INTB INTC INTD */ {0, 0, 0, 0, 0}, /* 11: Unused */ {0, 0, 0, 0, 0}, /* 12: Unused */ {0, 0, 0, 0, 0}, /* 13: Unused */ {0, 0, 0, 0, 0}, /* 14: Unused */ {0, 0, 0, 0, 0}, /* 15: Unused */ {0, 0, 0, 0, 0}, /* 16: Unused */ {0, PCIA, 0, 0, 0}, /* 17: RTL8110-0 */ {0, PCIB, 0, 0, 0}, /* 18: RTL8110-1 */ {0, PCIC, 0, 0, 0}, /* 19: SiI3114 */ {0, PCID, 0, 0, 0}, /* 20: 3-ports nec usb */ {0, PCIA, PCIB, PCIC, PCID}, /* 21: PCI-SLOT */ {0, 0, 0, 0, 0}, /* 22: Unused */ {0, 0, 0, 0, 0}, /* 23: Unused */ {0, 0, 0, 0, 0}, /* 24: Unused */ {0, 0, 0, 0, 0}, /* 25: Unused */ {0, 0, 0, 0, 0}, /* 26: Unused */ {0, 0, 0, 0, 0}, /* 27: Unused */ }; int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int virq; if ((PCI_SLOT(dev->devfn) != PCI_IDSEL_CS5536) && (PCI_SLOT(dev->devfn) < 32)) { virq = irq_tab[slot][pin]; printk(KERN_INFO "slot: %d, pin: %d, irq: %d\n", slot, pin, virq + LOONGSON_IRQ_BASE); if (virq != 0) return LOONGSON_IRQ_BASE + virq; else return 0; } else if (PCI_SLOT(dev->devfn) == PCI_IDSEL_CS5536) { /* cs5536 */ switch (PCI_FUNC(dev->devfn)) { case 2: pci_write_config_byte(dev, PCI_INTERRUPT_LINE, CS5536_IDE_INTR); return CS5536_IDE_INTR; /* for IDE */ case 3: pci_write_config_byte(dev, PCI_INTERRUPT_LINE, CS5536_ACC_INTR); return CS5536_ACC_INTR; /* for AUDIO */ case 4: /* for OHCI */ case 5: /* for EHCI */ case 6: /* for UDC */ case 7: /* for OTG */ pci_write_config_byte(dev, PCI_INTERRUPT_LINE, CS5536_USB_INTR); return CS5536_USB_INTR; } return dev->irq; } else { printk(KERN_INFO "strange PCI slot number.\n"); return 0; } } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } /* CS5536 SPEC. fixup */ static void loongson_cs5536_isa_fixup(struct pci_dev *pdev) { /* the uart1 and uart2 interrupt in PIC is enabled as default */ pci_write_config_dword(pdev, PCI_UART1_INT_REG, 1); pci_write_config_dword(pdev, PCI_UART2_INT_REG, 1); } static void loongson_cs5536_ide_fixup(struct pci_dev *pdev) { /* setting the mutex pin as IDE function */ pci_write_config_dword(pdev, PCI_IDE_CFG_REG, CS5536_IDE_FLASH_SIGNATURE); } static void loongson_cs5536_acc_fixup(struct pci_dev *pdev) { /* enable the AUDIO interrupt in PIC */ pci_write_config_dword(pdev, PCI_ACC_INT_REG, 1); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xc0); } static void loongson_cs5536_ohci_fixup(struct pci_dev *pdev) { /* enable the OHCI interrupt in PIC */ /* THE OHCI, EHCI, UDC, OTG are shared with interrupt in PIC */ pci_write_config_dword(pdev, PCI_OHCI_INT_REG, 1); } static void loongson_cs5536_ehci_fixup(struct pci_dev *pdev) { u32 hi, lo; /* Serial short detect enable */ _rdmsr(USB_MSR_REG(USB_CONFIG), &hi, &lo); _wrmsr(USB_MSR_REG(USB_CONFIG), (1 << 1) | (1 << 3), lo); /* setting the USB2.0 micro frame length */ pci_write_config_dword(pdev, PCI_EHCI_FLADJ_REG, 0x2000); } static void loongson_nec_fixup(struct pci_dev *pdev) { unsigned int val; pci_read_config_dword(pdev, 0xe0, &val); /* Only 2 port be used */ pci_write_config_dword(pdev, 0xe0, (val & ~3) | 0x2); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_ISA, loongson_cs5536_isa_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_OHC, loongson_cs5536_ohci_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_EHC, loongson_cs5536_ehci_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_AUDIO, loongson_cs5536_acc_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_IDE, loongson_cs5536_ide_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_NEC, PCI_DEVICE_ID_NEC_USB, loongson_nec_fixup);
linux-master
arch/mips/pci/fixup-lemote2f.c
// SPDX-License-Identifier: GPL-2.0-only /* * Atheros AR71xx PCI host controller driver * * Copyright (C) 2008-2011 Gabor Juhos <[email protected]> * Copyright (C) 2008 Imre Kaloz <[email protected]> * * Parts of this file are based on Atheros' 2.6.15 BSP */ #include <linux/resource.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/pci.h> #include <linux/pci_regs.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/platform_device.h> #include <asm/mach-ath79/ar71xx_regs.h> #include <asm/mach-ath79/ath79.h> #define AR71XX_PCI_REG_CRP_AD_CBE 0x00 #define AR71XX_PCI_REG_CRP_WRDATA 0x04 #define AR71XX_PCI_REG_CRP_RDDATA 0x08 #define AR71XX_PCI_REG_CFG_AD 0x0c #define AR71XX_PCI_REG_CFG_CBE 0x10 #define AR71XX_PCI_REG_CFG_WRDATA 0x14 #define AR71XX_PCI_REG_CFG_RDDATA 0x18 #define AR71XX_PCI_REG_PCI_ERR 0x1c #define AR71XX_PCI_REG_PCI_ERR_ADDR 0x20 #define AR71XX_PCI_REG_AHB_ERR 0x24 #define AR71XX_PCI_REG_AHB_ERR_ADDR 0x28 #define AR71XX_PCI_CRP_CMD_WRITE 0x00010000 #define AR71XX_PCI_CRP_CMD_READ 0x00000000 #define AR71XX_PCI_CFG_CMD_READ 0x0000000a #define AR71XX_PCI_CFG_CMD_WRITE 0x0000000b #define AR71XX_PCI_INT_CORE BIT(4) #define AR71XX_PCI_INT_DEV2 BIT(2) #define AR71XX_PCI_INT_DEV1 BIT(1) #define AR71XX_PCI_INT_DEV0 BIT(0) #define AR71XX_PCI_IRQ_COUNT 5 struct ar71xx_pci_controller { void __iomem *cfg_base; int irq; int irq_base; struct pci_controller pci_ctrl; struct resource io_res; struct resource mem_res; }; /* Byte lane enable bits */ static const u8 ar71xx_pci_ble_table[4][4] = { {0x0, 0xf, 0xf, 0xf}, {0xe, 0xd, 0xb, 0x7}, {0xc, 0xf, 0x3, 0xf}, {0xf, 0xf, 0xf, 0xf}, }; static const u32 ar71xx_pci_read_mask[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; static inline u32 ar71xx_pci_get_ble(int where, int size, int local) { u32 t; t = ar71xx_pci_ble_table[size & 3][where & 3]; BUG_ON(t == 0xf); t <<= (local) ? 20 : 4; return t; } static inline u32 ar71xx_pci_bus_addr(struct pci_bus *bus, unsigned int devfn, int where) { u32 ret; if (!bus->number) { /* type 0 */ ret = (1 << PCI_SLOT(devfn)) | (PCI_FUNC(devfn) << 8) | (where & ~3); } else { /* type 1 */ ret = (bus->number << 16) | (PCI_SLOT(devfn) << 11) | (PCI_FUNC(devfn) << 8) | (where & ~3) | 1; } return ret; } static inline struct ar71xx_pci_controller * pci_bus_to_ar71xx_controller(struct pci_bus *bus) { struct pci_controller *hose; hose = (struct pci_controller *) bus->sysdata; return container_of(hose, struct ar71xx_pci_controller, pci_ctrl); } static int ar71xx_pci_check_error(struct ar71xx_pci_controller *apc, int quiet) { void __iomem *base = apc->cfg_base; u32 pci_err; u32 ahb_err; pci_err = __raw_readl(base + AR71XX_PCI_REG_PCI_ERR) & 3; if (pci_err) { if (!quiet) { u32 addr; addr = __raw_readl(base + AR71XX_PCI_REG_PCI_ERR_ADDR); pr_crit("ar71xx: %s bus error %d at addr 0x%x\n", "PCI", pci_err, addr); } /* clear PCI error status */ __raw_writel(pci_err, base + AR71XX_PCI_REG_PCI_ERR); } ahb_err = __raw_readl(base + AR71XX_PCI_REG_AHB_ERR) & 1; if (ahb_err) { if (!quiet) { u32 addr; addr = __raw_readl(base + AR71XX_PCI_REG_AHB_ERR_ADDR); pr_crit("ar71xx: %s bus error %d at addr 0x%x\n", "AHB", ahb_err, addr); } /* clear AHB error status */ __raw_writel(ahb_err, base + AR71XX_PCI_REG_AHB_ERR); } return !!(ahb_err | pci_err); } static inline void ar71xx_pci_local_write(struct ar71xx_pci_controller *apc, int where, int size, u32 value) { void __iomem *base = apc->cfg_base; u32 ad_cbe; value = value << (8 * (where & 3)); ad_cbe = AR71XX_PCI_CRP_CMD_WRITE | (where & ~3); ad_cbe |= ar71xx_pci_get_ble(where, size, 1); __raw_writel(ad_cbe, base + AR71XX_PCI_REG_CRP_AD_CBE); __raw_writel(value, base + AR71XX_PCI_REG_CRP_WRDATA); } static inline int ar71xx_pci_set_cfgaddr(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 cmd) { struct ar71xx_pci_controller *apc = pci_bus_to_ar71xx_controller(bus); void __iomem *base = apc->cfg_base; u32 addr; addr = ar71xx_pci_bus_addr(bus, devfn, where); __raw_writel(addr, base + AR71XX_PCI_REG_CFG_AD); __raw_writel(cmd | ar71xx_pci_get_ble(where, size, 0), base + AR71XX_PCI_REG_CFG_CBE); return ar71xx_pci_check_error(apc, 1); } static int ar71xx_pci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { struct ar71xx_pci_controller *apc = pci_bus_to_ar71xx_controller(bus); void __iomem *base = apc->cfg_base; u32 data; int err; int ret; ret = PCIBIOS_SUCCESSFUL; data = ~0; err = ar71xx_pci_set_cfgaddr(bus, devfn, where, size, AR71XX_PCI_CFG_CMD_READ); if (err) ret = PCIBIOS_DEVICE_NOT_FOUND; else data = __raw_readl(base + AR71XX_PCI_REG_CFG_RDDATA); *value = (data >> (8 * (where & 3))) & ar71xx_pci_read_mask[size & 7]; return ret; } static int ar71xx_pci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { struct ar71xx_pci_controller *apc = pci_bus_to_ar71xx_controller(bus); void __iomem *base = apc->cfg_base; int err; int ret; value = value << (8 * (where & 3)); ret = PCIBIOS_SUCCESSFUL; err = ar71xx_pci_set_cfgaddr(bus, devfn, where, size, AR71XX_PCI_CFG_CMD_WRITE); if (err) ret = PCIBIOS_DEVICE_NOT_FOUND; else __raw_writel(value, base + AR71XX_PCI_REG_CFG_WRDATA); return ret; } static struct pci_ops ar71xx_pci_ops = { .read = ar71xx_pci_read_config, .write = ar71xx_pci_write_config, }; static void ar71xx_pci_irq_handler(struct irq_desc *desc) { struct ar71xx_pci_controller *apc; void __iomem *base = ath79_reset_base; u32 pending; apc = irq_desc_get_handler_data(desc); pending = __raw_readl(base + AR71XX_RESET_REG_PCI_INT_STATUS) & __raw_readl(base + AR71XX_RESET_REG_PCI_INT_ENABLE); if (pending & AR71XX_PCI_INT_DEV0) generic_handle_irq(apc->irq_base + 0); else if (pending & AR71XX_PCI_INT_DEV1) generic_handle_irq(apc->irq_base + 1); else if (pending & AR71XX_PCI_INT_DEV2) generic_handle_irq(apc->irq_base + 2); else if (pending & AR71XX_PCI_INT_CORE) generic_handle_irq(apc->irq_base + 4); else spurious_interrupt(); } static void ar71xx_pci_irq_unmask(struct irq_data *d) { struct ar71xx_pci_controller *apc; unsigned int irq; void __iomem *base = ath79_reset_base; u32 t; apc = irq_data_get_irq_chip_data(d); irq = d->irq - apc->irq_base; t = __raw_readl(base + AR71XX_RESET_REG_PCI_INT_ENABLE); __raw_writel(t | (1 << irq), base + AR71XX_RESET_REG_PCI_INT_ENABLE); /* flush write */ __raw_readl(base + AR71XX_RESET_REG_PCI_INT_ENABLE); } static void ar71xx_pci_irq_mask(struct irq_data *d) { struct ar71xx_pci_controller *apc; unsigned int irq; void __iomem *base = ath79_reset_base; u32 t; apc = irq_data_get_irq_chip_data(d); irq = d->irq - apc->irq_base; t = __raw_readl(base + AR71XX_RESET_REG_PCI_INT_ENABLE); __raw_writel(t & ~(1 << irq), base + AR71XX_RESET_REG_PCI_INT_ENABLE); /* flush write */ __raw_readl(base + AR71XX_RESET_REG_PCI_INT_ENABLE); } static struct irq_chip ar71xx_pci_irq_chip = { .name = "AR71XX PCI", .irq_mask = ar71xx_pci_irq_mask, .irq_unmask = ar71xx_pci_irq_unmask, .irq_mask_ack = ar71xx_pci_irq_mask, }; static void ar71xx_pci_irq_init(struct ar71xx_pci_controller *apc) { void __iomem *base = ath79_reset_base; int i; __raw_writel(0, base + AR71XX_RESET_REG_PCI_INT_ENABLE); __raw_writel(0, base + AR71XX_RESET_REG_PCI_INT_STATUS); BUILD_BUG_ON(ATH79_PCI_IRQ_COUNT < AR71XX_PCI_IRQ_COUNT); apc->irq_base = ATH79_PCI_IRQ_BASE; for (i = apc->irq_base; i < apc->irq_base + AR71XX_PCI_IRQ_COUNT; i++) { irq_set_chip_and_handler(i, &ar71xx_pci_irq_chip, handle_level_irq); irq_set_chip_data(i, apc); } irq_set_chained_handler_and_data(apc->irq, ar71xx_pci_irq_handler, apc); } static void ar71xx_pci_reset(void) { ath79_device_reset_set(AR71XX_RESET_PCI_BUS | AR71XX_RESET_PCI_CORE); mdelay(100); ath79_device_reset_clear(AR71XX_RESET_PCI_BUS | AR71XX_RESET_PCI_CORE); mdelay(100); ath79_ddr_set_pci_windows(); mdelay(100); } static int ar71xx_pci_probe(struct platform_device *pdev) { struct ar71xx_pci_controller *apc; struct resource *res; u32 t; apc = devm_kzalloc(&pdev->dev, sizeof(struct ar71xx_pci_controller), GFP_KERNEL); if (!apc) return -ENOMEM; apc->cfg_base = devm_platform_ioremap_resource_byname(pdev, "cfg_base"); if (IS_ERR(apc->cfg_base)) return PTR_ERR(apc->cfg_base); apc->irq = platform_get_irq(pdev, 0); if (apc->irq < 0) return -EINVAL; res = platform_get_resource_byname(pdev, IORESOURCE_IO, "io_base"); if (!res) return -EINVAL; apc->io_res.parent = res; apc->io_res.name = "PCI IO space"; apc->io_res.start = res->start; apc->io_res.end = res->end; apc->io_res.flags = IORESOURCE_IO; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem_base"); if (!res) return -EINVAL; apc->mem_res.parent = res; apc->mem_res.name = "PCI memory space"; apc->mem_res.start = res->start; apc->mem_res.end = res->end; apc->mem_res.flags = IORESOURCE_MEM; ar71xx_pci_reset(); /* setup COMMAND register */ t = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR | PCI_COMMAND_FAST_BACK; ar71xx_pci_local_write(apc, PCI_COMMAND, 4, t); /* clear bus errors */ ar71xx_pci_check_error(apc, 1); ar71xx_pci_irq_init(apc); apc->pci_ctrl.pci_ops = &ar71xx_pci_ops; apc->pci_ctrl.mem_resource = &apc->mem_res; apc->pci_ctrl.io_resource = &apc->io_res; register_pci_controller(&apc->pci_ctrl); return 0; } static struct platform_driver ar71xx_pci_driver = { .probe = ar71xx_pci_probe, .driver = { .name = "ar71xx-pci", }, }; static int __init ar71xx_pci_init(void) { return platform_driver_register(&ar71xx_pci_driver); } postcore_initcall(ar71xx_pci_init);
linux-master
arch/mips/pci/pci-ar71xx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1999, 2000, 2004, 2005 MIPS Technologies, Inc. * All rights reserved. * Authors: Carsten Langgaard <[email protected]> * Maciej W. Rozycki <[email protected]> * Copyright (C) 2005 Ralf Baechle ([email protected]) * * MIPS boards specific PCI support. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <asm/mips-boards/msc01_pci.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 /* * PCI configuration cycle AD bus definition */ /* Type 0 */ #define PCI_CFG_TYPE0_REG_SHF 0 #define PCI_CFG_TYPE0_FUNC_SHF 8 /* Type 1 */ #define PCI_CFG_TYPE1_REG_SHF 0 #define PCI_CFG_TYPE1_FUNC_SHF 8 #define PCI_CFG_TYPE1_DEV_SHF 11 #define PCI_CFG_TYPE1_BUS_SHF 16 static int msc_pcibios_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 * data) { unsigned char busnum = bus->number; u32 intr; /* Clear status register bits. */ MSC_WRITE(MSC01_PCI_INTSTAT, (MSC01_PCI_INTCFG_MA_BIT | MSC01_PCI_INTCFG_TA_BIT)); MSC_WRITE(MSC01_PCI_CFGADDR, ((busnum << MSC01_PCI_CFGADDR_BNUM_SHF) | (PCI_SLOT(devfn) << MSC01_PCI_CFGADDR_DNUM_SHF) | (PCI_FUNC(devfn) << MSC01_PCI_CFGADDR_FNUM_SHF) | ((where / 4) << MSC01_PCI_CFGADDR_RNUM_SHF))); /* Perform access */ if (access_type == PCI_ACCESS_WRITE) MSC_WRITE(MSC01_PCI_CFGDATA, *data); else MSC_READ(MSC01_PCI_CFGDATA, *data); /* Detect Master/Target abort */ MSC_READ(MSC01_PCI_INTSTAT, intr); if (intr & (MSC01_PCI_INTCFG_MA_BIT | MSC01_PCI_INTCFG_TA_BIT)) { /* Error occurred */ /* Clear bits */ MSC_WRITE(MSC01_PCI_INTSTAT, (MSC01_PCI_INTCFG_MA_BIT | MSC01_PCI_INTCFG_TA_BIT)); return -1; } return 0; } /* * We can't address 8 and 16 bit words directly. Instead we have to * read/write a 32bit word and mask/modify the data we actually want. */ static int msc_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (msc_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int msc_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (size == 4) data = val; else { if (msc_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); } if (msc_pcibios_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } struct pci_ops msc_pci_ops = { .read = msc_pcibios_read, .write = msc_pcibios_write };
linux-master
arch/mips/pci/ops-msc.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2003 Christoph Hellwig ([email protected]) * Copyright (C) 1999, 2000, 04 Ralf Baechle ([email protected]) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/pci.h> #include <linux/smp.h> #include <linux/dma-direct.h> #include <linux/platform_device.h> #include <linux/platform_data/xtalk-bridge.h> #include <linux/nvmem-consumer.h> #include <linux/crc16.h> #include <linux/irqdomain.h> #include <asm/pci/bridge.h> #include <asm/paccess.h> #include <asm/sn/irq_alloc.h> #include <asm/sn/ioc3.h> #define CRC16_INIT 0 #define CRC16_VALID 0xb001 /* * Common phys<->dma mapping for platforms using pci xtalk bridge */ dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { struct pci_dev *pdev = to_pci_dev(dev); struct bridge_controller *bc = BRIDGE_CONTROLLER(pdev->bus); return bc->baddr + paddr; } phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { return dma_addr & ~(0xffUL << 56); } /* * Most of the IOC3 PCI config register aren't present * we emulate what is needed for a normal PCI enumeration */ static int ioc3_cfg_rd(void *addr, int where, int size, u32 *value, u32 sid) { u32 cf, shift, mask; switch (where & ~3) { case 0x00 ... 0x10: case 0x40 ... 0x44: if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; break; case 0x2c: cf = sid; break; case 0x3c: /* emulate sane interrupt pin value */ cf = 0x00000100; break; default: cf = 0; break; } shift = (where & 3) << 3; mask = 0xffffffffU >> ((4 - size) << 3); *value = (cf >> shift) & mask; return PCIBIOS_SUCCESSFUL; } static int ioc3_cfg_wr(void *addr, int where, int size, u32 value) { u32 cf, shift, mask, smask; if ((where >= 0x14 && where < 0x40) || (where >= 0x48)) return PCIBIOS_SUCCESSFUL; if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; shift = ((where & 3) << 3); mask = (0xffffffffU >> ((4 - size) << 3)); smask = mask << shift; cf = (cf & ~smask) | ((value & mask) << shift); if (put_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } static void bridge_disable_swapping(struct pci_dev *dev) { struct bridge_controller *bc = BRIDGE_CONTROLLER(dev->bus); int slot = PCI_SLOT(dev->devfn); /* Turn off byte swapping */ bridge_clr(bc, b_device[slot].reg, BRIDGE_DEV_SWAP_DIR); bridge_read(bc, b_widget.w_tflush); /* Flush */ } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, bridge_disable_swapping); /* * The Bridge ASIC supports both type 0 and type 1 access. Type 1 is * not really documented, so right now I can't write code which uses it. * Therefore we use type 0 accesses for now even though they won't work * correctly for PCI-to-PCI bridges. * * The function is complicated by the ultimate brokenness of the IOC3 chip * which is used in SGI systems. The IOC3 can only handle 32-bit PCI * accesses and does only decode parts of it's address space. */ static int pci_conf0_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); struct bridge_regs *bridge = bc->base; int slot = PCI_SLOT(devfn); int fn = PCI_FUNC(devfn); void *addr; u32 cf; int res; addr = &bridge->b_type0_cfg_dev[slot].f[fn].c[PCI_VENDOR_ID]; if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; /* * IOC3 is broken beyond belief ... Don't even give the * generic PCI code a chance to look at it for real ... */ if (cf == (PCI_VENDOR_ID_SGI | (PCI_DEVICE_ID_SGI_IOC3 << 16))) { addr = &bridge->b_type0_cfg_dev[slot].f[fn].l[where >> 2]; return ioc3_cfg_rd(addr, where, size, value, bc->ioc3_sid[slot]); } addr = &bridge->b_type0_cfg_dev[slot].f[fn].c[where ^ (4 - size)]; if (size == 1) res = get_dbe(*value, (u8 *)addr); else if (size == 2) res = get_dbe(*value, (u16 *)addr); else res = get_dbe(*value, (u32 *)addr); return res ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL; } static int pci_conf1_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); struct bridge_regs *bridge = bc->base; int busno = bus->number; int slot = PCI_SLOT(devfn); int fn = PCI_FUNC(devfn); void *addr; u32 cf; int res; bridge_write(bc, b_pci_cfg, (busno << 16) | (slot << 11)); addr = &bridge->b_type1_cfg.c[(fn << 8) | PCI_VENDOR_ID]; if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; /* * IOC3 is broken beyond belief ... Don't even give the * generic PCI code a chance to look at it for real ... */ if (cf == (PCI_VENDOR_ID_SGI | (PCI_DEVICE_ID_SGI_IOC3 << 16))) { addr = &bridge->b_type1_cfg.c[(fn << 8) | (where & ~3)]; return ioc3_cfg_rd(addr, where, size, value, bc->ioc3_sid[slot]); } addr = &bridge->b_type1_cfg.c[(fn << 8) | (where ^ (4 - size))]; if (size == 1) res = get_dbe(*value, (u8 *)addr); else if (size == 2) res = get_dbe(*value, (u16 *)addr); else res = get_dbe(*value, (u32 *)addr); return res ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL; } static int pci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { if (!pci_is_root_bus(bus)) return pci_conf1_read_config(bus, devfn, where, size, value); return pci_conf0_read_config(bus, devfn, where, size, value); } static int pci_conf0_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); struct bridge_regs *bridge = bc->base; int slot = PCI_SLOT(devfn); int fn = PCI_FUNC(devfn); void *addr; u32 cf; int res; addr = &bridge->b_type0_cfg_dev[slot].f[fn].c[PCI_VENDOR_ID]; if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; /* * IOC3 is broken beyond belief ... Don't even give the * generic PCI code a chance to look at it for real ... */ if (cf == (PCI_VENDOR_ID_SGI | (PCI_DEVICE_ID_SGI_IOC3 << 16))) { addr = &bridge->b_type0_cfg_dev[slot].f[fn].l[where >> 2]; return ioc3_cfg_wr(addr, where, size, value); } addr = &bridge->b_type0_cfg_dev[slot].f[fn].c[where ^ (4 - size)]; if (size == 1) res = put_dbe(value, (u8 *)addr); else if (size == 2) res = put_dbe(value, (u16 *)addr); else res = put_dbe(value, (u32 *)addr); if (res) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } static int pci_conf1_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); struct bridge_regs *bridge = bc->base; int slot = PCI_SLOT(devfn); int fn = PCI_FUNC(devfn); int busno = bus->number; void *addr; u32 cf; int res; bridge_write(bc, b_pci_cfg, (busno << 16) | (slot << 11)); addr = &bridge->b_type1_cfg.c[(fn << 8) | PCI_VENDOR_ID]; if (get_dbe(cf, (u32 *)addr)) return PCIBIOS_DEVICE_NOT_FOUND; /* * IOC3 is broken beyond belief ... Don't even give the * generic PCI code a chance to look at it for real ... */ if (cf == (PCI_VENDOR_ID_SGI | (PCI_DEVICE_ID_SGI_IOC3 << 16))) { addr = &bridge->b_type0_cfg_dev[slot].f[fn].l[where >> 2]; return ioc3_cfg_wr(addr, where, size, value); } addr = &bridge->b_type1_cfg.c[(fn << 8) | (where ^ (4 - size))]; if (size == 1) res = put_dbe(value, (u8 *)addr); else if (size == 2) res = put_dbe(value, (u16 *)addr); else res = put_dbe(value, (u32 *)addr); if (res) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } static int pci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { if (!pci_is_root_bus(bus)) return pci_conf1_write_config(bus, devfn, where, size, value); return pci_conf0_write_config(bus, devfn, where, size, value); } static struct pci_ops bridge_pci_ops = { .read = pci_read_config, .write = pci_write_config, }; struct bridge_irq_chip_data { struct bridge_controller *bc; nasid_t nasid; }; static int bridge_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force) { #ifdef CONFIG_NUMA struct bridge_irq_chip_data *data = d->chip_data; int bit = d->parent_data->hwirq; int pin = d->hwirq; int ret, cpu; ret = irq_chip_set_affinity_parent(d, mask, force); if (ret >= 0) { cpu = cpumask_first_and(mask, cpu_online_mask); data->nasid = cpu_to_node(cpu); bridge_write(data->bc, b_int_addr[pin].addr, (((data->bc->intr_addr >> 30) & 0x30000) | bit | (data->nasid << 8))); bridge_read(data->bc, b_wid_tflush); } return ret; #else return irq_chip_set_affinity_parent(d, mask, force); #endif } struct irq_chip bridge_irq_chip = { .name = "BRIDGE", .irq_mask = irq_chip_mask_parent, .irq_unmask = irq_chip_unmask_parent, .irq_set_affinity = bridge_set_affinity }; static int bridge_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct bridge_irq_chip_data *data; struct irq_alloc_info *info = arg; int ret; if (nr_irqs > 1 || !info) return -EINVAL; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); if (ret >= 0) { data->bc = info->ctrl; data->nasid = info->nasid; irq_domain_set_info(domain, virq, info->pin, &bridge_irq_chip, data, handle_level_irq, NULL, NULL); } else { kfree(data); } return ret; } static void bridge_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *irqd = irq_domain_get_irq_data(domain, virq); if (nr_irqs) return; kfree(irqd->chip_data); irq_domain_free_irqs_top(domain, virq, nr_irqs); } static int bridge_domain_activate(struct irq_domain *domain, struct irq_data *irqd, bool reserve) { struct bridge_irq_chip_data *data = irqd->chip_data; struct bridge_controller *bc = data->bc; int bit = irqd->parent_data->hwirq; int pin = irqd->hwirq; u32 device; bridge_write(bc, b_int_addr[pin].addr, (((bc->intr_addr >> 30) & 0x30000) | bit | (data->nasid << 8))); bridge_set(bc, b_int_enable, (1 << pin)); bridge_set(bc, b_int_enable, 0x7ffffe00); /* more stuff in int_enable */ /* * Enable sending of an interrupt clear packet to the hub on a high to * low transition of the interrupt pin. * * IRIX sets additional bits in the address which are documented as * reserved in the bridge docs. */ bridge_set(bc, b_int_mode, (1UL << pin)); /* * We assume the bridge to have a 1:1 mapping between devices * (slots) and intr pins. */ device = bridge_read(bc, b_int_device); device &= ~(7 << (pin*3)); device |= (pin << (pin*3)); bridge_write(bc, b_int_device, device); bridge_read(bc, b_wid_tflush); return 0; } static void bridge_domain_deactivate(struct irq_domain *domain, struct irq_data *irqd) { struct bridge_irq_chip_data *data = irqd->chip_data; bridge_clr(data->bc, b_int_enable, (1 << irqd->hwirq)); bridge_read(data->bc, b_wid_tflush); } static const struct irq_domain_ops bridge_domain_ops = { .alloc = bridge_domain_alloc, .free = bridge_domain_free, .activate = bridge_domain_activate, .deactivate = bridge_domain_deactivate }; /* * All observed requests have pin == 1. We could have a global here, that * gets incremented and returned every time - unfortunately, pci_map_irq * may be called on the same device over and over, and need to return the * same value. On O2000, pin can be 0 or 1, and PCI slots can be [0..7]. * * A given PCI device, in general, should be able to intr any of the cpus * on any one of the hubs connected to its xbow. */ static int bridge_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct bridge_controller *bc = BRIDGE_CONTROLLER(dev->bus); struct irq_alloc_info info; int irq; switch (pin) { case PCI_INTERRUPT_UNKNOWN: case PCI_INTERRUPT_INTA: case PCI_INTERRUPT_INTC: pin = 0; break; case PCI_INTERRUPT_INTB: case PCI_INTERRUPT_INTD: pin = 1; } irq = bc->pci_int[slot][pin]; if (irq == -1) { info.ctrl = bc; info.nasid = bc->nasid; info.pin = bc->int_mapping[slot][pin]; irq = irq_domain_alloc_irqs(bc->domain, 1, bc->nasid, &info); if (irq < 0) return irq; bc->pci_int[slot][pin] = irq; } return irq; } #define IOC3_SID(sid) (PCI_VENDOR_ID_SGI | ((sid) << 16)) static void bridge_setup_ip27_baseio6g(struct bridge_controller *bc) { bc->ioc3_sid[2] = IOC3_SID(IOC3_SUBSYS_IP27_BASEIO6G); bc->ioc3_sid[6] = IOC3_SID(IOC3_SUBSYS_IP27_MIO); bc->int_mapping[2][1] = 4; bc->int_mapping[6][1] = 6; } static void bridge_setup_ip27_baseio(struct bridge_controller *bc) { bc->ioc3_sid[2] = IOC3_SID(IOC3_SUBSYS_IP27_BASEIO); bc->int_mapping[2][1] = 4; } static void bridge_setup_ip29_baseio(struct bridge_controller *bc) { bc->ioc3_sid[2] = IOC3_SID(IOC3_SUBSYS_IP29_SYSBOARD); bc->int_mapping[2][1] = 3; } static void bridge_setup_ip30_sysboard(struct bridge_controller *bc) { bc->ioc3_sid[2] = IOC3_SID(IOC3_SUBSYS_IP30_SYSBOARD); bc->int_mapping[2][1] = 4; } static void bridge_setup_menet(struct bridge_controller *bc) { bc->ioc3_sid[0] = IOC3_SID(IOC3_SUBSYS_MENET); bc->ioc3_sid[1] = IOC3_SID(IOC3_SUBSYS_MENET); bc->ioc3_sid[2] = IOC3_SID(IOC3_SUBSYS_MENET); bc->ioc3_sid[3] = IOC3_SID(IOC3_SUBSYS_MENET4); } static void bridge_setup_io7(struct bridge_controller *bc) { bc->ioc3_sid[4] = IOC3_SID(IOC3_SUBSYS_IO7); } static void bridge_setup_io8(struct bridge_controller *bc) { bc->ioc3_sid[4] = IOC3_SID(IOC3_SUBSYS_IO8); } static void bridge_setup_io9(struct bridge_controller *bc) { bc->ioc3_sid[1] = IOC3_SID(IOC3_SUBSYS_IO9); } static void bridge_setup_ip34_fuel_sysboard(struct bridge_controller *bc) { bc->ioc3_sid[4] = IOC3_SID(IOC3_SUBSYS_IP34_SYSBOARD); } #define BRIDGE_BOARD_SETUP(_partno, _setup) \ { .match = _partno, .setup = _setup } static const struct { char *match; void (*setup)(struct bridge_controller *bc); } bridge_ioc3_devid[] = { BRIDGE_BOARD_SETUP("030-0734-", bridge_setup_ip27_baseio6g), BRIDGE_BOARD_SETUP("030-0880-", bridge_setup_ip27_baseio6g), BRIDGE_BOARD_SETUP("030-1023-", bridge_setup_ip27_baseio), BRIDGE_BOARD_SETUP("030-1124-", bridge_setup_ip27_baseio), BRIDGE_BOARD_SETUP("030-1025-", bridge_setup_ip29_baseio), BRIDGE_BOARD_SETUP("030-1244-", bridge_setup_ip29_baseio), BRIDGE_BOARD_SETUP("030-1389-", bridge_setup_ip29_baseio), BRIDGE_BOARD_SETUP("030-0887-", bridge_setup_ip30_sysboard), BRIDGE_BOARD_SETUP("030-1467-", bridge_setup_ip30_sysboard), BRIDGE_BOARD_SETUP("030-0873-", bridge_setup_menet), BRIDGE_BOARD_SETUP("030-1557-", bridge_setup_io7), BRIDGE_BOARD_SETUP("030-1673-", bridge_setup_io8), BRIDGE_BOARD_SETUP("030-1771-", bridge_setup_io9), BRIDGE_BOARD_SETUP("030-1707-", bridge_setup_ip34_fuel_sysboard), }; static void bridge_setup_board(struct bridge_controller *bc, char *partnum) { int i; for (i = 0; i < ARRAY_SIZE(bridge_ioc3_devid); i++) if (!strncmp(partnum, bridge_ioc3_devid[i].match, strlen(bridge_ioc3_devid[i].match))) { bridge_ioc3_devid[i].setup(bc); } } static int bridge_nvmem_match(struct device *dev, const void *data) { const char *name = dev_name(dev); const char *prefix = data; if (strlen(name) < strlen(prefix)) return 0; return memcmp(prefix, dev_name(dev), strlen(prefix)) == 0; } static int bridge_get_partnum(u64 baddr, char *partnum) { struct nvmem_device *nvmem; char prefix[24]; u8 prom[64]; int i, j; int ret; snprintf(prefix, sizeof(prefix), "bridge-%012llx-0b-", baddr); nvmem = nvmem_device_find(prefix, bridge_nvmem_match); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); ret = nvmem_device_read(nvmem, 0, 64, prom); nvmem_device_put(nvmem); if (ret != 64) return ret; if (crc16(CRC16_INIT, prom, 32) != CRC16_VALID || crc16(CRC16_INIT, prom + 32, 32) != CRC16_VALID) return -EINVAL; /* Assemble part number */ j = 0; for (i = 0; i < 19; i++) if (prom[i + 11] != ' ') partnum[j++] = prom[i + 11]; for (i = 0; i < 6; i++) if (prom[i + 32] != ' ') partnum[j++] = prom[i + 32]; partnum[j] = 0; return 0; } static int bridge_probe(struct platform_device *pdev) { struct xtalk_bridge_platform_data *bd = dev_get_platdata(&pdev->dev); struct device *dev = &pdev->dev; struct bridge_controller *bc; struct pci_host_bridge *host; struct irq_domain *domain, *parent; struct fwnode_handle *fn; char partnum[26]; int slot; int err; /* get part number from one wire prom */ if (bridge_get_partnum(virt_to_phys((void *)bd->bridge_addr), partnum)) return -EPROBE_DEFER; /* not available yet */ parent = irq_get_default_host(); if (!parent) return -ENODEV; fn = irq_domain_alloc_named_fwnode("BRIDGE"); if (!fn) return -ENOMEM; domain = irq_domain_create_hierarchy(parent, 0, 8, fn, &bridge_domain_ops, NULL); if (!domain) { irq_domain_free_fwnode(fn); return -ENOMEM; } pci_set_flags(PCI_PROBE_ONLY); host = devm_pci_alloc_host_bridge(dev, sizeof(*bc)); if (!host) { err = -ENOMEM; goto err_remove_domain; } bc = pci_host_bridge_priv(host); bc->busn.name = "Bridge PCI busn"; bc->busn.start = 0; bc->busn.end = 0xff; bc->busn.flags = IORESOURCE_BUS; bc->domain = domain; pci_add_resource_offset(&host->windows, &bd->mem, bd->mem_offset); pci_add_resource_offset(&host->windows, &bd->io, bd->io_offset); pci_add_resource(&host->windows, &bc->busn); err = devm_request_pci_bus_resources(dev, &host->windows); if (err < 0) goto err_free_resource; bc->nasid = bd->nasid; bc->baddr = (u64)bd->masterwid << 60 | PCI64_ATTR_BAR; bc->base = (struct bridge_regs *)bd->bridge_addr; bc->intr_addr = bd->intr_addr; /* * Clear all pending interrupts. */ bridge_write(bc, b_int_rst_stat, BRIDGE_IRR_ALL_CLR); /* * Until otherwise set up, assume all interrupts are from slot 0 */ bridge_write(bc, b_int_device, 0x0); /* * disable swapping for big windows */ bridge_clr(bc, b_wid_control, BRIDGE_CTRL_IO_SWAP | BRIDGE_CTRL_MEM_SWAP); #ifdef CONFIG_PAGE_SIZE_4KB bridge_clr(bc, b_wid_control, BRIDGE_CTRL_PAGE_SIZE); #else /* 16kB or larger */ bridge_set(bc, b_wid_control, BRIDGE_CTRL_PAGE_SIZE); #endif /* * Hmm... IRIX sets additional bits in the address which * are documented as reserved in the bridge docs. */ bridge_write(bc, b_wid_int_upper, ((bc->intr_addr >> 32) & 0xffff) | (bd->masterwid << 16)); bridge_write(bc, b_wid_int_lower, bc->intr_addr & 0xffffffff); bridge_write(bc, b_dir_map, (bd->masterwid << 20)); /* DMA */ bridge_write(bc, b_int_enable, 0); for (slot = 0; slot < 8; slot++) { bridge_set(bc, b_device[slot].reg, BRIDGE_DEV_SWAP_DIR); bc->pci_int[slot][0] = -1; bc->pci_int[slot][1] = -1; /* default interrupt pin mapping */ bc->int_mapping[slot][0] = slot; bc->int_mapping[slot][1] = slot ^ 4; } bridge_read(bc, b_wid_tflush); /* wait until Bridge PIO complete */ bridge_setup_board(bc, partnum); host->dev.parent = dev; host->sysdata = bc; host->busnr = 0; host->ops = &bridge_pci_ops; host->map_irq = bridge_map_irq; host->swizzle_irq = pci_common_swizzle; err = pci_scan_root_bus_bridge(host); if (err < 0) goto err_free_resource; pci_bus_claim_resources(host->bus); pci_bus_add_devices(host->bus); platform_set_drvdata(pdev, host->bus); return 0; err_free_resource: pci_free_resource_list(&host->windows); err_remove_domain: irq_domain_remove(domain); irq_domain_free_fwnode(fn); return err; } static void bridge_remove(struct platform_device *pdev) { struct pci_bus *bus = platform_get_drvdata(pdev); struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); struct fwnode_handle *fn = bc->domain->fwnode; irq_domain_remove(bc->domain); irq_domain_free_fwnode(fn); pci_lock_rescan_remove(); pci_stop_root_bus(bus); pci_remove_root_bus(bus); pci_unlock_rescan_remove(); } static struct platform_driver bridge_driver = { .probe = bridge_probe, .remove_new = bridge_remove, .driver = { .name = "xtalk-bridge", } }; builtin_platform_driver(bridge_driver);
linux-master
arch/mips/pci/pci-xtalk-bridge.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Define the pci_ops for the PCIC on Toshiba TX4927, TX4938, etc. * * Based on linux/arch/mips/pci/ops-tx4938.c, * linux/arch/mips/pci/fixup-rbtx4938.c, * linux/arch/mips/txx9/rbtx4938/setup.c, * and RBTX49xx patch from CELF patch archive. * * 2003-2005 (c) MontaVista Software, Inc. * Copyright (C) 2004 by Ralf Baechle ([email protected]) * (C) Copyright TOSHIBA CORPORATION 2000-2001, 2004-2007 */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <asm/txx9/pci.h> #include <asm/txx9/tx4927pcic.h> static struct { struct pci_controller *channel; struct tx4927_pcic_reg __iomem *pcicptr; } pcicptrs[2]; /* TX4938 has 2 pcic */ static void __init set_tx4927_pcicptr(struct pci_controller *channel, struct tx4927_pcic_reg __iomem *pcicptr) { int i; for (i = 0; i < ARRAY_SIZE(pcicptrs); i++) { if (pcicptrs[i].channel == channel) { pcicptrs[i].pcicptr = pcicptr; return; } } for (i = 0; i < ARRAY_SIZE(pcicptrs); i++) { if (!pcicptrs[i].channel) { pcicptrs[i].channel = channel; pcicptrs[i].pcicptr = pcicptr; return; } } BUG(); } struct tx4927_pcic_reg __iomem *get_tx4927_pcicptr( struct pci_controller *channel) { int i; for (i = 0; i < ARRAY_SIZE(pcicptrs); i++) { if (pcicptrs[i].channel == channel) return pcicptrs[i].pcicptr; } return NULL; } static int mkaddr(struct pci_bus *bus, unsigned int devfn, int where, struct tx4927_pcic_reg __iomem *pcicptr) { if (bus->parent == NULL && devfn >= PCI_DEVFN(TX4927_PCIC_MAX_DEVNU, 0)) return -1; __raw_writel(((bus->number & 0xff) << 0x10) | ((devfn & 0xff) << 0x08) | (where & 0xfc) | (bus->parent ? 1 : 0), &pcicptr->g2pcfgadrs); /* clear M_ABORT and Disable M_ABORT Int. */ __raw_writel((__raw_readl(&pcicptr->pcistatus) & 0x0000ffff) | (PCI_STATUS_REC_MASTER_ABORT << 16), &pcicptr->pcistatus); return 0; } static int check_abort(struct tx4927_pcic_reg __iomem *pcicptr) { int code = PCIBIOS_SUCCESSFUL; /* wait write cycle completion before checking error status */ while (__raw_readl(&pcicptr->pcicstatus) & TX4927_PCIC_PCICSTATUS_IWB) ; if (__raw_readl(&pcicptr->pcistatus) & (PCI_STATUS_REC_MASTER_ABORT << 16)) { __raw_writel((__raw_readl(&pcicptr->pcistatus) & 0x0000ffff) | (PCI_STATUS_REC_MASTER_ABORT << 16), &pcicptr->pcistatus); /* flush write buffer */ iob(); code = PCIBIOS_DEVICE_NOT_FOUND; } return code; } static u8 icd_readb(int offset, struct tx4927_pcic_reg __iomem *pcicptr) { #ifdef __BIG_ENDIAN offset ^= 3; #endif return __raw_readb((void __iomem *)&pcicptr->g2pcfgdata + offset); } static u16 icd_readw(int offset, struct tx4927_pcic_reg __iomem *pcicptr) { #ifdef __BIG_ENDIAN offset ^= 2; #endif return __raw_readw((void __iomem *)&pcicptr->g2pcfgdata + offset); } static u32 icd_readl(struct tx4927_pcic_reg __iomem *pcicptr) { return __raw_readl(&pcicptr->g2pcfgdata); } static void icd_writeb(u8 val, int offset, struct tx4927_pcic_reg __iomem *pcicptr) { #ifdef __BIG_ENDIAN offset ^= 3; #endif __raw_writeb(val, (void __iomem *)&pcicptr->g2pcfgdata + offset); } static void icd_writew(u16 val, int offset, struct tx4927_pcic_reg __iomem *pcicptr) { #ifdef __BIG_ENDIAN offset ^= 2; #endif __raw_writew(val, (void __iomem *)&pcicptr->g2pcfgdata + offset); } static void icd_writel(u32 val, struct tx4927_pcic_reg __iomem *pcicptr) { __raw_writel(val, &pcicptr->g2pcfgdata); } static struct tx4927_pcic_reg __iomem *pci_bus_to_pcicptr(struct pci_bus *bus) { struct pci_controller *channel = bus->sysdata; return get_tx4927_pcicptr(channel); } static int tx4927_pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct tx4927_pcic_reg __iomem *pcicptr = pci_bus_to_pcicptr(bus); if (mkaddr(bus, devfn, where, pcicptr)) { *val = 0xffffffff; return -1; } switch (size) { case 1: *val = icd_readb(where & 3, pcicptr); break; case 2: *val = icd_readw(where & 3, pcicptr); break; default: *val = icd_readl(pcicptr); } return check_abort(pcicptr); } static int tx4927_pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct tx4927_pcic_reg __iomem *pcicptr = pci_bus_to_pcicptr(bus); if (mkaddr(bus, devfn, where, pcicptr)) return -1; switch (size) { case 1: icd_writeb(val, where & 3, pcicptr); break; case 2: icd_writew(val, where & 3, pcicptr); break; default: icd_writel(val, pcicptr); } return check_abort(pcicptr); } static struct pci_ops tx4927_pci_ops = { .read = tx4927_pci_config_read, .write = tx4927_pci_config_write, }; static struct { u8 trdyto; u8 retryto; u16 gbwc; } tx4927_pci_opts = { .trdyto = 0, .retryto = 0, .gbwc = 0xfe0, /* 4064 GBUSCLK for CCFG.GTOT=0b11 */ }; char *tx4927_pcibios_setup(char *str) { if (!strncmp(str, "trdyto=", 7)) { u8 val = 0; if (kstrtou8(str + 7, 0, &val) == 0) tx4927_pci_opts.trdyto = val; return NULL; } if (!strncmp(str, "retryto=", 8)) { u8 val = 0; if (kstrtou8(str + 8, 0, &val) == 0) tx4927_pci_opts.retryto = val; return NULL; } if (!strncmp(str, "gbwc=", 5)) { u16 val; if (kstrtou16(str + 5, 0, &val) == 0) tx4927_pci_opts.gbwc = val; return NULL; } return str; } void __init tx4927_pcic_setup(struct tx4927_pcic_reg __iomem *pcicptr, struct pci_controller *channel, int extarb) { int i; unsigned long flags; set_tx4927_pcicptr(channel, pcicptr); if (!channel->pci_ops) printk(KERN_INFO "PCIC -- DID:%04x VID:%04x RID:%02x Arbiter:%s\n", __raw_readl(&pcicptr->pciid) >> 16, __raw_readl(&pcicptr->pciid) & 0xffff, __raw_readl(&pcicptr->pciccrev) & 0xff, extarb ? "External" : "Internal"); channel->pci_ops = &tx4927_pci_ops; local_irq_save(flags); /* Disable All Initiator Space */ __raw_writel(__raw_readl(&pcicptr->pciccfg) & ~(TX4927_PCIC_PCICCFG_G2PMEN(0) | TX4927_PCIC_PCICCFG_G2PMEN(1) | TX4927_PCIC_PCICCFG_G2PMEN(2) | TX4927_PCIC_PCICCFG_G2PIOEN), &pcicptr->pciccfg); /* GB->PCI mappings */ __raw_writel((channel->io_resource->end - channel->io_resource->start) >> 4, &pcicptr->g2piomask); ____raw_writeq((channel->io_resource->start + channel->io_map_base - IO_BASE) | #ifdef __BIG_ENDIAN TX4927_PCIC_G2PIOGBASE_ECHG #else TX4927_PCIC_G2PIOGBASE_BSDIS #endif , &pcicptr->g2piogbase); ____raw_writeq(channel->io_resource->start - channel->io_offset, &pcicptr->g2piopbase); for (i = 0; i < 3; i++) { __raw_writel(0, &pcicptr->g2pmmask[i]); ____raw_writeq(0, &pcicptr->g2pmgbase[i]); ____raw_writeq(0, &pcicptr->g2pmpbase[i]); } if (channel->mem_resource->end) { __raw_writel((channel->mem_resource->end - channel->mem_resource->start) >> 4, &pcicptr->g2pmmask[0]); ____raw_writeq(channel->mem_resource->start | #ifdef __BIG_ENDIAN TX4927_PCIC_G2PMnGBASE_ECHG #else TX4927_PCIC_G2PMnGBASE_BSDIS #endif , &pcicptr->g2pmgbase[0]); ____raw_writeq(channel->mem_resource->start - channel->mem_offset, &pcicptr->g2pmpbase[0]); } /* PCI->GB mappings (I/O 256B) */ __raw_writel(0, &pcicptr->p2giopbase); /* 256B */ ____raw_writeq(0, &pcicptr->p2giogbase); /* PCI->GB mappings (MEM 512MB (64MB on R1.x)) */ __raw_writel(0, &pcicptr->p2gm0plbase); __raw_writel(0, &pcicptr->p2gm0pubase); ____raw_writeq(TX4927_PCIC_P2GMnGBASE_TMEMEN | #ifdef __BIG_ENDIAN TX4927_PCIC_P2GMnGBASE_TECHG #else TX4927_PCIC_P2GMnGBASE_TBSDIS #endif , &pcicptr->p2gmgbase[0]); /* PCI->GB mappings (MEM 16MB) */ __raw_writel(0xffffffff, &pcicptr->p2gm1plbase); __raw_writel(0xffffffff, &pcicptr->p2gm1pubase); ____raw_writeq(0, &pcicptr->p2gmgbase[1]); /* PCI->GB mappings (MEM 1MB) */ __raw_writel(0xffffffff, &pcicptr->p2gm2pbase); /* 1MB */ ____raw_writeq(0, &pcicptr->p2gmgbase[2]); /* Clear all (including IRBER) except for GBWC */ __raw_writel((tx4927_pci_opts.gbwc << 16) & TX4927_PCIC_PCICCFG_GBWC_MASK, &pcicptr->pciccfg); /* Enable Initiator Memory Space */ if (channel->mem_resource->end) __raw_writel(__raw_readl(&pcicptr->pciccfg) | TX4927_PCIC_PCICCFG_G2PMEN(0), &pcicptr->pciccfg); /* Enable Initiator I/O Space */ if (channel->io_resource->end) __raw_writel(__raw_readl(&pcicptr->pciccfg) | TX4927_PCIC_PCICCFG_G2PIOEN, &pcicptr->pciccfg); /* Enable Initiator Config */ __raw_writel(__raw_readl(&pcicptr->pciccfg) | TX4927_PCIC_PCICCFG_ICAEN | TX4927_PCIC_PCICCFG_TCAR, &pcicptr->pciccfg); /* Do not use MEMMUL, MEMINF: YMFPCI card causes M_ABORT. */ __raw_writel(0, &pcicptr->pcicfg1); __raw_writel((__raw_readl(&pcicptr->g2ptocnt) & ~0xffff) | (tx4927_pci_opts.trdyto & 0xff) | ((tx4927_pci_opts.retryto & 0xff) << 8), &pcicptr->g2ptocnt); /* Clear All Local Bus Status */ __raw_writel(TX4927_PCIC_PCICSTATUS_ALL, &pcicptr->pcicstatus); /* Enable All Local Bus Interrupts */ __raw_writel(TX4927_PCIC_PCICSTATUS_ALL, &pcicptr->pcicmask); /* Clear All Initiator Status */ __raw_writel(TX4927_PCIC_G2PSTATUS_ALL, &pcicptr->g2pstatus); /* Enable All Initiator Interrupts */ __raw_writel(TX4927_PCIC_G2PSTATUS_ALL, &pcicptr->g2pmask); /* Clear All PCI Status Error */ __raw_writel((__raw_readl(&pcicptr->pcistatus) & 0x0000ffff) | (TX4927_PCIC_PCISTATUS_ALL << 16), &pcicptr->pcistatus); /* Enable All PCI Status Error Interrupts */ __raw_writel(TX4927_PCIC_PCISTATUS_ALL, &pcicptr->pcimask); if (!extarb) { /* Reset Bus Arbiter */ __raw_writel(TX4927_PCIC_PBACFG_RPBA, &pcicptr->pbacfg); __raw_writel(0, &pcicptr->pbabm); /* Enable Bus Arbiter */ __raw_writel(TX4927_PCIC_PBACFG_PBAEN, &pcicptr->pbacfg); } __raw_writel(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_PARITY | PCI_COMMAND_SERR, &pcicptr->pcistatus); local_irq_restore(flags); printk(KERN_DEBUG "PCI: COMMAND=%04x,PCIMASK=%04x," "TRDYTO=%02x,RETRYTO=%02x,GBWC=%03x\n", __raw_readl(&pcicptr->pcistatus) & 0xffff, __raw_readl(&pcicptr->pcimask) & 0xffff, __raw_readl(&pcicptr->g2ptocnt) & 0xff, (__raw_readl(&pcicptr->g2ptocnt) & 0xff00) >> 8, (__raw_readl(&pcicptr->pciccfg) >> 16) & 0xfff); } static void tx4927_report_pcic_status1(struct tx4927_pcic_reg __iomem *pcicptr) { __u16 pcistatus = (__u16)(__raw_readl(&pcicptr->pcistatus) >> 16); __u32 g2pstatus = __raw_readl(&pcicptr->g2pstatus); __u32 pcicstatus = __raw_readl(&pcicptr->pcicstatus); static struct { __u32 flag; const char *str; } pcistat_tbl[] = { { PCI_STATUS_DETECTED_PARITY, "DetectedParityError" }, { PCI_STATUS_SIG_SYSTEM_ERROR, "SignaledSystemError" }, { PCI_STATUS_REC_MASTER_ABORT, "ReceivedMasterAbort" }, { PCI_STATUS_REC_TARGET_ABORT, "ReceivedTargetAbort" }, { PCI_STATUS_SIG_TARGET_ABORT, "SignaledTargetAbort" }, { PCI_STATUS_PARITY, "MasterParityError" }, }, g2pstat_tbl[] = { { TX4927_PCIC_G2PSTATUS_TTOE, "TIOE" }, { TX4927_PCIC_G2PSTATUS_RTOE, "RTOE" }, }, pcicstat_tbl[] = { { TX4927_PCIC_PCICSTATUS_PME, "PME" }, { TX4927_PCIC_PCICSTATUS_TLB, "TLB" }, { TX4927_PCIC_PCICSTATUS_NIB, "NIB" }, { TX4927_PCIC_PCICSTATUS_ZIB, "ZIB" }, { TX4927_PCIC_PCICSTATUS_PERR, "PERR" }, { TX4927_PCIC_PCICSTATUS_SERR, "SERR" }, { TX4927_PCIC_PCICSTATUS_GBE, "GBE" }, { TX4927_PCIC_PCICSTATUS_IWB, "IWB" }, }; int i, cont; printk(KERN_ERR ""); if (pcistatus & TX4927_PCIC_PCISTATUS_ALL) { printk(KERN_CONT "pcistat:%04x(", pcistatus); for (i = 0, cont = 0; i < ARRAY_SIZE(pcistat_tbl); i++) if (pcistatus & pcistat_tbl[i].flag) printk(KERN_CONT "%s%s", cont++ ? " " : "", pcistat_tbl[i].str); printk(KERN_CONT ") "); } if (g2pstatus & TX4927_PCIC_G2PSTATUS_ALL) { printk(KERN_CONT "g2pstatus:%08x(", g2pstatus); for (i = 0, cont = 0; i < ARRAY_SIZE(g2pstat_tbl); i++) if (g2pstatus & g2pstat_tbl[i].flag) printk(KERN_CONT "%s%s", cont++ ? " " : "", g2pstat_tbl[i].str); printk(KERN_CONT ") "); } if (pcicstatus & TX4927_PCIC_PCICSTATUS_ALL) { printk(KERN_CONT "pcicstatus:%08x(", pcicstatus); for (i = 0, cont = 0; i < ARRAY_SIZE(pcicstat_tbl); i++) if (pcicstatus & pcicstat_tbl[i].flag) printk(KERN_CONT "%s%s", cont++ ? " " : "", pcicstat_tbl[i].str); printk(KERN_CONT ")"); } printk(KERN_CONT "\n"); } void tx4927_report_pcic_status(void) { int i; for (i = 0; i < ARRAY_SIZE(pcicptrs); i++) { if (pcicptrs[i].pcicptr) tx4927_report_pcic_status1(pcicptrs[i].pcicptr); } } static void tx4927_dump_pcic_settings1(struct tx4927_pcic_reg __iomem *pcicptr) { int i; __u32 __iomem *preg = (__u32 __iomem *)pcicptr; printk(KERN_INFO "tx4927 pcic (0x%p) settings:", pcicptr); for (i = 0; i < sizeof(struct tx4927_pcic_reg); i += 4, preg++) { if (i % 32 == 0) { printk(KERN_CONT "\n"); printk(KERN_INFO "%04x:", i); } /* skip registers with side-effects */ if (i == offsetof(struct tx4927_pcic_reg, g2pintack) || i == offsetof(struct tx4927_pcic_reg, g2pspc) || i == offsetof(struct tx4927_pcic_reg, g2pcfgadrs) || i == offsetof(struct tx4927_pcic_reg, g2pcfgdata)) { printk(KERN_CONT " XXXXXXXX"); continue; } printk(KERN_CONT " %08x", __raw_readl(preg)); } printk(KERN_CONT "\n"); } void tx4927_dump_pcic_settings(void) { int i; for (i = 0; i < ARRAY_SIZE(pcicptrs); i++) { if (pcicptrs[i].pcicptr) tx4927_dump_pcic_settings1(pcicptrs[i].pcicptr); } } irqreturn_t tx4927_pcierr_interrupt(int irq, void *dev_id) { struct pt_regs *regs = get_irq_regs(); struct tx4927_pcic_reg __iomem *pcicptr = (struct tx4927_pcic_reg __iomem *)(unsigned long)dev_id; if (txx9_pci_err_action != TXX9_PCI_ERR_IGNORE) { printk(KERN_WARNING "PCIERR interrupt at 0x%0*lx\n", (int)(2 * sizeof(unsigned long)), regs->cp0_epc); tx4927_report_pcic_status1(pcicptr); } if (txx9_pci_err_action != TXX9_PCI_ERR_PANIC) { /* clear all pci errors */ __raw_writel((__raw_readl(&pcicptr->pcistatus) & 0x0000ffff) | (TX4927_PCIC_PCISTATUS_ALL << 16), &pcicptr->pcistatus); __raw_writel(TX4927_PCIC_G2PSTATUS_ALL, &pcicptr->g2pstatus); __raw_writel(TX4927_PCIC_PBASTATUS_ALL, &pcicptr->pbastatus); __raw_writel(TX4927_PCIC_PCICSTATUS_ALL, &pcicptr->pcicstatus); return IRQ_HANDLED; } console_verbose(); tx4927_dump_pcic_settings1(pcicptr); panic("PCI error."); } #ifdef CONFIG_TOSHIBA_FPCIB0 static void tx4927_quirk_slc90e66_bridge(struct pci_dev *dev) { struct tx4927_pcic_reg __iomem *pcicptr = pci_bus_to_pcicptr(dev->bus); if (!pcicptr) return; if (__raw_readl(&pcicptr->pbacfg) & TX4927_PCIC_PBACFG_PBAEN) { /* Reset Bus Arbiter */ __raw_writel(TX4927_PCIC_PBACFG_RPBA, &pcicptr->pbacfg); /* * swap reqBP and reqXP (raise priority of SLC90E66). * SLC90E66(PCI-ISA bridge) is connected to REQ2 on * PCI Backplane board. */ __raw_writel(0x72543610, &pcicptr->pbareqport); __raw_writel(0, &pcicptr->pbabm); /* Use Fixed ParkMaster (required by SLC90E66) */ __raw_writel(TX4927_PCIC_PBACFG_FIXPA, &pcicptr->pbacfg); /* Enable Bus Arbiter */ __raw_writel(TX4927_PCIC_PBACFG_FIXPA | TX4927_PCIC_PBACFG_PBAEN, &pcicptr->pbacfg); printk(KERN_INFO "PCI: Use Fixed Park Master (REQPORT %08x)\n", __raw_readl(&pcicptr->pbareqport)); } } #define PCI_DEVICE_ID_EFAR_SLC90E66_0 0x9460 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_EFAR, PCI_DEVICE_ID_EFAR_SLC90E66_0, tx4927_quirk_slc90e66_bridge); #endif
