python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0+ /* * f_subset.c -- "CDC Subset" Ethernet link function driver * * Copyright (C) 2003-2005,2008 David Brownell * Copyright (C) 2008 Nokia Corporation */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/etherdevice.h> #include "u_ether.h" #include "u_ether_configfs.h" #include "u_gether.h" /* * This function packages a simple "CDC Subset" Ethernet port with no real * control mechanisms; just raw data transfer over two bulk endpoints. * The data transfer model is exactly that of CDC Ethernet, which is * why we call it the "CDC Subset". * * Because it's not standardized, this has some interoperability issues. * They mostly relate to driver binding, since the data transfer model is * so simple (CDC Ethernet). The original versions of this protocol used * specific product/vendor IDs: byteswapped IDs for Digital Equipment's * SA-1100 "Itsy" board, which could run Linux 2.4 kernels and supported * daughtercards with USB peripheral connectors. (It was used more often * with other boards, using the Itsy identifiers.) Linux hosts recognized * this with CONFIG_USB_ARMLINUX; these devices have only one configuration * and one interface. * * At some point, MCCI defined a (nonconformant) CDC MDLM variant called * "SAFE", which happens to have a mode which is identical to the "CDC * Subset" in terms of data transfer and lack of control model. This was * adopted by later Sharp Zaurus models, and by some other software which * Linux hosts recognize with CONFIG_USB_NET_ZAURUS. * * Because Microsoft's RNDIS drivers are far from robust, we added a few * descriptors to the CDC Subset code, making this code look like a SAFE * implementation. This lets you use MCCI's host side MS-Windows drivers * if you get fed up with RNDIS. It also makes it easier for composite * drivers to work, since they can use class based binding instead of * caring about specific product and vendor IDs. */ struct f_gether { struct gether port; char ethaddr[14]; }; static inline struct f_gether *func_to_geth(struct usb_function *f) { return container_of(f, struct f_gether, port.func); } /*-------------------------------------------------------------------------*/ /* * "Simple" CDC-subset option is a simple vendor-neutral model that most * full speed controllers can handle: one interface, two bulk endpoints. * To assist host side drivers, we fancy it up a bit, and add descriptors so * some host side drivers will understand it as a "SAFE" variant. * * "SAFE" loosely follows CDC WMC MDLM, violating the spec in various ways. * Data endpoints live in the control interface, there's no data interface. * And it's not used to talk to a cell phone radio. */ /* interface descriptor: */ static struct usb_interface_descriptor subset_data_intf = { .bLength = sizeof subset_data_intf, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ .bAlternateSetting = 0, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_COMM, .bInterfaceSubClass = USB_CDC_SUBCLASS_MDLM, .bInterfaceProtocol = 0, /* .iInterface = DYNAMIC */ }; static struct usb_cdc_header_desc mdlm_header_desc = { .bLength = sizeof mdlm_header_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_HEADER_TYPE, .bcdCDC = cpu_to_le16(0x0110), }; static struct usb_cdc_mdlm_desc mdlm_desc = { .bLength = sizeof mdlm_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_MDLM_TYPE, .bcdVersion = cpu_to_le16(0x0100), .bGUID = { 0x5d, 0x34, 0xcf, 0x66, 0x11, 0x18, 0x11, 0xd6, 0xa2, 0x1a, 0x00, 0x01, 0x02, 0xca, 0x9a, 0x7f, }, }; /* since "usb_cdc_mdlm_detail_desc" is a variable length structure, we * can't really use its struct. All we do here is say that we're using * the submode of "SAFE" which directly matches the CDC Subset. */ static u8 mdlm_detail_desc[] = { 6, USB_DT_CS_INTERFACE, USB_CDC_MDLM_DETAIL_TYPE, 0, /* "SAFE" */ 0, /* network control capabilities (none) */ 0, /* network data capabilities ("raw" encapsulation) */ }; static struct usb_cdc_ether_desc ether_desc = { .bLength = sizeof ether_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_ETHERNET_TYPE, /* this descriptor actually adds value, surprise! */ /* .iMACAddress = DYNAMIC */ .bmEthernetStatistics = cpu_to_le32(0), /* no statistics */ .wMaxSegmentSize = cpu_to_le16(ETH_FRAME_LEN), .wNumberMCFilters = cpu_to_le16(0), .bNumberPowerFilters = 0, }; /* full speed support: */ static struct usb_endpoint_descriptor fs_subset_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_subset_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *fs_eth_function[] = { (struct usb_descriptor_header *) &subset_data_intf, (struct usb_descriptor_header *) &mdlm_header_desc, (struct usb_descriptor_header *) &mdlm_desc, (struct usb_descriptor_header *) &mdlm_detail_desc, (struct usb_descriptor_header *) &ether_desc, (struct usb_descriptor_header *) &fs_subset_in_desc, (struct usb_descriptor_header *) &fs_subset_out_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor hs_subset_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_subset_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *hs_eth_function[] = { (struct usb_descriptor_header *) &subset_data_intf, (struct usb_descriptor_header *) &mdlm_header_desc, (struct usb_descriptor_header *) &mdlm_desc, (struct usb_descriptor_header *) &mdlm_detail_desc, (struct usb_descriptor_header *) &ether_desc, (struct usb_descriptor_header *) &hs_subset_in_desc, (struct usb_descriptor_header *) &hs_subset_out_desc, NULL, }; /* super speed support: */ static struct usb_endpoint_descriptor ss_subset_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor ss_subset_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_subset_bulk_comp_desc = { .bLength = sizeof ss_subset_bulk_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 2 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ }; static struct usb_descriptor_header *ss_eth_function[] = { (struct usb_descriptor_header *) &subset_data_intf, (struct usb_descriptor_header *) &mdlm_header_desc, (struct usb_descriptor_header *) &mdlm_desc, (struct usb_descriptor_header *) &mdlm_detail_desc, (struct usb_descriptor_header *) &ether_desc, (struct usb_descriptor_header *) &ss_subset_in_desc, (struct usb_descriptor_header *) &ss_subset_bulk_comp_desc, (struct usb_descriptor_header *) &ss_subset_out_desc, (struct usb_descriptor_header *) &ss_subset_bulk_comp_desc, NULL, }; /* string descriptors: */ static struct usb_string geth_string_defs[] = { [0].s = "CDC Ethernet Subset/SAFE", [1].s = "", { } /* end of list */ }; static struct usb_gadget_strings geth_string_table = { .language = 0x0409, /* en-us */ .strings = geth_string_defs, }; static struct usb_gadget_strings *geth_strings[] = { &geth_string_table, NULL, }; /*-------------------------------------------------------------------------*/ static int geth_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_gether *geth = func_to_geth(f); struct usb_composite_dev *cdev = f->config->cdev; struct net_device *net; /* we know alt == 0, so this is an activation or a reset */ if (geth->port.in_ep->enabled) { DBG(cdev, "reset cdc subset\n"); gether_disconnect(&geth->port); } DBG(cdev, "init + activate cdc subset\n"); if (config_ep_by_speed(cdev->gadget, f, geth->port.in_ep) || config_ep_by_speed(cdev->gadget, f, geth->port.out_ep)) { geth->port.in_ep->desc = NULL; geth->port.out_ep->desc = NULL; return -EINVAL; } net = gether_connect(&geth->port); return PTR_ERR_OR_ZERO(net); } static void geth_disable(struct usb_function *f) { struct f_gether *geth = func_to_geth(f); struct usb_composite_dev *cdev = f->config->cdev; DBG(cdev, "net deactivated\n"); gether_disconnect(&geth->port); } /*-------------------------------------------------------------------------*/ /* serial function driver setup/binding */ static int geth_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_gether *geth = func_to_geth(f); struct usb_string *us; int status; struct usb_ep *ep; struct f_gether_opts *gether_opts; gether_opts = container_of(f->fi, struct f_gether_opts, func_inst); /* * in drivers/usb/gadget/configfs.c:configfs_composite_bind() * configurations are bound in sequence with list_for_each_entry, * in each configuration its functions are bound in sequence * with list_for_each_entry, so we assume no race condition * with regard to gether_opts->bound access */ if (!gether_opts->bound) { mutex_lock(&gether_opts->lock); gether_set_gadget(gether_opts->net, cdev->gadget); status = gether_register_netdev(gether_opts->net); mutex_unlock(&gether_opts->lock); if (status) return status; gether_opts->bound = true; } us = usb_gstrings_attach(cdev, geth_strings, ARRAY_SIZE(geth_string_defs)); if (IS_ERR(us)) return PTR_ERR(us); subset_data_intf.iInterface = us[0].id; ether_desc.iMACAddress = us[1].id; /* allocate instance-specific interface IDs */ status = usb_interface_id(c, f); if (status < 0) goto fail; subset_data_intf.bInterfaceNumber = status; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, &fs_subset_in_desc); if (!ep) goto fail; geth->port.in_ep = ep; ep = usb_ep_autoconfig(cdev->gadget, &fs_subset_out_desc); if (!ep) goto fail; geth->port.out_ep = ep; /* support all relevant hardware speeds... we expect that when * hardware is dual speed, all bulk-capable endpoints work at * both speeds */ hs_subset_in_desc.bEndpointAddress = fs_subset_in_desc.bEndpointAddress; hs_subset_out_desc.bEndpointAddress = fs_subset_out_desc.bEndpointAddress; ss_subset_in_desc.bEndpointAddress = fs_subset_in_desc.bEndpointAddress; ss_subset_out_desc.bEndpointAddress = fs_subset_out_desc.bEndpointAddress; status = usb_assign_descriptors(f, fs_eth_function, hs_eth_function, ss_eth_function, ss_eth_function); if (status) goto fail; /* NOTE: all that is done without knowing or caring about * the network link ... which is unavailable to this code * until we're activated via set_alt(). */ DBG(cdev, "CDC Subset: IN/%s OUT/%s\n", geth->port.in_ep->name, geth->port.out_ep->name); return 0; fail: ERROR(cdev, "%s: can't bind, err %d\n", f->name, status); return status; } static inline struct f_gether_opts *to_f_gether_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_gether_opts, func_inst.group); } /* f_gether_item_ops */ USB_ETHERNET_CONFIGFS_ITEM(gether); /* f_gether_opts_dev_addr */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_DEV_ADDR(gether); /* f_gether_opts_host_addr */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_HOST_ADDR(gether); /* f_gether_opts_qmult */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_QMULT(gether); /* f_gether_opts_ifname */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_IFNAME(gether); static struct configfs_attribute *gether_attrs[] = { &gether_opts_attr_dev_addr, &gether_opts_attr_host_addr, &gether_opts_attr_qmult, &gether_opts_attr_ifname, NULL, }; static const struct config_item_type gether_func_type = { .ct_item_ops = &gether_item_ops, .ct_attrs = gether_attrs, .ct_owner = THIS_MODULE, }; static void geth_free_inst(struct usb_function_instance *f) { struct f_gether_opts *opts; opts = container_of(f, struct f_gether_opts, func_inst); if (opts->bound) gether_cleanup(netdev_priv(opts->net)); else free_netdev(opts->net); kfree(opts); } static struct usb_function_instance *geth_alloc_inst(void) { struct f_gether_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = geth_free_inst; opts->net = gether_setup_default(); if (IS_ERR(opts->net)) { struct net_device *net = opts->net; kfree(opts); return ERR_CAST(net); } config_group_init_type_name(&opts->func_inst.group, "", &gether_func_type); return &opts->func_inst; } static void geth_free(struct usb_function *f) { struct f_gether *eth; eth = func_to_geth(f); kfree(eth); } static void geth_unbind(struct usb_configuration *c, struct usb_function *f) { geth_string_defs[0].id = 0; usb_free_all_descriptors(f); } static struct usb_function *geth_alloc(struct usb_function_instance *fi) { struct f_gether *geth; struct f_gether_opts *opts; int status; /* allocate and initialize one new instance */ geth = kzalloc(sizeof(*geth), GFP_KERNEL); if (!geth) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_gether_opts, func_inst); mutex_lock(&opts->lock); opts->refcnt++; /* export host's Ethernet address in CDC format */ status = gether_get_host_addr_cdc(opts->net, geth->ethaddr, sizeof(geth->ethaddr)); if (status < 12) { kfree(geth); mutex_unlock(&opts->lock); return ERR_PTR(-EINVAL); } geth_string_defs[1].s = geth->ethaddr; geth->port.ioport = netdev_priv(opts->net); mutex_unlock(&opts->lock); geth->port.cdc_filter = DEFAULT_FILTER; geth->port.func.name = "cdc_subset"; geth->port.func.bind = geth_bind; geth->port.func.unbind = geth_unbind; geth->port.func.set_alt = geth_set_alt; geth->port.func.disable = geth_disable; geth->port.func.free_func = geth_free; return &geth->port.func; } DECLARE_USB_FUNCTION_INIT(geth, geth_alloc_inst, geth_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Brownell");
linux-master
drivers/usb/gadget/function/f_subset.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_uac2.c -- USB Audio Class 2.0 Function * * Copyright (C) 2011 * Yadwinder Singh ([email protected]) * Jaswinder Singh ([email protected]) * * Copyright (C) 2020 * Ruslan Bilovol ([email protected]) */ #include <linux/usb/audio.h> #include <linux/usb/audio-v2.h> #include <linux/module.h> #include "u_audio.h" #include "u_uac2.h" /* UAC2 spec: 4.1 Audio Channel Cluster Descriptor */ #define UAC2_CHANNEL_MASK 0x07FFFFFF /* * The driver implements a simple UAC_2 topology. * USB-OUT -> IT_1 -> FU -> OT_3 -> ALSA_Capture * ALSA_Playback -> IT_2 -> FU -> OT_4 -> USB-IN * Capture and Playback sampling rates are independently * controlled by two clock sources : * CLK_5 := c_srate, and CLK_6 := p_srate */ #define USB_OUT_CLK_ID (out_clk_src_desc.bClockID) #define USB_IN_CLK_ID (in_clk_src_desc.bClockID) #define USB_OUT_FU_ID (out_feature_unit_desc->bUnitID) #define USB_IN_FU_ID (in_feature_unit_desc->bUnitID) #define CONTROL_ABSENT 0 #define CONTROL_RDONLY 1 #define CONTROL_RDWR 3 #define CLK_FREQ_CTRL 0 #define CLK_VLD_CTRL 2 #define FU_MUTE_CTRL 0 #define FU_VOL_CTRL 2 #define COPY_CTRL 0 #define CONN_CTRL 2 #define OVRLD_CTRL 4 #define CLSTR_CTRL 6 #define UNFLW_CTRL 8 #define OVFLW_CTRL 10 #define EPIN_EN(_opts) ((_opts)->p_chmask != 0) #define EPOUT_EN(_opts) ((_opts)->c_chmask != 0) #define FUIN_EN(_opts) (EPIN_EN(_opts) \ && ((_opts)->p_mute_present \ || (_opts)->p_volume_present)) #define FUOUT_EN(_opts) (EPOUT_EN(_opts) \ && ((_opts)->c_mute_present \ || (_opts)->c_volume_present)) #define EPOUT_FBACK_IN_EN(_opts) ((_opts)->c_sync == USB_ENDPOINT_SYNC_ASYNC) struct f_uac2 { struct g_audio g_audio; u8 ac_intf, as_in_intf, as_out_intf; u8 ac_alt, as_in_alt, as_out_alt; /* needed for get_alt() */ struct usb_ctrlrequest setup_cr; /* will be used in data stage */ /* Interrupt IN endpoint of AC interface */ struct usb_ep *int_ep; atomic_t int_count; /* transient state, only valid during handling of a single control request */ int clock_id; }; static inline struct f_uac2 *func_to_uac2(struct usb_function *f) { return container_of(f, struct f_uac2, g_audio.func); } static inline struct f_uac2_opts *g_audio_to_uac2_opts(struct g_audio *agdev) { return container_of(agdev->func.fi, struct f_uac2_opts, func_inst); } static int afunc_notify(struct g_audio *agdev, int unit_id, int cs); /* --------- USB Function Interface ------------- */ enum { STR_ASSOC, STR_IF_CTRL, STR_CLKSRC_IN, STR_CLKSRC_OUT, STR_USB_IT, STR_IO_IT, STR_USB_OT, STR_IO_OT, STR_FU_IN, STR_FU_OUT, STR_AS_OUT_ALT0, STR_AS_OUT_ALT1, STR_AS_IN_ALT0, STR_AS_IN_ALT1, }; static struct usb_string strings_fn[] = { /* [STR_ASSOC].s = DYNAMIC, */ [STR_IF_CTRL].s = "Topology Control", [STR_CLKSRC_IN].s = "Input Clock", [STR_CLKSRC_OUT].s = "Output Clock", [STR_USB_IT].s = "USBH Out", [STR_IO_IT].s = "USBD Out", [STR_USB_OT].s = "USBH In", [STR_IO_OT].s = "USBD In", [STR_FU_IN].s = "Capture Volume", [STR_FU_OUT].s = "Playback Volume", [STR_AS_OUT_ALT0].s = "Playback Inactive", [STR_AS_OUT_ALT1].s = "Playback Active", [STR_AS_IN_ALT0].s = "Capture Inactive", [STR_AS_IN_ALT1].s = "Capture Active", { }, }; static const char *const speed_names[] = { [USB_SPEED_UNKNOWN] = "UNKNOWN", [USB_SPEED_LOW] = "LS", [USB_SPEED_FULL] = "FS", [USB_SPEED_HIGH] = "HS", [USB_SPEED_WIRELESS] = "W", [USB_SPEED_SUPER] = "SS", [USB_SPEED_SUPER_PLUS] = "SS+", }; static struct usb_gadget_strings str_fn = { .language = 0x0409, /* en-us */ .strings = strings_fn, }; static struct usb_gadget_strings *fn_strings[] = { &str_fn, NULL, }; static struct usb_interface_assoc_descriptor iad_desc = { .bLength = sizeof iad_desc, .bDescriptorType = USB_DT_INTERFACE_ASSOCIATION, .bFirstInterface = 0, .bInterfaceCount = 3, .bFunctionClass = USB_CLASS_AUDIO, .bFunctionSubClass = UAC2_FUNCTION_SUBCLASS_UNDEFINED, .bFunctionProtocol = UAC_VERSION_2, }; /* Audio Control Interface */ static struct usb_interface_descriptor std_ac_if_desc = { .bLength = sizeof std_ac_if_desc, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, /* .bNumEndpoints = DYNAMIC */ .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, .bInterfaceProtocol = UAC_VERSION_2, }; /* Clock source for IN traffic */ static struct uac_clock_source_descriptor in_clk_src_desc = { .bLength = sizeof in_clk_src_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC2_CLOCK_SOURCE, /* .bClockID = DYNAMIC */ .bmAttributes = UAC_CLOCK_SOURCE_TYPE_INT_FIXED, .bmControls = (CONTROL_RDWR << CLK_FREQ_CTRL), .bAssocTerminal = 0, }; /* Clock source for OUT traffic */ static struct uac_clock_source_descriptor out_clk_src_desc = { .bLength = sizeof out_clk_src_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC2_CLOCK_SOURCE, /* .bClockID = DYNAMIC */ .bmAttributes = UAC_CLOCK_SOURCE_TYPE_INT_FIXED, .bmControls = (CONTROL_RDWR << CLK_FREQ_CTRL), .bAssocTerminal = 0, }; /* Input Terminal for USB_OUT */ static struct uac2_input_terminal_descriptor usb_out_it_desc = { .bLength = sizeof usb_out_it_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, /* .bCSourceID = DYNAMIC */ .iChannelNames = 0, .bmControls = cpu_to_le16(CONTROL_RDWR << COPY_CTRL), }; /* Input Terminal for I/O-In */ static struct uac2_input_terminal_descriptor io_in_it_desc = { .bLength = sizeof io_in_it_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_INPUT_TERMINAL_MICROPHONE), .bAssocTerminal = 0, /* .bCSourceID = DYNAMIC */ .iChannelNames = 0, .bmControls = cpu_to_le16(CONTROL_RDWR << COPY_CTRL), }; /* Ouput Terminal for USB_IN */ static struct uac2_output_terminal_descriptor usb_in_ot_desc = { .bLength = sizeof usb_in_ot_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ /* .bCSourceID = DYNAMIC */ .bmControls = cpu_to_le16(CONTROL_RDWR << COPY_CTRL), }; /* Ouput Terminal for I/O-Out */ static struct uac2_output_terminal_descriptor io_out_ot_desc = { .bLength = sizeof io_out_ot_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_OUTPUT_TERMINAL_SPEAKER), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ /* .bCSourceID = DYNAMIC */ .bmControls = cpu_to_le16(CONTROL_RDWR << COPY_CTRL), }; static struct uac2_feature_unit_descriptor *in_feature_unit_desc; static struct uac2_feature_unit_descriptor *out_feature_unit_desc; static struct uac2_ac_header_descriptor ac_hdr_desc = { .bLength = sizeof ac_hdr_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_MS_HEADER, .bcdADC = cpu_to_le16(0x200), .bCategory = UAC2_FUNCTION_IO_BOX, /* .wTotalLength = DYNAMIC */ .bmControls = 0, }; /* AC IN Interrupt Endpoint */ static struct usb_endpoint_descriptor fs_ep_int_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(6), .bInterval = 1, }; static struct usb_endpoint_descriptor hs_ep_int_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(6), .bInterval = 4, }; static struct usb_endpoint_descriptor ss_ep_int_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(6), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor ss_ep_int_desc_comp = { .bLength = sizeof(ss_ep_int_desc_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .wBytesPerInterval = cpu_to_le16(6), }; /* Audio Streaming OUT Interface - Alt0 */ static struct usb_interface_descriptor std_as_out_if0_desc = { .bLength = sizeof std_as_out_if0_desc, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, .bInterfaceProtocol = UAC_VERSION_2, }; /* Audio Streaming OUT Interface - Alt1 */ static struct usb_interface_descriptor std_as_out_if1_desc = { .bLength = sizeof std_as_out_if1_desc, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, .bInterfaceProtocol = UAC_VERSION_2, }; /* Audio Stream OUT Intface Desc */ static struct uac2_as_header_descriptor as_out_hdr_desc = { .bLength = sizeof as_out_hdr_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bmControls = 0, .bFormatType = UAC_FORMAT_TYPE_I, .bmFormats = cpu_to_le32(UAC_FORMAT_TYPE_I_PCM), .iChannelNames = 0, }; /* Audio USB_OUT Format */ static struct uac2_format_type_i_descriptor as_out_fmt1_desc = { .bLength = sizeof as_out_fmt1_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, }; /* STD AS ISO OUT Endpoint */ static struct usb_endpoint_descriptor fs_epout_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, /* .bmAttributes = DYNAMIC */ /* .wMaxPacketSize = DYNAMIC */ .bInterval = 1, }; static struct usb_endpoint_descriptor hs_epout_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, /* .bmAttributes = DYNAMIC */ /* .wMaxPacketSize = DYNAMIC */ /* .bInterval = DYNAMIC */ }; static struct usb_endpoint_descriptor ss_epout_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, /* .bmAttributes = DYNAMIC */ /* .wMaxPacketSize = DYNAMIC */ /* .bInterval = DYNAMIC */ }; static struct usb_ss_ep_comp_descriptor ss_epout_desc_comp = { .bLength = sizeof(ss_epout_desc_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, /* wBytesPerInterval = DYNAMIC */ }; /* CS AS ISO OUT Endpoint */ static struct uac2_iso_endpoint_descriptor as_iso_out_desc = { .bLength = sizeof as_iso_out_desc, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 0, .bmControls = 0, .bLockDelayUnits = 0, .wLockDelay = 0, }; /* STD AS ISO IN Feedback Endpoint */ static struct usb_endpoint_descriptor fs_epin_fback_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_USAGE_FEEDBACK, .wMaxPacketSize = cpu_to_le16(3), .bInterval = 1, }; static struct usb_endpoint_descriptor hs_epin_fback_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_USAGE_FEEDBACK, .wMaxPacketSize = cpu_to_le16(4), .bInterval = 4, }; static struct usb_endpoint_descriptor ss_epin_fback_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_USAGE_FEEDBACK, .wMaxPacketSize = cpu_to_le16(4), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor ss_epin_fback_desc_comp = { .bLength = sizeof(ss_epin_fback_desc_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = cpu_to_le16(4), }; /* Audio Streaming IN Interface - Alt0 */ static struct usb_interface_descriptor std_as_in_if0_desc = { .bLength = sizeof std_as_in_if0_desc, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, .bInterfaceProtocol = UAC_VERSION_2, }; /* Audio Streaming IN Interface - Alt1 */ static struct usb_interface_descriptor std_as_in_if1_desc = { .bLength = sizeof std_as_in_if1_desc, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, .bInterfaceProtocol = UAC_VERSION_2, }; /* Audio Stream IN Intface Desc */ static struct uac2_as_header_descriptor as_in_hdr_desc = { .bLength = sizeof as_in_hdr_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bmControls = 0, .bFormatType = UAC_FORMAT_TYPE_I, .bmFormats = cpu_to_le32(UAC_FORMAT_TYPE_I_PCM), .iChannelNames = 0, }; /* Audio USB_IN Format */ static struct uac2_format_type_i_descriptor as_in_fmt1_desc = { .bLength = sizeof as_in_fmt1_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, }; /* STD AS ISO IN Endpoint */ static struct usb_endpoint_descriptor fs_epin_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC, /* .wMaxPacketSize = DYNAMIC */ .bInterval = 1, }; static struct usb_endpoint_descriptor hs_epin_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC, /* .wMaxPacketSize = DYNAMIC */ /* .bInterval = DYNAMIC */ }; static struct usb_endpoint_descriptor ss_epin_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC, /* .wMaxPacketSize = DYNAMIC */ /* .bInterval = DYNAMIC */ }; static struct usb_ss_ep_comp_descriptor ss_epin_desc_comp = { .bLength = sizeof(ss_epin_desc_comp), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, /* wBytesPerInterval = DYNAMIC */ }; /* CS AS ISO IN Endpoint */ static struct uac2_iso_endpoint_descriptor as_iso_in_desc = { .bLength = sizeof as_iso_in_desc, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 0, .bmControls = 0, .bLockDelayUnits = 0, .wLockDelay = 0, }; static struct usb_descriptor_header *fs_audio_desc[] = { (struct usb_descriptor_header *)&iad_desc, (struct usb_descriptor_header *)&std_ac_if_desc, (struct usb_descriptor_header *)&ac_hdr_desc, (struct usb_descriptor_header *)&in_clk_src_desc, (struct usb_descriptor_header *)&out_clk_src_desc, (struct usb_descriptor_header *)&usb_out_it_desc, (struct usb_descriptor_header *)&out_feature_unit_desc, (struct usb_descriptor_header *)&io_in_it_desc, (struct usb_descriptor_header *)&usb_in_ot_desc, (struct usb_descriptor_header *)&in_feature_unit_desc, (struct usb_descriptor_header *)&io_out_ot_desc, (struct usb_descriptor_header *)&fs_ep_int_desc, (struct usb_descriptor_header *)&std_as_out_if0_desc, (struct usb_descriptor_header *)&std_as_out_if1_desc, (struct usb_descriptor_header *)&as_out_hdr_desc, (struct usb_descriptor_header *)&as_out_fmt1_desc, (struct usb_descriptor_header *)&fs_epout_desc, (struct usb_descriptor_header *)&as_iso_out_desc, (struct usb_descriptor_header *)&fs_epin_fback_desc, (struct usb_descriptor_header *)&std_as_in_if0_desc, (struct usb_descriptor_header *)&std_as_in_if1_desc, (struct usb_descriptor_header *)&as_in_hdr_desc, (struct usb_descriptor_header *)&as_in_fmt1_desc, (struct usb_descriptor_header *)&fs_epin_desc, (struct usb_descriptor_header *)&as_iso_in_desc, NULL, }; static struct usb_descriptor_header *hs_audio_desc[] = { (struct usb_descriptor_header *)&iad_desc, (struct usb_descriptor_header *)&std_ac_if_desc, (struct usb_descriptor_header *)&ac_hdr_desc, (struct usb_descriptor_header *)&in_clk_src_desc, (struct usb_descriptor_header *)&out_clk_src_desc, (struct usb_descriptor_header *)&usb_out_it_desc, (struct usb_descriptor_header *)&out_feature_unit_desc, (struct usb_descriptor_header *)&io_in_it_desc, (struct usb_descriptor_header *)&usb_in_ot_desc, (struct usb_descriptor_header *)&in_feature_unit_desc, (struct usb_descriptor_header *)&io_out_ot_desc, (struct usb_descriptor_header *)&hs_ep_int_desc, (struct usb_descriptor_header *)&std_as_out_if0_desc, (struct usb_descriptor_header *)&std_as_out_if1_desc, (struct usb_descriptor_header *)&as_out_hdr_desc, (struct usb_descriptor_header *)&as_out_fmt1_desc, (struct usb_descriptor_header *)&hs_epout_desc, (struct usb_descriptor_header *)&as_iso_out_desc, (struct usb_descriptor_header *)&hs_epin_fback_desc, (struct usb_descriptor_header *)&std_as_in_if0_desc, (struct usb_descriptor_header *)&std_as_in_if1_desc, (struct usb_descriptor_header *)&as_in_hdr_desc, (struct usb_descriptor_header *)&as_in_fmt1_desc, (struct usb_descriptor_header *)&hs_epin_desc, (struct usb_descriptor_header *)&as_iso_in_desc, NULL, }; static struct usb_descriptor_header *ss_audio_desc[] = { (struct usb_descriptor_header *)&iad_desc, (struct usb_descriptor_header *)&std_ac_if_desc, (struct usb_descriptor_header *)&ac_hdr_desc, (struct usb_descriptor_header *)&in_clk_src_desc, (struct usb_descriptor_header *)&out_clk_src_desc, (struct usb_descriptor_header *)&usb_out_it_desc, (struct usb_descriptor_header *)&out_feature_unit_desc, (struct usb_descriptor_header *)&io_in_it_desc, (struct usb_descriptor_header *)&usb_in_ot_desc, (struct usb_descriptor_header *)&in_feature_unit_desc, (struct usb_descriptor_header *)&io_out_ot_desc, (struct usb_descriptor_header *)&ss_ep_int_desc, (struct usb_descriptor_header *)&ss_ep_int_desc_comp, (struct usb_descriptor_header *)&std_as_out_if0_desc, (struct usb_descriptor_header *)&std_as_out_if1_desc, (struct usb_descriptor_header *)&as_out_hdr_desc, (struct usb_descriptor_header *)&as_out_fmt1_desc, (struct usb_descriptor_header *)&ss_epout_desc, (struct usb_descriptor_header *)&ss_epout_desc_comp, (struct usb_descriptor_header *)&as_iso_out_desc, (struct usb_descriptor_header *)&ss_epin_fback_desc, (struct usb_descriptor_header *)&ss_epin_fback_desc_comp, (struct usb_descriptor_header *)&std_as_in_if0_desc, (struct usb_descriptor_header *)&std_as_in_if1_desc, (struct usb_descriptor_header *)&as_in_hdr_desc, (struct usb_descriptor_header *)&as_in_fmt1_desc, (struct usb_descriptor_header *)&ss_epin_desc, (struct usb_descriptor_header *)&ss_epin_desc_comp, (struct usb_descriptor_header *)&as_iso_in_desc, NULL, }; struct cntrl_cur_lay2 { __le16 wCUR; }; struct cntrl_range_lay2 { __le16 wNumSubRanges; __le16 wMIN; __le16 wMAX; __le16 wRES; } __packed; struct cntrl_cur_lay3 { __le32 dCUR; }; struct cntrl_subrange_lay3 { __le32 dMIN; __le32 dMAX; __le32 dRES; } __packed; #define ranges_lay3_size(c) (sizeof(c.wNumSubRanges) \ + le16_to_cpu(c.wNumSubRanges) \ * sizeof(struct cntrl_subrange_lay3)) #define DECLARE_UAC2_CNTRL_RANGES_LAY3(k, n) \ struct cntrl_ranges_lay3_##k { \ __le16 wNumSubRanges; \ struct cntrl_subrange_lay3 r[n]; \ } __packed DECLARE_UAC2_CNTRL_RANGES_LAY3(srates, UAC_MAX_RATES); static int get_max_srate(const int *srates) { int i, max_srate = 0; for (i = 0; i < UAC_MAX_RATES; i++) { if (srates[i] == 0) break; if (srates[i] > max_srate) max_srate = srates[i]; } return max_srate; } static int get_max_bw_for_bint(const struct f_uac2_opts *uac2_opts, u8 bint, unsigned int factor, bool is_playback) { int chmask, srate, ssize; u16 max_size_bw; if (is_playback) { chmask = uac2_opts->p_chmask; srate = get_max_srate(uac2_opts->p_srates); ssize = uac2_opts->p_ssize; } else { chmask = uac2_opts->c_chmask; srate = get_max_srate(uac2_opts->c_srates); ssize = uac2_opts->c_ssize; } if (is_playback || (uac2_opts->c_sync == USB_ENDPOINT_SYNC_ASYNC)) { // playback is always async, capture only when configured // Win10 requires max packet size + 1 frame srate = srate * (1000 + uac2_opts->fb_max) / 1000; // updated srate is always bigger, therefore DIV_ROUND_UP always yields +1 max_size_bw = num_channels(chmask) * ssize * (DIV_ROUND_UP(srate, factor / (1 << (bint - 1)))); } else { // adding 1 frame provision for Win10 max_size_bw = num_channels(chmask) * ssize * (DIV_ROUND_UP(srate, factor / (1 << (bint - 1))) + 1); } return max_size_bw; } static int set_ep_max_packet_size_bint(struct device *dev, const struct f_uac2_opts *uac2_opts, struct usb_endpoint_descriptor *ep_desc, enum usb_device_speed speed, bool is_playback) { u16 max_size_bw, max_size_ep; u8 bint, opts_bint; char *dir; switch (speed) { case USB_SPEED_FULL: max_size_ep = 1023; // fixed bint = ep_desc->bInterval; max_size_bw = get_max_bw_for_bint(uac2_opts, bint, 1000, is_playback); break; case USB_SPEED_HIGH: case USB_SPEED_SUPER: max_size_ep = 1024; if (is_playback) opts_bint = uac2_opts->p_hs_bint; else opts_bint = uac2_opts->c_hs_bint; if (opts_bint > 0) { /* fixed bint */ bint = opts_bint; max_size_bw = get_max_bw_for_bint(uac2_opts, bint, 8000, is_playback); } else { /* checking bInterval from 4 to 1 whether the required bandwidth fits */ for (bint = 4; bint > 0; --bint) { max_size_bw = get_max_bw_for_bint( uac2_opts, bint, 8000, is_playback); if (max_size_bw <= max_size_ep) break; } } break; default: return -EINVAL; } if (is_playback) dir = "Playback"; else dir = "Capture"; if (max_size_bw <= max_size_ep) dev_dbg(dev, "%s %s: Would use wMaxPacketSize %d and bInterval %d\n", speed_names[speed], dir, max_size_bw, bint); else { dev_warn(dev, "%s %s: Req. wMaxPacketSize %d at bInterval %d > max ISOC %d, may drop data!