linux-master
arch/mips/pci/ops-tx4927.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2003, 04, 11 Ralf Baechle ([email protected]) * Copyright (C) 2011 Wind River Systems, * written by Ralf Baechle ([email protected]) */ #include <linux/bug.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/memblock.h> #include <linux/export.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/of_address.h> #include <asm/cpu-info.h> unsigned long PCIBIOS_MIN_IO; EXPORT_SYMBOL(PCIBIOS_MIN_IO); unsigned long PCIBIOS_MIN_MEM; EXPORT_SYMBOL(PCIBIOS_MIN_MEM); static int __init pcibios_set_cache_line_size(void) { unsigned int lsize; /* * Set PCI cacheline size to that of the highest level in the * cache hierarchy. */ lsize = cpu_dcache_line_size(); lsize = cpu_scache_line_size() ? : lsize; lsize = cpu_tcache_line_size() ? : lsize; BUG_ON(!lsize); pci_dfl_cache_line_size = lsize >> 2; pr_debug("PCI: pci_cache_line_size set to %d bytes\n", lsize); return 0; } arch_initcall(pcibios_set_cache_line_size); void pci_resource_to_user(const struct pci_dev *dev, int bar, const struct resource *rsrc, resource_size_t *start, resource_size_t *end) { phys_addr_t size = resource_size(rsrc); *start = fixup_bigphys_addr(rsrc->start, size); *end = rsrc->start + size - 1; }
linux-master
arch/mips/pci/pci.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001,2002,2005 Broadcom Corporation * Copyright (C) 2004 by Ralf Baechle ([email protected]) */ /* * BCM1x80/1x55-specific PCI support * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we use ioremap. In the 32-bit * kernel, this consumes either 4 or 8 page table pages, and 16MB of * kernel mapped memory. Hopefully neither of these should be a huge * problem. * * XXX: AT THIS TIME, ONLY the NATIVE PCI-X INTERFACE IS SUPPORTED. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/console.h> #include <linux/tty.h> #include <linux/vt.h> #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/board.h> #include <asm/io.h> /* * Macros for calculating offsets into config space given a device * structure or dev/fun/reg */ #define CFGOFFSET(bus, devfn, where) (((bus)<<16)+((devfn)<<8)+(where)) #define CFGADDR(bus, devfn, where) CFGOFFSET((bus)->number, (devfn), where) static void *cfg_space; #define PCI_BUS_ENABLED 1 #define PCI_DEVICE_MODE 2 static int bcm1480_bus_status; #define PCI_BRIDGE_DEVICE 0 /* * Read/write 32-bit values in config space. */ static inline u32 READCFG32(u32 addr) { return *(u32 *)(cfg_space + (addr&~3)); } static inline void WRITECFG32(u32 addr, u32 data) { *(u32 *)(cfg_space + (addr & ~3)) = data; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { if (pin == 0) return -1; return K_BCM1480_INT_PCI_INTA - 1 + pin; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } /* * Some checks before doing config cycles: * In PCI Device Mode, hide everything on bus 0 except the LDT host * bridge. Otherwise, access is controlled by bridge MasterEn bits. */ static int bcm1480_pci_can_access(struct pci_bus *bus, int devfn) { u32 devno; if (!(bcm1480_bus_status & (PCI_BUS_ENABLED | PCI_DEVICE_MODE))) return 0; if (bus->number == 0) { devno = PCI_SLOT(devfn); if (bcm1480_bus_status & PCI_DEVICE_MODE) return 0; else return 1; } else return 1; } /* * Read/write access functions for various sizes of values * in config space. Return all 1's for disallowed accesses * for a kludgy but adequate simulation of master aborts. */ static int bcm1480_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (bcm1480_pci_can_access(bus, devfn)) data = READCFG32(CFGADDR(bus, devfn, where)); else data = 0xFFFFFFFF; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int bcm1480_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 cfgaddr = CFGADDR(bus, devfn, where); u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (!bcm1480_pci_can_access(bus, devfn)) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } struct pci_ops bcm1480_pci_ops = { .read = bcm1480_pcibios_read, .write = bcm1480_pcibios_write, }; static struct resource bcm1480_mem_resource = { .name = "BCM1480 PCI MEM", .start = A_BCM1480_PHYS_PCI_MEM_MATCH_BYTES, .end = A_BCM1480_PHYS_PCI_MEM_MATCH_BYTES + 0xfffffffUL, .flags = IORESOURCE_MEM, }; static struct resource bcm1480_io_resource = { .name = "BCM1480 PCI I/O", .start = A_BCM1480_PHYS_PCI_IO_MATCH_BYTES, .end = A_BCM1480_PHYS_PCI_IO_MATCH_BYTES + 0x1ffffffUL, .flags = IORESOURCE_IO, }; struct pci_controller bcm1480_controller = { .pci_ops = &bcm1480_pci_ops, .mem_resource = &bcm1480_mem_resource, .io_resource = &bcm1480_io_resource, .io_offset = A_BCM1480_PHYS_PCI_IO_MATCH_BYTES, }; static int __init bcm1480_pcibios_init(void) { uint32_t cmdreg; uint64_t reg; /* CFE will assign PCI resources */ pci_set_flags(PCI_PROBE_ONLY); /* Avoid ISA compat ranges. */ PCIBIOS_MIN_IO = 0x00008000UL; PCIBIOS_MIN_MEM = 0x01000000UL; /* Set I/O resource limits. - unlimited for now to accommodate HT */ ioport_resource.end = 0xffffffffUL; iomem_resource.end = 0xffffffffUL; cfg_space = ioremap(A_BCM1480_PHYS_PCI_CFG_MATCH_BITS, 16*1024*1024); /* * See if the PCI bus has been configured by the firmware. */ reg = __raw_readq(IOADDR(A_SCD_SYSTEM_CFG)); if (!(reg & M_BCM1480_SYS_PCI_HOST)) { bcm1480_bus_status |= PCI_DEVICE_MODE; } else { cmdreg = READCFG32(CFGOFFSET(0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), PCI_COMMAND)); if (!(cmdreg & PCI_COMMAND_MASTER)) { printk ("PCI: Skipping PCI probe. Bus is not initialized.\n"); iounmap(cfg_space); return 1; /* XXX */ } bcm1480_bus_status |= PCI_BUS_ENABLED; } /* turn on ExpMemEn */ cmdreg = READCFG32(CFGOFFSET(0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), 0x40)); WRITECFG32(CFGOFFSET(0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), 0x40), cmdreg | 0x10); cmdreg = READCFG32(CFGOFFSET(0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), 0x40)); /* * Establish mappings in KSEG2 (kernel virtual) to PCI I/O * space. Use "match bytes" policy to make everything look * little-endian. So, you need to also set * CONFIG_SWAP_IO_SPACE, but this is the combination that * works correctly with most of Linux's drivers. * XXX ehs: Should this happen in PCI Device mode? */ bcm1480_controller.io_map_base = (unsigned long) ioremap(A_BCM1480_PHYS_PCI_IO_MATCH_BYTES, 65536); bcm1480_controller.io_map_base -= bcm1480_controller.io_offset; set_io_port_base(bcm1480_controller.io_map_base); register_pci_controller(&bcm1480_controller); #ifdef CONFIG_VGA_CONSOLE console_lock(); do_take_over_console(&vga_con, 0, MAX_NR_CONSOLES-1, 1); console_unlock(); #endif return 0; } arch_initcall(bcm1480_pcibios_init);
linux-master
arch/mips/pci/pci-bcm1480.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1999, 2000, 2004 MIPS Technologies, Inc. * All rights reserved. * Authors: Carsten Langgaard <[email protected]> * Maciej W. Rozycki <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <asm/gt64120.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 /* * PCI configuration cycle AD bus definition */ /* Type 0 */ #define PCI_CFG_TYPE0_REG_SHF 0 #define PCI_CFG_TYPE0_FUNC_SHF 8 /* Type 1 */ #define PCI_CFG_TYPE1_REG_SHF 0 #define PCI_CFG_TYPE1_FUNC_SHF 8 #define PCI_CFG_TYPE1_DEV_SHF 11 #define PCI_CFG_TYPE1_BUS_SHF 16 static int gt64xxx_pci0_pcibios_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 * data) { unsigned char busnum = bus->number; u32 intr; if ((busnum == 0) && (devfn >= PCI_DEVFN(31, 0))) return -1; /* Because of a bug in the galileo (for slot 31). */ /* Clear cause register bits */ GT_WRITE(GT_INTRCAUSE_OFS, ~(GT_INTRCAUSE_MASABORT0_BIT | GT_INTRCAUSE_TARABORT0_BIT)); /* Setup address */ GT_WRITE(GT_PCI0_CFGADDR_OFS, (busnum << GT_PCI0_CFGADDR_BUSNUM_SHF) | (devfn << GT_PCI0_CFGADDR_FUNCTNUM_SHF) | ((where / 4) << GT_PCI0_CFGADDR_REGNUM_SHF) | GT_PCI0_CFGADDR_CONFIGEN_BIT); if (access_type == PCI_ACCESS_WRITE) { if (busnum == 0 && PCI_SLOT(devfn) == 0) { /* * The Galileo system controller is acting * differently than other devices. */ GT_WRITE(GT_PCI0_CFGDATA_OFS, *data); } else __GT_WRITE(GT_PCI0_CFGDATA_OFS, *data); } else { if (busnum == 0 && PCI_SLOT(devfn) == 0) { /* * The Galileo system controller is acting * differently than other devices. */ *data = GT_READ(GT_PCI0_CFGDATA_OFS); } else *data = __GT_READ(GT_PCI0_CFGDATA_OFS); } /* Check for master or target abort */ intr = GT_READ(GT_INTRCAUSE_OFS); if (intr & (GT_INTRCAUSE_MASABORT0_BIT | GT_INTRCAUSE_TARABORT0_BIT)) { /* Error occurred */ /* Clear bits */ GT_WRITE(GT_INTRCAUSE_OFS, ~(GT_INTRCAUSE_MASABORT0_BIT | GT_INTRCAUSE_TARABORT0_BIT)); return -1; } return 0; } /* * We can't address 8 and 16 bit words directly. Instead we have to * read/write a 32bit word and mask/modify the data we actually want. */ static int gt64xxx_pci0_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if (gt64xxx_pci0_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int gt64xxx_pci0_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data = 0; if (size == 4) data = val; else { if (gt64xxx_pci0_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); } if (gt64xxx_pci0_pcibios_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } struct pci_ops gt64xxx_pci0_ops = { .read = gt64xxx_pci0_pcibios_read, .write = gt64xxx_pci0_pcibios_write };
linux-master
arch/mips/pci/ops-gt64xxx_pci0.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/kernel.h> #include <linux/pci.h> #include <asm/ip32/ip32_ints.h> /* * O2 has up to 5 PCI devices connected into the MACE bridge. The device * map looks like this: * * 0 aic7xxx 0 * 1 aic7xxx 1 * 2 expansion slot * 3 N/C * 4 N/C */ #define SCSI0 MACEPCI_SCSI0_IRQ #define SCSI1 MACEPCI_SCSI1_IRQ #define INTA0 MACEPCI_SLOT0_IRQ #define INTA1 MACEPCI_SLOT1_IRQ #define INTA2 MACEPCI_SLOT2_IRQ #define INTB MACEPCI_SHARED0_IRQ #define INTC MACEPCI_SHARED1_IRQ #define INTD MACEPCI_SHARED2_IRQ static char irq_tab_mace[][5] = { /* Dummy INT#A INT#B INT#C INT#D */ {0, 0, 0, 0, 0}, /* This is placeholder row - never used */ {0, SCSI0, SCSI0, SCSI0, SCSI0}, {0, SCSI1, SCSI1, SCSI1, SCSI1}, {0, INTA0, INTB, INTC, INTD}, {0, INTA1, INTC, INTD, INTB}, {0, INTA2, INTD, INTB, INTC}, }; /* * Given a PCI slot number (a la PCI_SLOT(...)) and the interrupt pin of * the device (1-4 => A-D), tell what irq to use. Note that we don't * in theory have slots 4 and 5, and we never normally use the shared * irqs. I suppose a device without a pin A will thank us for doing it * right if there exists such a broken piece of crap. */ int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return irq_tab_mace[slot][pin]; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/fixup-ip32.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001,2002,2003 Broadcom Corporation * Copyright (C) 2004 by Ralf Baechle ([email protected]) */ /* * BCM1250-specific PCI support * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we use ioremap. In the 32-bit * kernel, this consumes either 4 or 8 page table pages, and 16MB of * kernel mapped memory. Hopefully neither of these should be a huge * problem. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/console.h> #include <linux/tty.h> #include <linux/vt.h> #include <asm/io.h> #include <asm/sibyte/sb1250_defs.h> #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_scd.h> #include <asm/sibyte/board.h> /* * Macros for calculating offsets into config space given a device * structure or dev/fun/reg */ #define CFGOFFSET(bus, devfn, where) (((bus)<<16) + ((devfn)<<8) + (where)) #define CFGADDR(bus, devfn, where) CFGOFFSET((bus)->number, (devfn), where) static void *cfg_space; #define PCI_BUS_ENABLED 1 #define LDT_BUS_ENABLED 2 #define PCI_DEVICE_MODE 4 static int sb1250_bus_status; #define PCI_BRIDGE_DEVICE 0 #define LDT_BRIDGE_DEVICE 1 #ifdef CONFIG_SIBYTE_HAS_LDT /* * HT's level-sensitive interrupts require EOI, which is generated * through a 4MB memory-mapped region */ unsigned long ldt_eoi_space; #endif /* * Read/write 32-bit values in config space. */ static inline u32 READCFG32(u32 addr) { return *(u32 *) (cfg_space + (addr & ~3)); } static inline void WRITECFG32(u32 addr, u32 data) { *(u32 *) (cfg_space + (addr & ~3)) = data; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return dev->irq; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } /* * Some checks before doing config cycles: * In PCI Device Mode, hide everything on bus 0 except the LDT host * bridge. Otherwise, access is controlled by bridge MasterEn bits. */ static int sb1250_pci_can_access(struct pci_bus *bus, int devfn) { u32 devno; if (!(sb1250_bus_status & (PCI_BUS_ENABLED | PCI_DEVICE_MODE))) return 0; if (bus->number == 0) { devno = PCI_SLOT(devfn); if (devno == LDT_BRIDGE_DEVICE) return (sb1250_bus_status & LDT_BUS_ENABLED) != 0; else if (sb1250_bus_status & PCI_DEVICE_MODE) return 0; else return 1; } else return 1; } /* * Read/write access functions for various sizes of values * in config space. Return all 1's for disallowed accesses * for a kludgy but adequate simulation of master aborts. */ static int sb1250_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (sb1250_pci_can_access(bus, devfn)) data = READCFG32(CFGADDR(bus, devfn, where)); else data = 0xFFFFFFFF; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int sb1250_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 cfgaddr = CFGADDR(bus, devfn, where); u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (!sb1250_pci_can_access(bus, devfn)) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } struct pci_ops sb1250_pci_ops = { .read = sb1250_pcibios_read, .write = sb1250_pcibios_write, }; static struct resource sb1250_mem_resource = { .name = "SB1250 PCI MEM", .start = 0x40000000UL, .end = 0x5fffffffUL, .flags = IORESOURCE_MEM, }; static struct resource sb1250_io_resource = { .name = "SB1250 PCI I/O", .start = 0x00000000UL, .end = 0x01ffffffUL, .flags = IORESOURCE_IO, }; struct pci_controller sb1250_controller = { .pci_ops = &sb1250_pci_ops, .mem_resource = &sb1250_mem_resource, .io_resource = &sb1250_io_resource, }; static int __init sb1250_pcibios_init(void) { void __iomem *io_map_base; uint32_t cmdreg; uint64_t reg; /* CFE will assign PCI resources */ pci_set_flags(PCI_PROBE_ONLY); /* Avoid ISA compat ranges. */ PCIBIOS_MIN_IO = 0x00008000UL; PCIBIOS_MIN_MEM = 0x01000000UL; /* Set I/O resource limits. */ ioport_resource.end = 0x01ffffffUL; /* 32MB accessible by sb1250 */ iomem_resource.end = 0xffffffffUL; /* no HT support yet */ cfg_space = ioremap(A_PHYS_LDTPCI_CFG_MATCH_BITS, 16 * 1024 * 1024); /* * See if the PCI bus has been configured by the firmware. */ reg = __raw_readq(IOADDR(A_SCD_SYSTEM_CFG)); if (!(reg & M_SYS_PCI_HOST)) { sb1250_bus_status |= PCI_DEVICE_MODE; } else { cmdreg = READCFG32(CFGOFFSET (0, PCI_DEVFN(PCI_BRIDGE_DEVICE, 0), PCI_COMMAND)); if (!(cmdreg & PCI_COMMAND_MASTER)) { printk ("PCI: Skipping PCI probe. Bus is not initialized.\n"); iounmap(cfg_space); return 0; } sb1250_bus_status |= PCI_BUS_ENABLED; } /* * Establish mappings in KSEG2 (kernel virtual) to PCI I/O * space. Use "match bytes" policy to make everything look * little-endian. So, you need to also set * CONFIG_SWAP_IO_SPACE, but this is the combination that * works correctly with most of Linux's drivers. * XXX ehs: Should this happen in PCI Device mode? */ io_map_base = ioremap(A_PHYS_LDTPCI_IO_MATCH_BYTES, 1024 * 1024); sb1250_controller.io_map_base = (unsigned long)io_map_base; set_io_port_base((unsigned long)io_map_base); #ifdef CONFIG_SIBYTE_HAS_LDT /* * Also check the LDT bridge's enable, just in case we didn't * initialize that one. */ cmdreg = READCFG32(CFGOFFSET(0, PCI_DEVFN(LDT_BRIDGE_DEVICE, 0), PCI_COMMAND)); if (cmdreg & PCI_COMMAND_MASTER) { sb1250_bus_status |= LDT_BUS_ENABLED; /* * Need bits 23:16 to convey vector number. Note that * this consumes 4MB of kernel-mapped memory * (Kseg2/Kseg3) for 32-bit kernel. */ ldt_eoi_space = (unsigned long) ioremap(A_PHYS_LDT_SPECIAL_MATCH_BYTES, 4 * 1024 * 1024); } #endif register_pci_controller(&sb1250_controller); #ifdef CONFIG_VGA_CONSOLE console_lock(); do_take_over_console(&vga_con, 0, MAX_NR_CONSOLES - 1, 1); console_unlock(); #endif return 0; } arch_initcall(sb1250_pcibios_init);
linux-master
arch/mips/pci/pci-sb1250.c
/* * BRIEF MODULE DESCRIPTION * PCI initialization for IDT EB434 board * * Copyright 2004 IDT Inc. ([email protected]) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <asm/mach-rc32434/rc32434.h> #include <asm/mach-rc32434/pci.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 /* define an unsigned array for the PCI registers */ static unsigned int korina_cnfg_regs[25] = { KORINA_CNFG1, KORINA_CNFG2, KORINA_CNFG3, KORINA_CNFG4, KORINA_CNFG5, KORINA_CNFG6, KORINA_CNFG7, KORINA_CNFG8, KORINA_CNFG9, KORINA_CNFG10, KORINA_CNFG11, KORINA_CNFG12, KORINA_CNFG13, KORINA_CNFG14, KORINA_CNFG15, KORINA_CNFG16, KORINA_CNFG17, KORINA_CNFG18, KORINA_CNFG19, KORINA_CNFG20, KORINA_CNFG21, KORINA_CNFG22, KORINA_CNFG23, KORINA_CNFG24 }; static struct resource rc32434_res_pci_mem1; static struct resource rc32434_res_pci_mem2; static struct resource rc32434_res_pci_mem1 = { .name = "PCI MEM1", .start = 0x50000000, .end = 0x5FFFFFFF, .flags = IORESOURCE_MEM, .sibling = NULL, .child = &rc32434_res_pci_mem2 }; static struct resource rc32434_res_pci_mem2 = { .name = "PCI Mem2", .start = 0x60000000, .end = 0x6FFFFFFF, .flags = IORESOURCE_MEM, .parent = &rc32434_res_pci_mem1, .sibling = NULL, .child = NULL }; static struct resource rc32434_res_pci_io1 = { .name = "PCI I/O1", .start = 0x18800000, .end = 0x188FFFFF, .flags = IORESOURCE_IO, }; extern struct pci_ops rc32434_pci_ops; #define PCI_MEM1_START PCI_ADDR_START #define PCI_MEM1_END (PCI_ADDR_START + CPUTOPCI_MEM_WIN - 1) #define PCI_MEM2_START (PCI_ADDR_START + CPUTOPCI_MEM_WIN) #define PCI_MEM2_END (PCI_ADDR_START + (2 * CPUTOPCI_MEM_WIN) - 1) #define PCI_IO1_START (PCI_ADDR_START + (2 * CPUTOPCI_MEM_WIN)) #define PCI_IO1_END \ (PCI_ADDR_START + (2 * CPUTOPCI_MEM_WIN) + CPUTOPCI_IO_WIN - 1) #define PCI_IO2_START \ (PCI_ADDR_START + (2 * CPUTOPCI_MEM_WIN) + CPUTOPCI_IO_WIN) #define PCI_IO2_END \ (PCI_ADDR_START + (2 * CPUTOPCI_MEM_WIN) + (2 * CPUTOPCI_IO_WIN) - 1) struct pci_controller rc32434_controller2; struct pci_controller rc32434_controller = { .pci_ops = &rc32434_pci_ops, .mem_resource = &rc32434_res_pci_mem1, .io_resource = &rc32434_res_pci_io1, .mem_offset = 0, .io_offset = 0, }; #ifdef __MIPSEB__ #define PCI_ENDIAN_FLAG PCILBAC_sb_m #else #define PCI_ENDIAN_FLAG 0 #endif static int __init rc32434_pcibridge_init(void) { unsigned int pcicvalue, pcicdata = 0; unsigned int dummyread, pcicntlval; int loopCount; unsigned int pci_config_addr; pcicvalue = rc32434_pci->pcic; pcicvalue = (pcicvalue >> PCIM_SHFT) & PCIM_BIT_LEN; if (!((pcicvalue == PCIM_H_EA) || (pcicvalue == PCIM_H_IA_FIX) || (pcicvalue == PCIM_H_IA_RR))) { pr_err("PCI init error!!!\n"); /* Not in Host Mode, return ERROR */ return -1; } /* Enables the Idle Grant mode, Arbiter Parking */ pcicdata |= (PCI_CTL_IGM | PCI_CTL_EAP | PCI_CTL_EN); rc32434_pci->pcic = pcicdata; /* Enable the PCI bus Interface */ /* Zero out the PCI status & PCI Status Mask */ for (;;) { pcicdata = rc32434_pci->pcis; if (!(pcicdata & PCI_STAT_RIP)) break; } rc32434_pci->pcis = 0; rc32434_pci->pcism = 0xFFFFFFFF; /* Zero out the PCI decoupled registers */ rc32434_pci->pcidac = 0; /* * disable PCI decoupled accesses at * initialization */ rc32434_pci->pcidas = 0; /* clear the status */ rc32434_pci->pcidasm = 0x0000007F; /* Mask all the interrupts */ /* Mask PCI Messaging Interrupts */ rc32434_pci_msg->pciiic = 0; rc32434_pci_msg->pciiim = 0xFFFFFFFF; rc32434_pci_msg->pciioic = 0; rc32434_pci_msg->pciioim = 0; /* Setup PCILB0 as Memory Window */ rc32434_pci->pcilba[0].address = (unsigned int) (PCI_ADDR_START); /* setup the PCI map address as same as the local address */ rc32434_pci->pcilba[0].mapping = (unsigned int) (PCI_ADDR_START); /* Setup PCILBA1 as MEM */ rc32434_pci->pcilba[0].control = (((SIZE_256MB & 0x1f) << PCI_LBAC_SIZE_BIT) | PCI_ENDIAN_FLAG); dummyread = rc32434_pci->pcilba[0].control; /* flush the CPU write Buffers */ rc32434_pci->pcilba[1].address = 0x60000000; rc32434_pci->pcilba[1].mapping = 0x60000000; /* setup PCILBA2 as IO Window */ rc32434_pci->pcilba[1].control = (((SIZE_256MB & 0x1f) << PCI_LBAC_SIZE_BIT) | PCI_ENDIAN_FLAG); dummyread = rc32434_pci->pcilba[1].control; /* flush the CPU write Buffers */ rc32434_pci->pcilba[2].address = 0x18C00000; rc32434_pci->pcilba[2].mapping = 0x18FFFFFF; /* setup PCILBA2 as IO Window */ rc32434_pci->pcilba[2].control = (((SIZE_4MB & 0x1f) << PCI_LBAC_SIZE_BIT) | PCI_ENDIAN_FLAG); dummyread = rc32434_pci->pcilba[2].control; /* flush the CPU write Buffers */ /* Setup PCILBA3 as IO Window */ rc32434_pci->pcilba[3].address = 0x18800000; rc32434_pci->pcilba[3].mapping = 0x18800000; rc32434_pci->pcilba[3].control = ((((SIZE_1MB & 0x1ff) << PCI_LBAC_SIZE_BIT) | PCI_LBAC_MSI) | PCI_ENDIAN_FLAG); dummyread = rc32434_pci->pcilba[3].control; /* flush the CPU write Buffers */ pci_config_addr = (unsigned int) (0x80000004); for (loopCount = 0; loopCount < 24; loopCount++) { rc32434_pci->pcicfga = pci_config_addr; dummyread = rc32434_pci->pcicfga; rc32434_pci->pcicfgd = korina_cnfg_regs[loopCount]; dummyread = rc32434_pci->pcicfgd; pci_config_addr += 4; } rc32434_pci->pcitc = (unsigned int) ((PCITC_RTIMER_VAL & 0xff) << PCI_TC_RTIMER_BIT) | ((PCITC_DTIMER_VAL & 0xff) << PCI_TC_DTIMER_BIT); pcicntlval = rc32434_pci->pcic; pcicntlval &= ~PCI_CTL_TNR; rc32434_pci->pcic = pcicntlval; pcicntlval = rc32434_pci->pcic; return 0; } static int __init rc32434_pci_init(void) { void __iomem *io_map_base; pr_info("PCI: Initializing PCI\n"); ioport_resource.start = rc32434_res_pci_io1.start; ioport_resource.end = rc32434_res_pci_io1.end; rc32434_pcibridge_init(); io_map_base = ioremap(rc32434_res_pci_io1.start, resource_size(&rc32434_res_pci_io1)); if (!io_map_base) return -ENOMEM; rc32434_controller.io_map_base = (unsigned long)io_map_base - rc32434_res_pci_io1.start; register_pci_controller(&rc32434_controller); rc32434_sync(); return 0; } arch_initcall(rc32434_pci_init);
linux-master
arch/mips/pci/pci-rc32434.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/clk.h> #include <asm/bootinfo.h> #include <bcm63xx_reset.h> #include "pci-bcm63xx.h" /* * Allow PCI to be disabled at runtime depending on board nvram * configuration */ int bcm63xx_pci_enabled; static struct resource bcm_pci_mem_resource = { .name = "bcm63xx PCI memory space", .start = BCM_PCI_MEM_BASE_PA, .end = BCM_PCI_MEM_END_PA, .flags = IORESOURCE_MEM }; static struct resource bcm_pci_io_resource = { .name = "bcm63xx PCI IO space", .start = BCM_PCI_IO_BASE_PA, #ifdef CONFIG_CARDBUS .end = BCM_PCI_IO_HALF_PA, #else .end = BCM_PCI_IO_END_PA, #endif .flags = IORESOURCE_IO }; struct pci_controller bcm63xx_controller = { .pci_ops = &bcm63xx_pci_ops, .io_resource = &bcm_pci_io_resource, .mem_resource = &bcm_pci_mem_resource, }; /* * We handle cardbus via a fake Cardbus bridge, memory and io spaces * have to be clearly separated from PCI one since we have different * memory decoder. */ #ifdef CONFIG_CARDBUS static struct resource bcm_cb_mem_resource = { .name = "bcm63xx Cardbus memory space", .start = BCM_CB_MEM_BASE_PA, .end = BCM_CB_MEM_END_PA, .flags = IORESOURCE_MEM }; static struct resource bcm_cb_io_resource = { .name = "bcm63xx Cardbus IO space", .start = BCM_PCI_IO_HALF_PA + 1, .end = BCM_PCI_IO_END_PA, .flags = IORESOURCE_IO }; struct pci_controller bcm63xx_cb_controller = { .pci_ops = &bcm63xx_cb_ops, .io_resource = &bcm_cb_io_resource, .mem_resource = &bcm_cb_mem_resource, }; #endif static struct resource bcm_pcie_mem_resource = { .name = "bcm63xx PCIe memory space", .start = BCM_PCIE_MEM_BASE_PA, .end = BCM_PCIE_MEM_END_PA, .flags = IORESOURCE_MEM, }; static struct resource bcm_pcie_io_resource = { .name = "bcm63xx PCIe IO space", .start = 0, .end = 0, .flags = 0, }; struct pci_controller bcm63xx_pcie_controller = { .pci_ops = &bcm63xx_pcie_ops, .io_resource = &bcm_pcie_io_resource, .mem_resource = &bcm_pcie_mem_resource, }; static u32 bcm63xx_int_cfg_readl(u32 reg) { u32 tmp; tmp = reg & MPI_PCICFGCTL_CFGADDR_MASK; tmp |= MPI_PCICFGCTL_WRITEEN_MASK; bcm_mpi_writel(tmp, MPI_PCICFGCTL_REG); iob(); return bcm_mpi_readl(MPI_PCICFGDATA_REG); } static void bcm63xx_int_cfg_writel(u32 val, u32 reg) { u32 tmp; tmp = reg & MPI_PCICFGCTL_CFGADDR_MASK; tmp |= MPI_PCICFGCTL_WRITEEN_MASK; bcm_mpi_writel(tmp, MPI_PCICFGCTL_REG); bcm_mpi_writel(val, MPI_PCICFGDATA_REG); } void __iomem *pci_iospace_start; static void __init bcm63xx_reset_pcie(void) { u32 val; u32 reg; /* enable SERDES */ if (BCMCPU_IS_6328()) reg = MISC_SERDES_CTRL_6328_REG; else reg = MISC_SERDES_CTRL_6362_REG; val = bcm_misc_readl(reg); val |= SERDES_PCIE_EN | SERDES_PCIE_EXD_EN; bcm_misc_writel(val, reg); /* reset the PCIe core */ bcm63xx_core_set_reset(BCM63XX_RESET_PCIE, 1); bcm63xx_core_set_reset(BCM63XX_RESET_PCIE_EXT, 1); mdelay(10); bcm63xx_core_set_reset(BCM63XX_RESET_PCIE, 0); mdelay(10); bcm63xx_core_set_reset(BCM63XX_RESET_PCIE_EXT, 0); mdelay(200); } static struct clk *pcie_clk; static int __init bcm63xx_register_pcie(void) { u32 val; /* enable clock */ pcie_clk = clk_get(NULL, "pcie"); if (IS_ERR_OR_NULL(pcie_clk)) return -ENODEV; clk_prepare_enable(pcie_clk); bcm63xx_reset_pcie(); /* configure the PCIe bridge */ val = bcm_pcie_readl(PCIE_BRIDGE_OPT1_REG); val |= OPT1_RD_BE_OPT_EN; val |= OPT1_RD_REPLY_BE_FIX_EN; val |= OPT1_PCIE_BRIDGE_HOLE_DET_EN; val |= OPT1_L1_INT_STATUS_MASK_POL; bcm_pcie_writel(val, PCIE_BRIDGE_OPT1_REG); /* setup the interrupts */ val = bcm_pcie_readl(PCIE_BRIDGE_RC_INT_MASK_REG); val |= PCIE_RC_INT_A | PCIE_RC_INT_B | PCIE_RC_INT_C | PCIE_RC_INT_D; bcm_pcie_writel(val, PCIE_BRIDGE_RC_INT_MASK_REG); val = bcm_pcie_readl(PCIE_BRIDGE_OPT2_REG); /* enable credit checking and error checking */ val |= OPT2_TX_CREDIT_CHK_EN; val |= OPT2_UBUS_UR_DECODE_DIS; /* set device bus/func for the pcie device */ val |= (PCIE_BUS_DEVICE << OPT2_CFG_TYPE1_BUS_NO_SHIFT); val |= OPT2_CFG_TYPE1_BD_SEL; bcm_pcie_writel(val, PCIE_BRIDGE_OPT2_REG); /* setup class code as bridge */ val = bcm_pcie_readl(PCIE_IDVAL3_REG); val &= ~IDVAL3_CLASS_CODE_MASK; val |= PCI_CLASS_BRIDGE_PCI_NORMAL; bcm_pcie_writel(val, PCIE_IDVAL3_REG); /* disable bar1 size */ val = bcm_pcie_readl(PCIE_CONFIG2_REG); val &= ~CONFIG2_BAR1_SIZE_MASK; bcm_pcie_writel(val, PCIE_CONFIG2_REG); /* set bar0 to little endian */ val = (BCM_PCIE_MEM_BASE_PA >> 20) << BASEMASK_BASE_SHIFT; val |= (BCM_PCIE_MEM_BASE_PA >> 20) << BASEMASK_MASK_SHIFT; val |= BASEMASK_REMAP_EN; bcm_pcie_writel(val, PCIE_BRIDGE_BAR0_BASEMASK_REG); val = (BCM_PCIE_MEM_BASE_PA >> 20) << REBASE_ADDR_BASE_SHIFT; bcm_pcie_writel(val, PCIE_BRIDGE_BAR0_REBASE_ADDR_REG); register_pci_controller(&bcm63xx_pcie_controller); return 0; } static int __init bcm63xx_register_pci(void) { unsigned int mem_size; u32 val; /* * configuration access are done through IO space, remap 4 * first bytes to access it from CPU. * * this means that no io access from CPU should happen while * we do a configuration cycle, but there's no way we can add * a spinlock for each io access, so this is currently kind of * broken on SMP. */ pci_iospace_start = ioremap(BCM_PCI_IO_BASE_PA, 4); if (!pci_iospace_start) return -ENOMEM; /* setup local bus to PCI access (PCI memory) */ val = BCM_PCI_MEM_BASE_PA & MPI_L2P_BASE_MASK; bcm_mpi_writel(val, MPI_L2PMEMBASE1_REG); bcm_mpi_writel(~(BCM_PCI_MEM_SIZE - 1), MPI_L2PMEMRANGE1_REG); bcm_mpi_writel(val | MPI_L2PREMAP_ENABLED_MASK, MPI_L2PMEMREMAP1_REG); /* set Cardbus IDSEL (type 0 cfg access on primary bus for * this IDSEL will be done on Cardbus instead) */ val = bcm_pcmcia_readl(PCMCIA_C1_REG); val &= ~PCMCIA_C1_CBIDSEL_MASK; val |= (CARDBUS_PCI_IDSEL << PCMCIA_C1_CBIDSEL_SHIFT); bcm_pcmcia_writel(val, PCMCIA_C1_REG); #ifdef CONFIG_CARDBUS /* setup local bus to PCI access (Cardbus memory) */ val = BCM_CB_MEM_BASE_PA & MPI_L2P_BASE_MASK; bcm_mpi_writel(val, MPI_L2PMEMBASE2_REG); bcm_mpi_writel(~(BCM_CB_MEM_SIZE - 1), MPI_L2PMEMRANGE2_REG); val |= MPI_L2PREMAP_ENABLED_MASK | MPI_L2PREMAP_IS_CARDBUS_MASK; bcm_mpi_writel(val, MPI_L2PMEMREMAP2_REG); #else /* disable second access windows */ bcm_mpi_writel(0, MPI_L2PMEMREMAP2_REG); #endif /* setup local bus to PCI access (IO memory), we have only 1 * IO window for both PCI and cardbus, but it cannot handle * both at the same time, assume standard PCI for now, if * cardbus card has IO zone, PCI fixup will change window to * cardbus */ val = BCM_PCI_IO_BASE_PA & MPI_L2P_BASE_MASK; bcm_mpi_writel(val, MPI_L2PIOBASE_REG); bcm_mpi_writel(~(BCM_PCI_IO_SIZE - 1), MPI_L2PIORANGE_REG); bcm_mpi_writel(val | MPI_L2PREMAP_ENABLED_MASK, MPI_L2PIOREMAP_REG); /* enable PCI related GPIO pins */ bcm_mpi_writel(MPI_LOCBUSCTL_EN_PCI_GPIO_MASK, MPI_LOCBUSCTL_REG); /* setup PCI to local bus access, used by PCI device to target * local RAM while bus mastering */ bcm63xx_int_cfg_writel(0, PCI_BASE_ADDRESS_3); if (BCMCPU_IS_3368() || BCMCPU_IS_6358() || BCMCPU_IS_6368()) val = MPI_SP0_REMAP_ENABLE_MASK; else val = 0; bcm_mpi_writel(val, MPI_SP0_REMAP_REG); bcm63xx_int_cfg_writel(0x0, PCI_BASE_ADDRESS_4); bcm_mpi_writel(0, MPI_SP1_REMAP_REG); mem_size = bcm63xx_get_memory_size(); /* 6348 before rev b0 exposes only 16 MB of RAM memory through * PCI, throw a warning if we have more memory */ if (BCMCPU_IS_6348() && (bcm63xx_get_cpu_rev() & 0xf0) == 0xa0) { if (mem_size > (16 * 1024 * 1024)) printk(KERN_WARNING "bcm63xx: this CPU " "revision cannot handle more than 16MB " "of RAM for PCI bus mastering\n"); } else { /* setup sp0 range to local RAM size */ bcm_mpi_writel(~(mem_size - 1), MPI_SP0_RANGE_REG); bcm_mpi_writel(0, MPI_SP1_RANGE_REG); } /* change host bridge retry counter to infinite number of * retry, needed for some broadcom wifi cards with Silicon * Backplane bus where access to srom seems very slow */ val = bcm63xx_int_cfg_readl(BCMPCI_REG_TIMERS); val &= ~REG_TIMER_RETRY_MASK; bcm63xx_int_cfg_writel(val, BCMPCI_REG_TIMERS); /* enable memory decoder and bus mastering */ val = bcm63xx_int_cfg_readl(PCI_COMMAND); val |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); bcm63xx_int_cfg_writel(val, PCI_COMMAND); /* enable read prefetching & disable byte swapping for bus * mastering transfers */ val = bcm_mpi_readl(MPI_PCIMODESEL_REG); val &= ~MPI_PCIMODESEL_BAR1_NOSWAP_MASK; val &= ~MPI_PCIMODESEL_BAR2_NOSWAP_MASK; val &= ~MPI_PCIMODESEL_PREFETCH_MASK; val |= (8 << MPI_PCIMODESEL_PREFETCH_SHIFT); bcm_mpi_writel(val, MPI_PCIMODESEL_REG); /* enable pci interrupt */ val = bcm_mpi_readl(MPI_LOCINT_REG); val |= MPI_LOCINT_MASK(MPI_LOCINT_EXT_PCI_INT); bcm_mpi_writel(val, MPI_LOCINT_REG); register_pci_controller(&bcm63xx_controller); #ifdef CONFIG_CARDBUS register_pci_controller(&bcm63xx_cb_controller); #endif /* mark memory space used for IO mapping as reserved */ request_mem_region(BCM_PCI_IO_BASE_PA, BCM_PCI_IO_SIZE, "bcm63xx PCI IO space"); return 0; } static int __init bcm63xx_pci_init(void) { if (!bcm63xx_pci_enabled) return -ENODEV; switch (bcm63xx_get_cpu_id()) { case BCM6328_CPU_ID: case BCM6362_CPU_ID: return bcm63xx_register_pcie(); case BCM3368_CPU_ID: case BCM6348_CPU_ID: case BCM6358_CPU_ID: case BCM6368_CPU_ID: return bcm63xx_register_pci(); default: return -ENODEV; } } arch_initcall(bcm63xx_pci_init);
linux-master
arch/mips/pci/pci-bcm63xx.c
/* * Cobalt Qube/Raq PCI support * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995, 1996, 1997, 2002, 2003 by Ralf Baechle * Copyright (C) 2001, 2002, 2003 by Liam Davies ([email protected]) */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <asm/io.h> #include <asm/gt64120.h> #include <cobalt.h> #include <irq.h> /* * PCI slot numbers */ #define COBALT_PCICONF_CPU 0x06 #define COBALT_PCICONF_ETH0 0x07 #define COBALT_PCICONF_RAQSCSI 0x08 #define COBALT_PCICONF_VIA 0x09 #define COBALT_PCICONF_PCISLOT 0x0A #define COBALT_PCICONF_ETH1 0x0C /* * The Cobalt board ID information. The boards have an ID number wired * into the VIA that is available in the high nibble of register 94. */ #define VIA_COBALT_BRD_ID_REG 0x94 #define VIA_COBALT_BRD_REG_to_ID(reg) ((unsigned char)(reg) >> 4) /* * Default value of PCI Class Code on GT64111 is PCI_CLASS_MEMORY_OTHER (0x0580) * instead of PCI_CLASS_BRIDGE_HOST (0x0600). Galileo explained this choice in * document "GT-64111 System Controller for RC4640, RM523X and VR4300 CPUs", * section "6.5.3 PCI Autoconfiguration at RESET": * * Some PCs refuse to configure host bridges if they are found plugged into * a PCI slot (ask the BIOS vendors why...). The "Memory Controller" Class * Code does not cause a problem for these non-compliant BIOSes, so we used * this as the default in the GT-64111. * * So fix the incorrect default value of PCI Class Code. More details are on: * https://lore.kernel.org/r/20211102154831.xtrlgrmrizl5eidl@pali/ * https://lore.kernel.org/r/[email protected]/ */ static void qube_raq_galileo_early_fixup(struct pci_dev *dev) { if (dev->devfn == PCI_DEVFN(0, 0) && (dev->class >> 8) == PCI_CLASS_MEMORY_OTHER) { dev->class = (PCI_CLASS_BRIDGE_HOST << 8) | (dev->class & 0xff); printk(KERN_INFO "Galileo: fixed bridge class\n"); } } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_GT64111, qube_raq_galileo_early_fixup); static void qube_raq_via_bmIDE_fixup(struct pci_dev *dev) { unsigned short cfgword; unsigned char lt; /* Enable Bus Mastering and fast back to back. */ pci_read_config_word(dev, PCI_COMMAND, &cfgword); cfgword |= (PCI_COMMAND_FAST_BACK | PCI_COMMAND_MASTER); pci_write_config_word(dev, PCI_COMMAND, cfgword); /* Enable both ide interfaces. ROM only enables primary one. */ pci_write_config_byte(dev, 0x40, 0xb); /* Set latency timer to reasonable value. */ pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lt); if (lt < 64) pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 8); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_1, qube_raq_via_bmIDE_fixup); static void qube_raq_galileo_fixup(struct pci_dev *dev) { if (dev->devfn != PCI_DEVFN(0, 0)) return; /* Fix PCI latency-timer and cache-line-size values in Galileo * host bridge. */ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 8); /* * The code described by the comment below has been removed * as it causes bus mastering by the Ethernet controllers * to break under any kind of network load. We always set * the retry timeouts to their maximum. * * --x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x--x-- * * On all machines prior to Q2, we had the STOP line disconnected * from Galileo to VIA on PCI. The new Galileo does not function * correctly unless we have it connected. * * Therefore we must set the disconnect/retry cycle values to * something sensible when using the new Galileo. */ printk(KERN_INFO "Galileo: revision %u\n", dev->revision); #if 0 if (dev->revision >= 0x10) { /* New Galileo, assumes PCI stop line to VIA is connected. */ GT_WRITE(GT_PCI0_TOR_OFS, 0x4020); } else if (dev->revision == 0x1 || dev->revision == 0x2) #endif { signed int timeo; /* XXX WE MUST DO THIS ELSE GALILEO LOCKS UP! -DaveM */ timeo = GT_READ(GT_PCI0_TOR_OFS); /* Old Galileo, assumes PCI STOP line to VIA is disconnected. */ GT_WRITE(GT_PCI0_TOR_OFS, (0xff << 16) | /* retry count */ (0xff << 8) | /* timeout 1 */ 0xff); /* timeout 0 */ /* enable PCI retry exceeded interrupt */ GT_WRITE(GT_INTRMASK_OFS, GT_INTR_RETRYCTR0_MSK | GT_READ(GT_INTRMASK_OFS)); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_GT64111, qube_raq_galileo_fixup); int cobalt_board_id; static void qube_raq_via_board_id_fixup(struct pci_dev *dev) { u8 id; int retval; retval = pci_read_config_byte(dev, VIA_COBALT_BRD_ID_REG, &id); if (retval) { panic("Cannot read board ID"); return; } cobalt_board_id = VIA_COBALT_BRD_REG_to_ID(id); printk(KERN_INFO "Cobalt board ID: %d\n", cobalt_board_id); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_0, qube_raq_via_board_id_fixup); static char irq_tab_qube1[] = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = QUBE1_ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = 0 }; static char irq_tab_cobalt[] = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = ETH1_IRQ }; static char irq_tab_raq2[] = { [COBALT_PCICONF_CPU] = 0, [COBALT_PCICONF_ETH0] = ETH0_IRQ, [COBALT_PCICONF_RAQSCSI] = RAQ2_SCSI_IRQ, [COBALT_PCICONF_VIA] = 0, [COBALT_PCICONF_PCISLOT] = PCISLOT_IRQ, [COBALT_PCICONF_ETH1] = ETH1_IRQ }; int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { if (cobalt_board_id <= COBALT_BRD_ID_QUBE1) return irq_tab_qube1[slot]; if (cobalt_board_id == COBALT_BRD_ID_RAQ2) return irq_tab_raq2[slot]; return irq_tab_cobalt[slot]; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/fixup-cobalt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2018 John Crispin <[email protected]> */ #include <linux/pci.h> //#include <linux/of_irq.h> #include <linux/of_pci.h> int pcibios_plat_dev_init(struct pci_dev *dev) { return PCIBIOS_SUCCESSFUL; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return of_irq_parse_and_map_pci(dev, slot, pin); }
linux-master
arch/mips/pci/fixup-ath79.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2010 John Crispin <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/mm.h> #include <linux/vmalloc.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_pci.h> #include <linux/platform_device.h> #include <asm/addrspace.h> #include <lantiq_soc.h> #include <lantiq_irq.h> #include "pci-lantiq.h" #define PCI_CR_FCI_ADDR_MAP0 0x00C0 #define PCI_CR_FCI_ADDR_MAP1 0x00C4 #define PCI_CR_FCI_ADDR_MAP2 0x00C8 #define PCI_CR_FCI_ADDR_MAP3 0x00CC #define PCI_CR_FCI_ADDR_MAP4 0x00D0 #define PCI_CR_FCI_ADDR_MAP5 0x00D4 #define PCI_CR_FCI_ADDR_MAP6 0x00D8 #define PCI_CR_FCI_ADDR_MAP7 0x00DC #define PCI_CR_CLK_CTRL 0x0000 #define PCI_CR_PCI_MOD 0x0030 #define PCI_CR_PC_ARB 0x0080 #define PCI_CR_FCI_ADDR_MAP11hg 0x00E4 #define PCI_CR_BAR11MASK 0x0044 #define PCI_CR_BAR12MASK 0x0048 #define PCI_CR_BAR13MASK 0x004C #define PCI_CS_BASE_ADDR1 0x0010 #define PCI_CR_PCI_ADDR_MAP11 0x0064 #define PCI_CR_FCI_BURST_LENGTH 0x00E8 #define PCI_CR_PCI_EOI 0x002C #define PCI_CS_STS_CMD 0x0004 #define PCI_MASTER0_REQ_MASK_2BITS 8 #define PCI_MASTER1_REQ_MASK_2BITS 10 #define PCI_MASTER2_REQ_MASK_2BITS 12 #define INTERNAL_ARB_ENABLE_BIT 0 #define LTQ_CGU_IFCCR 0x0018 #define LTQ_CGU_PCICR 0x0034 #define ltq_pci_w32(x, y) ltq_w32((x), ltq_pci_membase + (y)) #define ltq_pci_r32(x) ltq_r32(ltq_pci_membase + (x)) #define ltq_pci_cfg_w32(x, y) ltq_w32((x), ltq_pci_mapped_cfg + (y)) #define ltq_pci_cfg_r32(x) ltq_r32(ltq_pci_mapped_cfg + (x)) __iomem void *ltq_pci_mapped_cfg; static __iomem void *ltq_pci_membase; static struct gpio_desc *reset_gpio; static struct clk *clk_pci, *clk_external; static struct resource pci_io_resource; static struct resource pci_mem_resource; static struct pci_ops pci_ops = { .read = ltq_pci_read_config_dword, .write = ltq_pci_write_config_dword }; static struct pci_controller pci_controller = { .pci_ops = &pci_ops, .mem_resource = &pci_mem_resource, .mem_offset = 0x00000000UL, .io_resource = &pci_io_resource, .io_offset = 0x00000000UL, }; static inline u32 ltq_calc_bar11mask(void) { u32 mem, bar11mask; /* BAR11MASK value depends on available memory on system. */ mem = get_num_physpages() * PAGE_SIZE; bar11mask = (0x0ffffff0 & ~((1 << (fls(mem) - 1)) - 1)) | 8; return bar11mask; } static int ltq_pci_startup(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; const __be32 *req_mask, *bus_clk; u32 temp_buffer; int error; /* get our clocks */ clk_pci = clk_get(&pdev->dev, NULL); if (IS_ERR(clk_pci)) { dev_err(&pdev->dev, "failed to get pci clock\n"); return PTR_ERR(clk_pci); } clk_external = clk_get(&pdev->dev, "external"); if (IS_ERR(clk_external)) { clk_put(clk_pci); dev_err(&pdev->dev, "failed to get external pci clock\n"); return PTR_ERR(clk_external); } /* read the bus speed that we want */ bus_clk = of_get_property(node, "lantiq,bus-clock", NULL); if (bus_clk) clk_set_rate(clk_pci, *bus_clk); /* and enable the clocks */ clk_enable(clk_pci); if (of_property_read_bool(node, "lantiq,external-clock")) clk_enable(clk_external); else clk_disable(clk_external); /* setup reset gpio used by pci */ reset_gpio = devm_gpiod_get_optional(&pdev->dev, "reset", GPIOD_OUT_LOW); error = PTR_ERR_OR_ZERO(reset_gpio); if (error) { dev_err(&pdev->dev, "failed to request gpio: %d\n", error); return error; } gpiod_set_consumer_name(reset_gpio, "pci_reset"); /* enable auto-switching between PCI and EBU */ ltq_pci_w32(0xa, PCI_CR_CLK_CTRL); /* busy, i.e. configuration is not done, PCI access has to be retried */ ltq_pci_w32(ltq_pci_r32(PCI_CR_PCI_MOD) & ~(1 << 24), PCI_CR_PCI_MOD); wmb(); /* BUS Master/IO/MEM access */ ltq_pci_cfg_w32(ltq_pci_cfg_r32(PCI_CS_STS_CMD) | 7, PCI_CS_STS_CMD); /* enable external 2 PCI masters */ temp_buffer = ltq_pci_r32(PCI_CR_PC_ARB); /* setup the request mask */ req_mask = of_get_property(node, "req-mask", NULL); if (req_mask) temp_buffer &= ~((*req_mask & 0xf) << 16); else temp_buffer &= ~0xf0000; /* enable internal arbiter */ temp_buffer |= (1 << INTERNAL_ARB_ENABLE_BIT); /* enable internal PCI master reqest */ temp_buffer &= (~(3 << PCI_MASTER0_REQ_MASK_2BITS)); /* enable EBU request */ temp_buffer &= (~(3 << PCI_MASTER1_REQ_MASK_2BITS)); /* enable all external masters request */ temp_buffer &= (~(3 << PCI_MASTER2_REQ_MASK_2BITS)); ltq_pci_w32(temp_buffer, PCI_CR_PC_ARB); wmb(); /* setup BAR memory regions */ ltq_pci_w32(0x18000000, PCI_CR_FCI_ADDR_MAP0); ltq_pci_w32(0x18400000, PCI_CR_FCI_ADDR_MAP1); ltq_pci_w32(0x18800000, PCI_CR_FCI_ADDR_MAP2); ltq_pci_w32(0x18c00000, PCI_CR_FCI_ADDR_MAP3); ltq_pci_w32(0x19000000, PCI_CR_FCI_ADDR_MAP4); ltq_pci_w32(0x19400000, PCI_CR_FCI_ADDR_MAP5); ltq_pci_w32(0x19800000, PCI_CR_FCI_ADDR_MAP6); ltq_pci_w32(0x19c00000, PCI_CR_FCI_ADDR_MAP7); ltq_pci_w32(0x1ae00000, PCI_CR_FCI_ADDR_MAP11hg); ltq_pci_w32(ltq_calc_bar11mask(), PCI_CR_BAR11MASK); ltq_pci_w32(0, PCI_CR_PCI_ADDR_MAP11); ltq_pci_w32(0, PCI_CS_BASE_ADDR1); /* both TX and RX endian swap are enabled */ ltq_pci_w32(ltq_pci_r32(PCI_CR_PCI_EOI) | 3, PCI_CR_PCI_EOI); wmb(); ltq_pci_w32(ltq_pci_r32(PCI_CR_BAR12MASK) | 0x80000000, PCI_CR_BAR12MASK); ltq_pci_w32(ltq_pci_r32(PCI_CR_BAR13MASK) | 0x80000000, PCI_CR_BAR13MASK); /*use 8 dw burst length */ ltq_pci_w32(0x303, PCI_CR_FCI_BURST_LENGTH); ltq_pci_w32(ltq_pci_r32(PCI_CR_PCI_MOD) | (1 << 24), PCI_CR_PCI_MOD); wmb(); /* setup irq line */ ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_PCC_CON) | 0xc, LTQ_EBU_PCC_CON); ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_PCC_IEN) | 0x10, LTQ_EBU_PCC_IEN); /* toggle reset pin */ if (reset_gpio) { gpiod_set_value_cansleep(reset_gpio, 1); wmb(); mdelay(1); gpiod_set_value_cansleep(reset_gpio, 0); } return 0; } static int ltq_pci_probe(struct platform_device *pdev) { pci_clear_flags(PCI_PROBE_ONLY); ltq_pci_membase = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); if (IS_ERR(ltq_pci_membase)) return PTR_ERR(ltq_pci_membase); ltq_pci_mapped_cfg = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(ltq_pci_mapped_cfg)) return PTR_ERR(ltq_pci_mapped_cfg); ltq_pci_startup(pdev); pci_load_of_ranges(&pci_controller, pdev->dev.of_node); register_pci_controller(&pci_controller); return 0; } static const struct of_device_id ltq_pci_match[] = { { .compatible = "lantiq,pci-xway" }, {}, }; static struct platform_driver ltq_pci_driver = { .probe = ltq_pci_probe, .driver = { .name = "pci-xway", .of_match_table = ltq_pci_match, }, }; int __init pcibios_init(void) { int ret = platform_driver_register(&ltq_pci_driver); if (ret) pr_info("pci-xway: Error registering platform driver!"); return ret; } arch_initcall(pcibios_init);
linux-master
arch/mips/pci/pci-lantiq.c
// SPDX-License-Identifier: GPL-2.0-or-later /* */ /* * Both AR2315 and AR2316 chips have PCI interface unit, which supports DMA * and interrupt. PCI interface supports MMIO access method, but does not * seem to support I/O ports. * * Read/write operation in the region 0x80000000-0xBFFFFFFF causes * a memory read/write command on the PCI bus. 30 LSBs of address on * the bus are taken from memory read/write request and 2 MSBs are * determined by PCI unit configuration. * * To work with the configuration space instead of memory is necessary set * the CFG_SEL bit in the PCI_MISC_CONFIG register. * * Devices on the bus can perform DMA requests via chip BAR1. PCI host * controller BARs are programmend as if an external device is programmed. * Which means that during configuration, IDSEL pin of the chip should be * asserted. * * We know (and support) only one board that uses the PCI interface - * Fonera 2.0g (FON2202). It has a USB EHCI controller connected to the * AR2315 PCI bus. IDSEL pin of USB controller is connected to AD[13] line * and IDSEL pin of AR2315 is connected to AD[16] line. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/dma-direct.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/bitops.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/io.h> #include <asm/paccess.h> /* * PCI Bus Interface Registers */ #define AR2315_PCI_1MS_REG 0x0008 #define AR2315_PCI_1MS_MASK 0x3FFFF /* # of AHB clk cycles in 1ms */ #define AR2315_PCI_MISC_CONFIG 0x000c #define AR2315_PCIMISC_TXD_EN 0x00000001 /* Enable TXD for fragments */ #define AR2315_PCIMISC_CFG_SEL 0x00000002 /* Mem or Config cycles */ #define AR2315_PCIMISC_GIG_MASK 0x0000000C /* bits 31-30 for pci req */ #define AR2315_PCIMISC_RST_MODE 0x00000030 #define AR2315_PCIRST_INPUT 0x00000000 /* 4:5=0 rst is input */ #define AR2315_PCIRST_LOW 0x00000010 /* 4:5=1 rst to GND */ #define AR2315_PCIRST_HIGH 0x00000020 /* 4:5=2 rst to VDD */ #define AR2315_PCIGRANT_EN 0x00000000 /* 6:7=0 early grant en */ #define AR2315_PCIGRANT_FRAME 0x00000040 /* 6:7=1 grant waits 4 frame */ #define AR2315_PCIGRANT_IDLE 0x00000080 /* 6:7=2 grant waits 4 idle */ #define AR2315_PCIGRANT_GAP 0x00000000 /* 6:7=2 grant waits 4 idle */ #define AR2315_PCICACHE_DIS 0x00001000 /* PCI external access cache * disable */ #define AR2315_PCI_OUT_TSTAMP 0x0010 #define AR2315_PCI_UNCACHE_CFG 0x0014 #define AR2315_PCI_IN_EN 0x0100 #define AR2315_PCI_IN_EN0 0x01 /* Enable chain 0 */ #define AR2315_PCI_IN_EN1 0x02 /* Enable chain 1 */ #define AR2315_PCI_IN_EN2 0x04 /* Enable chain 2 */ #define AR2315_PCI_IN_EN3 0x08 /* Enable chain 3 */ #define AR2315_PCI_IN_DIS 0x0104 #define AR2315_PCI_IN_DIS0 0x01 /* Disable chain 0 */ #define AR2315_PCI_IN_DIS1 0x02 /* Disable chain 1 */ #define AR2315_PCI_IN_DIS2 0x04 /* Disable chain 2 */ #define AR2315_PCI_IN_DIS3 0x08 /* Disable chain 3 */ #define AR2315_PCI_IN_PTR 0x0200 #define AR2315_PCI_OUT_EN 0x0400 #define AR2315_PCI_OUT_EN0 0x01 /* Enable chain 0 */ #define AR2315_PCI_OUT_DIS 0x0404 #define AR2315_PCI_OUT_DIS0 0x01 /* Disable chain 0 */ #define AR2315_PCI_OUT_PTR 0x0408 /* PCI interrupt status (write one to clear) */ #define AR2315_PCI_ISR 0x0500 #define AR2315_PCI_INT_TX 0x00000001 /* Desc In Completed */ #define AR2315_PCI_INT_TXOK 0x00000002 /* Desc In OK */ #define AR2315_PCI_INT_TXERR 0x00000004 /* Desc In ERR */ #define AR2315_PCI_INT_TXEOL 0x00000008 /* Desc In End-of-List */ #define AR2315_PCI_INT_RX 0x00000010 /* Desc Out Completed */ #define AR2315_PCI_INT_RXOK 0x00000020 /* Desc Out OK */ #define AR2315_PCI_INT_RXERR 0x00000040 /* Desc Out ERR */ #define AR2315_PCI_INT_RXEOL 0x00000080 /* Desc Out EOL */ #define AR2315_PCI_INT_TXOOD 0x00000200 /* Desc In Out-of-Desc */ #define AR2315_PCI_INT_DESCMASK 0x0000FFFF /* Desc Mask */ #define AR2315_PCI_INT_EXT 0x02000000 /* Extern PCI INTA */ #define AR2315_PCI_INT_ABORT 0x04000000 /* PCI bus abort event */ /* PCI interrupt mask */ #define AR2315_PCI_IMR 0x0504 /* Global PCI interrupt enable */ #define AR2315_PCI_IER 0x0508 #define AR2315_PCI_IER_DISABLE 0x00 /* disable pci interrupts */ #define AR2315_PCI_IER_ENABLE 0x01 /* enable pci interrupts */ #define AR2315_PCI_HOST_IN_EN 0x0800 #define AR2315_PCI_HOST_IN_DIS 0x0804 #define AR2315_PCI_HOST_IN_PTR 0x0810 #define AR2315_PCI_HOST_OUT_EN 0x0900 #define AR2315_PCI_HOST_OUT_DIS 0x0904 #define AR2315_PCI_HOST_OUT_PTR 0x0908 /* * PCI interrupts, which share IP5 * Keep ordered according to AR2315_PCI_INT_XXX bits */ #define AR2315_PCI_IRQ_EXT 25 #define AR2315_PCI_IRQ_ABORT 26 #define AR2315_PCI_IRQ_COUNT 27 /* Arbitrary size of memory region to access the configuration space */ #define AR2315_PCI_CFG_SIZE 0x00100000 #define AR2315_PCI_HOST_SLOT 3 #define AR2315_PCI_HOST_DEVID ((0xff18 << 16) | PCI_VENDOR_ID_ATHEROS) /* * We need some arbitrary non-zero value to be programmed to the BAR1 register * of PCI host controller to enable DMA. The same value should be used as the * offset to calculate the physical address of DMA buffer for PCI devices. */ #define AR2315_PCI_HOST_SDRAM_BASEADDR 0x20000000 /* ??? access BAR */ #define AR2315_PCI_HOST_MBAR0 0x10000000 /* RAM access BAR */ #define AR2315_PCI_HOST_MBAR1 AR2315_PCI_HOST_SDRAM_BASEADDR /* ??? access BAR */ #define AR2315_PCI_HOST_MBAR2 0x30000000 struct ar2315_pci_ctrl { void __iomem *cfg_mem; void __iomem *mmr_mem; unsigned irq; unsigned irq_ext; struct irq_domain *domain; struct pci_controller pci_ctrl; struct resource mem_res; struct resource io_res; }; static inline dma_addr_t ar2315_dev_offset(struct device *dev) { if (dev && dev_is_pci(dev)) return AR2315_PCI_HOST_SDRAM_BASEADDR; return 0; } dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return paddr + ar2315_dev_offset(dev); } phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { return dma_addr - ar2315_dev_offset(dev); } static inline struct ar2315_pci_ctrl *ar2315_pci_bus_to_apc(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; return container_of(hose, struct ar2315_pci_ctrl, pci_ctrl); } static inline u32 ar2315_pci_reg_read(struct ar2315_pci_ctrl *apc, u32 reg) { return __raw_readl(apc->mmr_mem + reg); } static inline void ar2315_pci_reg_write(struct ar2315_pci_ctrl *apc, u32 reg, u32 val) { __raw_writel(val, apc->mmr_mem + reg); } static inline void ar2315_pci_reg_mask(struct ar2315_pci_ctrl *apc, u32 reg, u32 mask, u32 val) { u32 ret = ar2315_pci_reg_read(apc, reg); ret &= ~mask; ret |= val; ar2315_pci_reg_write(apc, reg, ret); } static int ar2315_pci_cfg_access(struct ar2315_pci_ctrl *apc, unsigned devfn, int where, int size, u32 *ptr, bool write) { int func = PCI_FUNC(devfn); int dev = PCI_SLOT(devfn); u32 addr = (1 << (13 + dev)) | (func << 8) | (where & ~3); u32 mask = 0xffffffff >> 8 * (4 - size); u32 sh = (where & 3) * 8; u32 value, isr; /* Prevent access past the remapped area */ if (addr >= AR2315_PCI_CFG_SIZE || dev > 18) return PCIBIOS_DEVICE_NOT_FOUND; /* Clear pending errors */ ar2315_pci_reg_write(apc, AR2315_PCI_ISR, AR2315_PCI_INT_ABORT); /* Select Configuration access */ ar2315_pci_reg_mask(apc, AR2315_PCI_MISC_CONFIG, 0, AR2315_PCIMISC_CFG_SEL); mb(); /* PCI must see space change before we begin */ value = __raw_readl(apc->cfg_mem + addr); isr = ar2315_pci_reg_read(apc, AR2315_PCI_ISR); if (isr & AR2315_PCI_INT_ABORT) goto exit_err; if (write) { value = (value & ~(mask << sh)) | *ptr << sh; __raw_writel(value, apc->cfg_mem + addr); isr = ar2315_pci_reg_read(apc, AR2315_PCI_ISR); if (isr & AR2315_PCI_INT_ABORT) goto exit_err; } else { *ptr = (value >> sh) & mask; } goto exit; exit_err: ar2315_pci_reg_write(apc, AR2315_PCI_ISR, AR2315_PCI_INT_ABORT); if (!write) *ptr = 0xffffffff; exit: /* Select Memory access */ ar2315_pci_reg_mask(apc, AR2315_PCI_MISC_CONFIG, AR2315_PCIMISC_CFG_SEL, 0); return isr & AR2315_PCI_INT_ABORT ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL; } static inline int ar2315_pci_local_cfg_rd(struct ar2315_pci_ctrl *apc, unsigned devfn, int where, u32 *val) { return ar2315_pci_cfg_access(apc, devfn, where, sizeof(u32), val, false); } static inline int ar2315_pci_local_cfg_wr(struct ar2315_pci_ctrl *apc, unsigned devfn, int where, u32 val) { return ar2315_pci_cfg_access(apc, devfn, where, sizeof(u32), &val, true); } static int ar2315_pci_cfg_read(struct pci_bus *bus, unsigned devfn, int where, int size, u32 *value) { struct ar2315_pci_ctrl *apc = ar2315_pci_bus_to_apc(bus); if (PCI_SLOT(devfn) == AR2315_PCI_HOST_SLOT) return PCIBIOS_DEVICE_NOT_FOUND; return ar2315_pci_cfg_access(apc, devfn, where, size, value, false); } static int ar2315_pci_cfg_write(struct pci_bus *bus, unsigned devfn, int where, int size, u32 value) { struct ar2315_pci_ctrl *apc = ar2315_pci_bus_to_apc(bus); if (PCI_SLOT(devfn) == AR2315_PCI_HOST_SLOT) return PCIBIOS_DEVICE_NOT_FOUND; return ar2315_pci_cfg_access(apc, devfn, where, size, &value, true); } static struct pci_ops ar2315_pci_ops = { .read = ar2315_pci_cfg_read, .write = ar2315_pci_cfg_write, }; static int ar2315_pci_host_setup(struct ar2315_pci_ctrl *apc) { unsigned devfn = PCI_DEVFN(AR2315_PCI_HOST_SLOT, 0); int res; u32 id; res = ar2315_pci_local_cfg_rd(apc, devfn, PCI_VENDOR_ID, &id); if (res != PCIBIOS_SUCCESSFUL || id != AR2315_PCI_HOST_DEVID) return -ENODEV; /* Program MBARs */ ar2315_pci_local_cfg_wr(apc, devfn, PCI_BASE_ADDRESS_0, AR2315_PCI_HOST_MBAR0); ar2315_pci_local_cfg_wr(apc, devfn, PCI_BASE_ADDRESS_1, AR2315_PCI_HOST_MBAR1); ar2315_pci_local_cfg_wr(apc, devfn, PCI_BASE_ADDRESS_2, AR2315_PCI_HOST_MBAR2); /* Run */ ar2315_pci_local_cfg_wr(apc, devfn, PCI_COMMAND, PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_SPECIAL | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR | PCI_COMMAND_FAST_BACK); return 0; } static void ar2315_pci_irq_handler(struct irq_desc *desc) { struct ar2315_pci_ctrl *apc = irq_desc_get_handler_data(desc); u32 pending = ar2315_pci_reg_read(apc, AR2315_PCI_ISR) & ar2315_pci_reg_read(apc, AR2315_PCI_IMR); int ret = 0; if (pending) ret = generic_handle_domain_irq(apc->domain, __ffs(pending)); if (!pending || ret) spurious_interrupt(); } static void ar2315_pci_irq_mask(struct irq_data *d) { struct ar2315_pci_ctrl *apc = irq_data_get_irq_chip_data(d); ar2315_pci_reg_mask(apc, AR2315_PCI_IMR, BIT(d->hwirq), 0); } static void ar2315_pci_irq_mask_ack(struct irq_data *d) { struct ar2315_pci_ctrl *apc = irq_data_get_irq_chip_data(d); u32 m = BIT(d->hwirq); ar2315_pci_reg_mask(apc, AR2315_PCI_IMR, m, 0); ar2315_pci_reg_write(apc, AR2315_PCI_ISR, m); } static void ar2315_pci_irq_unmask(struct irq_data *d) { struct ar2315_pci_ctrl *apc = irq_data_get_irq_chip_data(d); ar2315_pci_reg_mask(apc, AR2315_PCI_IMR, 0, BIT(d->hwirq)); } static struct irq_chip ar2315_pci_irq_chip = { .name = "AR2315-PCI", .irq_mask = ar2315_pci_irq_mask, .irq_mask_ack = ar2315_pci_irq_mask_ack, .irq_unmask = ar2315_pci_irq_unmask, }; static int ar2315_pci_irq_map(struct irq_domain *d, unsigned irq, irq_hw_number_t hw) { irq_set_chip_and_handler(irq, &ar2315_pci_irq_chip, handle_level_irq); irq_set_chip_data(irq, d->host_data); return 0; } static const struct irq_domain_ops ar2315_pci_irq_domain_ops = { .map = ar2315_pci_irq_map, }; static void ar2315_pci_irq_init(struct ar2315_pci_ctrl *apc) { ar2315_pci_reg_mask(apc, AR2315_PCI_IER, AR2315_PCI_IER_ENABLE, 0); ar2315_pci_reg_mask(apc, AR2315_PCI_IMR, (AR2315_PCI_INT_ABORT | AR2315_PCI_INT_EXT), 0); apc->irq_ext = irq_create_mapping(apc->domain, AR2315_PCI_IRQ_EXT); irq_set_chained_handler_and_data(apc->irq, ar2315_pci_irq_handler, apc); /* Clear any pending Abort or external Interrupts * and enable interrupt processing */ ar2315_pci_reg_write(apc, AR2315_PCI_ISR, AR2315_PCI_INT_ABORT | AR2315_PCI_INT_EXT); ar2315_pci_reg_mask(apc, AR2315_PCI_IER, 0, AR2315_PCI_IER_ENABLE); } static int ar2315_pci_probe(struct platform_device *pdev) { struct ar2315_pci_ctrl *apc; struct device *dev = &pdev->dev; struct resource *res; int irq, err; apc = devm_kzalloc(dev, sizeof(*apc), GFP_KERNEL); if (!apc) return -ENOMEM; irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; apc->irq = irq; apc->mmr_mem = devm_platform_ioremap_resource_byname(pdev, "ar2315-pci-ctrl"); if (IS_ERR(apc->mmr_mem)) return PTR_ERR(apc->mmr_mem); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ar2315-pci-ext"); if (!res) return -EINVAL; apc->mem_res.name = "AR2315 PCI mem space"; apc->mem_res.parent = res; apc->mem_res.start = res->start; apc->mem_res.end = res->end; apc->mem_res.flags = IORESOURCE_MEM; /* Remap PCI config space */ apc->cfg_mem = devm_ioremap(dev, res->start, AR2315_PCI_CFG_SIZE); if (!apc->cfg_mem) { dev_err(dev, "failed to remap PCI config space\n"); return -ENOMEM; } /* Reset the PCI bus by setting bits 5-4 in PCI_MCFG */ ar2315_pci_reg_mask(apc, AR2315_PCI_MISC_CONFIG, AR2315_PCIMISC_RST_MODE, AR2315_PCIRST_LOW); msleep(100); /* Bring the PCI out of reset */ ar2315_pci_reg_mask(apc, AR2315_PCI_MISC_CONFIG, AR2315_PCIMISC_RST_MODE, AR2315_PCIRST_HIGH | AR2315_PCICACHE_DIS | 0x8); ar2315_pci_reg_write(apc, AR2315_PCI_UNCACHE_CFG, 0x1E | /* 1GB uncached */ (1 << 5) | /* Enable uncached */ (0x2 << 30) /* Base: 0x80000000 */); ar2315_pci_reg_read(apc, AR2315_PCI_UNCACHE_CFG); msleep(500); err = ar2315_pci_host_setup(apc); if (err) return err; apc->domain = irq_domain_add_linear(NULL, AR2315_PCI_IRQ_COUNT, &ar2315_pci_irq_domain_ops, apc); if (!apc->domain) { dev_err(dev, "failed to add IRQ domain\n"); return -ENOMEM; } ar2315_pci_irq_init(apc); /* PCI controller does not support I/O ports */ apc->io_res.name = "AR2315 IO space"; apc->io_res.start = 0; apc->io_res.end = 0; apc->io_res.flags = IORESOURCE_IO; apc->pci_ctrl.pci_ops = &ar2315_pci_ops; apc->pci_ctrl.mem_resource = &apc->mem_res; apc->pci_ctrl.io_resource = &apc->io_res; register_pci_controller(&apc->pci_ctrl); dev_info(dev, "register PCI controller\n"); return 0; } static struct platform_driver ar2315_pci_driver = { .probe = ar2315_pci_probe, .driver = { .name = "ar2315-pci", }, }; static int __init ar2315_pci_init(void) { return platform_driver_register(&ar2315_pci_driver); } arch_initcall(ar2315_pci_init); int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct ar2315_pci_ctrl *apc = ar2315_pci_bus_to_apc(dev->bus); return slot ? 0 : apc->irq_ext; } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/pci-ar2315.c
/* * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * [email protected] or [email protected] * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <asm/mach-rc32434/rc32434.h> #include <asm/mach-rc32434/irq.h> static int irq_map[2][12] = { {0, 0, 2, 3, 2, 3, 0, 0, 0, 0, 0, 1}, {0, 0, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3} }; int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int irq = 0; if (dev->bus->number < 2 && PCI_SLOT(dev->devfn) < 12) irq = irq_map[dev->bus->number][PCI_SLOT(dev->devfn)]; return irq + GROUP4_IRQ_BASE + 4; } static void rc32434_pci_early_fixup(struct pci_dev *dev) { if (PCI_SLOT(dev->devfn) == 6 && dev->bus->number == 0) { /* disable prefetched memory range */ pci_write_config_word(dev, PCI_PREF_MEMORY_LIMIT, 0); pci_write_config_word(dev, PCI_PREF_MEMORY_BASE, 0x10); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 4); } } /* * The fixup applies to both the IDT and VIA devices present on the board */ DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, rc32434_pci_early_fixup); /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/fixup-rc32434.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <bcm63xx_cpu.h> int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return bcm63xx_get_irq_number(IRQ_PCI); } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/fixup-bcm63xx.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/pci.h> #include <asm/mips-boards/piix4.h> /* PCI interrupt pins */ #define PCIA 1 #define PCIB 2 #define PCIC 3 #define PCID 4 /* This table is filled in by interrogating the PIIX4 chip */ static char pci_irq[5] = { }; static char irq_tab[][5] = { /* INTA INTB INTC INTD */ {0, 0, 0, 0, 0 }, /* 0: GT64120 PCI bridge */ {0, 0, 0, 0, 0 }, /* 1: Unused */ {0, 0, 0, 0, 0 }, /* 2: Unused */ {0, 0, 0, 0, 0 }, /* 3: Unused */ {0, 0, 0, 0, 0 }, /* 4: Unused */ {0, 0, 0, 0, 0 }, /* 5: Unused */ {0, 0, 0, 0, 0 }, /* 6: Unused */ {0, 0, 0, 0, 0 }, /* 7: Unused */ {0, 0, 0, 0, 0 }, /* 8: Unused */ {0, 0, 0, 0, 0 }, /* 9: Unused */ {0, 0, 0, 0, PCID }, /* 10: PIIX4 USB */ {0, PCIB, 0, 0, 0 }, /* 11: AMD 79C973 Ethernet */ {0, PCIC, 0, 0, 0 }, /* 12: Crystal 4281 Sound */ {0, 0, 0, 0, 0 }, /* 13: Unused */ {0, 0, 0, 0, 0 }, /* 14: Unused */ {0, 0, 0, 0, 0 }, /* 15: Unused */ {0, 0, 0, 0, 0 }, /* 16: Unused */ {0, 0, 0, 0, 0 }, /* 17: Bonito/SOC-it PCI Bridge*/ {0, PCIA, PCIB, PCIC, PCID }, /* 18: PCI Slot 1 */ {0, PCIB, PCIC, PCID, PCIA }, /* 19: PCI Slot 2 */ {0, PCIC, PCID, PCIA, PCIB }, /* 20: PCI Slot 3 */ {0, PCID, PCIA, PCIB, PCIC } /* 21: PCI Slot 4 */ }; int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int virq; virq = irq_tab[slot][pin]; return pci_irq[virq]; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } static void malta_piix_func3_base_fixup(struct pci_dev *dev) { /* Set a sane PM I/O base address */ pci_write_config_word(dev, PIIX4_FUNC3_PMBA, 0x1000); /* Enable access to the PM I/O region */ pci_write_config_byte(dev, PIIX4_FUNC3_PMREGMISC, PIIX4_FUNC3_PMREGMISC_EN); } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, malta_piix_func3_base_fixup); static void malta_piix_func0_fixup(struct pci_dev *pdev) { unsigned char reg_val; u32 reg_val32; u16 reg_val16; /* PIIX PIRQC[A:D] irq mappings */ static int piixirqmap[PIIX4_FUNC0_PIRQRC_IRQ_ROUTING_MAX] = { 0, 0, 0, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 0, 14, 15 }; int i; /* Interrogate PIIX4 to get PCI IRQ mapping */ for (i = 0; i <= 3; i++) { pci_read_config_byte(pdev, PIIX4_FUNC0_PIRQRC+i, &reg_val); if (reg_val & PIIX4_FUNC0_PIRQRC_IRQ_ROUTING_DISABLE) pci_irq[PCIA+i] = 0; /* Disabled */ else pci_irq[PCIA+i] = piixirqmap[reg_val & PIIX4_FUNC0_PIRQRC_IRQ_ROUTING_MASK]; } /* Done by YAMON 2.00 onwards */ if (PCI_SLOT(pdev->devfn) == 10) { /* * Set top of main memory accessible by ISA or DMA * devices to 16 Mb. */ pci_read_config_byte(pdev, PIIX4_FUNC0_TOM, &reg_val); pci_write_config_byte(pdev, PIIX4_FUNC0_TOM, reg_val | PIIX4_FUNC0_TOM_TOP_OF_MEMORY_MASK); } /* Mux SERIRQ to its pin */ pci_read_config_dword(pdev, PIIX4_FUNC0_GENCFG, &reg_val32); pci_write_config_dword(pdev, PIIX4_FUNC0_GENCFG, reg_val32 | PIIX4_FUNC0_GENCFG_SERIRQ); /* Enable SERIRQ */ pci_read_config_byte(pdev, PIIX4_FUNC0_SERIRQC, &reg_val); reg_val |= PIIX4_FUNC0_SERIRQC_EN | PIIX4_FUNC0_SERIRQC_CONT; pci_write_config_byte(pdev, PIIX4_FUNC0_SERIRQC, reg_val); /* Enable response to special cycles */ pci_read_config_word(pdev, PCI_COMMAND, &reg_val16); pci_write_config_word(pdev, PCI_COMMAND, reg_val16 | PCI_COMMAND_SPECIAL); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_0, malta_piix_func0_fixup); static void malta_piix_func1_fixup(struct pci_dev *pdev) { unsigned char reg_val; /* Done by YAMON 2.02 onwards */ if (PCI_SLOT(pdev->devfn) == 10) { /* * IDE Decode enable. */ pci_read_config_byte(pdev, PIIX4_FUNC1_IDETIM_PRIMARY_HI, &reg_val); pci_write_config_byte(pdev, PIIX4_FUNC1_IDETIM_PRIMARY_HI, reg_val|PIIX4_FUNC1_IDETIM_PRIMARY_HI_IDE_DECODE_EN); pci_read_config_byte(pdev, PIIX4_FUNC1_IDETIM_SECONDARY_HI, &reg_val); pci_write_config_byte(pdev, PIIX4_FUNC1_IDETIM_SECONDARY_HI, reg_val|PIIX4_FUNC1_IDETIM_SECONDARY_HI_IDE_DECODE_EN); } } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB, malta_piix_func1_fixup); /* Enable PCI 2.1 compatibility in PIIX4 */ static void quirk_dlcsetup(struct pci_dev *dev) { u8 odlc, ndlc; (void) pci_read_config_byte(dev, PIIX4_FUNC0_DLC, &odlc); /* Enable passive releases and delayed transaction */ ndlc = odlc | PIIX4_FUNC0_DLC_USBPR_EN | PIIX4_FUNC0_DLC_PASSIVE_RELEASE_EN | PIIX4_FUNC0_DLC_DELAYED_TRANSACTION_EN; (void) pci_write_config_byte(dev, PIIX4_FUNC0_DLC, ndlc); } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_0, quirk_dlcsetup);
linux-master
arch/mips/pci/fixup-malta.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000, 2001 Keith M Wesolowski */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/types.h> #include <asm/ip32/mace.h> #if 0 # define DPRINTK(args...) printk(args); #else # define DPRINTK(args...) #endif /* * O2 has up to 5 PCI devices connected into the MACE bridge. The device * map looks like this: * * 0 aic7xxx 0 * 1 aic7xxx 1 * 2 expansion slot * 3 N/C * 4 N/C */ static inline int mkaddr(struct pci_bus *bus, unsigned int devfn, unsigned int reg) { return ((bus->number & 0xff) << 16) | ((devfn & 0xff) << 8) | (reg & 0xfc); } static int mace_pci_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { u32 control = mace->pci.control; /* disable master aborts interrupts during config read */ mace->pci.control = control & ~MACEPCI_CONTROL_MAR_INT; mace->pci.config_addr = mkaddr(bus, devfn, reg); switch (size) { case 1: *val = mace->pci.config_data.b[(reg & 3) ^ 3]; break; case 2: *val = mace->pci.config_data.w[((reg >> 1) & 1) ^ 1]; break; case 4: *val = mace->pci.config_data.l; break; } /* ack possible master abort */ mace->pci.error &= ~MACEPCI_ERROR_MASTER_ABORT; mace->pci.control = control; /* * someone forgot to set the ultra bit for the onboard * scsi chips; we fake it here */ if (bus->number == 0 && reg == 0x40 && size == 4 && (devfn == (1 << 3) || devfn == (2 << 3))) *val |= 0x1000; DPRINTK("read%d: reg=%08x,val=%02x\n", size * 8, reg, *val); return PCIBIOS_SUCCESSFUL; } static int mace_pci_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { mace->pci.config_addr = mkaddr(bus, devfn, reg); switch (size) { case 1: mace->pci.config_data.b[(reg & 3) ^ 3] = val; break; case 2: mace->pci.config_data.w[((reg >> 1) & 1) ^ 1] = val; break; case 4: mace->pci.config_data.l = val; break; } DPRINTK("write%d: reg=%08x,val=%02x\n", size * 8, reg, val); return PCIBIOS_SUCCESSFUL; } struct pci_ops mace_pci_ops = { .read = mace_pci_read_config, .write = mace_pci_write_config, };
linux-master
arch/mips/pci/ops-mace.c
/* * Copyright (C) 2008 Aurelien Jarno <[email protected]> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/ssb/ssb.h> #include <linux/bcma/bcma.h> #include <bcm47xx.h> int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return 0; } #ifdef CONFIG_BCM47XX_SSB static int bcm47xx_pcibios_plat_dev_init_ssb(struct pci_dev *dev) { int res; u8 slot, pin; res = ssb_pcibios_plat_dev_init(dev); if (res < 0) { pci_alert(dev, "PCI: Failed to init device\n"); return res; } pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); slot = PCI_SLOT(dev->devfn); res = ssb_pcibios_map_irq(dev, slot, pin); /* IRQ-0 and IRQ-1 are software interrupts. */ if (res < 2) { pci_alert(dev, "PCI: Failed to map IRQ of device\n"); return res; } dev->irq = res; return 0; } #endif #ifdef CONFIG_BCM47XX_BCMA static int bcm47xx_pcibios_plat_dev_init_bcma(struct pci_dev *dev) { int res; res = bcma_core_pci_plat_dev_init(dev); if (res < 0) { pci_alert(dev, "PCI: Failed to init device\n"); return res; } res = bcma_core_pci_pcibios_map_irq(dev); /* IRQ-0 and IRQ-1 are software interrupts. */ if (res < 2) { pci_alert(dev, "PCI: Failed to map IRQ of device\n"); return res; } dev->irq = res; return 0; } #endif int pcibios_plat_dev_init(struct pci_dev *dev) { #ifdef CONFIG_BCM47XX_SSB if (bcm47xx_bus_type == BCM47XX_BUS_TYPE_SSB) return bcm47xx_pcibios_plat_dev_init_ssb(dev); #endif #ifdef CONFIG_BCM47XX_BCMA if (bcm47xx_bus_type == BCM47XX_BUS_TYPE_BCMA) return bcm47xx_pcibios_plat_dev_init_bcma(dev); #endif return 0; }
linux-master
arch/mips/pci/pci-bcm47xx.c
// SPDX-License-Identifier: GPL-2.0 /* * Alchemy PCI host mode support. * * Copyright 2001-2003, 2007-2008 MontaVista Software Inc. * Author: MontaVista Software, Inc. <[email protected]> * * Support for all devices (greater than 16) added by David Gathright. */ #include <linux/clk.h> #include <linux/export.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/syscore_ops.h> #include <linux/vmalloc.h> #include <linux/dma-map-ops.h> /* for dma_default_coherent */ #include <asm/mach-au1x00/au1000.h> #include <asm/tlbmisc.h> #ifdef CONFIG_PCI_DEBUG #define DBG(x...) printk(KERN_DEBUG x) #else #define DBG(x...) do {} while (0) #endif #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 struct alchemy_pci_context { struct pci_controller alchemy_pci_ctrl; /* leave as first member! */ void __iomem *regs; /* ctrl base */ /* tools for wired entry for config space access */ unsigned long last_elo0; unsigned long last_elo1; int wired_entry; struct vm_struct *pci_cfg_vm; unsigned long pm[12]; int (*board_map_irq)(const struct pci_dev *d, u8 slot, u8 pin); int (*board_pci_idsel)(unsigned int devsel, int assert); }; /* for syscore_ops. There's only one PCI controller on Alchemy chips, so this * should suffice for now. */ static struct alchemy_pci_context *__alchemy_pci_ctx; /* IO/MEM resources for PCI. Keep the memres in sync with fixup_bigphys_addr * in arch/mips/alchemy/common/setup.c */ static struct resource alchemy_pci_def_memres = { .start = ALCHEMY_PCI_MEMWIN_START, .end = ALCHEMY_PCI_MEMWIN_END, .name = "PCI memory space", .flags = IORESOURCE_MEM }; static struct resource alchemy_pci_def_iores = { .start = ALCHEMY_PCI_IOWIN_START, .end = ALCHEMY_PCI_IOWIN_END, .name = "PCI IO space", .flags = IORESOURCE_IO }; static void mod_wired_entry(int entry, unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask) { unsigned long old_pagemask; unsigned long old_ctx; /* Save old context and create impossible VPN2 value */ old_ctx = read_c0_entryhi() & MIPS_ENTRYHI_ASID; old_pagemask = read_c0_pagemask(); write_c0_index(entry); write_c0_pagemask(pagemask); write_c0_entryhi(entryhi); write_c0_entrylo0(entrylo0); write_c0_entrylo1(entrylo1); tlb_write_indexed(); write_c0_entryhi(old_ctx); write_c0_pagemask(old_pagemask); } static void alchemy_pci_wired_entry(struct alchemy_pci_context *ctx) { ctx->wired_entry = read_c0_wired(); add_wired_entry(0, 0, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); ctx->last_elo0 = ctx->last_elo1 = ~0; } static int config_access(unsigned char access_type, struct pci_bus *bus, unsigned int dev_fn, unsigned char where, u32 *data) { struct alchemy_pci_context *ctx = bus->sysdata; unsigned int device = PCI_SLOT(dev_fn); unsigned int function = PCI_FUNC(dev_fn); unsigned long offset, status, cfg_base, flags, entryLo0, entryLo1, r; int error = PCIBIOS_SUCCESSFUL; if (device > 19) { *data = 0xffffffff; return -1; } local_irq_save(flags); r = __raw_readl(ctx->regs + PCI_REG_STATCMD) & 0x0000ffff; r |= PCI_STATCMD_STATUS(0x2000); __raw_writel(r, ctx->regs + PCI_REG_STATCMD); wmb(); /* Allow board vendors to implement their own off-chip IDSEL. * If it doesn't succeed, may as well bail out at this point. */ if (ctx->board_pci_idsel(device, 1) == 0) { *data = 0xffffffff; local_irq_restore(flags); return -1; } /* Setup the config window */ if (bus->number == 0) cfg_base = (1 << device) << 11; else cfg_base = 0x80000000 | (bus->number << 16) | (device << 11); /* Setup the lower bits of the 36-bit address */ offset = (function << 8) | (where & ~0x3); /* Pick up any address that falls below the page mask */ offset |= cfg_base & ~PAGE_MASK; /* Page boundary */ cfg_base = cfg_base & PAGE_MASK; /* To improve performance, if the current device is the same as * the last device accessed, we don't touch the TLB. */ entryLo0 = (6 << 26) | (cfg_base >> 6) | (2 << 3) | 7; entryLo1 = (6 << 26) | (cfg_base >> 6) | (0x1000 >> 6) | (2 << 3) | 7; if ((entryLo0 != ctx->last_elo0) || (entryLo1 != ctx->last_elo1)) { mod_wired_entry(ctx->wired_entry, entryLo0, entryLo1, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); ctx->last_elo0 = entryLo0; ctx->last_elo1 = entryLo1; } if (access_type == PCI_ACCESS_WRITE) __raw_writel(*data, ctx->pci_cfg_vm->addr + offset); else *data = __raw_readl(ctx->pci_cfg_vm->addr + offset); wmb(); DBG("alchemy-pci: cfg access %d bus %u dev %u at %x dat %x conf %lx\n", access_type, bus->number, device, where, *data, offset); /* check for errors, master abort */ status = __raw_readl(ctx->regs + PCI_REG_STATCMD); if (status & (1 << 29)) { *data = 0xffffffff; error = -1; DBG("alchemy-pci: master abort on cfg access %d bus %d dev %d\n", access_type, bus->number, device); } else if ((status >> 28) & 0xf) { DBG("alchemy-pci: PCI ERR detected: dev %d, status %lx\n", device, (status >> 28) & 0xf); /* clear errors */ __raw_writel(status & 0xf000ffff, ctx->regs + PCI_REG_STATCMD); *data = 0xffffffff; error = -1; } /* Take away the IDSEL. */ (void)ctx->board_pci_idsel(device, 0); local_irq_restore(flags); return error; } static int read_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 *val) { u32 data; int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); if (where & 1) data >>= 8; if (where & 2) data >>= 16; *val = data & 0xff; return ret; } static int read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 *val) { u32 data; int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); if (where & 2) data >>= 16; *val = data & 0xffff; return ret; } static int read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 *val) { return config_access(PCI_ACCESS_READ, bus, devfn, where, val); } static int write_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 val) { return config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val); } static int alchemy_pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { switch (size) { case 1: { u8 _val; int rc = read_config_byte(bus, devfn, where, &_val); *val = _val; return rc; } case 2: { u16 _val; int rc = read_config_word(bus, devfn, where, &_val); *val = _val; return rc; } default: return read_config_dword(bus, devfn, where, val); } } static int alchemy_pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { switch (size) { case 1: return write_config_byte(bus, devfn, where, (u8) val); case 2: return write_config_word(bus, devfn, where, (u16) val); default: return write_config_dword(bus, devfn, where, val); } } static struct pci_ops alchemy_pci_ops = { .read = alchemy_pci_read, .write = alchemy_pci_write, }; static int alchemy_pci_def_idsel(unsigned int devsel, int assert) { return 1; /* success */ } /* save PCI controller register contents. */ static int alchemy_pci_suspend(void) { struct alchemy_pci_context *ctx = __alchemy_pci_ctx; if (!ctx) return 0; ctx->pm[0] = __raw_readl(ctx->regs + PCI_REG_CMEM); ctx->pm[1] = __raw_readl(ctx->regs + PCI_REG_CONFIG) & 0x0009ffff; ctx->pm[2] = __raw_readl(ctx->regs + PCI_REG_B2BMASK_CCH); ctx->pm[3] = __raw_readl(ctx->regs + PCI_REG_B2BBASE0_VID); ctx->pm[4] = __raw_readl(ctx->regs + PCI_REG_B2BBASE1_SID); ctx->pm[5] = __raw_readl(ctx->regs + PCI_REG_MWMASK_DEV); ctx->pm[6] = __raw_readl(ctx->regs + PCI_REG_MWBASE_REV_CCL); ctx->pm[7] = __raw_readl(ctx->regs + PCI_REG_ID); ctx->pm[8] = __raw_readl(ctx->regs + PCI_REG_CLASSREV); ctx->pm[9] = __raw_readl(ctx->regs + PCI_REG_PARAM); ctx->pm[10] = __raw_readl(ctx->regs + PCI_REG_MBAR); ctx->pm[11] = __raw_readl(ctx->regs + PCI_REG_TIMEOUT); return 0; } static void alchemy_pci_resume(void) { struct alchemy_pci_context *ctx = __alchemy_pci_ctx; if (!ctx) return; __raw_writel(ctx->pm[0], ctx->regs + PCI_REG_CMEM); __raw_writel(ctx->pm[2], ctx->regs + PCI_REG_B2BMASK_CCH); __raw_writel(ctx->pm[3], ctx->regs + PCI_REG_B2BBASE0_VID); __raw_writel(ctx->pm[4], ctx->regs + PCI_REG_B2BBASE1_SID); __raw_writel(ctx->pm[5], ctx->regs + PCI_REG_MWMASK_DEV); __raw_writel(ctx->pm[6], ctx->regs + PCI_REG_MWBASE_REV_CCL); __raw_writel(ctx->pm[7], ctx->regs + PCI_REG_ID); __raw_writel(ctx->pm[8], ctx->regs + PCI_REG_CLASSREV); __raw_writel(ctx->pm[9], ctx->regs + PCI_REG_PARAM); __raw_writel(ctx->pm[10], ctx->regs + PCI_REG_MBAR); __raw_writel(ctx->pm[11], ctx->regs + PCI_REG_TIMEOUT); wmb(); __raw_writel(ctx->pm[1], ctx->regs + PCI_REG_CONFIG); wmb(); /* YAMON on all db1xxx boards wipes the TLB and writes zero to C0_wired * on resume, making it necessary to recreate it as soon as possible. */ ctx->wired_entry = 8191; /* impossibly high value */ alchemy_pci_wired_entry(ctx); /* install it */ } static struct syscore_ops alchemy_pci_pmops = { .suspend = alchemy_pci_suspend, .resume = alchemy_pci_resume, }; static int alchemy_pci_probe(struct platform_device *pdev) { struct alchemy_pci_platdata *pd = pdev->dev.platform_data; struct alchemy_pci_context *ctx; void __iomem *virt_io; unsigned long val; struct resource *r; struct clk *c; int ret; /* need at least PCI IRQ mapping table */ if (!pd) { dev_err(&pdev->dev, "need platform data for PCI setup\n"); ret = -ENODEV; goto out; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { dev_err(&pdev->dev, "no memory for pcictl context\n"); ret = -ENOMEM; goto out; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no pcictl ctrl regs resource\n"); ret = -ENODEV; goto out1; } if (!request_mem_region(r->start, resource_size(r), pdev->name)) { dev_err(&pdev->dev, "cannot claim pci regs\n"); ret = -ENODEV; goto out1; } c = clk_get(&pdev->dev, "pci_clko"); if (IS_ERR(c)) { dev_err(&pdev->dev, "unable to find PCI clock\n"); ret = PTR_ERR(c); goto out2; } ret = clk_prepare_enable(c); if (ret) { dev_err(&pdev->dev, "cannot enable PCI clock\n"); goto out6; } ctx->regs = ioremap(r->start, resource_size(r)); if (!ctx->regs) { dev_err(&pdev->dev, "cannot map pci regs\n"); ret = -ENODEV; goto out5; } /* map parts of the PCI IO area */ /* REVISIT: if this changes with a newer variant (doubt it) make this * a platform resource. */ virt_io = ioremap(AU1500_PCI_IO_PHYS_ADDR, 0x00100000); if (!virt_io) { dev_err(&pdev->dev, "cannot remap pci io space\n"); ret = -ENODEV; goto out3; } ctx->alchemy_pci_ctrl.io_map_base = (unsigned long)virt_io; /* Au1500 revisions older than AD have borked coherent PCI */ if (alchemy_get_cputype() == ALCHEMY_CPU_AU1500 && read_c0_prid() < 0x01030202 && !dma_default_coherent) { val = __raw_readl(ctx->regs + PCI_REG_CONFIG); val |= PCI_CONFIG_NC; __raw_writel(val, ctx->regs + PCI_REG_CONFIG); wmb(); dev_info(&pdev->dev, "non-coherent PCI on Au1500 AA/AB/AC\n"); } if (pd->board_map_irq) ctx->board_map_irq = pd->board_map_irq; if (pd->board_pci_idsel) ctx->board_pci_idsel = pd->board_pci_idsel; else ctx->board_pci_idsel = alchemy_pci_def_idsel; /* fill in relevant pci_controller members */ ctx->alchemy_pci_ctrl.pci_ops = &alchemy_pci_ops; ctx->alchemy_pci_ctrl.mem_resource = &alchemy_pci_def_memres; ctx->alchemy_pci_ctrl.io_resource = &alchemy_pci_def_iores; /* we can't ioremap the entire pci config space because it's too large, * nor can we dynamically ioremap it because some drivers use the * PCI config routines from within atomic contex and that becomes a * problem in get_vm_area(). Instead we use one wired TLB entry to * handle all config accesses for all busses. */ ctx->pci_cfg_vm = get_vm_area(0x2000, VM_IOREMAP); if (!ctx->pci_cfg_vm) { dev_err(&pdev->dev, "unable to get vm area\n"); ret = -ENOMEM; goto out4; } ctx->wired_entry = 8191; /* impossibly high value */ alchemy_pci_wired_entry(ctx); /* install it */ set_io_port_base((unsigned long)ctx->alchemy_pci_ctrl.io_map_base); /* board may want to modify bits in the config register, do it now */ val = __raw_readl(ctx->regs + PCI_REG_CONFIG); val &= ~pd->pci_cfg_clr; val |= pd->pci_cfg_set; val &= ~PCI_CONFIG_PD; /* clear disable bit */ __raw_writel(val, ctx->regs + PCI_REG_CONFIG); wmb(); __alchemy_pci_ctx = ctx; platform_set_drvdata(pdev, ctx); register_syscore_ops(&alchemy_pci_pmops); register_pci_controller(&ctx->alchemy_pci_ctrl); dev_info(&pdev->dev, "PCI controller at %ld MHz\n", clk_get_rate(c) / 1000000); return 0; out4: iounmap(virt_io); out3: iounmap(ctx->regs); out5: clk_disable_unprepare(c); out6: clk_put(c); out2: release_mem_region(r->start, resource_size(r)); out1: kfree(ctx); out: return ret; } static struct platform_driver alchemy_pcictl_driver = { .probe = alchemy_pci_probe, .driver = { .name = "alchemy-pci", }, }; static int __init alchemy_pci_init(void) { /* Au1500/Au1550 have PCI */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1500: case ALCHEMY_CPU_AU1550: return platform_driver_register(&alchemy_pcictl_driver); } return 0; } arch_initcall(alchemy_pci_init); int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { struct alchemy_pci_context *ctx = dev->sysdata; if (ctx && ctx->board_map_irq) return ctx->board_map_irq(dev, slot, pin); return -1; } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/pci-alchemy.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1999, 2000, 2004 MIPS Technologies, Inc. * All rights reserved. * Authors: Carsten Langgaard <[email protected]> * Maciej W. Rozycki <[email protected]> * * MIPS boards specific PCI support. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <asm/mips-boards/bonito64.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 #define CFG_SPACE_REG(offset) (void *)CKSEG1ADDR(_pcictrl_bonito_pcicfg + (offset)) #define ID_SEL_BEGIN 10 #define MAX_DEV_NUM (31 - ID_SEL_BEGIN) static int bonito64_pcibios_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 * data) { u32 busnum = bus->number; u32 addr, type; u32 dummy; void *addrp; int device = PCI_SLOT(devfn); int function = PCI_FUNC(devfn); int reg = where & ~3; if (busnum == 0) { /* Type 0 configuration for onboard PCI bus */ if (device > MAX_DEV_NUM) return -1; addr = (1 << (device + ID_SEL_BEGIN)) | (function << 8) | reg; type = 0; } else { /* Type 1 configuration for offboard PCI bus */ addr = (busnum << 16) | (device << 11) | (function << 8) | reg; type = 0x10000; } /* Clear aborts */ BONITO_PCICMD |= BONITO_PCICMD_MABORT_CLR | BONITO_PCICMD_MTABORT_CLR; BONITO_PCIMAP_CFG = (addr >> 16) | type; /* Flush Bonito register block */ dummy = BONITO_PCIMAP_CFG; mmiowb(); addrp = CFG_SPACE_REG(addr & 0xffff); if (access_type == PCI_ACCESS_WRITE) { writel(cpu_to_le32(*data), addrp); /* Wait till done */ while (BONITO_PCIMSTAT & 0xF); } else { *data = le32_to_cpu(readl(addrp)); } /* Detect Master/Target abort */ if (BONITO_PCICMD & (BONITO_PCICMD_MABORT_CLR | BONITO_PCICMD_MTABORT_CLR)) { /* Error occurred */ /* Clear bits */ BONITO_PCICMD |= (BONITO_PCICMD_MABORT_CLR | BONITO_PCICMD_MTABORT_CLR); return -1; } return 0; } /* * We can't address 8 and 16 bit words directly. Instead we have to * read/write a 32bit word and mask/modify the data we actually want. */ static int bonito64_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (bonito64_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int bonito64_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (size == 4) data = val; else { if (bonito64_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); } if (bonito64_pcibios_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } struct pci_ops bonito64_pci_ops = { .read = bonito64_pcibios_read, .write = bonito64_pcibios_write };
linux-master
arch/mips/pci/ops-bonito64.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SNI specific PCI support for RM200/RM300. * * Copyright (C) 1997 - 2000, 2003 Ralf Baechle <[email protected]> */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/types.h> #include <asm/sni.h> /* * It seems that on the RM200 only lower 3 bits of the 5 bit PCI device * address are decoded. We therefore manually have to reject attempts at * reading outside this range. Being on the paranoid side we only do this * test for bus 0 and hope forwarding and decoding work properly for any * subordinated busses. * * ASIC PCI only supports type 1 config cycles. */ static int set_config_address(unsigned int busno, unsigned int devfn, int reg) { if ((devfn > 255) || (reg > 255)) return PCIBIOS_BAD_REGISTER_NUMBER; if (busno == 0 && devfn >= PCI_DEVFN(8, 0)) return PCIBIOS_DEVICE_NOT_FOUND; *(volatile u32 *)PCIMT_CONFIG_ADDRESS = ((busno & 0xff) << 16) | ((devfn & 0xff) << 8) | (reg & 0xfc); return PCIBIOS_SUCCESSFUL; } static int pcimt_read(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 * val) { int res; if ((res = set_config_address(bus->number, devfn, reg))) return res; switch (size) { case 1: *val = inb(PCIMT_CONFIG_DATA + (reg & 3)); break; case 2: *val = inw(PCIMT_CONFIG_DATA + (reg & 2)); break; case 4: *val = inl(PCIMT_CONFIG_DATA); break; } return 0; } static int pcimt_write(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { int res; if ((res = set_config_address(bus->number, devfn, reg))) return res; switch (size) { case 1: outb(val, PCIMT_CONFIG_DATA + (reg & 3)); break; case 2: outw(val, PCIMT_CONFIG_DATA + (reg & 2)); break; case 4: outl(val, PCIMT_CONFIG_DATA); break; } return 0; } struct pci_ops sni_pcimt_ops = { .read = pcimt_read, .write = pcimt_write, }; static int pcit_set_config_address(unsigned int busno, unsigned int devfn, int reg) { if ((devfn > 255) || (reg > 255) || (busno > 255)) return PCIBIOS_BAD_REGISTER_NUMBER; outl((1 << 31) | ((busno & 0xff) << 16) | ((devfn & 0xff) << 8) | (reg & 0xfc), 0xcf8); return PCIBIOS_SUCCESSFUL; } static int pcit_read(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 * val) { int res; /* * on bus 0 we need to check, whether there is a device answering * for the devfn by doing a config write and checking the result. If * we don't do it, we will get a data bus error */ if (bus->number == 0) { pcit_set_config_address(0, 0, 0x68); outl(inl(0xcfc) | 0xc0000000, 0xcfc); if ((res = pcit_set_config_address(0, devfn, 0))) return res; outl(0xffffffff, 0xcfc); pcit_set_config_address(0, 0, 0x68); if (inl(0xcfc) & 0x100000) return PCIBIOS_DEVICE_NOT_FOUND; } if ((res = pcit_set_config_address(bus->number, devfn, reg))) return res; switch (size) { case 1: *val = inb(PCIMT_CONFIG_DATA + (reg & 3)); break; case 2: *val = inw(PCIMT_CONFIG_DATA + (reg & 2)); break; case 4: *val = inl(PCIMT_CONFIG_DATA); break; } return 0; } static int pcit_write(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { int res; if ((res = pcit_set_config_address(bus->number, devfn, reg))) return res; switch (size) { case 1: outb(val, PCIMT_CONFIG_DATA + (reg & 3)); break; case 2: outw(val, PCIMT_CONFIG_DATA + (reg & 2)); break; case 4: outl(val, PCIMT_CONFIG_DATA); break; } return 0; } struct pci_ops sni_pcit_ops = { .read = pcit_read, .write = pcit_write, };
linux-master