\n", speed_names[speed], dir, max_size_bw, bint, max_size_ep); max_size_bw = max_size_ep; } ep_desc->wMaxPacketSize = cpu_to_le16(max_size_bw); ep_desc->bInterval = bint; return 0; } static struct uac2_feature_unit_descriptor *build_fu_desc(int chmask) { struct uac2_feature_unit_descriptor *fu_desc; int channels = num_channels(chmask); int fu_desc_size = UAC2_DT_FEATURE_UNIT_SIZE(channels); fu_desc = kzalloc(fu_desc_size, GFP_KERNEL); if (!fu_desc) return NULL; fu_desc->bLength = fu_desc_size; fu_desc->bDescriptorType = USB_DT_CS_INTERFACE; fu_desc->bDescriptorSubtype = UAC_FEATURE_UNIT; /* bUnitID, bSourceID and bmaControls will be defined later */ return fu_desc; } /* Use macro to overcome line length limitation */ #define USBDHDR(p) (struct usb_descriptor_header *)(p) static void setup_headers(struct f_uac2_opts *opts, struct usb_descriptor_header **headers, enum usb_device_speed speed) { struct usb_ss_ep_comp_descriptor *epout_desc_comp = NULL; struct usb_ss_ep_comp_descriptor *epin_desc_comp = NULL; struct usb_ss_ep_comp_descriptor *epin_fback_desc_comp = NULL; struct usb_ss_ep_comp_descriptor *ep_int_desc_comp = NULL; struct usb_endpoint_descriptor *epout_desc; struct usb_endpoint_descriptor *epin_desc; struct usb_endpoint_descriptor *epin_fback_desc; struct usb_endpoint_descriptor *ep_int_desc; int i; switch (speed) { case USB_SPEED_FULL: epout_desc = &fs_epout_desc; epin_desc = &fs_epin_desc; epin_fback_desc = &fs_epin_fback_desc; ep_int_desc = &fs_ep_int_desc; break; case USB_SPEED_HIGH: epout_desc = &hs_epout_desc; epin_desc = &hs_epin_desc; epin_fback_desc = &hs_epin_fback_desc; ep_int_desc = &hs_ep_int_desc; break; default: epout_desc = &ss_epout_desc; epin_desc = &ss_epin_desc; epout_desc_comp = &ss_epout_desc_comp; epin_desc_comp = &ss_epin_desc_comp; epin_fback_desc = &ss_epin_fback_desc; epin_fback_desc_comp = &ss_epin_fback_desc_comp; ep_int_desc = &ss_ep_int_desc; ep_int_desc_comp = &ss_ep_int_desc_comp; } i = 0; headers[i++] = USBDHDR(&iad_desc); headers[i++] = USBDHDR(&std_ac_if_desc); headers[i++] = USBDHDR(&ac_hdr_desc); if (EPIN_EN(opts)) headers[i++] = USBDHDR(&in_clk_src_desc); if (EPOUT_EN(opts)) { headers[i++] = USBDHDR(&out_clk_src_desc); headers[i++] = USBDHDR(&usb_out_it_desc); if (FUOUT_EN(opts)) headers[i++] = USBDHDR(out_feature_unit_desc); } if (EPIN_EN(opts)) { headers[i++] = USBDHDR(&io_in_it_desc); if (FUIN_EN(opts)) headers[i++] = USBDHDR(in_feature_unit_desc); headers[i++] = USBDHDR(&usb_in_ot_desc); } if (EPOUT_EN(opts)) headers[i++] = USBDHDR(&io_out_ot_desc); if (FUOUT_EN(opts) || FUIN_EN(opts)) { headers[i++] = USBDHDR(ep_int_desc); if (ep_int_desc_comp) headers[i++] = USBDHDR(ep_int_desc_comp); } if (EPOUT_EN(opts)) { headers[i++] = USBDHDR(&std_as_out_if0_desc); headers[i++] = USBDHDR(&std_as_out_if1_desc); headers[i++] = USBDHDR(&as_out_hdr_desc); headers[i++] = USBDHDR(&as_out_fmt1_desc); headers[i++] = USBDHDR(epout_desc); if (epout_desc_comp) headers[i++] = USBDHDR(epout_desc_comp); headers[i++] = USBDHDR(&as_iso_out_desc); if (EPOUT_FBACK_IN_EN(opts)) { headers[i++] = USBDHDR(epin_fback_desc); if (epin_fback_desc_comp) headers[i++] = USBDHDR(epin_fback_desc_comp); } } if (EPIN_EN(opts)) { headers[i++] = USBDHDR(&std_as_in_if0_desc); headers[i++] = USBDHDR(&std_as_in_if1_desc); headers[i++] = USBDHDR(&as_in_hdr_desc); headers[i++] = USBDHDR(&as_in_fmt1_desc); headers[i++] = USBDHDR(epin_desc); if (epin_desc_comp) headers[i++] = USBDHDR(epin_desc_comp); headers[i++] = USBDHDR(&as_iso_in_desc); } headers[i] = NULL; } static void setup_descriptor(struct f_uac2_opts *opts) { /* patch descriptors */ int i = 1; /* ID's start with 1 */ if (EPOUT_EN(opts)) usb_out_it_desc.bTerminalID = i++; if (EPIN_EN(opts)) io_in_it_desc.bTerminalID = i++; if (EPOUT_EN(opts)) io_out_ot_desc.bTerminalID = i++; if (EPIN_EN(opts)) usb_in_ot_desc.bTerminalID = i++; if (FUOUT_EN(opts)) out_feature_unit_desc->bUnitID = i++; if (FUIN_EN(opts)) in_feature_unit_desc->bUnitID = i++; if (EPOUT_EN(opts)) out_clk_src_desc.bClockID = i++; if (EPIN_EN(opts)) in_clk_src_desc.bClockID = i++; usb_out_it_desc.bCSourceID = out_clk_src_desc.bClockID; if (FUIN_EN(opts)) { usb_in_ot_desc.bSourceID = in_feature_unit_desc->bUnitID; in_feature_unit_desc->bSourceID = io_in_it_desc.bTerminalID; } else { usb_in_ot_desc.bSourceID = io_in_it_desc.bTerminalID; } usb_in_ot_desc.bCSourceID = in_clk_src_desc.bClockID; io_in_it_desc.bCSourceID = in_clk_src_desc.bClockID; io_out_ot_desc.bCSourceID = out_clk_src_desc.bClockID; if (FUOUT_EN(opts)) { io_out_ot_desc.bSourceID = out_feature_unit_desc->bUnitID; out_feature_unit_desc->bSourceID = usb_out_it_desc.bTerminalID; } else { io_out_ot_desc.bSourceID = usb_out_it_desc.bTerminalID; } as_out_hdr_desc.bTerminalLink = usb_out_it_desc.bTerminalID; as_in_hdr_desc.bTerminalLink = usb_in_ot_desc.bTerminalID; iad_desc.bInterfaceCount = 1; ac_hdr_desc.wTotalLength = cpu_to_le16(sizeof(ac_hdr_desc)); if (EPIN_EN(opts)) { u16 len = le16_to_cpu(ac_hdr_desc.wTotalLength); len += sizeof(in_clk_src_desc); len += sizeof(usb_in_ot_desc); if (FUIN_EN(opts)) len += in_feature_unit_desc->bLength; len += sizeof(io_in_it_desc); ac_hdr_desc.wTotalLength = cpu_to_le16(len); iad_desc.bInterfaceCount++; } if (EPOUT_EN(opts)) { u16 len = le16_to_cpu(ac_hdr_desc.wTotalLength); len += sizeof(out_clk_src_desc); len += sizeof(usb_out_it_desc); if (FUOUT_EN(opts)) len += out_feature_unit_desc->bLength; len += sizeof(io_out_ot_desc); ac_hdr_desc.wTotalLength = cpu_to_le16(len); iad_desc.bInterfaceCount++; } setup_headers(opts, fs_audio_desc, USB_SPEED_FULL); setup_headers(opts, hs_audio_desc, USB_SPEED_HIGH); setup_headers(opts, ss_audio_desc, USB_SPEED_SUPER); } static int afunc_validate_opts(struct g_audio *agdev, struct device *dev) { struct f_uac2_opts *opts = g_audio_to_uac2_opts(agdev); const char *msg = NULL; if (!opts->p_chmask && !opts->c_chmask) msg = "no playback and capture channels"; else if (opts->p_chmask & ~UAC2_CHANNEL_MASK) msg = "unsupported playback channels mask"; else if (opts->c_chmask & ~UAC2_CHANNEL_MASK) msg = "unsupported capture channels mask"; else if ((opts->p_ssize < 1) || (opts->p_ssize > 4)) msg = "incorrect playback sample size"; else if ((opts->c_ssize < 1) || (opts->c_ssize > 4)) msg = "incorrect capture sample size"; else if (!opts->p_srates[0]) msg = "incorrect playback sampling rate"; else if (!opts->c_srates[0]) msg = "incorrect capture sampling rate"; else if (opts->p_volume_max <= opts->p_volume_min) msg = "incorrect playback volume max/min"; else if (opts->c_volume_max <= opts->c_volume_min) msg = "incorrect capture volume max/min"; else if (opts->p_volume_res <= 0) msg = "negative/zero playback volume resolution"; else if (opts->c_volume_res <= 0) msg = "negative/zero capture volume resolution"; else if ((opts->p_volume_max - opts->p_volume_min) % opts->p_volume_res) msg = "incorrect playback volume resolution"; else if ((opts->c_volume_max - opts->c_volume_min) % opts->c_volume_res) msg = "incorrect capture volume resolution"; else if ((opts->p_hs_bint < 0) || (opts->p_hs_bint > 4)) msg = "incorrect playback HS/SS bInterval (1-4: fixed, 0: auto)"; else if ((opts->c_hs_bint < 0) || (opts->c_hs_bint > 4)) msg = "incorrect capture HS/SS bInterval (1-4: fixed, 0: auto)"; if (msg) { dev_err(dev, "Error: %s\n", msg); return -EINVAL; } return 0; } static int afunc_bind(struct usb_configuration *cfg, struct usb_function *fn) { struct f_uac2 *uac2 = func_to_uac2(fn); struct g_audio *agdev = func_to_g_audio(fn); struct usb_composite_dev *cdev = cfg->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct f_uac2_opts *uac2_opts = g_audio_to_uac2_opts(agdev); struct usb_string *us; int ret; ret = afunc_validate_opts(agdev, dev); if (ret) return ret; strings_fn[STR_ASSOC].s = uac2_opts->function_name; us = usb_gstrings_attach(cdev, fn_strings, ARRAY_SIZE(strings_fn)); if (IS_ERR(us)) return PTR_ERR(us); if (FUOUT_EN(uac2_opts)) { out_feature_unit_desc = build_fu_desc(uac2_opts->c_chmask); if (!out_feature_unit_desc) return -ENOMEM; } if (FUIN_EN(uac2_opts)) { in_feature_unit_desc = build_fu_desc(uac2_opts->p_chmask); if (!in_feature_unit_desc) { ret = -ENOMEM; goto err_free_fu; } } iad_desc.iFunction = us[STR_ASSOC].id; std_ac_if_desc.iInterface = us[STR_IF_CTRL].id; in_clk_src_desc.iClockSource = us[STR_CLKSRC_IN].id; out_clk_src_desc.iClockSource = us[STR_CLKSRC_OUT].id; usb_out_it_desc.iTerminal = us[STR_USB_IT].id; io_in_it_desc.iTerminal = us[STR_IO_IT].id; usb_in_ot_desc.iTerminal = us[STR_USB_OT].id; io_out_ot_desc.iTerminal = us[STR_IO_OT].id; std_as_out_if0_desc.iInterface = us[STR_AS_OUT_ALT0].id; std_as_out_if1_desc.iInterface = us[STR_AS_OUT_ALT1].id; std_as_in_if0_desc.iInterface = us[STR_AS_IN_ALT0].id; std_as_in_if1_desc.iInterface = us[STR_AS_IN_ALT1].id; if (FUOUT_EN(uac2_opts)) { u8 *i_feature = (u8 *)out_feature_unit_desc + out_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_OUT].id; } if (FUIN_EN(uac2_opts)) { u8 *i_feature = (u8 *)in_feature_unit_desc + in_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_IN].id; } /* Initialize the configurable parameters */ usb_out_it_desc.bNrChannels = num_channels(uac2_opts->c_chmask); usb_out_it_desc.bmChannelConfig = cpu_to_le32(uac2_opts->c_chmask); io_in_it_desc.bNrChannels = num_channels(uac2_opts->p_chmask); io_in_it_desc.bmChannelConfig = cpu_to_le32(uac2_opts->p_chmask); as_out_hdr_desc.bNrChannels = num_channels(uac2_opts->c_chmask); as_out_hdr_desc.bmChannelConfig = cpu_to_le32(uac2_opts->c_chmask); as_in_hdr_desc.bNrChannels = num_channels(uac2_opts->p_chmask); as_in_hdr_desc.bmChannelConfig = cpu_to_le32(uac2_opts->p_chmask); as_out_fmt1_desc.bSubslotSize = uac2_opts->c_ssize; as_out_fmt1_desc.bBitResolution = uac2_opts->c_ssize * 8; as_in_fmt1_desc.bSubslotSize = uac2_opts->p_ssize; as_in_fmt1_desc.bBitResolution = uac2_opts->p_ssize * 8; if (FUOUT_EN(uac2_opts)) { __le32 *bma = (__le32 *)&out_feature_unit_desc->bmaControls[0]; u32 control = 0; if (uac2_opts->c_mute_present) control |= CONTROL_RDWR << FU_MUTE_CTRL; if (uac2_opts->c_volume_present) control |= CONTROL_RDWR << FU_VOL_CTRL; *bma = cpu_to_le32(control); } if (FUIN_EN(uac2_opts)) { __le32 *bma = (__le32 *)&in_feature_unit_desc->bmaControls[0]; u32 control = 0; if (uac2_opts->p_mute_present) control |= CONTROL_RDWR << FU_MUTE_CTRL; if (uac2_opts->p_volume_present) control |= CONTROL_RDWR << FU_VOL_CTRL; *bma = cpu_to_le32(control); } ret = usb_interface_id(cfg, fn); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); goto err_free_fu; } iad_desc.bFirstInterface = ret; std_ac_if_desc.bInterfaceNumber = ret; uac2->ac_intf = ret; uac2->ac_alt = 0; if (EPOUT_EN(uac2_opts)) { ret = usb_interface_id(cfg, fn); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); goto err_free_fu; } std_as_out_if0_desc.bInterfaceNumber = ret; std_as_out_if1_desc.bInterfaceNumber = ret; std_as_out_if1_desc.bNumEndpoints = 1; uac2->as_out_intf = ret; uac2->as_out_alt = 0; if (EPOUT_FBACK_IN_EN(uac2_opts)) { fs_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC; hs_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC; ss_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC; std_as_out_if1_desc.bNumEndpoints++; } else { fs_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ADAPTIVE; hs_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ADAPTIVE; ss_epout_desc.bmAttributes = USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ADAPTIVE; } } if (EPIN_EN(uac2_opts)) { ret = usb_interface_id(cfg, fn); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); goto err_free_fu; } std_as_in_if0_desc.bInterfaceNumber = ret; std_as_in_if1_desc.bInterfaceNumber = ret; uac2->as_in_intf = ret; uac2->as_in_alt = 0; } if (FUOUT_EN(uac2_opts) || FUIN_EN(uac2_opts)) { uac2->int_ep = usb_ep_autoconfig(gadget, &fs_ep_int_desc); if (!uac2->int_ep) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); ret = -ENODEV; goto err_free_fu; } std_ac_if_desc.bNumEndpoints = 1; } hs_epin_desc.bInterval = uac2_opts->p_hs_bint; ss_epin_desc.bInterval = uac2_opts->p_hs_bint; hs_epout_desc.bInterval = uac2_opts->c_hs_bint; ss_epout_desc.bInterval = uac2_opts->c_hs_bint; /* Calculate wMaxPacketSize according to audio bandwidth */ ret = set_ep_max_packet_size_bint(dev, uac2_opts, &fs_epin_desc, USB_SPEED_FULL, true); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } ret = set_ep_max_packet_size_bint(dev, uac2_opts, &fs_epout_desc, USB_SPEED_FULL, false); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } ret = set_ep_max_packet_size_bint(dev, uac2_opts, &hs_epin_desc, USB_SPEED_HIGH, true); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } ret = set_ep_max_packet_size_bint(dev, uac2_opts, &hs_epout_desc, USB_SPEED_HIGH, false); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } ret = set_ep_max_packet_size_bint(dev, uac2_opts, &ss_epin_desc, USB_SPEED_SUPER, true); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } ret = set_ep_max_packet_size_bint(dev, uac2_opts, &ss_epout_desc, USB_SPEED_SUPER, false); if (ret < 0) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return ret; } if (EPOUT_EN(uac2_opts)) { agdev->out_ep = usb_ep_autoconfig(gadget, &fs_epout_desc); if (!agdev->out_ep) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); ret = -ENODEV; goto err_free_fu; } if (EPOUT_FBACK_IN_EN(uac2_opts)) { agdev->in_ep_fback = usb_ep_autoconfig(gadget, &fs_epin_fback_desc); if (!agdev->in_ep_fback) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); ret = -ENODEV; goto err_free_fu; } } } if (EPIN_EN(uac2_opts)) { agdev->in_ep = usb_ep_autoconfig(gadget, &fs_epin_desc); if (!agdev->in_ep) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); ret = -ENODEV; goto err_free_fu; } } agdev->in_ep_maxpsize = max_t(u16, le16_to_cpu(fs_epin_desc.wMaxPacketSize), le16_to_cpu(hs_epin_desc.wMaxPacketSize)); agdev->out_ep_maxpsize = max_t(u16, le16_to_cpu(fs_epout_desc.wMaxPacketSize), le16_to_cpu(hs_epout_desc.wMaxPacketSize)); agdev->in_ep_maxpsize = max_t(u16, agdev->in_ep_maxpsize, le16_to_cpu(ss_epin_desc.wMaxPacketSize)); agdev->out_ep_maxpsize = max_t(u16, agdev->out_ep_maxpsize, le16_to_cpu(ss_epout_desc.wMaxPacketSize)); ss_epin_desc_comp.wBytesPerInterval = ss_epin_desc.wMaxPacketSize; ss_epout_desc_comp.wBytesPerInterval = ss_epout_desc.wMaxPacketSize; // HS and SS endpoint addresses are copied from autoconfigured FS descriptors hs_ep_int_desc.bEndpointAddress = fs_ep_int_desc.bEndpointAddress; hs_epout_desc.bEndpointAddress = fs_epout_desc.bEndpointAddress; hs_epin_fback_desc.bEndpointAddress = fs_epin_fback_desc.bEndpointAddress; hs_epin_desc.bEndpointAddress = fs_epin_desc.bEndpointAddress; ss_epout_desc.bEndpointAddress = fs_epout_desc.bEndpointAddress; ss_epin_fback_desc.bEndpointAddress = fs_epin_fback_desc.bEndpointAddress; ss_epin_desc.bEndpointAddress = fs_epin_desc.bEndpointAddress; ss_ep_int_desc.bEndpointAddress = fs_ep_int_desc.bEndpointAddress; setup_descriptor(uac2_opts); ret = usb_assign_descriptors(fn, fs_audio_desc, hs_audio_desc, ss_audio_desc, ss_audio_desc); if (ret) goto err_free_fu; agdev->gadget = gadget; agdev->params.p_chmask = uac2_opts->p_chmask; memcpy(agdev->params.p_srates, uac2_opts->p_srates, sizeof(agdev->params.p_srates)); agdev->params.p_ssize = uac2_opts->p_ssize; if (FUIN_EN(uac2_opts)) { agdev->params.p_fu.id = USB_IN_FU_ID; agdev->params.p_fu.mute_present = uac2_opts->p_mute_present; agdev->params.p_fu.volume_present = uac2_opts->p_volume_present; agdev->params.p_fu.volume_min = uac2_opts->p_volume_min; agdev->params.p_fu.volume_max = uac2_opts->p_volume_max; agdev->params.p_fu.volume_res = uac2_opts->p_volume_res; } agdev->params.c_chmask = uac2_opts->c_chmask; memcpy(agdev->params.c_srates, uac2_opts->c_srates, sizeof(agdev->params.c_srates)); agdev->params.c_ssize = uac2_opts->c_ssize; if (FUOUT_EN(uac2_opts)) { agdev->params.c_fu.id = USB_OUT_FU_ID; agdev->params.c_fu.mute_present = uac2_opts->c_mute_present; agdev->params.c_fu.volume_present = uac2_opts->c_volume_present; agdev->params.c_fu.volume_min = uac2_opts->c_volume_min; agdev->params.c_fu.volume_max = uac2_opts->c_volume_max; agdev->params.c_fu.volume_res = uac2_opts->c_volume_res; } agdev->params.req_number = uac2_opts->req_number; agdev->params.fb_max = uac2_opts->fb_max; if (FUOUT_EN(uac2_opts) || FUIN_EN(uac2_opts)) agdev->notify = afunc_notify; ret = g_audio_setup(agdev, "UAC2 PCM", "UAC2_Gadget"); if (ret) goto err_free_descs; return 0; err_free_descs: usb_free_all_descriptors(fn); agdev->gadget = NULL; err_free_fu: kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; return ret; } static void afunc_notify_complete(struct usb_ep *_ep, struct usb_request *req) { struct g_audio *agdev = req->context; struct f_uac2 *uac2 = func_to_uac2(&agdev->func); atomic_dec(&uac2->int_count); kfree(req->buf); usb_ep_free_request(_ep, req); } static int afunc_notify(struct g_audio *agdev, int unit_id, int cs) { struct f_uac2 *uac2 = func_to_uac2(&agdev->func); struct usb_request *req; struct uac2_interrupt_data_msg *msg; u16 w_index, w_value; int ret; if (!uac2->int_ep->enabled) return 0; if (atomic_inc_return(&uac2->int_count) > UAC2_DEF_INT_REQ_NUM) { atomic_dec(&uac2->int_count); return 0; } req = usb_ep_alloc_request(uac2->int_ep, GFP_ATOMIC); if (req == NULL) { ret = -ENOMEM; goto err_dec_int_count; } msg = kzalloc(sizeof(*msg), GFP_ATOMIC); if (msg == NULL) { ret = -ENOMEM; goto err_free_request; } w_index = unit_id << 8 | uac2->ac_intf; w_value = cs << 8; msg->bInfo = 0; /* Non-vendor, interface interrupt */ msg->bAttribute = UAC2_CS_CUR; msg->wIndex = cpu_to_le16(w_index); msg->wValue = cpu_to_le16(w_value); req->length = sizeof(*msg); req->buf = msg; req->context = agdev; req->complete = afunc_notify_complete; ret = usb_ep_queue(uac2->int_ep, req, GFP_ATOMIC); if (ret) goto err_free_msg; return 0; err_free_msg: kfree(msg); err_free_request: usb_ep_free_request(uac2->int_ep, req); err_dec_int_count: atomic_dec(&uac2->int_count); return ret; } static int afunc_set_alt(struct usb_function *fn, unsigned intf, unsigned alt) { struct usb_composite_dev *cdev = fn->config->cdev; struct f_uac2 *uac2 = func_to_uac2(fn); struct g_audio *agdev = func_to_g_audio(fn); struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; int ret = 0; /* No i/f has more than 2 alt settings */ if (alt > 1) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } if (intf == uac2->ac_intf) { /* Control I/f has only 1 AltSetting - 0 */ if (alt) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } /* restart interrupt endpoint */ if (uac2->int_ep) { usb_ep_disable(uac2->int_ep); config_ep_by_speed(gadget, &agdev->func, uac2->int_ep); usb_ep_enable(uac2->int_ep); } return 0; } if (intf == uac2->as_out_intf) { uac2->as_out_alt = alt; if (alt) ret = u_audio_start_capture(&uac2->g_audio); else u_audio_stop_capture(&uac2->g_audio); } else if (intf == uac2->as_in_intf) { uac2->as_in_alt = alt; if (alt) ret = u_audio_start_playback(&uac2->g_audio); else u_audio_stop_playback(&uac2->g_audio); } else { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } return ret; } static int afunc_get_alt(struct usb_function *fn, unsigned intf) { struct f_uac2 *uac2 = func_to_uac2(fn); struct g_audio *agdev = func_to_g_audio(fn); if (intf == uac2->ac_intf) return uac2->ac_alt; else if (intf == uac2->as_out_intf) return uac2->as_out_alt; else if (intf == uac2->as_in_intf) return uac2->as_in_alt; else dev_err(&agdev->gadget->dev, "%s:%d Invalid Interface %d!\n", __func__, __LINE__, intf); return -EINVAL; } static void afunc_disable(struct usb_function *fn) { struct f_uac2 *uac2 = func_to_uac2(fn); uac2->as_in_alt = 0; uac2->as_out_alt = 0; u_audio_stop_capture(&uac2->g_audio); u_audio_stop_playback(&uac2->g_audio); if (uac2->int_ep) usb_ep_disable(uac2->int_ep); } static void afunc_suspend(struct usb_function *fn) { struct f_uac2 *uac2 = func_to_uac2(fn); u_audio_suspend(&uac2->g_audio); } static int in_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *agdev = func_to_g_audio(fn); struct f_uac2_opts *opts = g_audio_to_uac2_opts(agdev); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; u32 p_srate, c_srate; u_audio_get_playback_srate(agdev, &p_srate); u_audio_get_capture_srate(agdev, &c_srate); if ((entity_id == USB_IN_CLK_ID) || (entity_id == USB_OUT_CLK_ID)) { if (control_selector == UAC2_CS_CONTROL_SAM_FREQ) { struct cntrl_cur_lay3 c; memset(&c, 0, sizeof(struct cntrl_cur_lay3)); if (entity_id == USB_IN_CLK_ID) c.dCUR = cpu_to_le32(p_srate); else if (entity_id == USB_OUT_CLK_ID) c.dCUR = cpu_to_le32(c_srate); value = min_t(unsigned int, w_length, sizeof(c)); memcpy(req->buf, &c, value); } else if (control_selector == UAC2_CS_CONTROL_CLOCK_VALID) { *(u8 *)req->buf = 1; value = min_t(unsigned int, w_length, 1); } else { dev_err(&agdev->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { unsigned int mute; u_audio_get_mute(agdev, is_playback, &mute); *(u8 *)req->buf = mute; value = min_t(unsigned int, w_length, 1); } else if (control_selector == UAC_FU_VOLUME) { struct cntrl_cur_lay2 c; s16 volume; memset(&c, 0, sizeof(struct cntrl_cur_lay2)); u_audio_get_volume(agdev, is_playback, &volume); c.wCUR = cpu_to_le16(volume); value = min_t(unsigned int, w_length, sizeof(c)); memcpy(req->buf, &c, value); } else { dev_err(&agdev->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&agdev->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_range(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *agdev = func_to_g_audio(fn); struct f_uac2_opts *opts = g_audio_to_uac2_opts(agdev); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((entity_id == USB_IN_CLK_ID) || (entity_id == USB_OUT_CLK_ID)) { if (control_selector == UAC2_CS_CONTROL_SAM_FREQ) { struct cntrl_ranges_lay3_srates rs; int i; int wNumSubRanges = 0; int srate; int *srates; if (entity_id == USB_IN_CLK_ID) srates = opts->p_srates; else if (entity_id == USB_OUT_CLK_ID) srates = opts->c_srates; else return -EOPNOTSUPP; for (i = 0; i < UAC_MAX_RATES; i++) { srate = srates[i]; if (srate == 0) break; rs.r[wNumSubRanges].dMIN = cpu_to_le32(srate); rs.r[wNumSubRanges].dMAX = cpu_to_le32(srate); rs.r[wNumSubRanges].dRES = 0; wNumSubRanges++; dev_dbg(&agdev->gadget->dev, "%s(): clk %d: rate ID %d: %d\n", __func__, entity_id, wNumSubRanges, srate); } rs.wNumSubRanges = cpu_to_le16(wNumSubRanges); value = min_t(unsigned int, w_length, ranges_lay3_size(rs)); dev_dbg(&agdev->gadget->dev, "%s(): sending %d rates, size %d\n", __func__, rs.wNumSubRanges, value); memcpy(req->buf, &rs, value); } else { dev_err(&agdev->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { struct cntrl_range_lay2 r; s16 max_db, min_db, res_db; if (is_playback) { max_db = opts->p_volume_max; min_db = opts->p_volume_min; res_db = opts->p_volume_res; } else { max_db = opts->c_volume_max; min_db = opts->c_volume_min; res_db = opts->c_volume_res; } r.wMAX = cpu_to_le16(max_db); r.wMIN = cpu_to_le16(min_db); r.wRES = cpu_to_le16(res_db); r.wNumSubRanges = cpu_to_le16(1); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&agdev->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&agdev->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int ac_rq_in(struct usb_function *fn, const struct usb_ctrlrequest *cr) { if (cr->bRequest == UAC2_CS_CUR) return in_rq_cur(fn, cr); else if (cr->bRequest == UAC2_CS_RANGE) return in_rq_range(fn, cr); else return -EOPNOTSUPP; } static void uac2_cs_control_sam_freq(struct usb_ep *ep, struct usb_request *req) { struct usb_function *fn = ep->driver_data; struct g_audio *agdev = func_to_g_audio(fn); struct f_uac2 *uac2 = func_to_uac2(fn); u32 val; if (req->actual != 4) return; val = le32_to_cpu(*((__le32 *)req->buf)); dev_dbg(&agdev->gadget->dev, "%s val: %d.\n", __func__, val); if (uac2->clock_id == USB_IN_CLK_ID) { u_audio_set_playback_srate(agdev, val); } else if (uac2->clock_id == USB_OUT_CLK_ID) { u_audio_set_capture_srate(agdev, val); } } static void out_rq_cur_complete(struct usb_ep *ep, struct usb_request *req) { struct g_audio *agdev = req->context; struct usb_composite_dev *cdev = agdev->func.config->cdev; struct f_uac2_opts *opts = g_audio_to_uac2_opts(agdev); struct f_uac2 *uac2 = func_to_uac2(&agdev->func); struct usb_ctrlrequest *cr = &uac2->setup_cr; u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; if (req->status != 0) { dev_dbg(&cdev->gadget->dev, "completion err %d\n", req->status); return; } if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { u8 mute = *(u8 *)req->buf; u_audio_set_mute(agdev, is_playback, mute); return; } else if (control_selector == UAC_FU_VOLUME) { struct cntrl_cur_lay2 *c = req->buf; s16 volume; volume = le16_to_cpu(c->wCUR); u_audio_set_volume(agdev, is_playback, volume); return; } else { dev_err(&agdev->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); usb_ep_set_halt(ep); } } } static int out_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_composite_dev *cdev = fn->config->cdev; struct usb_request *req = fn->config->cdev->req; struct g_audio *agdev = func_to_g_audio(fn); struct f_uac2_opts *opts = g_audio_to_uac2_opts(agdev); struct f_uac2 *uac2 = func_to_uac2(fn); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; u8 clock_id = w_index >> 8; if ((entity_id == USB_IN_CLK_ID) || (entity_id == USB_OUT_CLK_ID)) { if (control_selector == UAC2_CS_CONTROL_SAM_FREQ) { dev_dbg(&agdev->gadget->dev, "control_selector UAC2_CS_CONTROL_SAM_FREQ, clock: %d\n", clock_id); cdev->gadget->ep0->driver_data = fn; uac2->clock_id = clock_id; req->complete = uac2_cs_control_sam_freq; return w_length; } } else if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { memcpy(&uac2->setup_cr, cr, sizeof(*cr)); req->context = agdev; req->complete = out_rq_cur_complete; return w_length; } else { dev_err(&agdev->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return -EOPNOTSUPP; } static int setup_rq_inf(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct f_uac2 *uac2 = func_to_uac2(fn); struct g_audio *agdev = func_to_g_audio(fn); u16 w_index = le16_to_cpu(cr->wIndex); u8 intf = w_index & 0xff; if (intf != uac2->ac_intf) { dev_err(&agdev->gadget->dev, "%s:%d Error!\n", __func__, __LINE__); return -EOPNOTSUPP; } if (cr->bRequestType & USB_DIR_IN) return ac_rq_in(fn, cr); else if (cr->bRequest == UAC2_CS_CUR) return out_rq_cur(fn, cr); return -EOPNOTSUPP; } static int afunc_setup(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_composite_dev *cdev = fn->config->cdev; struct g_audio *agdev = func_to_g_audio(fn); struct usb_request *req = cdev->req; u16 w_length = le16_to_cpu(cr->wLength); int value = -EOPNOTSUPP; /* Only Class specific requests are supposed to reach here */ if ((cr->bRequestType & USB_TYPE_MASK) != USB_TYPE_CLASS) return -EOPNOTSUPP; if ((cr->bRequestType & USB_RECIP_MASK) == USB_RECIP_INTERFACE) value = setup_rq_inf(fn, cr); else dev_err(&agdev->gadget->dev, "%s:%d Error!\n", __func__, __LINE__); if (value >= 0) { req->length = value; req->zero = value < w_length; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) { dev_err(&agdev->gadget->dev, "%s:%d Error!\n", __func__, __LINE__); req->status = 0; } } return value; } static inline struct f_uac2_opts *to_f_uac2_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_uac2_opts, func_inst.group); } static void f_uac2_attr_release(struct config_item *item) { struct f_uac2_opts *opts = to_f_uac2_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations f_uac2_item_ops = { .release = f_uac2_attr_release, }; #define uac2_kstrtou8 kstrtou8 #define uac2_kstrtou32 kstrtou32 #define uac2_kstrtos16 kstrtos16 #define uac2_kstrtobool(s, base, res) kstrtobool((s), (res)) static const char *u8_fmt = "%u\n"; static const char *u32_fmt = "%u\n"; static const char *s16_fmt = "%hd\n"; static const char *bool_fmt = "%u\n"; #define UAC2_ATTRIBUTE(type, name) \ static ssize_t f_uac2_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, type##_fmt, opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac2_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int ret; \ type num; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = uac2_kstrto##type(page, 0, &num); \ if (ret) \ goto end; \ \ opts->name = num; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac2_opts_, name) #define UAC2_ATTRIBUTE_SYNC(name) \ static ssize_t f_uac2_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int result; \ char *str; \ \ mutex_lock(&opts->lock); \ switch (opts->name) { \ case USB_ENDPOINT_SYNC_ASYNC: \ str = "async"; \ break; \ case USB_ENDPOINT_SYNC_ADAPTIVE: \ str = "adaptive"; \ break; \ default: \ str = "unknown"; \ break; \ } \ result = sprintf(page, "%s\n", str); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac2_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int ret = 0; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ if (!strncmp(page, "async", 5)) \ opts->name = USB_ENDPOINT_SYNC_ASYNC; \ else if (!strncmp(page, "adaptive", 8)) \ opts->name = USB_ENDPOINT_SYNC_ADAPTIVE; \ else { \ ret = -EINVAL; \ goto end; \ } \ \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac2_opts_, name) #define UAC2_RATE_ATTRIBUTE(name) \ static ssize_t f_uac2_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int result = 0; \ int i; \ \ mutex_lock(&opts->lock); \ page[0] = '\0'; \ for (i = 0; i < UAC_MAX_RATES; i++) { \ if (opts->name##s[i] == 0) \ break; \ result += sprintf(page + strlen(page), "%u,", \ opts->name##s[i]); \ } \ if (strlen(page) > 0) \ page[strlen(page) - 1] = '\n'; \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac2_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ char *split_page = NULL; \ int ret = -EINVAL; \ char *token; \ u32 num; \ int i; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ i = 0; \ memset(opts->name##s, 0x00, sizeof(opts->name##s)); \ split_page = kstrdup(page, GFP_KERNEL); \ while ((token = strsep(&split_page, ",")) != NULL) { \ ret = kstrtou32(token, 0, &num); \ if (ret) \ goto end; \ \ opts->name##s[i++] = num; \ ret = len; \ }; \ \ end: \ kfree(split_page); \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac2_opts_, name) #define UAC2_ATTRIBUTE_STRING(name) \ static ssize_t f_uac2_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int result; \ \ mutex_lock(&opts->lock); \ result = snprintf(page, sizeof(opts->name), "%s", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac2_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac2_opts *opts = to_f_uac2_opts(item); \ int ret = 0; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = snprintf(opts->name, min(sizeof(opts->name), len), \ "%s", page); \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac2_opts_, name) UAC2_ATTRIBUTE(u32, p_chmask); UAC2_RATE_ATTRIBUTE(p_srate); UAC2_ATTRIBUTE(u32, p_ssize); UAC2_ATTRIBUTE(u8, p_hs_bint); UAC2_ATTRIBUTE(u32, c_chmask); UAC2_RATE_ATTRIBUTE(c_srate); UAC2_ATTRIBUTE_SYNC(c_sync); UAC2_ATTRIBUTE(u32, c_ssize); UAC2_ATTRIBUTE(u8, c_hs_bint); UAC2_ATTRIBUTE(u32, req_number); UAC2_ATTRIBUTE(bool, p_mute_present); UAC2_ATTRIBUTE(bool, p_volume_present); UAC2_ATTRIBUTE(s16, p_volume_min); UAC2_ATTRIBUTE(s16, p_volume_max); UAC2_ATTRIBUTE(s16, p_volume_res); UAC2_ATTRIBUTE(bool, c_mute_present); UAC2_ATTRIBUTE(bool, c_volume_present); UAC2_ATTRIBUTE(s16, c_volume_min); UAC2_ATTRIBUTE(s16, c_volume_max); UAC2_ATTRIBUTE(s16, c_volume_res); UAC2_ATTRIBUTE(u32, fb_max); UAC2_ATTRIBUTE_STRING(function_name); static struct configfs_attribute *f_uac2_attrs[] = { &f_uac2_opts_attr_p_chmask, &f_uac2_opts_attr_p_srate, &f_uac2_opts_attr_p_ssize, &f_uac2_opts_attr_p_hs_bint, &f_uac2_opts_attr_c_chmask, &f_uac2_opts_attr_c_srate, &f_uac2_opts_attr_c_ssize, &f_uac2_opts_attr_c_hs_bint, &f_uac2_opts_attr_c_sync, &f_uac2_opts_attr_req_number, &f_uac2_opts_attr_fb_max, &f_uac2_opts_attr_p_mute_present, &f_uac2_opts_attr_p_volume_present, &f_uac2_opts_attr_p_volume_min, &f_uac2_opts_attr_p_volume_max, &f_uac2_opts_attr_p_volume_res, &f_uac2_opts_attr_c_mute_present, &f_uac2_opts_attr_c_volume_present, &f_uac2_opts_attr_c_volume_min, &f_uac2_opts_attr_c_volume_max, &f_uac2_opts_attr_c_volume_res, &f_uac2_opts_attr_function_name, NULL, }; static const struct config_item_type f_uac2_func_type = { .ct_item_ops = &f_uac2_item_ops, .ct_attrs = f_uac2_attrs, .ct_owner = THIS_MODULE, }; static void afunc_free_inst(struct usb_function_instance *f) { struct f_uac2_opts *opts; opts = container_of(f, struct f_uac2_opts, func_inst); kfree(opts); } static struct usb_function_instance *afunc_alloc_inst(void) { struct f_uac2_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = afunc_free_inst; config_group_init_type_name(&opts->func_inst.group, "", &f_uac2_func_type); opts->p_chmask = UAC2_DEF_PCHMASK; opts->p_srates[0] = UAC2_DEF_PSRATE; opts->p_ssize = UAC2_DEF_PSSIZE; opts->p_hs_bint = UAC2_DEF_PHSBINT; opts->c_chmask = UAC2_DEF_CCHMASK; opts->c_srates[0] = UAC2_DEF_CSRATE; opts->c_ssize = UAC2_DEF_CSSIZE; opts->c_hs_bint = UAC2_DEF_CHSBINT; opts->c_sync = UAC2_DEF_CSYNC; opts->p_mute_present = UAC2_DEF_MUTE_PRESENT; opts->p_volume_present = UAC2_DEF_VOLUME_PRESENT; opts->p_volume_min = UAC2_DEF_MIN_DB; opts->p_volume_max = UAC2_DEF_MAX_DB; opts->p_volume_res = UAC2_DEF_RES_DB; opts->c_mute_present = UAC2_DEF_MUTE_PRESENT; opts->c_volume_present = UAC2_DEF_VOLUME_PRESENT; opts->c_volume_min = UAC2_DEF_MIN_DB; opts->c_volume_max = UAC2_DEF_MAX_DB; opts->c_volume_res = UAC2_DEF_RES_DB; opts->req_number = UAC2_DEF_REQ_NUM; opts->fb_max = FBACK_FAST_MAX; snprintf(opts->function_name, sizeof(opts->function_name), "Source/Sink"); return &opts->func_inst; } static void afunc_free(struct usb_function *f) { struct g_audio *agdev; struct f_uac2_opts *opts; agdev = func_to_g_audio(f); opts = container_of(f->fi, struct f_uac2_opts, func_inst); kfree(agdev); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void afunc_unbind(struct usb_configuration *c, struct usb_function *f) { struct g_audio *agdev = func_to_g_audio(f); g_audio_cleanup(agdev); usb_free_all_descriptors(f); agdev->gadget = NULL; kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; } static struct usb_function *afunc_alloc(struct usb_function_instance *fi) { struct f_uac2 *uac2; struct f_uac2_opts *opts; uac2 = kzalloc(sizeof(*uac2), GFP_KERNEL); if (uac2 == NULL) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_uac2_opts, func_inst); mutex_lock(&opts->lock); ++opts->refcnt; mutex_unlock(&opts->lock); uac2->g_audio.func.name = "uac2_func"; uac2->g_audio.func.bind = afunc_bind; uac2->g_audio.func.unbind = afunc_unbind; uac2->g_audio.func.set_alt = afunc_set_alt; uac2->g_audio.func.get_alt = afunc_get_alt; uac2->g_audio.func.disable = afunc_disable; uac2->g_audio.func.suspend = afunc_suspend; uac2->g_audio.func.setup = afunc_setup; uac2->g_audio.func.free_func = afunc_free; return &uac2->g_audio.func; } DECLARE_USB_FUNCTION_INIT(uac2, afunc_alloc_inst, afunc_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Yadwinder Singh"); MODULE_AUTHOR("Jaswinder Singh"); MODULE_AUTHOR("Ruslan Bilovol");
linux-master
drivers/usb/gadget/function/f_uac2.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_serial.c - generic USB serial function driver * * Copyright (C) 2003 Al Borchers ([email protected]) * Copyright (C) 2008 by David Brownell * Copyright (C) 2008 by Nokia Corporation */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include "u_serial.h" /* * This function packages a simple "generic serial" port with no real * control mechanisms, just raw data transfer over two bulk endpoints. * * Because it's not standardized, this isn't as interoperable as the * CDC ACM driver. However, for many purposes it's just as functional * if you can arrange appropriate host side drivers. */ struct f_gser { struct gserial port; u8 data_id; u8 port_num; }; static inline struct f_gser *func_to_gser(struct usb_function *f) { return container_of(f, struct f_gser, port.func); } /*-------------------------------------------------------------------------*/ /* interface descriptor: */ static struct usb_interface_descriptor gser_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, /* .iInterface = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor gser_fs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor gser_fs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *gser_fs_function[] = { (struct usb_descriptor_header *) &gser_interface_desc, (struct usb_descriptor_header *) &gser_fs_in_desc, (struct usb_descriptor_header *) &gser_fs_out_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor gser_hs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor gser_hs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *gser_hs_function[] = { (struct usb_descriptor_header *) &gser_interface_desc, (struct usb_descriptor_header *) &gser_hs_in_desc, (struct usb_descriptor_header *) &gser_hs_out_desc, NULL, }; static struct usb_endpoint_descriptor gser_ss_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor gser_ss_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor gser_ss_bulk_comp_desc = { .bLength = sizeof gser_ss_bulk_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_descriptor_header *gser_ss_function[] = { (struct usb_descriptor_header *) &gser_interface_desc, (struct usb_descriptor_header *) &gser_ss_in_desc, (struct usb_descriptor_header *) &gser_ss_bulk_comp_desc, (struct usb_descriptor_header *) &gser_ss_out_desc, (struct usb_descriptor_header *) &gser_ss_bulk_comp_desc, NULL, }; /* string descriptors: */ static struct usb_string gser_string_defs[] = { [0].s = "Generic Serial", { } /* end of list */ }; static struct usb_gadget_strings gser_string_table = { .language = 0x0409, /* en-us */ .strings = gser_string_defs, }; static struct usb_gadget_strings *gser_strings[] = { &gser_string_table, NULL, }; /*-------------------------------------------------------------------------*/ static int gser_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_gser *gser = func_to_gser(f); struct usb_composite_dev *cdev = f->config->cdev; /* we know alt == 0, so this is an activation or a reset */ if (gser->port.in->enabled) { dev_dbg(&cdev->gadget->dev, "reset generic ttyGS%d\n", gser->port_num); gserial_disconnect(&gser->port); } if (!gser->port.in->desc || !gser->port.out->desc) { dev_dbg(&cdev->gadget->dev, "activate generic ttyGS%d\n", gser->port_num); if (config_ep_by_speed(cdev->gadget, f, gser->port.in) || config_ep_by_speed(cdev->gadget, f, gser->port.out)) { gser->port.in->desc = NULL; gser->port.out->desc = NULL; return -EINVAL; } } gserial_connect(&gser->port, gser->port_num); return 0; } static void gser_disable(struct usb_function *f) { struct f_gser *gser = func_to_gser(f); struct usb_composite_dev *cdev = f->config->cdev; dev_dbg(&cdev->gadget->dev, "generic ttyGS%d deactivated\n", gser->port_num); gserial_disconnect(&gser->port); } /*-------------------------------------------------------------------------*/ /* serial function driver setup/binding */ static int gser_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_gser *gser = func_to_gser(f); int status; struct usb_ep *ep; /* REVISIT might want instance-specific strings to help * distinguish instances ... */ /* maybe allocate device-global string ID */ if (gser_string_defs[0].id == 0) { status = usb_string_id(c->cdev); if (status < 0) return status; gser_string_defs[0].id = status; } /* allocate instance-specific interface IDs */ status = usb_interface_id(c, f); if (status < 0) goto fail; gser->data_id = status; gser_interface_desc.bInterfaceNumber = status; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, &gser_fs_in_desc); if (!ep) goto fail; gser->port.in = ep; ep = usb_ep_autoconfig(cdev->gadget, &gser_fs_out_desc); if (!ep) goto fail; gser->port.out = ep; /* support all relevant hardware speeds... we expect that when * hardware is dual speed, all bulk-capable endpoints work at * both speeds */ gser_hs_in_desc.bEndpointAddress = gser_fs_in_desc.bEndpointAddress; gser_hs_out_desc.bEndpointAddress = gser_fs_out_desc.bEndpointAddress; gser_ss_in_desc.bEndpointAddress = gser_fs_in_desc.bEndpointAddress; gser_ss_out_desc.bEndpointAddress = gser_fs_out_desc.bEndpointAddress; status = usb_assign_descriptors(f, gser_fs_function, gser_hs_function, gser_ss_function, gser_ss_function); if (status) goto fail; dev_dbg(&cdev->gadget->dev, "generic ttyGS%d: IN/%s OUT/%s\n", gser->port_num, gser->port.in->name, gser->port.out->name); return 0; fail: ERROR(cdev, "%s: can't bind, err %d\n", f->name, status); return status; } static inline struct f_serial_opts *to_f_serial_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_serial_opts, func_inst.group); } static void serial_attr_release(struct config_item *item) { struct f_serial_opts *opts = to_f_serial_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations serial_item_ops = { .release = serial_attr_release, }; #ifdef CONFIG_U_SERIAL_CONSOLE static ssize_t f_serial_console_store(struct config_item *item, const char *page, size_t count) { return gserial_set_console(to_f_serial_opts(item)->port_num, page, count); } static ssize_t f_serial_console_show(struct config_item *item, char *page) { return gserial_get_console(to_f_serial_opts(item)->port_num, page); } CONFIGFS_ATTR(f_serial_, console); #endif /* CONFIG_U_SERIAL_CONSOLE */ static ssize_t f_serial_port_num_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_f_serial_opts(item)->port_num); } CONFIGFS_ATTR_RO(f_serial_, port_num); static struct configfs_attribute *acm_attrs[] = { #ifdef CONFIG_U_SERIAL_CONSOLE &f_serial_attr_console, #endif &f_serial_attr_port_num, NULL, }; static const struct config_item_type serial_func_type = { .ct_item_ops = &serial_item_ops, .ct_attrs = acm_attrs, .ct_owner = THIS_MODULE, }; static void gser_free_inst(struct usb_function_instance *f) { struct f_serial_opts *opts; opts = container_of(f, struct f_serial_opts, func_inst); gserial_free_line(opts->port_num); kfree(opts); } static struct usb_function_instance *gser_alloc_inst(void) { struct f_serial_opts *opts; int ret; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); opts->func_inst.free_func_inst = gser_free_inst; ret = gserial_alloc_line(&opts->port_num); if (ret) { kfree(opts); return ERR_PTR(ret); } config_group_init_type_name(&opts->func_inst.group, "", &serial_func_type); return &opts->func_inst; } static void gser_free(struct usb_function *f) { struct f_gser *serial; serial = func_to_gser(f); kfree(serial); } static void gser_unbind(struct usb_configuration *c, struct usb_function *f) { struct f_gser *gser = func_to_gser(f); /* Ensure port is disconnected before unbinding */ gserial_disconnect(&gser->port); usb_free_all_descriptors(f); } static void gser_resume(struct usb_function *f) { struct f_gser *gser = func_to_gser(f); gserial_resume(&gser->port); } static void gser_suspend(struct usb_function *f) { struct f_gser *gser = func_to_gser(f); gserial_suspend(&gser->port); } static struct usb_function *gser_alloc(struct usb_function_instance *fi) { struct f_gser *gser; struct f_serial_opts *opts; /* allocate and initialize one new instance */ gser = kzalloc(sizeof(*gser), GFP_KERNEL); if (!gser) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_serial_opts, func_inst); gser->port_num = opts->port_num; gser->port.func.name = "gser"; gser->port.func.strings = gser_strings; gser->port.func.bind = gser_bind; gser->port.func.unbind = gser_unbind; gser->port.func.set_alt = gser_set_alt; gser->port.func.disable = gser_disable; gser->port.func.free_func = gser_free; gser->port.func.resume = gser_resume; gser->port.func.suspend = gser_suspend; return &gser->port.func; } DECLARE_USB_FUNCTION_INIT(gser, gser_alloc_inst, gser_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Al Borchers"); MODULE_AUTHOR("David Brownell");
linux-master
drivers/usb/gadget/function/f_serial.c
// SPDX-License-Identifier: GPL-2.0+ /* * uvc_queue.c -- USB Video Class driver - Buffers management * * Copyright (C) 2005-2010 * Laurent Pinchart ([email protected]) */ #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/list.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/videodev2.h> #include <linux/vmalloc.h> #include <linux/wait.h> #include <media/v4l2-common.h> #include <media/videobuf2-dma-sg.h> #include <media/videobuf2-vmalloc.h> #include "uvc.h" /* ------------------------------------------------------------------------ * Video buffers queue management. * * Video queues is initialized by uvcg_queue_init(). The function performs * basic initialization of the uvc_video_queue struct and never fails. * * Video buffers are managed by videobuf2. The driver uses a mutex to protect * the videobuf2 queue operations by serializing calls to videobuf2 and a * spinlock to protect the IRQ queue that holds the buffers to be processed by * the driver. */ /* ----------------------------------------------------------------------------- * videobuf2 queue operations */ static int uvc_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct uvc_video_queue *queue = vb2_get_drv_priv(vq); struct uvc_video *video = container_of(queue, struct uvc_video, queue); unsigned int req_size; unsigned int nreq; if (*nbuffers > UVC_MAX_VIDEO_BUFFERS) *nbuffers = UVC_MAX_VIDEO_BUFFERS; *nplanes = 1; sizes[0] = video->imagesize; req_size = video->ep->maxpacket * max_t(unsigned int, video->ep->maxburst, 1) * (video->ep->mult); /* We divide by two, to increase the chance to run * into fewer requests for smaller framesizes. */ nreq = DIV_ROUND_UP(DIV_ROUND_UP(sizes[0], 2), req_size); nreq = clamp(nreq, 4U, 64U); video->uvc_num_requests = nreq; return 0; } static int uvc_buffer_prepare(struct vb2_buffer *vb) { struct uvc_video_queue *queue = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct uvc_buffer *buf = container_of(vbuf, struct uvc_buffer, buf); if (vb->type == V4L2_BUF_TYPE_VIDEO_OUTPUT && vb2_get_plane_payload(vb, 0) > vb2_plane_size(vb, 0)) { uvc_trace(UVC_TRACE_CAPTURE, "[E] Bytes used out of bounds.\n"); return -EINVAL; } if (unlikely(queue->flags & UVC_QUEUE_DISCONNECTED)) return -ENODEV; buf->state = UVC_BUF_STATE_QUEUED; if (queue->use_sg) { buf->sgt = vb2_dma_sg_plane_desc(vb, 0); buf->sg = buf->sgt->sgl; } else { buf->mem = vb2_plane_vaddr(vb, 0); } buf->length = vb2_plane_size(vb, 0); if (vb->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) buf->bytesused = 0; else buf->bytesused = vb2_get_plane_payload(vb, 0); return 0; } static void uvc_buffer_queue(struct vb2_buffer *vb) { struct uvc_video_queue *queue = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct uvc_buffer *buf = container_of(vbuf, struct uvc_buffer, buf); unsigned long flags; spin_lock_irqsave(&queue->irqlock, flags); if (likely(!(queue->flags & UVC_QUEUE_DISCONNECTED))) { list_add_tail(&buf->queue, &queue->irqqueue); } else { /* * If the device is disconnected return the buffer to userspace * directly. The next QBUF call will fail with -ENODEV. */ buf->state = UVC_BUF_STATE_ERROR; vb2_buffer_done(vb, VB2_BUF_STATE_ERROR); } spin_unlock_irqrestore(&queue->irqlock, flags); } static const struct vb2_ops uvc_queue_qops = { .queue_setup = uvc_queue_setup, .buf_prepare = uvc_buffer_prepare, .buf_queue = uvc_buffer_queue, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; int uvcg_queue_init(struct uvc_video_queue *queue, struct device *dev, enum v4l2_buf_type type, struct mutex *lock) { struct uvc_video *video = container_of(queue, struct uvc_video, queue); struct usb_composite_dev *cdev = video->uvc->func.config->cdev; int ret; queue->queue.type = type; queue->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; queue->queue.drv_priv = queue; queue->queue.buf_struct_size = sizeof(struct uvc_buffer); queue->queue.ops = &uvc_queue_qops; queue->queue.lock = lock; if (cdev->gadget->sg_supported) { queue->queue.mem_ops = &vb2_dma_sg_memops; queue->use_sg = 1; } else { queue->queue.mem_ops = &vb2_vmalloc_memops; } queue->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY | V4L2_BUF_FLAG_TSTAMP_SRC_EOF; queue->queue.dev = dev; ret = vb2_queue_init(&queue->queue); if (ret) return ret; spin_lock_init(&queue->irqlock); INIT_LIST_HEAD(&queue->irqqueue); queue->flags = 0; return 0; } /* * Free the video buffers. */ void uvcg_free_buffers(struct uvc_video_queue *queue) { vb2_queue_release(&queue->queue); } /* * Allocate the video buffers. */ int uvcg_alloc_buffers(struct uvc_video_queue *queue, struct v4l2_requestbuffers *rb) { int ret; ret = vb2_reqbufs(&queue->queue, rb); return ret ? ret : rb->count; } int uvcg_query_buffer(struct uvc_video_queue *queue, struct v4l2_buffer *buf) { return vb2_querybuf(&queue->queue, buf); } int uvcg_queue_buffer(struct uvc_video_queue *queue, struct v4l2_buffer *buf) { return vb2_qbuf(&queue->queue, NULL, buf); } /* * Dequeue a video buffer. If nonblocking is false, block until a buffer is * available. */ int uvcg_dequeue_buffer(struct uvc_video_queue *queue, struct v4l2_buffer *buf, int nonblocking) { return vb2_dqbuf(&queue->queue, buf, nonblocking); } /* * Poll the video queue. * * This function implements video queue polling and is intended to be used by * the device poll handler. */ __poll_t uvcg_queue_poll(struct uvc_video_queue *queue, struct file *file, poll_table *wait) { return vb2_poll(&queue->queue, file, wait); } int uvcg_queue_mmap(struct uvc_video_queue *queue, struct vm_area_struct *vma) { return vb2_mmap(&queue->queue, vma); } #ifndef CONFIG_MMU /* * Get unmapped area. * * NO-MMU arch need this function to make mmap() work correctly. */ unsigned long uvcg_queue_get_unmapped_area(struct uvc_video_queue *queue, unsigned long pgoff) { return vb2_get_unmapped_area(&queue->queue, 0, 0, pgoff, 0); } #endif /* * Cancel the video buffers queue. * * Cancelling the queue marks all buffers on the irq queue as erroneous, * wakes them up and removes them from the queue. * * If the disconnect parameter is set, further calls to uvc_queue_buffer will * fail with -ENODEV. * * This function acquires the irq spinlock and can be called from interrupt * context. */ void uvcg_queue_cancel(struct uvc_video_queue *queue, int disconnect) { struct uvc_buffer *buf; unsigned long flags; spin_lock_irqsave(&queue->irqlock, flags); while (!list_empty(&queue->irqqueue)) { buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, queue); list_del(&buf->queue); buf->state = UVC_BUF_STATE_ERROR; vb2_buffer_done(&buf->buf.vb2_buf, VB2_BUF_STATE_ERROR); } queue->buf_used = 0; /* * This must be protected by the irqlock spinlock to avoid race * conditions between uvc_queue_buffer and the disconnection event that * could result in an interruptible wait in uvc_dequeue_buffer. Do not * blindly replace this logic by checking for the UVC_DEV_DISCONNECTED * state outside the queue code. */ if (disconnect) queue->flags |= UVC_QUEUE_DISCONNECTED; spin_unlock_irqrestore(&queue->irqlock, flags); } /* * Enable or disable the video buffers queue. * * The queue must be enabled before starting video acquisition and must be * disabled after stopping it. This ensures that the video buffers queue * state can be properly initialized before buffers are accessed from the * interrupt handler. * * Enabling the video queue initializes parameters (such as sequence number, * sync pattern, ...). If the queue is already enabled, return -EBUSY. * * Disabling the video queue cancels the queue and removes all buffers from * the main queue. * * This function can't be called from interrupt context. Use * uvcg_queue_cancel() instead. */ int uvcg_queue_enable(struct uvc_video_queue *queue, int enable) { unsigned long flags; int ret = 0; if (enable) { ret = vb2_streamon(&queue->queue, queue->queue.type); if (ret < 0) return ret; queue->sequence = 0; queue->buf_used = 0; queue->flags &= ~UVC_QUEUE_DROP_INCOMPLETE; } else { ret = vb2_streamoff(&queue->queue, queue->queue.type); if (ret < 0) return ret; spin_lock_irqsave(&queue->irqlock, flags); INIT_LIST_HEAD(&queue->irqqueue); /* * FIXME: We need to clear the DISCONNECTED flag to ensure that * applications will be able to queue buffers for the next * streaming run. However, clearing it here doesn't guarantee * that the device will be reconnected in the meantime. */ queue->flags &= ~UVC_QUEUE_DISCONNECTED; spin_unlock_irqrestore(&queue->irqlock, flags); } return ret; } /* called with &queue_irqlock held.. */ void uvcg_complete_buffer(struct uvc_video_queue *queue, struct uvc_buffer *buf) { if (queue->flags & UVC_QUEUE_DROP_INCOMPLETE) { queue->flags &= ~UVC_QUEUE_DROP_INCOMPLETE; buf->state = UVC_BUF_STATE_ERROR; vb2_set_plane_payload(&buf->buf.vb2_buf, 0, 0); vb2_buffer_done(&buf->buf.vb2_buf, VB2_BUF_STATE_ERROR); return; } buf->buf.field = V4L2_FIELD_NONE; buf->buf.sequence = queue->sequence++; buf->buf.vb2_buf.timestamp = ktime_get_ns(); vb2_set_plane_payload(&buf->buf.vb2_buf, 0, buf->bytesused); vb2_buffer_done(&buf->buf.vb2_buf, VB2_BUF_STATE_DONE); } struct uvc_buffer *uvcg_queue_head(struct uvc_video_queue *queue) { struct uvc_buffer *buf = NULL; if (!list_empty(&queue->irqqueue)) buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, queue); return buf; }
linux-master
drivers/usb/gadget/function/uvc_queue.c