arch/mips/pci/ops-sni.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005-2009, 2010 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/msi.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npi-defs.h> #include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/cvmx-npei-defs.h> #include <asm/octeon/cvmx-sli-defs.h> #include <asm/octeon/cvmx-pexp-defs.h> #include <asm/octeon/pci-octeon.h> /* * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is * in use. */ static u64 msi_free_irq_bitmask[4]; /* * Each bit in msi_multiple_irq_bitmask tells that the device using * this bit in msi_free_irq_bitmask is also using the next bit. This * is used so we can disable all of the MSI interrupts when a device * uses multiple. */ static u64 msi_multiple_irq_bitmask[4]; /* * This lock controls updates to msi_free_irq_bitmask and * msi_multiple_irq_bitmask. */ static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock); /* * Number of MSI IRQs used. This variable is set up in * the module init time. */ static int msi_irq_size; /** * arch_setup_msi_irq() - setup MSI IRQs for a device * @dev: Device requesting MSI interrupts * @desc: MSI descriptor * * Called when a driver requests MSI interrupts instead of the * legacy INT A-D. This routine will allocate multiple interrupts * for MSI devices that support them. A device can override this by * programming the MSI control bits [6:4] before calling * pci_enable_msi(). * * Return: %0 on success, non-%0 on error. */ int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct msi_msg msg; u16 control; int configured_private_bits; int request_private_bits; int irq = 0; int irq_step; u64 search_mask; int index; if (desc->pci.msi_attrib.is_msix) return -EINVAL; /* * Read the MSI config to figure out how many IRQs this device * wants. Most devices only want 1, which will give * configured_private_bits and request_private_bits equal 0. */ pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); /* * If the number of private bits has been configured then use * that value instead of the requested number. This gives the * driver the chance to override the number of interrupts * before calling pci_enable_msi(). */ configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4; if (configured_private_bits == 0) { /* Nothing is configured, so use the hardware requested size */ request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1; } else { /* * Use the number of configured bits, assuming the * driver wanted to override the hardware request * value. */ request_private_bits = configured_private_bits; } /* * The PCI 2.3 spec mandates that there are at most 32 * interrupts. If this device asks for more, only give it one. */ if (request_private_bits > 5) request_private_bits = 0; try_only_one: /* * The IRQs have to be aligned on a power of two based on the * number being requested. */ irq_step = 1 << request_private_bits; /* Mask with one bit for each IRQ */ search_mask = (1 << irq_step) - 1; /* * We're going to search msi_free_irq_bitmask_lock for zero * bits. This represents an MSI interrupt number that isn't in * use. */ spin_lock(&msi_free_irq_bitmask_lock); for (index = 0; index < msi_irq_size/64; index++) { for (irq = 0; irq < 64; irq += irq_step) { if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) { msi_free_irq_bitmask[index] |= search_mask << irq; msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq; goto msi_irq_allocated; } } } msi_irq_allocated: spin_unlock(&msi_free_irq_bitmask_lock); /* Make sure the search for available interrupts didn't fail */ if (irq >= 64) { if (request_private_bits) { pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one", 1 << request_private_bits); request_private_bits = 0; goto try_only_one; } else panic("arch_setup_msi_irq: Unable to find a free MSI interrupt"); } /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */ irq += index*64; irq += OCTEON_IRQ_MSI_BIT0; switch (octeon_dma_bar_type) { case OCTEON_DMA_BAR_TYPE_SMALL: /* When not using big bar, Bar 0 is based at 128MB */ msg.address_lo = ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_BIG: /* When using big bar, Bar 0 is based at 0 */ msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_PCIE: /* When using PCIe, Bar 0 is based at 0 */ /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */ msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32; break; case OCTEON_DMA_BAR_TYPE_PCIE2: /* When using PCIe2, Bar 0 is based at 0 */ msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff; msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32; break; default: panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type"); } msg.data = irq - OCTEON_IRQ_MSI_BIT0; /* Update the number of IRQs the device has available to it */ control &= ~PCI_MSI_FLAGS_QSIZE; control |= request_private_bits << 4; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); irq_set_msi_desc(irq, desc); pci_write_msi_msg(irq, &msg); return 0; } /** * arch_teardown_msi_irq() - release MSI IRQs for a device * @irq: The devices first irq number. There may be multiple in sequence. * * Called when a device no longer needs its MSI interrupts. All * MSI interrupts for the device are freed. */ void arch_teardown_msi_irq(unsigned int irq) { int number_irqs; u64 bitmask; int index = 0; int irq0; if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0)) panic("arch_teardown_msi_irq: Attempted to teardown illegal " "MSI interrupt (%d)", irq); irq -= OCTEON_IRQ_MSI_BIT0; index = irq / 64; irq0 = irq % 64; /* * Count the number of IRQs we need to free by looking at the * msi_multiple_irq_bitmask. Each bit set means that the next * IRQ is also owned by this device. */ number_irqs = 0; while ((irq0 + number_irqs < 64) && (msi_multiple_irq_bitmask[index] & (1ull << (irq0 + number_irqs)))) number_irqs++; number_irqs++; /* Mask with one bit for each IRQ */ bitmask = (1 << number_irqs) - 1; /* Shift the mask to the correct bit location */ bitmask <<= irq0; if ((msi_free_irq_bitmask[index] & bitmask) != bitmask) panic("arch_teardown_msi_irq: Attempted to teardown MSI " "interrupt (%d) not in use", irq); /* Checks are done, update the in use bitmask */ spin_lock(&msi_free_irq_bitmask_lock); msi_free_irq_bitmask[index] &= ~bitmask; msi_multiple_irq_bitmask[index] &= ~bitmask; spin_unlock(&msi_free_irq_bitmask_lock); } static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock); static u64 msi_rcv_reg[4]; static u64 mis_ena_reg[4]; static void octeon_irq_msi_enable_pcie(struct irq_data *data) { u64 en; unsigned long flags; int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; int irq_index = msi_number >> 6; int irq_bit = msi_number & 0x3f; raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(mis_ena_reg[irq_index]); en |= 1ull << irq_bit; cvmx_write_csr(mis_ena_reg[irq_index], en); cvmx_read_csr(mis_ena_reg[irq_index]); raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } static void octeon_irq_msi_disable_pcie(struct irq_data *data) { u64 en; unsigned long flags; int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0; int irq_index = msi_number >> 6; int irq_bit = msi_number & 0x3f; raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags); en = cvmx_read_csr(mis_ena_reg[irq_index]); en &= ~(1ull << irq_bit); cvmx_write_csr(mis_ena_reg[irq_index], en); cvmx_read_csr(mis_ena_reg[irq_index]); raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags); } static struct irq_chip octeon_irq_chip_msi_pcie = { .name = "MSI", .irq_enable = octeon_irq_msi_enable_pcie, .irq_disable = octeon_irq_msi_disable_pcie, }; static void octeon_irq_msi_enable_pci(struct irq_data *data) { /* * Octeon PCI doesn't have the ability to mask/unmask MSI * interrupts individually. Instead of masking/unmasking them * in groups of 16, we simple assume MSI devices are well * behaved. MSI interrupts are always enable and the ACK is * assumed to be enough */ } static void octeon_irq_msi_disable_pci(struct irq_data *data) { /* See comment in enable */ } static struct irq_chip octeon_irq_chip_msi_pci = { .name = "MSI", .irq_enable = octeon_irq_msi_enable_pci, .irq_disable = octeon_irq_msi_disable_pci, }; /* * Called by the interrupt handling code when an MSI interrupt * occurs. */ static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits) { int irq; int bit; bit = fls64(msi_bits); if (bit) { bit--; /* Acknowledge it first. */ cvmx_write_csr(msi_rcv_reg[index], 1ull << bit); irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index; do_IRQ(irq); return IRQ_HANDLED; } return IRQ_NONE; } #define OCTEON_MSI_INT_HANDLER_X(x) \ static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \ { \ u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \ return __octeon_msi_do_interrupt((x), msi_bits); \ } /* * Create octeon_msi_interrupt{0-3} function body */ OCTEON_MSI_INT_HANDLER_X(0); OCTEON_MSI_INT_HANDLER_X(1); OCTEON_MSI_INT_HANDLER_X(2); OCTEON_MSI_INT_HANDLER_X(3); /* * Initializes the MSI interrupt handling code */ int __init octeon_msi_initialize(void) { int irq; struct irq_chip *msi; if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) { return 0; } else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) { msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0; msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1; msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2; msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3; mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0; mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1; mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2; mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3; msi = &octeon_irq_chip_msi_pcie; } else { msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV; #define INVALID_GENERATE_ADE 0x8700000000000000ULL; msi_rcv_reg[1] = INVALID_GENERATE_ADE; msi_rcv_reg[2] = INVALID_GENERATE_ADE; msi_rcv_reg[3] = INVALID_GENERATE_ADE; mis_ena_reg[0] = INVALID_GENERATE_ADE; mis_ena_reg[1] = INVALID_GENERATE_ADE; mis_ena_reg[2] = INVALID_GENERATE_ADE; mis_ena_reg[3] = INVALID_GENERATE_ADE; msi = &octeon_irq_chip_msi_pci; } for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++) irq_set_chip_and_handler(irq, msi, handle_simple_irq); if (octeon_has_feature(OCTEON_FEATURE_PCIE)) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 0, "MSI[0:63]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1, 0, "MSI[64:127]", octeon_msi_interrupt1)) panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2, 0, "MSI[127:191]", octeon_msi_interrupt2)) panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3, 0, "MSI[192:255]", octeon_msi_interrupt3)) panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); msi_irq_size = 256; } else if (octeon_is_pci_host()) { if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0, 0, "MSI[0:15]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0, 0, "MSI[16:31]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0, 0, "MSI[32:47]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed"); if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0, 0, "MSI[48:63]", octeon_msi_interrupt0)) panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed"); msi_irq_size = 64; } return 0; } subsys_initcall(octeon_msi_initialize);
linux-master
arch/mips/pci/msi-octeon.c
// SPDX-License-Identifier: GPL-2.0-only /* * Ralink RT3662/RT3883 SoC PCI support * * Copyright (C) 2011-2013 Gabor Juhos <[email protected]> * * Parts of this file are based on Ralink's 2.6.21 BSP */ #include <linux/types.h> #include <linux/pci.h> #include <linux/io.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_pci.h> #include <linux/platform_device.h> #include <asm/mach-ralink/rt3883.h> #include <asm/mach-ralink/ralink_regs.h> #define RT3883_MEMORY_BASE 0x00000000 #define RT3883_MEMORY_SIZE 0x02000000 #define RT3883_PCI_REG_PCICFG 0x00 #define RT3883_PCICFG_P2P_BR_DEVNUM_M 0xf #define RT3883_PCICFG_P2P_BR_DEVNUM_S 16 #define RT3883_PCICFG_PCIRST BIT(1) #define RT3883_PCI_REG_PCIRAW 0x04 #define RT3883_PCI_REG_PCIINT 0x08 #define RT3883_PCI_REG_PCIENA 0x0c #define RT3883_PCI_REG_CFGADDR 0x20 #define RT3883_PCI_REG_CFGDATA 0x24 #define RT3883_PCI_REG_MEMBASE 0x28 #define RT3883_PCI_REG_IOBASE 0x2c #define RT3883_PCI_REG_ARBCTL 0x80 #define RT3883_PCI_REG_BASE(_x) (0x1000 + (_x) * 0x1000) #define RT3883_PCI_REG_BAR0SETUP(_x) (RT3883_PCI_REG_BASE((_x)) + 0x10) #define RT3883_PCI_REG_IMBASEBAR0(_x) (RT3883_PCI_REG_BASE((_x)) + 0x18) #define RT3883_PCI_REG_ID(_x) (RT3883_PCI_REG_BASE((_x)) + 0x30) #define RT3883_PCI_REG_CLASS(_x) (RT3883_PCI_REG_BASE((_x)) + 0x34) #define RT3883_PCI_REG_SUBID(_x) (RT3883_PCI_REG_BASE((_x)) + 0x38) #define RT3883_PCI_REG_STATUS(_x) (RT3883_PCI_REG_BASE((_x)) + 0x50) #define RT3883_PCI_MODE_NONE 0 #define RT3883_PCI_MODE_PCI BIT(0) #define RT3883_PCI_MODE_PCIE BIT(1) #define RT3883_PCI_MODE_BOTH (RT3883_PCI_MODE_PCI | RT3883_PCI_MODE_PCIE) #define RT3883_PCI_IRQ_COUNT 32 #define RT3883_P2P_BR_DEVNUM 1 struct rt3883_pci_controller { void __iomem *base; struct device_node *intc_of_node; struct irq_domain *irq_domain; struct pci_controller pci_controller; struct resource io_res; struct resource mem_res; bool pcie_ready; }; static inline struct rt3883_pci_controller * pci_bus_to_rt3883_controller(struct pci_bus *bus) { struct pci_controller *hose; hose = (struct pci_controller *) bus->sysdata; return container_of(hose, struct rt3883_pci_controller, pci_controller); } static inline u32 rt3883_pci_r32(struct rt3883_pci_controller *rpc, unsigned reg) { return ioread32(rpc->base + reg); } static inline void rt3883_pci_w32(struct rt3883_pci_controller *rpc, u32 val, unsigned reg) { iowrite32(val, rpc->base + reg); } static inline u32 rt3883_pci_get_cfgaddr(unsigned int bus, unsigned int slot, unsigned int func, unsigned int where) { return (bus << 16) | (slot << 11) | (func << 8) | (where & 0xfc) | 0x80000000; } static u32 rt3883_pci_read_cfg32(struct rt3883_pci_controller *rpc, unsigned bus, unsigned slot, unsigned func, unsigned reg) { u32 address; address = rt3883_pci_get_cfgaddr(bus, slot, func, reg); rt3883_pci_w32(rpc, address, RT3883_PCI_REG_CFGADDR); return rt3883_pci_r32(rpc, RT3883_PCI_REG_CFGDATA); } static void rt3883_pci_write_cfg32(struct rt3883_pci_controller *rpc, unsigned bus, unsigned slot, unsigned func, unsigned reg, u32 val) { u32 address; address = rt3883_pci_get_cfgaddr(bus, slot, func, reg); rt3883_pci_w32(rpc, address, RT3883_PCI_REG_CFGADDR); rt3883_pci_w32(rpc, val, RT3883_PCI_REG_CFGDATA); } static void rt3883_pci_irq_handler(struct irq_desc *desc) { struct rt3883_pci_controller *rpc; u32 pending; rpc = irq_desc_get_handler_data(desc); pending = rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIINT) & rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIENA); if (!pending) { spurious_interrupt(); return; } while (pending) { unsigned bit = __ffs(pending); generic_handle_domain_irq(rpc->irq_domain, bit); pending &= ~BIT(bit); } } static void rt3883_pci_irq_unmask(struct irq_data *d) { struct rt3883_pci_controller *rpc; u32 t; rpc = irq_data_get_irq_chip_data(d); t = rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIENA); rt3883_pci_w32(rpc, t | BIT(d->hwirq), RT3883_PCI_REG_PCIENA); /* flush write */ rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIENA); } static void rt3883_pci_irq_mask(struct irq_data *d) { struct rt3883_pci_controller *rpc; u32 t; rpc = irq_data_get_irq_chip_data(d); t = rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIENA); rt3883_pci_w32(rpc, t & ~BIT(d->hwirq), RT3883_PCI_REG_PCIENA); /* flush write */ rt3883_pci_r32(rpc, RT3883_PCI_REG_PCIENA); } static struct irq_chip rt3883_pci_irq_chip = { .name = "RT3883 PCI", .irq_mask = rt3883_pci_irq_mask, .irq_unmask = rt3883_pci_irq_unmask, .irq_mask_ack = rt3883_pci_irq_mask, }; static int rt3883_pci_irq_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { irq_set_chip_and_handler(irq, &rt3883_pci_irq_chip, handle_level_irq); irq_set_chip_data(irq, d->host_data); return 0; } static const struct irq_domain_ops rt3883_pci_irq_domain_ops = { .map = rt3883_pci_irq_map, .xlate = irq_domain_xlate_onecell, }; static int rt3883_pci_irq_init(struct device *dev, struct rt3883_pci_controller *rpc) { int irq; irq = irq_of_parse_and_map(rpc->intc_of_node, 0); if (irq == 0) { dev_err(dev, "%pOF has no IRQ", rpc->intc_of_node); return -EINVAL; } /* disable all interrupts */ rt3883_pci_w32(rpc, 0, RT3883_PCI_REG_PCIENA); rpc->irq_domain = irq_domain_add_linear(rpc->intc_of_node, RT3883_PCI_IRQ_COUNT, &rt3883_pci_irq_domain_ops, rpc); if (!rpc->irq_domain) { dev_err(dev, "unable to add IRQ domain\n"); return -ENODEV; } irq_set_chained_handler_and_data(irq, rt3883_pci_irq_handler, rpc); return 0; } static int rt3883_pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct rt3883_pci_controller *rpc; u32 address; u32 data; rpc = pci_bus_to_rt3883_controller(bus); if (!rpc->pcie_ready && bus->number == 1) return PCIBIOS_DEVICE_NOT_FOUND; address = rt3883_pci_get_cfgaddr(bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn), where); rt3883_pci_w32(rpc, address, RT3883_PCI_REG_CFGADDR); data = rt3883_pci_r32(rpc, RT3883_PCI_REG_CFGDATA); switch (size) { case 1: *val = (data >> ((where & 3) << 3)) & 0xff; break; case 2: *val = (data >> ((where & 3) << 3)) & 0xffff; break; case 4: *val = data; break; } return PCIBIOS_SUCCESSFUL; } static int rt3883_pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct rt3883_pci_controller *rpc; u32 address; u32 data; rpc = pci_bus_to_rt3883_controller(bus); if (!rpc->pcie_ready && bus->number == 1) return PCIBIOS_DEVICE_NOT_FOUND; address = rt3883_pci_get_cfgaddr(bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn), where); rt3883_pci_w32(rpc, address, RT3883_PCI_REG_CFGADDR); data = rt3883_pci_r32(rpc, RT3883_PCI_REG_CFGDATA); switch (size) { case 1: data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 2: data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 4: data = val; break; } rt3883_pci_w32(rpc, data, RT3883_PCI_REG_CFGDATA); return PCIBIOS_SUCCESSFUL; } static struct pci_ops rt3883_pci_ops = { .read = rt3883_pci_config_read, .write = rt3883_pci_config_write, }; static void rt3883_pci_preinit(struct rt3883_pci_controller *rpc, unsigned mode) { u32 syscfg1; u32 rstctrl; u32 clkcfg1; u32 t; rstctrl = rt_sysc_r32(RT3883_SYSC_REG_RSTCTRL); syscfg1 = rt_sysc_r32(RT3883_SYSC_REG_SYSCFG1); clkcfg1 = rt_sysc_r32(RT3883_SYSC_REG_CLKCFG1); if (mode & RT3883_PCI_MODE_PCIE) { rstctrl |= RT3883_RSTCTRL_PCIE; rt_sysc_w32(rstctrl, RT3883_SYSC_REG_RSTCTRL); /* setup PCI PAD drive mode */ syscfg1 &= ~(0x30); syscfg1 |= (2 << 4); rt_sysc_w32(syscfg1, RT3883_SYSC_REG_SYSCFG1); t = rt_sysc_r32(RT3883_SYSC_REG_PCIE_CLK_GEN0); t &= ~BIT(31); rt_sysc_w32(t, RT3883_SYSC_REG_PCIE_CLK_GEN0); t = rt_sysc_r32(RT3883_SYSC_REG_PCIE_CLK_GEN1); t &= 0x80ffffff; rt_sysc_w32(t, RT3883_SYSC_REG_PCIE_CLK_GEN1); t = rt_sysc_r32(RT3883_SYSC_REG_PCIE_CLK_GEN1); t |= 0xa << 24; rt_sysc_w32(t, RT3883_SYSC_REG_PCIE_CLK_GEN1); t = rt_sysc_r32(RT3883_SYSC_REG_PCIE_CLK_GEN0); t |= BIT(31); rt_sysc_w32(t, RT3883_SYSC_REG_PCIE_CLK_GEN0); msleep(50); rstctrl &= ~RT3883_RSTCTRL_PCIE; rt_sysc_w32(rstctrl, RT3883_SYSC_REG_RSTCTRL); } syscfg1 |= (RT3883_SYSCFG1_PCIE_RC_MODE | RT3883_SYSCFG1_PCI_HOST_MODE); clkcfg1 &= ~(RT3883_CLKCFG1_PCI_CLK_EN | RT3883_CLKCFG1_PCIE_CLK_EN); if (mode & RT3883_PCI_MODE_PCI) { clkcfg1 |= RT3883_CLKCFG1_PCI_CLK_EN; rstctrl &= ~RT3883_RSTCTRL_PCI; } if (mode & RT3883_PCI_MODE_PCIE) { clkcfg1 |= RT3883_CLKCFG1_PCIE_CLK_EN; rstctrl &= ~RT3883_RSTCTRL_PCIE; } rt_sysc_w32(syscfg1, RT3883_SYSC_REG_SYSCFG1); rt_sysc_w32(rstctrl, RT3883_SYSC_REG_RSTCTRL); rt_sysc_w32(clkcfg1, RT3883_SYSC_REG_CLKCFG1); msleep(500); /* * setup the device number of the P2P bridge * and de-assert the reset line */ t = (RT3883_P2P_BR_DEVNUM << RT3883_PCICFG_P2P_BR_DEVNUM_S); rt3883_pci_w32(rpc, t, RT3883_PCI_REG_PCICFG); /* flush write */ rt3883_pci_r32(rpc, RT3883_PCI_REG_PCICFG); msleep(500); if (mode & RT3883_PCI_MODE_PCIE) { msleep(500); t = rt3883_pci_r32(rpc, RT3883_PCI_REG_STATUS(1)); rpc->pcie_ready = t & BIT(0); if (!rpc->pcie_ready) { /* reset the PCIe block */ t = rt_sysc_r32(RT3883_SYSC_REG_RSTCTRL); t |= RT3883_RSTCTRL_PCIE; rt_sysc_w32(t, RT3883_SYSC_REG_RSTCTRL); t &= ~RT3883_RSTCTRL_PCIE; rt_sysc_w32(t, RT3883_SYSC_REG_RSTCTRL); /* turn off PCIe clock */ t = rt_sysc_r32(RT3883_SYSC_REG_CLKCFG1); t &= ~RT3883_CLKCFG1_PCIE_CLK_EN; rt_sysc_w32(t, RT3883_SYSC_REG_CLKCFG1); t = rt_sysc_r32(RT3883_SYSC_REG_PCIE_CLK_GEN0); t &= ~0xf000c080; rt_sysc_w32(t, RT3883_SYSC_REG_PCIE_CLK_GEN0); } } /* enable PCI arbiter */ rt3883_pci_w32(rpc, 0x79, RT3883_PCI_REG_ARBCTL); } static int rt3883_pci_probe(struct platform_device *pdev) { struct rt3883_pci_controller *rpc; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct device_node *child; u32 val; int err; int mode; rpc = devm_kzalloc(dev, sizeof(*rpc), GFP_KERNEL); if (!rpc) return -ENOMEM; rpc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rpc->base)) return PTR_ERR(rpc->base); /* find the interrupt controller child node */ for_each_child_of_node(np, child) { if (of_property_read_bool(child, "interrupt-controller")) { rpc->intc_of_node = child; break; } } if (!rpc->intc_of_node) { dev_err(dev, "%pOF has no %s child node", np, "interrupt controller"); return -EINVAL; } /* find the PCI host bridge child node */ for_each_child_of_node(np, child) { if (of_node_is_type(child, "pci")) { rpc->pci_controller.of_node = child; break; } } if (!rpc->pci_controller.of_node) { dev_err(dev, "%pOF has no %s child node", np, "PCI host bridge"); err = -EINVAL; goto err_put_intc_node; } mode = RT3883_PCI_MODE_NONE; for_each_available_child_of_node(rpc->pci_controller.of_node, child) { int devfn; if (!of_node_is_type(child, "pci")) continue; devfn = of_pci_get_devfn(child); if (devfn < 0) continue; switch (PCI_SLOT(devfn)) { case 1: mode |= RT3883_PCI_MODE_PCIE; break; case 17: case 18: mode |= RT3883_PCI_MODE_PCI; break; } } if (mode == RT3883_PCI_MODE_NONE) { dev_err(dev, "unable to determine PCI mode\n"); err = -EINVAL; goto err_put_hb_node; } dev_info(dev, "mode:%s%s\n", (mode & RT3883_PCI_MODE_PCI) ? " PCI" : "", (mode & RT3883_PCI_MODE_PCIE) ? " PCIe" : ""); rt3883_pci_preinit(rpc, mode); rpc->pci_controller.pci_ops = &rt3883_pci_ops; rpc->pci_controller.io_resource = &rpc->io_res; rpc->pci_controller.mem_resource = &rpc->mem_res; /* Load PCI I/O and memory resources from DT */ pci_load_of_ranges(&rpc->pci_controller, rpc->pci_controller.of_node); rt3883_pci_w32(rpc, rpc->mem_res.start, RT3883_PCI_REG_MEMBASE); rt3883_pci_w32(rpc, rpc->io_res.start, RT3883_PCI_REG_IOBASE); ioport_resource.start = rpc->io_res.start; ioport_resource.end = rpc->io_res.end; /* PCI */ rt3883_pci_w32(rpc, 0x03ff0000, RT3883_PCI_REG_BAR0SETUP(0)); rt3883_pci_w32(rpc, RT3883_MEMORY_BASE, RT3883_PCI_REG_IMBASEBAR0(0)); rt3883_pci_w32(rpc, 0x08021814, RT3883_PCI_REG_ID(0)); rt3883_pci_w32(rpc, 0x00800001, RT3883_PCI_REG_CLASS(0)); rt3883_pci_w32(rpc, 0x28801814, RT3883_PCI_REG_SUBID(0)); /* PCIe */ rt3883_pci_w32(rpc, 0x03ff0000, RT3883_PCI_REG_BAR0SETUP(1)); rt3883_pci_w32(rpc, RT3883_MEMORY_BASE, RT3883_PCI_REG_IMBASEBAR0(1)); rt3883_pci_w32(rpc, 0x08021814, RT3883_PCI_REG_ID(1)); rt3883_pci_w32(rpc, 0x06040001, RT3883_PCI_REG_CLASS(1)); rt3883_pci_w32(rpc, 0x28801814, RT3883_PCI_REG_SUBID(1)); err = rt3883_pci_irq_init(dev, rpc); if (err) goto err_put_hb_node; /* PCIe */ val = rt3883_pci_read_cfg32(rpc, 0, 0x01, 0, PCI_COMMAND); val |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; rt3883_pci_write_cfg32(rpc, 0, 0x01, 0, PCI_COMMAND, val); /* PCI */ val = rt3883_pci_read_cfg32(rpc, 0, 0x00, 0, PCI_COMMAND); val |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; rt3883_pci_write_cfg32(rpc, 0, 0x00, 0, PCI_COMMAND, val); if (mode == RT3883_PCI_MODE_PCIE) { rt3883_pci_w32(rpc, 0x03ff0001, RT3883_PCI_REG_BAR0SETUP(0)); rt3883_pci_w32(rpc, 0x03ff0001, RT3883_PCI_REG_BAR0SETUP(1)); rt3883_pci_write_cfg32(rpc, 0, RT3883_P2P_BR_DEVNUM, 0, PCI_BASE_ADDRESS_0, RT3883_MEMORY_BASE); /* flush write */ rt3883_pci_read_cfg32(rpc, 0, RT3883_P2P_BR_DEVNUM, 0, PCI_BASE_ADDRESS_0); } else { rt3883_pci_write_cfg32(rpc, 0, RT3883_P2P_BR_DEVNUM, 0, PCI_IO_BASE, 0x00000101); } register_pci_controller(&rpc->pci_controller); return 0; err_put_hb_node: of_node_put(rpc->pci_controller.of_node); err_put_intc_node: of_node_put(rpc->intc_of_node); return err; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return of_irq_parse_and_map_pci(dev, slot, pin); } int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } static const struct of_device_id rt3883_pci_ids[] = { { .compatible = "ralink,rt3883-pci" }, {}, }; static struct platform_driver rt3883_pci_driver = { .probe = rt3883_pci_probe, .driver = { .name = "rt3883-pci", .of_match_table = of_match_ptr(rt3883_pci_ids), }, }; static int __init rt3883_pci_init(void) { return platform_driver_register(&rt3883_pci_driver); } postcore_initcall(rt3883_pci_init);
linux-master
arch/mips/pci/pci-rt3883.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005-2009 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/swiotlb.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npi-defs.h> #include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/pci-octeon.h> #define USE_OCTEON_INTERNAL_ARBITER /* * Octeon's PCI controller uses did=3, subdid=2 for PCI IO * addresses. Use PCI endian swapping 1 so no address swapping is * necessary. The Linux io routines will endian swap the data. */ #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) u64 octeon_bar1_pci_phys; /** * This is the bit decoding used for the Octeon PCI controller addresses */ union octeon_pci_address { uint64_t u64; struct { uint64_t upper:2; uint64_t reserved:13; uint64_t io:1; uint64_t did:5; uint64_t subdid:3; uint64_t reserved2:4; uint64_t endian_swap:2; uint64_t reserved3:10; uint64_t bus:8; uint64_t dev:5; uint64_t func:3; uint64_t reg:8; } s; }; int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin); enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; /** * Map a PCI device to the appropriate interrupt line * * @dev: The Linux PCI device structure for the device to map * @slot: The slot number for this device on __BUS 0__. Linux * enumerates through all the bridges and figures out the * slot on Bus 0 where this device eventually hooks to. * @pin: The PCI interrupt pin read from the device, then swizzled * as it goes through each bridge. * Returns Interrupt number for the device */ int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { if (octeon_pcibios_map_irq) return octeon_pcibios_map_irq(dev, slot, pin); else panic("octeon_pcibios_map_irq not set."); } /* * Called to perform platform specific PCI setup */ int pcibios_plat_dev_init(struct pci_dev *dev) { uint16_t config; uint32_t dconfig; int pos; /* * Force the Cache line setting to 64 bytes. The standard * Linux bus scan doesn't seem to set it. Octeon really has * 128 byte lines, but Intel bridges get really upset if you * try and set values above 64 bytes. Value is specified in * 32bit words. */ pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); /* Set latency timers for all devices */ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); /* Enable reporting System errors and parity errors on all devices */ /* Enable parity checking and error reporting */ pci_read_config_word(dev, PCI_COMMAND, &config); config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; pci_write_config_word(dev, PCI_COMMAND, config); if (dev->subordinate) { /* Set latency timers on sub bridges */ pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); /* More bridge error detection */ pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); } /* Enable the PCIe normal error reporting */ config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); /* Find the Advanced Error Reporting capability */ pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); if (pos) { /* Clear Uncorrectable Error Status */ pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, dconfig); /* Enable reporting of all uncorrectable errors */ /* Uncorrectable Error Mask - turned on bits disable errors */ pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); /* * Leave severity at HW default. This only controls if * errors are reported as uncorrectable or * correctable, not if the error is reported. */ /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ /* Clear Correctable Error Status */ pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); /* Enable reporting of all correctable errors */ /* Correctable Error Mask - turned on bits disable errors */ pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); /* Advanced Error Capabilities */ pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); /* ECRC Generation Enable */ if (config & PCI_ERR_CAP_ECRC_GENC) config |= PCI_ERR_CAP_ECRC_GENE; /* ECRC Check Enable */ if (config & PCI_ERR_CAP_ECRC_CHKC) config |= PCI_ERR_CAP_ECRC_CHKE; pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ /* Report all errors to the root complex */ pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, PCI_ERR_ROOT_CMD_COR_EN | PCI_ERR_ROOT_CMD_NONFATAL_EN | PCI_ERR_ROOT_CMD_FATAL_EN); /* Clear the Root status register */ pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); } return 0; } /** * Return the mapping of PCI device number to IRQ line. Each * character in the return string represents the interrupt * line for the device at that position. Device 1 maps to the * first character, etc. The characters A-D are used for PCI * interrupts. * * Returns PCI interrupt mapping */ const char *octeon_get_pci_interrupts(void) { /* * Returning an empty string causes the interrupts to be * routed based on the PCI specification. From the PCI spec: * * INTA# of Device Number 0 is connected to IRQW on the system * board. (Device Number has no significance regarding being * located on the system board or in a connector.) INTA# of * Device Number 1 is connected to IRQX on the system * board. INTA# of Device Number 2 is connected to IRQY on the * system board. INTA# of Device Number 3 is connected to IRQZ * on the system board. The table below describes how each * agent's INTx# lines are connected to the system board * interrupt lines. The following equation can be used to * determine to which INTx# signal on the system board a given * device's INTx# line(s) is connected. * * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and * INTD# = 3) */ if (of_machine_is_compatible("dlink,dsr-500n")) return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; switch (octeon_bootinfo->board_type) { case CVMX_BOARD_TYPE_NAO38: /* This is really the NAC38 */ return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; case CVMX_BOARD_TYPE_EBH3100: case CVMX_BOARD_TYPE_CN3010_EVB_HS5: case CVMX_BOARD_TYPE_CN3005_EVB_HS5: return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; case CVMX_BOARD_TYPE_BBGW_REF: return "AABCD"; case CVMX_BOARD_TYPE_CUST_DSR1000N: return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; case CVMX_BOARD_TYPE_THUNDER: case CVMX_BOARD_TYPE_EBH3000: default: return ""; } } /** * Map a PCI device to the appropriate interrupt line * * @dev: The Linux PCI device structure for the device to map * @slot: The slot number for this device on __BUS 0__. Linux * enumerates through all the bridges and figures out the * slot on Bus 0 where this device eventually hooks to. * @pin: The PCI interrupt pin read from the device, then swizzled * as it goes through each bridge. * Returns Interrupt number for the device */ int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int irq_num; const char *interrupts; int dev_num; /* Get the board specific interrupt mapping */ interrupts = octeon_get_pci_interrupts(); dev_num = dev->devfn >> 3; if (dev_num < strlen(interrupts)) irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + OCTEON_IRQ_PCI_INT0; else irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; return irq_num; } /* * Read a value from configuration space */ static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { union octeon_pci_address pci_addr; pci_addr.u64 = 0; pci_addr.s.upper = 2; pci_addr.s.io = 1; pci_addr.s.did = 3; pci_addr.s.subdid = 1; pci_addr.s.endian_swap = 1; pci_addr.s.bus = bus->number; pci_addr.s.dev = devfn >> 3; pci_addr.s.func = devfn & 0x7; pci_addr.s.reg = reg; switch (size) { case 4: *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); return PCIBIOS_SUCCESSFUL; case 2: *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); return PCIBIOS_SUCCESSFUL; case 1: *val = cvmx_read64_uint8(pci_addr.u64); return PCIBIOS_SUCCESSFUL; } return PCIBIOS_FUNC_NOT_SUPPORTED; } /* * Write a value to PCI configuration space */ static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { union octeon_pci_address pci_addr; pci_addr.u64 = 0; pci_addr.s.upper = 2; pci_addr.s.io = 1; pci_addr.s.did = 3; pci_addr.s.subdid = 1; pci_addr.s.endian_swap = 1; pci_addr.s.bus = bus->number; pci_addr.s.dev = devfn >> 3; pci_addr.s.func = devfn & 0x7; pci_addr.s.reg = reg; switch (size) { case 4: cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); return PCIBIOS_SUCCESSFUL; case 2: cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); return PCIBIOS_SUCCESSFUL; case 1: cvmx_write64_uint8(pci_addr.u64, val); return PCIBIOS_SUCCESSFUL; } return PCIBIOS_FUNC_NOT_SUPPORTED; } static struct pci_ops octeon_pci_ops = { .read = octeon_read_config, .write = octeon_write_config, }; static struct resource octeon_pci_mem_resource = { .start = 0, .end = 0, .name = "Octeon PCI MEM", .flags = IORESOURCE_MEM, }; /* * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI * bridge */ static struct resource octeon_pci_io_resource = { .start = 0x4000, .end = OCTEON_PCI_IOSPACE_SIZE - 1, .name = "Octeon PCI IO", .flags = IORESOURCE_IO, }; static struct pci_controller octeon_pci_controller = { .pci_ops = &octeon_pci_ops, .mem_resource = &octeon_pci_mem_resource, .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, .io_resource = &octeon_pci_io_resource, .io_offset = 0, .io_map_base = OCTEON_PCI_IOSPACE_BASE, }; /* * Low level initialize the Octeon PCI controller */ static void octeon_pci_initialize(void) { union cvmx_pci_cfg01 cfg01; union cvmx_npi_ctl_status ctl_status; union cvmx_pci_ctl_status_2 ctl_status_2; union cvmx_pci_cfg19 cfg19; union cvmx_pci_cfg16 cfg16; union cvmx_pci_cfg22 cfg22; union cvmx_pci_cfg56 cfg56; /* Reset the PCI Bus */ cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); cvmx_read_csr(CVMX_CIU_SOFT_PRST); udelay(2000); /* Hold PCI reset for 2 ms */ ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ ctl_status.s.max_word = 1; ctl_status.s.timer = 1; cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); /* Deassert PCI reset and advertize PCX Host Mode Device Capability (64b) */ cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); cvmx_read_csr(CVMX_CIU_SOFT_PRST); udelay(2000); /* Wait 2 ms after deasserting PCI reset */ ctl_status_2.u32 = 0; ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set before any PCI reads. */ ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ ctl_status_2.s.bar2_enb = 1; ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ ctl_status_2.s.bar2_esx = 1; ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { /* BAR1 hole */ ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ ctl_status_2.s.bb1 = 1; /* BAR1 is big */ ctl_status_2.s.bb0 = 1; /* BAR0 is big */ } octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); udelay(2000); /* Wait 2 ms before doing PCI reads */ ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); pr_notice("PCI Status: %s %s-bit\n", ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", ctl_status_2.s.ap_64ad ? "64" : "32"); if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { union cvmx_pci_cnt_reg cnt_reg_start; union cvmx_pci_cnt_reg cnt_reg_end; unsigned long cycles, pci_clock; cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); cycles = read_c0_cvmcount(); udelay(1000); cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); cycles = read_c0_cvmcount() - cycles; pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / (cycles / (mips_hpt_frequency / 1000000)); pr_notice("PCI Clock: %lu MHz\n", pci_clock); } /* * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 * in PCI-X mode to allow four outstanding splits. Otherwise, * should not change from its reset value. Don't write PCI_CFG19 * in PCI mode (0x82000001 reset value), write it to 0x82000004 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. * MRBCM -> must be one. */ if (ctl_status_2.s.ap_pcix) { cfg19.u32 = 0; /* * Target Delayed/Split request outstanding maximum * count. [1..31] and 0=32. NOTE: If the user * programs these bits beyond the Designed Maximum * outstanding count, then the designed maximum table * depth will be used instead. No additional * Deferred/Split transactions will be accepted if * this outstanding maximum count is * reached. Furthermore, no additional deferred/split * transactions will be accepted if the I/O delay/ I/O * Split Request outstanding maximum is reached. */ cfg19.s.tdomc = 4; /* * Master Deferred Read Request Outstanding Max Count * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 * 5 2 110 6 3 111 7 3 For example, if these bits are * programmed to 100, the core can support 2 DAC * cycles, 4 SAC cycles or a combination of 1 DAC and * 2 SAC cycles. NOTE: For the PCI-X maximum * outstanding split transactions, refer to * CRE0[22:20]. */ cfg19.s.mdrrmc = 2; /* * Master Request (Memory Read) Byte Count/Byte Enable * select. 0 = Byte Enables valid. In PCI mode, a * burst transaction cannot be performed using Memory * Read command=4?h6. 1 = DWORD Byte Count valid * (default). In PCI Mode, the memory read byte * enables are automatically generated by the * core. Note: N3 Master Request transaction sizes are * always determined through the * am_attr[<35:32>|<7:0>] field. */ cfg19.s.mrbcm = 1; octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); } cfg01.u32 = 0; cfg01.s.msae = 1; /* Memory Space Access Enable */ cfg01.s.me = 1; /* Master Enable */ cfg01.s.pee = 1; /* PERR# Enable */ cfg01.s.see = 1; /* System Error Enable */ cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); #ifdef USE_OCTEON_INTERNAL_ARBITER /* * When OCTEON is a PCI host, most systems will use OCTEON's * internal arbiter, so must enable it before any PCI/PCI-X * traffic can occur. */ { union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; pci_int_arb_cfg.u64 = 0; pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); } #endif /* USE_OCTEON_INTERNAL_ARBITER */ /* * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to * 1..7. */ cfg16.u32 = 0; cfg16.s.mltd = 1; /* Master Latency Timer Disable */ octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); /* * Should be written to 0x4ff00. MTTV -> must be zero. * FLUSH -> must be 1. MRV -> should be 0xFF. */ cfg22.u32 = 0; /* Master Retry Value [1..255] and 0=infinite */ cfg22.s.mrv = 0xff; /* * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper * N3K operation. */ cfg22.s.flush = 1; octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); /* * MOST Indicates the maximum number of outstanding splits (in -1 * notation) when OCTEON is in PCI-X mode. PCI-X performance is * affected by the MOST selection. Should generally be written * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, * depending on the desired MOST of 3, 2, 1, or 0, respectively. */ cfg56.u32 = 0; cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ cfg56.s.roe = 1; /* Relaxed Ordering Enable */ cfg56.s.mmbc = 1; /* Maximum Memory Byte Count [0=512B,1=1024B,2=2048B,3=4096B] */ cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 .. 7=32] */ octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); /* * Affects PCI performance when OCTEON services reads to its * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, * these values need to be changed so they won't possibly prefetch off * of the end of memory if PCI is DMAing a buffer at the end of * memory. Note that these values differ from their reset values. */ octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); } /* * Initialize the Octeon PCI controller */ static int __init octeon_pci_setup(void) { union cvmx_npi_mem_access_subidx mem_access; int index; /* Only these chips have PCI */ if (octeon_has_feature(OCTEON_FEATURE_PCIE)) return 0; if (!octeon_is_pci_host()) { pr_notice("Not in host mode, PCI Controller not initialized\n"); return 0; } /* Point pcibios_map_irq() to the PCI version of it */ octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; /* Only use the big bars on chips that support it */ if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; else octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; /* PCI I/O and PCI MEM values */ set_io_port_base(OCTEON_PCI_IOSPACE_BASE); ioport_resource.start = 0; ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; pr_notice("%s Octeon big bar support\n", (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); octeon_pci_initialize(); mem_access.u64 = 0; mem_access.s.esr = 1; /* Endian-Swap on read. */ mem_access.s.esw = 1; /* Endian-Swap on write. */ mem_access.s.nsr = 0; /* No-Snoop on read. */ mem_access.s.nsw = 0; /* No-Snoop on write. */ mem_access.s.ror = 0; /* Relax Read on read. */ mem_access.s.row = 0; /* Relax Order on write. */ mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); /* * Remap the Octeon BAR 2 above all 32 bit devices * (0x8000000000ul). This is done here so it is remapped * before the readl()'s below. We don't want BAR2 overlapping * with BAR0/BAR1 during these reads. */ octeon_npi_write32(CVMX_NPI_PCI_CFG08, (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); octeon_npi_write32(CVMX_NPI_PCI_CFG09, (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { /* Remap the Octeon BAR 0 to 0-2GB */ octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); /* * Remap the Octeon BAR 1 to map 2GB-4GB (minus the * BAR 1 hole). */ octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); /* BAR1 movable mappings set for identity mapping */ octeon_bar1_pci_phys = 0x80000000ull; for (index = 0; index < 32; index++) { union cvmx_pci_bar1_indexx bar1_index; bar1_index.u32 = 0; /* Address bits[35:22] sent to L2C */ bar1_index.s.addr_idx = (octeon_bar1_pci_phys >> 22) + index; /* Don't put PCI accesses in L2. */ bar1_index.s.ca = 1; /* Endian Swap Mode */ bar1_index.s.end_swp = 1; /* Set '1' when the selected address range is valid. */ bar1_index.s.addr_v = 1; octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), bar1_index.u32); } /* Devices go after BAR1 */ octeon_pci_mem_resource.start = OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20); octeon_pci_mem_resource.end = octeon_pci_mem_resource.start + (1ul << 30); } else { /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); /* Remap the Octeon BAR 1 to map 0-128MB */ octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); /* BAR1 movable regions contiguous to cover the swiotlb */ octeon_bar1_pci_phys = default_swiotlb_base() & ~((1ull << 22) - 1); for (index = 0; index < 32; index++) { union cvmx_pci_bar1_indexx bar1_index; bar1_index.u32 = 0; /* Address bits[35:22] sent to L2C */ bar1_index.s.addr_idx = (octeon_bar1_pci_phys >> 22) + index; /* Don't put PCI accesses in L2. */ bar1_index.s.ca = 1; /* Endian Swap Mode */ bar1_index.s.end_swp = 1; /* Set '1' when the selected address range is valid. */ bar1_index.s.addr_v = 1; octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), bar1_index.u32); } /* Devices go after BAR0 */ octeon_pci_mem_resource.start = OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + (4ul << 10); octeon_pci_mem_resource.end = octeon_pci_mem_resource.start + (1ul << 30); } register_pci_controller(&octeon_pci_controller); /* * Clear any errors that might be pending from before the bus * was setup properly. */ cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); if (IS_ERR(platform_device_register_simple("octeon_pci_edac", -1, NULL, 0))) pr_err("Registration of co_pci_edac failed!\n"); octeon_pci_dma_init(); return 0; } arch_initcall(octeon_pci_setup);
linux-master
arch/mips/pci/pci-octeon.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004, 2006 MIPS Technologies, Inc. All rights reserved. * Author: Maciej W. Rozycki <[email protected]> * Copyright (C) 2018 Maciej W. Rozycki */ #include <linux/dma-mapping.h> #include <linux/pci.h> /* * Set the BCM1250, etc. PCI host bridge's TRDY timeout * to the finite max. */ static void quirk_sb1250_pci(struct pci_dev *dev) { pci_write_config_byte(dev, 0x40, 0xff); } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_SIBYTE, PCI_DEVICE_ID_BCM1250_PCI, quirk_sb1250_pci); /* * The BCM1250, etc. PCI host bridge does not support DAC on its 32-bit * bus, so we set the bus's DMA limit accordingly. However the HT link * down the artificial PCI-HT bridge supports 40-bit addressing and the * SP1011 HT-PCI bridge downstream supports both DAC and a 64-bit bus * width, so we record the PCI-HT bridge's secondary and subordinate bus * numbers and do not set the limit for devices present in the inclusive * range of those. */ struct sb1250_bus_dma_limit_exclude { bool set; unsigned char start; unsigned char end; }; static int sb1250_bus_dma_limit(struct pci_dev *dev, void *data) { struct sb1250_bus_dma_limit_exclude *exclude = data; bool exclude_this; bool ht_bridge; exclude_this = exclude->set && (dev->bus->number >= exclude->start && dev->bus->number <= exclude->end); ht_bridge = !exclude->set && (dev->vendor == PCI_VENDOR_ID_SIBYTE && dev->device == PCI_DEVICE_ID_BCM1250_HT); if (exclude_this) { dev_dbg(&dev->dev, "not disabling DAC for device"); } else if (ht_bridge) { exclude->start = dev->subordinate->number; exclude->end = pci_bus_max_busnr(dev->subordinate); exclude->set = true; dev_dbg(&dev->dev, "not disabling DAC for [bus %02x-%02x]", exclude->start, exclude->end); } else { dev_dbg(&dev->dev, "disabling DAC for device"); dev->dev.bus_dma_limit = DMA_BIT_MASK(32); } return 0; } static void quirk_sb1250_pci_dac(struct pci_dev *dev) { struct sb1250_bus_dma_limit_exclude exclude = { .set = false }; pci_walk_bus(dev->bus, sb1250_bus_dma_limit, &exclude); } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_SIBYTE, PCI_DEVICE_ID_BCM1250_PCI, quirk_sb1250_pci_dac); /* * The BCM1250, etc. PCI/HT bridge reports as a host bridge. */ static void quirk_sb1250_ht(struct pci_dev *dev) { dev->class = PCI_CLASS_BRIDGE_PCI_NORMAL; } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_SIBYTE, PCI_DEVICE_ID_BCM1250_HT, quirk_sb1250_ht); /* * Set the SP1011 HT/PCI bridge's TRDY timeout to the finite max. */ static void quirk_sp1011(struct pci_dev *dev) { pci_write_config_byte(dev, 0x64, 0xff); } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_SIPACKETS, PCI_DEVICE_ID_SP1011, quirk_sp1011);
linux-master
arch/mips/pci/fixup-sb1250.c
// SPDX-License-Identifier: GPL-2.0-only /* * Atheros AR724X PCI host controller driver * * Copyright (C) 2011 René Bolldorf <[email protected]> * Copyright (C) 2009-2011 Gabor Juhos <[email protected]> */ #include <linux/irq.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <asm/mach-ath79/ath79.h> #include <asm/mach-ath79/ar71xx_regs.h> #define AR724X_PCI_REG_APP 0x00 #define AR724X_PCI_REG_RESET 0x18 #define AR724X_PCI_REG_INT_STATUS 0x4c #define AR724X_PCI_REG_INT_MASK 0x50 #define AR724X_PCI_APP_LTSSM_ENABLE BIT(0) #define AR724X_PCI_RESET_LINK_UP BIT(0) #define AR724X_PCI_INT_DEV0 BIT(14) #define AR724X_PCI_IRQ_COUNT 1 #define AR7240_BAR0_WAR_VALUE 0xffff #define AR724X_PCI_CMD_INIT (PCI_COMMAND_MEMORY | \ PCI_COMMAND_MASTER | \ PCI_COMMAND_INVALIDATE | \ PCI_COMMAND_PARITY | \ PCI_COMMAND_SERR | \ PCI_COMMAND_FAST_BACK) struct ar724x_pci_controller { void __iomem *devcfg_base; void __iomem *ctrl_base; void __iomem *crp_base; int irq; int irq_base; bool link_up; bool bar0_is_cached; u32 bar0_value; struct pci_controller pci_controller; struct resource io_res; struct resource mem_res; }; static inline bool ar724x_pci_check_link(struct ar724x_pci_controller *apc) { u32 reset; reset = __raw_readl(apc->ctrl_base + AR724X_PCI_REG_RESET); return reset & AR724X_PCI_RESET_LINK_UP; } static inline struct ar724x_pci_controller * pci_bus_to_ar724x_controller(struct pci_bus *bus) { struct pci_controller *hose; hose = (struct pci_controller *) bus->sysdata; return container_of(hose, struct ar724x_pci_controller, pci_controller); } static int ar724x_pci_local_write(struct ar724x_pci_controller *apc, int where, int size, u32 value) { void __iomem *base; u32 data; int s; WARN_ON(where & (size - 1)); if (!apc->link_up) return PCIBIOS_DEVICE_NOT_FOUND; base = apc->crp_base; data = __raw_readl(base + (where & ~3)); switch (size) { case 1: s = ((where & 3) * 8); data &= ~(0xff << s); data |= ((value & 0xff) << s); break; case 2: s = ((where & 2) * 8); data &= ~(0xffff << s); data |= ((value & 0xffff) << s); break; case 4: data = value; break; default: return PCIBIOS_BAD_REGISTER_NUMBER; } __raw_writel(data, base + (where & ~3)); /* flush write */ __raw_readl(base + (where & ~3)); return PCIBIOS_SUCCESSFUL; } static int ar724x_pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, uint32_t *value) { struct ar724x_pci_controller *apc; void __iomem *base; u32 data; apc = pci_bus_to_ar724x_controller(bus); if (!apc->link_up) return PCIBIOS_DEVICE_NOT_FOUND; if (devfn) return PCIBIOS_DEVICE_NOT_FOUND; base = apc->devcfg_base; data = __raw_readl(base + (where & ~3)); switch (size) { case 1: if (where & 1) data >>= 8; if (where & 2) data >>= 16; data &= 0xff; break; case 2: if (where & 2) data >>= 16; data &= 0xffff; break; case 4: break; default: return PCIBIOS_BAD_REGISTER_NUMBER; } if (where == PCI_BASE_ADDRESS_0 && size == 4 && apc->bar0_is_cached) { /* use the cached value */ *value = apc->bar0_value; } else { *value = data; } return PCIBIOS_SUCCESSFUL; } static int ar724x_pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, uint32_t value) { struct ar724x_pci_controller *apc; void __iomem *base; u32 data; int s; apc = pci_bus_to_ar724x_controller(bus); if (!apc->link_up) return PCIBIOS_DEVICE_NOT_FOUND; if (devfn) return PCIBIOS_DEVICE_NOT_FOUND; if (soc_is_ar7240() && where == PCI_BASE_ADDRESS_0 && size == 4) { if (value != 0xffffffff) { /* * WAR for a hw issue. If the BAR0 register of the * device is set to the proper base address, the * memory space of the device is not accessible. * * Cache the intended value so it can be read back, * and write a SoC specific constant value to the * BAR0 register in order to make the device memory * accessible. */ apc->bar0_is_cached = true; apc->bar0_value = value; value = AR7240_BAR0_WAR_VALUE; } else { apc->bar0_is_cached = false; } } base = apc->devcfg_base; data = __raw_readl(base + (where & ~3)); switch (size) { case 1: s = ((where & 3) * 8); data &= ~(0xff << s); data |= ((value & 0xff) << s); break; case 2: s = ((where & 2) * 8); data &= ~(0xffff << s); data |= ((value & 0xffff) << s); break; case 4: data = value; break; default: return PCIBIOS_BAD_REGISTER_NUMBER; } __raw_writel(data, base + (where & ~3)); /* flush write */ __raw_readl(base + (where & ~3)); return PCIBIOS_SUCCESSFUL; } static struct pci_ops ar724x_pci_ops = { .read = ar724x_pci_read, .write = ar724x_pci_write, }; static void ar724x_pci_irq_handler(struct irq_desc *desc) { struct ar724x_pci_controller *apc; void __iomem *base; u32 pending; apc = irq_desc_get_handler_data(desc); base = apc->ctrl_base; pending = __raw_readl(base + AR724X_PCI_REG_INT_STATUS) & __raw_readl(base + AR724X_PCI_REG_INT_MASK); if (pending & AR724X_PCI_INT_DEV0) generic_handle_irq(apc->irq_base + 0); else spurious_interrupt(); } static void ar724x_pci_irq_unmask(struct irq_data *d) { struct ar724x_pci_controller *apc; void __iomem *base; int offset; u32 t; apc = irq_data_get_irq_chip_data(d); base = apc->ctrl_base; offset = apc->irq_base - d->irq; switch (offset) { case 0: t = __raw_readl(base + AR724X_PCI_REG_INT_MASK); __raw_writel(t | AR724X_PCI_INT_DEV0, base + AR724X_PCI_REG_INT_MASK); /* flush write */ __raw_readl(base + AR724X_PCI_REG_INT_MASK); } } static void ar724x_pci_irq_mask(struct irq_data *d) { struct ar724x_pci_controller *apc; void __iomem *base; int offset; u32 t; apc = irq_data_get_irq_chip_data(d); base = apc->ctrl_base; offset = apc->irq_base - d->irq; switch (offset) { case 0: t = __raw_readl(base + AR724X_PCI_REG_INT_MASK); __raw_writel(t & ~AR724X_PCI_INT_DEV0, base + AR724X_PCI_REG_INT_MASK); /* flush write */ __raw_readl(base + AR724X_PCI_REG_INT_MASK); t = __raw_readl(base + AR724X_PCI_REG_INT_STATUS); __raw_writel(t | AR724X_PCI_INT_DEV0, base + AR724X_PCI_REG_INT_STATUS); /* flush write */ __raw_readl(base + AR724X_PCI_REG_INT_STATUS); } } static struct irq_chip ar724x_pci_irq_chip = { .name = "AR724X PCI ", .irq_mask = ar724x_pci_irq_mask, .irq_unmask = ar724x_pci_irq_unmask, .irq_mask_ack = ar724x_pci_irq_mask, }; static void ar724x_pci_irq_init(struct ar724x_pci_controller *apc, int id) { void __iomem *base; int i; base = apc->ctrl_base; __raw_writel(0, base + AR724X_PCI_REG_INT_MASK); __raw_writel(0, base + AR724X_PCI_REG_INT_STATUS); apc->irq_base = ATH79_PCI_IRQ_BASE + (id * AR724X_PCI_IRQ_COUNT); for (i = apc->irq_base; i < apc->irq_base + AR724X_PCI_IRQ_COUNT; i++) { irq_set_chip_and_handler(i, &ar724x_pci_irq_chip, handle_level_irq); irq_set_chip_data(i, apc); } irq_set_chained_handler_and_data(apc->irq, ar724x_pci_irq_handler, apc); } static void ar724x_pci_hw_init(struct ar724x_pci_controller *apc) { u32 ppl, app; int wait = 0; /* deassert PCIe host controller and PCIe PHY reset */ ath79_device_reset_clear(AR724X_RESET_PCIE); ath79_device_reset_clear(AR724X_RESET_PCIE_PHY); /* remove the reset of the PCIE PLL */ ppl = ath79_pll_rr(AR724X_PLL_REG_PCIE_CONFIG); ppl &= ~AR724X_PLL_REG_PCIE_CONFIG_PPL_RESET; ath79_pll_wr(AR724X_PLL_REG_PCIE_CONFIG, ppl); /* deassert bypass for the PCIE PLL */ ppl = ath79_pll_rr(AR724X_PLL_REG_PCIE_CONFIG); ppl &= ~AR724X_PLL_REG_PCIE_CONFIG_PPL_BYPASS; ath79_pll_wr(AR724X_PLL_REG_PCIE_CONFIG, ppl); /* set PCIE Application Control to ready */ app = __raw_readl(apc->ctrl_base + AR724X_PCI_REG_APP); app |= AR724X_PCI_APP_LTSSM_ENABLE; __raw_writel(app, apc->ctrl_base + AR724X_PCI_REG_APP); /* wait up to 100ms for PHY link up */ do { mdelay(10); wait++; } while (wait < 10 && !ar724x_pci_check_link(apc)); } static int ar724x_pci_probe(struct platform_device *pdev) { struct ar724x_pci_controller *apc; struct resource *res; int id; id = pdev->id; if (id == -1) id = 0; apc = devm_kzalloc(&pdev->dev, sizeof(struct ar724x_pci_controller), GFP_KERNEL); if (!apc) return -ENOMEM; apc->ctrl_base = devm_platform_ioremap_resource_byname(pdev, "ctrl_base"); if (IS_ERR(apc->ctrl_base)) return PTR_ERR(apc->ctrl_base); apc->devcfg_base = devm_platform_ioremap_resource_byname(pdev, "cfg_base"); if (IS_ERR(apc->devcfg_base)) return PTR_ERR(apc->devcfg_base); apc->crp_base = devm_platform_ioremap_resource_byname(pdev, "crp_base"); if (IS_ERR(apc->crp_base)) return PTR_ERR(apc->crp_base); apc->irq = platform_get_irq(pdev, 0); if (apc->irq < 0) return -EINVAL; res = platform_get_resource_byname(pdev, IORESOURCE_IO, "io_base"); if (!res) return -EINVAL; apc->io_res.parent = res; apc->io_res.name = "PCI IO space"; apc->io_res.start = res->start; apc->io_res.end = res->end; apc->io_res.flags = IORESOURCE_IO; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem_base"); if (!res) return -EINVAL; apc->mem_res.parent = res; apc->mem_res.name = "PCI memory space"; apc->mem_res.start = res->start; apc->mem_res.end = res->end; apc->mem_res.flags = IORESOURCE_MEM; apc->pci_controller.pci_ops = &ar724x_pci_ops; apc->pci_controller.io_resource = &apc->io_res; apc->pci_controller.mem_resource = &apc->mem_res; /* * Do the full PCIE Root Complex Initialization Sequence if the PCIe * host controller is in reset. */ if (ath79_reset_rr(AR724X_RESET_REG_RESET_MODULE) & AR724X_RESET_PCIE) ar724x_pci_hw_init(apc); apc->link_up = ar724x_pci_check_link(apc); if (!apc->link_up) dev_warn(&pdev->dev, "PCIe link is down\n"); ar724x_pci_irq_init(apc, id); ar724x_pci_local_write(apc, PCI_COMMAND, 4, AR724X_PCI_CMD_INIT); register_pci_controller(&apc->pci_controller); return 0; } static struct platform_driver ar724x_pci_driver = { .probe = ar724x_pci_probe, .driver = { .name = "ar724x-pci", }, }; static int __init ar724x_pci_init(void) { return platform_driver_register(&ar724x_pci_driver); } postcore_initcall(ar724x_pci_init);
linux-master
arch/mips/pci/pci-ar724x.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2016 Imagination Technologies * Author: Paul Burton <[email protected]> * * pcibios_align_resource taken from arch/arm/kernel/bios32.c. */ #include <linux/pci.h> /* * We need to avoid collisions with `mirrored' VGA ports * and other strange ISA hardware, so we always want the * addresses to be allocated in the 0x000-0x0ff region * modulo 0x400. * * Why? Because some silly external IO cards only decode * the low 10 bits of the IO address. The 0x00-0xff region * is reserved for motherboard devices that decode all 16 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, * but we want to try to avoid allocating at 0x2900-0x2bff * which might have be mirrored at 0x0100-0x03ff.. */ resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { struct pci_dev *dev = data; resource_size_t start = res->start; struct pci_host_bridge *host_bridge; if (res->flags & IORESOURCE_IO && start & 0x300) start = (start + 0x3ff) & ~0x3ff; start = (start + align - 1) & ~(align - 1); host_bridge = pci_find_host_bridge(dev->bus); if (host_bridge->align_resource) return host_bridge->align_resource(dev, res, start, size, align); return start; } void pcibios_fixup_bus(struct pci_bus *bus) { pci_read_bridge_bases(bus); } #ifdef pci_remap_iospace int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) { unsigned long vaddr; if (res->start != 0) { WARN_ONCE(1, "resource start address is not zero\n"); return -ENODEV; } vaddr = (unsigned long)ioremap(phys_addr, resource_size(res)); set_io_port_base(vaddr); return 0; } #endif
linux-master
arch/mips/pci/pci-generic.c
/* * Based on linux/arch/mips/txx9/rbtx4938/setup.c, * and RBTX49xx patch from CELF patch archive. * * Copyright 2001, 2003-2005 MontaVista Software Inc. * Copyright (C) 2004 by Ralf Baechle ([email protected]) * (C) Copyright TOSHIBA CORPORATION 2000-2001, 2004-2007 * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <asm/txx9/generic.h> #include <asm/txx9/tx4938.h> int __init tx4938_report_pciclk(void) { int pciclk = 0; pr_info("PCIC --%s PCICLK:", (__raw_readq(&tx4938_ccfgptr->ccfg) & TX4938_CCFG_PCI66) ? " PCI66" : ""); if (__raw_readq(&tx4938_ccfgptr->pcfg) & TX4938_PCFG_PCICLKEN_ALL) { u64 ccfg = __raw_readq(&tx4938_ccfgptr->ccfg); switch ((unsigned long)ccfg & TX4938_CCFG_PCIDIVMODE_MASK) { case TX4938_CCFG_PCIDIVMODE_4: pciclk = txx9_cpu_clock / 4; break; case TX4938_CCFG_PCIDIVMODE_4_5: pciclk = txx9_cpu_clock * 2 / 9; break; case TX4938_CCFG_PCIDIVMODE_5: pciclk = txx9_cpu_clock / 5; break; case TX4938_CCFG_PCIDIVMODE_5_5: pciclk = txx9_cpu_clock * 2 / 11; break; case TX4938_CCFG_PCIDIVMODE_8: pciclk = txx9_cpu_clock / 8; break; case TX4938_CCFG_PCIDIVMODE_9: pciclk = txx9_cpu_clock / 9; break; case TX4938_CCFG_PCIDIVMODE_10: pciclk = txx9_cpu_clock / 10; break; case TX4938_CCFG_PCIDIVMODE_11: pciclk = txx9_cpu_clock / 11; break; } pr_cont("Internal(%u.%uMHz)", (pciclk + 50000) / 1000000, ((pciclk + 50000) / 100000) % 10); } else { pr_cont("External"); pciclk = -1; } pr_cont("\n"); return pciclk; } void __init tx4938_report_pci1clk(void) { __u64 ccfg = __raw_readq(&tx4938_ccfgptr->ccfg); unsigned int pciclk = txx9_gbus_clock / ((ccfg & TX4938_CCFG_PCI1DMD) ? 4 : 2); pr_info("PCIC1 -- %sPCICLK:%u.%uMHz\n", (ccfg & TX4938_CCFG_PCI1_66) ? "PCI66 " : "", (pciclk + 50000) / 1000000, ((pciclk + 50000) / 100000) % 10); } int __init tx4938_pciclk66_setup(void) { int pciclk; /* Assert M66EN */ tx4938_ccfg_set(TX4938_CCFG_PCI66); /* Double PCICLK (if possible) */ if (__raw_readq(&tx4938_ccfgptr->pcfg) & TX4938_PCFG_PCICLKEN_ALL) { unsigned int pcidivmode = 0; u64 ccfg = __raw_readq(&tx4938_ccfgptr->ccfg); pcidivmode = (unsigned long)ccfg & TX4938_CCFG_PCIDIVMODE_MASK; switch (pcidivmode) { case TX4938_CCFG_PCIDIVMODE_8: case TX4938_CCFG_PCIDIVMODE_4: pcidivmode = TX4938_CCFG_PCIDIVMODE_4; pciclk = txx9_cpu_clock / 4; break; case TX4938_CCFG_PCIDIVMODE_9: case TX4938_CCFG_PCIDIVMODE_4_5: pcidivmode = TX4938_CCFG_PCIDIVMODE_4_5; pciclk = txx9_cpu_clock * 2 / 9; break; case TX4938_CCFG_PCIDIVMODE_10: case TX4938_CCFG_PCIDIVMODE_5: pcidivmode = TX4938_CCFG_PCIDIVMODE_5; pciclk = txx9_cpu_clock / 5; break; case TX4938_CCFG_PCIDIVMODE_11: case TX4938_CCFG_PCIDIVMODE_5_5: default: pcidivmode = TX4938_CCFG_PCIDIVMODE_5_5; pciclk = txx9_cpu_clock * 2 / 11; break; } tx4938_ccfg_change(TX4938_CCFG_PCIDIVMODE_MASK, pcidivmode); pr_debug("PCICLK: ccfg:%08lx\n", (unsigned long)__raw_readq(&tx4938_ccfgptr->ccfg)); } else pciclk = -1; return pciclk; } int tx4938_pcic1_map_irq(const struct pci_dev *dev, u8 slot) { if (get_tx4927_pcicptr(dev->bus->sysdata) == tx4938_pcic1ptr) { switch (slot) { case TX4927_PCIC_IDSEL_AD_TO_SLOT(31): if (__raw_readq(&tx4938_ccfgptr->pcfg) & TX4938_PCFG_ETH0_SEL) return TXX9_IRQ_BASE + TX4938_IR_ETH0; break; case TX4927_PCIC_IDSEL_AD_TO_SLOT(30): if (__raw_readq(&tx4938_ccfgptr->pcfg) & TX4938_PCFG_ETH1_SEL) return TXX9_IRQ_BASE + TX4938_IR_ETH1; break; } return 0; } return -1; } void __init tx4938_setup_pcierr_irq(void) { if (request_irq(TXX9_IRQ_BASE + TX4938_IR_PCIERR, tx4927_pcierr_interrupt, 0, "PCI error", (void *)TX4927_PCIC_REG)) pr_warn("Failed to request irq for PCIERR\n"); }
linux-master
arch/mips/pci/pci-tx4938.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SNI specific PCI support for RM200/RM300. * * Copyright (C) 1997 - 2000, 2003, 04 Ralf Baechle ([email protected]) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <asm/mipsregs.h> #include <asm/sni.h> #include <irq.h> /* * PCIMT Shortcuts ... */ #define SCSI PCIMT_IRQ_SCSI #define ETH PCIMT_IRQ_ETHERNET #define INTA PCIMT_IRQ_INTA #define INTB PCIMT_IRQ_INTB #define INTC PCIMT_IRQ_INTC #define INTD PCIMT_IRQ_INTD /* * Device 0: PCI EISA Bridge (directly routed) * Device 1: NCR53c810 SCSI (directly routed) * Device 2: PCnet32 Ethernet (directly routed) * Device 3: VGA (routed to INTB) * Device 4: Unused * Device 5: Slot 2 * Device 6: Slot 3 * Device 7: Slot 4 * * Documentation says the VGA is device 5 and device 3 is unused but that * seem to be a documentation error. At least on my RM200C the Cirrus * Logic CL-GD5434 VGA is device 3. */ static char irq_tab_rm200[8][5] = { /* INTA INTB INTC INTD */ { 0, 0, 0, 0, 0 }, /* EISA bridge */ { SCSI, SCSI, SCSI, SCSI, SCSI }, /* SCSI */ { ETH, ETH, ETH, ETH, ETH }, /* Ethernet */ { INTB, INTB, INTB, INTB, INTB }, /* VGA */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, INTB, INTC, INTD, INTA }, /* Slot 2 */ { 0, INTC, INTD, INTA, INTB }, /* Slot 3 */ { 0, INTD, INTA, INTB, INTC }, /* Slot 4 */ }; /* * In Revision D of the RM300 Device 2 has become a normal purpose Slot 1 * * The VGA card is optional for RM300 systems. */ static char irq_tab_rm300d[8][5] = { /* INTA INTB INTC INTD */ { 0, 0, 0, 0, 0 }, /* EISA bridge */ { SCSI, SCSI, SCSI, SCSI, SCSI }, /* SCSI */ { 0, INTC, INTD, INTA, INTB }, /* Slot 1 */ { INTB, INTB, INTB, INTB, INTB }, /* VGA */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, INTB, INTC, INTD, INTA }, /* Slot 2 */ { 0, INTC, INTD, INTA, INTB }, /* Slot 3 */ { 0, INTD, INTA, INTB, INTC }, /* Slot 4 */ }; static char irq_tab_rm300e[5][5] = { /* INTA INTB INTC INTD */ { 0, 0, 0, 0, 0 }, /* HOST bridge */ { SCSI, SCSI, SCSI, SCSI, SCSI }, /* SCSI */ { 0, INTC, INTD, INTA, INTB }, /* Bridge/i960 */ { 0, INTD, INTA, INTB, INTC }, /* Slot 1 */ { 0, INTA, INTB, INTC, INTD }, /* Slot 2 */ }; #undef SCSI #undef ETH #undef INTA #undef INTB #undef INTC #undef INTD /* * PCIT Shortcuts ... */ #define SCSI0 PCIT_IRQ_SCSI0 #define SCSI1 PCIT_IRQ_SCSI1 #define ETH PCIT_IRQ_ETHERNET #define INTA PCIT_IRQ_INTA #define INTB PCIT_IRQ_INTB #define INTC PCIT_IRQ_INTC #define INTD PCIT_IRQ_INTD static char irq_tab_pcit[13][5] = { /* INTA INTB INTC INTD */ { 0, 0, 0, 0, 0 }, /* HOST bridge */ { SCSI0, SCSI0, SCSI0, SCSI0, SCSI0 }, /* SCSI */ { SCSI1, SCSI1, SCSI1, SCSI1, SCSI1 }, /* SCSI */ { ETH, ETH, ETH, ETH, ETH }, /* Ethernet */ { 0, INTA, INTB, INTC, INTD }, /* PCI-PCI bridge */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, INTA, INTB, INTC, INTD }, /* Slot 1 */ { 0, INTB, INTC, INTD, INTA }, /* Slot 2 */ { 0, INTC, INTD, INTA, INTB }, /* Slot 3 */ { 0, INTD, INTA, INTB, INTC }, /* Slot 4 */ { 0, INTA, INTB, INTC, INTD }, /* Slot 5 */ }; static char irq_tab_pcit_cplus[13][5] = { /* INTA INTB INTC INTD */ { 0, 0, 0, 0, 0 }, /* HOST bridge */ { 0, INTB, INTC, INTD, INTA }, /* PCI Slot 9 */ { 0, 0, 0, 0, 0 }, /* PCI-EISA */ { 0, 0, 0, 0, 0 }, /* Unused */ { 0, INTA, INTB, INTC, INTD }, /* PCI-PCI bridge */ { 0, INTB, INTC, INTD, INTA }, /* fixup */ }; static inline int is_rm300_revd(void) { unsigned char csmsr = *(volatile unsigned char *)PCIMT_CSMSR; return (csmsr & 0xa0) == 0x20; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { switch (sni_brd_type) { case SNI_BRD_PCI_TOWER_CPLUS: if (slot == 4) { /* * SNI messed up interrupt wiring for onboard * PCI bus 1; we need to fix this up here */ while (dev && dev->bus->number != 1) dev = dev->bus->self; if (dev && dev->devfn >= PCI_DEVFN(4, 0)) slot = 5; } return irq_tab_pcit_cplus[slot][pin]; case SNI_BRD_PCI_TOWER: return irq_tab_pcit[slot][pin]; case SNI_BRD_PCI_MTOWER: if (is_rm300_revd()) return irq_tab_rm300d[slot][pin]; fallthrough; case SNI_BRD_PCI_DESKTOP: return irq_tab_rm200[slot][pin]; case SNI_BRD_PCI_MTOWER_CPLUS: return irq_tab_rm300e[slot][pin]; } return 0; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; }
linux-master
arch/mips/pci/fixup-sni.c
// SPDX-License-Identifier: GPL-2.0-only /* * Ralink RT288x SoC PCI register definitions * * Copyright (C) 2009 John Crispin <[email protected]> * Copyright (C) 2009 Gabor Juhos <[email protected]> * * Parts of this file are based on Ralink's 2.6.21 BSP */ #include <linux/delay.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/io.h> #include <linux/init.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <asm/mach-ralink/rt288x.h> #define RT2880_PCI_BASE 0x00440000 #define RT288X_CPU_IRQ_PCI 4 #define RT2880_PCI_MEM_BASE 0x20000000 #define RT2880_PCI_MEM_SIZE 0x10000000 #define RT2880_PCI_IO_BASE 0x00460000 #define RT2880_PCI_IO_SIZE 0x00010000 #define RT2880_PCI_REG_PCICFG_ADDR 0x00 #define RT2880_PCI_REG_PCIMSK_ADDR 0x0c #define RT2880_PCI_REG_BAR0SETUP_ADDR 0x10 #define RT2880_PCI_REG_IMBASEBAR0_ADDR 0x18 #define RT2880_PCI_REG_CONFIG_ADDR 0x20 #define RT2880_PCI_REG_CONFIG_DATA 0x24 #define RT2880_PCI_REG_MEMBASE 0x28 #define RT2880_PCI_REG_IOBASE 0x2c #define RT2880_PCI_REG_ID 0x30 #define RT2880_PCI_REG_CLASS 0x34 #define RT2880_PCI_REG_SUBID 0x38 #define RT2880_PCI_REG_ARBCTL 0x80 static void __iomem *rt2880_pci_base; static u32 rt2880_pci_reg_read(u32 reg) { return readl(rt2880_pci_base + reg); } static void rt2880_pci_reg_write(u32 val, u32 reg) { writel(val, rt2880_pci_base + reg); } static inline u32 rt2880_pci_get_cfgaddr(unsigned int bus, unsigned int slot, unsigned int func, unsigned int where) { return ((bus << 16) | (slot << 11) | (func << 8) | (where & 0xfc) | 0x80000000); } static int rt2880_pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 address; u32 data; address = rt2880_pci_get_cfgaddr(bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn), where); rt2880_pci_reg_write(address, RT2880_PCI_REG_CONFIG_ADDR); data = rt2880_pci_reg_read(RT2880_PCI_REG_CONFIG_DATA); switch (size) { case 1: *val = (data >> ((where & 3) << 3)) & 0xff; break; case 2: *val = (data >> ((where & 3) << 3)) & 0xffff; break; case 4: *val = data; break; } return PCIBIOS_SUCCESSFUL; } static int rt2880_pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 address; u32 data; address = rt2880_pci_get_cfgaddr(bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn), where); rt2880_pci_reg_write(address, RT2880_PCI_REG_CONFIG_ADDR); data = rt2880_pci_reg_read(RT2880_PCI_REG_CONFIG_DATA); switch (size) { case 1: data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 2: data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 4: data = val; break; } rt2880_pci_reg_write(data, RT2880_PCI_REG_CONFIG_DATA); return PCIBIOS_SUCCESSFUL; } static struct pci_ops rt2880_pci_ops = { .read = rt2880_pci_config_read, .write = rt2880_pci_config_write, }; static struct resource rt2880_pci_mem_resource = { .name = "PCI MEM space", .start = RT2880_PCI_MEM_BASE, .end = RT2880_PCI_MEM_BASE + RT2880_PCI_MEM_SIZE - 1, .flags = IORESOURCE_MEM, }; static struct resource rt2880_pci_io_resource = { .name = "PCI IO space", .start = RT2880_PCI_IO_BASE, .end = RT2880_PCI_IO_BASE + RT2880_PCI_IO_SIZE - 1, .flags = IORESOURCE_IO, }; static struct pci_controller rt2880_pci_controller = { .pci_ops = &rt2880_pci_ops, .mem_resource = &rt2880_pci_mem_resource, .io_resource = &rt2880_pci_io_resource, }; static inline u32 rt2880_pci_read_u32(unsigned long reg) { u32 address; u32 ret; address = rt2880_pci_get_cfgaddr(0, 0, 0, reg); rt2880_pci_reg_write(address, RT2880_PCI_REG_CONFIG_ADDR); ret = rt2880_pci_reg_read(RT2880_PCI_REG_CONFIG_DATA); return ret; } static inline void rt2880_pci_write_u32(unsigned long reg, u32 val) { u32 address; address = rt2880_pci_get_cfgaddr(0, 0, 0, reg); rt2880_pci_reg_write(address, RT2880_PCI_REG_CONFIG_ADDR); rt2880_pci_reg_write(val, RT2880_PCI_REG_CONFIG_DATA); } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int irq = -1; if (dev->bus->number != 0) return irq; switch (PCI_SLOT(dev->devfn)) { case 0x00: break; case 0x11: irq = RT288X_CPU_IRQ_PCI; break; default: pr_err("%s:%s[%d] trying to alloc unknown pci irq\n", __FILE__, __func__, __LINE__); BUG(); break; } return irq; } static int rt288x_pci_probe(struct platform_device *pdev) { void __iomem *io_map_base; rt2880_pci_base = ioremap(RT2880_PCI_BASE, PAGE_SIZE); io_map_base = ioremap(RT2880_PCI_IO_BASE, RT2880_PCI_IO_SIZE); rt2880_pci_controller.io_map_base = (unsigned long) io_map_base; set_io_port_base((unsigned long) io_map_base); ioport_resource.start = RT2880_PCI_IO_BASE; ioport_resource.end = RT2880_PCI_IO_BASE + RT2880_PCI_IO_SIZE - 1; rt2880_pci_reg_write(0, RT2880_PCI_REG_PCICFG_ADDR); udelay(1); rt2880_pci_reg_write(0x79, RT2880_PCI_REG_ARBCTL); rt2880_pci_reg_write(0x07FF0001, RT2880_PCI_REG_BAR0SETUP_ADDR); rt2880_pci_reg_write(RT2880_PCI_MEM_BASE, RT2880_PCI_REG_MEMBASE); rt2880_pci_reg_write(RT2880_PCI_IO_BASE, RT2880_PCI_REG_IOBASE); rt2880_pci_reg_write(0x08000000, RT2880_PCI_REG_IMBASEBAR0_ADDR); rt2880_pci_reg_write(0x08021814, RT2880_PCI_REG_ID); rt2880_pci_reg_write(0x00800001, RT2880_PCI_REG_CLASS); rt2880_pci_reg_write(0x28801814, RT2880_PCI_REG_SUBID); rt2880_pci_reg_write(0x000c0000, RT2880_PCI_REG_PCIMSK_ADDR); rt2880_pci_write_u32(PCI_BASE_ADDRESS_0, 0x08000000); (void) rt2880_pci_read_u32(PCI_BASE_ADDRESS_0); rt2880_pci_controller.of_node = pdev->dev.of_node; register_pci_controller(&rt2880_pci_controller); return 0; } int pcibios_plat_dev_init(struct pci_dev *dev) { static bool slot0_init; /* * Nobody seems to initialize slot 0, but this platform requires it, so * do it once when some other slot is being enabled. The PCI subsystem * should configure other slots properly, so no need to do anything * special for those. */ if (!slot0_init && dev->bus->number == 0) { u16 cmd; u32 bar0; slot0_init = true; pci_bus_write_config_dword(dev->bus, 0, PCI_BASE_ADDRESS_0, 0x08000000); pci_bus_read_config_dword(dev->bus, 0, PCI_BASE_ADDRESS_0, &bar0); pci_bus_read_config_word(dev->bus, 0, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY; pci_bus_write_config_word(dev->bus, 0, PCI_COMMAND, cmd); } return 0; } static const struct of_device_id rt288x_pci_match[] = { { .compatible = "ralink,rt288x-pci" }, {}, }; static struct platform_driver rt288x_pci_driver = { .probe = rt288x_pci_probe, .driver = { .name = "rt288x-pci", .of_match_table = rt288x_pci_match, }, }; int __init pcibios_init(void) { int ret = platform_driver_register(&rt288x_pci_driver); if (ret) pr_info("rt288x-pci: Error registering platform driver!"); return ret; } arch_initcall(pcibios_init);
linux-master
arch/mips/pci/pci-rt2880.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2012 John Crispin <[email protected]> */ #include <linux/of_irq.h> #include <linux/of_pci.h> int (*ltq_pci_plat_arch_init)(struct pci_dev *dev) = NULL; int (*ltq_pci_plat_dev_init)(struct pci_dev *dev) = NULL; int pcibios_plat_dev_init(struct pci_dev *dev) { if (ltq_pci_plat_arch_init) return ltq_pci_plat_arch_init(dev); if (ltq_pci_plat_dev_init) return ltq_pci_plat_dev_init(dev); return 0; } int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return of_irq_parse_and_map_pci(dev, slot, pin); }
linux-master
arch/mips/pci/fixup-lantiq.c
/* * BRIEF MODULE DESCRIPTION * pci_ops for IDT EB434 board * * Copyright 2004 IDT Inc. ([email protected]) * Copyright 2006 Felix Fietkau <[email protected]> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/delay.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/types.h> #include <asm/cpu.h> #include <asm/mach-rc32434/rc32434.h> #include <asm/mach-rc32434/pci.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 #define PCI_CFG_SET(bus, slot, func, off) \ (rc32434_pci->pcicfga = (0x80000000 | \ ((bus) << 16) | ((slot)<<11) | \ ((func)<<8) | (off))) static inline int config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, unsigned char where, u32 *data) { unsigned int slot = PCI_SLOT(devfn); u8 func = PCI_FUNC(devfn); /* Setup address */ PCI_CFG_SET(bus->number, slot, func, where); rc32434_sync(); if (access_type == PCI_ACCESS_WRITE) rc32434_pci->pcicfgd = *data; else *data = rc32434_pci->pcicfgd; rc32434_sync(); return 0; } /* * We can't address 8 and 16 bit words directly. Instead we have to * read/write a 32bit word and mask/modify the data we actually want. */ static int read_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 *val) { u32 data; int ret; ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); *val = (data >> ((where & 3) << 3)) & 0xff; return ret; } static int read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 *val) { u32 data; int ret; ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); *val = (data >> ((where & 3) << 3)) & 0xffff; return ret; } static int read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 *val) { int ret; int delay = 1; /* * Don't scan too far, else there will be errors with plugged in * daughterboard (rb564). */ if (bus->number == 0 && PCI_SLOT(devfn) > 21) return 0; retry: ret = config_access(PCI_ACCESS_READ, bus, devfn, where, val); /* * Certain devices react delayed at device scan time, this * gives them time to settle */ if (where == PCI_VENDOR_ID) { if (ret == 0xffffffff || ret == 0x00000000 || ret == 0x0000ffff || ret == 0xffff0000) { if (delay > 4) return 0; delay *= 2; msleep(delay); goto retry; } } return ret; } static int write_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 val) { u32 data = 0; if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) return -1; data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } static int write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 val) { if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val)) return -1; return PCIBIOS_SUCCESSFUL; } static int pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { switch (size) { case 1: return read_config_byte(bus, devfn, where, (u8 *) val); case 2: return read_config_word(bus, devfn, where, (u16 *) val); default: return read_config_dword(bus, devfn, where, val); } } static int pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { switch (size) { case 1: return write_config_byte(bus, devfn, where, (u8) val); case 2: return write_config_word(bus, devfn, where, (u16) val); default: return write_config_dword(bus, devfn, where, val); } } struct pci_ops rc32434_pci_ops = { .read = pci_config_read, .write = pci_config_write, };
linux-master
arch/mips/pci/ops-rc32434.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon <[email protected]> */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/io.h> #include "pci-bcm63xx.h" /* * swizzle 32bits data to return only the needed part */ static int postprocess_read(u32 data, int where, unsigned int size) { u32 ret; ret = 0; switch (size) { case 1: ret = (data >> ((where & 3) << 3)) & 0xff; break; case 2: ret = (data >> ((where & 3) << 3)) & 0xffff; break; case 4: ret = data; break; } return ret; } static int preprocess_write(u32 orig_data, u32 val, int where, unsigned int size) { u32 ret; ret = 0; switch (size) { case 1: ret = (orig_data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 2: ret = (orig_data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 4: ret = val; break; } return ret; } /* * setup hardware for a configuration cycle with given parameters */ static int bcm63xx_setup_cfg_access(int type, unsigned int busn, unsigned int devfn, int where) { unsigned int slot, func, reg; u32 val; slot = PCI_SLOT(devfn); func = PCI_FUNC(devfn); reg = where >> 2; /* sanity check */ if (slot > (MPI_L2PCFG_DEVNUM_MASK >> MPI_L2PCFG_DEVNUM_SHIFT)) return 1; if (func > (MPI_L2PCFG_FUNC_MASK >> MPI_L2PCFG_FUNC_SHIFT)) return 1; if (reg > (MPI_L2PCFG_REG_MASK >> MPI_L2PCFG_REG_SHIFT)) return 1; /* ok, setup config access */ val = (reg << MPI_L2PCFG_REG_SHIFT); val |= (func << MPI_L2PCFG_FUNC_SHIFT); val |= (slot << MPI_L2PCFG_DEVNUM_SHIFT); val |= MPI_L2PCFG_CFG_USEREG_MASK; val |= MPI_L2PCFG_CFG_SEL_MASK; /* type 0 cycle for local bus, type 1 cycle for anything else */ if (type != 0) { /* FIXME: how to specify bus ??? */ val |= (1 << MPI_L2PCFG_CFG_TYPE_SHIFT); } bcm_mpi_writel(val, MPI_L2PCFG_REG); return 0; } static int bcm63xx_do_cfg_read(int type, unsigned int busn, unsigned int devfn, int where, int size, u32 *val) { u32 data; /* two phase cycle, first we write address, then read data at * another location, caller already has a spinlock so no need * to add one here */ if (bcm63xx_setup_cfg_access(type, busn, devfn, where)) return PCIBIOS_DEVICE_NOT_FOUND; iob(); data = le32_to_cpu(__raw_readl(pci_iospace_start)); /* restore IO space normal behaviour */ bcm_mpi_writel(0, MPI_L2PCFG_REG); *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_do_cfg_write(int type, unsigned int busn, unsigned int devfn, int where, int size, u32 val) { u32 data; /* two phase cycle, first we write address, then write data to * another location, caller already has a spinlock so no need * to add one here */ if (bcm63xx_setup_cfg_access(type, busn, devfn, where)) return PCIBIOS_DEVICE_NOT_FOUND; iob(); data = le32_to_cpu(__raw_readl(pci_iospace_start)); data = preprocess_write(data, val, where, size); __raw_writel(cpu_to_le32(data), pci_iospace_start); wmb(); /* no way to know the access is done, we have to wait */ udelay(500); /* restore IO space normal behaviour */ bcm_mpi_writel(0, MPI_L2PCFG_REG); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { int type; type = bus->parent ? 1 : 0; if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL) return PCIBIOS_DEVICE_NOT_FOUND; return bcm63xx_do_cfg_read(type, bus->number, devfn, where, size, val); } static int bcm63xx_pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { int type; type = bus->parent ? 1 : 0; if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL) return PCIBIOS_DEVICE_NOT_FOUND; return bcm63xx_do_cfg_write(type, bus->number, devfn, where, size, val); } struct pci_ops bcm63xx_pci_ops = { .read = bcm63xx_pci_read, .write = bcm63xx_pci_write }; #ifdef CONFIG_CARDBUS /* * emulate configuration read access on a cardbus bridge */ #define FAKE_CB_BRIDGE_SLOT 0x1e static int fake_cb_bridge_bus_number = -1; static struct { u16 pci_command; u8 cb_latency; u8 subordinate_busn; u8 cardbus_busn; u8 pci_busn; int bus_assigned; u16 bridge_control; u32 mem_base0; u32 mem_limit0; u32 mem_base1; u32 mem_limit1; u32 io_base0; u32 io_limit0; u32 io_base1; u32 io_limit1; } fake_cb_bridge_regs; static int fake_cb_bridge_read(int where, int size, u32 *val) { unsigned int reg; u32 data; data = 0; reg = where >> 2; switch (reg) { case (PCI_VENDOR_ID >> 2): case (PCI_CB_SUBSYSTEM_VENDOR_ID >> 2): /* create dummy vendor/device id from our cpu id */ data = (bcm63xx_get_cpu_id() << 16) | PCI_VENDOR_ID_BROADCOM; break; case (PCI_COMMAND >> 2): data = (PCI_STATUS_DEVSEL_SLOW << 16); data |= fake_cb_bridge_regs.pci_command; break; case (PCI_CLASS_REVISION >> 2): data = (PCI_CLASS_BRIDGE_CARDBUS << 16); break; case (PCI_CACHE_LINE_SIZE >> 2): data = (PCI_HEADER_TYPE_CARDBUS << 16); break; case (PCI_INTERRUPT_LINE >> 2): /* bridge control */ data = (fake_cb_bridge_regs.bridge_control << 16); /* pin:intA line:0xff */ data |= (0x1 << 8) | 0xff; break; case (PCI_CB_PRIMARY_BUS >> 2): data = (fake_cb_bridge_regs.cb_latency << 24); data |= (fake_cb_bridge_regs.subordinate_busn << 16); data |= (fake_cb_bridge_regs.cardbus_busn << 8); data |= fake_cb_bridge_regs.pci_busn; break; case (PCI_CB_MEMORY_BASE_0 >> 2): data = fake_cb_bridge_regs.mem_base0; break; case (PCI_CB_MEMORY_LIMIT_0 >> 2): data = fake_cb_bridge_regs.mem_limit0; break; case (PCI_CB_MEMORY_BASE_1 >> 2): data = fake_cb_bridge_regs.mem_base1; break; case (PCI_CB_MEMORY_LIMIT_1 >> 2): data = fake_cb_bridge_regs.mem_limit1; break; case (PCI_CB_IO_BASE_0 >> 2): /* | 1 for 32bits io support */ data = fake_cb_bridge_regs.io_base0 | 0x1; break; case (PCI_CB_IO_LIMIT_0 >> 2): data = fake_cb_bridge_regs.io_limit0; break; case (PCI_CB_IO_BASE_1 >> 2): /* | 1 for 32bits io support */ data = fake_cb_bridge_regs.io_base1 | 0x1; break; case (PCI_CB_IO_LIMIT_1 >> 2): data = fake_cb_bridge_regs.io_limit1; break; } *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } /* * emulate configuration write access on a cardbus bridge */ static int fake_cb_bridge_write(int where, int size, u32 val) { unsigned int reg; u32 data, tmp; int ret; ret = fake_cb_bridge_read((where & ~0x3), 4, &data); if (ret != PCIBIOS_SUCCESSFUL) return ret; data = preprocess_write(data, val, where, size); reg = where >> 2; switch (reg) { case (PCI_COMMAND >> 2): fake_cb_bridge_regs.pci_command = (data & 0xffff); break; case (PCI_CB_PRIMARY_BUS >> 2): fake_cb_bridge_regs.cb_latency = (data >> 24) & 0xff; fake_cb_bridge_regs.subordinate_busn = (data >> 16) & 0xff; fake_cb_bridge_regs.cardbus_busn = (data >> 8) & 0xff; fake_cb_bridge_regs.pci_busn = data & 0xff; if (fake_cb_bridge_regs.cardbus_busn) fake_cb_bridge_regs.bus_assigned = 1; break; case (PCI_INTERRUPT_LINE >> 2): tmp = (data >> 16) & 0xffff; /* disable memory prefetch support */ tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM0; tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM1; fake_cb_bridge_regs.bridge_control = tmp; break; case (PCI_CB_MEMORY_BASE_0 >> 2): fake_cb_bridge_regs.mem_base0 = data; break; case (PCI_CB_MEMORY_LIMIT_0 >> 2): fake_cb_bridge_regs.mem_limit0 = data; break; case (PCI_CB_MEMORY_BASE_1 >> 2): fake_cb_bridge_regs.mem_base1 = data; break; case (PCI_CB_MEMORY_LIMIT_1 >> 2): fake_cb_bridge_regs.mem_limit1 = data; break; case (PCI_CB_IO_BASE_0 >> 2): fake_cb_bridge_regs.io_base0 = data; break; case (PCI_CB_IO_LIMIT_0 >> 2): fake_cb_bridge_regs.io_limit0 = data; break; case (PCI_CB_IO_BASE_1 >> 2): fake_cb_bridge_regs.io_base1 = data; break; case (PCI_CB_IO_LIMIT_1 >> 2): fake_cb_bridge_regs.io_limit1 = data; break; } return PCIBIOS_SUCCESSFUL; } static int bcm63xx_cb_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { /* snoop access to slot 0x1e on root bus, we fake a cardbus * bridge at this location */ if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) { fake_cb_bridge_bus_number = bus->number; return fake_cb_bridge_read(where, size, val); } /* a configuration cycle for the device behind the cardbus * bridge is actually done as a type 0 cycle on the primary * bus. This means that only one device can be on the cardbus * bus */ if (fake_cb_bridge_regs.bus_assigned && bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(devfn) == 0) return bcm63xx_do_cfg_read(0, 0, PCI_DEVFN(CARDBUS_PCI_IDSEL, 0), where, size, val); return PCIBIOS_DEVICE_NOT_FOUND; } static int bcm63xx_cb_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) { fake_cb_bridge_bus_number = bus->number; return fake_cb_bridge_write(where, size, val); } if (fake_cb_bridge_regs.bus_assigned && bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(devfn) == 0) return bcm63xx_do_cfg_write(0, 0, PCI_DEVFN(CARDBUS_PCI_IDSEL, 0), where, size, val); return PCIBIOS_DEVICE_NOT_FOUND; } struct pci_ops bcm63xx_cb_ops = { .read = bcm63xx_cb_read, .write = bcm63xx_cb_write, }; /* * only one IO window, so it cannot be shared by PCI and cardbus, use * fixup to choose and detect unhandled configuration */ static void bcm63xx_fixup(struct pci_dev *dev) { static int io_window = -1; int found, new_io_window; struct resource *r; u32 val; /* look for any io resource */ found = 0; pci_dev_for_each_resource(dev, r) { if (resource_type(r) == IORESOURCE_IO) { found = 1; break; } } if (!found) return; /* skip our fake bus with only cardbus bridge on it */ if (dev->bus->number == fake_cb_bridge_bus_number) return; /* find on which bus the device is */ if (fake_cb_bridge_regs.bus_assigned && dev->bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(dev->devfn) == 0) new_io_window = 1; else new_io_window = 0; if (new_io_window == io_window) return; if (io_window != -1) { printk(KERN_ERR "bcm63xx: both PCI and cardbus devices " "need IO, which hardware cannot do\n"); return; } printk(KERN_INFO "bcm63xx: PCI IO window assigned to %s\n", (new_io_window == 0) ? "PCI" : "cardbus"); val = bcm_mpi_readl(MPI_L2PIOREMAP_REG); if (io_window) val |= MPI_L2PREMAP_IS_CARDBUS_MASK; else val &= ~MPI_L2PREMAP_IS_CARDBUS_MASK; bcm_mpi_writel(val, MPI_L2PIOREMAP_REG); io_window = new_io_window; } DECLARE_PCI_FIXUP_ENABLE(PCI_ANY_ID, PCI_ANY_ID, bcm63xx_fixup); #endif static int bcm63xx_pcie_can_access(struct pci_bus *bus, int devfn) { switch (bus->number) { case PCIE_BUS_BRIDGE: return PCI_SLOT(devfn) == 0; case PCIE_BUS_DEVICE: if (PCI_SLOT(devfn) == 0) return bcm_pcie_readl(PCIE_DLSTATUS_REG) & DLSTATUS_PHYLINKUP; fallthrough; default: return false; } } static int bcm63xx_pcie_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 data; u32 reg = where & ~3; if (!bcm63xx_pcie_can_access(bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == PCIE_BUS_DEVICE) reg += PCIE_DEVICE_OFFSET; data = bcm_pcie_readl(reg); *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_pcie_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data; u32 reg = where & ~3; if (!bcm63xx_pcie_can_access(bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == PCIE_BUS_DEVICE) reg += PCIE_DEVICE_OFFSET; data = bcm_pcie_readl(reg); data = preprocess_write(data, val, where, size); bcm_pcie_writel(data, reg); return PCIBIOS_SUCCESSFUL; } struct pci_ops bcm63xx_pcie_ops = { .read = bcm63xx_pcie_read, .write = bcm63xx_pcie_write };
linux-master
arch/mips/pci/ops-bcm63xx.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004 ICT CAS * Author: Li xiaoyu, ICT CAS * [email protected] * * Copyright (C) 2007 Lemote, Inc. & Institute of Computing Technology * Author: Fuxin Zhang, [email protected] */ #include <linux/init.h> #include <linux/pci.h> #include <loongson.h> /* South bridge slot number is set by the pci probe process */ static u8 sb_slot = 5; int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int irq = 0; if (slot == sb_slot) { switch (PCI_FUNC(dev->devfn)) { case 2: irq = 10; break; case 3: irq = 11; break; case 5: irq = 9; break; } } else { irq = LOONGSON_IRQ_BASE + 25 + pin; } return irq; } /* Do platform specific device initialization at pci_enable_device() time */ int pcibios_plat_dev_init(struct pci_dev *dev) { return 0; } static void loongson2e_nec_fixup(struct pci_dev *pdev) { unsigned int val; /* Configures port 1, 2, 3, 4 to be validate*/ pci_read_config_dword(pdev, 0xe0, &val); pci_write_config_dword(pdev, 0xe0, (val & ~7) | 0x4); /* System clock is 48-MHz Oscillator. */ pci_write_config_dword(pdev, 0xe4, 1 << 5); } static void loongson2e_686b_func0_fixup(struct pci_dev *pdev) { unsigned char c; sb_slot = PCI_SLOT(pdev->devfn); printk(KERN_INFO "via686b fix: ISA bridge\n"); /* Enable I/O Recovery time */ pci_write_config_byte(pdev, 0x40, 0x08); /* Enable ISA refresh */ pci_write_config_byte(pdev, 0x41, 0x01); /* disable ISA line buffer */ pci_write_config_byte(pdev, 0x45, 0x00); /* Gate INTR, and flush line buffer */ pci_write_config_byte(pdev, 0x46, 0xe0); /* Disable PCI Delay Transaction, Enable EISA ports 4D0/4D1. */ /* pci_write_config_byte(pdev, 0x47, 0x20); */ /* * enable PCI Delay Transaction, Enable EISA ports 4D0/4D1. * enable time-out timer */ pci_write_config_byte(pdev, 0x47, 0xe6); /* * enable level trigger on pci irqs: 9,10,11,13 * important! without this PCI interrupts won't work */ outb(0x2e, 0x4d1); /* 512 K PCI Decode */ pci_write_config_byte(pdev, 0x48, 0x01); /* Wait for PGNT before grant to ISA Master/DMA */ pci_write_config_byte(pdev, 0x4a, 0x84); /* * Plug'n'Play * * Parallel DRQ 3, Floppy DRQ 2 (default) */ pci_write_config_byte(pdev, 0x50, 0x0e); /* * IRQ Routing for Floppy and Parallel port * * IRQ 6 for floppy, IRQ 7 for parallel port */ pci_write_config_byte(pdev, 0x51, 0x76); /* IRQ Routing for serial ports (take IRQ 3 and 4) */ pci_write_config_byte(pdev, 0x52, 0x34); /* All IRQ's level triggered. */ pci_write_config_byte(pdev, 0x54, 0x00); /* route PIRQA-D irq */ pci_write_config_byte(pdev, 0x55, 0x90); /* bit 7-4, PIRQA */ pci_write_config_byte(pdev, 0x56, 0xba); /* bit 7-4, PIRQC; */ /* 3-0, PIRQB */ pci_write_config_byte(pdev, 0x57, 0xd0); /* bit 7-4, PIRQD */ /* enable function 5/6, audio/modem */ pci_read_config_byte(pdev, 0x85, &c); c &= ~(0x3 << 2); pci_write_config_byte(pdev, 0x85, c); printk(KERN_INFO"via686b fix: ISA bridge done\n"); } static void loongson2e_686b_func1_fixup(struct pci_dev *pdev) { printk(KERN_INFO"via686b fix: IDE\n"); /* Modify IDE controller setup */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 48); pci_write_config_byte(pdev, PCI_COMMAND, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); pci_write_config_byte(pdev, 0x40, 0x0b); /* legacy mode */ pci_write_config_byte(pdev, 0x42, 0x09); #if 1/* play safe, otherwise we may see notebook's usb keyboard lockup */ /* disable read prefetch/write post buffers */ pci_write_config_byte(pdev, 0x41, 0x02); /* use 3/4 as fifo thresh hold */ pci_write_config_byte(pdev, 0x43, 0x0a); pci_write_config_byte(pdev, 0x44, 0x00); pci_write_config_byte(pdev, 0x45, 0x00); #else pci_write_config_byte(pdev, 0x41, 0xc2); pci_write_config_byte(pdev, 0x43, 0x35); pci_write_config_byte(pdev, 0x44, 0x1c); pci_write_config_byte(pdev, 0x45, 0x10); #endif printk(KERN_INFO"via686b fix: IDE done\n"); } static void loongson2e_686b_func2_fixup(struct pci_dev *pdev) { /* irq routing */ pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, 10); } static void loongson2e_686b_func3_fixup(struct pci_dev *pdev) { /* irq routing */ pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, 11); } static void loongson2e_686b_func5_fixup(struct pci_dev *pdev) { unsigned int val; unsigned char c; /* enable IO */ pci_write_config_byte(pdev, PCI_COMMAND, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); pci_read_config_dword(pdev, 0x4, &val); pci_write_config_dword(pdev, 0x4, val | 1); /* route ac97 IRQ */ pci_write_config_byte(pdev, 0x3c, 9); pci_read_config_byte(pdev, 0x8, &c); /* link control: enable link & SGD PCM output */ pci_write_config_byte(pdev, 0x41, 0xcc); /* disable game port, FM, midi, sb, enable write to reg2c-2f */ pci_write_config_byte(pdev, 0x42, 0x20); /* we are using Avance logic codec */ pci_write_config_word(pdev, 0x2c, 0x1005); pci_write_config_word(pdev, 0x2e, 0x4710); pci_read_config_dword(pdev, 0x2c, &val); pci_write_config_byte(pdev, 0x42, 0x0); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686, loongson2e_686b_func0_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_1, loongson2e_686b_func1_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_2, loongson2e_686b_func2_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_3, loongson2e_686b_func3_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_5, loongson2e_686b_func5_fixup); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_NEC, PCI_DEVICE_ID_NEC_USB, loongson2e_nec_fixup);
linux-master