// SPDX-License-Identifier: GPL-2.0+ /* * uvc_v4l2.c -- USB Video Class Gadget driver * * Copyright (C) 2009-2010 * Laurent Pinchart ([email protected]) */ #include <linux/device.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/usb/g_uvc.h> #include <linux/usb/uvc.h> #include <linux/videodev2.h> #include <linux/vmalloc.h> #include <linux/wait.h> #include <media/v4l2-dev.h> #include <media/v4l2-event.h> #include <media/v4l2-ioctl.h> #include "f_uvc.h" #include "uvc.h" #include "uvc_queue.h" #include "uvc_video.h" #include "uvc_v4l2.h" #include "uvc_configfs.h" static const struct uvc_format_desc *to_uvc_format(struct uvcg_format *uformat) { char guid[16] = UVC_GUID_FORMAT_MJPEG; const struct uvc_format_desc *format; struct uvcg_uncompressed *unc; if (uformat->type == UVCG_UNCOMPRESSED) { unc = to_uvcg_uncompressed(&uformat->group.cg_item); if (!unc) return ERR_PTR(-EINVAL); memcpy(guid, unc->desc.guidFormat, sizeof(guid)); } format = uvc_format_by_guid(guid); if (!format) return ERR_PTR(-EINVAL); return format; } static int uvc_v4l2_get_bytesperline(struct uvcg_format *uformat, struct uvcg_frame *uframe) { struct uvcg_uncompressed *u; if (uformat->type == UVCG_UNCOMPRESSED) { u = to_uvcg_uncompressed(&uformat->group.cg_item); if (!u) return 0; return u->desc.bBitsPerPixel * uframe->frame.w_width / 8; } return 0; } static int uvc_get_frame_size(struct uvcg_format *uformat, struct uvcg_frame *uframe) { unsigned int bpl = uvc_v4l2_get_bytesperline(uformat, uframe); return bpl ? bpl * uframe->frame.w_height : uframe->frame.dw_max_video_frame_buffer_size; } static struct uvcg_format *find_format_by_index(struct uvc_device *uvc, int index) { struct uvcg_format_ptr *format; struct uvcg_format *uformat = NULL; int i = 1; list_for_each_entry(format, &uvc->header->formats, entry) { if (index == i) { uformat = format->fmt; break; } i++; } return uformat; } static struct uvcg_frame *find_frame_by_index(struct uvc_device *uvc, struct uvcg_format *uformat, int index) { struct uvcg_format_ptr *format; struct uvcg_frame_ptr *frame; struct uvcg_frame *uframe = NULL; list_for_each_entry(format, &uvc->header->formats, entry) { if (format->fmt->type != uformat->type) continue; list_for_each_entry(frame, &format->fmt->frames, entry) { if (index == frame->frm->frame.b_frame_index) { uframe = frame->frm; break; } } } return uframe; } static struct uvcg_format *find_format_by_pix(struct uvc_device *uvc, u32 pixelformat) { struct uvcg_format_ptr *format; struct uvcg_format *uformat = NULL; list_for_each_entry(format, &uvc->header->formats, entry) { const struct uvc_format_desc *fmtdesc = to_uvc_format(format->fmt); if (fmtdesc->fcc == pixelformat) { uformat = format->fmt; break; } } return uformat; } static struct uvcg_frame *find_closest_frame_by_size(struct uvc_device *uvc, struct uvcg_format *uformat, u16 rw, u16 rh) { struct uvc_video *video = &uvc->video; struct uvcg_format_ptr *format; struct uvcg_frame_ptr *frame; struct uvcg_frame *uframe = NULL; unsigned int d, maxd; /* Find the closest image size. The distance between image sizes is * the size in pixels of the non-overlapping regions between the * requested size and the frame-specified size. */ maxd = (unsigned int)-1; list_for_each_entry(format, &uvc->header->formats, entry) { if (format->fmt->type != uformat->type) continue; list_for_each_entry(frame, &format->fmt->frames, entry) { u16 w, h; w = frame->frm->frame.w_width; h = frame->frm->frame.w_height; d = min(w, rw) * min(h, rh); d = w*h + rw*rh - 2*d; if (d < maxd) { maxd = d; uframe = frame->frm; } if (maxd == 0) break; } } if (!uframe) uvcg_dbg(&video->uvc->func, "Unsupported size %ux%u\n", rw, rh); return uframe; } /* -------------------------------------------------------------------------- * Requests handling */ static int uvc_send_response(struct uvc_device *uvc, struct uvc_request_data *data) { struct usb_composite_dev *cdev = uvc->func.config->cdev; struct usb_request *req = uvc->control_req; if (data->length < 0) return usb_ep_set_halt(cdev->gadget->ep0); req->length = min_t(unsigned int, uvc->event_length, data->length); req->zero = data->length < uvc->event_length; memcpy(req->buf, data->data, req->length); return usb_ep_queue(cdev->gadget->ep0, req, GFP_KERNEL); } /* -------------------------------------------------------------------------- * V4L2 ioctls */ static int uvc_v4l2_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct usb_composite_dev *cdev = uvc->func.config->cdev; strscpy(cap->driver, "g_uvc", sizeof(cap->driver)); strscpy(cap->card, cdev->gadget->name, sizeof(cap->card)); strscpy(cap->bus_info, dev_name(&cdev->gadget->dev), sizeof(cap->bus_info)); return 0; } static int uvc_v4l2_get_format(struct file *file, void *fh, struct v4l2_format *fmt) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; fmt->fmt.pix.pixelformat = video->fcc; fmt->fmt.pix.width = video->width; fmt->fmt.pix.height = video->height; fmt->fmt.pix.field = V4L2_FIELD_NONE; fmt->fmt.pix.bytesperline = video->bpp * video->width / 8; fmt->fmt.pix.sizeimage = video->imagesize; fmt->fmt.pix.colorspace = V4L2_COLORSPACE_SRGB; fmt->fmt.pix.priv = 0; return 0; } static int uvc_v4l2_try_format(struct file *file, void *fh, struct v4l2_format *fmt) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; struct uvcg_format *uformat; struct uvcg_frame *uframe; u8 *fcc; if (fmt->type != video->queue.queue.type) return -EINVAL; fcc = (u8 *)&fmt->fmt.pix.pixelformat; uvcg_dbg(&uvc->func, "Trying format 0x%08x (%c%c%c%c): %ux%u\n", fmt->fmt.pix.pixelformat, fcc[0], fcc[1], fcc[2], fcc[3], fmt->fmt.pix.width, fmt->fmt.pix.height); uformat = find_format_by_pix(uvc, fmt->fmt.pix.pixelformat); if (!uformat) return -EINVAL; uframe = find_closest_frame_by_size(uvc, uformat, fmt->fmt.pix.width, fmt->fmt.pix.height); if (!uframe) return -EINVAL; fmt->fmt.pix.width = uframe->frame.w_width; fmt->fmt.pix.height = uframe->frame.w_height; fmt->fmt.pix.field = V4L2_FIELD_NONE; fmt->fmt.pix.bytesperline = uvc_v4l2_get_bytesperline(uformat, uframe); fmt->fmt.pix.sizeimage = uvc_get_frame_size(uformat, uframe); fmt->fmt.pix.pixelformat = to_uvc_format(uformat)->fcc; fmt->fmt.pix.colorspace = V4L2_COLORSPACE_SRGB; fmt->fmt.pix.priv = 0; return 0; } static int uvc_v4l2_set_format(struct file *file, void *fh, struct v4l2_format *fmt) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; int ret; ret = uvc_v4l2_try_format(file, fh, fmt); if (ret) return ret; video->fcc = fmt->fmt.pix.pixelformat; video->bpp = fmt->fmt.pix.bytesperline * 8 / video->width; video->width = fmt->fmt.pix.width; video->height = fmt->fmt.pix.height; video->imagesize = fmt->fmt.pix.sizeimage; return ret; } static int uvc_v4l2_enum_frameintervals(struct file *file, void *fh, struct v4l2_frmivalenum *fival) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvcg_format *uformat = NULL; struct uvcg_frame *uframe = NULL; struct uvcg_frame_ptr *frame; uformat = find_format_by_pix(uvc, fival->pixel_format); if (!uformat) return -EINVAL; list_for_each_entry(frame, &uformat->frames, entry) { if (frame->frm->frame.w_width == fival->width && frame->frm->frame.w_height == fival->height) { uframe = frame->frm; break; } } if (!uframe) return -EINVAL; if (fival->index >= uframe->frame.b_frame_interval_type) return -EINVAL; fival->discrete.numerator = uframe->dw_frame_interval[fival->index]; /* TODO: handle V4L2_FRMIVAL_TYPE_STEPWISE */ fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete.denominator = 10000000; v4l2_simplify_fraction(&fival->discrete.numerator, &fival->discrete.denominator, 8, 333); return 0; } static int uvc_v4l2_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvcg_format *uformat = NULL; struct uvcg_frame *uframe = NULL; uformat = find_format_by_pix(uvc, fsize->pixel_format); if (!uformat) return -EINVAL; if (fsize->index >= uformat->num_frames) return -EINVAL; uframe = find_frame_by_index(uvc, uformat, fsize->index + 1); if (!uframe) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = uframe->frame.w_width; fsize->discrete.height = uframe->frame.w_height; return 0; } static int uvc_v4l2_enum_format(struct file *file, void *fh, struct v4l2_fmtdesc *f) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); const struct uvc_format_desc *fmtdesc; struct uvcg_format *uformat; if (f->index >= uvc->header->num_fmt) return -EINVAL; uformat = find_format_by_index(uvc, f->index + 1); if (!uformat) return -EINVAL; fmtdesc = to_uvc_format(uformat); f->pixelformat = fmtdesc->fcc; return 0; } static int uvc_v4l2_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *b) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; if (b->type != video->queue.queue.type) return -EINVAL; return uvcg_alloc_buffers(&video->queue, b); } static int uvc_v4l2_querybuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; return uvcg_query_buffer(&video->queue, b); } static int uvc_v4l2_qbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; int ret; ret = uvcg_queue_buffer(&video->queue, b); if (ret < 0) return ret; if (uvc->state == UVC_STATE_STREAMING) queue_work(video->async_wq, &video->pump); return ret; } static int uvc_v4l2_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; return uvcg_dequeue_buffer(&video->queue, b, file->f_flags & O_NONBLOCK); } static int uvc_v4l2_streamon(struct file *file, void *fh, enum v4l2_buf_type type) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; int ret; if (type != video->queue.queue.type) return -EINVAL; /* Enable UVC video. */ ret = uvcg_video_enable(video, 1); if (ret < 0) return ret; /* * Complete the alternate setting selection setup phase now that * userspace is ready to provide video frames. */ uvc_function_setup_continue(uvc); uvc->state = UVC_STATE_STREAMING; return 0; } static int uvc_v4l2_streamoff(struct file *file, void *fh, enum v4l2_buf_type type) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_video *video = &uvc->video; if (type != video->queue.queue.type) return -EINVAL; return uvcg_video_enable(video, 0); } static int uvc_v4l2_subscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { struct uvc_device *uvc = video_get_drvdata(fh->vdev); struct uvc_file_handle *handle = to_uvc_file_handle(fh); int ret; if (sub->type < UVC_EVENT_FIRST || sub->type > UVC_EVENT_LAST) return -EINVAL; if (sub->type == UVC_EVENT_SETUP && uvc->func_connected) return -EBUSY; ret = v4l2_event_subscribe(fh, sub, 2, NULL); if (ret < 0) return ret; if (sub->type == UVC_EVENT_SETUP) { uvc->func_connected = true; handle->is_uvc_app_handle = true; uvc_function_connect(uvc); } return 0; } static void uvc_v4l2_disable(struct uvc_device *uvc) { uvc_function_disconnect(uvc); uvcg_video_enable(&uvc->video, 0); uvcg_free_buffers(&uvc->video.queue); uvc->func_connected = false; wake_up_interruptible(&uvc->func_connected_queue); } static int uvc_v4l2_unsubscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { struct uvc_device *uvc = video_get_drvdata(fh->vdev); struct uvc_file_handle *handle = to_uvc_file_handle(fh); int ret; ret = v4l2_event_unsubscribe(fh, sub); if (ret < 0) return ret; if (sub->type == UVC_EVENT_SETUP && handle->is_uvc_app_handle) { uvc_v4l2_disable(uvc); handle->is_uvc_app_handle = false; } return 0; } static long uvc_v4l2_ioctl_default(struct file *file, void *fh, bool valid_prio, unsigned int cmd, void *arg) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); switch (cmd) { case UVCIOC_SEND_RESPONSE: return uvc_send_response(uvc, arg); default: return -ENOIOCTLCMD; } } const struct v4l2_ioctl_ops uvc_v4l2_ioctl_ops = { .vidioc_querycap = uvc_v4l2_querycap, .vidioc_try_fmt_vid_out = uvc_v4l2_try_format, .vidioc_g_fmt_vid_out = uvc_v4l2_get_format, .vidioc_s_fmt_vid_out = uvc_v4l2_set_format, .vidioc_enum_frameintervals = uvc_v4l2_enum_frameintervals, .vidioc_enum_framesizes = uvc_v4l2_enum_framesizes, .vidioc_enum_fmt_vid_out = uvc_v4l2_enum_format, .vidioc_reqbufs = uvc_v4l2_reqbufs, .vidioc_querybuf = uvc_v4l2_querybuf, .vidioc_qbuf = uvc_v4l2_qbuf, .vidioc_dqbuf = uvc_v4l2_dqbuf, .vidioc_streamon = uvc_v4l2_streamon, .vidioc_streamoff = uvc_v4l2_streamoff, .vidioc_subscribe_event = uvc_v4l2_subscribe_event, .vidioc_unsubscribe_event = uvc_v4l2_unsubscribe_event, .vidioc_default = uvc_v4l2_ioctl_default, }; /* -------------------------------------------------------------------------- * V4L2 */ static int uvc_v4l2_open(struct file *file) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_file_handle *handle; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (handle == NULL) return -ENOMEM; v4l2_fh_init(&handle->vfh, vdev); v4l2_fh_add(&handle->vfh); handle->device = &uvc->video; file->private_data = &handle->vfh; return 0; } static int uvc_v4l2_release(struct file *file) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); struct uvc_file_handle *handle = to_uvc_file_handle(file->private_data); struct uvc_video *video = handle->device; mutex_lock(&video->mutex); if (handle->is_uvc_app_handle) uvc_v4l2_disable(uvc); mutex_unlock(&video->mutex); file->private_data = NULL; v4l2_fh_del(&handle->vfh); v4l2_fh_exit(&handle->vfh); kfree(handle); return 0; } static int uvc_v4l2_mmap(struct file *file, struct vm_area_struct *vma) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); return uvcg_queue_mmap(&uvc->video.queue, vma); } static __poll_t uvc_v4l2_poll(struct file *file, poll_table *wait) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); return uvcg_queue_poll(&uvc->video.queue, file, wait); } #ifndef CONFIG_MMU static unsigned long uvcg_v4l2_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct video_device *vdev = video_devdata(file); struct uvc_device *uvc = video_get_drvdata(vdev); return uvcg_queue_get_unmapped_area(&uvc->video.queue, pgoff); } #endif const struct v4l2_file_operations uvc_v4l2_fops = { .owner = THIS_MODULE, .open = uvc_v4l2_open, .release = uvc_v4l2_release, .unlocked_ioctl = video_ioctl2, .mmap = uvc_v4l2_mmap, .poll = uvc_v4l2_poll, #ifndef CONFIG_MMU .get_unmapped_area = uvcg_v4l2_get_unmapped_area, #endif };
linux-master
drivers/usb/gadget/function/uvc_v4l2.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_sourcesink.c - USB peripheral source/sink configuration driver * * Copyright (C) 2003-2008 David Brownell * Copyright (C) 2008 by Nokia Corporation */ /* #define VERBOSE_DEBUG */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/module.h> #include <linux/usb/composite.h> #include <linux/err.h> #include "g_zero.h" #include "u_f.h" /* * SOURCE/SINK FUNCTION ... a primary testing vehicle for USB peripheral * controller drivers. * * This just sinks bulk packets OUT to the peripheral and sources them IN * to the host, optionally with specific data patterns for integrity tests. * As such it supports basic functionality and load tests. * * In terms of control messaging, this supports all the standard requests * plus two that support control-OUT tests. If the optional "autoresume" * mode is enabled, it provides good functional coverage for the "USBCV" * test harness from USB-IF. */ struct f_sourcesink { struct usb_function function; struct usb_ep *in_ep; struct usb_ep *out_ep; struct usb_ep *iso_in_ep; struct usb_ep *iso_out_ep; int cur_alt; unsigned pattern; unsigned isoc_interval; unsigned isoc_maxpacket; unsigned isoc_mult; unsigned isoc_maxburst; unsigned buflen; unsigned bulk_qlen; unsigned iso_qlen; }; static inline struct f_sourcesink *func_to_ss(struct usb_function *f) { return container_of(f, struct f_sourcesink, function); } /*-------------------------------------------------------------------------*/ static struct usb_interface_descriptor source_sink_intf_alt0 = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, /* .iInterface = DYNAMIC */ }; static struct usb_interface_descriptor source_sink_intf_alt1 = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 4, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, /* .iInterface = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor fs_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_iso_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1023), .bInterval = 4, }; static struct usb_endpoint_descriptor fs_iso_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1023), .bInterval = 4, }; static struct usb_descriptor_header *fs_source_sink_descs[] = { (struct usb_descriptor_header *) &source_sink_intf_alt0, (struct usb_descriptor_header *) &fs_sink_desc, (struct usb_descriptor_header *) &fs_source_desc, (struct usb_descriptor_header *) &source_sink_intf_alt1, #define FS_ALT_IFC_1_OFFSET 3 (struct usb_descriptor_header *) &fs_sink_desc, (struct usb_descriptor_header *) &fs_source_desc, (struct usb_descriptor_header *) &fs_iso_sink_desc, (struct usb_descriptor_header *) &fs_iso_source_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor hs_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_iso_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1024), .bInterval = 4, }; static struct usb_endpoint_descriptor hs_iso_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1024), .bInterval = 4, }; static struct usb_descriptor_header *hs_source_sink_descs[] = { (struct usb_descriptor_header *) &source_sink_intf_alt0, (struct usb_descriptor_header *) &hs_source_desc, (struct usb_descriptor_header *) &hs_sink_desc, (struct usb_descriptor_header *) &source_sink_intf_alt1, #define HS_ALT_IFC_1_OFFSET 3 (struct usb_descriptor_header *) &hs_source_desc, (struct usb_descriptor_header *) &hs_sink_desc, (struct usb_descriptor_header *) &hs_iso_source_desc, (struct usb_descriptor_header *) &hs_iso_sink_desc, NULL, }; /* super speed support: */ static struct usb_endpoint_descriptor ss_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_source_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = 0, }; static struct usb_endpoint_descriptor ss_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_sink_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = 0, }; static struct usb_endpoint_descriptor ss_iso_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1024), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor ss_iso_source_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor ss_iso_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(1024), .bInterval = 4, }; static struct usb_ss_ep_comp_descriptor ss_iso_sink_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = cpu_to_le16(1024), }; static struct usb_descriptor_header *ss_source_sink_descs[] = { (struct usb_descriptor_header *) &source_sink_intf_alt0, (struct usb_descriptor_header *) &ss_source_desc, (struct usb_descriptor_header *) &ss_source_comp_desc, (struct usb_descriptor_header *) &ss_sink_desc, (struct usb_descriptor_header *) &ss_sink_comp_desc, (struct usb_descriptor_header *) &source_sink_intf_alt1, #define SS_ALT_IFC_1_OFFSET 5 (struct usb_descriptor_header *) &ss_source_desc, (struct usb_descriptor_header *) &ss_source_comp_desc, (struct usb_descriptor_header *) &ss_sink_desc, (struct usb_descriptor_header *) &ss_sink_comp_desc, (struct usb_descriptor_header *) &ss_iso_source_desc, (struct usb_descriptor_header *) &ss_iso_source_comp_desc, (struct usb_descriptor_header *) &ss_iso_sink_desc, (struct usb_descriptor_header *) &ss_iso_sink_comp_desc, NULL, }; /* function-specific strings: */ static struct usb_string strings_sourcesink[] = { [0].s = "source and sink data", { } /* end of list */ }; static struct usb_gadget_strings stringtab_sourcesink = { .language = 0x0409, /* en-us */ .strings = strings_sourcesink, }; static struct usb_gadget_strings *sourcesink_strings[] = { &stringtab_sourcesink, NULL, }; /*-------------------------------------------------------------------------*/ static inline struct usb_request *ss_alloc_ep_req(struct usb_ep *ep, int len) { return alloc_ep_req(ep, len); } static void disable_ep(struct usb_composite_dev *cdev, struct usb_ep *ep) { int value; value = usb_ep_disable(ep); if (value < 0) DBG(cdev, "disable %s --> %d\n", ep->name, value); } void disable_endpoints(struct usb_composite_dev *cdev, struct usb_ep *in, struct usb_ep *out, struct usb_ep *iso_in, struct usb_ep *iso_out) { disable_ep(cdev, in); disable_ep(cdev, out); if (iso_in) disable_ep(cdev, iso_in); if (iso_out) disable_ep(cdev, iso_out); } static int sourcesink_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_sourcesink *ss = func_to_ss(f); int id; int ret; /* allocate interface ID(s) */ id = usb_interface_id(c, f); if (id < 0) return id; source_sink_intf_alt0.bInterfaceNumber = id; source_sink_intf_alt1.bInterfaceNumber = id; /* allocate bulk endpoints */ ss->in_ep = usb_ep_autoconfig(cdev->gadget, &fs_source_desc); if (!ss->in_ep) { autoconf_fail: ERROR(cdev, "%s: can't autoconfigure on %s\n", f->name, cdev->gadget->name); return -ENODEV; } ss->out_ep = usb_ep_autoconfig(cdev->gadget, &fs_sink_desc); if (!ss->out_ep) goto autoconf_fail; /* sanity check the isoc module parameters */ if (ss->isoc_interval < 1) ss->isoc_interval = 1; if (ss->isoc_interval > 16) ss->isoc_interval = 16; if (ss->isoc_mult > 2) ss->isoc_mult = 2; if (ss->isoc_maxburst > 15) ss->isoc_maxburst = 15; /* fill in the FS isoc descriptors from the module parameters */ fs_iso_source_desc.wMaxPacketSize = ss->isoc_maxpacket > 1023 ? 1023 : ss->isoc_maxpacket; fs_iso_source_desc.bInterval = ss->isoc_interval; fs_iso_sink_desc.wMaxPacketSize = ss->isoc_maxpacket > 1023 ? 1023 : ss->isoc_maxpacket; fs_iso_sink_desc.bInterval = ss->isoc_interval; /* allocate iso endpoints */ ss->iso_in_ep = usb_ep_autoconfig(cdev->gadget, &fs_iso_source_desc); if (!ss->iso_in_ep) goto no_iso; ss->iso_out_ep = usb_ep_autoconfig(cdev->gadget, &fs_iso_sink_desc); if (!ss->iso_out_ep) { usb_ep_autoconfig_release(ss->iso_in_ep); ss->iso_in_ep = NULL; no_iso: /* * We still want to work even if the UDC doesn't have isoc * endpoints, so null out the alt interface that contains * them and continue. */ fs_source_sink_descs[FS_ALT_IFC_1_OFFSET] = NULL; hs_source_sink_descs[HS_ALT_IFC_1_OFFSET] = NULL; ss_source_sink_descs[SS_ALT_IFC_1_OFFSET] = NULL; } if (ss->isoc_maxpacket > 1024) ss->isoc_maxpacket = 1024; /* support high speed hardware */ hs_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress; hs_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress; /* * Fill in the HS isoc descriptors from the module parameters. * We assume that the user knows what they are doing and won't * give parameters that their UDC doesn't support. */ hs_iso_source_desc.wMaxPacketSize = ss->isoc_maxpacket; hs_iso_source_desc.wMaxPacketSize |= ss->isoc_mult << 11; hs_iso_source_desc.bInterval = ss->isoc_interval; hs_iso_source_desc.bEndpointAddress = fs_iso_source_desc.bEndpointAddress; hs_iso_sink_desc.wMaxPacketSize = ss->isoc_maxpacket; hs_iso_sink_desc.wMaxPacketSize |= ss->isoc_mult << 11; hs_iso_sink_desc.bInterval = ss->isoc_interval; hs_iso_sink_desc.bEndpointAddress = fs_iso_sink_desc.bEndpointAddress; /* support super speed hardware */ ss_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress; ss_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress; /* * Fill in the SS isoc descriptors from the module parameters. * We assume that the user knows what they are doing and won't * give parameters that their UDC doesn't support. */ ss_iso_source_desc.wMaxPacketSize = ss->isoc_maxpacket; ss_iso_source_desc.bInterval = ss->isoc_interval; ss_iso_source_comp_desc.bmAttributes = ss->isoc_mult; ss_iso_source_comp_desc.bMaxBurst = ss->isoc_maxburst; ss_iso_source_comp_desc.wBytesPerInterval = ss->isoc_maxpacket * (ss->isoc_mult + 1) * (ss->isoc_maxburst + 1); ss_iso_source_desc.bEndpointAddress = fs_iso_source_desc.bEndpointAddress; ss_iso_sink_desc.wMaxPacketSize = ss->isoc_maxpacket; ss_iso_sink_desc.bInterval = ss->isoc_interval; ss_iso_sink_comp_desc.bmAttributes = ss->isoc_mult; ss_iso_sink_comp_desc.bMaxBurst = ss->isoc_maxburst; ss_iso_sink_comp_desc.wBytesPerInterval = ss->isoc_maxpacket * (ss->isoc_mult + 1) * (ss->isoc_maxburst + 1); ss_iso_sink_desc.bEndpointAddress = fs_iso_sink_desc.bEndpointAddress; ret = usb_assign_descriptors(f, fs_source_sink_descs, hs_source_sink_descs, ss_source_sink_descs, ss_source_sink_descs); if (ret) return ret; DBG(cdev, "%s: IN/%s, OUT/%s, ISO-IN/%s, ISO-OUT/%s\n", f->name, ss->in_ep->name, ss->out_ep->name, ss->iso_in_ep ? ss->iso_in_ep->name : "<none>", ss->iso_out_ep ? ss->iso_out_ep->name : "<none>"); return 0; } static void sourcesink_free_func(struct usb_function *f) { struct f_ss_opts *opts; opts = container_of(f->fi, struct f_ss_opts, func_inst); mutex_lock(&opts->lock); opts->refcnt--; mutex_unlock(&opts->lock); usb_free_all_descriptors(f); kfree(func_to_ss(f)); } /* optionally require specific source/sink data patterns */ static int check_read_data(struct f_sourcesink *ss, struct usb_request *req) { unsigned i; u8 *buf = req->buf; struct usb_composite_dev *cdev = ss->function.config->cdev; int max_packet_size = le16_to_cpu(ss->out_ep->desc->wMaxPacketSize); if (ss->pattern == 2) return 0; for (i = 0; i < req->actual; i++, buf++) { switch (ss->pattern) { /* all-zeroes has no synchronization issues */ case 0: if (*buf == 0) continue; break; /* "mod63" stays in sync with short-terminated transfers, * OR otherwise when host and gadget agree on how large * each usb transfer request should be. Resync is done * with set_interface or set_config. (We *WANT* it to * get quickly out of sync if controllers or their drivers * stutter for any reason, including buffer duplication...) */ case 1: if (*buf == (u8)((i % max_packet_size) % 63)) continue; break; } ERROR(cdev, "bad OUT byte, buf[%d] = %d\n", i, *buf); usb_ep_set_halt(ss->out_ep); return -EINVAL; } return 0; } static void reinit_write_data(struct usb_ep *ep, struct usb_request *req) { unsigned i; u8 *buf = req->buf; int max_packet_size = le16_to_cpu(ep->desc->wMaxPacketSize); struct f_sourcesink *ss = ep->driver_data; switch (ss->pattern) { case 0: memset(req->buf, 0, req->length); break; case 1: for (i = 0; i < req->length; i++) *buf++ = (u8) ((i % max_packet_size) % 63); break; case 2: break; } } static void source_sink_complete(struct usb_ep *ep, struct usb_request *req) { struct usb_composite_dev *cdev; struct f_sourcesink *ss = ep->driver_data; int status = req->status; /* driver_data will be null if ep has been disabled */ if (!ss) return; cdev = ss->function.config->cdev; switch (status) { case 0: /* normal completion? */ if (ep == ss->out_ep) { check_read_data(ss, req); if (ss->pattern != 2) memset(req->buf, 0x55, req->length); } break; /* this endpoint is normally active while we're configured */ case -ECONNABORTED: /* hardware forced ep reset */ case -ECONNRESET: /* request dequeued */ case -ESHUTDOWN: /* disconnect from host */ VDBG(cdev, "%s gone (%d), %d/%d\n", ep->name, status, req->actual, req->length); if (ep == ss->out_ep) check_read_data(ss, req); free_ep_req(ep, req); return; case -EOVERFLOW: /* buffer overrun on read means that * we didn't provide a big enough * buffer. */ default: #if 1 DBG(cdev, "%s complete --> %d, %d/%d\n", ep->name, status, req->actual, req->length); break; #endif case -EREMOTEIO: /* short read */ break; } status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status) { ERROR(cdev, "kill %s: resubmit %d bytes --> %d\n", ep->name, req->length, status); usb_ep_set_halt(ep); /* FIXME recover later ... somehow */ } } static int source_sink_start_ep(struct f_sourcesink *ss, bool is_in, bool is_iso, int speed) { struct usb_ep *ep; struct usb_request *req; int i, size, qlen, status = 0; if (is_iso) { switch (speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: size = ss->isoc_maxpacket * (ss->isoc_mult + 1) * (ss->isoc_maxburst + 1); break; case USB_SPEED_HIGH: size = ss->isoc_maxpacket * (ss->isoc_mult + 1); break; default: size = ss->isoc_maxpacket > 1023 ? 1023 : ss->isoc_maxpacket; break; } ep = is_in ? ss->iso_in_ep : ss->iso_out_ep; qlen = ss->iso_qlen; } else { ep = is_in ? ss->in_ep : ss->out_ep; qlen = ss->bulk_qlen; size = ss->buflen; } for (i = 0; i < qlen; i++) { req = ss_alloc_ep_req(ep, size); if (!req) return -ENOMEM; req->complete = source_sink_complete; if (is_in) reinit_write_data(ep, req); else if (ss->pattern != 2) memset(req->buf, 0x55, req->length); status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status) { struct usb_composite_dev *cdev; cdev = ss->function.config->cdev; ERROR(cdev, "start %s%s %s --> %d\n", is_iso ? "ISO-" : "", is_in ? "IN" : "OUT", ep->name, status); free_ep_req(ep, req); return status; } } return status; } static void disable_source_sink(struct f_sourcesink *ss) { struct usb_composite_dev *cdev; cdev = ss->function.config->cdev; disable_endpoints(cdev, ss->in_ep, ss->out_ep, ss->iso_in_ep, ss->iso_out_ep); VDBG(cdev, "%s disabled\n", ss->function.name); } static int enable_source_sink(struct usb_composite_dev *cdev, struct f_sourcesink *ss, int alt) { int result = 0; int speed = cdev->gadget->speed; struct usb_ep *ep; /* one bulk endpoint writes (sources) zeroes IN (to the host) */ ep = ss->in_ep; result = config_ep_by_speed(cdev->gadget, &(ss->function), ep); if (result) return result; result = usb_ep_enable(ep); if (result < 0) return result; ep->driver_data = ss; result = source_sink_start_ep(ss, true, false, speed); if (result < 0) { fail: ep = ss->in_ep; usb_ep_disable(ep); return result; } /* one bulk endpoint reads (sinks) anything OUT (from the host) */ ep = ss->out_ep; result = config_ep_by_speed(cdev->gadget, &(ss->function), ep); if (result) goto fail; result = usb_ep_enable(ep); if (result < 0) goto fail; ep->driver_data = ss; result = source_sink_start_ep(ss, false, false, speed); if (result < 0) { fail2: ep = ss->out_ep; usb_ep_disable(ep); goto fail; } if (alt == 0) goto out; /* one iso endpoint writes (sources) zeroes IN (to the host) */ ep = ss->iso_in_ep; if (ep) { result = config_ep_by_speed(cdev->gadget, &(ss->function), ep); if (result) goto fail2; result = usb_ep_enable(ep); if (result < 0) goto fail2; ep->driver_data = ss; result = source_sink_start_ep(ss, true, true, speed); if (result < 0) { fail3: ep = ss->iso_in_ep; if (ep) usb_ep_disable(ep); goto fail2; } } /* one iso endpoint reads (sinks) anything OUT (from the host) */ ep = ss->iso_out_ep; if (ep) { result = config_ep_by_speed(cdev->gadget, &(ss->function), ep); if (result) goto fail3; result = usb_ep_enable(ep); if (result < 0) goto fail3; ep->driver_data = ss; result = source_sink_start_ep(ss, false, true, speed); if (result < 0) { usb_ep_disable(ep); goto fail3; } } out: ss->cur_alt = alt; DBG(cdev, "%s enabled, alt intf %d\n", ss->function.name, alt); return result; } static int sourcesink_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_sourcesink *ss = func_to_ss(f); struct usb_composite_dev *cdev = f->config->cdev; disable_source_sink(ss); return enable_source_sink(cdev, ss, alt); } static int sourcesink_get_alt(struct usb_function *f, unsigned intf) { struct f_sourcesink *ss = func_to_ss(f); return ss->cur_alt; } static void sourcesink_disable(struct usb_function *f) { struct f_sourcesink *ss = func_to_ss(f); disable_source_sink(ss); } /*-------------------------------------------------------------------------*/ static int sourcesink_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_configuration *c = f->config; struct usb_request *req = c->cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); req->length = USB_COMP_EP0_BUFSIZ; /* composite driver infrastructure handles everything except * the two control test requests. */ switch (ctrl->bRequest) { /* * These are the same vendor-specific requests supported by * Intel's USB 2.0 compliance test devices. We exceed that * device spec by allowing multiple-packet requests. * * NOTE: the Control-OUT data stays in req->buf ... better * would be copying it into a scratch buffer, so that other * requests may safely intervene. */ case 0x5b: /* control WRITE test -- fill the buffer */ if (ctrl->bRequestType != (USB_DIR_OUT|USB_TYPE_VENDOR)) goto unknown; if (w_value || w_index) break; /* just read that many bytes into the buffer */ if (w_length > req->length) break; value = w_length; break; case 0x5c: /* control READ test -- return the buffer */ if (ctrl->bRequestType != (USB_DIR_IN|USB_TYPE_VENDOR)) goto unknown; if (w_value || w_index) break; /* expect those bytes are still in the buffer; send back */ if (w_length > req->length) break; value = w_length; break; default: unknown: VDBG(c->cdev, "unknown control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { VDBG(c->cdev, "source/sink req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(c->cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(c->cdev, "source/sink response, err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static struct usb_function *source_sink_alloc_func( struct usb_function_instance *fi) { struct f_sourcesink *ss; struct f_ss_opts *ss_opts; ss = kzalloc(sizeof(*ss), GFP_KERNEL); if (!ss) return ERR_PTR(-ENOMEM); ss_opts = container_of(fi, struct f_ss_opts, func_inst); mutex_lock(&ss_opts->lock); ss_opts->refcnt++; mutex_unlock(&ss_opts->lock); ss->pattern = ss_opts->pattern; ss->isoc_interval = ss_opts->isoc_interval; ss->isoc_maxpacket = ss_opts->isoc_maxpacket; ss->isoc_mult = ss_opts->isoc_mult; ss->isoc_maxburst = ss_opts->isoc_maxburst; ss->buflen = ss_opts->bulk_buflen; ss->bulk_qlen = ss_opts->bulk_qlen; ss->iso_qlen = ss_opts->iso_qlen; ss->function.name = "source/sink"; ss->function.bind = sourcesink_bind; ss->function.set_alt = sourcesink_set_alt; ss->function.get_alt = sourcesink_get_alt; ss->function.disable = sourcesink_disable; ss->function.setup = sourcesink_setup; ss->function.strings = sourcesink_strings; ss->function.free_func = sourcesink_free_func; return &ss->function; } static inline struct f_ss_opts *to_f_ss_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_ss_opts, func_inst.group); } static void ss_attr_release(struct config_item *item) { struct f_ss_opts *ss_opts = to_f_ss_opts(item); usb_put_function_instance(&ss_opts->func_inst); } static struct configfs_item_operations ss_item_ops = { .release = ss_attr_release, }; static ssize_t f_ss_opts_pattern_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->pattern); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_pattern_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u8 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou8(page, 0, &num); if (ret) goto end; if (num != 0 && num != 1 && num != 2) { ret = -EINVAL; goto end; } opts->pattern = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, pattern); static ssize_t f_ss_opts_isoc_interval_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->isoc_interval); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_isoc_interval_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u8 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou8(page, 0, &num); if (ret) goto end; if (num > 16) { ret = -EINVAL; goto end; } opts->isoc_interval = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, isoc_interval); static ssize_t f_ss_opts_isoc_maxpacket_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->isoc_maxpacket); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_isoc_maxpacket_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u16 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou16(page, 0, &num); if (ret) goto end; if (num > 1024) { ret = -EINVAL; goto end; } opts->isoc_maxpacket = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, isoc_maxpacket); static ssize_t f_ss_opts_isoc_mult_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->isoc_mult); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_isoc_mult_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u8 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou8(page, 0, &num); if (ret) goto end; if (num > 2) { ret = -EINVAL; goto end; } opts->isoc_mult = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, isoc_mult); static ssize_t f_ss_opts_isoc_maxburst_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->isoc_maxburst); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_isoc_maxburst_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u8 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou8(page, 0, &num); if (ret) goto end; if (num > 15) { ret = -EINVAL; goto end; } opts->isoc_maxburst = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, isoc_maxburst); static ssize_t f_ss_opts_bulk_buflen_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->bulk_buflen); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_bulk_buflen_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u32 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou32(page, 0, &num); if (ret) goto end; opts->bulk_buflen = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, bulk_buflen); static ssize_t f_ss_opts_bulk_qlen_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->bulk_qlen); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_bulk_qlen_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u32 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou32(page, 0, &num); if (ret) goto end; opts->bulk_qlen = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, bulk_qlen); static ssize_t f_ss_opts_iso_qlen_show(struct config_item *item, char *page) { struct f_ss_opts *opts = to_f_ss_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%u\n", opts->iso_qlen); mutex_unlock(&opts->lock); return result; } static ssize_t f_ss_opts_iso_qlen_store(struct config_item *item, const char *page, size_t len) { struct f_ss_opts *opts = to_f_ss_opts(item); int ret; u32 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou32(page, 0, &num); if (ret) goto end; opts->iso_qlen = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_ss_opts_, iso_qlen); static struct configfs_attribute *ss_attrs[] = { &f_ss_opts_attr_pattern, &f_ss_opts_attr_isoc_interval, &f_ss_opts_attr_isoc_maxpacket, &f_ss_opts_attr_isoc_mult, &f_ss_opts_attr_isoc_maxburst, &f_ss_opts_attr_bulk_buflen, &f_ss_opts_attr_bulk_qlen, &f_ss_opts_attr_iso_qlen, NULL, }; static const struct config_item_type ss_func_type = { .ct_item_ops = &ss_item_ops, .ct_attrs = ss_attrs, .ct_owner = THIS_MODULE, }; static void source_sink_free_instance(struct usb_function_instance *fi) { struct f_ss_opts *ss_opts; ss_opts = container_of(fi, struct f_ss_opts, func_inst); kfree(ss_opts); } static struct usb_function_instance *source_sink_alloc_inst(void) { struct f_ss_opts *ss_opts; ss_opts = kzalloc(sizeof(*ss_opts), GFP_KERNEL); if (!ss_opts) return ERR_PTR(-ENOMEM); mutex_init(&ss_opts->lock); ss_opts->func_inst.free_func_inst = source_sink_free_instance; ss_opts->isoc_interval = GZERO_ISOC_INTERVAL; ss_opts->isoc_maxpacket = GZERO_ISOC_MAXPACKET; ss_opts->bulk_buflen = GZERO_BULK_BUFLEN; ss_opts->bulk_qlen = GZERO_SS_BULK_QLEN; ss_opts->iso_qlen = GZERO_SS_ISO_QLEN; config_group_init_type_name(&ss_opts->func_inst.group, "", &ss_func_type); return &ss_opts->func_inst; } DECLARE_USB_FUNCTION(SourceSink, source_sink_alloc_inst, source_sink_alloc_func); static int __init sslb_modinit(void) { int ret; ret = usb_function_register(&SourceSinkusb_func); if (ret) return ret; ret = lb_modinit(); if (ret) usb_function_unregister(&SourceSinkusb_func); return ret; } static void __exit sslb_modexit(void) { usb_function_unregister(&SourceSinkusb_func); lb_modexit(); } module_init(sslb_modinit); module_exit(sslb_modexit); MODULE_LICENSE("GPL");
linux-master
drivers/usb/gadget/function/f_sourcesink.c
// SPDX-License-Identifier: GPL-2.0+ /* * u_audio.c -- interface to USB gadget "ALSA sound card" utilities * * Copyright (C) 2016 * Author: Ruslan Bilovol <[email protected]> * * Sound card implementation was cut-and-pasted with changes * from f_uac2.c and has: * Copyright (C) 2011 * Yadwinder Singh ([email protected]) * Jaswinder Singh ([email protected]) */ #include <linux/kernel.h> #include <linux/module.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/control.h> #include <sound/tlv.h> #include <linux/usb/audio.h> #include "u_audio.h" #define BUFF_SIZE_MAX (PAGE_SIZE * 16) #define PRD_SIZE_MAX PAGE_SIZE #define MIN_PERIODS 4 enum { UAC_FBACK_CTRL, UAC_P_PITCH_CTRL, UAC_MUTE_CTRL, UAC_VOLUME_CTRL, UAC_RATE_CTRL, }; /* Runtime data params for one stream */ struct uac_rtd_params { struct snd_uac_chip *uac; /* parent chip */ bool ep_enabled; /* if the ep is enabled */ struct snd_pcm_substream *ss; /* Ring buffer */ ssize_t hw_ptr; void *rbuf; unsigned int pitch; /* Stream pitch ratio to 1000000 */ unsigned int max_psize; /* MaxPacketSize of endpoint */ struct usb_request **reqs; struct usb_request *req_fback; /* Feedback endpoint request */ bool fb_ep_enabled; /* if the ep is enabled */ /* Volume/Mute controls and their state */ int fu_id; /* Feature Unit ID */ struct snd_kcontrol *snd_kctl_volume; struct snd_kcontrol *snd_kctl_mute; s16 volume_min, volume_max, volume_res; s16 volume; int mute; struct snd_kcontrol *snd_kctl_rate; /* read-only current rate */ int srate; /* selected samplerate */ int active; /* playback/capture running */ spinlock_t lock; /* lock for control transfers */ }; struct snd_uac_chip { struct g_audio *audio_dev; struct uac_rtd_params p_prm; struct uac_rtd_params c_prm; struct snd_card *card; struct snd_pcm *pcm; /* pre-calculated values for playback iso completion */ unsigned long long p_residue_mil; unsigned int p_interval; unsigned int p_framesize; }; static const struct snd_pcm_hardware uac_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .rates = SNDRV_PCM_RATE_CONTINUOUS, .periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX, .buffer_bytes_max = BUFF_SIZE_MAX, .period_bytes_max = PRD_SIZE_MAX, .periods_min = MIN_PERIODS, }; static void u_audio_set_fback_frequency(enum usb_device_speed speed, struct usb_ep *out_ep, unsigned long long freq, unsigned int pitch, void *buf) { u32 ff = 0; const struct usb_endpoint_descriptor *ep_desc; /* * Because the pitch base is 1000000, the final divider here * will be 1000 * 1000000 = 1953125 << 9 * * Instead of dealing with big numbers lets fold this 9 left shift */ if (speed == USB_SPEED_FULL) { /* * Full-speed feedback endpoints report frequency * in samples/frame * Format is encoded in Q10.10 left-justified in the 24 bits, * so that it has a Q10.14 format. * * ff = (freq << 14) / 1000 */ freq <<= 5; } else { /* * High-speed feedback endpoints report frequency * in samples/microframe. * Format is encoded in Q12.13 fitted into four bytes so that * the binary point is located between the second and the third * byte fromat (that is Q16.16) * * ff = (freq << 16) / 8000 * * Win10 and OSX UAC2 drivers require number of samples per packet * in order to honor the feedback value. * Linux snd-usb-audio detects the applied bit-shift automatically. */ ep_desc = out_ep->desc; freq <<= 4 + (ep_desc->bInterval - 1); } ff = DIV_ROUND_CLOSEST_ULL((freq * pitch), 1953125); *(__le32 *)buf = cpu_to_le32(ff); } static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req) { unsigned int pending; unsigned int hw_ptr; int status = req->status; struct snd_pcm_substream *substream; struct snd_pcm_runtime *runtime; struct uac_rtd_params *prm = req->context; struct snd_uac_chip *uac = prm->uac; unsigned int frames, p_pktsize; unsigned long long pitched_rate_mil, p_pktsize_residue_mil, residue_frames_mil, div_result; /* i/f shutting down */ if (!prm->ep_enabled) { usb_ep_free_request(ep, req); return; } if (req->status == -ESHUTDOWN) return; /* * We can't really do much about bad xfers. * Afterall, the ISOCH xfers could fail legitimately. */ if (status) pr_debug("%s: iso_complete status(%d) %d/%d\n", __func__, status, req->actual, req->length); substream = prm->ss; /* Do nothing if ALSA isn't active */ if (!substream) goto exit; snd_pcm_stream_lock(substream); runtime = substream->runtime; if (!runtime || !snd_pcm_running(substream)) { snd_pcm_stream_unlock(substream); goto exit; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { /* * For each IN packet, take the quotient of the current data * rate and the endpoint's interval as the base packet size. * If there is a residue from this division, add it to the * residue accumulator. */ unsigned long long p_interval_mil = uac->p_interval * 1000000ULL; pitched_rate_mil = (unsigned long long) prm->srate * prm->pitch; div_result = pitched_rate_mil; do_div(div_result, uac->p_interval); do_div(div_result, 1000000); frames = (unsigned int) div_result; pr_debug("p_srate %d, pitch %d, interval_mil %llu, frames %d\n", prm->srate, prm->pitch, p_interval_mil, frames); p_pktsize = min_t(unsigned int, uac->p_framesize * frames, ep->maxpacket); if (p_pktsize < ep->maxpacket) { residue_frames_mil = pitched_rate_mil - frames * p_interval_mil; p_pktsize_residue_mil = uac->p_framesize * residue_frames_mil; } else p_pktsize_residue_mil = 0; req->length = p_pktsize; uac->p_residue_mil += p_pktsize_residue_mil; /* * Whenever there are more bytes in the accumulator p_residue_mil than we * need to add one more sample frame, increase this packet's * size and decrease the accumulator. */ div_result = uac->p_residue_mil; do_div(div_result, uac->p_interval); do_div(div_result, 1000000); if ((unsigned int) div_result >= uac->p_framesize) { req->length += uac->p_framesize; uac->p_residue_mil -= uac->p_framesize * p_interval_mil; pr_debug("increased req length to %d\n", req->length); } pr_debug("remains uac->p_residue_mil %llu\n", uac->p_residue_mil); req->actual = req->length; } hw_ptr = prm->hw_ptr; /* Pack USB load in ALSA ring buffer */ pending = runtime->dma_bytes - hw_ptr; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (unlikely(pending < req->actual)) { memcpy(req->buf, runtime->dma_area + hw_ptr, pending); memcpy(req->buf + pending, runtime->dma_area, req->actual - pending); } else { memcpy(req->buf, runtime->dma_area + hw_ptr, req->actual); } } else { if (unlikely(pending < req->actual)) { memcpy(runtime->dma_area + hw_ptr, req->buf, pending); memcpy(runtime->dma_area, req->buf + pending, req->actual - pending); } else { memcpy(runtime->dma_area + hw_ptr, req->buf, req->actual); } } /* update hw_ptr after data is copied to memory */ prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes; hw_ptr = prm->hw_ptr; snd_pcm_stream_unlock(substream); if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual) snd_pcm_period_elapsed(substream); exit: if (usb_ep_queue(ep, req, GFP_ATOMIC)) dev_err(uac->card->dev, "%d Error!\n", __LINE__); } static void u_audio_iso_fback_complete(struct usb_ep *ep, struct usb_request *req) { struct uac_rtd_params *prm = req->context; struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; int status = req->status; /* i/f shutting down */ if (!prm->fb_ep_enabled) { kfree(req->buf); usb_ep_free_request(ep, req); return; } if (req->status == -ESHUTDOWN) return; /* * We can't really do much about bad xfers. * Afterall, the ISOCH xfers could fail legitimately. */ if (status) pr_debug("%s: iso_complete status(%d) %d/%d\n", __func__, status, req->actual, req->length); u_audio_set_fback_frequency(audio_dev->gadget->speed, audio_dev->out_ep, prm->srate, prm->pitch, req->buf); if (usb_ep_queue(ep, req, GFP_ATOMIC)) dev_err(uac->card->dev, "%d Error!\n", __LINE__); } static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; struct g_audio *audio_dev; struct uac_params *params; int err = 0; audio_dev = uac->audio_dev; params = &audio_dev->params; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; /* Reset */ prm->hw_ptr = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: prm->ss = substream; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: prm->ss = NULL; break; default: err = -EINVAL; } /* Clear buffer after Play stops */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss) memset(prm->rbuf, 0, prm->max_psize * params->req_number); return err; } static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct uac_rtd_params *prm; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) prm = &uac->p_prm; else prm = &uac->c_prm; return bytes_to_frames(substream->runtime, prm->hw_ptr); } static u64 uac_ssize_to_fmt(int ssize) { u64 ret; switch (ssize) { case 3: ret = SNDRV_PCM_FMTBIT_S24_3LE; break; case 4: ret = SNDRV_PCM_FMTBIT_S32_LE; break; default: ret = SNDRV_PCM_FMTBIT_S16_LE; break; } return ret; } static int uac_pcm_open(struct snd_pcm_substream *substream) { struct snd_uac_chip *uac = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct g_audio *audio_dev; struct uac_params *params; struct uac_rtd_params *prm; int p_ssize, c_ssize; int p_chmask, c_chmask; audio_dev = uac->audio_dev; params = &audio_dev->params; p_ssize = params->p_ssize; c_ssize = params->c_ssize; p_chmask = params->p_chmask; c_chmask = params->c_chmask; uac->p_residue_mil = 0; runtime->hw = uac_pcm_hardware; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { runtime->hw.formats = uac_ssize_to_fmt(p_ssize); runtime->hw.channels_min = num_channels(p_chmask); prm = &uac->p_prm; } else { runtime->hw.formats = uac_ssize_to_fmt(c_ssize); runtime->hw.channels_min = num_channels(c_chmask); prm = &uac->c_prm; } runtime->hw.period_bytes_min = 2 * prm->max_psize / runtime->hw.periods_min; runtime->hw.rate_min = prm->srate; runtime->hw.rate_max = runtime->hw.rate_min; runtime->hw.channels_max = runtime->hw.channels_min; snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return 0; } /* ALSA cries without these function pointers */ static int uac_pcm_null(struct snd_pcm_substream *substream) { return 0; } static const struct snd_pcm_ops uac_pcm_ops = { .open = uac_pcm_open, .close = uac_pcm_null, .trigger = uac_pcm_trigger, .pointer = uac_pcm_pointer, .prepare = uac_pcm_null, }; static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep) { struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev; struct uac_params *params; int i; if (!prm->ep_enabled) return; audio_dev = uac->audio_dev; params = &audio_dev->params; for (i = 0; i < params->req_number; i++) { if (prm->reqs[i]) { if (usb_ep_dequeue(ep, prm->reqs[i])) usb_ep_free_request(ep, prm->reqs[i]); /* * If usb_ep_dequeue() cannot successfully dequeue the * request, the request will be freed by the completion * callback. */ prm->reqs[i] = NULL; } } prm->ep_enabled = false; if (usb_ep_disable(ep)) dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__); } static inline void free_ep_fback(struct uac_rtd_params *prm, struct usb_ep *ep) { struct snd_uac_chip *uac = prm->uac; if (!prm->fb_ep_enabled) return; if (prm->req_fback) { if (usb_ep_dequeue(ep, prm->req_fback)) { kfree(prm->req_fback->buf); usb_ep_free_request(ep, prm->req_fback); } prm->req_fback = NULL; } prm->fb_ep_enabled = false; if (usb_ep_disable(ep)) dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__); } static void set_active(struct uac_rtd_params *prm, bool active) { // notifying through the Rate ctrl struct snd_kcontrol *kctl = prm->snd_kctl_rate; unsigned long flags; spin_lock_irqsave(&prm->lock, flags); if (prm->active != active) { prm->active = active; snd_ctl_notify(prm->uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &kctl->id); } spin_unlock_irqrestore(&prm->lock, flags); } int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate) { struct uac_params *params = &audio_dev->params; struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; int i; unsigned long flags; dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate); prm = &uac->c_prm; for (i = 0; i < UAC_MAX_RATES; i++) { if (params->c_srates[i] == srate) { spin_lock_irqsave(&prm->lock, flags); prm->srate = srate; spin_unlock_irqrestore(&prm->lock, flags); return 0; } if (params->c_srates[i] == 0) break; } return -EINVAL; } EXPORT_SYMBOL_GPL(u_audio_set_capture_srate); int u_audio_get_capture_srate(struct g_audio *audio_dev, u32 *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->srate; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_capture_srate); int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate) { struct uac_params *params = &audio_dev->params; struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; int i; unsigned long flags; dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate); prm = &uac->p_prm; for (i = 0; i < UAC_MAX_RATES; i++) { if (params->p_srates[i] == srate) { spin_lock_irqsave(&prm->lock, flags); prm->srate = srate; spin_unlock_irqrestore(&prm->lock, flags); return 0; } if (params->p_srates[i] == 0) break; } return -EINVAL; } EXPORT_SYMBOL_GPL(u_audio_set_playback_srate); int u_audio_get_playback_srate(struct g_audio *audio_dev, u32 *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; prm = &uac->p_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->srate; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_playback_srate); int u_audio_start_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = &gadget->dev; struct usb_request *req, *req_fback; struct usb_ep *ep, *ep_fback; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; int req_len, i; prm = &uac->c_prm; dev_dbg(dev, "start capture with rate %d\n", prm->srate); ep = audio_dev->out_ep; config_ep_by_speed(gadget, &audio_dev->func, ep); req_len = ep->maxpacket; prm->ep_enabled = true; usb_ep_enable(ep); for (i = 0; i < params->req_number; i++) { if (!prm->reqs[i]) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->reqs[i] = req; req->zero = 0; req->context = prm; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * ep->maxpacket; } if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } set_active(&uac->c_prm, true); ep_fback = audio_dev->in_ep_fback; if (!ep_fback) return 0; /* Setup feedback endpoint */ config_ep_by_speed(gadget, &audio_dev->func, ep_fback); prm->fb_ep_enabled = true; usb_ep_enable(ep_fback); req_len = ep_fback->maxpacket; req_fback = usb_ep_alloc_request(ep_fback, GFP_ATOMIC); if (req_fback == NULL) return -ENOMEM; prm->req_fback = req_fback; req_fback->zero = 0; req_fback->context = prm; req_fback->length = req_len; req_fback->complete = u_audio_iso_fback_complete; req_fback->buf = kzalloc(req_len, GFP_ATOMIC); if (!req_fback->buf) return -ENOMEM; /* * Configure the feedback endpoint's reported frequency. * Always start with original frequency since its deviation can't * be meauserd at start of playback */ prm->pitch = 1000000; u_audio_set_fback_frequency(audio_dev->gadget->speed, ep, prm->srate, prm->pitch, req_fback->buf); if (usb_ep_queue(ep_fback, req_fback, GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return 0; } EXPORT_SYMBOL_GPL(u_audio_start_capture); void u_audio_stop_capture(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; set_active(&uac->c_prm, false); if (audio_dev->in_ep_fback) free_ep_fback(&uac->c_prm, audio_dev->in_ep_fback); free_ep(&uac->c_prm, audio_dev->out_ep); } EXPORT_SYMBOL_GPL(u_audio_stop_capture); int u_audio_start_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; struct usb_gadget *gadget = audio_dev->gadget; struct device *dev = &gadget->dev; struct usb_request *req; struct usb_ep *ep; struct uac_rtd_params *prm; struct uac_params *params = &audio_dev->params; unsigned int factor; const struct usb_endpoint_descriptor *ep_desc; int req_len, i; unsigned int p_pktsize; prm = &uac->p_prm; dev_dbg(dev, "start playback with rate %d\n", prm->srate); ep = audio_dev->in_ep; config_ep_by_speed(gadget, &audio_dev->func, ep); ep_desc = ep->desc; /* * Always start with original frequency */ prm->pitch = 1000000; /* pre-calculate the playback endpoint's interval */ if (gadget->speed == USB_SPEED_FULL) factor = 1000; else factor = 8000; /* pre-compute some values for iso_complete() */ uac->p_framesize = params->p_ssize * num_channels(params->p_chmask); uac->p_interval = factor / (1 << (ep_desc->bInterval - 1)); p_pktsize = min_t(unsigned int, uac->p_framesize * (prm->srate / uac->p_interval), ep->maxpacket); req_len = p_pktsize; uac->p_residue_mil = 0; prm->ep_enabled = true; usb_ep_enable(ep); for (i = 0; i < params->req_number; i++) { if (!prm->reqs[i]) { req = usb_ep_alloc_request(ep, GFP_ATOMIC); if (req == NULL) return -ENOMEM; prm->reqs[i] = req; req->zero = 0; req->context = prm; req->length = req_len; req->complete = u_audio_iso_complete; req->buf = prm->rbuf + i * ep->maxpacket; } if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC)) dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); } set_active(&uac->p_prm, true); return 0; } EXPORT_SYMBOL_GPL(u_audio_start_playback); void u_audio_stop_playback(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; set_active(&uac->p_prm, false); free_ep(&uac->p_prm, audio_dev->in_ep); } EXPORT_SYMBOL_GPL(u_audio_stop_playback); void u_audio_suspend(struct g_audio *audio_dev) { struct snd_uac_chip *uac = audio_dev->uac; set_active(&uac->p_prm, false); set_active(&uac->c_prm, false); } EXPORT_SYMBOL_GPL(u_audio_suspend); int u_audio_get_volume(struct g_audio *audio_dev, int playback, s16 *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->volume; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_volume); int u_audio_set_volume(struct g_audio *audio_dev, int playback, s16 val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; int change = 0; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); val = clamp(val, prm->volume_min, prm->volume_max); if (prm->volume != val) { prm->volume = val; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change) snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &prm->snd_kctl_volume->id); return 0; } EXPORT_SYMBOL_GPL(u_audio_set_volume); int u_audio_get_mute(struct g_audio *audio_dev, int playback, int *val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; spin_lock_irqsave(&prm->lock, flags); *val = prm->mute; spin_unlock_irqrestore(&prm->lock, flags); return 0; } EXPORT_SYMBOL_GPL(u_audio_get_mute); int u_audio_set_mute(struct g_audio *audio_dev, int playback, int val) { struct snd_uac_chip *uac = audio_dev->uac; struct uac_rtd_params *prm; unsigned long flags; int change = 0; int mute; if (playback) prm = &uac->p_prm; else prm = &uac->c_prm; mute = val ? 