arch/mips/pci/fixup-fuloong2e.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1999, 2000, 2004, 2005 MIPS Technologies, Inc. * All rights reserved. * Authors: Carsten Langgaard <[email protected]> * Maciej W. Rozycki <[email protected]> * * Copyright (C) 2004 by Ralf Baechle ([email protected]) * * MIPS boards specific PCI support. */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <asm/gt64120.h> #include <asm/mips-cps.h> #include <asm/mips-boards/generic.h> #include <asm/mips-boards/bonito64.h> #include <asm/mips-boards/msc01_pci.h> static struct resource bonito64_mem_resource = { .name = "Bonito PCI MEM", .flags = IORESOURCE_MEM, }; static struct resource bonito64_io_resource = { .name = "Bonito PCI I/O", .start = 0x00000000UL, .end = 0x000fffffUL, .flags = IORESOURCE_IO, }; static struct resource gt64120_mem_resource = { .name = "GT-64120 PCI MEM", .flags = IORESOURCE_MEM, }; static struct resource gt64120_io_resource = { .name = "GT-64120 PCI I/O", .flags = IORESOURCE_IO, }; static struct resource msc_mem_resource = { .name = "MSC PCI MEM", .flags = IORESOURCE_MEM, }; static struct resource msc_io_resource = { .name = "MSC PCI I/O", .flags = IORESOURCE_IO, }; extern struct pci_ops bonito64_pci_ops; extern struct pci_ops gt64xxx_pci0_ops; extern struct pci_ops msc_pci_ops; static struct pci_controller bonito64_controller = { .pci_ops = &bonito64_pci_ops, .io_resource = &bonito64_io_resource, .mem_resource = &bonito64_mem_resource, .io_offset = 0x00000000UL, }; static struct pci_controller gt64120_controller = { .pci_ops = &gt64xxx_pci0_ops, .io_resource = &gt64120_io_resource, .mem_resource = &gt64120_mem_resource, }; static struct pci_controller msc_controller = { .pci_ops = &msc_pci_ops, .io_resource = &msc_io_resource, .mem_resource = &msc_mem_resource, }; void __init mips_pcibios_init(void) { struct pci_controller *controller; resource_size_t start, end, map, start1, end1, map1, map2, map3, mask; switch (mips_revision_sconid) { case MIPS_REVISION_SCON_GT64120: /* * Due to a bug in the Galileo system controller, we need * to setup the PCI BAR for the Galileo internal registers. * This should be done in the bios/bootprom and will be * fixed in a later revision of YAMON (the MIPS boards * boot prom). */ GT_WRITE(GT_PCI0_CFGADDR_OFS, (0 << GT_PCI0_CFGADDR_BUSNUM_SHF) | /* Local bus */ (0 << GT_PCI0_CFGADDR_DEVNUM_SHF) | /* GT64120 dev */ (0 << GT_PCI0_CFGADDR_FUNCTNUM_SHF) | /* Function 0*/ ((0x20/4) << GT_PCI0_CFGADDR_REGNUM_SHF) | /* BAR 4*/ GT_PCI0_CFGADDR_CONFIGEN_BIT); /* Perform the write */ GT_WRITE(GT_PCI0_CFGDATA_OFS, CPHYSADDR(MIPS_GT_BASE)); /* Set up resource ranges from the controller's registers. */ start = GT_READ(GT_PCI0M0LD_OFS); end = GT_READ(GT_PCI0M0HD_OFS); map = GT_READ(GT_PCI0M0REMAP_OFS); end = (end & GT_PCI_HD_MSK) | (start & ~GT_PCI_HD_MSK); start1 = GT_READ(GT_PCI0M1LD_OFS); end1 = GT_READ(GT_PCI0M1HD_OFS); map1 = GT_READ(GT_PCI0M1REMAP_OFS); end1 = (end1 & GT_PCI_HD_MSK) | (start1 & ~GT_PCI_HD_MSK); /* Cannot support multiple windows, use the wider. */ if (end1 - start1 > end - start) { start = start1; end = end1; map = map1; } mask = ~(start ^ end); /* We don't support remapping with a discontiguous mask. */ BUG_ON((start & GT_PCI_HD_MSK) != (map & GT_PCI_HD_MSK) && mask != ~((mask & -mask) - 1)); gt64120_mem_resource.start = start; gt64120_mem_resource.end = end; gt64120_controller.mem_offset = (start & mask) - (map & mask); /* Addresses are 36-bit, so do shifts in the destinations. */ gt64120_mem_resource.start <<= GT_PCI_DCRM_SHF; gt64120_mem_resource.end <<= GT_PCI_DCRM_SHF; gt64120_mem_resource.end |= (1 << GT_PCI_DCRM_SHF) - 1; gt64120_controller.mem_offset <<= GT_PCI_DCRM_SHF; start = GT_READ(GT_PCI0IOLD_OFS); end = GT_READ(GT_PCI0IOHD_OFS); map = GT_READ(GT_PCI0IOREMAP_OFS); end = (end & GT_PCI_HD_MSK) | (start & ~GT_PCI_HD_MSK); mask = ~(start ^ end); /* We don't support remapping with a discontiguous mask. */ BUG_ON((start & GT_PCI_HD_MSK) != (map & GT_PCI_HD_MSK) && mask != ~((mask & -mask) - 1)); gt64120_io_resource.start = map & mask; gt64120_io_resource.end = (map & mask) | ~mask; gt64120_controller.io_offset = 0; /* Addresses are 36-bit, so do shifts in the destinations. */ gt64120_io_resource.start <<= GT_PCI_DCRM_SHF; gt64120_io_resource.end <<= GT_PCI_DCRM_SHF; gt64120_io_resource.end |= (1 << GT_PCI_DCRM_SHF) - 1; controller = &gt64120_controller; break; case MIPS_REVISION_SCON_BONITO: /* Set up resource ranges from the controller's registers. */ map = BONITO_PCIMAP; map1 = (BONITO_PCIMAP & BONITO_PCIMAP_PCIMAP_LO0) >> BONITO_PCIMAP_PCIMAP_LO0_SHIFT; map2 = (BONITO_PCIMAP & BONITO_PCIMAP_PCIMAP_LO1) >> BONITO_PCIMAP_PCIMAP_LO1_SHIFT; map3 = (BONITO_PCIMAP & BONITO_PCIMAP_PCIMAP_LO2) >> BONITO_PCIMAP_PCIMAP_LO2_SHIFT; /* Combine as many adjacent windows as possible. */ map = map1; start = BONITO_PCILO0_BASE; end = 1; if (map3 == map2 + 1) { map = map2; start = BONITO_PCILO1_BASE; end++; } if (map2 == map1 + 1) { map = map1; start = BONITO_PCILO0_BASE; end++; } bonito64_mem_resource.start = start; bonito64_mem_resource.end = start + BONITO_PCIMAP_WINBASE(end) - 1; bonito64_controller.mem_offset = start - BONITO_PCIMAP_WINBASE(map); controller = &bonito64_controller; break; case MIPS_REVISION_SCON_SOCIT: case MIPS_REVISION_SCON_ROCIT: case MIPS_REVISION_SCON_SOCITSC: case MIPS_REVISION_SCON_SOCITSCP: /* Set up resource ranges from the controller's registers. */ MSC_READ(MSC01_PCI_SC2PMBASL, start); MSC_READ(MSC01_PCI_SC2PMMSKL, mask); MSC_READ(MSC01_PCI_SC2PMMAPL, map); msc_mem_resource.start = start & mask; msc_mem_resource.end = (start & mask) | ~mask; msc_controller.mem_offset = (start & mask) - (map & mask); if (mips_cps_numiocu(0)) { write_gcr_reg0_base(start); write_gcr_reg0_mask(mask | CM_GCR_REGn_MASK_CMTGT_IOCU0); } MSC_READ(MSC01_PCI_SC2PIOBASL, start); MSC_READ(MSC01_PCI_SC2PIOMSKL, mask); MSC_READ(MSC01_PCI_SC2PIOMAPL, map); msc_io_resource.start = map & mask; msc_io_resource.end = (map & mask) | ~mask; msc_controller.io_offset = 0; ioport_resource.end = ~mask; if (mips_cps_numiocu(0)) { write_gcr_reg1_base(start); write_gcr_reg1_mask(mask | CM_GCR_REGn_MASK_CMTGT_IOCU0); } /* If ranges overlap I/O takes precedence. */ start = start & mask; end = start | ~mask; if ((start >= msc_mem_resource.start && start <= msc_mem_resource.end) || (end >= msc_mem_resource.start && end <= msc_mem_resource.end)) { /* Use the larger space. */ start = max(start, msc_mem_resource.start); end = min(end, msc_mem_resource.end); if (start - msc_mem_resource.start >= msc_mem_resource.end - end) msc_mem_resource.end = start - 1; else msc_mem_resource.start = end + 1; } controller = &msc_controller; break; default: return; } /* PIIX4 ACPI starts at 0x1000 */ if (controller->io_resource->start < 0x00001000UL) controller->io_resource->start = 0x00001000UL; iomem_resource.end &= 0xfffffffffULL; /* 64 GB */ ioport_resource.end = controller->io_resource->end; controller->io_map_base = mips_io_port_base; register_pci_controller(controller); }
linux-master
arch/mips/pci/pci-malta.c
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2003 Christoph Hellwig ([email protected]) * Copyright (C) 1999, 2000, 04 Ralf Baechle ([email protected]) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include <asm/sn/addrs.h> #include <asm/sn/types.h> #include <asm/sn/klconfig.h> #include <asm/sn/agent.h> #include <asm/sn/ioc3.h> #include <asm/pci/bridge.h> #ifdef CONFIG_NUMA int pcibus_to_node(struct pci_bus *bus) { struct bridge_controller *bc = BRIDGE_CONTROLLER(bus); return bc->nasid; } EXPORT_SYMBOL(pcibus_to_node); #endif /* CONFIG_NUMA */ static void ip29_fixup_phy(struct pci_dev *dev) { int nasid = pcibus_to_node(dev->bus); u32 sid; if (nasid != 1) return; /* only needed on second module */ /* enable ethernet PHY on IP29 systemboard */ pci_read_config_dword(dev, PCI_SUBSYSTEM_VENDOR_ID, &sid); if (sid == (PCI_VENDOR_ID_SGI | (IOC3_SUBSYS_IP29_SYSBOARD) << 16)) REMOTE_HUB_S(nasid, MD_LED0, 0x09); } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, ip29_fixup_phy);
linux-master
arch/mips/pci/pci-ip27.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" #include "ieee754dp.h" static inline union ieee754dp ieee754dp_nan_fsp(int xs, u64 xm) { return builddp(xs, DP_EMAX + 1 + DP_EBIAS, xm << (DP_FBITS - SP_FBITS)); } union ieee754dp ieee754dp_fsp(union ieee754sp x) { COMPXSP; EXPLODEXSP; ieee754_clearcx(); FLUSHXSP; switch (xc) { case IEEE754_CLASS_SNAN: return ieee754dp_nanxcpt(ieee754dp_nan_fsp(xs, xm)); case IEEE754_CLASS_QNAN: return ieee754dp_nan_fsp(xs, xm); case IEEE754_CLASS_INF: return ieee754dp_inf(xs); case IEEE754_CLASS_ZERO: return ieee754dp_zero(xs); case IEEE754_CLASS_DNORM: /* normalize */ while ((xm >> SP_FBITS) == 0) { xm <<= 1; xe--; } break; case IEEE754_CLASS_NORM: break; } /* * Can't possibly overflow,underflow, or need rounding */ /* drop the hidden bit */ xm &= ~SP_HIDDEN_BIT; return builddp(xs, xe + DP_EBIAS, (u64) xm << (DP_FBITS - SP_FBITS)); }
linux-master
arch/mips/math-emu/dp_fsp.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision square root */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_sqrt(union ieee754sp x) { int ix, s, q, m, t, i; unsigned int r; COMPXSP; /* take care of Inf and NaN */ EXPLODEXSP; ieee754_clearcx(); FLUSHXSP; /* x == INF or NAN? */ switch (xc) { case IEEE754_CLASS_SNAN: return ieee754sp_nanxcpt(x); case IEEE754_CLASS_QNAN: /* sqrt(Nan) = Nan */ return x; case IEEE754_CLASS_ZERO: /* sqrt(0) = 0 */ return x; case IEEE754_CLASS_INF: if (xs) { /* sqrt(-Inf) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } /* sqrt(+Inf) = Inf */ return x; case IEEE754_CLASS_DNORM: case IEEE754_CLASS_NORM: if (xs) { /* sqrt(-x) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } break; } ix = x.bits; /* normalize x */ m = (ix >> 23); if (m == 0) { /* subnormal x */ for (i = 0; (ix & 0x00800000) == 0; i++) ix <<= 1; m -= i - 1; } m -= 127; /* unbias exponent */ ix = (ix & 0x007fffff) | 0x00800000; if (m & 1) /* odd m, double x to make it even */ ix += ix; m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix += ix; s = 0; q = 0; /* q = sqrt(x) */ r = 0x01000000; /* r = moving bit from right to left */ while (r != 0) { t = s + r; if (t <= ix) { s = t + r; ix -= t; q += r; } ix += ix; r >>= 1; } if (ix != 0) { ieee754_setcx(IEEE754_INEXACT); switch (ieee754_csr.rm) { case FPU_CSR_RU: q += 2; break; case FPU_CSR_RN: q += (q & 1); break; } } ix = (q >> 1) + 0x3f000000; ix += (m << 23); x.bits = ix; return x; }
linux-master
arch/mips/math-emu/sp_sqrt.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/cpumask.h> #include <linux/debugfs.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/percpu.h> #include <linux/types.h> #include <asm/debug.h> #include <asm/fpu_emulator.h> #include <asm/local.h> DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats); static int fpuemu_stat_get(void *data, u64 *val) { int cpu; unsigned long sum = 0; for_each_online_cpu(cpu) { struct mips_fpu_emulator_stats *ps; local_t *pv; ps = &per_cpu(fpuemustats, cpu); pv = (void *)ps + (unsigned long)data; sum += local_read(pv); } *val = sum; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n"); /* * Used to obtain names for a debugfs instruction counter, given field name * in fpuemustats structure. For example, for input "cmp_sueq_d", the output * would be "cmp.sueq.d". This is needed since dots are not allowed to be * used in structure field names, and are, on the other hand, desired to be * used in debugfs item names to be clearly associated to corresponding * MIPS FPU instructions. */ static void adjust_instruction_counter_name(char *out_name, char *in_name) { int i = 0; strcpy(out_name, in_name); while (in_name[i] != '\0') { if (out_name[i] == '_') out_name[i] = '.'; i++; } } static int fpuemustats_clear_show(struct seq_file *s, void *unused) { __this_cpu_write((fpuemustats).emulated, 0); __this_cpu_write((fpuemustats).loads, 0); __this_cpu_write((fpuemustats).stores, 0); __this_cpu_write((fpuemustats).branches, 0); __this_cpu_write((fpuemustats).cp1ops, 0); __this_cpu_write((fpuemustats).cp1xops, 0); __this_cpu_write((fpuemustats).errors, 0); __this_cpu_write((fpuemustats).ieee754_inexact, 0); __this_cpu_write((fpuemustats).ieee754_underflow, 0); __this_cpu_write((fpuemustats).ieee754_overflow, 0); __this_cpu_write((fpuemustats).ieee754_zerodiv, 0); __this_cpu_write((fpuemustats).ieee754_invalidop, 0); __this_cpu_write((fpuemustats).ds_emul, 0); __this_cpu_write((fpuemustats).abs_s, 0); __this_cpu_write((fpuemustats).abs_d, 0); __this_cpu_write((fpuemustats).add_s, 0); __this_cpu_write((fpuemustats).add_d, 0); __this_cpu_write((fpuemustats).bc1eqz, 0); __this_cpu_write((fpuemustats).bc1nez, 0); __this_cpu_write((fpuemustats).ceil_w_s, 0); __this_cpu_write((fpuemustats).ceil_w_d, 0); __this_cpu_write((fpuemustats).ceil_l_s, 0); __this_cpu_write((fpuemustats).ceil_l_d, 0); __this_cpu_write((fpuemustats).class_s, 0); __this_cpu_write((fpuemustats).class_d, 0); __this_cpu_write((fpuemustats).cmp_af_s, 0); __this_cpu_write((fpuemustats).cmp_af_d, 0); __this_cpu_write((fpuemustats).cmp_eq_s, 0); __this_cpu_write((fpuemustats).cmp_eq_d, 0); __this_cpu_write((fpuemustats).cmp_le_s, 0); __this_cpu_write((fpuemustats).cmp_le_d, 0); __this_cpu_write((fpuemustats).cmp_lt_s, 0); __this_cpu_write((fpuemustats).cmp_lt_d, 0); __this_cpu_write((fpuemustats).cmp_ne_s, 0); __this_cpu_write((fpuemustats).cmp_ne_d, 0); __this_cpu_write((fpuemustats).cmp_or_s, 0); __this_cpu_write((fpuemustats).cmp_or_d, 0); __this_cpu_write((fpuemustats).cmp_ueq_s, 0); __this_cpu_write((fpuemustats).cmp_ueq_d, 0); __this_cpu_write((fpuemustats).cmp_ule_s, 0); __this_cpu_write((fpuemustats).cmp_ule_d, 0); __this_cpu_write((fpuemustats).cmp_ult_s, 0); __this_cpu_write((fpuemustats).cmp_ult_d, 0); __this_cpu_write((fpuemustats).cmp_un_s, 0); __this_cpu_write((fpuemustats).cmp_un_d, 0); __this_cpu_write((fpuemustats).cmp_une_s, 0); __this_cpu_write((fpuemustats).cmp_une_d, 0); __this_cpu_write((fpuemustats).cmp_saf_s, 0); __this_cpu_write((fpuemustats).cmp_saf_d, 0); __this_cpu_write((fpuemustats).cmp_seq_s, 0); __this_cpu_write((fpuemustats).cmp_seq_d, 0); __this_cpu_write((fpuemustats).cmp_sle_s, 0); __this_cpu_write((fpuemustats).cmp_sle_d, 0); __this_cpu_write((fpuemustats).cmp_slt_s, 0); __this_cpu_write((fpuemustats).cmp_slt_d, 0); __this_cpu_write((fpuemustats).cmp_sne_s, 0); __this_cpu_write((fpuemustats).cmp_sne_d, 0); __this_cpu_write((fpuemustats).cmp_sor_s, 0); __this_cpu_write((fpuemustats).cmp_sor_d, 0); __this_cpu_write((fpuemustats).cmp_sueq_s, 0); __this_cpu_write((fpuemustats).cmp_sueq_d, 0); __this_cpu_write((fpuemustats).cmp_sule_s, 0); __this_cpu_write((fpuemustats).cmp_sule_d, 0); __this_cpu_write((fpuemustats).cmp_sult_s, 0); __this_cpu_write((fpuemustats).cmp_sult_d, 0); __this_cpu_write((fpuemustats).cmp_sun_s, 0); __this_cpu_write((fpuemustats).cmp_sun_d, 0); __this_cpu_write((fpuemustats).cmp_sune_s, 0); __this_cpu_write((fpuemustats).cmp_sune_d, 0); __this_cpu_write((fpuemustats).cvt_d_l, 0); __this_cpu_write((fpuemustats).cvt_d_s, 0); __this_cpu_write((fpuemustats).cvt_d_w, 0); __this_cpu_write((fpuemustats).cvt_l_s, 0); __this_cpu_write((fpuemustats).cvt_l_d, 0); __this_cpu_write((fpuemustats).cvt_s_d, 0); __this_cpu_write((fpuemustats).cvt_s_l, 0); __this_cpu_write((fpuemustats).cvt_s_w, 0); __this_cpu_write((fpuemustats).cvt_w_s, 0); __this_cpu_write((fpuemustats).cvt_w_d, 0); __this_cpu_write((fpuemustats).div_s, 0); __this_cpu_write((fpuemustats).div_d, 0); __this_cpu_write((fpuemustats).floor_w_s, 0); __this_cpu_write((fpuemustats).floor_w_d, 0); __this_cpu_write((fpuemustats).floor_l_s, 0); __this_cpu_write((fpuemustats).floor_l_d, 0); __this_cpu_write((fpuemustats).maddf_s, 0); __this_cpu_write((fpuemustats).maddf_d, 0); __this_cpu_write((fpuemustats).max_s, 0); __this_cpu_write((fpuemustats).max_d, 0); __this_cpu_write((fpuemustats).maxa_s, 0); __this_cpu_write((fpuemustats).maxa_d, 0); __this_cpu_write((fpuemustats).min_s, 0); __this_cpu_write((fpuemustats).min_d, 0); __this_cpu_write((fpuemustats).mina_s, 0); __this_cpu_write((fpuemustats).mina_d, 0); __this_cpu_write((fpuemustats).mov_s, 0); __this_cpu_write((fpuemustats).mov_d, 0); __this_cpu_write((fpuemustats).msubf_s, 0); __this_cpu_write((fpuemustats).msubf_d, 0); __this_cpu_write((fpuemustats).mul_s, 0); __this_cpu_write((fpuemustats).mul_d, 0); __this_cpu_write((fpuemustats).neg_s, 0); __this_cpu_write((fpuemustats).neg_d, 0); __this_cpu_write((fpuemustats).recip_s, 0); __this_cpu_write((fpuemustats).recip_d, 0); __this_cpu_write((fpuemustats).rint_s, 0); __this_cpu_write((fpuemustats).rint_d, 0); __this_cpu_write((fpuemustats).round_w_s, 0); __this_cpu_write((fpuemustats).round_w_d, 0); __this_cpu_write((fpuemustats).round_l_s, 0); __this_cpu_write((fpuemustats).round_l_d, 0); __this_cpu_write((fpuemustats).rsqrt_s, 0); __this_cpu_write((fpuemustats).rsqrt_d, 0); __this_cpu_write((fpuemustats).sel_s, 0); __this_cpu_write((fpuemustats).sel_d, 0); __this_cpu_write((fpuemustats).seleqz_s, 0); __this_cpu_write((fpuemustats).seleqz_d, 0); __this_cpu_write((fpuemustats).selnez_s, 0); __this_cpu_write((fpuemustats).selnez_d, 0); __this_cpu_write((fpuemustats).sqrt_s, 0); __this_cpu_write((fpuemustats).sqrt_d, 0); __this_cpu_write((fpuemustats).sub_s, 0); __this_cpu_write((fpuemustats).sub_d, 0); __this_cpu_write((fpuemustats).trunc_w_s, 0); __this_cpu_write((fpuemustats).trunc_w_d, 0); __this_cpu_write((fpuemustats).trunc_l_s, 0); __this_cpu_write((fpuemustats).trunc_l_d, 0); return 0; } DEFINE_SHOW_ATTRIBUTE(fpuemustats_clear); static int __init debugfs_fpuemu(void) { struct dentry *fpuemu_debugfs_base_dir; struct dentry *fpuemu_debugfs_inst_dir; char name[32]; fpuemu_debugfs_base_dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir); debugfs_create_file("fpuemustats_clear", 0444, mips_debugfs_dir, NULL, &fpuemustats_clear_fops); #define FPU_EMU_STAT_OFFSET(m) \ offsetof(struct mips_fpu_emulator_stats, m) #define FPU_STAT_CREATE(m) \ do { \ debugfs_create_file(#m, 0444, fpuemu_debugfs_base_dir, \ (void *)FPU_EMU_STAT_OFFSET(m), \ &fops_fpuemu_stat); \ } while (0) FPU_STAT_CREATE(emulated); FPU_STAT_CREATE(loads); FPU_STAT_CREATE(stores); FPU_STAT_CREATE(branches); FPU_STAT_CREATE(cp1ops); FPU_STAT_CREATE(cp1xops); FPU_STAT_CREATE(errors); FPU_STAT_CREATE(ieee754_inexact); FPU_STAT_CREATE(ieee754_underflow); FPU_STAT_CREATE(ieee754_overflow); FPU_STAT_CREATE(ieee754_zerodiv); FPU_STAT_CREATE(ieee754_invalidop); FPU_STAT_CREATE(ds_emul); fpuemu_debugfs_inst_dir = debugfs_create_dir("instructions", fpuemu_debugfs_base_dir); #define FPU_STAT_CREATE_EX(m) \ do { \ adjust_instruction_counter_name(name, #m); \ \ debugfs_create_file(name, 0444, fpuemu_debugfs_inst_dir, \ (void *)FPU_EMU_STAT_OFFSET(m), \ &fops_fpuemu_stat); \ } while (0) FPU_STAT_CREATE_EX(abs_s); FPU_STAT_CREATE_EX(abs_d); FPU_STAT_CREATE_EX(add_s); FPU_STAT_CREATE_EX(add_d); FPU_STAT_CREATE_EX(bc1eqz); FPU_STAT_CREATE_EX(bc1nez); FPU_STAT_CREATE_EX(ceil_w_s); FPU_STAT_CREATE_EX(ceil_w_d); FPU_STAT_CREATE_EX(ceil_l_s); FPU_STAT_CREATE_EX(ceil_l_d); FPU_STAT_CREATE_EX(class_s); FPU_STAT_CREATE_EX(class_d); FPU_STAT_CREATE_EX(cmp_af_s); FPU_STAT_CREATE_EX(cmp_af_d); FPU_STAT_CREATE_EX(cmp_eq_s); FPU_STAT_CREATE_EX(cmp_eq_d); FPU_STAT_CREATE_EX(cmp_le_s); FPU_STAT_CREATE_EX(cmp_le_d); FPU_STAT_CREATE_EX(cmp_lt_s); FPU_STAT_CREATE_EX(cmp_lt_d); FPU_STAT_CREATE_EX(cmp_ne_s); FPU_STAT_CREATE_EX(cmp_ne_d); FPU_STAT_CREATE_EX(cmp_or_s); FPU_STAT_CREATE_EX(cmp_or_d); FPU_STAT_CREATE_EX(cmp_ueq_s); FPU_STAT_CREATE_EX(cmp_ueq_d); FPU_STAT_CREATE_EX(cmp_ule_s); FPU_STAT_CREATE_EX(cmp_ule_d); FPU_STAT_CREATE_EX(cmp_ult_s); FPU_STAT_CREATE_EX(cmp_ult_d); FPU_STAT_CREATE_EX(cmp_un_s); FPU_STAT_CREATE_EX(cmp_un_d); FPU_STAT_CREATE_EX(cmp_une_s); FPU_STAT_CREATE_EX(cmp_une_d); FPU_STAT_CREATE_EX(cmp_saf_s); FPU_STAT_CREATE_EX(cmp_saf_d); FPU_STAT_CREATE_EX(cmp_seq_s); FPU_STAT_CREATE_EX(cmp_seq_d); FPU_STAT_CREATE_EX(cmp_sle_s); FPU_STAT_CREATE_EX(cmp_sle_d); FPU_STAT_CREATE_EX(cmp_slt_s); FPU_STAT_CREATE_EX(cmp_slt_d); FPU_STAT_CREATE_EX(cmp_sne_s); FPU_STAT_CREATE_EX(cmp_sne_d); FPU_STAT_CREATE_EX(cmp_sor_s); FPU_STAT_CREATE_EX(cmp_sor_d); FPU_STAT_CREATE_EX(cmp_sueq_s); FPU_STAT_CREATE_EX(cmp_sueq_d); FPU_STAT_CREATE_EX(cmp_sule_s); FPU_STAT_CREATE_EX(cmp_sule_d); FPU_STAT_CREATE_EX(cmp_sult_s); FPU_STAT_CREATE_EX(cmp_sult_d); FPU_STAT_CREATE_EX(cmp_sun_s); FPU_STAT_CREATE_EX(cmp_sun_d); FPU_STAT_CREATE_EX(cmp_sune_s); FPU_STAT_CREATE_EX(cmp_sune_d); FPU_STAT_CREATE_EX(cvt_d_l); FPU_STAT_CREATE_EX(cvt_d_s); FPU_STAT_CREATE_EX(cvt_d_w); FPU_STAT_CREATE_EX(cvt_l_s); FPU_STAT_CREATE_EX(cvt_l_d); FPU_STAT_CREATE_EX(cvt_s_d); FPU_STAT_CREATE_EX(cvt_s_l); FPU_STAT_CREATE_EX(cvt_s_w); FPU_STAT_CREATE_EX(cvt_w_s); FPU_STAT_CREATE_EX(cvt_w_d); FPU_STAT_CREATE_EX(div_s); FPU_STAT_CREATE_EX(div_d); FPU_STAT_CREATE_EX(floor_w_s); FPU_STAT_CREATE_EX(floor_w_d); FPU_STAT_CREATE_EX(floor_l_s); FPU_STAT_CREATE_EX(floor_l_d); FPU_STAT_CREATE_EX(maddf_s); FPU_STAT_CREATE_EX(maddf_d); FPU_STAT_CREATE_EX(max_s); FPU_STAT_CREATE_EX(max_d); FPU_STAT_CREATE_EX(maxa_s); FPU_STAT_CREATE_EX(maxa_d); FPU_STAT_CREATE_EX(min_s); FPU_STAT_CREATE_EX(min_d); FPU_STAT_CREATE_EX(mina_s); FPU_STAT_CREATE_EX(mina_d); FPU_STAT_CREATE_EX(mov_s); FPU_STAT_CREATE_EX(mov_d); FPU_STAT_CREATE_EX(msubf_s); FPU_STAT_CREATE_EX(msubf_d); FPU_STAT_CREATE_EX(mul_s); FPU_STAT_CREATE_EX(mul_d); FPU_STAT_CREATE_EX(neg_s); FPU_STAT_CREATE_EX(neg_d); FPU_STAT_CREATE_EX(recip_s); FPU_STAT_CREATE_EX(recip_d); FPU_STAT_CREATE_EX(rint_s); FPU_STAT_CREATE_EX(rint_d); FPU_STAT_CREATE_EX(round_w_s); FPU_STAT_CREATE_EX(round_w_d); FPU_STAT_CREATE_EX(round_l_s); FPU_STAT_CREATE_EX(round_l_d); FPU_STAT_CREATE_EX(rsqrt_s); FPU_STAT_CREATE_EX(rsqrt_d); FPU_STAT_CREATE_EX(sel_s); FPU_STAT_CREATE_EX(sel_d); FPU_STAT_CREATE_EX(seleqz_s); FPU_STAT_CREATE_EX(seleqz_d); FPU_STAT_CREATE_EX(selnez_s); FPU_STAT_CREATE_EX(selnez_d); FPU_STAT_CREATE_EX(sqrt_s); FPU_STAT_CREATE_EX(sqrt_d); FPU_STAT_CREATE_EX(sub_s); FPU_STAT_CREATE_EX(sub_d); FPU_STAT_CREATE_EX(trunc_w_s); FPU_STAT_CREATE_EX(trunc_w_d); FPU_STAT_CREATE_EX(trunc_l_s); FPU_STAT_CREATE_EX(trunc_l_d); return 0; } arch_initcall(debugfs_fpuemu);
linux-master
arch/mips/math-emu/me-debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator * * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 2000 MIPS Technologies, Inc. * * A complete emulator for MIPS coprocessor 1 instructions. This is * required for #float(switch) or #float(trap), where it catches all * COP1 instructions via the "CoProcessor Unusable" exception. * * More surprisingly it is also required for #float(ieee), to help out * the hardware FPU at the boundaries of the IEEE-754 representation * (denormalised values, infinities, underflow, etc). It is made * quite nasty because emulation of some non-COP1 instructions is * required, e.g. in branch delay slots. * * Note if you know that you won't have an FPU, then you'll get much * better performance by compiling with -msoft-float! */ #include <linux/sched.h> #include <linux/debugfs.h> #include <linux/percpu-defs.h> #include <linux/perf_event.h> #include <asm/branch.h> #include <asm/inst.h> #include <asm/ptrace.h> #include <asm/signal.h> #include <linux/uaccess.h> #include <asm/cpu-info.h> #include <asm/processor.h> #include <asm/fpu_emulator.h> #include <asm/fpu.h> #include <asm/mips-r2-to-r6-emul.h> #include "ieee754.h" /* Function which emulates a floating point instruction. */ static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *, mips_instruction); static int fpux_emu(struct pt_regs *, struct mips_fpu_struct *, mips_instruction, void __user **); /* Control registers */ #define FPCREG_RID 0 /* $0 = revision id */ #define FPCREG_FCCR 25 /* $25 = fccr */ #define FPCREG_FEXR 26 /* $26 = fexr */ #define FPCREG_FENR 28 /* $28 = fenr */ #define FPCREG_CSR 31 /* $31 = csr */ /* convert condition code register number to csr bit */ const unsigned int fpucondbit[8] = { FPU_CSR_COND, FPU_CSR_COND1, FPU_CSR_COND2, FPU_CSR_COND3, FPU_CSR_COND4, FPU_CSR_COND5, FPU_CSR_COND6, FPU_CSR_COND7 }; /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */ static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0}; static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0}; static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0}; static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0}; /* * This functions translates a 32-bit microMIPS instruction * into a 32-bit MIPS32 instruction. Returns 0 on success * and SIGILL otherwise. */ static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr) { union mips_instruction insn = *insn_ptr; union mips_instruction mips32_insn = insn; int func, fmt, op; switch (insn.mm_i_format.opcode) { case mm_ldc132_op: mips32_insn.mm_i_format.opcode = ldc1_op; mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; break; case mm_lwc132_op: mips32_insn.mm_i_format.opcode = lwc1_op; mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; break; case mm_sdc132_op: mips32_insn.mm_i_format.opcode = sdc1_op; mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; break; case mm_swc132_op: mips32_insn.mm_i_format.opcode = swc1_op; mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; break; case mm_pool32i_op: /* NOTE: offset is << by 1 if in microMIPS mode. */ if ((insn.mm_i_format.rt == mm_bc1f_op) || (insn.mm_i_format.rt == mm_bc1t_op)) { mips32_insn.fb_format.opcode = cop1_op; mips32_insn.fb_format.bc = bc_op; mips32_insn.fb_format.flag = (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0; } else return SIGILL; break; case mm_pool32f_op: switch (insn.mm_fp0_format.func) { case mm_32f_01_op: case mm_32f_11_op: case mm_32f_02_op: case mm_32f_12_op: case mm_32f_41_op: case mm_32f_51_op: case mm_32f_42_op: case mm_32f_52_op: op = insn.mm_fp0_format.func; if (op == mm_32f_01_op) func = madd_s_op; else if (op == mm_32f_11_op) func = madd_d_op; else if (op == mm_32f_02_op) func = nmadd_s_op; else if (op == mm_32f_12_op) func = nmadd_d_op; else if (op == mm_32f_41_op) func = msub_s_op; else if (op == mm_32f_51_op) func = msub_d_op; else if (op == mm_32f_42_op) func = nmsub_s_op; else func = nmsub_d_op; mips32_insn.fp6_format.opcode = cop1x_op; mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr; mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft; mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs; mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd; mips32_insn.fp6_format.func = func; break; case mm_32f_10_op: func = -1; /* Invalid */ op = insn.mm_fp5_format.op & 0x7; if (op == mm_ldxc1_op) func = ldxc1_op; else if (op == mm_sdxc1_op) func = sdxc1_op; else if (op == mm_lwxc1_op) func = lwxc1_op; else if (op == mm_swxc1_op) func = swxc1_op; if (func != -1) { mips32_insn.r_format.opcode = cop1x_op; mips32_insn.r_format.rs = insn.mm_fp5_format.base; mips32_insn.r_format.rt = insn.mm_fp5_format.index; mips32_insn.r_format.rd = 0; mips32_insn.r_format.re = insn.mm_fp5_format.fd; mips32_insn.r_format.func = func; } else return SIGILL; break; case mm_32f_40_op: op = -1; /* Invalid */ if (insn.mm_fp2_format.op == mm_fmovt_op) op = 1; else if (insn.mm_fp2_format.op == mm_fmovf_op) op = 0; if (op != -1) { mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp2_format.fmt]; mips32_insn.fp0_format.ft = (insn.mm_fp2_format.cc<<2) + op; mips32_insn.fp0_format.fs = insn.mm_fp2_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp2_format.fd; mips32_insn.fp0_format.func = fmovc_op; } else return SIGILL; break; case mm_32f_60_op: func = -1; /* Invalid */ if (insn.mm_fp0_format.op == mm_fadd_op) func = fadd_op; else if (insn.mm_fp0_format.op == mm_fsub_op) func = fsub_op; else if (insn.mm_fp0_format.op == mm_fmul_op) func = fmul_op; else if (insn.mm_fp0_format.op == mm_fdiv_op) func = fdiv_op; if (func != -1) { mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp0_format.fmt]; mips32_insn.fp0_format.ft = insn.mm_fp0_format.ft; mips32_insn.fp0_format.fs = insn.mm_fp0_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp0_format.fd; mips32_insn.fp0_format.func = func; } else return SIGILL; break; case mm_32f_70_op: func = -1; /* Invalid */ if (insn.mm_fp0_format.op == mm_fmovn_op) func = fmovn_op; else if (insn.mm_fp0_format.op == mm_fmovz_op) func = fmovz_op; if (func != -1) { mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp0_format.fmt]; mips32_insn.fp0_format.ft = insn.mm_fp0_format.ft; mips32_insn.fp0_format.fs = insn.mm_fp0_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp0_format.fd; mips32_insn.fp0_format.func = func; } else return SIGILL; break; case mm_32f_73_op: /* POOL32FXF */ switch (insn.mm_fp1_format.op) { case mm_movf0_op: case mm_movf1_op: case mm_movt0_op: case mm_movt1_op: if ((insn.mm_fp1_format.op & 0x7f) == mm_movf0_op) op = 0; else op = 1; mips32_insn.r_format.opcode = spec_op; mips32_insn.r_format.rs = insn.mm_fp4_format.fs; mips32_insn.r_format.rt = (insn.mm_fp4_format.cc << 2) + op; mips32_insn.r_format.rd = insn.mm_fp4_format.rt; mips32_insn.r_format.re = 0; mips32_insn.r_format.func = movc_op; break; case mm_fcvtd0_op: case mm_fcvtd1_op: case mm_fcvts0_op: case mm_fcvts1_op: if ((insn.mm_fp1_format.op & 0x7f) == mm_fcvtd0_op) { func = fcvtd_op; fmt = swl_format[insn.mm_fp3_format.fmt]; } else { func = fcvts_op; fmt = dwl_format[insn.mm_fp3_format.fmt]; } mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = fmt; mips32_insn.fp0_format.ft = 0; mips32_insn.fp0_format.fs = insn.mm_fp3_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp3_format.rt; mips32_insn.fp0_format.func = func; break; case mm_fmov0_op: case mm_fmov1_op: case mm_fabs0_op: case mm_fabs1_op: case mm_fneg0_op: case mm_fneg1_op: if ((insn.mm_fp1_format.op & 0x7f) == mm_fmov0_op) func = fmov_op; else if ((insn.mm_fp1_format.op & 0x7f) == mm_fabs0_op) func = fabs_op; else func = fneg_op; mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp3_format.fmt]; mips32_insn.fp0_format.ft = 0; mips32_insn.fp0_format.fs = insn.mm_fp3_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp3_format.rt; mips32_insn.fp0_format.func = func; break; case mm_ffloorl_op: case mm_ffloorw_op: case mm_fceill_op: case mm_fceilw_op: case mm_ftruncl_op: case mm_ftruncw_op: case mm_froundl_op: case mm_froundw_op: case mm_fcvtl_op: case mm_fcvtw_op: if (insn.mm_fp1_format.op == mm_ffloorl_op) func = ffloorl_op; else if (insn.mm_fp1_format.op == mm_ffloorw_op) func = ffloor_op; else if (insn.mm_fp1_format.op == mm_fceill_op) func = fceill_op; else if (insn.mm_fp1_format.op == mm_fceilw_op) func = fceil_op; else if (insn.mm_fp1_format.op == mm_ftruncl_op) func = ftruncl_op; else if (insn.mm_fp1_format.op == mm_ftruncw_op) func = ftrunc_op; else if (insn.mm_fp1_format.op == mm_froundl_op) func = froundl_op; else if (insn.mm_fp1_format.op == mm_froundw_op) func = fround_op; else if (insn.mm_fp1_format.op == mm_fcvtl_op) func = fcvtl_op; else func = fcvtw_op; mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sd_format[insn.mm_fp1_format.fmt]; mips32_insn.fp0_format.ft = 0; mips32_insn.fp0_format.fs = insn.mm_fp1_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp1_format.rt; mips32_insn.fp0_format.func = func; break; case mm_frsqrt_op: case mm_fsqrt_op: case mm_frecip_op: if (insn.mm_fp1_format.op == mm_frsqrt_op) func = frsqrt_op; else if (insn.mm_fp1_format.op == mm_fsqrt_op) func = fsqrt_op; else func = frecip_op; mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp1_format.fmt]; mips32_insn.fp0_format.ft = 0; mips32_insn.fp0_format.fs = insn.mm_fp1_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp1_format.rt; mips32_insn.fp0_format.func = func; break; case mm_mfc1_op: case mm_mtc1_op: case mm_cfc1_op: case mm_ctc1_op: case mm_mfhc1_op: case mm_mthc1_op: if (insn.mm_fp1_format.op == mm_mfc1_op) op = mfc_op; else if (insn.mm_fp1_format.op == mm_mtc1_op) op = mtc_op; else if (insn.mm_fp1_format.op == mm_cfc1_op) op = cfc_op; else if (insn.mm_fp1_format.op == mm_ctc1_op) op = ctc_op; else if (insn.mm_fp1_format.op == mm_mfhc1_op) op = mfhc_op; else op = mthc_op; mips32_insn.fp1_format.opcode = cop1_op; mips32_insn.fp1_format.op = op; mips32_insn.fp1_format.rt = insn.mm_fp1_format.rt; mips32_insn.fp1_format.fs = insn.mm_fp1_format.fs; mips32_insn.fp1_format.fd = 0; mips32_insn.fp1_format.func = 0; break; default: return SIGILL; } break; case mm_32f_74_op: /* c.cond.fmt */ mips32_insn.fp0_format.opcode = cop1_op; mips32_insn.fp0_format.fmt = sdps_format[insn.mm_fp4_format.fmt]; mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt; mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs; mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2; mips32_insn.fp0_format.func = insn.mm_fp4_format.cond | MM_MIPS32_COND_FC; break; default: return SIGILL; } break; default: return SIGILL; } *insn_ptr = mips32_insn; return 0; } /* * Redundant with logic already in kernel/branch.c, * embedded in compute_return_epc. At some point, * a single subroutine should be used across both * modules. */ int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, unsigned long *contpc) { union mips_instruction insn = (union mips_instruction)dec_insn.insn; unsigned int fcr31; unsigned int bit = 0; unsigned int bit0; union fpureg *fpr; switch (insn.i_format.opcode) { case spec_op: switch (insn.r_format.func) { case jalr_op: if (insn.r_format.rd != 0) { regs->regs[insn.r_format.rd] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; } fallthrough; case jr_op: /* For R6, JR already emulated in jalr_op */ if (NO_R6EMU && insn.r_format.func == jr_op) break; *contpc = regs->regs[insn.r_format.rs]; return 1; } break; case bcond_op: switch (insn.i_format.rt) { case bltzal_op: case bltzall_op: if (NO_R6EMU && (insn.i_format.rs || insn.i_format.rt == bltzall_op)) break; regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case bltzl_op: if (NO_R6EMU) break; fallthrough; case bltz_op: if ((long)regs->regs[insn.i_format.rs] < 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case bgezal_op: case bgezall_op: if (NO_R6EMU && (insn.i_format.rs || insn.i_format.rt == bgezall_op)) break; regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case bgezl_op: if (NO_R6EMU) break; fallthrough; case bgez_op: if ((long)regs->regs[insn.i_format.rs] >= 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } break; case jalx_op: set_isa16_mode(bit); fallthrough; case jal_op: regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; fallthrough; case j_op: *contpc = regs->cp0_epc + dec_insn.pc_inc; *contpc >>= 28; *contpc <<= 28; *contpc |= (insn.j_format.target << 2); /* Set microMIPS mode bit: XOR for jalx. */ *contpc ^= bit; return 1; case beql_op: if (NO_R6EMU) break; fallthrough; case beq_op: if (regs->regs[insn.i_format.rs] == regs->regs[insn.i_format.rt]) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case bnel_op: if (NO_R6EMU) break; fallthrough; case bne_op: if (regs->regs[insn.i_format.rs] != regs->regs[insn.i_format.rt]) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case blezl_op: if (!insn.i_format.rt && NO_R6EMU) break; fallthrough; case blez_op: /* * Compact branches for R6 for the * blez and blezl opcodes. * BLEZ | rs = 0 | rt != 0 == BLEZALC * BLEZ | rs = rt != 0 == BGEZALC * BLEZ | rs != 0 | rt != 0 == BGEUC * BLEZL | rs = 0 | rt != 0 == BLEZC * BLEZL | rs = rt != 0 == BGEZC * BLEZL | rs != 0 | rt != 0 == BGEC * * For real BLEZ{,L}, rt is always 0. */ if (cpu_has_mips_r6 && insn.i_format.rt) { if ((insn.i_format.opcode == blez_op) && ((!insn.i_format.rs && insn.i_format.rt) || (insn.i_format.rs == insn.i_format.rt))) regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } if ((long)regs->regs[insn.i_format.rs] <= 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case bgtzl_op: if (!insn.i_format.rt && NO_R6EMU) break; fallthrough; case bgtz_op: /* * Compact branches for R6 for the * bgtz and bgtzl opcodes. * BGTZ | rs = 0 | rt != 0 == BGTZALC * BGTZ | rs = rt != 0 == BLTZALC * BGTZ | rs != 0 | rt != 0 == BLTUC * BGTZL | rs = 0 | rt != 0 == BGTZC * BGTZL | rs = rt != 0 == BLTZC * BGTZL | rs != 0 | rt != 0 == BLTC * * *ZALC varint for BGTZ &&& rt != 0 * For real GTZ{,L}, rt is always 0. */ if (cpu_has_mips_r6 && insn.i_format.rt) { if ((insn.i_format.opcode == blez_op) && ((!insn.i_format.rs && insn.i_format.rt) || (insn.i_format.rs == insn.i_format.rt))) regs->regs[31] = regs->cp0_epc + dec_insn.pc_inc; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } if ((long)regs->regs[insn.i_format.rs] > 0) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case pop10_op: case pop30_op: if (!cpu_has_mips_r6) break; if (insn.i_format.rt && !insn.i_format.rs) regs->regs[31] = regs->cp0_epc + 4; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; #ifdef CONFIG_CPU_CAVIUM_OCTEON case lwc2_op: /* This is bbit0 on Octeon */ if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + 8; return 1; case ldc2_op: /* This is bbit032 on Octeon */ if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0) *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + 8; return 1; case swc2_op: /* This is bbit1 on Octeon */ if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + 8; return 1; case sdc2_op: /* This is bbit132 on Octeon */ if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + 8; return 1; #else case bc6_op: /* * Only valid for MIPS R6 but we can still end up * here from a broken userland so just tell emulator * this is not a branch and let it break later on. */ if (!cpu_has_mips_r6) break; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case balc6_op: if (!cpu_has_mips_r6) break; regs->regs[31] = regs->cp0_epc + 4; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case pop66_op: if (!cpu_has_mips_r6) break; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case pop76_op: if (!cpu_has_mips_r6) break; if (!insn.i_format.rs) regs->regs[31] = regs->cp0_epc + 4; *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; #endif case cop0_op: case cop1_op: /* Need to check for R6 bc1nez and bc1eqz branches */ if (cpu_has_mips_r6 && ((insn.i_format.rs == bc1eqz_op) || (insn.i_format.rs == bc1nez_op))) { bit = 0; fpr = &current->thread.fpu.fpr[insn.i_format.rt]; bit0 = get_fpr32(fpr, 0) & 0x1; switch (insn.i_format.rs) { case bc1eqz_op: bit = bit0 == 0; break; case bc1nez_op: bit = bit0 != 0; break; } if (bit) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } /* R2/R6 compatible cop1 instruction */ fallthrough; case cop2_op: case cop1x_op: if (insn.i_format.rs == bc_op) { preempt_disable(); if (is_fpu_owner()) fcr31 = read_32bit_cp1_register(CP1_STATUS); else fcr31 = current->thread.fpu.fcr31; preempt_enable(); bit = (insn.i_format.rt >> 2); bit += (bit != 0); bit += 23; switch (insn.i_format.rt & 3) { case 0: /* bc1f */ case 2: /* bc1fl */ if (~fcr31 & (1 << bit)) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; case 1: /* bc1t */ case 3: /* bc1tl */ if (fcr31 & (1 << bit)) *contpc = regs->cp0_epc + dec_insn.pc_inc + (insn.i_format.simmediate << 2); else *contpc = regs->cp0_epc + dec_insn.pc_inc + dec_insn.next_pc_inc; return 1; } } break; } return 0; } /* * In the Linux kernel, we support selection of FPR format on the * basis of the Status.FR bit. If an FPU is not present, the FR bit * is hardwired to zero, which would imply a 32-bit FPU even for * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS. * FPU emu is slow and bulky and optimizing this function offers fairly * sizeable benefits so we try to be clever and make this function return * a constant whenever possible, that is on 64-bit kernels without O32 * compatibility enabled and on 32-bit without 64-bit FPU support. */ static inline int cop1_64bit(struct pt_regs *xcp) { if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32)) return 1; else if (IS_ENABLED(CONFIG_32BIT) && !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) return 0; return !test_thread_flag(TIF_32BIT_FPREGS); } static inline bool hybrid_fprs(void) { return test_thread_flag(TIF_HYBRID_FPREGS); } #define SIFROMREG(si, x) \ do { \ if (cop1_64bit(xcp) && !hybrid_fprs()) \ (si) = (int)get_fpr32(&ctx->fpr[x], 0); \ else \ (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \ } while (0) #define SITOREG(si, x) \ do { \ if (cop1_64bit(xcp) && !hybrid_fprs()) { \ unsigned int i; \ set_fpr32(&ctx->fpr[x], 0, si); \ for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ set_fpr32(&ctx->fpr[x], i, 0); \ } else { \ set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \ } \ } while (0) #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1)) #define SITOHREG(si, x) \ do { \ unsigned int i; \ set_fpr32(&ctx->fpr[x], 1, si); \ for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ set_fpr32(&ctx->fpr[x], i, 0); \ } while (0) #define DIFROMREG(di, x) \ ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0)) #define DITOREG(di, x) \ do { \ unsigned int fpr, i; \ fpr = (x) & ~(cop1_64bit(xcp) ^ 1); \ set_fpr64(&ctx->fpr[fpr], 0, di); \ for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \ set_fpr64(&ctx->fpr[fpr], i, 0); \ } while (0) #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x) #define SPTOREG(sp, x) SITOREG((sp).bits, x) #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x) #define DPTOREG(dp, x) DITOREG((dp).bits, x) /* * Emulate a CFC1 instruction. */ static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, mips_instruction ir) { u32 fcr31 = ctx->fcr31; u32 value = 0; switch (MIPSInst_RD(ir)) { case FPCREG_CSR: value = fcr31; pr_debug("%p gpr[%d]<-csr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); break; case FPCREG_FENR: if (!cpu_has_mips_r) break; value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & MIPS_FENR_FS; value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM); pr_debug("%p gpr[%d]<-enr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); break; case FPCREG_FEXR: if (!cpu_has_mips_r) break; value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); pr_debug("%p gpr[%d]<-exr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); break; case FPCREG_FCCR: if (!cpu_has_mips_r) break; value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & MIPS_FCCR_COND0; value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0); pr_debug("%p gpr[%d]<-ccr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); break; case FPCREG_RID: value = boot_cpu_data.fpu_id; break; default: break; } if (MIPSInst_RT(ir)) xcp->regs[MIPSInst_RT(ir)] = value; } /* * Emulate a CTC1 instruction. */ static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, mips_instruction ir) { u32 fcr31 = ctx->fcr31; u32 value; u32 mask; if (MIPSInst_RT(ir) == 0) value = 0; else value = xcp->regs[MIPSInst_RT(ir)]; switch (MIPSInst_RD(ir)) { case FPCREG_CSR: pr_debug("%p gpr[%d]->csr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); /* Preserve read-only bits. */ mask = boot_cpu_data.fpu_msk31; fcr31 = (value & ~mask) | (fcr31 & mask); break; case FPCREG_FENR: if (!cpu_has_mips_r) break; pr_debug("%p gpr[%d]->enr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM); fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & FPU_CSR_FS; fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM); break; case FPCREG_FEXR: if (!cpu_has_mips_r) break; pr_debug("%p gpr[%d]->exr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S); fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); break; case FPCREG_FCCR: if (!cpu_has_mips_r) break; pr_debug("%p gpr[%d]->ccr=%08x\n", (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND); fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & FPU_CSR_COND; fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & FPU_CSR_CONDX; break; default: break; } ctx->fcr31 = fcr31; } /* * Emulate the single floating point instruction pointed at by EPC. * Two instructions if the instruction is in a branch delay slot. */ static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx, struct mm_decoded_insn dec_insn, void __user **fault_addr) { unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc; unsigned int cond, cbit, bit0; mips_instruction ir; int likely, pc_inc; union fpureg *fpr; u32 __user *wva; u64 __user *dva; u32 wval; u64 dval; int sig; /* * These are giving gcc a gentle hint about what to expect in * dec_inst in order to do better optimization. */ if (!cpu_has_mmips && dec_insn.micro_mips_mode) unreachable(); /* XXX NEC Vr54xx bug workaround */ if (delay_slot(xcp)) { if (dec_insn.micro_mips_mode) { if (!mm_isBranchInstr(xcp, dec_insn, &contpc)) clear_delay_slot(xcp); } else { if (!isBranchInstr(xcp, dec_insn, &contpc)) clear_delay_slot(xcp); } } if (delay_slot(xcp)) { /* * The instruction to be emulated is in a branch delay slot * which means that we have to emulate the branch instruction * BEFORE we do the cop1 instruction. * * This branch could be a COP1 branch, but in that case we * would have had a trap for that instruction, and would not * come through this route. * * Linux MIPS branch emulator operates on context, updating the * cp0_epc. */ ir = dec_insn.next_insn; /* process delay slot instr */ pc_inc = dec_insn.next_pc_inc; } else { ir = dec_insn.insn; /* process current instr */ pc_inc = dec_insn.pc_inc; } /* * Since microMIPS FPU instructios are a subset of MIPS32 FPU * instructions, we want to convert microMIPS FPU instructions * into MIPS32 instructions so that we could reuse all of the * FPU emulation code. * * NOTE: We cannot do this for branch instructions since they * are not a subset. Example: Cannot emulate a 16-bit * aligned target address with a MIPS32 instruction. */ if (dec_insn.micro_mips_mode) { /* * If next instruction is a 16-bit instruction, then * it cannot be a FPU instruction. This could happen * since we can be called for non-FPU instructions. */ if ((pc_inc == 2) || (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) return SIGILL; } emul: perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0); MIPS_FPU_EMU_INC_STATS(emulated); switch (MIPSInst_OPCODE(ir)) { case ldc1_op: dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); MIPS_FPU_EMU_INC_STATS(loads); if (!access_ok(dva, sizeof(u64))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = dva; return SIGBUS; } if (__get_user(dval, dva)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = dva; return SIGSEGV; } DITOREG(dval, MIPSInst_RT(ir)); break; case sdc1_op: dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); MIPS_FPU_EMU_INC_STATS(stores); DIFROMREG(dval, MIPSInst_RT(ir)); if (!access_ok(dva, sizeof(u64))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = dva; return SIGBUS; } if (__put_user(dval, dva)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = dva; return SIGSEGV; } break; case lwc1_op: wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); MIPS_FPU_EMU_INC_STATS(loads); if (!access_ok(wva, sizeof(u32))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = wva; return SIGBUS; } if (__get_user(wval, wva)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = wva; return SIGSEGV; } SITOREG(wval, MIPSInst_RT(ir)); break; case swc1_op: wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); MIPS_FPU_EMU_INC_STATS(stores); SIFROMREG(wval, MIPSInst_RT(ir)); if (!access_ok(wva, sizeof(u32))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = wva; return SIGBUS; } if (__put_user(wval, wva)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = wva; return SIGSEGV; } break; case cop1_op: switch (MIPSInst_RS(ir)) { case dmfc_op: if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) return SIGILL; /* copregister fs -> gpr[rt] */ if (MIPSInst_RT(ir) != 0) { DIFROMREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); } break; case dmtc_op: if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) return SIGILL; /* copregister fs <- rt */ DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); break; case mfhc_op: if (!cpu_has_mips_r2_r6) return SIGILL; /* copregister rd -> gpr[rt] */ if (MIPSInst_RT(ir) != 0) { SIFROMHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); } break; case mthc_op: if (!cpu_has_mips_r2_r6) return SIGILL; /* copregister rd <- gpr[rt] */ SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); break; case mfc_op: /* copregister rd -> gpr[rt] */ if (MIPSInst_RT(ir) != 0) { SIFROMREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); } break; case mtc_op: /* copregister rd <- rt */ SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); break; case cfc_op: /* cop control register rd -> gpr[rt] */ cop1_cfc(xcp, ctx, ir); break; case ctc_op: /* copregister rd <- rt */ cop1_ctc(xcp, ctx, ir); if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { return SIGFPE; } break; case bc1eqz_op: case bc1nez_op: if (!cpu_has_mips_r6 || delay_slot(xcp)) return SIGILL; likely = 0; cond = 0; fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)]; bit0 = get_fpr32(fpr, 0) & 0x1; switch (MIPSInst_RS(ir)) { case bc1eqz_op: MIPS_FPU_EMU_INC_STATS(bc1eqz); cond = bit0 == 0; break; case bc1nez_op: MIPS_FPU_EMU_INC_STATS(bc1nez); cond = bit0 != 0; break; } goto branch_common; case bc_op: if (delay_slot(xcp)) return SIGILL; if (cpu_has_mips_4_5_r) cbit = fpucondbit[MIPSInst_RT(ir) >> 2]; else cbit = FPU_CSR_COND; cond = ctx->fcr31 & cbit; likely = 0; switch (MIPSInst_RT(ir) & 3) { case bcfl_op: if (cpu_has_mips_2_3_4_5_r) likely = 1; fallthrough; case bcf_op: cond = !cond; break; case bctl_op: if (cpu_has_mips_2_3_4_5_r) likely = 1; fallthrough; case bct_op: break; } branch_common: MIPS_FPU_EMU_INC_STATS(branches); set_delay_slot(xcp); if (cond) { /* * Branch taken: emulate dslot instruction */ unsigned long bcpc; /* * Remember EPC at the branch to point back * at so that any delay-slot instruction * signal is not silently ignored. */ bcpc = xcp->cp0_epc; xcp->cp0_epc += dec_insn.pc_inc; contpc = MIPSInst_SIMM(ir); ir = dec_insn.next_insn; if (dec_insn.micro_mips_mode) { contpc = (xcp->cp0_epc + (contpc << 1)); /* If 16-bit instruction, not FPU. */ if ((dec_insn.next_pc_inc == 2) || (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) { /* * Since this instruction will * be put on the stack with * 32-bit words, get around * this problem by putting a * NOP16 as the second one. */ if (dec_insn.next_pc_inc == 2) ir = (ir & (~0xffff)) | MM_NOP16; /* * Single step the non-CP1 * instruction in the dslot. */ sig = mips_dsemul(xcp, ir, bcpc, contpc); if (sig < 0) break; if (sig) xcp->cp0_epc = bcpc; /* * SIGILL forces out of * the emulation loop. */ return sig ? sig : SIGILL; } } else contpc = (xcp->cp0_epc + (contpc << 2)); switch (MIPSInst_OPCODE(ir)) { case lwc1_op: case swc1_op: goto emul; case ldc1_op: case sdc1_op: if (cpu_has_mips_2_3_4_5_r) goto emul; goto bc_sigill; case cop1_op: goto emul; case cop1x_op: if (cpu_has_mips_4_5_64_r2_r6) /* its one of ours */ goto emul; goto bc_sigill; case spec_op: switch (MIPSInst_FUNC(ir)) { case movc_op: if (cpu_has_mips_4_5_r) goto emul; goto bc_sigill; } break; bc_sigill: xcp->cp0_epc = bcpc; return SIGILL; } /* * Single step the non-cp1 * instruction in the dslot */ sig = mips_dsemul(xcp, ir, bcpc, contpc); if (sig < 0) break; if (sig) xcp->cp0_epc = bcpc; /* SIGILL forces out of the emulation loop. */ return sig ? sig : SIGILL; } else if (likely) { /* branch not taken */ /* * branch likely nullifies * dslot if not taken */ xcp->cp0_epc += dec_insn.pc_inc; contpc += dec_insn.pc_inc; /* * else continue & execute * dslot as normal insn */ } break; default: if (!