1 : 0; spin_lock_irqsave(&prm->lock, flags); if (prm->mute != mute) { prm->mute = mute; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change) snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE, &prm->snd_kctl_mute->id); return 0; } EXPORT_SYMBOL_GPL(u_audio_set_mute); static int u_audio_pitch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; unsigned int pitch_min, pitch_max; pitch_min = (1000 - FBACK_SLOW_MAX) * 1000; pitch_max = (1000 + params->fb_max) * 1000; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = pitch_min; uinfo->value.integer.max = pitch_max; uinfo->value.integer.step = 1; return 0; } static int u_audio_pitch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = prm->pitch; return 0; } static int u_audio_pitch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; unsigned int val; unsigned int pitch_min, pitch_max; int change = 0; pitch_min = (1000 - FBACK_SLOW_MAX) * 1000; pitch_max = (1000 + params->fb_max) * 1000; val = ucontrol->value.integer.value[0]; if (val < pitch_min) val = pitch_min; if (val > pitch_max) val = pitch_max; if (prm->pitch != val) { prm->pitch = val; change = 1; } return change; } static int u_audio_mute_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; uinfo->value.integer.step = 1; return 0; } static int u_audio_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&prm->lock, flags); ucontrol->value.integer.value[0] = !prm->mute; spin_unlock_irqrestore(&prm->lock, flags); return 0; } static int u_audio_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; unsigned int val; unsigned long flags; int change = 0; val = !ucontrol->value.integer.value[0]; spin_lock_irqsave(&prm->lock, flags); if (val != prm->mute) { prm->mute = val; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change && audio_dev->notify) audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_MUTE); return change; } /* * TLV callback for mixer volume controls */ static int u_audio_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *_tlv) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); DECLARE_TLV_DB_MINMAX(scale, 0, 0); if (size < sizeof(scale)) return -ENOMEM; /* UAC volume resolution is 1/256 dB, TLV is 1/100 dB */ scale[2] = (prm->volume_min * 100) / 256; scale[3] = (prm->volume_max * 100) / 256; if (copy_to_user(_tlv, scale, sizeof(scale))) return -EFAULT; return 0; } static int u_audio_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = (prm->volume_max - prm->volume_min + prm->volume_res - 1) / prm->volume_res; uinfo->value.integer.step = 1; return 0; } static int u_audio_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&prm->lock, flags); ucontrol->value.integer.value[0] = (prm->volume - prm->volume_min) / prm->volume_res; spin_unlock_irqrestore(&prm->lock, flags); return 0; } static int u_audio_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; unsigned int val; s16 volume; unsigned long flags; int change = 0; val = ucontrol->value.integer.value[0]; spin_lock_irqsave(&prm->lock, flags); volume = (val * prm->volume_res) + prm->volume_min; volume = clamp(volume, prm->volume_min, prm->volume_max); if (volume != prm->volume) { prm->volume = volume; change = 1; } spin_unlock_irqrestore(&prm->lock, flags); if (change && audio_dev->notify) audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_VOLUME); return change; } static int get_max_srate(const int *srates) { int i, max_srate = 0; for (i = 0; i < UAC_MAX_RATES; i++) { if (srates[i] == 0) break; if (srates[i] > max_srate) max_srate = srates[i]; } return max_srate; } static int get_min_srate(const int *srates) { int i, min_srate = INT_MAX; for (i = 0; i < UAC_MAX_RATES; i++) { if (srates[i] == 0) break; if (srates[i] < min_srate) min_srate = srates[i]; } return min_srate; } static int u_audio_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { const int *srates; struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); struct snd_uac_chip *uac = prm->uac; struct g_audio *audio_dev = uac->audio_dev; struct uac_params *params = &audio_dev->params; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; if (prm == &uac->c_prm) srates = params->c_srates; else srates = params->p_srates; uinfo->value.integer.min = get_min_srate(srates); uinfo->value.integer.max = get_max_srate(srates); return 0; } static int u_audio_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&prm->lock, flags); if (prm->active) ucontrol->value.integer.value[0] = prm->srate; else /* not active: reporting zero rate */ ucontrol->value.integer.value[0] = 0; spin_unlock_irqrestore(&prm->lock, flags); return 0; } static struct snd_kcontrol_new u_audio_controls[] = { [UAC_FBACK_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Capture Pitch 1000000", .info = u_audio_pitch_info, .get = u_audio_pitch_get, .put = u_audio_pitch_put, }, [UAC_P_PITCH_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Playback Pitch 1000000", .info = u_audio_pitch_info, .get = u_audio_pitch_get, .put = u_audio_pitch_put, }, [UAC_MUTE_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = u_audio_mute_info, .get = u_audio_mute_get, .put = u_audio_mute_put, }, [UAC_VOLUME_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = u_audio_volume_info, .get = u_audio_volume_get, .put = u_audio_volume_put, }, [UAC_RATE_CTRL] { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "", /* will be filled later */ .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = u_audio_rate_info, .get = u_audio_rate_get, }, }; int g_audio_setup(struct g_audio *g_audio, const char *pcm_name, const char *card_name) { struct snd_uac_chip *uac; struct snd_card *card; struct snd_pcm *pcm; struct snd_kcontrol *kctl; struct uac_params *params; int p_chmask, c_chmask; int i, err; if (!g_audio) return -EINVAL; uac = kzalloc(sizeof(*uac), GFP_KERNEL); if (!uac) return -ENOMEM; g_audio->uac = uac; uac->audio_dev = g_audio; params = &g_audio->params; p_chmask = params->p_chmask; c_chmask = params->c_chmask; if (c_chmask) { struct uac_rtd_params *prm = &uac->c_prm; spin_lock_init(&prm->lock); uac->c_prm.uac = uac; prm->max_psize = g_audio->out_ep_maxpsize; prm->srate = params->c_srates[0]; prm->reqs = kcalloc(params->req_number, sizeof(struct usb_request *), GFP_KERNEL); if (!prm->reqs) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } if (p_chmask) { struct uac_rtd_params *prm = &uac->p_prm; spin_lock_init(&prm->lock); uac->p_prm.uac = uac; prm->max_psize = g_audio->in_ep_maxpsize; prm->srate = params->p_srates[0]; prm->reqs = kcalloc(params->req_number, sizeof(struct usb_request *), GFP_KERNEL); if (!prm->reqs) { err = -ENOMEM; goto fail; } prm->rbuf = kcalloc(params->req_number, prm->max_psize, GFP_KERNEL); if (!prm->rbuf) { prm->max_psize = 0; err = -ENOMEM; goto fail; } } /* Choose any slot, with no id */ err = snd_card_new(&g_audio->gadget->dev, -1, NULL, THIS_MODULE, 0, &card); if (err < 0) goto fail; uac->card = card; /* * Create first PCM device * Create a substream only for non-zero channel streams */ err = snd_pcm_new(uac->card, pcm_name, 0, p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm); if (err < 0) goto snd_fail; strscpy(pcm->name, pcm_name, sizeof(pcm->name)); pcm->private_data = uac; uac->pcm = pcm; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops); /* * Create mixer and controls * Create only if it's required on USB side */ if ((c_chmask && g_audio->in_ep_fback) || (p_chmask && params->p_fu.id) || (c_chmask && params->c_fu.id)) strscpy(card->mixername, card_name, sizeof(card->driver)); if (c_chmask && g_audio->in_ep_fback) { kctl = snd_ctl_new1(&u_audio_controls[UAC_FBACK_CTRL], &uac->c_prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; } if (p_chmask) { kctl = snd_ctl_new1(&u_audio_controls[UAC_P_PITCH_CTRL], &uac->p_prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; } for (i = 0; i <= SNDRV_PCM_STREAM_LAST; i++) { struct uac_rtd_params *prm; struct uac_fu_params *fu; char ctrl_name[24]; char *direction; if (!pcm->streams[i].substream_count) continue; if (i == SNDRV_PCM_STREAM_PLAYBACK) { prm = &uac->p_prm; fu = &params->p_fu; direction = "Playback"; } else { prm = &uac->c_prm; fu = &params->c_fu; direction = "Capture"; } prm->fu_id = fu->id; if (fu->mute_present) { snprintf(ctrl_name, sizeof(ctrl_name), "PCM %s Switch", direction); u_audio_controls[UAC_MUTE_CTRL].name = ctrl_name; kctl = snd_ctl_new1(&u_audio_controls[UAC_MUTE_CTRL], prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; prm->snd_kctl_mute = kctl; prm->mute = 0; } if (fu->volume_present) { snprintf(ctrl_name, sizeof(ctrl_name), "PCM %s Volume", direction); u_audio_controls[UAC_VOLUME_CTRL].name = ctrl_name; kctl = snd_ctl_new1(&u_audio_controls[UAC_VOLUME_CTRL], prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; kctl->tlv.c = u_audio_volume_tlv; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; prm->snd_kctl_volume = kctl; prm->volume = fu->volume_max; prm->volume_max = fu->volume_max; prm->volume_min = fu->volume_min; prm->volume_res = fu->volume_res; } /* Add rate control */ snprintf(ctrl_name, sizeof(ctrl_name), "%s Rate", direction); u_audio_controls[UAC_RATE_CTRL].name = ctrl_name; kctl = snd_ctl_new1(&u_audio_controls[UAC_RATE_CTRL], prm); if (!kctl) { err = -ENOMEM; goto snd_fail; } kctl->id.device = pcm->device; kctl->id.subdevice = 0; err = snd_ctl_add(card, kctl); if (err < 0) goto snd_fail; prm->snd_kctl_rate = kctl; } strscpy(card->driver, card_name, sizeof(card->driver)); strscpy(card->shortname, card_name, sizeof(card->shortname)); sprintf(card->longname, "%s %i", card_name, card->dev->id); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, NULL, 0, BUFF_SIZE_MAX); err = snd_card_register(card); if (!err) return 0; snd_fail: snd_card_free(card); fail: kfree(uac->p_prm.reqs); kfree(uac->c_prm.reqs); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); return err; } EXPORT_SYMBOL_GPL(g_audio_setup); void g_audio_cleanup(struct g_audio *g_audio) { struct snd_uac_chip *uac; struct snd_card *card; if (!g_audio || !g_audio->uac) return; uac = g_audio->uac; card = uac->card; if (card) snd_card_free_when_closed(card); kfree(uac->p_prm.reqs); kfree(uac->c_prm.reqs); kfree(uac->p_prm.rbuf); kfree(uac->c_prm.rbuf); kfree(uac); } EXPORT_SYMBOL_GPL(g_audio_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities"); MODULE_AUTHOR("Ruslan Bilovol");
linux-master
drivers/usb/gadget/function/u_audio.c
// SPDX-License-Identifier: GPL-2.0 /* Target based USB-Gadget * * UAS protocol handling, target callbacks, configfs handling, * BBB (USB Mass Storage Class Bulk-Only (BBB) and Transport protocol handling. * * Author: Sebastian Andrzej Siewior <bigeasy at linutronix dot de> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/configfs.h> #include <linux/ctype.h> #include <linux/usb/ch9.h> #include <linux/usb/composite.h> #include <linux/usb/gadget.h> #include <linux/usb/storage.h> #include <scsi/scsi_tcq.h> #include <target/target_core_base.h> #include <target/target_core_fabric.h> #include <asm/unaligned.h> #include "tcm.h" #include "u_tcm.h" #include "configfs.h" #define TPG_INSTANCES 1 struct tpg_instance { struct usb_function_instance *func_inst; struct usbg_tpg *tpg; }; static struct tpg_instance tpg_instances[TPG_INSTANCES]; static DEFINE_MUTEX(tpg_instances_lock); static inline struct f_uas *to_f_uas(struct usb_function *f) { return container_of(f, struct f_uas, function); } /* Start bot.c code */ static int bot_enqueue_cmd_cbw(struct f_uas *fu) { int ret; if (fu->flags & USBG_BOT_CMD_PEND) return 0; ret = usb_ep_queue(fu->ep_out, fu->cmd.req, GFP_ATOMIC); if (!ret) fu->flags |= USBG_BOT_CMD_PEND; return ret; } static void bot_status_complete(struct usb_ep *ep, struct usb_request *req) { struct usbg_cmd *cmd = req->context; struct f_uas *fu = cmd->fu; transport_generic_free_cmd(&cmd->se_cmd, 0); if (req->status < 0) { pr_err("ERR %s(%d)\n", __func__, __LINE__); return; } /* CSW completed, wait for next CBW */ bot_enqueue_cmd_cbw(fu); } static void bot_enqueue_sense_code(struct f_uas *fu, struct usbg_cmd *cmd) { struct bulk_cs_wrap *csw = &fu->bot_status.csw; int ret; unsigned int csw_stat; csw_stat = cmd->csw_code; csw->Tag = cmd->bot_tag; csw->Status = csw_stat; fu->bot_status.req->context = cmd; ret = usb_ep_queue(fu->ep_in, fu->bot_status.req, GFP_ATOMIC); if (ret) pr_err("%s(%d) ERR: %d\n", __func__, __LINE__, ret); } static void bot_err_compl(struct usb_ep *ep, struct usb_request *req) { struct usbg_cmd *cmd = req->context; struct f_uas *fu = cmd->fu; if (req->status < 0) pr_err("ERR %s(%d)\n", __func__, __LINE__); if (cmd->data_len) { if (cmd->data_len > ep->maxpacket) { req->length = ep->maxpacket; cmd->data_len -= ep->maxpacket; } else { req->length = cmd->data_len; cmd->data_len = 0; } usb_ep_queue(ep, req, GFP_ATOMIC); return; } bot_enqueue_sense_code(fu, cmd); } static void bot_send_bad_status(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct bulk_cs_wrap *csw = &fu->bot_status.csw; struct usb_request *req; struct usb_ep *ep; csw->Residue = cpu_to_le32(cmd->data_len); if (cmd->data_len) { if (cmd->is_read) { ep = fu->ep_in; req = fu->bot_req_in; } else { ep = fu->ep_out; req = fu->bot_req_out; } if (cmd->data_len > fu->ep_in->maxpacket) { req->length = ep->maxpacket; cmd->data_len -= ep->maxpacket; } else { req->length = cmd->data_len; cmd->data_len = 0; } req->complete = bot_err_compl; req->context = cmd; req->buf = fu->cmd.buf; usb_ep_queue(ep, req, GFP_KERNEL); } else { bot_enqueue_sense_code(fu, cmd); } } static int bot_send_status(struct usbg_cmd *cmd, bool moved_data) { struct f_uas *fu = cmd->fu; struct bulk_cs_wrap *csw = &fu->bot_status.csw; int ret; if (cmd->se_cmd.scsi_status == SAM_STAT_GOOD) { if (!moved_data && cmd->data_len) { /* * the host wants to move data, we don't. Fill / empty * the pipe and then send the csw with reside set. */ cmd->csw_code = US_BULK_STAT_OK; bot_send_bad_status(cmd); return 0; } csw->Tag = cmd->bot_tag; csw->Residue = cpu_to_le32(0); csw->Status = US_BULK_STAT_OK; fu->bot_status.req->context = cmd; ret = usb_ep_queue(fu->ep_in, fu->bot_status.req, GFP_KERNEL); if (ret) pr_err("%s(%d) ERR: %d\n", __func__, __LINE__, ret); } else { cmd->csw_code = US_BULK_STAT_FAIL; bot_send_bad_status(cmd); } return 0; } /* * Called after command (no data transfer) or after the write (to device) * operation is completed */ static int bot_send_status_response(struct usbg_cmd *cmd) { bool moved_data = false; if (!cmd->is_read) moved_data = true; return bot_send_status(cmd, moved_data); } /* Read request completed, now we have to send the CSW */ static void bot_read_compl(struct usb_ep *ep, struct usb_request *req) { struct usbg_cmd *cmd = req->context; if (req->status < 0) pr_err("ERR %s(%d)\n", __func__, __LINE__); bot_send_status(cmd, true); } static int bot_send_read_response(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct se_cmd *se_cmd = &cmd->se_cmd; struct usb_gadget *gadget = fuas_to_gadget(fu); int ret; if (!cmd->data_len) { cmd->csw_code = US_BULK_STAT_PHASE; bot_send_bad_status(cmd); return 0; } if (!gadget->sg_supported) { cmd->data_buf = kmalloc(se_cmd->data_length, GFP_ATOMIC); if (!cmd->data_buf) return -ENOMEM; sg_copy_to_buffer(se_cmd->t_data_sg, se_cmd->t_data_nents, cmd->data_buf, se_cmd->data_length); fu->bot_req_in->buf = cmd->data_buf; } else { fu->bot_req_in->buf = NULL; fu->bot_req_in->num_sgs = se_cmd->t_data_nents; fu->bot_req_in->sg = se_cmd->t_data_sg; } fu->bot_req_in->complete = bot_read_compl; fu->bot_req_in->length = se_cmd->data_length; fu->bot_req_in->context = cmd; ret = usb_ep_queue(fu->ep_in, fu->bot_req_in, GFP_ATOMIC); if (ret) pr_err("%s(%d)\n", __func__, __LINE__); return 0; } static void usbg_data_write_cmpl(struct usb_ep *, struct usb_request *); static int usbg_prepare_w_request(struct usbg_cmd *, struct usb_request *); static int bot_send_write_request(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct se_cmd *se_cmd = &cmd->se_cmd; struct usb_gadget *gadget = fuas_to_gadget(fu); int ret; init_completion(&cmd->write_complete); cmd->fu = fu; if (!cmd->data_len) { cmd->csw_code = US_BULK_STAT_PHASE; return -EINVAL; } if (!gadget->sg_supported) { cmd->data_buf = kmalloc(se_cmd->data_length, GFP_KERNEL); if (!cmd->data_buf) return -ENOMEM; fu->bot_req_out->buf = cmd->data_buf; } else { fu->bot_req_out->buf = NULL; fu->bot_req_out->num_sgs = se_cmd->t_data_nents; fu->bot_req_out->sg = se_cmd->t_data_sg; } fu->bot_req_out->complete = usbg_data_write_cmpl; fu->bot_req_out->length = se_cmd->data_length; fu->bot_req_out->context = cmd; ret = usbg_prepare_w_request(cmd, fu->bot_req_out); if (ret) goto cleanup; ret = usb_ep_queue(fu->ep_out, fu->bot_req_out, GFP_KERNEL); if (ret) pr_err("%s(%d)\n", __func__, __LINE__); wait_for_completion(&cmd->write_complete); target_execute_cmd(se_cmd); cleanup: return ret; } static int bot_submit_command(struct f_uas *, void *, unsigned int); static void bot_cmd_complete(struct usb_ep *ep, struct usb_request *req) { struct f_uas *fu = req->context; int ret; fu->flags &= ~USBG_BOT_CMD_PEND; if (req->status < 0) return; ret = bot_submit_command(fu, req->buf, req->actual); if (ret) pr_err("%s(%d): %d\n", __func__, __LINE__, ret); } static int bot_prepare_reqs(struct f_uas *fu) { int ret; fu->bot_req_in = usb_ep_alloc_request(fu->ep_in, GFP_KERNEL); if (!fu->bot_req_in) goto err; fu->bot_req_out = usb_ep_alloc_request(fu->ep_out, GFP_KERNEL); if (!fu->bot_req_out) goto err_out; fu->cmd.req = usb_ep_alloc_request(fu->ep_out, GFP_KERNEL); if (!fu->cmd.req) goto err_cmd; fu->bot_status.req = usb_ep_alloc_request(fu->ep_in, GFP_KERNEL); if (!fu->bot_status.req) goto err_sts; fu->bot_status.req->buf = &fu->bot_status.csw; fu->bot_status.req->length = US_BULK_CS_WRAP_LEN; fu->bot_status.req->complete = bot_status_complete; fu->bot_status.csw.Signature = cpu_to_le32(US_BULK_CS_SIGN); fu->cmd.buf = kmalloc(fu->ep_out->maxpacket, GFP_KERNEL); if (!fu->cmd.buf) goto err_buf; fu->cmd.req->complete = bot_cmd_complete; fu->cmd.req->buf = fu->cmd.buf; fu->cmd.req->length = fu->ep_out->maxpacket; fu->cmd.req->context = fu; ret = bot_enqueue_cmd_cbw(fu); if (ret) goto err_queue; return 0; err_queue: kfree(fu->cmd.buf); fu->cmd.buf = NULL; err_buf: usb_ep_free_request(fu->ep_in, fu->bot_status.req); err_sts: usb_ep_free_request(fu->ep_out, fu->cmd.req); fu->cmd.req = NULL; err_cmd: usb_ep_free_request(fu->ep_out, fu->bot_req_out); fu->bot_req_out = NULL; err_out: usb_ep_free_request(fu->ep_in, fu->bot_req_in); fu->bot_req_in = NULL; err: pr_err("BOT: endpoint setup failed\n"); return -ENOMEM; } static void bot_cleanup_old_alt(struct f_uas *fu) { if (!(fu->flags & USBG_ENABLED)) return; usb_ep_disable(fu->ep_in); usb_ep_disable(fu->ep_out); if (!fu->bot_req_in) return; usb_ep_free_request(fu->ep_in, fu->bot_req_in); usb_ep_free_request(fu->ep_out, fu->bot_req_out); usb_ep_free_request(fu->ep_out, fu->cmd.req); usb_ep_free_request(fu->ep_in, fu->bot_status.req); kfree(fu->cmd.buf); fu->bot_req_in = NULL; fu->bot_req_out = NULL; fu->cmd.req = NULL; fu->bot_status.req = NULL; fu->cmd.buf = NULL; } static void bot_set_alt(struct f_uas *fu) { struct usb_function *f = &fu->function; struct usb_gadget *gadget = f->config->cdev->gadget; int ret; fu->flags = USBG_IS_BOT; config_ep_by_speed_and_alt(gadget, f, fu->ep_in, USB_G_ALT_INT_BBB); ret = usb_ep_enable(fu->ep_in); if (ret) goto err_b_in; config_ep_by_speed_and_alt(gadget, f, fu->ep_out, USB_G_ALT_INT_BBB); ret = usb_ep_enable(fu->ep_out); if (ret) goto err_b_out; ret = bot_prepare_reqs(fu); if (ret) goto err_wq; fu->flags |= USBG_ENABLED; pr_info("Using the BOT protocol\n"); return; err_wq: usb_ep_disable(fu->ep_out); err_b_out: usb_ep_disable(fu->ep_in); err_b_in: fu->flags = USBG_IS_BOT; } static int usbg_bot_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_uas *fu = to_f_uas(f); struct usb_composite_dev *cdev = f->config->cdev; u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); int luns; u8 *ret_lun; switch (ctrl->bRequest) { case US_BULK_GET_MAX_LUN: if (ctrl->bRequestType != (USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE)) return -ENOTSUPP; if (w_length < 1) return -EINVAL; if (w_value != 0) return -EINVAL; luns = atomic_read(&fu->tpg->tpg_port_count); if (!luns) { pr_err("No LUNs configured?\n"); return -EINVAL; } /* * If 4 LUNs are present we return 3 i.e. LUN 0..3 can be * accessed. The upper limit is 0xf */ luns--; if (luns > 0xf) { pr_info_once("Limiting the number of luns to 16\n"); luns = 0xf; } ret_lun = cdev->req->buf; *ret_lun = luns; cdev->req->length = 1; return usb_ep_queue(cdev->gadget->ep0, cdev->req, GFP_ATOMIC); case US_BULK_RESET_REQUEST: /* XXX maybe we should remove previous requests for IN + OUT */ bot_enqueue_cmd_cbw(fu); return 0; } return -ENOTSUPP; } /* Start uas.c code */ static void uasp_cleanup_one_stream(struct f_uas *fu, struct uas_stream *stream) { /* We have either all three allocated or none */ if (!stream->req_in) return; usb_ep_free_request(fu->ep_in, stream->req_in); usb_ep_free_request(fu->ep_out, stream->req_out); usb_ep_free_request(fu->ep_status, stream->req_status); stream->req_in = NULL; stream->req_out = NULL; stream->req_status = NULL; } static void uasp_free_cmdreq(struct f_uas *fu) { usb_ep_free_request(fu->ep_cmd, fu->cmd.req); kfree(fu->cmd.buf); fu->cmd.req = NULL; fu->cmd.buf = NULL; } static void uasp_cleanup_old_alt(struct f_uas *fu) { int i; if (!(fu->flags & USBG_ENABLED)) return; usb_ep_disable(fu->ep_in); usb_ep_disable(fu->ep_out); usb_ep_disable(fu->ep_status); usb_ep_disable(fu->ep_cmd); for (i = 0; i < UASP_SS_EP_COMP_NUM_STREAMS; i++) uasp_cleanup_one_stream(fu, &fu->stream[i]); uasp_free_cmdreq(fu); } static void uasp_status_data_cmpl(struct usb_ep *ep, struct usb_request *req); static int uasp_prepare_r_request(struct usbg_cmd *cmd) { struct se_cmd *se_cmd = &cmd->se_cmd; struct f_uas *fu = cmd->fu; struct usb_gadget *gadget = fuas_to_gadget(fu); struct uas_stream *stream = cmd->stream; if (!gadget->sg_supported) { cmd->data_buf = kmalloc(se_cmd->data_length, GFP_ATOMIC); if (!cmd->data_buf) return -ENOMEM; sg_copy_to_buffer(se_cmd->t_data_sg, se_cmd->t_data_nents, cmd->data_buf, se_cmd->data_length); stream->req_in->buf = cmd->data_buf; } else { stream->req_in->buf = NULL; stream->req_in->num_sgs = se_cmd->t_data_nents; stream->req_in->sg = se_cmd->t_data_sg; } stream->req_in->is_last = 1; stream->req_in->complete = uasp_status_data_cmpl; stream->req_in->length = se_cmd->data_length; stream->req_in->context = cmd; cmd->state = UASP_SEND_STATUS; return 0; } static void uasp_prepare_status(struct usbg_cmd *cmd) { struct se_cmd *se_cmd = &cmd->se_cmd; struct sense_iu *iu = &cmd->sense_iu; struct uas_stream *stream = cmd->stream; cmd->state = UASP_QUEUE_COMMAND; iu->iu_id = IU_ID_STATUS; iu->tag = cpu_to_be16(cmd->tag); /* * iu->status_qual = cpu_to_be16(STATUS QUALIFIER SAM-4. Where R U?); */ iu->len = cpu_to_be16(se_cmd->scsi_sense_length); iu->status = se_cmd->scsi_status; stream->req_status->is_last = 1; stream->req_status->context = cmd; stream->req_status->length = se_cmd->scsi_sense_length + 16; stream->req_status->buf = iu; stream->req_status->complete = uasp_status_data_cmpl; } static void uasp_status_data_cmpl(struct usb_ep *ep, struct usb_request *req) { struct usbg_cmd *cmd = req->context; struct uas_stream *stream = cmd->stream; struct f_uas *fu = cmd->fu; int ret; if (req->status < 0) goto cleanup; switch (cmd->state) { case UASP_SEND_DATA: ret = uasp_prepare_r_request(cmd); if (ret) goto cleanup; ret = usb_ep_queue(fu->ep_in, stream->req_in, GFP_ATOMIC); if (ret) pr_err("%s(%d) => %d\n", __func__, __LINE__, ret); break; case UASP_RECEIVE_DATA: ret = usbg_prepare_w_request(cmd, stream->req_out); if (ret) goto cleanup; ret = usb_ep_queue(fu->ep_out, stream->req_out, GFP_ATOMIC); if (ret) pr_err("%s(%d) => %d\n", __func__, __LINE__, ret); break; case UASP_SEND_STATUS: uasp_prepare_status(cmd); ret = usb_ep_queue(fu->ep_status, stream->req_status, GFP_ATOMIC); if (ret) pr_err("%s(%d) => %d\n", __func__, __LINE__, ret); break; case UASP_QUEUE_COMMAND: transport_generic_free_cmd(&cmd->se_cmd, 0); usb_ep_queue(fu->ep_cmd, fu->cmd.req, GFP_ATOMIC); break; default: BUG(); } return; cleanup: transport_generic_free_cmd(&cmd->se_cmd, 0); } static int uasp_send_status_response(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct uas_stream *stream = cmd->stream; struct sense_iu *iu = &cmd->sense_iu; iu->tag = cpu_to_be16(cmd->tag); stream->req_status->complete = uasp_status_data_cmpl; stream->req_status->context = cmd; cmd->fu = fu; uasp_prepare_status(cmd); return usb_ep_queue(fu->ep_status, stream->req_status, GFP_ATOMIC); } static int uasp_send_read_response(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct uas_stream *stream = cmd->stream; struct sense_iu *iu = &cmd->sense_iu; int ret; cmd->fu = fu; iu->tag = cpu_to_be16(cmd->tag); if (fu->flags & USBG_USE_STREAMS) { ret = uasp_prepare_r_request(cmd); if (ret) goto out; ret = usb_ep_queue(fu->ep_in, stream->req_in, GFP_ATOMIC); if (ret) { pr_err("%s(%d) => %d\n", __func__, __LINE__, ret); kfree(cmd->data_buf); cmd->data_buf = NULL; } } else { iu->iu_id = IU_ID_READ_READY; iu->tag = cpu_to_be16(cmd->tag); stream->req_status->complete = uasp_status_data_cmpl; stream->req_status->context = cmd; cmd->state = UASP_SEND_DATA; stream->req_status->buf = iu; stream->req_status->length = sizeof(struct iu); ret = usb_ep_queue(fu->ep_status, stream->req_status, GFP_ATOMIC); if (ret) pr_err("%s(%d) => %d\n", __func__, __LINE__, ret); } out: return ret; } static int uasp_send_write_request(struct usbg_cmd *cmd) { struct f_uas *fu = cmd->fu; struct se_cmd *se_cmd = &cmd->se_cmd; struct uas_stream *stream = cmd->stream; struct sense_iu *iu = &cmd->sense_iu; int ret; init_completion(&cmd->write_complete); cmd->fu = fu; iu->tag = cpu_to_be16(cmd->tag); if (fu->flags & USBG_USE_STREAMS) { ret = usbg_prepare_w_request(cmd, stream->req_out); if (ret) goto cleanup; ret = usb_ep_queue(fu->ep_out, stream->req_out, GFP_ATOMIC); if (ret) pr_err("%s(%d)\n", __func__, __LINE__); } else { iu->iu_id = IU_ID_WRITE_READY; iu->tag = cpu_to_be16(cmd->tag); stream->req_status->complete = uasp_status_data_cmpl; stream->req_status->context = cmd; cmd->state = UASP_RECEIVE_DATA; stream->req_status->buf = iu; stream->req_status->length = sizeof(struct iu); ret = usb_ep_queue(fu->ep_status, stream->req_status, GFP_ATOMIC); if (ret) pr_err("%s(%d)\n", __func__, __LINE__); } wait_for_completion(&cmd->write_complete); target_execute_cmd(se_cmd); cleanup: return ret; } static int usbg_submit_command(struct f_uas *, void *, unsigned int); static void uasp_cmd_complete(struct usb_ep *ep, struct usb_request *req) { struct f_uas *fu = req->context; int ret; if (req->status < 0) return; ret = usbg_submit_command(fu, req->buf, req->actual); /* * Once we tune for performance enqueue the command req here again so * we can receive a second command while we processing this one. Pay * attention to properly sync STAUS endpoint with DATA IN + OUT so you * don't break HS. */ if (!ret) return; usb_ep_queue(fu->ep_cmd, fu->cmd.req, GFP_ATOMIC); } static int uasp_alloc_stream_res(struct f_uas *fu, struct uas_stream *stream) { stream->req_in = usb_ep_alloc_request(fu->ep_in, GFP_KERNEL); if (!stream->req_in) goto out; stream->req_out = usb_ep_alloc_request(fu->ep_out, GFP_KERNEL); if (!stream->req_out) goto err_out; stream->req_status = usb_ep_alloc_request(fu->ep_status, GFP_KERNEL); if (!stream->req_status) goto err_sts; return 0; err_sts: usb_ep_free_request(fu->ep_out, stream->req_out); stream->req_out = NULL; err_out: usb_ep_free_request(fu->ep_in, stream->req_in); stream->req_in = NULL; out: return -ENOMEM; } static int uasp_alloc_cmd(struct f_uas *fu) { fu->cmd.req = usb_ep_alloc_request(fu->ep_cmd, GFP_KERNEL); if (!fu->cmd.req) goto err; fu->cmd.buf = kmalloc(fu->ep_cmd->maxpacket, GFP_KERNEL); if (!fu->cmd.buf) goto err_buf; fu->cmd.req->complete = uasp_cmd_complete; fu->cmd.req->buf = fu->cmd.buf; fu->cmd.req->length = fu->ep_cmd->maxpacket; fu->cmd.req->context = fu; return 0; err_buf: usb_ep_free_request(fu->ep_cmd, fu->cmd.req); err: return -ENOMEM; } static void uasp_setup_stream_res(struct f_uas *fu, int max_streams) { int i; for (i = 0; i < max_streams; i++) { struct uas_stream *s = &fu->stream[i]; s->req_in->stream_id = i + 1; s->req_out->stream_id = i + 1; s->req_status->stream_id = i + 1; } } static int uasp_prepare_reqs(struct f_uas *fu) { int ret; int i; int max_streams; if (fu->flags & USBG_USE_STREAMS) max_streams = UASP_SS_EP_COMP_NUM_STREAMS; else max_streams = 1; for (i = 0; i < max_streams; i++) { ret = uasp_alloc_stream_res(fu, &fu->stream[i]); if (ret) goto err_cleanup; } ret = uasp_alloc_cmd(fu); if (ret) goto err_free_stream; uasp_setup_stream_res(fu, max_streams); ret = usb_ep_queue(fu->ep_cmd, fu->cmd.req, GFP_ATOMIC); if (ret) goto err_free_stream; return 0; err_free_stream: uasp_free_cmdreq(fu); err_cleanup: if (i) { do { uasp_cleanup_one_stream(fu, &fu->stream[i - 1]); i--; } while (i); } pr_err("UASP: endpoint setup failed\n"); return ret; } static void uasp_set_alt(struct f_uas *fu) { struct usb_function *f = &fu->function; struct usb_gadget *gadget = f->config->cdev->gadget; int ret; fu->flags = USBG_IS_UAS; if (gadget->speed >= USB_SPEED_SUPER) fu->flags |= USBG_USE_STREAMS; config_ep_by_speed_and_alt(gadget, f, fu->ep_in, USB_G_ALT_INT_UAS); ret = usb_ep_enable(fu->ep_in); if (ret) goto err_b_in; config_ep_by_speed_and_alt(gadget, f, fu->ep_out, USB_G_ALT_INT_UAS); ret = usb_ep_enable(fu->ep_out); if (ret) goto err_b_out; config_ep_by_speed_and_alt(gadget, f, fu->ep_cmd, USB_G_ALT_INT_UAS); ret = usb_ep_enable(fu->ep_cmd); if (ret) goto err_cmd; config_ep_by_speed_and_alt(gadget, f, fu->ep_status, USB_G_ALT_INT_UAS); ret = usb_ep_enable(fu->ep_status); if (ret) goto err_status; ret = uasp_prepare_reqs(fu); if (ret) goto err_wq; fu->flags |= USBG_ENABLED; pr_info("Using the UAS protocol\n"); return; err_wq: usb_ep_disable(fu->ep_status); err_status: usb_ep_disable(fu->ep_cmd); err_cmd: usb_ep_disable(fu->ep_out); err_b_out: usb_ep_disable(fu->ep_in); err_b_in: fu->flags = 0; } static int get_cmd_dir(const unsigned char *cdb) { int ret; switch (cdb[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case INQUIRY: case MODE_SENSE: case MODE_SENSE_10: case SERVICE_ACTION_IN_16: case MAINTENANCE_IN: case PERSISTENT_RESERVE_IN: case SECURITY_PROTOCOL_IN: case ACCESS_CONTROL_IN: case REPORT_LUNS: case READ_BLOCK_LIMITS: case READ_POSITION: case READ_CAPACITY: case READ_TOC: case READ_FORMAT_CAPACITIES: case REQUEST_SENSE: ret = DMA_FROM_DEVICE; break; case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case MODE_SELECT: case MODE_SELECT_10: case WRITE_VERIFY: case WRITE_VERIFY_12: case PERSISTENT_RESERVE_OUT: case MAINTENANCE_OUT: case SECURITY_PROTOCOL_OUT: case ACCESS_CONTROL_OUT: ret = DMA_TO_DEVICE; break; case ALLOW_MEDIUM_REMOVAL: case TEST_UNIT_READY: case SYNCHRONIZE_CACHE: case START_STOP: case ERASE: case REZERO_UNIT: case SEEK_10: case SPACE: case VERIFY: case WRITE_FILEMARKS: ret = DMA_NONE; break; default: #define CMD_DIR_MSG "target: Unknown data direction for SCSI Opcode 0x%02x\n" pr_warn(CMD_DIR_MSG, cdb[0]); #undef CMD_DIR_MSG ret = -EINVAL; } return ret; } static void usbg_data_write_cmpl(struct usb_ep *ep, struct usb_request *req) { struct usbg_cmd *cmd = req->context; struct se_cmd *se_cmd = &cmd->se_cmd; if (req->status < 0) { pr_err("%s() state %d transfer failed\n", __func__, cmd->state); goto cleanup; } if (req->num_sgs == 0) { sg_copy_from_buffer(se_cmd->t_data_sg, se_cmd->t_data_nents, cmd->data_buf, se_cmd->data_length); } complete(&cmd->write_complete); return; cleanup: transport_generic_free_cmd(&cmd->se_cmd, 0); } static int usbg_prepare_w_request(struct usbg_cmd *cmd, struct usb_request *req) { struct se_cmd *se_cmd = &cmd->se_cmd; struct f_uas *fu = cmd->fu; struct usb_gadget *gadget = fuas_to_gadget(fu); if (!gadget->sg_supported) { cmd->data_buf = kmalloc(se_cmd->data_length, GFP_ATOMIC); if (!cmd->data_buf) return -ENOMEM; req->buf = cmd->data_buf; } else { req->buf = NULL; req->num_sgs = se_cmd->t_data_nents; req->sg = se_cmd->t_data_sg; } req->is_last = 1; req->complete = usbg_data_write_cmpl; req->length = se_cmd->data_length; req->context = cmd; return 0; } static int usbg_send_status_response(struct se_cmd *se_cmd) { struct usbg_cmd *cmd = container_of(se_cmd, struct usbg_cmd, se_cmd); struct f_uas *fu = cmd->fu; if (fu->flags & USBG_IS_BOT) return bot_send_status_response(cmd); else return uasp_send_status_response(cmd); } static int usbg_send_write_request(struct se_cmd *se_cmd) { struct usbg_cmd *cmd = container_of(se_cmd, struct usbg_cmd, se_cmd); struct f_uas *fu = cmd->fu; if (fu->flags & USBG_IS_BOT) return bot_send_write_request(cmd); else return uasp_send_write_request(cmd); } static int usbg_send_read_response(struct se_cmd *se_cmd) { struct usbg_cmd *cmd = container_of(se_cmd, struct usbg_cmd, se_cmd); struct f_uas *fu = cmd->fu; if (fu->flags & USBG_IS_BOT) return bot_send_read_response(cmd); else return uasp_send_read_response(cmd); } static void usbg_cmd_work(struct work_struct *work) { struct usbg_cmd *cmd = container_of(work, struct usbg_cmd, work); struct se_cmd *se_cmd; struct tcm_usbg_nexus *tv_nexus; struct usbg_tpg *tpg; int dir, flags = (TARGET_SCF_UNKNOWN_SIZE | TARGET_SCF_ACK_KREF); se_cmd = &cmd->se_cmd; tpg = cmd->fu->tpg; tv_nexus = tpg->tpg_nexus; dir = get_cmd_dir(cmd->cmd_buf); if (dir < 0) { __target_init_cmd(se_cmd, tv_nexus->tvn_se_sess->se_tpg->se_tpg_tfo, tv_nexus->tvn_se_sess, cmd->data_len, DMA_NONE, cmd->prio_attr, cmd->sense_iu.sense, cmd->unpacked_lun, NULL); goto out; } target_submit_cmd(se_cmd, tv_nexus->tvn_se_sess, cmd->cmd_buf, cmd->sense_iu.sense, cmd->unpacked_lun, 0, cmd->prio_attr, dir, flags); return; out: transport_send_check_condition_and_sense(se_cmd, TCM_UNSUPPORTED_SCSI_OPCODE, 1); transport_generic_free_cmd(&cmd->se_cmd, 0); } static struct usbg_cmd *usbg_get_cmd(struct f_uas *fu, struct tcm_usbg_nexus *tv_nexus, u32 scsi_tag) { struct se_session *se_sess = tv_nexus->tvn_se_sess; struct usbg_cmd *cmd; int tag, cpu; tag = sbitmap_queue_get(&se_sess->sess_tag_pool, &cpu); if (tag < 0) return ERR_PTR(-ENOMEM); cmd = &((struct usbg_cmd *)se_sess->sess_cmd_map)[tag]; memset(cmd, 0, sizeof(*cmd)); cmd->se_cmd.map_tag = tag; cmd->se_cmd.map_cpu = cpu; cmd->se_cmd.tag = cmd->tag = scsi_tag; cmd->fu = fu; return cmd; } static void usbg_release_cmd(struct se_cmd *); static int usbg_submit_command(struct f_uas *fu, void *cmdbuf, unsigned int len) { struct command_iu *cmd_iu = cmdbuf; struct usbg_cmd *cmd; struct usbg_tpg *tpg = fu->tpg; struct tcm_usbg_nexus *tv_nexus; u32 cmd_len; u16 scsi_tag; if (cmd_iu->iu_id != IU_ID_COMMAND) { pr_err("Unsupported type %d\n", cmd_iu->iu_id); return -EINVAL; } tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { pr_err("Missing nexus, ignoring command\n"); return -EINVAL; } cmd_len = (cmd_iu->len & ~0x3) + 16; if (cmd_len > USBG_MAX_CMD) return -EINVAL; scsi_tag = be16_to_cpup(&cmd_iu->tag); cmd = usbg_get_cmd(fu, tv_nexus, scsi_tag); if (IS_ERR(cmd)) { pr_err("usbg_get_cmd failed\n"); return -ENOMEM; } memcpy(cmd->cmd_buf, cmd_iu->cdb, cmd_len); if (fu->flags & USBG_USE_STREAMS) { if (cmd->tag > UASP_SS_EP_COMP_NUM_STREAMS) goto err; if (!cmd->tag) cmd->stream = &fu->stream[0]; else cmd->stream = &fu->stream[cmd->tag - 1]; } else { cmd->stream = &fu->stream[0]; } switch (cmd_iu->prio_attr & 0x7) { case UAS_HEAD_TAG: cmd->prio_attr = TCM_HEAD_TAG; break; case UAS_ORDERED_TAG: cmd->prio_attr = TCM_ORDERED_TAG; break; case UAS_ACA: cmd->prio_attr = TCM_ACA_TAG; break; default: pr_debug_once("Unsupported prio_attr: %02x.\n", cmd_iu->prio_attr); fallthrough; case UAS_SIMPLE_TAG: cmd->prio_attr = TCM_SIMPLE_TAG; break; } cmd->unpacked_lun = scsilun_to_int(&cmd_iu->lun); INIT_WORK(&cmd->work, usbg_cmd_work); queue_work(tpg->workqueue, &cmd->work); return 0; err: usbg_release_cmd(&cmd->se_cmd); return -EINVAL; } static void bot_cmd_work(struct work_struct *work) { struct usbg_cmd *cmd = container_of(work, struct usbg_cmd, work); struct se_cmd *se_cmd; struct tcm_usbg_nexus *tv_nexus; struct usbg_tpg *tpg; int dir; se_cmd = &cmd->se_cmd; tpg = cmd->fu->tpg; tv_nexus = tpg->tpg_nexus; dir = get_cmd_dir(cmd->cmd_buf); if (dir < 0) { __target_init_cmd(se_cmd, tv_nexus->tvn_se_sess->se_tpg->se_tpg_tfo, tv_nexus->tvn_se_sess, cmd->data_len, DMA_NONE, cmd->prio_attr, cmd->sense_iu.sense, cmd->unpacked_lun, NULL); goto out; } target_submit_cmd(se_cmd, tv_nexus->tvn_se_sess, cmd->cmd_buf, cmd->sense_iu.sense, cmd->unpacked_lun, cmd->data_len, cmd->prio_attr, dir, 0); return; out: transport_send_check_condition_and_sense(se_cmd, TCM_UNSUPPORTED_SCSI_OPCODE, 1); transport_generic_free_cmd(&cmd->se_cmd, 0); } static int bot_submit_command(struct f_uas *fu, void *cmdbuf, unsigned int len) { struct bulk_cb_wrap *cbw = cmdbuf; struct usbg_cmd *cmd; struct usbg_tpg *tpg = fu->tpg; struct tcm_usbg_nexus *tv_nexus; u32 cmd_len; if (cbw->Signature != cpu_to_le32(US_BULK_CB_SIGN)) { pr_err("Wrong signature on CBW\n"); return -EINVAL; } if (len != 31) { pr_err("Wrong length for CBW\n"); return -EINVAL; } cmd_len = cbw->Length; if (cmd_len < 1 || cmd_len > 16) return -EINVAL; tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { pr_err("Missing nexus, ignoring command\n"); return -ENODEV; } cmd = usbg_get_cmd(fu, tv_nexus, cbw->Tag); if (IS_ERR(cmd)) { pr_err("usbg_get_cmd failed\n"); return -ENOMEM; } memcpy(cmd->cmd_buf, cbw->CDB, cmd_len); cmd->bot_tag = cbw->Tag; cmd->prio_attr = TCM_SIMPLE_TAG; cmd->unpacked_lun = cbw->Lun; cmd->is_read = cbw->Flags & US_BULK_FLAG_IN ? 1 : 0; cmd->data_len = le32_to_cpu(cbw->DataTransferLength); cmd->se_cmd.tag = le32_to_cpu(cmd->bot_tag); INIT_WORK(&cmd->work, bot_cmd_work); queue_work(tpg->workqueue, &cmd->work); return 0; } /* Start fabric.c code */ static int usbg_check_true(struct se_portal_group *se_tpg) { return 1; } static char *usbg_get_fabric_wwn(struct se_portal_group *se_tpg) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); struct usbg_tport *tport = tpg->tport; return &tport->tport_name[0]; } static u16 usbg_get_tag(struct se_portal_group *se_tpg) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); return tpg->tport_tpgt; } static void usbg_release_cmd(struct se_cmd *se_cmd) { struct usbg_cmd *cmd = container_of(se_cmd, struct usbg_cmd, se_cmd); struct se_session *se_sess = se_cmd->se_sess; kfree(cmd->data_buf); target_free_tag(se_sess, se_cmd); } static void usbg_queue_tm_rsp(struct se_cmd *se_cmd) { } static void usbg_aborted_task(struct se_cmd *se_cmd) { } static const char *usbg_check_wwn(const char *name) { const char *n; unsigned int len; n = strstr(name, "naa."); if (!n) return NULL; n += 4; len = strlen(n); if (len == 0 || len > USBG_NAMELEN - 1) return NULL; return n; } static int usbg_init_nodeacl(struct se_node_acl *se_nacl, const char *name) { if (!usbg_check_wwn(name)) return -EINVAL; return 0; } static struct se_portal_group *usbg_make_tpg(struct se_wwn *wwn, const char *name) { struct usbg_tport *tport = container_of(wwn, struct usbg_tport, tport_wwn); struct usbg_tpg *tpg; unsigned long tpgt; int ret; struct f_tcm_opts *opts; unsigned i; if (strstr(name, "tpgt_") != name) return ERR_PTR(-EINVAL); if (kstrtoul(name + 5, 0, &tpgt) || tpgt > UINT_MAX) return ERR_PTR(-EINVAL); ret = -ENODEV; mutex_lock(&tpg_instances_lock); for (i = 0; i < TPG_INSTANCES; ++i) if (tpg_instances[i].func_inst && !tpg_instances[i].tpg) break; if (i == TPG_INSTANCES) goto unlock_inst; opts = container_of(tpg_instances[i].func_inst, struct f_tcm_opts, func_inst); mutex_lock(&opts->dep_lock); if (!opts->ready) goto unlock_dep; if (opts->has_dep) { if (!try_module_get(opts->dependent)) goto unlock_dep; } else { ret = configfs_depend_item_unlocked( wwn->wwn_group.cg_subsys, &opts->func_inst.group.cg_item); if (ret) goto unlock_dep; } tpg = kzalloc(sizeof(struct usbg_tpg), GFP_KERNEL); ret = -ENOMEM; if (!tpg) goto unref_dep; mutex_init(&tpg->tpg_mutex); atomic_set(&tpg->tpg_port_count, 0); tpg->workqueue = alloc_workqueue("tcm_usb_gadget", 0, 1); if (!tpg->workqueue) goto free_tpg; tpg->tport = tport; tpg->tport_tpgt = tpgt; /* * SPC doesn't assign a protocol identifier for USB-SCSI, so we * pretend to be SAS.. */ ret = core_tpg_register(wwn, &tpg->se_tpg, SCSI_PROTOCOL_SAS); if (ret < 0) goto free_workqueue; tpg_instances[i].tpg = tpg; tpg->fi = tpg_instances[i].func_inst; mutex_unlock(&opts->dep_lock); mutex_unlock(&tpg_instances_lock); return &tpg->se_tpg; free_workqueue: destroy_workqueue(tpg->workqueue); free_tpg: kfree(tpg); unref_dep: if (opts->has_dep) module_put(opts->dependent); else configfs_undepend_item_unlocked(&opts->func_inst.group.cg_item); unlock_dep: mutex_unlock(&opts->dep_lock); unlock_inst: mutex_unlock(&tpg_instances_lock); return ERR_PTR(ret); } static int tcm_usbg_drop_nexus(struct usbg_tpg *); static void usbg_drop_tpg(struct se_portal_group *se_tpg) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); unsigned i; struct f_tcm_opts *opts; tcm_usbg_drop_nexus(tpg); core_tpg_deregister(se_tpg); destroy_workqueue(tpg->workqueue); mutex_lock(&tpg_instances_lock); for (i = 0; i < TPG_INSTANCES; ++i) if (tpg_instances[i].tpg == tpg) break; if (i < TPG_INSTANCES) { tpg_instances[i].tpg = NULL; opts = container_of(tpg_instances[i].func_inst, struct f_tcm_opts, func_inst); mutex_lock(&opts->dep_lock); if (opts->has_dep) module_put(opts->dependent); else configfs_undepend_item_unlocked( &opts->func_inst.group.cg_item); mutex_unlock(&opts->dep_lock); } mutex_unlock(&tpg_instances_lock); kfree(tpg); } static struct se_wwn *usbg_make_tport( struct target_fabric_configfs *tf, struct config_group *group, const char *name) { struct usbg_tport *tport; const char *wnn_name; u64 wwpn = 0; wnn_name = usbg_check_wwn(name); if (!wnn_name) return ERR_PTR(-EINVAL); tport = kzalloc(sizeof(struct usbg_tport), GFP_KERNEL); if (!(tport)) return ERR_PTR(-ENOMEM); tport->tport_wwpn = wwpn; snprintf(tport->tport_name, sizeof(tport->tport_name), "%s", wnn_name); return &tport->tport_wwn; } static void usbg_drop_tport(struct se_wwn *wwn) { struct usbg_tport *tport = container_of(wwn, struct usbg_tport, tport_wwn); kfree(tport); } /* * If somebody feels like dropping the version property, go ahead. */ static ssize_t usbg_wwn_version_show(struct config_item *item, char *page) { return sprintf(page, "usb-gadget fabric module\n"); } CONFIGFS_ATTR_RO(usbg_wwn_, version); static struct configfs_attribute *usbg_wwn_attrs[] = { &usbg_wwn_attr_version, NULL, }; static int usbg_attach(struct usbg_tpg *); static void usbg_detach(struct usbg_tpg *); static int usbg_enable_tpg(struct se_portal_group *se_tpg, bool enable) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); int ret = 0; if (enable) ret = usbg_attach(tpg); else usbg_detach(tpg); if (ret) return ret; tpg->gadget_connect = enable; return 0; } static ssize_t tcm_usbg_tpg_nexus_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = to_tpg(item); struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); struct tcm_usbg_nexus *tv_nexus; ssize_t ret; mutex_lock(&tpg->tpg_mutex); tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { ret = -ENODEV; goto out; } ret = snprintf(page, PAGE_SIZE, "%s\n", tv_nexus->tvn_se_sess->se_node_acl->initiatorname); out: mutex_unlock(&tpg->tpg_mutex); return ret; } static int usbg_alloc_sess_cb(struct se_portal_group *se_tpg, struct se_session *se_sess, void *p) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); tpg->tpg_nexus = p; return 0; } static int tcm_usbg_make_nexus(struct usbg_tpg *tpg, char *name) { struct tcm_usbg_nexus *tv_nexus; int ret = 0; mutex_lock(&tpg->tpg_mutex); if (tpg->tpg_nexus) { ret = -EEXIST; pr_debug("tpg->tpg_nexus already exists\n"); goto out_unlock; } tv_nexus = kzalloc(sizeof(*tv_nexus), GFP_KERNEL); if (!tv_nexus) { ret = -ENOMEM; goto out_unlock; } tv_nexus->tvn_se_sess = target_setup_session(&tpg->se_tpg, USB_G_DEFAULT_SESSION_TAGS, sizeof(struct usbg_cmd), TARGET_PROT_NORMAL, name, tv_nexus, usbg_alloc_sess_cb); if (IS_ERR(tv_nexus->tvn_se_sess)) { #define MAKE_NEXUS_MSG "core_tpg_check_initiator_node_acl() failed for %s\n" pr_debug(MAKE_NEXUS_MSG, name); #undef MAKE_NEXUS_MSG ret = PTR_ERR(tv_nexus->tvn_se_sess); kfree(tv_nexus); } out_unlock: mutex_unlock(&tpg->tpg_mutex); return ret; } static int tcm_usbg_drop_nexus(struct usbg_tpg *tpg) { struct se_session *se_sess; struct tcm_usbg_nexus *tv_nexus; int ret = -ENODEV; mutex_lock(&tpg->tpg_mutex); tv_nexus = tpg->tpg_nexus; if (!tv_nexus) goto out; se_sess = tv_nexus->tvn_se_sess; if (!se_sess) goto out; if (atomic_read(&tpg->tpg_port_count)) { ret = -EPERM; #define MSG "Unable to remove Host I_T Nexus with active TPG port count: %d\n" pr_err(MSG, atomic_read(&tpg->tpg_port_count)); #undef MSG goto out; } pr_debug("Removing I_T Nexus to Initiator Port: %s\n", tv_nexus->tvn_se_sess->se_node_acl->initiatorname); /* * Release the SCSI I_T Nexus to the emulated vHost Target Port */ target_remove_session(se_sess); tpg->tpg_nexus = NULL; kfree(tv_nexus); ret = 0; out: mutex_unlock(&tpg->tpg_mutex); return ret; } static ssize_t tcm_usbg_tpg_nexus_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = to_tpg(item); struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); unsigned char i_port[USBG_NAMELEN], *ptr; int ret; if (!strncmp(page, "NULL", 4)) { ret = tcm_usbg_drop_nexus(tpg); return (!ret) ? count : ret; } if (strlen(page) >= USBG_NAMELEN) { #define NEXUS_STORE_MSG "Emulated NAA Sas Address: %s, exceeds max: %d\n" pr_err(NEXUS_STORE_MSG, page, USBG_NAMELEN); #undef NEXUS_STORE_MSG return -EINVAL; } snprintf(i_port, USBG_NAMELEN, "%s", page); ptr = strstr(i_port, "naa."); if (!ptr) { pr_err("Missing 'naa.' prefix\n"); return -EINVAL; } if (i_port[strlen(i_port) - 1] == '\n') i_port[strlen(i_port) - 1] = '\0'; ret = tcm_usbg_make_nexus(tpg, &i_port[0]); if (ret < 0) return ret; return count; } CONFIGFS_ATTR(tcm_usbg_tpg_, nexus); static struct configfs_attribute *usbg_base_attrs[] = { &tcm_usbg_tpg_attr_nexus, NULL, }; static int usbg_port_link(struct se_portal_group *se_tpg, struct se_lun *lun) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); atomic_inc(&tpg->tpg_port_count); smp_mb__after_atomic(); return 0; } static void usbg_port_unlink(struct se_portal_group *se_tpg, struct se_lun *se_lun) { struct usbg_tpg *tpg = container_of(se_tpg, struct usbg_tpg, se_tpg); atomic_dec(&tpg->tpg_port_count); smp_mb__after_atomic(); } static int usbg_check_stop_free(struct se_cmd *se_cmd) { return target_put_sess_cmd(se_cmd); } static const struct target_core_fabric_ops usbg_ops = { .module = THIS_MODULE, .fabric_name = "usb_gadget", .tpg_get_wwn = usbg_get_fabric_wwn, .tpg_get_tag = usbg_get_tag, .tpg_check_demo_mode = usbg_check_true, .release_cmd = usbg_release_cmd, .sess_get_initiator_sid = NULL, .write_pending = usbg_send_write_request, .queue_data_in = usbg_send_read_response, .queue_status = usbg_send_status_response, .queue_tm_rsp = usbg_queue_tm_rsp, .aborted_task = usbg_aborted_task, .check_stop_free = usbg_check_stop_free, .fabric_make_wwn = usbg_make_tport, .fabric_drop_wwn = usbg_drop_tport, .fabric_make_tpg = usbg_make_tpg, .fabric_enable_tpg = usbg_enable_tpg, .fabric_drop_tpg = usbg_drop_tpg, .fabric_post_link = usbg_port_link, .fabric_pre_unlink = usbg_port_unlink, .fabric_init_nodeacl = usbg_init_nodeacl, .tfc_wwn_attrs = usbg_wwn_attrs, .tfc_tpg_base_attrs = usbg_base_attrs, }; /* Start gadget.c code */ static struct usb_interface_descriptor bot_intf_desc = { .bLength = sizeof(bot_intf_desc), .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 2, .bAlternateSetting = USB_G_ALT_INT_BBB, .bInterfaceClass = USB_CLASS_MASS_STORAGE, .bInterfaceSubClass = USB_SC_SCSI, .bInterfaceProtocol = USB_PR_BULK, }; static struct usb_interface_descriptor uasp_intf_desc = { .bLength = sizeof(uasp_intf_desc), .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 4, .bAlternateSetting = USB_G_ALT_INT_UAS, .bInterfaceClass = USB_CLASS_MASS_STORAGE, .bInterfaceSubClass = USB_SC_SCSI, .bInterfaceProtocol = USB_PR_UAS, }; static struct usb_endpoint_descriptor uasp_bi_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor uasp_fs_bi_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_pipe_usage_descriptor uasp_bi_pipe_desc = { .bLength = sizeof(uasp_bi_pipe_desc), .bDescriptorType = USB_DT_PIPE_USAGE, .bPipeID = DATA_IN_PIPE_ID, }; static struct usb_endpoint_descriptor uasp_ss_bi_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor uasp_bi_ep_comp_desc = { .bLength = sizeof(uasp_bi_ep_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = UASP_SS_EP_COMP_LOG_STREAMS, .wBytesPerInterval = 0, }; static struct usb_ss_ep_comp_descriptor bot_bi_ep_comp_desc = { .bLength = sizeof(bot_bi_ep_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, }; static struct usb_endpoint_descriptor uasp_bo_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor uasp_fs_bo_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_pipe_usage_descriptor uasp_bo_pipe_desc = { .bLength = sizeof(uasp_bo_pipe_desc), .bDescriptorType = USB_DT_PIPE_USAGE, .bPipeID = DATA_OUT_PIPE_ID, }; static struct usb_endpoint_descriptor uasp_ss_bo_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(0x400), }; static struct usb_ss_ep_comp_descriptor uasp_bo_ep_comp_desc = { .bLength = sizeof(uasp_bo_ep_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bmAttributes = UASP_SS_EP_COMP_LOG_STREAMS, }; static struct usb_ss_ep_comp_descriptor bot_bo_ep_comp_desc = { .bLength = sizeof(bot_bo_ep_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_endpoint_descriptor uasp_status_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor uasp_fs_status_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_pipe_usage_descriptor uasp_status_pipe_desc = { .bLength = sizeof(uasp_status_pipe_desc), .bDescriptorType = USB_DT_PIPE_USAGE, .bPipeID = STATUS_PIPE_ID, }; static struct usb_endpoint_descriptor uasp_ss_status_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor uasp_status_in_ep_comp_desc = { .bLength = sizeof(uasp_status_in_ep_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bmAttributes = UASP_SS_EP_COMP_LOG_STREAMS, }; static struct usb_endpoint_descriptor uasp_cmd_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor uasp_fs_cmd_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_pipe_usage_descriptor uasp_cmd_pipe_desc = { .bLength = sizeof(uasp_cmd_pipe_desc), .bDescriptorType = USB_DT_PIPE_USAGE, .bPipeID = CMD_PIPE_ID, }; static struct usb_endpoint_descriptor uasp_ss_cmd_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor uasp_cmd_comp_desc = { .bLength = sizeof(uasp_cmd_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_descriptor_header *uasp_fs_function_desc[] = { (struct usb_descriptor_header *) &bot_intf_desc, (struct usb_descriptor_header *) &uasp_fs_bi_desc, (struct usb_descriptor_header *) &uasp_fs_bo_desc, (struct usb_descriptor_header *) &uasp_intf_desc, (struct usb_descriptor_header *) &uasp_fs_bi_desc, (struct usb_descriptor_header *) &uasp_bi_pipe_desc, (struct usb_descriptor_header *) &uasp_fs_bo_desc, (struct usb_descriptor_header *) &uasp_bo_pipe_desc, (struct usb_descriptor_header *) &uasp_fs_status_desc, (struct usb_descriptor_header *) &uasp_status_pipe_desc, (struct usb_descriptor_header *) &uasp_fs_cmd_desc, (struct usb_descriptor_header *) &uasp_cmd_pipe_desc, NULL, }; static struct usb_descriptor_header *uasp_hs_function_desc[] = { (struct usb_descriptor_header *) &bot_intf_desc, (struct usb_descriptor_header *) &uasp_bi_desc, (struct usb_descriptor_header *) &uasp_bo_desc, (struct usb_descriptor_header *) &uasp_intf_desc, (struct usb_descriptor_header *) &uasp_bi_desc, (struct usb_descriptor_header *) &uasp_bi_pipe_desc, (struct usb_descriptor_header *) &uasp_bo_desc, (struct usb_descriptor_header *) &uasp_bo_pipe_desc, (struct usb_descriptor_header *) &uasp_status_desc, (struct usb_descriptor_header *) &uasp_status_pipe_desc, (struct usb_descriptor_header *) &uasp_cmd_desc, (struct usb_descriptor_header *) &uasp_cmd_pipe_desc, NULL, }; static struct usb_descriptor_header *uasp_ss_function_desc[] = { (struct usb_descriptor_header *) &bot_intf_desc, (struct usb_descriptor_header *) &uasp_ss_bi_desc, (struct usb_descriptor_header *) &bot_bi_ep_comp_desc, (struct usb_descriptor_header *) &uasp_ss_bo_desc, (struct usb_descriptor_header *) &bot_bo_ep_comp_desc, (struct usb_descriptor_header *) &uasp_intf_desc, (struct usb_descriptor_header *) &uasp_ss_bi_desc, (struct usb_descriptor_header *) &uasp_bi_ep_comp_desc, (struct usb_descriptor_header *) &uasp_bi_pipe_desc, (struct usb_descriptor_header *) &uasp_ss_bo_desc, (struct usb_descriptor_header *) &uasp_bo_ep_comp_desc, (struct usb_descriptor_header *) &uasp_bo_pipe_desc, (struct usb_descriptor_header *) &uasp_ss_status_desc, (struct usb_descriptor_header *) &uasp_status_in_ep_comp_desc, (struct usb_descriptor_header *) &uasp_status_pipe_desc, (struct usb_descriptor_header *) &uasp_ss_cmd_desc, (struct usb_descriptor_header *) &uasp_cmd_comp_desc, (struct usb_descriptor_header *) &uasp_cmd_pipe_desc, NULL, }; static struct usb_string tcm_us_strings[] = { [USB_G_STR_INT_UAS].s = "USB Attached SCSI", [USB_G_STR_INT_BBB].s = "Bulk Only Transport", { }, }; static struct usb_gadget_strings tcm_stringtab = { .language = 0x0409, .strings = tcm_us_strings, }; static struct usb_gadget_strings *tcm_strings[] = { &tcm_stringtab, NULL, }; static int tcm_bind(struct usb_configuration *c, struct usb_function *f) { struct f_uas *fu = to_f_uas(f); struct usb_string *us; struct usb_gadget *gadget = c->cdev->gadget; struct usb_ep *ep; struct f_tcm_opts *opts; int iface; int ret; opts = container_of(f->fi, struct f_tcm_opts, func_inst); mutex_lock(&opts->dep_lock); if (!opts->can_attach) { mutex_unlock(&opts->dep_lock); return -ENODEV; } mutex_unlock(&opts->dep_lock); us = usb_gstrings_attach(c->cdev, tcm_strings, ARRAY_SIZE(tcm_us_strings)); if (IS_ERR(us)) return PTR_ERR(us); bot_intf_desc.iInterface = us[USB_G_STR_INT_BBB].id; uasp_intf_desc.iInterface = us[USB_G_STR_INT_UAS].id; iface = usb_interface_id(c, f); if (iface < 0) return iface; bot_intf_desc.bInterfaceNumber = iface; uasp_intf_desc.bInterfaceNumber = iface; fu->iface = iface; ep = usb_ep_autoconfig_ss(gadget, &uasp_ss_bi_desc, &uasp_bi_ep_comp_desc); if (!ep) goto ep_fail; fu->ep_in = ep; ep = usb_ep_autoconfig_ss(gadget, &uasp_ss_bo_desc, &uasp_bo_ep_comp_desc); if (!ep) goto ep_fail; fu->ep_out = ep; ep = usb_ep_autoconfig_ss(gadget, &uasp_ss_status_desc, &uasp_status_in_ep_comp_desc); if (!ep) goto ep_fail; fu->ep_status = ep; ep = usb_ep_autoconfig_ss(gadget, &uasp_ss_cmd_desc, &uasp_cmd_comp_desc); if (!ep) goto ep_fail; fu->ep_cmd = ep; /* Assume endpoint addresses are the same for both speeds */ uasp_bi_desc.bEndpointAddress = uasp_ss_bi_desc.bEndpointAddress; uasp_bo_desc.bEndpointAddress = uasp_ss_bo_desc.bEndpointAddress; uasp_status_desc.bEndpointAddress = uasp_ss_status_desc.bEndpointAddress; uasp_cmd_desc.bEndpointAddress = uasp_ss_cmd_desc.bEndpointAddress; uasp_fs_bi_desc.bEndpointAddress = uasp_ss_bi_desc.bEndpointAddress; uasp_fs_bo_desc.bEndpointAddress = uasp_ss_bo_desc.bEndpointAddress; uasp_fs_status_desc.bEndpointAddress = uasp_ss_status_desc.bEndpointAddress; uasp_fs_cmd_desc.bEndpointAddress = uasp_ss_cmd_desc.bEndpointAddress; ret = usb_assign_descriptors(f, uasp_fs_function_desc, uasp_hs_function_desc, uasp_ss_function_desc, uasp_ss_function_desc); if (ret) goto ep_fail; return 0; ep_fail: pr_err("Can't claim all required eps\n"); return -ENOTSUPP; } struct guas_setup_wq { struct work_struct work; struct f_uas *fu; unsigned int alt; }; static void tcm_delayed_set_alt(struct work_struct *wq) { struct guas_setup_wq *work = container_of(wq, struct guas_setup_wq, work); struct f_uas *fu = work->fu; int alt = work->alt; kfree(work); if (fu->flags & USBG_IS_BOT) bot_cleanup_old_alt(fu); if (fu->flags & USBG_IS_UAS) uasp_cleanup_old_alt(fu); if (alt == USB_G_ALT_INT_BBB) bot_set_alt(fu); else if (alt == USB_G_ALT_INT_UAS) uasp_set_alt(fu); usb_composite_setup_continue(fu->function.config->cdev); } static int tcm_get_alt(struct usb_function *f, unsigned intf) { if (intf == bot_intf_desc.bInterfaceNumber) return USB_G_ALT_INT_BBB; if (intf == uasp_intf_desc.bInterfaceNumber) return USB_G_ALT_INT_UAS; return -EOPNOTSUPP; } static int tcm_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_uas *fu = to_f_uas(f); if ((alt == USB_G_ALT_INT_BBB) || (alt == USB_G_ALT_INT_UAS)) { struct guas_setup_wq *work; work = kmalloc(sizeof(*work), GFP_ATOMIC); if (!work) return -ENOMEM; INIT_WORK(&work->work, tcm_delayed_set_alt); work->fu = fu; work->alt = alt; schedule_work(&work->work); return USB_GADGET_DELAYED_STATUS; } return -EOPNOTSUPP; } static void tcm_disable(struct usb_function *f) { struct f_uas *fu = to_f_uas(f); if (fu->flags & USBG_IS_UAS) uasp_cleanup_old_alt(fu); else if (fu->flags & USBG_IS_BOT) bot_cleanup_old_alt(fu); fu->flags = 0; } static int tcm_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_uas *fu = to_f_uas(f); if (!