(MIPSInst_RS(ir) & 0x10)) return SIGILL; /* a real fpu computation instruction */ sig = fpu_emu(xcp, ctx, ir); if (sig) return sig; } break; case cop1x_op: if (!cpu_has_mips_4_5_64_r2_r6) return SIGILL; sig = fpux_emu(xcp, ctx, ir, fault_addr); if (sig) return sig; break; case spec_op: if (!cpu_has_mips_4_5_r) return SIGILL; if (MIPSInst_FUNC(ir) != movc_op) return SIGILL; cond = fpucondbit[MIPSInst_RT(ir) >> 2]; if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) xcp->regs[MIPSInst_RD(ir)] = xcp->regs[MIPSInst_RS(ir)]; break; default: return SIGILL; } /* we did it !! */ xcp->cp0_epc = contpc; clear_delay_slot(xcp); return 0; } /* * Conversion table from MIPS compare ops 48-63 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); */ static const unsigned char cmptab[8] = { 0, /* cmp_0 (sig) cmp_sf */ IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */ }; static const unsigned char negative_cmptab[8] = { 0, /* Reserved */ IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ, IEEE754_CLT | IEEE754_CGT | IEEE754_CUN, IEEE754_CLT | IEEE754_CGT, /* Reserved */ }; /* * Additional MIPS4 instructions */ #define DEF3OP(name, p, f1, f2, f3) \ static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \ union ieee754##p s, union ieee754##p t) \ { \ struct _ieee754_csr ieee754_csr_save; \ s = f1(s, t); \ ieee754_csr_save = ieee754_csr; \ s = f2(s, r); \ ieee754_csr_save.cx |= ieee754_csr.cx; \ ieee754_csr_save.sx |= ieee754_csr.sx; \ s = f3(s); \ ieee754_csr.cx |= ieee754_csr_save.cx; \ ieee754_csr.sx |= ieee754_csr_save.sx; \ return s; \ } static union ieee754dp fpemu_dp_recip(union ieee754dp d) { return ieee754dp_div(ieee754dp_one(0), d); } static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d) { return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d)); } static union ieee754sp fpemu_sp_recip(union ieee754sp s) { return ieee754sp_div(ieee754sp_one(0), s); } static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s) { return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s)); } DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, ); DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, ); DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg); DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg); DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, ); DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, ); DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg); DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg); static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, mips_instruction ir, void __user **fault_addr) { unsigned int rcsr = 0; /* resulting csr */ MIPS_FPU_EMU_INC_STATS(cp1xops); switch (MIPSInst_FMA_FFMT(ir)) { case s_fmt:{ /* 0 */ union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp); union ieee754sp fd, fr, fs, ft; u32 __user *va; u32 val; switch (MIPSInst_FUNC(ir)) { case lwxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); MIPS_FPU_EMU_INC_STATS(loads); if (!access_ok(va, sizeof(u32))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGBUS; } if (__get_user(val, va)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGSEGV; } SITOREG(val, MIPSInst_FD(ir)); break; case swxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); MIPS_FPU_EMU_INC_STATS(stores); SIFROMREG(val, MIPSInst_FS(ir)); if (!access_ok(va, sizeof(u32))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGBUS; } if (put_user(val, va)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGSEGV; } break; case madd_s_op: if (cpu_has_mac2008_only) handler = ieee754sp_madd; else handler = fpemu_sp_madd; goto scoptop; case msub_s_op: if (cpu_has_mac2008_only) handler = ieee754sp_msub; else handler = fpemu_sp_msub; goto scoptop; case nmadd_s_op: if (cpu_has_mac2008_only) handler = ieee754sp_nmadd; else handler = fpemu_sp_nmadd; goto scoptop; case nmsub_s_op: if (cpu_has_mac2008_only) handler = ieee754sp_nmsub; else handler = fpemu_sp_nmsub; goto scoptop; scoptop: SPFROMREG(fr, MIPSInst_FR(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(ft, MIPSInst_FT(ir)); fd = (*handler) (fr, fs, ft); SPTOREG(fd, MIPSInst_FD(ir)); copcsr: if (ieee754_cxtest(IEEE754_INEXACT)) { MIPS_FPU_EMU_INC_STATS(ieee754_inexact); rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; } if (ieee754_cxtest(IEEE754_UNDERFLOW)) { MIPS_FPU_EMU_INC_STATS(ieee754_underflow); rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; } if (ieee754_cxtest(IEEE754_OVERFLOW)) { MIPS_FPU_EMU_INC_STATS(ieee754_overflow); rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; } if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; } ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { /*printk ("SIGFPE: FPU csr = %08x\n", ctx->fcr31); */ return SIGFPE; } break; default: return SIGILL; } break; } case d_fmt:{ /* 1 */ union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp); union ieee754dp fd, fr, fs, ft; u64 __user *va; u64 val; switch (MIPSInst_FUNC(ir)) { case ldxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); MIPS_FPU_EMU_INC_STATS(loads); if (!access_ok(va, sizeof(u64))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGBUS; } if (__get_user(val, va)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGSEGV; } DITOREG(val, MIPSInst_FD(ir)); break; case sdxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); MIPS_FPU_EMU_INC_STATS(stores); DIFROMREG(val, MIPSInst_FS(ir)); if (!access_ok(va, sizeof(u64))) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGBUS; } if (__put_user(val, va)) { MIPS_FPU_EMU_INC_STATS(errors); *fault_addr = va; return SIGSEGV; } break; case madd_d_op: if (cpu_has_mac2008_only) handler = ieee754dp_madd; else handler = fpemu_dp_madd; goto dcoptop; case msub_d_op: if (cpu_has_mac2008_only) handler = ieee754dp_msub; else handler = fpemu_dp_msub; goto dcoptop; case nmadd_d_op: if (cpu_has_mac2008_only) handler = ieee754dp_nmadd; else handler = fpemu_dp_nmadd; goto dcoptop; case nmsub_d_op: if (cpu_has_mac2008_only) handler = ieee754dp_nmsub; else handler = fpemu_dp_nmsub; goto dcoptop; dcoptop: DPFROMREG(fr, MIPSInst_FR(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(ft, MIPSInst_FT(ir)); fd = (*handler) (fr, fs, ft); DPTOREG(fd, MIPSInst_FD(ir)); goto copcsr; default: return SIGILL; } break; } case 0x3: if (MIPSInst_FUNC(ir) != pfetch_op) return SIGILL; /* ignore prefx operation */ break; default: return SIGILL; } return 0; } /* * Emulate a single COP1 arithmetic instruction. */ static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, mips_instruction ir) { int rfmt; /* resulting format */ unsigned int rcsr = 0; /* resulting csr */ unsigned int oldrm; unsigned int cbit; unsigned int cond; union { union ieee754dp d; union ieee754sp s; int w; s64 l; } rv; /* resulting value */ u64 bits; MIPS_FPU_EMU_INC_STATS(cp1ops); switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) { case s_fmt: { /* 0 */ union { union ieee754sp(*b) (union ieee754sp, union ieee754sp); union ieee754sp(*u) (union ieee754sp); } handler; union ieee754sp fd, fs, ft; switch (MIPSInst_FUNC(ir)) { /* binary ops */ case fadd_op: MIPS_FPU_EMU_INC_STATS(add_s); handler.b = ieee754sp_add; goto scopbop; case fsub_op: MIPS_FPU_EMU_INC_STATS(sub_s); handler.b = ieee754sp_sub; goto scopbop; case fmul_op: MIPS_FPU_EMU_INC_STATS(mul_s); handler.b = ieee754sp_mul; goto scopbop; case fdiv_op: MIPS_FPU_EMU_INC_STATS(div_s); handler.b = ieee754sp_div; goto scopbop; /* unary ops */ case fsqrt_op: if (!cpu_has_mips_2_3_4_5_r) return SIGILL; MIPS_FPU_EMU_INC_STATS(sqrt_s); handler.u = ieee754sp_sqrt; goto scopuop; /* * Note that on some MIPS IV implementations such as the * R5000 and R8000 the FSQRT and FRECIP instructions do not * achieve full IEEE-754 accuracy - however this emulator does. */ case frsqrt_op: if (!cpu_has_mips_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(rsqrt_s); handler.u = fpemu_sp_rsqrt; goto scopuop; case frecip_op: if (!cpu_has_mips_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(recip_s); handler.u = fpemu_sp_recip; goto scopuop; case fmovc_op: if (!cpu_has_mips_4_5_r) return SIGILL; cond = fpucondbit[MIPSInst_FT(ir) >> 2]; if (((ctx->fcr31 & cond) != 0) != ((MIPSInst_FT(ir) & 1) != 0)) return 0; SPFROMREG(rv.s, MIPSInst_FS(ir)); break; case fmovz_op: if (!cpu_has_mips_4_5_r) return SIGILL; if (xcp->regs[MIPSInst_FT(ir)] != 0) return 0; SPFROMREG(rv.s, MIPSInst_FS(ir)); break; case fmovn_op: if (!cpu_has_mips_4_5_r) return SIGILL; if (xcp->regs[MIPSInst_FT(ir)] == 0) return 0; SPFROMREG(rv.s, MIPSInst_FS(ir)); break; case fseleqz_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(seleqz_s); SPFROMREG(rv.s, MIPSInst_FT(ir)); if (rv.w & 0x1) rv.w = 0; else SPFROMREG(rv.s, MIPSInst_FS(ir)); break; case fselnez_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(selnez_s); SPFROMREG(rv.s, MIPSInst_FT(ir)); if (rv.w & 0x1) SPFROMREG(rv.s, MIPSInst_FS(ir)); else rv.w = 0; break; case fmaddf_op: { union ieee754sp ft, fs, fd; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(maddf_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(fd, MIPSInst_FD(ir)); rv.s = ieee754sp_maddf(fd, fs, ft); goto copcsr; } case fmsubf_op: { union ieee754sp ft, fs, fd; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(msubf_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(fd, MIPSInst_FD(ir)); rv.s = ieee754sp_msubf(fd, fs, ft); goto copcsr; } case frint_op: { union ieee754sp fs; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(rint_s); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_rint(fs); goto copcsr; } case fclass_op: { union ieee754sp fs; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(class_s); SPFROMREG(fs, MIPSInst_FS(ir)); rv.w = ieee754sp_2008class(fs); rfmt = w_fmt; goto copcsr; } case fmin_op: { union ieee754sp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(min_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fmin(fs, ft); goto copcsr; } case fmina_op: { union ieee754sp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(mina_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fmina(fs, ft); goto copcsr; } case fmax_op: { union ieee754sp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(max_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fmax(fs, ft); goto copcsr; } case fmaxa_op: { union ieee754sp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(maxa_s); SPFROMREG(ft, MIPSInst_FT(ir)); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fmaxa(fs, ft); goto copcsr; } case fabs_op: MIPS_FPU_EMU_INC_STATS(abs_s); handler.u = ieee754sp_abs; goto scopuop; case fneg_op: MIPS_FPU_EMU_INC_STATS(neg_s); handler.u = ieee754sp_neg; goto scopuop; case fmov_op: /* an easy one */ MIPS_FPU_EMU_INC_STATS(mov_s); SPFROMREG(rv.s, MIPSInst_FS(ir)); goto copcsr; /* binary op on handler */ scopbop: SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(ft, MIPSInst_FT(ir)); rv.s = (*handler.b) (fs, ft); goto copcsr; scopuop: SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = (*handler.u) (fs); goto copcsr; copcsr: if (ieee754_cxtest(IEEE754_INEXACT)) { MIPS_FPU_EMU_INC_STATS(ieee754_inexact); rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; } if (ieee754_cxtest(IEEE754_UNDERFLOW)) { MIPS_FPU_EMU_INC_STATS(ieee754_underflow); rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; } if (ieee754_cxtest(IEEE754_OVERFLOW)) { MIPS_FPU_EMU_INC_STATS(ieee754_overflow); rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; } if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) { MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv); rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S; } if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; } break; /* unary conv ops */ case fcvts_op: return SIGILL; /* not defined */ case fcvtd_op: MIPS_FPU_EMU_INC_STATS(cvt_d_s); SPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fsp(fs); rfmt = d_fmt; goto copcsr; case fcvtw_op: MIPS_FPU_EMU_INC_STATS(cvt_w_s); SPFROMREG(fs, MIPSInst_FS(ir)); rv.w = ieee754sp_tint(fs); rfmt = w_fmt; goto copcsr; case fround_op: case ftrunc_op: case fceil_op: case ffloor_op: if (!cpu_has_mips_2_3_4_5_r) return SIGILL; if (MIPSInst_FUNC(ir) == fceil_op) MIPS_FPU_EMU_INC_STATS(ceil_w_s); if (MIPSInst_FUNC(ir) == ffloor_op) MIPS_FPU_EMU_INC_STATS(floor_w_s); if (MIPSInst_FUNC(ir) == fround_op) MIPS_FPU_EMU_INC_STATS(round_w_s); if (MIPSInst_FUNC(ir) == ftrunc_op) MIPS_FPU_EMU_INC_STATS(trunc_w_s); oldrm = ieee754_csr.rm; SPFROMREG(fs, MIPSInst_FS(ir)); ieee754_csr.rm = MIPSInst_FUNC(ir); rv.w = ieee754sp_tint(fs); ieee754_csr.rm = oldrm; rfmt = w_fmt; goto copcsr; case fsel_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(sel_s); SPFROMREG(fd, MIPSInst_FD(ir)); if (fd.bits & 0x1) SPFROMREG(rv.s, MIPSInst_FT(ir)); else SPFROMREG(rv.s, MIPSInst_FS(ir)); break; case fcvtl_op: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(cvt_l_s); SPFROMREG(fs, MIPSInst_FS(ir)); rv.l = ieee754sp_tlong(fs); rfmt = l_fmt; goto copcsr; case froundl_op: case ftruncl_op: case fceill_op: case ffloorl_op: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; if (MIPSInst_FUNC(ir) == fceill_op) MIPS_FPU_EMU_INC_STATS(ceil_l_s); if (MIPSInst_FUNC(ir) == ffloorl_op) MIPS_FPU_EMU_INC_STATS(floor_l_s); if (MIPSInst_FUNC(ir) == froundl_op) MIPS_FPU_EMU_INC_STATS(round_l_s); if (MIPSInst_FUNC(ir) == ftruncl_op) MIPS_FPU_EMU_INC_STATS(trunc_l_s); oldrm = ieee754_csr.rm; SPFROMREG(fs, MIPSInst_FS(ir)); ieee754_csr.rm = MIPSInst_FUNC(ir); rv.l = ieee754sp_tlong(fs); ieee754_csr.rm = oldrm; rfmt = l_fmt; goto copcsr; default: if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { unsigned int cmpop; union ieee754sp fs, ft; cmpop = MIPSInst_FUNC(ir) - fcmp_op; SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(ft, MIPSInst_FT(ir)); rv.w = ieee754sp_cmp(fs, ft, cmptab[cmpop & 0x7], cmpop & 0x8); rfmt = -1; if ((cmpop & 0x8) && ieee754_cxtest (IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; } else return SIGILL; break; } break; } case d_fmt: { union ieee754dp fd, fs, ft; union { union ieee754dp(*b) (union ieee754dp, union ieee754dp); union ieee754dp(*u) (union ieee754dp); } handler; switch (MIPSInst_FUNC(ir)) { /* binary ops */ case fadd_op: MIPS_FPU_EMU_INC_STATS(add_d); handler.b = ieee754dp_add; goto dcopbop; case fsub_op: MIPS_FPU_EMU_INC_STATS(sub_d); handler.b = ieee754dp_sub; goto dcopbop; case fmul_op: MIPS_FPU_EMU_INC_STATS(mul_d); handler.b = ieee754dp_mul; goto dcopbop; case fdiv_op: MIPS_FPU_EMU_INC_STATS(div_d); handler.b = ieee754dp_div; goto dcopbop; /* unary ops */ case fsqrt_op: if (!cpu_has_mips_2_3_4_5_r) return SIGILL; MIPS_FPU_EMU_INC_STATS(sqrt_d); handler.u = ieee754dp_sqrt; goto dcopuop; /* * Note that on some MIPS IV implementations such as the * R5000 and R8000 the FSQRT and FRECIP instructions do not * achieve full IEEE-754 accuracy - however this emulator does. */ case frsqrt_op: if (!cpu_has_mips_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(rsqrt_d); handler.u = fpemu_dp_rsqrt; goto dcopuop; case frecip_op: if (!cpu_has_mips_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(recip_d); handler.u = fpemu_dp_recip; goto dcopuop; case fmovc_op: if (!cpu_has_mips_4_5_r) return SIGILL; cond = fpucondbit[MIPSInst_FT(ir) >> 2]; if (((ctx->fcr31 & cond) != 0) != ((MIPSInst_FT(ir) & 1) != 0)) return 0; DPFROMREG(rv.d, MIPSInst_FS(ir)); break; case fmovz_op: if (!cpu_has_mips_4_5_r) return SIGILL; if (xcp->regs[MIPSInst_FT(ir)] != 0) return 0; DPFROMREG(rv.d, MIPSInst_FS(ir)); break; case fmovn_op: if (!cpu_has_mips_4_5_r) return SIGILL; if (xcp->regs[MIPSInst_FT(ir)] == 0) return 0; DPFROMREG(rv.d, MIPSInst_FS(ir)); break; case fseleqz_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(seleqz_d); DPFROMREG(rv.d, MIPSInst_FT(ir)); if (rv.l & 0x1) rv.l = 0; else DPFROMREG(rv.d, MIPSInst_FS(ir)); break; case fselnez_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(selnez_d); DPFROMREG(rv.d, MIPSInst_FT(ir)); if (rv.l & 0x1) DPFROMREG(rv.d, MIPSInst_FS(ir)); else rv.l = 0; break; case fmaddf_op: { union ieee754dp ft, fs, fd; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(maddf_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(fd, MIPSInst_FD(ir)); rv.d = ieee754dp_maddf(fd, fs, ft); goto copcsr; } case fmsubf_op: { union ieee754dp ft, fs, fd; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(msubf_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(fd, MIPSInst_FD(ir)); rv.d = ieee754dp_msubf(fd, fs, ft); goto copcsr; } case frint_op: { union ieee754dp fs; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(rint_d); DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_rint(fs); goto copcsr; } case fclass_op: { union ieee754dp fs; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(class_d); DPFROMREG(fs, MIPSInst_FS(ir)); rv.l = ieee754dp_2008class(fs); rfmt = l_fmt; goto copcsr; } case fmin_op: { union ieee754dp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(min_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fmin(fs, ft); goto copcsr; } case fmina_op: { union ieee754dp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(mina_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fmina(fs, ft); goto copcsr; } case fmax_op: { union ieee754dp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(max_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fmax(fs, ft); goto copcsr; } case fmaxa_op: { union ieee754dp fs, ft; if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(maxa_d); DPFROMREG(ft, MIPSInst_FT(ir)); DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fmaxa(fs, ft); goto copcsr; } case fabs_op: MIPS_FPU_EMU_INC_STATS(abs_d); handler.u = ieee754dp_abs; goto dcopuop; case fneg_op: MIPS_FPU_EMU_INC_STATS(neg_d); handler.u = ieee754dp_neg; goto dcopuop; case fmov_op: /* an easy one */ MIPS_FPU_EMU_INC_STATS(mov_d); DPFROMREG(rv.d, MIPSInst_FS(ir)); goto copcsr; /* binary op on handler */ dcopbop: DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(ft, MIPSInst_FT(ir)); rv.d = (*handler.b) (fs, ft); goto copcsr; dcopuop: DPFROMREG(fs, MIPSInst_FS(ir)); rv.d = (*handler.u) (fs); goto copcsr; /* * unary conv ops */ case fcvts_op: MIPS_FPU_EMU_INC_STATS(cvt_s_d); DPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fdp(fs); rfmt = s_fmt; goto copcsr; case fcvtd_op: return SIGILL; /* not defined */ case fcvtw_op: MIPS_FPU_EMU_INC_STATS(cvt_w_d); DPFROMREG(fs, MIPSInst_FS(ir)); rv.w = ieee754dp_tint(fs); /* wrong */ rfmt = w_fmt; goto copcsr; case fround_op: case ftrunc_op: case fceil_op: case ffloor_op: if (!cpu_has_mips_2_3_4_5_r) return SIGILL; if (MIPSInst_FUNC(ir) == fceil_op) MIPS_FPU_EMU_INC_STATS(ceil_w_d); if (MIPSInst_FUNC(ir) == ffloor_op) MIPS_FPU_EMU_INC_STATS(floor_w_d); if (MIPSInst_FUNC(ir) == fround_op) MIPS_FPU_EMU_INC_STATS(round_w_d); if (MIPSInst_FUNC(ir) == ftrunc_op) MIPS_FPU_EMU_INC_STATS(trunc_w_d); oldrm = ieee754_csr.rm; DPFROMREG(fs, MIPSInst_FS(ir)); ieee754_csr.rm = MIPSInst_FUNC(ir); rv.w = ieee754dp_tint(fs); ieee754_csr.rm = oldrm; rfmt = w_fmt; goto copcsr; case fsel_op: if (!cpu_has_mips_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(sel_d); DPFROMREG(fd, MIPSInst_FD(ir)); if (fd.bits & 0x1) DPFROMREG(rv.d, MIPSInst_FT(ir)); else DPFROMREG(rv.d, MIPSInst_FS(ir)); break; case fcvtl_op: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; MIPS_FPU_EMU_INC_STATS(cvt_l_d); DPFROMREG(fs, MIPSInst_FS(ir)); rv.l = ieee754dp_tlong(fs); rfmt = l_fmt; goto copcsr; case froundl_op: case ftruncl_op: case fceill_op: case ffloorl_op: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; if (MIPSInst_FUNC(ir) == fceill_op) MIPS_FPU_EMU_INC_STATS(ceil_l_d); if (MIPSInst_FUNC(ir) == ffloorl_op) MIPS_FPU_EMU_INC_STATS(floor_l_d); if (MIPSInst_FUNC(ir) == froundl_op) MIPS_FPU_EMU_INC_STATS(round_l_d); if (MIPSInst_FUNC(ir) == ftruncl_op) MIPS_FPU_EMU_INC_STATS(trunc_l_d); oldrm = ieee754_csr.rm; DPFROMREG(fs, MIPSInst_FS(ir)); ieee754_csr.rm = MIPSInst_FUNC(ir); rv.l = ieee754dp_tlong(fs); ieee754_csr.rm = oldrm; rfmt = l_fmt; goto copcsr; default: if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { unsigned int cmpop; union ieee754dp fs, ft; cmpop = MIPSInst_FUNC(ir) - fcmp_op; DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(ft, MIPSInst_FT(ir)); rv.w = ieee754dp_cmp(fs, ft, cmptab[cmpop & 0x7], cmpop & 0x8); rfmt = -1; if ((cmpop & 0x8) && ieee754_cxtest (IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; } else { return SIGILL; } break; } break; } case w_fmt: { union ieee754dp fs; switch (MIPSInst_FUNC(ir)) { case fcvts_op: /* convert word to single precision real */ MIPS_FPU_EMU_INC_STATS(cvt_s_w); SPFROMREG(fs, MIPSInst_FS(ir)); rv.s = ieee754sp_fint(fs.bits); rfmt = s_fmt; goto copcsr; case fcvtd_op: /* convert word to double precision real */ MIPS_FPU_EMU_INC_STATS(cvt_d_w); SPFROMREG(fs, MIPSInst_FS(ir)); rv.d = ieee754dp_fint(fs.bits); rfmt = d_fmt; goto copcsr; default: { /* Emulating the new CMP.condn.fmt R6 instruction */ #define CMPOP_MASK 0x7 #define SIGN_BIT (0x1 << 3) #define PREDICATE_BIT (0x1 << 4) int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; int sig = MIPSInst_FUNC(ir) & SIGN_BIT; union ieee754sp fs, ft; /* This is an R6 only instruction */ if (!cpu_has_mips_r6 || (MIPSInst_FUNC(ir) & 0x20)) return SIGILL; if (!sig) { if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { switch (cmpop) { case 0: MIPS_FPU_EMU_INC_STATS(cmp_af_s); break; case 1: MIPS_FPU_EMU_INC_STATS(cmp_un_s); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_eq_s); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_ueq_s); break; case 4: MIPS_FPU_EMU_INC_STATS(cmp_lt_s); break; case 5: MIPS_FPU_EMU_INC_STATS(cmp_ult_s); break; case 6: MIPS_FPU_EMU_INC_STATS(cmp_le_s); break; case 7: MIPS_FPU_EMU_INC_STATS(cmp_ule_s); break; } } else { switch (cmpop) { case 1: MIPS_FPU_EMU_INC_STATS(cmp_or_s); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_une_s); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_ne_s); break; } } } else { if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { switch (cmpop) { case 0: MIPS_FPU_EMU_INC_STATS(cmp_saf_s); break; case 1: MIPS_FPU_EMU_INC_STATS(cmp_sun_s); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_seq_s); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_sueq_s); break; case 4: MIPS_FPU_EMU_INC_STATS(cmp_slt_s); break; case 5: MIPS_FPU_EMU_INC_STATS(cmp_sult_s); break; case 6: MIPS_FPU_EMU_INC_STATS(cmp_sle_s); break; case 7: MIPS_FPU_EMU_INC_STATS(cmp_sule_s); break; } } else { switch (cmpop) { case 1: MIPS_FPU_EMU_INC_STATS(cmp_sor_s); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_sune_s); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_sne_s); break; } } } /* fmt is w_fmt for single precision so fix it */ rfmt = s_fmt; /* default to false */ rv.w = 0; /* CMP.condn.S */ SPFROMREG(fs, MIPSInst_FS(ir)); SPFROMREG(ft, MIPSInst_FT(ir)); /* positive predicates */ if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { if (ieee754sp_cmp(fs, ft, cmptab[cmpop], sig)) rv.w = -1; /* true, all 1s */ if ((sig) && ieee754_cxtest(IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; } else { /* negative predicates */ switch (cmpop) { case 1: case 2: case 3: if (ieee754sp_cmp(fs, ft, negative_cmptab[cmpop], sig)) rv.w = -1; /* true, all 1s */ if (sig && ieee754_cxtest(IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; break; default: /* Reserved R6 ops */ return SIGILL; } } break; } } break; } case l_fmt: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; DIFROMREG(bits, MIPSInst_FS(ir)); switch (MIPSInst_FUNC(ir)) { case fcvts_op: /* convert long to single precision real */ MIPS_FPU_EMU_INC_STATS(cvt_s_l); rv.s = ieee754sp_flong(bits); rfmt = s_fmt; goto copcsr; case fcvtd_op: /* convert long to double precision real */ MIPS_FPU_EMU_INC_STATS(cvt_d_l); rv.d = ieee754dp_flong(bits); rfmt = d_fmt; goto copcsr; default: { /* Emulating the new CMP.condn.fmt R6 instruction */ int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; int sig = MIPSInst_FUNC(ir) & SIGN_BIT; union ieee754dp fs, ft; if (!cpu_has_mips_r6 || (MIPSInst_FUNC(ir) & 0x20)) return SIGILL; if (!sig) { if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { switch (cmpop) { case 0: MIPS_FPU_EMU_INC_STATS(cmp_af_d); break; case 1: MIPS_FPU_EMU_INC_STATS(cmp_un_d); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_eq_d); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_ueq_d); break; case 4: MIPS_FPU_EMU_INC_STATS(cmp_lt_d); break; case 5: MIPS_FPU_EMU_INC_STATS(cmp_ult_d); break; case 6: MIPS_FPU_EMU_INC_STATS(cmp_le_d); break; case 7: MIPS_FPU_EMU_INC_STATS(cmp_ule_d); break; } } else { switch (cmpop) { case 1: MIPS_FPU_EMU_INC_STATS(cmp_or_d); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_une_d); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_ne_d); break; } } } else { if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { switch (cmpop) { case 0: MIPS_FPU_EMU_INC_STATS(cmp_saf_d); break; case 1: MIPS_FPU_EMU_INC_STATS(cmp_sun_d); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_seq_d); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_sueq_d); break; case 4: MIPS_FPU_EMU_INC_STATS(cmp_slt_d); break; case 5: MIPS_FPU_EMU_INC_STATS(cmp_sult_d); break; case 6: MIPS_FPU_EMU_INC_STATS(cmp_sle_d); break; case 7: MIPS_FPU_EMU_INC_STATS(cmp_sule_d); break; } } else { switch (cmpop) { case 1: MIPS_FPU_EMU_INC_STATS(cmp_sor_d); break; case 2: MIPS_FPU_EMU_INC_STATS(cmp_sune_d); break; case 3: MIPS_FPU_EMU_INC_STATS(cmp_sne_d); break; } } } /* fmt is l_fmt for double precision so fix it */ rfmt = d_fmt; /* default to false */ rv.l = 0; /* CMP.condn.D */ DPFROMREG(fs, MIPSInst_FS(ir)); DPFROMREG(ft, MIPSInst_FT(ir)); /* positive predicates */ if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { if (ieee754dp_cmp(fs, ft, cmptab[cmpop], sig)) rv.l = -1LL; /* true, all 1s */ if (sig && ieee754_cxtest(IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; } else { /* negative predicates */ switch (cmpop) { case 1: case 2: case 3: if (ieee754dp_cmp(fs, ft, negative_cmptab[cmpop], sig)) rv.l = -1LL; /* true, all 1s */ if (sig && ieee754_cxtest(IEEE754_INVALID_OPERATION)) rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; else goto copcsr; break; default: /* Reserved R6 ops */ return SIGILL; } } break; } } break; default: return SIGILL; } /* * Update the fpu CSR register for this operation. * If an exception is required, generate a tidy SIGFPE exception, * without updating the result register. * Note: cause exception bits do not accumulate, they are rewritten * for each op; only the flag/sticky bits accumulate. */ ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */ return SIGFPE; } /* * Now we can safely write the result back to the register file. */ switch (rfmt) { case -1: if (cpu_has_mips_4_5_r) cbit = fpucondbit[MIPSInst_FD(ir) >> 2]; else cbit = FPU_CSR_COND; if (rv.w) ctx->fcr31 |= cbit; else ctx->fcr31 &= ~cbit; break; case d_fmt: DPTOREG(rv.d, MIPSInst_FD(ir)); break; case s_fmt: SPTOREG(rv.s, MIPSInst_FD(ir)); break; case w_fmt: SITOREG(rv.w, MIPSInst_FD(ir)); break; case l_fmt: if (!cpu_has_mips_3_4_5_64_r2_r6) return SIGILL; DITOREG(rv.l, MIPSInst_FD(ir)); break; default: return SIGILL; } return 0; } /* * Emulate FPU instructions. * * If we use FPU hardware, then we have been typically called to handle * an unimplemented operation, such as where an operand is a NaN or * denormalized. In that case exit the emulation loop after a single * iteration so as to let hardware execute any subsequent instructions. * * If we have no FPU hardware or it has been disabled, then continue * emulating floating-point instructions until one of these conditions * has occurred: * * - a non-FPU instruction has been encountered, * * - an attempt to emulate has ended with a signal, * * - the ISA mode has been switched. * * We need to terminate the emulation loop if we got switched to the * MIPS16 mode, whether supported or not, so that we do not attempt * to emulate a MIPS16 instruction as a regular MIPS FPU instruction. * Similarly if we got switched to the microMIPS mode and only the * regular MIPS mode is supported, so that we do not attempt to emulate * a microMIPS instruction as a regular MIPS FPU instruction. Or if * we got switched to the regular MIPS mode and only the microMIPS mode * is supported, so that we do not attempt to emulate a regular MIPS * instruction that should cause an Address Error exception instead. * For simplicity we always terminate upon an ISA mode switch. */ int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx, int has_fpu, void __user **fault_addr) { unsigned long oldepc, prevepc; struct mm_decoded_insn dec_insn; u16 instr[4]; u16 *instr_ptr; int sig = 0; /* * Initialize context if it hasn't been used already, otherwise ensure * it has been saved to struct thread_struct. */ if (!init_fp_ctx(current)) lose_fpu(1); oldepc = xcp->cp0_epc; do { prevepc = xcp->cp0_epc; if (get_isa16_mode(prevepc) && cpu_has_mmips) { /* * Get next 2 microMIPS instructions and convert them * into 32-bit instructions. */ if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) || (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) || (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) || (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) { MIPS_FPU_EMU_INC_STATS(errors); return SIGBUS; } instr_ptr = instr; /* Get first instruction. */ if (mm_insn_16bit(*instr_ptr)) { /* Duplicate the half-word. */ dec_insn.insn = (*instr_ptr << 16) | (*instr_ptr); /* 16-bit instruction. */ dec_insn.pc_inc = 2; instr_ptr += 1; } else { dec_insn.insn = (*instr_ptr << 16) | *(instr_ptr+1); /* 32-bit instruction. */ dec_insn.pc_inc = 4; instr_ptr += 2; } /* Get second instruction. */ if (mm_insn_16bit(*instr_ptr)) { /* Duplicate the half-word. */ dec_insn.next_insn = (*instr_ptr << 16) | (*instr_ptr); /* 16-bit instruction. */ dec_insn.next_pc_inc = 2; } else { dec_insn.next_insn = (*instr_ptr << 16) | *(instr_ptr+1); /* 32-bit instruction. */ dec_insn.next_pc_inc = 4; } dec_insn.micro_mips_mode = 1; } else { if ((get_user(dec_insn.insn, (mips_instruction __user *) xcp->cp0_epc)) || (get_user(dec_insn.next_insn, (mips_instruction __user *)(xcp->cp0_epc+4)))) { MIPS_FPU_EMU_INC_STATS(errors); return SIGBUS; } dec_insn.pc_inc = 4; dec_insn.next_pc_inc = 4; dec_insn.micro_mips_mode = 0; } if ((dec_insn.insn == 0) || ((dec_insn.pc_inc == 2) && ((dec_insn.insn & 0xffff) == MM_NOP16))) xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */ else { /* * The 'ieee754_csr' is an alias of ctx->fcr31. * No need to copy ctx->fcr31 to ieee754_csr. */ sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr); } if (has_fpu) break; if (sig) break; /* * We have to check for the ISA bit explicitly here, * because `get_isa16_mode' may return 0 if support * for code compression has been globally disabled, * or otherwise we may produce the wrong signal or * even proceed successfully where we must not. */ if ((xcp->cp0_epc ^ prevepc) & 0x1) break; cond_resched(); } while (xcp->cp0_epc > prevepc); /* SIGILL indicates a non-fpu instruction */ if (sig == SIGILL && xcp->cp0_epc != oldepc) /* but if EPC has advanced, then ignore it */ sig = 0; return sig; }
linux-master
arch/mips/math-emu/cp1emu.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" union ieee754dp ieee754dp_mul(union ieee754dp x, union ieee754dp y) { int re; int rs; u64 rm; unsigned int lxm; unsigned int hxm; unsigned int lym; unsigned int hym; u64 lrm; u64 hrm; u64 t; u64 at; COMPXDP; COMPYDP; EXPLODEXDP; EXPLODEYDP; ieee754_clearcx(); FLUSHXDP; FLUSHYDP; switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754dp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754dp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754dp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return ieee754dp_zero(xs ^ ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): break; } /* rm = xm * ym, re = xe+ye basically */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; /* shunt to top of word */ xm <<= 64 - (DP_FBITS + 1); ym <<= 64 - (DP_FBITS + 1); /* * Multiply 64 bits xm, ym to give high 64 bits rm with stickness. */ lxm = xm; hxm = xm >> 32; lym = ym; hym = ym >> 32; lrm = DPXMULT(lxm, lym); hrm = DPXMULT(hxm, hym); t = DPXMULT(lxm, hym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); t = DPXMULT(hxm, lym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); rm = hrm | (lrm != 0); /* * Sticky shift down to normal rounding precision. */ if ((s64) rm < 0) { rm = (rm >> (64 - (DP_FBITS + 1 + 3))) | ((rm << (DP_FBITS + 1 + 3)) != 0); re++; } else { rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) | ((rm << (DP_FBITS + 1 + 3 + 1)) != 0); } assert(rm & (DP_HIDDEN_BIT << 3)); return ieee754dp_format(rs, re, rm); }
linux-master
arch/mips/math-emu/dp_mul.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_flong(s64 x) { u64 xm; /* <--- need 64-bit mantissa temp */ int xe; int xs; ieee754_clearcx(); if (x == 0) return ieee754sp_zero(0); if (x == 1 || x == -1) return ieee754sp_one(x < 0); if (x == 10 || x == -10) return ieee754sp_ten(x < 0); xs = (x < 0); if (xs) { if (x == (1ULL << 63)) xm = (1ULL << 63); /* max neg can't be safely negated */ else xm = -x; } else { xm = x; } xe = SP_FBITS + 3; if (xm >> (SP_FBITS + 1 + 3)) { /* shunt out overflow bits */ while (xm >> (SP_FBITS + 1 + 3)) { SPXSRSX1(); } } else { /* normalize in grs extended single precision */ while ((xm >> (SP_FBITS + 3)) == 0) { xm <<= 1; xe--; } } return ieee754sp_format(xs, xe, xm); }
linux-master
arch/mips/math-emu/sp_flong.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: MAX{,A}.f * MAX : Scalar Floating-Point Maximum * MAXA: Scalar Floating-Point argument with Maximum Absolute Value * * MAX.S : FPR[fd] = maxNum(FPR[fs],FPR[ft]) * MAXA.S: FPR[fd] = maxNumMag(FPR[fs],FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754sp.h" union ieee754sp ieee754sp_fmax(union ieee754sp x, union ieee754sp y) { COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; FLUSHXSP; FLUSHYSP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return xs ? y : x; case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return ys ? x : y; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754sp_zero(xs & ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; } /* Finally get to do some computation */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* Compare signs */ if (xs > ys) return y; else if (xs < ys) return x; /* Signs of inputs are equal, let's compare exponents */ if (xs == 0) { /* Inputs are both positive */ if (xe > ye) return x; else if (xe < ye) return y; } else { /* Inputs are both negative */ if (xe > ye) return y; else if (xe < ye) return x; } /* Signs and exponents of inputs are equal, let's compare mantissas */ if (xs == 0) { /* Inputs are both positive, with equal signs and exponents */ if (xm <= ym) return y; return x; } /* Inputs are both negative, with equal signs and exponents */ if (xm <= ym) return x; return y; } union ieee754sp ieee754sp_fmaxa(union ieee754sp x, union ieee754sp y) { COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; FLUSHXSP; FLUSHYSP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754sp_inf(xs & ys); case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return x; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return y; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754sp_zero(xs & ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; } /* Finally get to do some computation */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* Compare exponent */ if (xe > ye) return x; else if (xe < ye) return y; /* Compare mantissa */ if (xm < ym) return y; else if (xm > ym) return x; else if (xs == 0) return x; return y; }
linux-master
arch/mips/math-emu/sp_fmax.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" s64 ieee754dp_tlong(union ieee754dp x) { u64 residue; int round; int sticky; int odd; COMPXDP; ieee754_clearcx(); EXPLODEXDP; FLUSHXDP; switch (xc) { case IEEE754_CLASS_SNAN: case IEEE754_CLASS_QNAN: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_indef(); case IEEE754_CLASS_INF: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); case IEEE754_CLASS_ZERO: return 0; case IEEE754_CLASS_DNORM: case IEEE754_CLASS_NORM: break; } if (xe >= 63) { /* look for valid corner case */ if (xe == 63 && xs && xm == DP_HIDDEN_BIT) return -0x8000000000000000LL; /* Set invalid. We will only use overflow for floating point overflow */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); } /* oh gawd */ if (xe > DP_FBITS) { xm <<= xe - DP_FBITS; } else if (xe < DP_FBITS) { if (xe < -1) { residue = xm; round = 0; sticky = residue != 0; xm = 0; } else { /* Shifting a u64 64 times does not work, * so we do it in two steps. Be aware that xe * may be -1 */ residue = xm << (xe + 1); residue <<= 63 - DP_FBITS; round = (residue >> 63) != 0; sticky = (residue << 1) != 0; xm >>= DP_FBITS - xe; } odd = (xm & 0x1) != 0x0; switch (ieee754_csr.rm) { case FPU_CSR_RN: if (round && (sticky || odd)) xm++; break; case FPU_CSR_RZ: break; case FPU_CSR_RU: /* toward +Infinity */ if ((round || sticky) && !xs) xm++; break; case FPU_CSR_RD: /* toward -Infinity */ if ((round || sticky) && xs) xm++; break; } if ((xm >> 63) != 0) { /* This can happen after rounding */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); } if (round || sticky) ieee754_setcx(IEEE754_INEXACT); } if (xs) return -xm; else return xm; }
linux-master
arch/mips/math-emu/dp_tlong.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_neg(union ieee754sp x) { union ieee754sp y; if (ieee754_csr.abs2008) { y = x; SPSIGN(y) = !SPSIGN(x); } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; y = ieee754sp_sub(ieee754sp_zero(0), x); ieee754_csr.rm = oldrm; } return y; } union ieee754sp ieee754sp_abs(union ieee754sp x) { union ieee754sp y; if (ieee754_csr.abs2008) { y = x; SPSIGN(y) = 0; } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; if (SPSIGN(x)) y = ieee754sp_sub(ieee754sp_zero(0), x); else y = ieee754sp_add(ieee754sp_zero(0), x); ieee754_csr.rm = oldrm; } return y; }
linux-master
arch/mips/math-emu/sp_simple.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" union ieee754dp ieee754dp_div(union ieee754dp x, union ieee754dp y) { u64 rm; int re; u64 bm; COMPXDP; COMPYDP; EXPLODEXDP; EXPLODEYDP; ieee754_clearcx(); FLUSHXDP; FLUSHYDP; switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754dp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754dp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): return ieee754dp_zero(xs ^ ys); case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): return ieee754dp_inf(xs ^ ys); /* * Zero handling */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): ieee754_setcx(IEEE754_ZERO_DIVIDE); return ieee754dp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return ieee754dp_zero(xs == ys ? 0 : 1); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): break; } assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); /* provide rounding space */ xm <<= 3; ym <<= 3; /* now the dirty work */ rm = 0; re = xe - ye; for (bm = DP_MBIT(DP_FBITS + 2); bm; bm >>= 1) { if (xm >= ym) { xm -= ym; rm |= bm; if (xm == 0) break; } xm <<= 1; } rm <<= 1; if (xm) rm |= 1; /* have remainder, set sticky */ assert(rm); /* * Normalise rm to rounding precision ? */ while ((rm >> (DP_FBITS + 3)) == 0) { rm <<= 1; re--; } return ieee754dp_format(xs == ys ? 0 : 1, re, rm); }
linux-master
arch/mips/math-emu/dp_div.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * double precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754dp.h" /* 128 bits shift right logical with rounding. */ static void srl128(u64 *hptr, u64 *lptr, int count) { u64 low; if (count >= 128) { *lptr = *hptr != 0 || *lptr != 0; *hptr = 0; } else if (count >= 64) { if (count == 64) { *lptr = *hptr | (*lptr != 0); } else { low = *lptr; *lptr = *hptr >> (count - 64); *lptr |= (*hptr << (128 - count)) != 0 || low != 0; } *hptr = 0; } else { low = *lptr; *lptr = low >> count | *hptr << (64 - count); *lptr |= (low << (64 - count)) != 0; *hptr = *hptr >> count; } } static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y, enum maddf_flags flags) { int re; int rs; unsigned int lxm; unsigned int hxm; unsigned int lym; unsigned int hym; u64 lrm; u64 hrm; u64 lzm; u64 hzm; u64 t; u64 at; int s; COMPXDP; COMPYDP; COMPZDP; EXPLODEXDP; EXPLODEYDP; EXPLODEZDP; FLUSHXDP; FLUSHYDP; FLUSHZDP; ieee754_clearcx(); rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; if (flags & MADDF_NEGATE_ADDITION) zs ^= 1; /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) DPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y). The result must be an infinity, * and its sign is determined only by the sign of product (x*y). */ return ieee754dp_inf(rs); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if (zs == rs) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); DPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754dp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); re = xe + ye; /* shunt to top of word */ xm <<= 64 - (DP_FBITS + 1); ym <<= 64 - (DP_FBITS + 1); /* * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm. */ lxm = xm; hxm = xm >> 32; lym = ym; hym = ym >> 32; lrm = DPXMULT(lxm, lym); hrm = DPXMULT(hxm, hym); t = DPXMULT(lxm, hym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); t = DPXMULT(hxm, lym); at = lrm + (t << 32); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 32); /* Put explicit bit at bit 126 if necessary */ if ((int64_t)hrm < 0) { lrm = (hrm << 63) | (lrm >> 1); hrm = hrm >> 1; re++; } assert(hrm & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hrm, &lrm, (126 - 55)); return ieee754dp_format(rs, re, lrm); } /* Move explicit bit from bit 52 to bit 126 */ lzm = 0; hzm = zm << 10; assert(hzm & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift y fraction right to align. */ s = ze - re; srl128(&hrm, &lrm, s); re += s; } else if (re > ze) { /* * Have to shift x fraction right to align. */ s = re - ze; srl128(&hzm, &lzm, s); ze += s; } assert(ze == re); assert(ze <= DP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 128 bit result by adding two 127 bit numbers * leaving result in hzm:lzm, zs and ze. */ hzm = hzm + hrm + (lzm > (lzm + lrm)); lzm = lzm + lrm; if ((int64_t)hzm < 0) { /* carry out */ srl128(&hzm, &lzm, 1); ze++; } } else { if (hzm > hrm || (hzm == hrm && lzm >= lrm)) { hzm = hzm - hrm - (lzm < lrm); lzm = lzm - lrm; } else { hzm = hrm - hzm - (lrm < lzm); lzm = lrm - lzm; zs = rs; } if (lzm == 0 && hzm == 0) return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 126 if necessary. */ if (hzm == 0) { /* left shift by 63 or 64 bits */ if ((int64_t)lzm < 0) { /* MSB of lzm is the explicit bit */ hzm = lzm >> 1; lzm = lzm << 63; ze -= 63; } else { hzm = lzm; lzm = 0; ze -= 64; } } t = 0; while ((hzm >> (62 - t)) == 0) t++; assert(t <= 62); if (t) { hzm = hzm << t | lzm >> (64 - t); lzm = lzm << t; ze -= t; } } /* * Move explicit bit from bit 126 to bit 55 since the * ieee754dp_format code expects the mantissa to be * 56 bits wide (53 + 3 rounding bits). */ srl128(&hzm, &lzm, (126 - 55)); return ieee754dp_format(zs, ze, lzm); } union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, 0); } union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION); } union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); } union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x, union ieee754dp y) { return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); }
linux-master
arch/mips/math-emu/dp_maddf.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_sub(union ieee754sp x, union ieee754sp y) { int s; COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; ieee754_clearcx(); FLUSHXSP; FLUSHYSP; switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if (xs != ys) return x; ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): return ieee754sp_inf(ys ^ 1); case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): return x; /* * Zero handling */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): if (xs != ys) return x; else return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return x; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): /* quick fix up */ SPSIGN(y) ^= 1; return y; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): break; } /* flip sign of y and handle as add */ ys ^= 1; assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* provide guard,round and stick bit space */ xm <<= 3; ym <<= 3; if (xe > ye) { /* * have to shift y fraction right to align */ s = xe - ye; ym = XSPSRS(ym, s); ye += s; } else if (ye > xe) { /* * have to shift x fraction right to align */ s = ye - xe; xm = XSPSRS(xm, s); xe += s; } assert(xe == ye); assert(xe <= SP_EMAX); if (xs == ys) { /* generate 28 bit result of adding two 27 bit numbers */ xm = xm + ym; if (xm >> (SP_FBITS + 1 + 3)) { /* carry out */ SPXSRSX1(); /* shift preserving sticky */ } } else { if (xm >= ym) { xm = xm - ym; } else { xm = ym - xm; xs = ys; } if (xm == 0) { if (ieee754_csr.rm == FPU_CSR_RD) return ieee754sp_zero(1); /* round negative inf. => sign = -1 */ else return ieee754sp_zero(0); /* other round modes => sign = 1 */ } /* normalize to rounding precision */ while ((xm >> (SP_FBITS + 3)) == 0) { xm <<= 1; xe--; } } return ieee754sp_format(xs, xe, xm); }
linux-master
arch/mips/math-emu/sp_sub.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * double precision: CLASS.f * FPR[fd] = class(FPR[fs]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754dp.h" int ieee754dp_2008class(union ieee754dp x) { COMPXDP; EXPLODEXDP; /* * 10 bit mask as follows: * * bit0 = SNAN * bit1 = QNAN * bit2 = -INF * bit3 = -NORM * bit4 = -DNORM * bit5 = -ZERO * bit6 = INF * bit7 = NORM * bit8 = DNORM * bit9 = ZERO */ switch(xc) { case IEEE754_CLASS_SNAN: return 0x01; case IEEE754_CLASS_QNAN: return 0x02; case IEEE754_CLASS_INF: return 0x04 << (xs ? 0 : 4); case IEEE754_CLASS_NORM: return 0x08 << (xs ? 0 : 4); case IEEE754_CLASS_DNORM: return 0x10 << (xs ? 0 : 4); case IEEE754_CLASS_ZERO: return 0x20 << (xs ? 0 : 4); default: pr_err("Unknown class: %d\n", xc); return 0; } }
linux-master
arch/mips/math-emu/dp_2008class.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * double precision: MIN{,A}.f * MIN : Scalar Floating-Point Minimum * MINA: Scalar Floating-Point argument with Minimum Absolute Value * * MIN.D : FPR[fd] = minNum(FPR[fs],FPR[ft]) * MINA.D: FPR[fd] = maxNumMag(FPR[fs],FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754dp.h" union ieee754dp ieee754dp_fmax(union ieee754dp x, union ieee754dp y) { COMPXDP; COMPYDP; EXPLODEXDP; EXPLODEYDP; FLUSHXDP; FLUSHYDP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754dp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754dp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return xs ? y : x; case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return ys ? x : y; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754dp_zero(xs & ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): DPDNORMX; } /* Finally get to do some computation */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); /* Compare signs */ if (xs > ys) return y; else if (xs < ys) return x; /* Signs of inputs are equal, let's compare exponents */ if (xs == 0) { /* Inputs are both positive */ if (xe > ye) return x; else if (xe < ye) return y; } else { /* Inputs are both negative */ if (xe > ye) return y; else if (xe < ye) return x; } /* Signs and exponents of inputs are equal, let's compare mantissas */ if (xs == 0) { /* Inputs are both positive, with equal signs and exponents */ if (xm <= ym) return y; return x; } /* Inputs are both negative, with equal signs and exponents */ if (xm <= ym) return x; return y; } union ieee754dp ieee754dp_fmaxa(union ieee754dp x, union ieee754dp y) { COMPXDP; COMPYDP; EXPLODEXDP; EXPLODEYDP; FLUSHXDP; FLUSHYDP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754dp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754dp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754dp_inf(xs & ys); case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return x; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return y; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754dp_zero(xs & ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): DPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): DPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): DPDNORMX; } /* Finally get to do some computation */ assert(xm & DP_HIDDEN_BIT); assert(ym & DP_HIDDEN_BIT); /* Compare exponent */ if (xe > ye) return x; else if (xe < ye) return y; /* Compare mantissa */ if (xm < ym) return y; else if (xm > ym) return x; else if (xs == 0) return x; return y; }
linux-master
arch/mips/math-emu/dp_fmax.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" int ieee754sp_cmp(union ieee754sp x, union ieee754sp y, int cmp, int sig) { int vx; int vy; COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; FLUSHXSP; FLUSHYSP; ieee754_clearcx(); /* Even clear inexact flag here */ if (ieee754_class_nan(xc) || ieee754_class_nan(yc)) { if (sig || xc == IEEE754_CLASS_SNAN || yc == IEEE754_CLASS_SNAN) ieee754_setcx(IEEE754_INVALID_OPERATION); return (cmp & IEEE754_CUN) != 0; } else { vx = x.bits; vy = y.bits; if (vx < 0) vx = -vx ^ SP_SIGN_BIT; if (vy < 0) vy = -vy ^ SP_SIGN_BIT; if (vx < vy) return (cmp & IEEE754_CLT) != 0; else if (vx == vy) return (cmp & IEEE754_CEQ) != 0; else return (cmp & IEEE754_CGT) != 0; } }
linux-master
arch/mips/math-emu/sp_cmp.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_add(union ieee754sp x, union ieee754sp y) { int s; COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; ieee754_clearcx(); FLUSHXSP; FLUSHYSP; switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if (xs == ys) return x; ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): return y; case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): return x; /* * Zero handling */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): if (xs == ys) return x; else return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return x; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return y; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): break; } assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* * Provide guard, round and stick bit space. */ xm <<= 3; ym <<= 3; if (xe > ye) { /* * Have to shift y fraction right to align. */ s = xe - ye; ym = XSPSRS(ym, s); ye += s; } else if (ye > xe) { /* * Have to shift x fraction right to align. */ s = ye - xe; xm = XSPSRS(xm, s); xe += s; } assert(xe == ye); assert(xe <= SP_EMAX); if (xs == ys) { /* * Generate 28 bit result of adding two 27 bit numbers * leaving result in xm, xs and xe. */ xm = xm + ym; if (xm >> (SP_FBITS + 1 + 3)) { /* carry out */ SPXSRSX1(); } } else { if (xm >= ym) { xm = xm - ym; } else { xm = ym - xm; xs = ys; } if (xm == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Normalize in extended single precision */ while ((xm >> (SP_FBITS + 3)) == 0) { xm <<= 1; xe--; } } return ieee754sp_format(xs, xe, xm); }
linux-master
arch/mips/math-emu/sp_add.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/err.h> #include <linux/slab.h> #include <linux/mm_types.h> #include <linux/sched/task.h> #include <asm/branch.h> #include <asm/cacheflush.h> #include <asm/fpu_emulator.h> #include <asm/inst.h> #include <asm/mipsregs.h> #include <linux/uaccess.h> /** * struct emuframe - The 'emulation' frame structure * @emul: The instruction to 'emulate'. * @badinst: A break instruction to cause a return to the kernel. * * This structure defines the frames placed within the delay slot emulation * page in response to a call to mips_dsemul(). Each thread may be allocated * only one frame at any given time. The kernel stores within it the * instruction to be 'emulated' followed by a break instruction, then * executes the frame in user mode. The break causes a trap to the kernel * which leads to do_dsemulret() being called unless the instruction in * @emul causes a trap itself, is a branch, or a signal is delivered to * the thread. In these cases the allocated frame will either be reused by * a subsequent delay slot 'emulation', or be freed during signal delivery or * upon thread exit. * * This approach is used because: * * - Actually emulating all instructions isn't feasible. We would need to * be able to handle instructions from all revisions of the MIPS ISA, * all ASEs & all vendor instruction set extensions. This would be a * whole lot of work & continual maintenance burden as new instructions * are introduced, and in the case of some vendor extensions may not * even be possible. Thus we need to take the approach of actually * executing the instruction. * * - We must execute the instruction within user context. If we were to * execute the instruction in kernel mode then it would have access to * kernel resources without very careful checks, leaving us with a * high potential for security or stability issues to arise. * * - We used to place the frame on the users stack, but this requires * that the stack be executable. This is bad for security so the * per-process page is now used instead. * * - The instruction in @emul may be something entirely invalid for a * delay slot. The user may (intentionally or otherwise) place a branch * in a delay slot, or a kernel mode instruction, or something else * which generates an exception. Thus we can't rely upon the break in * @badinst always being hit. For this reason we track the index of the * frame allocated to each thread, allowing us to clean it up at later * points such as signal delivery or thread exit. * * - The user may generate a fake struct emuframe if they wish, invoking * the BRK_MEMU break instruction themselves. We must therefore not * trust that BRK_MEMU means there's actually a valid frame allocated * to the thread, and must not allow the user to do anything they * couldn't already. */ struct emuframe { mips_instruction emul; mips_instruction badinst; }; static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe); static inline __user struct emuframe *dsemul_page(void) { return (__user struct emuframe *)STACK_TOP; } static int alloc_emuframe(void) { mm_context_t *mm_ctx = &current->mm->context; int idx; retry: spin_lock(&mm_ctx->bd_emupage_lock); /* Ensure we have an allocation bitmap */ if (!mm_ctx->bd_emupage_allocmap) { mm_ctx->bd_emupage_allocmap = bitmap_zalloc(emupage_frame_count, GFP_ATOMIC); if (!mm_ctx->bd_emupage_allocmap) { idx = BD_EMUFRAME_NONE; goto out_unlock; } } /* Attempt to allocate a single bit/frame */ idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap, emupage_frame_count, 0); if (idx < 0) { /* * Failed to allocate a frame. We'll wait until one becomes * available. We unlock the page so that other threads actually * get the opportunity to free their frames, which means * technically the result of bitmap_full may be incorrect. * However the worst case is that we repeat all this and end up * back here again. */ spin_unlock(&mm_ctx->bd_emupage_lock); if (!wait_event_killable(mm_ctx->bd_emupage_queue, !bitmap_full(mm_ctx->bd_emupage_allocmap, emupage_frame_count))) goto retry; /* Received a fatal signal - just give in */ return BD_EMUFRAME_NONE; } /* Success! */ pr_debug("allocate emuframe %d to %d\n", idx, current->pid); out_unlock: spin_unlock(&mm_ctx->bd_emupage_lock); return idx; } static void free_emuframe(int idx, struct mm_struct *mm) { mm_context_t *mm_ctx = &mm->context; spin_lock(&mm_ctx->bd_emupage_lock); pr_debug("free emuframe %d from %d\n", idx, current->pid); bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1); /* If some thread is waiting for a frame, now's its chance */ wake_up(&mm_ctx->bd_emupage_queue); spin_unlock(&mm_ctx->bd_emupage_lock); } static bool within_emuframe(struct pt_regs *regs) { unsigned long base = (unsigned long)dsemul_page(); if (regs->cp0_epc < base) return false; if (regs->cp0_epc >= (base + PAGE_SIZE)) return false; return true; } bool dsemul_thread_cleanup(struct task_struct *tsk) { int fr_idx; /* Clear any allocated frame, retrieving its index */ fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE); /* If no frame was allocated, we're done */ if (fr_idx == BD_EMUFRAME_NONE) return false; task_lock(tsk); /* Free the frame that this thread had allocated */ if (tsk->mm) free_emuframe(fr_idx, tsk->mm); task_unlock(tsk); return true; } bool dsemul_thread_rollback(struct pt_regs *regs) { struct emuframe __user *fr; int fr_idx; /* Do nothing if we're not executing from a frame */ if (!within_emuframe(regs)) return false; /* Find the frame being executed */ fr_idx = atomic_read(&current->thread.bd_emu_frame); if (fr_idx == BD_EMUFRAME_NONE) return false; fr = &dsemul_page()[fr_idx]; /* * If the PC is at the emul instruction, roll back to the branch. If * PC is at the badinst (break) instruction, we've already emulated the * instruction so progress to the continue PC. If it's anything else * then something is amiss & the user has branched into some other area * of the emupage - we'll free the allocated frame anyway. */ if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul) regs->cp0_epc = current->thread.bd_emu_branch_pc; else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst) regs->cp0_epc = current->thread.bd_emu_cont_pc; atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE); free_emuframe(fr_idx, current->mm); return true; } void dsemul_mm_cleanup(struct mm_struct *mm) { mm_context_t *mm_ctx = &mm->context; bitmap_free(mm_ctx->bd_emupage_allocmap); } int mips_dsemul(struct pt_regs *regs, mips_instruction ir, unsigned long branch_pc, unsigned long cont_pc) { int isa16 = get_isa16_mode(regs->cp0_epc); mips_instruction break_math; unsigned long fr_uaddr; struct emuframe fr; int fr_idx, ret; /* NOP is easy */ if (ir == 0) return -1; /* microMIPS instructions */ if (isa16) { union mips_instruction insn = { .word = ir }; /* NOP16 aka MOVE16 $0, $0 */ if ((ir >> 16) == MM_NOP16) return -1; /* ADDIUPC */ if (insn.mm_a_format.opcode == mm_addiupc_op) { unsigned int rs; s32 v; rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2); v = regs->cp0_epc & ~3; v += insn.mm_a_format.simmediate << 2; regs->regs[rs] = (long)v; return -1; } } pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc); /* Allocate a frame if we don't already have one */ fr_idx = atomic_read(&current->thread.bd_emu_frame); if (fr_idx == BD_EMUFRAME_NONE) fr_idx = alloc_emuframe(); if (fr_idx == BD_EMUFRAME_NONE) return SIGBUS; /* Retrieve the appropriately encoded break instruction */ break_math = BREAK_MATH(isa16); /* Write the instructions to the frame */ if (isa16) { union mips_instruction _emul = { .halfword = { ir >> 16, ir } }; union mips_instruction _badinst = { .halfword = { break_math >> 16, break_math } }; fr.emul = _emul.word; fr.badinst = _badinst.word; } else { fr.emul = ir; fr.badinst = break_math; } /* Write the frame to user memory */ fr_uaddr = (unsigned long)&dsemul_page()[fr_idx]; ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr), FOLL_FORCE | FOLL_WRITE); if (unlikely(ret != sizeof(fr))) { MIPS_FPU_EMU_INC_STATS(errors); free_emuframe(fr_idx, current->mm); return SIGBUS; } /* Record the PC of the branch, PC to continue from & frame index */ current->thread.bd_emu_branch_pc = branch_pc; current->thread.bd_emu_cont_pc = cont_pc; atomic_set(&current->thread.bd_emu_frame, fr_idx); /* Change user register context to execute the frame */ regs->cp0_epc = fr_uaddr | isa16; return 0; } bool do_dsemulret(struct pt_regs *xcp) { /* Cleanup the allocated frame, returning if there wasn't one */ if (!dsemul_thread_cleanup(current)) { MIPS_FPU_EMU_INC_STATS(errors); return false; } /* Set EPC to return to post-branch instruction */ xcp->cp0_epc = current->thread.bd_emu_cont_pc; pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc); MIPS_FPU_EMU_INC_STATS(ds_emul); return true; }
linux-master
arch/mips/math-emu/dsemul.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision square root */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" static const unsigned int table[] = { 0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130 }; union ieee754dp ieee754dp_sqrt(union ieee754dp x) { struct _ieee754_csr oldcsr; union ieee754dp y, z, t; unsigned int scalx, yh; COMPXDP; EXPLODEXDP; ieee754_clearcx(); FLUSHXDP; /* x == INF or NAN? */ switch (xc) { case IEEE754_CLASS_SNAN: return ieee754dp_nanxcpt(x); case IEEE754_CLASS_QNAN: /* sqrt(Nan) = Nan */ return x; case IEEE754_CLASS_ZERO: /* sqrt(0) = 0 */ return x; case IEEE754_CLASS_INF: if (xs) { /* sqrt(-Inf) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); } /* sqrt(+Inf) = Inf */ return x; case IEEE754_CLASS_DNORM: DPDNORMX; fallthrough; case IEEE754_CLASS_NORM: if (xs) { /* sqrt(-x) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_indef(); } break; } /* save old csr; switch off INX enable & flag; set RN rounding */ oldcsr = ieee754_csr; ieee754_csr.mx &= ~IEEE754_INEXACT; ieee754_csr.sx &= ~IEEE754_INEXACT; ieee754_csr.rm = FPU_CSR_RN; /* adjust exponent to prevent overflow */ scalx = 0; if (xe > 512) { /* x > 2**-512? */ xe -= 512; /* x = x / 2**512 */ scalx += 256; } else if (xe < -512) { /* x < 2**-512? */ xe += 512; /* x = x * 2**512 */ scalx -= 256; } x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); y = x; /* magic initial approximation to almost 8 sig. bits */ yh = y.bits >> 32; yh = (yh >> 1) + 0x1ff80000; yh = yh - table[(yh >> 15) & 31]; y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff); /* Heron's rule once with correction to improve to ~18 sig. bits */ /* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */ t = ieee754dp_div(x, y); y = ieee754dp_add(y, t); y.bits -= 0x0010000600000000LL; y.bits &= 0xffffffff00000000LL; /* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */ /* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */ t = ieee754dp_mul(y, y); z = t; t.bexp += 0x001; t = ieee754dp_add(t, z); z = ieee754dp_mul(ieee754dp_sub(x, z), y); /* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */ t = ieee754dp_div(z, ieee754dp_add(t, x)); t.bexp += 0x001; y = ieee754dp_add(y, t); /* twiddle last bit to force y correctly rounded */ /* set RZ, clear INEX flag */ ieee754_csr.rm = FPU_CSR_RZ; ieee754_csr.sx &= ~IEEE754_INEXACT; /* t=x/y; ...chopped quotient, possibly inexact */ t = ieee754dp_div(x, y); if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) { if (!(ieee754_csr.sx & IEEE754_INEXACT)) /* t = t-ulp */ t.bits -= 1; /* add inexact to result status */ oldcsr.cx |= IEEE754_INEXACT; oldcsr.sx |= IEEE754_INEXACT; switch (oldcsr.rm) { case FPU_CSR_RU: y.bits += 1; fallthrough; case FPU_CSR_RN: t.bits += 1; break; } /* y=y+t; ...chopped sum */ y = ieee754dp_add(y, t); /* adjust scalx for correctly rounded sqrt(x) */ scalx -= 1; } /* py[n0]=py[n0]+scalx; ...scale back y */ y.bexp += scalx; /* restore rounding mode, possibly set inexact */ ieee754_csr = oldcsr; return y; }
linux-master
arch/mips/math-emu/dp_sqrt.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include <linux/compiler.h> #include "ieee754dp.h" int ieee754dp_class(union ieee754dp x) { COMPXDP; EXPLODEXDP; return xc; } static inline int ieee754dp_isnan(union ieee754dp x) { return ieee754_class_nan(ieee754dp_class(x)); } static inline int ieee754dp_issnan(union ieee754dp x) { int qbit; assert(ieee754dp_isnan(x)); qbit = (DPMANT(x) & DP_MBIT(DP_FBITS - 1)) == DP_MBIT(DP_FBITS - 1); return ieee754_csr.nan2008 ^ qbit; } /* * Raise the Invalid Operation IEEE 754 exception * and convert the signaling NaN supplied to a quiet NaN. */ union ieee754dp __cold ieee754dp_nanxcpt(union ieee754dp r) { assert(ieee754dp_issnan(r)); ieee754_setcx(IEEE754_INVALID_OPERATION); if (ieee754_csr.nan2008) { DPMANT(r) |= DP_MBIT(DP_FBITS - 1); } else { DPMANT(r) &= ~DP_MBIT(DP_FBITS - 1); if (!ieee754dp_isnan(r)) DPMANT(r) |= DP_MBIT(DP_FBITS - 2); } return r; } static u64 ieee754dp_get_rounding(int sn, u64 xm) { /* inexact must round of 3 bits */ if (xm & (DP_MBIT(3) - 1)) { switch (ieee754_csr.rm) { case FPU_CSR_RZ: break; case FPU_CSR_RN: xm += 0x3 + ((xm >> 3) & 1); /* xm += (xm&0x8)?0x4:0x3 */ break; case FPU_CSR_RU: /* toward +Infinity */ if (!sn) /* ?? */ xm += 0x8; break; case FPU_CSR_RD: /* toward -Infinity */ if (sn) /* ?? */ xm += 0x8; break; } } return xm; } /* generate a normal/denormal number with over,under handling * sn is sign * xe is an unbiased exponent * xm is 3bit extended precision value. */ union ieee754dp ieee754dp_format(int sn, int xe, u64 xm) { assert(xm); /* we don't gen exact zeros (probably should) */ assert((xm >> (DP_FBITS + 1 + 3)) == 0); /* no excess */ assert(xm & (DP_HIDDEN_BIT << 3)); if (xe < DP_EMIN) { /* strip lower bits */ int es = DP_EMIN - xe; if (ieee754_csr.nod) { ieee754_setcx(IEEE754_UNDERFLOW); ieee754_setcx(IEEE754_INEXACT); switch(ieee754_csr.rm) { case FPU_CSR_RN: case FPU_CSR_RZ: return ieee754dp_zero(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754dp_min(0); else return ieee754dp_zero(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754dp_zero(0); else return ieee754dp_min(1); } } if (xe == DP_EMIN - 1 && ieee754dp_get_rounding(sn, xm) >> (DP_FBITS + 1 + 3)) { /* Not tiny after rounding */ ieee754_setcx(IEEE754_INEXACT); xm = ieee754dp_get_rounding(sn, xm); xm >>= 1; /* Clear grs bits */ xm &= ~(DP_MBIT(3) - 1); xe++; } else { /* sticky right shift es bits */ xm = XDPSRS(xm, es); xe += es; assert((xm & (DP_HIDDEN_BIT << 3)) == 0); assert(xe == DP_EMIN); } } if (xm & (DP_MBIT(3) - 1)) { ieee754_setcx(IEEE754_INEXACT); if ((xm & (DP_HIDDEN_BIT << 3)) == 0) { ieee754_setcx(IEEE754_UNDERFLOW); } /* inexact must round of 3 bits */ xm = ieee754dp_get_rounding(sn, xm); /* adjust exponent for rounding add overflowing */ if (xm >> (DP_FBITS + 3 + 1)) { /* add causes mantissa overflow */ xm >>= 1; xe++; } } /* strip grs bits */ xm >>= 3; assert((xm >> (DP_FBITS + 1)) == 0); /* no excess */ assert(xe >= DP_EMIN); if (xe > DP_EMAX) { ieee754_setcx(IEEE754_OVERFLOW); ieee754_setcx(IEEE754_INEXACT); /* -O can be table indexed by (rm,sn) */ switch (ieee754_csr.rm) { case FPU_CSR_RN: return ieee754dp_inf(sn); case FPU_CSR_RZ: return ieee754dp_max(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754dp_inf(0); else return ieee754dp_max(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754dp_max(0); else return ieee754dp_inf(1); } } /* gen norm/denorm/zero */ if ((xm & DP_HIDDEN_BIT) == 0) { /* we underflow (tiny/zero) */ assert(xe == DP_EMIN); if (ieee754_csr.mx & IEEE754_UNDERFLOW) ieee754_setcx(IEEE754_UNDERFLOW); return builddp(sn, DP_EMIN - 1 + DP_EBIAS, xm); } else { assert((xm >> (DP_FBITS + 1)) == 0); /* no excess */ assert(xm & DP_HIDDEN_BIT); return builddp(sn, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); } }
linux-master
arch/mips/math-emu/ieee754dp.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_mul(union ieee754sp x, union ieee754sp y) { int re; int rs; unsigned int rm; unsigned short lxm; unsigned short hxm; unsigned short lym; unsigned short hym; unsigned int lrm; unsigned int hrm; unsigned int t; unsigned int at; COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; ieee754_clearcx(); FLUSHXSP; FLUSHYSP; switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return y; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return x; /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754sp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return ieee754sp_zero(xs ^ ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): break; } /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; /* shunt to top of word */ xm <<= 32 - (SP_FBITS + 1); ym <<= 32 - (SP_FBITS + 1); /* * Multiply 32 bits xm, ym to give high 32 bits rm with stickness. */ lxm = xm & 0xffff; hxm = xm >> 16; lym = ym & 0xffff; hym = ym >> 16; lrm = lxm * lym; /* 16 * 16 => 32 */ hrm = hxm * hym; /* 16 * 16 => 32 */ t = lxm * hym; /* 16 * 16 => 32 */ at = lrm + (t << 16); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 16); t = hxm * lym; /* 16 * 16 => 32 */ at = lrm + (t << 16); hrm += at < lrm; lrm = at; hrm = hrm + (t >> 16); rm = hrm | (lrm != 0); /* * Sticky shift down to normal rounding precision. */ if ((int) rm < 0) { rm = (rm >> (32 - (SP_FBITS + 1 + 3))) | ((rm << (SP_FBITS + 1 + 3)) != 0); re++; } else { rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) | ((rm << (SP_FBITS + 1 + 3 + 1)) != 0); } assert(rm & (SP_HIDDEN_BIT << 3)); return ieee754sp_format(rs, re, rm); }
linux-master
arch/mips/math-emu/sp_mul.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: MIN{,A}.f * MIN : Scalar Floating-Point Minimum * MINA: Scalar Floating-Point argument with Minimum Absolute Value * * MIN.S : FPR[fd] = minNum(FPR[fs],FPR[ft]) * MINA.S: FPR[fd] = maxNumMag(FPR[fs],FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754sp.h" union ieee754sp ieee754sp_fmin(union ieee754sp x, union ieee754sp y) { COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; FLUSHXSP; FLUSHYSP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return xs ? x : y; case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return ys ? y : x; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754sp_zero(xs | ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; } /* Finally get to do some computation */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* Compare signs */ if (xs > ys) return x; else if (xs < ys) return y; /* Signs of inputs are the same, let's compare exponents */ if (xs == 0) { /* Inputs are both positive */ if (xe > ye) return y; else if (xe < ye) return x; } else { /* Inputs are both negative */ if (xe > ye) return x; else if (xe < ye) return y; } /* Signs and exponents of inputs are equal, let's compare mantissas */ if (xs == 0) { /* Inputs are both positive, with equal signs and exponents */ if (xm <= ym) return x; return y; } /* Inputs are both negative, with equal signs and exponents */ if (xm <= ym) return y; return x; } union ieee754sp ieee754sp_fmina(union ieee754sp x, union ieee754sp y) { COMPXSP; COMPYSP; EXPLODEXSP; EXPLODEYSP; FLUSHXSP; FLUSHYSP; ieee754_clearcx(); switch (CLPAIR(xc, yc)) { case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): return ieee754sp_nanxcpt(y); case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): return ieee754sp_nanxcpt(x); /* * Quiet NaN handling */ /* * The case of both inputs quiet NaNs */ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): return x; /* * The cases of exactly one input quiet NaN (numbers * are here preferred as returned values to NaNs) */ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): return x; case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): return y; /* * Infinity and zero handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): return ieee754sp_inf(xs | ys); case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): return y; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): return x; case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): return ieee754sp_zero(xs | ys); case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): SPDNORMX; } /* Finally get to do some computation */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); /* Compare exponent */ if (xe > ye) return y; else if (xe < ye) return x; /* Compare mantissa */ if (xm < ym) return x; else if (xm > ym) return y; else if (xs == 1) return x; return y; }
linux-master
arch/mips/math-emu/sp_fmin.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" union ieee754dp ieee754dp_fint(int x) { u64 xm; int xe; int xs; ieee754_clearcx(); if (x == 0) return ieee754dp_zero(0); if (x == 1 || x == -1) return ieee754dp_one(x < 0); if (x == 10 || x == -10) return ieee754dp_ten(x < 0); xs = (x < 0); if (xs) { if (x == (1 << 31)) xm = ((unsigned) 1 << 31); /* max neg can't be safely negated */ else xm = -x; } else { xm = x; } /* normalize - result can never be inexact or overflow */ xe = DP_FBITS; while ((xm >> DP_FBITS) == 0) { xm <<= 1; xe--; } return builddp(xs, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); }
linux-master
arch/mips/math-emu/dp_fint.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" int ieee754sp_tint(union ieee754sp x) { u32 residue; int round; int sticky; int odd; COMPXSP; ieee754_clearcx(); EXPLODEXSP; FLUSHXSP; switch (xc) { case IEEE754_CLASS_SNAN: case IEEE754_CLASS_QNAN: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754si_indef(); case IEEE754_CLASS_INF: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754si_overflow(xs); case IEEE754_CLASS_ZERO: return 0; case IEEE754_CLASS_DNORM: case IEEE754_CLASS_NORM: break; } if (xe >= 31) { /* look for valid corner case */ if (xe == 31 && xs && xm == SP_HIDDEN_BIT) return -0x80000000; /* Set invalid. We will only use overflow for floating point overflow */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754si_overflow(xs); } /* oh gawd */ if (xe > SP_FBITS) { xm <<= xe - SP_FBITS; } else { if (xe < -1) { residue = xm; round = 0; sticky = residue != 0; xm = 0; } else { /* Shifting a u32 32 times does not work, * so we do it in two steps. Be aware that xe * may be -1 */ residue = xm << (xe + 1); residue <<= 31 - SP_FBITS; round = (residue >> 31) != 0; sticky = (residue << 1) != 0; xm >>= SP_FBITS - xe; } odd = (xm & 0x1) != 0x0; switch (ieee754_csr.rm) { case FPU_CSR_RN: if (round && (sticky || odd)) xm++; break; case FPU_CSR_RZ: break; case FPU_CSR_RU: /* toward +Infinity */ if ((round || sticky) && !xs) xm++; break; case FPU_CSR_RD: /* toward -Infinity */ if ((round || sticky) && xs) xm++; break; } if ((xm >> 31) != 0) { /* This can happen after rounding */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754si_overflow(xs); } if (round || sticky) ieee754_setcx(IEEE754_INEXACT); } if (xs) return -xm; else return xm; }
linux-master
arch/mips/math-emu/sp_tint.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" s64 ieee754sp_tlong(union ieee754sp x) { u32 residue; int round; int sticky; int odd; COMPXDP; /* <-- need 64-bit mantissa tmp */ ieee754_clearcx(); EXPLODEXSP; FLUSHXSP; switch (xc) { case IEEE754_CLASS_SNAN: case IEEE754_CLASS_QNAN: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_indef(); case IEEE754_CLASS_INF: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); case IEEE754_CLASS_ZERO: return 0; case IEEE754_CLASS_DNORM: case IEEE754_CLASS_NORM: break; } if (xe >= 63) { /* look for valid corner case */ if (xe == 63 && xs && xm == SP_HIDDEN_BIT) return -0x8000000000000000LL; /* Set invalid. We will only use overflow for floating point overflow */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); } /* oh gawd */ if (xe > SP_FBITS) { xm <<= xe - SP_FBITS; } else if (xe < SP_FBITS) { if (xe < -1) { residue = xm; round = 0; sticky = residue != 0; xm = 0; } else { residue = xm << (32 - SP_FBITS + xe); round = (residue >> 31) != 0; sticky = (residue << 1) != 0; xm >>= SP_FBITS - xe; } odd = (xm & 0x1) != 0x0; switch (ieee754_csr.rm) { case FPU_CSR_RN: if (round && (sticky || odd)) xm++; break; case FPU_CSR_RZ: break; case FPU_CSR_RU: /* toward +Infinity */ if ((round || sticky) && !xs) xm++; break; case FPU_CSR_RD: /* toward -Infinity */ if ((round || sticky) && xs) xm++; break; } if ((xm >> 63) != 0) { /* This can happen after rounding */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754di_overflow(xs); } if (round || sticky) ieee754_setcx(IEEE754_INEXACT); } if (xs) return -xm; else return xm; }
linux-master
arch/mips/math-emu/sp_tlong.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * Copyright (C) 2017 Imagination Technologies, Ltd. * Author: Aleksandar Markovic <[email protected]> */ #include "ieee754dp.h" union ieee754dp ieee754dp_rint(union ieee754dp x) { union ieee754dp ret; u64 residue; int sticky; int round; int odd; COMPXDP; ieee754_clearcx(); EXPLODEXDP; FLUSHXDP; if (xc == IEEE754_CLASS_SNAN) return ieee754dp_nanxcpt(x); if ((xc == IEEE754_CLASS_QNAN) || (xc == IEEE754_CLASS_INF) || (xc == IEEE754_CLASS_ZERO)) return x; if (xe >= DP_FBITS) return x; if (xe < -1) { residue = xm; round = 0; sticky = residue != 0; xm = 0; } else { residue = xm << (64 - DP_FBITS + xe); round = (residue >> 63) != 0; sticky = (residue << 1) != 0; xm >>= DP_FBITS - xe; } odd = (xm & 0x1) != 0x0; switch (ieee754_csr.rm) { case FPU_CSR_RN: /* toward nearest */ if (round && (sticky || odd)) xm++; break; case FPU_CSR_RZ: /* toward zero */ break; case FPU_CSR_RU: /* toward +infinity */ if ((round || sticky) && !xs) xm++; break; case FPU_CSR_RD: /* toward -infinity */ if ((round || sticky) && xs) xm++; break; } if (round || sticky) ieee754_setcx(IEEE754_INEXACT); ret = ieee754dp_flong(xm); DPSIGN(ret) = xs; return ret; }
linux-master
arch/mips/math-emu/dp_rint.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" union ieee754dp ieee754dp_flong(s64 x) { u64 xm; int xe; int xs; ieee754_clearcx(); if (x == 0) return ieee754dp_zero(0); if (x == 1 || x == -1) return ieee754dp_one(x < 0); if (x == 10 || x == -10) return ieee754dp_ten(x < 0); xs = (x < 0); if (xs) { if (x == (1ULL << 63)) xm = (1ULL << 63); /* max neg can't be safely negated */ else xm = -x; } else { xm = x; } /* normalize */ xe = DP_FBITS + 3; if (xm >> (DP_FBITS + 1 + 3)) { /* shunt out overflow bits */ while (xm >> (DP_FBITS + 1 + 3)) { XDPSRSX1(); } } else { /* normalize in grs extended double precision */ while ((xm >> (DP_FBITS + 3)) == 0) { xm <<= 1; xe--; } } return ieee754dp_format(xs, xe, xm); }
linux-master
arch/mips/math-emu/dp_flong.c
// SPDX-License-Identifier: GPL-2.0-only /* ieee754 floating point arithmetic * single and double precision * * BUGS * not much dp done * doesn't generate IEEE754_INEXACT */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include <linux/compiler.h> #include "ieee754.h" #include "ieee754sp.h" #include "ieee754dp.h" /* * Special constants */ /* * Older GCC requires the inner braces for initialization of union ieee754dp's * anonymous struct member. Without an error will result. */ #define xPCNST(s, b, m, ebias) \ { \ { \ .sign = (s), \ .bexp = (b) + ebias, \ .mant = (m) \ } \ } #define DPCNST(s, b, m) \ xPCNST(s, b, m, DP_EBIAS) const union ieee754dp __ieee754dp_spcvals[] = { DPCNST(0, DP_EMIN - 1, 0x0000000000000ULL), /* + zero */ DPCNST(1, DP_EMIN - 1, 0x0000000000000ULL), /* - zero */ DPCNST(0, 0, 0x0000000000000ULL), /* + 1.0 */ DPCNST(1, 0, 0x0000000000000ULL), /* - 1.0 */ DPCNST(0, 3, 0x4000000000000ULL), /* + 10.0 */ DPCNST(1, 3, 0x4000000000000ULL), /* - 10.0 */ DPCNST(0, DP_EMAX + 1, 0x0000000000000ULL), /* + infinity */ DPCNST(1, DP_EMAX + 1, 0x0000000000000ULL), /* - infinity */ DPCNST(0, DP_EMAX + 1, 0x7FFFFFFFFFFFFULL), /* + ind legacy qNaN */ DPCNST(0, DP_EMAX + 1, 0x8000000000000ULL), /* + indef 2008 qNaN */ DPCNST(0, DP_EMAX, 0xFFFFFFFFFFFFFULL), /* + max */ DPCNST(1, DP_EMAX, 0xFFFFFFFFFFFFFULL), /* - max */ DPCNST(0, DP_EMIN, 0x0000000000000ULL), /* + min normal */ DPCNST(1, DP_EMIN, 0x0000000000000ULL), /* - min normal */ DPCNST(0, DP_EMIN - 1, 0x0000000000001ULL), /* + min denormal */ DPCNST(1, DP_EMIN - 1, 0x0000000000001ULL), /* - min denormal */ DPCNST(0, 31, 0x0000000000000ULL), /* + 1.0e31 */ DPCNST(0, 63, 0x0000000000000ULL), /* + 1.0e63 */ }; #define SPCNST(s, b, m) \ xPCNST(s, b, m, SP_EBIAS) const union ieee754sp __ieee754sp_spcvals[] = { SPCNST(0, SP_EMIN - 1, 0x000000), /* + zero */ SPCNST(1, SP_EMIN - 1, 0x000000), /* - zero */ SPCNST(0, 0, 0x000000), /* + 1.0 */ SPCNST(1, 0, 0x000000), /* - 1.0 */ SPCNST(0, 3, 0x200000), /* + 10.0 */ SPCNST(1, 3, 0x200000), /* - 10.0 */ SPCNST(0, SP_EMAX + 1, 0x000000), /* + infinity */ SPCNST(1, SP_EMAX + 1, 0x000000), /* - infinity */ SPCNST(0, SP_EMAX + 1, 0x3FFFFF), /* + indef legacy quiet NaN */ SPCNST(0, SP_EMAX + 1, 0x400000), /* + indef 2008 quiet NaN */ SPCNST(0, SP_EMAX, 0x7FFFFF), /* + max normal */ SPCNST(1, SP_EMAX, 0x7FFFFF), /* - max normal */ SPCNST(0, SP_EMIN, 0x000000), /* + min normal */ SPCNST(1, SP_EMIN, 0x000000), /* - min normal */ SPCNST(0, SP_EMIN - 1, 0x000001), /* + min denormal */ SPCNST(1, SP_EMIN - 1, 0x000001), /* - min denormal */ SPCNST(0, 31, 0x000000), /* + 1.0e31 */ SPCNST(0, 63, 0x000000), /* + 1.0e63 */ };
linux-master
arch/mips/math-emu/ieee754.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * double precision: common utilities */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754dp.h" union ieee754dp ieee754dp_neg(union ieee754dp x) { union ieee754dp y; if (ieee754_csr.abs2008) { y = x; DPSIGN(y) = !DPSIGN(x); } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; y = ieee754dp_sub(ieee754dp_zero(0), x); ieee754_csr.rm = oldrm; } return y; } union ieee754dp ieee754dp_abs(union ieee754dp x) { union ieee754dp y; if (ieee754_csr.abs2008) { y = x; DPSIGN(y) = 0; } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; if (DPSIGN(x)) y = ieee754dp_sub(ieee754dp_zero(0), x); else y = ieee754dp_add(ieee754dp_zero(0), x); ieee754_csr.rm = oldrm; } return y; }
linux-master
arch/mips/math-emu/dp_simple.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * Copyright (C) 2017 Imagination Technologies, Ltd. * Author: Aleksandar Markovic <[email protected]> */ #include "ieee754sp.h" union ieee754sp ieee754sp_rint(union ieee754sp x) { union ieee754sp ret; u32 residue; int sticky; int round; int odd; COMPXDP; /* <-- DP needed for 64-bit mantissa tmp */ ieee754_clearcx(); EXPLODEXSP; FLUSHXSP; if (xc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(x); if ((xc == IEEE754_CLASS_QNAN) || (xc == IEEE754_CLASS_INF) || (xc == IEEE754_CLASS_ZERO)) return x; if (xe >= SP_FBITS) return x; if (xe < -1) { residue = xm; round = 0; sticky = residue != 0; xm = 0; } else { residue = xm << (xe + 1); residue <<= 31 - SP_FBITS; round = (residue >> 31) != 0; sticky = (residue << 1) != 0; xm >>= SP_FBITS - xe; } odd = (xm & 0x1) != 0x0; switch (ieee754_csr.rm) { case FPU_CSR_RN: /* toward nearest */ if (round && (sticky || odd)) xm++; break; case FPU_CSR_RZ: /* toward zero */ break; case FPU_CSR_RU: /* toward +infinity */ if ((round || sticky) && !xs) xm++; break; case FPU_CSR_RD: /* toward -infinity */ if ((round || sticky) && xs) xm++; break; } if (round || sticky) ieee754_setcx(IEEE754_INEXACT); ret = ieee754sp_flong(xm); SPSIGN(ret) = xs; return ret; }
linux-master
arch/mips/math-emu/sp_rint.c
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" #include "ieee754dp.h" static inline union ieee754sp ieee754sp_nan_fdp(int xs, u64 xm) { return buildsp(xs, SP_EMAX + 1 + SP_EBIAS, xm >> (DP_FBITS - SP_FBITS)); } union ieee754sp ieee754sp_fdp(union ieee754dp x) { union ieee754sp y; u32 rm; COMPXDP; COMPYSP; EXPLODEXDP; ieee754_clearcx(); FLUSHXDP; switch (xc) { case IEEE754_CLASS_SNAN: x = ieee754dp_nanxcpt(x); EXPLODEXDP; fallthrough; case IEEE754_CLASS_QNAN: y = ieee754sp_nan_fdp(xs, xm); if (!ieee754_csr.nan2008) { EXPLODEYSP; if (!ieee754_class_nan(yc)) y = ieee754sp_indef(); } return y; case IEEE754_CLASS_INF: return ieee754sp_inf(xs); case IEEE754_CLASS_ZERO: return ieee754sp_zero(xs); case IEEE754_CLASS_DNORM: /* can't possibly be sp representable */ ieee754_setcx(IEEE754_UNDERFLOW); ieee754_setcx(IEEE754_INEXACT); if ((ieee754_csr.rm == FPU_CSR_RU && !xs) || (ieee754_csr.rm == FPU_CSR_RD && xs)) return ieee754sp_mind(xs); return ieee754sp_zero(xs); case IEEE754_CLASS_NORM: break; } /* * Convert from DP_FBITS to SP_FBITS+3 with sticky right shift. */ rm = (xm >> (DP_FBITS - (SP_FBITS + 3))) | ((xm << (64 - (DP_FBITS - (SP_FBITS + 3)))) != 0); return ieee754sp_format(xs, xe, rm); }
linux-master
arch/mips/math-emu/sp_fdp.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: MADDF.f (Fused Multiply Add) * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754sp.h" static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y, enum maddf_flags flags) { int re; int rs; unsigned int rm; u64 rm64; u64 zm64; int s; COMPXSP; COMPYSP; COMPZSP; EXPLODEXSP; EXPLODEYSP; EXPLODEZSP; FLUSHXSP; FLUSHYSP; FLUSHZSP; ieee754_clearcx(); rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; if (flags & MADDF_NEGATE_ADDITION) zs ^= 1; /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) SPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y). The result must be an infinity, * and its sign is determined only by the sign of product (x*y). */ return ieee754sp_inf(rs); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if (zs == rs) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; fallthrough; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* continue to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; /* Multiple 24 bit xm and ym to give 48 bit results */ rm64 = (uint64_t)xm * ym; /* Shunt to top of word */ rm64 = rm64 << 16; /* Put explicit bit at bit 62 if necessary */ if ((int64_t) rm64 < 0) { rm64 = rm64 >> 1; re++; } assert(rm64 & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ rm = XSPSRS64(rm64, (62 - 26)); return ieee754sp_format(rs, re, rm); } /* Move explicit bit from bit 23 to bit 62 */ zm64 = (uint64_t)zm << (62 - 23); assert(zm64 & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift r fraction right to align. */ s = ze - re; rm64 = XSPSRS64(rm64, s); re += s; } else if (re > ze) { /* * Have to shift z fraction right to align. */ s = re - ze; zm64 = XSPSRS64(zm64, s); ze += s; } assert(ze == re); assert(ze <= SP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 64 bit result by adding two 63 bit numbers * leaving result in zm64, zs and ze. */ zm64 = zm64 + rm64; if ((int64_t)zm64 < 0) { /* carry out */ zm64 = XSPSRS1(zm64); ze++; } } else { if (zm64 >= rm64) { zm64 = zm64 - rm64; } else { zm64 = rm64 - zm64; zs = rs; } if (zm64 == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 62 if necessary. */ while ((zm64 >> 62) == 0) { zm64 <<= 1; ze--; } } /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ zm = XSPSRS64(zm64, (62 - 26)); return ieee754sp_format(zs, ze, zm); } union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); } union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); } union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); } union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); }
linux-master
arch/mips/math-emu/sp_maddf.c
// SPDX-License-Identifier: GPL-2.0-only /* * Some debug functions * * MIPS floating point support * * Copyright (C) 1994-2000 Algorithmics Ltd. * * Nov 7, 2000 * Modified to build and operate in Linux kernel environment. * * Kevin D. Kissell, [email protected] and Carsten Langgaard, [email protected] * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. */ #include <linux/types.h> #include <linux/printk.h> #include "ieee754.h" #include "ieee754sp.h" #include "ieee754dp.h" union ieee754dp ieee754dp_dump(char *m, union ieee754dp x) { int i; printk("%s", m); printk("<%08x,%08x>\n", (unsigned) (x.bits >> 32), (unsigned) x.bits); printk("\t="); switch (ieee754dp_class(x)) { case IEEE754_CLASS_QNAN: case IEEE754_CLASS_SNAN: printk("Nan %c", DPSIGN(x) ? '-' : '+'); for (i = DP_FBITS - 1; i >= 0; i--) printk("%c", DPMANT(x) & DP_MBIT(i) ? '1' : '0'); break; case IEEE754_CLASS_INF: printk("%cInfinity", DPSIGN(x) ? '-' : '+'); break; case IEEE754_CLASS_ZERO: printk("%cZero", DPSIGN(x) ? '-' : '+'); break; case IEEE754_CLASS_DNORM: printk("%c0.", DPSIGN(x) ? '-' : '+'); for (i = DP_FBITS - 1; i >= 0; i--) printk("%c", DPMANT(x) & DP_MBIT(i) ? '1' : '0'); printk("e%d", DPBEXP(x) - DP_EBIAS); break; case IEEE754_CLASS_NORM: printk("%c1.", DPSIGN(x) ? '-' : '+'); for (i = DP_FBITS - 1; i >= 0; i--) printk("%c", DPMANT(x) & DP_MBIT(i) ? '1' : '0'); printk("e%d", DPBEXP(x) - DP_EBIAS); break; default: printk("Illegal/Unknown IEEE754 value class"); } printk("\n"); return x; } union ieee754sp ieee754sp_dump(char *m, union ieee754sp x) { int i; printk("%s=", m); printk("<%08x>\n", (unsigned) x.bits); printk("\t="); switch (ieee754sp_class(x)) { case IEEE754_CLASS_QNAN: case IEEE754_CLASS_SNAN: printk("Nan %c", SPSIGN(x) ? '-' : '+'); for (i = SP_FBITS - 1; i >= 0; i--) printk("%c", SPMANT(x) & SP_MBIT(i) ? '1' : '0'); break; case IEEE754_CLASS_INF: printk("%cInfinity", SPSIGN(x) ? '-' : '+'); break; case IEEE754_CLASS_ZERO: printk("%cZero", SPSIGN(x) ? '-' : '+'); break; case IEEE754_CLASS_DNORM: printk("%c0.", SPSIGN(x) ? '-' : '+'); for (i = SP_FBITS - 1; i >= 0; i--) printk("%c", SPMANT(x) & SP_MBIT(i) ? '1' : '0'); printk("e%d", SPBEXP(x) - SP_EBIAS); break; case IEEE754_CLASS_NORM: printk("%c1.", SPSIGN(x) ? '-' : '+'); for (i = SP_FBITS - 1; i >= 0; i--) printk("%c", SPMANT(x) & SP_MBIT(i) ? '1' : '0'); printk("e%d", SPBEXP(x) - SP_EBIAS); break; default: printk("Illegal/Unknown IEEE754 value class"); } printk("\n"); return x; }
linux-master
arch/mips/math-emu/ieee754d.c
// SPDX-License-Identifier: GPL-2.0-only /* * IEEE754 floating point arithmetic * single precision: CLASS.f * FPR[fd] = class(FPR[fs]) * * MIPS floating point support * Copyright (C) 2015 Imagination Technologies, Ltd. * Author: Markos Chandras <[email protected]> */ #include "ieee754sp.h" int ieee754sp_2008class(union ieee754sp x) { COMPXSP; EXPLODEXSP; /* * 10 bit mask as follows: * * bit0 = SNAN * bit1 = QNAN * bit2 = -INF * bit3 = -NORM * bit4 = -DNORM * bit5 = -ZERO * bit6 = INF * bit7 = NORM * bit8 = DNORM * bit9 = ZERO */ switch(xc) { case IEEE754_CLASS_SNAN: return 0x01; case IEEE754_CLASS_QNAN: return 0x02; case IEEE754_CLASS_INF: return 0x04 << (xs ? 0 : 4); case IEEE754_CLASS_NORM: return 0x08 << (xs ? 0 : 4); case IEEE754_CLASS_DNORM: return 0x10 << (xs ? 0 : 4); case IEEE754_CLASS_ZERO: return 0x20 << (xs ? 0 : 4); default: pr_err("Unknown class: %d\n", xc); return 0; } }
linux-master
arch/mips/math-emu/sp_2008class.c