(fu->flags & USBG_IS_BOT)) return -EOPNOTSUPP; return usbg_bot_setup(f, ctrl); } static inline struct f_tcm_opts *to_f_tcm_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_tcm_opts, func_inst.group); } static void tcm_attr_release(struct config_item *item) { struct f_tcm_opts *opts = to_f_tcm_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations tcm_item_ops = { .release = tcm_attr_release, }; static const struct config_item_type tcm_func_type = { .ct_item_ops = &tcm_item_ops, .ct_owner = THIS_MODULE, }; static void tcm_free_inst(struct usb_function_instance *f) { struct f_tcm_opts *opts; unsigned i; opts = container_of(f, struct f_tcm_opts, func_inst); mutex_lock(&tpg_instances_lock); for (i = 0; i < TPG_INSTANCES; ++i) if (tpg_instances[i].func_inst == f) break; if (i < TPG_INSTANCES) tpg_instances[i].func_inst = NULL; mutex_unlock(&tpg_instances_lock); kfree(opts); } static int tcm_register_callback(struct usb_function_instance *f) { struct f_tcm_opts *opts = container_of(f, struct f_tcm_opts, func_inst); mutex_lock(&opts->dep_lock); opts->can_attach = true; mutex_unlock(&opts->dep_lock); return 0; } static void tcm_unregister_callback(struct usb_function_instance *f) { struct f_tcm_opts *opts = container_of(f, struct f_tcm_opts, func_inst); mutex_lock(&opts->dep_lock); unregister_gadget_item(opts-> func_inst.group.cg_item.ci_parent->ci_parent); opts->can_attach = false; mutex_unlock(&opts->dep_lock); } static int usbg_attach(struct usbg_tpg *tpg) { struct usb_function_instance *f = tpg->fi; struct f_tcm_opts *opts = container_of(f, struct f_tcm_opts, func_inst); if (opts->tcm_register_callback) return opts->tcm_register_callback(f); return 0; } static void usbg_detach(struct usbg_tpg *tpg) { struct usb_function_instance *f = tpg->fi; struct f_tcm_opts *opts = container_of(f, struct f_tcm_opts, func_inst); if (opts->tcm_unregister_callback) opts->tcm_unregister_callback(f); } static int tcm_set_name(struct usb_function_instance *f, const char *name) { struct f_tcm_opts *opts = container_of(f, struct f_tcm_opts, func_inst); pr_debug("tcm: Activating %s\n", name); mutex_lock(&opts->dep_lock); opts->ready = true; mutex_unlock(&opts->dep_lock); return 0; } static struct usb_function_instance *tcm_alloc_inst(void) { struct f_tcm_opts *opts; int i; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_lock(&tpg_instances_lock); for (i = 0; i < TPG_INSTANCES; ++i) if (!tpg_instances[i].func_inst) break; if (i == TPG_INSTANCES) { mutex_unlock(&tpg_instances_lock); kfree(opts); return ERR_PTR(-EBUSY); } tpg_instances[i].func_inst = &opts->func_inst; mutex_unlock(&tpg_instances_lock); mutex_init(&opts->dep_lock); opts->func_inst.set_inst_name = tcm_set_name; opts->func_inst.free_func_inst = tcm_free_inst; opts->tcm_register_callback = tcm_register_callback; opts->tcm_unregister_callback = tcm_unregister_callback; config_group_init_type_name(&opts->func_inst.group, "", &tcm_func_type); return &opts->func_inst; } static void tcm_free(struct usb_function *f) { struct f_uas *tcm = to_f_uas(f); kfree(tcm); } static void tcm_unbind(struct usb_configuration *c, struct usb_function *f) { usb_free_all_descriptors(f); } static struct usb_function *tcm_alloc(struct usb_function_instance *fi) { struct f_uas *fu; unsigned i; mutex_lock(&tpg_instances_lock); for (i = 0; i < TPG_INSTANCES; ++i) if (tpg_instances[i].func_inst == fi) break; if (i == TPG_INSTANCES) { mutex_unlock(&tpg_instances_lock); return ERR_PTR(-ENODEV); } fu = kzalloc(sizeof(*fu), GFP_KERNEL); if (!fu) { mutex_unlock(&tpg_instances_lock); return ERR_PTR(-ENOMEM); } fu->function.name = "Target Function"; fu->function.bind = tcm_bind; fu->function.unbind = tcm_unbind; fu->function.set_alt = tcm_set_alt; fu->function.get_alt = tcm_get_alt; fu->function.setup = tcm_setup; fu->function.disable = tcm_disable; fu->function.free_func = tcm_free; fu->tpg = tpg_instances[i].tpg; mutex_unlock(&tpg_instances_lock); return &fu->function; } DECLARE_USB_FUNCTION(tcm, tcm_alloc_inst, tcm_alloc); static int __init tcm_init(void) { int ret; ret = usb_function_register(&tcmusb_func); if (ret) return ret; ret = target_register_template(&usbg_ops); if (ret) usb_function_unregister(&tcmusb_func); return ret; } module_init(tcm_init); static void __exit tcm_exit(void) { target_unregister_template(&usbg_ops); usb_function_unregister(&tcmusb_func); } module_exit(tcm_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sebastian Andrzej Siewior");
linux-master
drivers/usb/gadget/function/f_tcm.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_acm.c -- USB CDC serial (ACM) function driver * * Copyright (C) 2003 Al Borchers ([email protected]) * Copyright (C) 2008 by David Brownell * Copyright (C) 2008 by Nokia Corporation * Copyright (C) 2009 by Samsung Electronics * Author: Michal Nazarewicz ([email protected]) */ /* #define VERBOSE_DEBUG */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/err.h> #include "u_serial.h" /* * This CDC ACM function support just wraps control functions and * notifications around the generic serial-over-usb code. * * Because CDC ACM is standardized by the USB-IF, many host operating * systems have drivers for it. Accordingly, ACM is the preferred * interop solution for serial-port type connections. The control * models are often not necessary, and in any case don't do much in * this bare-bones implementation. * * Note that even MS-Windows has some support for ACM. However, that * support is somewhat broken because when you use ACM in a composite * device, having multiple interfaces confuses the poor OS. It doesn't * seem to understand CDC Union descriptors. The new "association" * descriptors (roughly equivalent to CDC Unions) may sometimes help. */ struct f_acm { struct gserial port; u8 ctrl_id, data_id; u8 port_num; u8 pending; /* lock is mostly for pending and notify_req ... they get accessed * by callbacks both from tty (open/close/break) under its spinlock, * and notify_req.complete() which can't use that lock. */ spinlock_t lock; struct usb_ep *notify; struct usb_request *notify_req; struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ /* SetControlLineState request -- CDC 1.1 section 6.2.14 (INPUT) */ u16 port_handshake_bits; /* SerialState notification -- CDC 1.1 section 6.3.5 (OUTPUT) */ u16 serial_state; }; static inline struct f_acm *func_to_acm(struct usb_function *f) { return container_of(f, struct f_acm, port.func); } static inline struct f_acm *port_to_acm(struct gserial *p) { return container_of(p, struct f_acm, port); } /*-------------------------------------------------------------------------*/ /* notification endpoint uses smallish and infrequent fixed-size messages */ #define GS_NOTIFY_INTERVAL_MS 32 #define GS_NOTIFY_MAXPACKET 10 /* notification + 2 bytes */ /* interface and class descriptors: */ static struct usb_interface_assoc_descriptor acm_iad_descriptor = { .bLength = sizeof acm_iad_descriptor, .bDescriptorType = USB_DT_INTERFACE_ASSOCIATION, /* .bFirstInterface = DYNAMIC, */ .bInterfaceCount = 2, // control + data .bFunctionClass = USB_CLASS_COMM, .bFunctionSubClass = USB_CDC_SUBCLASS_ACM, .bFunctionProtocol = USB_CDC_ACM_PROTO_AT_V25TER, /* .iFunction = DYNAMIC */ }; static struct usb_interface_descriptor acm_control_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_COMM, .bInterfaceSubClass = USB_CDC_SUBCLASS_ACM, .bInterfaceProtocol = USB_CDC_ACM_PROTO_AT_V25TER, /* .iInterface = DYNAMIC */ }; static struct usb_interface_descriptor acm_data_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_CDC_DATA, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, /* .iInterface = DYNAMIC */ }; static struct usb_cdc_header_desc acm_header_desc = { .bLength = sizeof(acm_header_desc), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_HEADER_TYPE, .bcdCDC = cpu_to_le16(0x0110), }; static struct usb_cdc_call_mgmt_descriptor acm_call_mgmt_descriptor = { .bLength = sizeof(acm_call_mgmt_descriptor), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_CALL_MANAGEMENT_TYPE, .bmCapabilities = 0, /* .bDataInterface = DYNAMIC */ }; static struct usb_cdc_acm_descriptor acm_descriptor = { .bLength = sizeof(acm_descriptor), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_ACM_TYPE, .bmCapabilities = USB_CDC_CAP_LINE, }; static struct usb_cdc_union_desc acm_union_desc = { .bLength = sizeof(acm_union_desc), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_UNION_TYPE, /* .bMasterInterface0 = DYNAMIC */ /* .bSlaveInterface0 = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor acm_fs_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET), .bInterval = GS_NOTIFY_INTERVAL_MS, }; static struct usb_endpoint_descriptor acm_fs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor acm_fs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *acm_fs_function[] = { (struct usb_descriptor_header *) &acm_iad_descriptor, (struct usb_descriptor_header *) &acm_control_interface_desc, (struct usb_descriptor_header *) &acm_header_desc, (struct usb_descriptor_header *) &acm_call_mgmt_descriptor, (struct usb_descriptor_header *) &acm_descriptor, (struct usb_descriptor_header *) &acm_union_desc, (struct usb_descriptor_header *) &acm_fs_notify_desc, (struct usb_descriptor_header *) &acm_data_interface_desc, (struct usb_descriptor_header *) &acm_fs_in_desc, (struct usb_descriptor_header *) &acm_fs_out_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor acm_hs_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET), .bInterval = USB_MS_TO_HS_INTERVAL(GS_NOTIFY_INTERVAL_MS), }; static struct usb_endpoint_descriptor acm_hs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor acm_hs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *acm_hs_function[] = { (struct usb_descriptor_header *) &acm_iad_descriptor, (struct usb_descriptor_header *) &acm_control_interface_desc, (struct usb_descriptor_header *) &acm_header_desc, (struct usb_descriptor_header *) &acm_call_mgmt_descriptor, (struct usb_descriptor_header *) &acm_descriptor, (struct usb_descriptor_header *) &acm_union_desc, (struct usb_descriptor_header *) &acm_hs_notify_desc, (struct usb_descriptor_header *) &acm_data_interface_desc, (struct usb_descriptor_header *) &acm_hs_in_desc, (struct usb_descriptor_header *) &acm_hs_out_desc, NULL, }; static struct usb_endpoint_descriptor acm_ss_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor acm_ss_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor acm_ss_bulk_comp_desc = { .bLength = sizeof acm_ss_bulk_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_descriptor_header *acm_ss_function[] = { (struct usb_descriptor_header *) &acm_iad_descriptor, (struct usb_descriptor_header *) &acm_control_interface_desc, (struct usb_descriptor_header *) &acm_header_desc, (struct usb_descriptor_header *) &acm_call_mgmt_descriptor, (struct usb_descriptor_header *) &acm_descriptor, (struct usb_descriptor_header *) &acm_union_desc, (struct usb_descriptor_header *) &acm_hs_notify_desc, (struct usb_descriptor_header *) &acm_ss_bulk_comp_desc, (struct usb_descriptor_header *) &acm_data_interface_desc, (struct usb_descriptor_header *) &acm_ss_in_desc, (struct usb_descriptor_header *) &acm_ss_bulk_comp_desc, (struct usb_descriptor_header *) &acm_ss_out_desc, (struct usb_descriptor_header *) &acm_ss_bulk_comp_desc, NULL, }; /* string descriptors: */ #define ACM_CTRL_IDX 0 #define ACM_DATA_IDX 1 #define ACM_IAD_IDX 2 /* static strings, in UTF-8 */ static struct usb_string acm_string_defs[] = { [ACM_CTRL_IDX].s = "CDC Abstract Control Model (ACM)", [ACM_DATA_IDX].s = "CDC ACM Data", [ACM_IAD_IDX ].s = "CDC Serial", { } /* end of list */ }; static struct usb_gadget_strings acm_string_table = { .language = 0x0409, /* en-us */ .strings = acm_string_defs, }; static struct usb_gadget_strings *acm_strings[] = { &acm_string_table, NULL, }; /*-------------------------------------------------------------------------*/ /* ACM control ... data handling is delegated to tty library code. * The main task of this function is to activate and deactivate * that code based on device state; track parameters like line * speed, handshake state, and so on; and issue notifications. */ static void acm_complete_set_line_coding(struct usb_ep *ep, struct usb_request *req) { struct f_acm *acm = ep->driver_data; struct usb_composite_dev *cdev = acm->port.func.config->cdev; if (req->status != 0) { dev_dbg(&cdev->gadget->dev, "acm ttyGS%d completion, err %d\n", acm->port_num, req->status); return; } /* normal completion */ if (req->actual != sizeof(acm->port_line_coding)) { dev_dbg(&cdev->gadget->dev, "acm ttyGS%d short resp, len %d\n", acm->port_num, req->actual); usb_ep_set_halt(ep); } else { struct usb_cdc_line_coding *value = req->buf; /* REVISIT: we currently just remember this data. * If we change that, (a) validate it first, then * (b) update whatever hardware needs updating, * (c) worry about locking. This is information on * the order of 9600-8-N-1 ... most of which means * nothing unless we control a real RS232 line. */ acm->port_line_coding = *value; } } static int acm_send_break(struct gserial *port, int duration); static int acm_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_acm *acm = func_to_acm(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything except * CDC class messages; interface activation uses set_alt(). * * Note CDC spec table 4 lists the ACM request profile. It requires * encapsulated command support ... we don't handle any, and respond * to them by stalling. Options include get/set/clear comm features * (not that useful) and SEND_BREAK. */ switch ((ctrl->bRequestType << 8) | ctrl->bRequest) { /* SET_LINE_CODING ... just read and save what the host sends */ case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_SET_LINE_CODING: if (w_length != sizeof(struct usb_cdc_line_coding) || w_index != acm->ctrl_id) goto invalid; value = w_length; cdev->gadget->ep0->driver_data = acm; req->complete = acm_complete_set_line_coding; break; /* GET_LINE_CODING ... return what host sent, or initial value */ case ((USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_GET_LINE_CODING: if (w_index != acm->ctrl_id) goto invalid; value = min_t(unsigned, w_length, sizeof(struct usb_cdc_line_coding)); memcpy(req->buf, &acm->port_line_coding, value); break; /* SET_CONTROL_LINE_STATE ... save what the host sent */ case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_SET_CONTROL_LINE_STATE: if (w_index != acm->ctrl_id) goto invalid; value = 0; /* FIXME we should not allow data to flow until the * host sets the USB_CDC_CTRL_DTR bit; and when it clears * that bit, we should return to that no-flow state. */ acm->port_handshake_bits = w_value; break; case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_SEND_BREAK: if (w_index != acm->ctrl_id) goto invalid; acm_send_break(&acm->port, w_value); break; default: invalid: dev_vdbg(&cdev->gadget->dev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { dev_dbg(&cdev->gadget->dev, "acm ttyGS%d req%02x.%02x v%04x i%04x l%d\n", acm->port_num, ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "acm response on ttyGS%d, err %d\n", acm->port_num, value); } /* device either stalls (value < 0) or reports success */ return value; } static int acm_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_acm *acm = func_to_acm(f); struct usb_composite_dev *cdev = f->config->cdev; /* we know alt == 0, so this is an activation or a reset */ if (intf == acm->ctrl_id) { if (acm->notify->enabled) { dev_vdbg(&cdev->gadget->dev, "reset acm control interface %d\n", intf); usb_ep_disable(acm->notify); } if (!acm->notify->desc) if (config_ep_by_speed(cdev->gadget, f, acm->notify)) return -EINVAL; usb_ep_enable(acm->notify); } else if (intf == acm->data_id) { if (acm->notify->enabled) { dev_dbg(&cdev->gadget->dev, "reset acm ttyGS%d\n", acm->port_num); gserial_disconnect(&acm->port); } if (!acm->port.in->desc || !acm->port.out->desc) { dev_dbg(&cdev->gadget->dev, "activate acm ttyGS%d\n", acm->port_num); if (config_ep_by_speed(cdev->gadget, f, acm->port.in) || config_ep_by_speed(cdev->gadget, f, acm->port.out)) { acm->port.in->desc = NULL; acm->port.out->desc = NULL; return -EINVAL; } } gserial_connect(&acm->port, acm->port_num); } else return -EINVAL; return 0; } static void acm_disable(struct usb_function *f) { struct f_acm *acm = func_to_acm(f); struct usb_composite_dev *cdev = f->config->cdev; dev_dbg(&cdev->gadget->dev, "acm ttyGS%d deactivated\n", acm->port_num); gserial_disconnect(&acm->port); usb_ep_disable(acm->notify); } /*-------------------------------------------------------------------------*/ /** * acm_cdc_notify - issue CDC notification to host * @acm: wraps host to be notified * @type: notification type * @value: Refer to cdc specs, wValue field. * @data: data to be sent * @length: size of data * Context: irqs blocked, acm->lock held, acm_notify_req non-null * * Returns zero on success or a negative errno. * * See section 6.3.5 of the CDC 1.1 specification for information * about the only notification we issue: SerialState change. */ static int acm_cdc_notify(struct f_acm *acm, u8 type, u16 value, void *data, unsigned length) { struct usb_ep *ep = acm->notify; struct usb_request *req; struct usb_cdc_notification *notify; const unsigned len = sizeof(*notify) + length; void *buf; int status; req = acm->notify_req; acm->notify_req = NULL; acm->pending = false; req->length = len; notify = req->buf; buf = notify + 1; notify->bmRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; notify->bNotificationType = type; notify->wValue = cpu_to_le16(value); notify->wIndex = cpu_to_le16(acm->ctrl_id); notify->wLength = cpu_to_le16(length); memcpy(buf, data, length); /* ep_queue() can complete immediately if it fills the fifo... */ spin_unlock(&acm->lock); status = usb_ep_queue(ep, req, GFP_ATOMIC); spin_lock(&acm->lock); if (status < 0) { ERROR(acm->port.func.config->cdev, "acm ttyGS%d can't notify serial state, %d\n", acm->port_num, status); acm->notify_req = req; } return status; } static int acm_notify_serial_state(struct f_acm *acm) { struct usb_composite_dev *cdev = acm->port.func.config->cdev; int status; __le16 serial_state; spin_lock(&acm->lock); if (acm->notify_req) { dev_dbg(&cdev->gadget->dev, "acm ttyGS%d serial state %04x\n", acm->port_num, acm->serial_state); serial_state = cpu_to_le16(acm->serial_state); status = acm_cdc_notify(acm, USB_CDC_NOTIFY_SERIAL_STATE, 0, &serial_state, sizeof(acm->serial_state)); } else { acm->pending = true; status = 0; } spin_unlock(&acm->lock); return status; } static void acm_cdc_notify_complete(struct usb_ep *ep, struct usb_request *req) { struct f_acm *acm = req->context; u8 doit = false; /* on this call path we do NOT hold the port spinlock, * which is why ACM needs its own spinlock */ spin_lock(&acm->lock); if (req->status != -ESHUTDOWN) doit = acm->pending; acm->notify_req = req; spin_unlock(&acm->lock); if (doit) acm_notify_serial_state(acm); } /* connect == the TTY link is open */ static void acm_connect(struct gserial *port) { struct f_acm *acm = port_to_acm(port); acm->serial_state |= USB_CDC_SERIAL_STATE_DSR | USB_CDC_SERIAL_STATE_DCD; acm_notify_serial_state(acm); } static void acm_disconnect(struct gserial *port) { struct f_acm *acm = port_to_acm(port); acm->serial_state &= ~(USB_CDC_SERIAL_STATE_DSR | USB_CDC_SERIAL_STATE_DCD); acm_notify_serial_state(acm); } static int acm_send_break(struct gserial *port, int duration) { struct f_acm *acm = port_to_acm(port); u16 state; state = acm->serial_state; state &= ~USB_CDC_SERIAL_STATE_BREAK; if (duration) state |= USB_CDC_SERIAL_STATE_BREAK; acm->serial_state = state; return acm_notify_serial_state(acm); } /*-------------------------------------------------------------------------*/ /* ACM function driver setup/binding */ static int acm_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_acm *acm = func_to_acm(f); struct usb_string *us; int status; struct usb_ep *ep; /* REVISIT might want instance-specific strings to help * distinguish instances ... */ /* maybe allocate device-global string IDs, and patch descriptors */ us = usb_gstrings_attach(cdev, acm_strings, ARRAY_SIZE(acm_string_defs)); if (IS_ERR(us)) return PTR_ERR(us); acm_control_interface_desc.iInterface = us[ACM_CTRL_IDX].id; acm_data_interface_desc.iInterface = us[ACM_DATA_IDX].id; acm_iad_descriptor.iFunction = us[ACM_IAD_IDX].id; /* allocate instance-specific interface IDs, and patch descriptors */ status = usb_interface_id(c, f); if (status < 0) goto fail; acm->ctrl_id = status; acm_iad_descriptor.bFirstInterface = status; acm_control_interface_desc.bInterfaceNumber = status; acm_union_desc .bMasterInterface0 = status; status = usb_interface_id(c, f); if (status < 0) goto fail; acm->data_id = status; acm_data_interface_desc.bInterfaceNumber = status; acm_union_desc.bSlaveInterface0 = status; acm_call_mgmt_descriptor.bDataInterface = status; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_in_desc); if (!ep) goto fail; acm->port.in = ep; ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_out_desc); if (!ep) goto fail; acm->port.out = ep; ep = usb_ep_autoconfig(cdev->gadget, &acm_fs_notify_desc); if (!ep) goto fail; acm->notify = ep; /* allocate notification */ acm->notify_req = gs_alloc_req(ep, sizeof(struct usb_cdc_notification) + 2, GFP_KERNEL); if (!acm->notify_req) goto fail; acm->notify_req->complete = acm_cdc_notify_complete; acm->notify_req->context = acm; /* support all relevant hardware speeds... we expect that when * hardware is dual speed, all bulk-capable endpoints work at * both speeds */ acm_hs_in_desc.bEndpointAddress = acm_fs_in_desc.bEndpointAddress; acm_hs_out_desc.bEndpointAddress = acm_fs_out_desc.bEndpointAddress; acm_hs_notify_desc.bEndpointAddress = acm_fs_notify_desc.bEndpointAddress; acm_ss_in_desc.bEndpointAddress = acm_fs_in_desc.bEndpointAddress; acm_ss_out_desc.bEndpointAddress = acm_fs_out_desc.bEndpointAddress; status = usb_assign_descriptors(f, acm_fs_function, acm_hs_function, acm_ss_function, acm_ss_function); if (status) goto fail; dev_dbg(&cdev->gadget->dev, "acm ttyGS%d: IN/%s OUT/%s NOTIFY/%s\n", acm->port_num, acm->port.in->name, acm->port.out->name, acm->notify->name); return 0; fail: if (acm->notify_req) gs_free_req(acm->notify, acm->notify_req); ERROR(cdev, "%s/%p: can't bind, err %d\n", f->name, f, status); return status; } static void acm_unbind(struct usb_configuration *c, struct usb_function *f) { struct f_acm *acm = func_to_acm(f); acm_string_defs[0].id = 0; usb_free_all_descriptors(f); if (acm->notify_req) gs_free_req(acm->notify, acm->notify_req); } static void acm_free_func(struct usb_function *f) { struct f_acm *acm = func_to_acm(f); kfree(acm); } static void acm_resume(struct usb_function *f) { struct f_acm *acm = func_to_acm(f); gserial_resume(&acm->port); } static void acm_suspend(struct usb_function *f) { struct f_acm *acm = func_to_acm(f); gserial_suspend(&acm->port); } static struct usb_function *acm_alloc_func(struct usb_function_instance *fi) { struct f_serial_opts *opts; struct f_acm *acm; acm = kzalloc(sizeof(*acm), GFP_KERNEL); if (!acm) return ERR_PTR(-ENOMEM); spin_lock_init(&acm->lock); acm->port.connect = acm_connect; acm->port.disconnect = acm_disconnect; acm->port.send_break = acm_send_break; acm->port.func.name = "acm"; acm->port.func.strings = acm_strings; /* descriptors are per-instance copies */ acm->port.func.bind = acm_bind; acm->port.func.set_alt = acm_set_alt; acm->port.func.setup = acm_setup; acm->port.func.disable = acm_disable; opts = container_of(fi, struct f_serial_opts, func_inst); acm->port_num = opts->port_num; acm->port.func.unbind = acm_unbind; acm->port.func.free_func = acm_free_func; acm->port.func.resume = acm_resume; acm->port.func.suspend = acm_suspend; return &acm->port.func; } static inline struct f_serial_opts *to_f_serial_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_serial_opts, func_inst.group); } static void acm_attr_release(struct config_item *item) { struct f_serial_opts *opts = to_f_serial_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations acm_item_ops = { .release = acm_attr_release, }; #ifdef CONFIG_U_SERIAL_CONSOLE static ssize_t f_acm_console_store(struct config_item *item, const char *page, size_t count) { return gserial_set_console(to_f_serial_opts(item)->port_num, page, count); } static ssize_t f_acm_console_show(struct config_item *item, char *page) { return gserial_get_console(to_f_serial_opts(item)->port_num, page); } CONFIGFS_ATTR(f_acm_, console); #endif /* CONFIG_U_SERIAL_CONSOLE */ static ssize_t f_acm_port_num_show(struct config_item *item, char *page) { return sprintf(page, "%u\n", to_f_serial_opts(item)->port_num); } CONFIGFS_ATTR_RO(f_acm_, port_num); static struct configfs_attribute *acm_attrs[] = { #ifdef CONFIG_U_SERIAL_CONSOLE &f_acm_attr_console, #endif &f_acm_attr_port_num, NULL, }; static const struct config_item_type acm_func_type = { .ct_item_ops = &acm_item_ops, .ct_attrs = acm_attrs, .ct_owner = THIS_MODULE, }; static void acm_free_instance(struct usb_function_instance *fi) { struct f_serial_opts *opts; opts = container_of(fi, struct f_serial_opts, func_inst); gserial_free_line(opts->port_num); kfree(opts); } static struct usb_function_instance *acm_alloc_instance(void) { struct f_serial_opts *opts; int ret; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); opts->func_inst.free_func_inst = acm_free_instance; ret = gserial_alloc_line(&opts->port_num); if (ret) { kfree(opts); return ERR_PTR(ret); } config_group_init_type_name(&opts->func_inst.group, "", &acm_func_type); return &opts->func_inst; } DECLARE_USB_FUNCTION_INIT(acm, acm_alloc_instance, acm_alloc_func); MODULE_LICENSE("GPL");
linux-master
drivers/usb/gadget/function/f_acm.c
// SPDX-License-Identifier: GPL-2.0 /* * RNDIS MSG parser * * Authors: Benedikt Spranger, Pengutronix * Robert Schwebel, Pengutronix * * This software was originally developed in conformance with * Microsoft's Remote NDIS Specification License Agreement. * * 03/12/2004 Kai-Uwe Bloem <[email protected]> * Fixed message length bug in init_response * * 03/25/2004 Kai-Uwe Bloem <[email protected]> * Fixed rndis_rm_hdr length bug. * * Copyright (C) 2004 by David Brownell * updates to merge with Linux 2.6, better match RNDIS spec */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/idr.h> #include <linux/list.h> #include <linux/proc_fs.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/netdevice.h> #include <asm/io.h> #include <asm/byteorder.h> #include <asm/unaligned.h> #include "u_rndis.h" #undef VERBOSE_DEBUG #include "rndis.h" /* The driver for your USB chip needs to support ep0 OUT to work with * RNDIS, plus all three CDC Ethernet endpoints (interrupt not optional). * * Windows hosts need an INF file like Documentation/usb/linux.inf * and will be happier if you provide the host_addr module parameter. */ #if 0 static int rndis_debug = 0; module_param (rndis_debug, int, 0); MODULE_PARM_DESC (rndis_debug, "enable debugging"); #else #define rndis_debug 0 #endif #ifdef CONFIG_USB_GADGET_DEBUG_FILES #define NAME_TEMPLATE "driver/rndis-%03d" #endif /* CONFIG_USB_GADGET_DEBUG_FILES */ static DEFINE_IDA(rndis_ida); /* Driver Version */ static const __le32 rndis_driver_version = cpu_to_le32(1); /* Function Prototypes */ static rndis_resp_t *rndis_add_response(struct rndis_params *params, u32 length); #ifdef CONFIG_USB_GADGET_DEBUG_FILES static const struct proc_ops rndis_proc_ops; #endif /* CONFIG_USB_GADGET_DEBUG_FILES */ /* supported OIDs */ static const u32 oid_supported_list[] = { /* the general stuff */ RNDIS_OID_GEN_SUPPORTED_LIST, RNDIS_OID_GEN_HARDWARE_STATUS, RNDIS_OID_GEN_MEDIA_SUPPORTED, RNDIS_OID_GEN_MEDIA_IN_USE, RNDIS_OID_GEN_MAXIMUM_FRAME_SIZE, RNDIS_OID_GEN_LINK_SPEED, RNDIS_OID_GEN_TRANSMIT_BLOCK_SIZE, RNDIS_OID_GEN_RECEIVE_BLOCK_SIZE, RNDIS_OID_GEN_VENDOR_ID, RNDIS_OID_GEN_VENDOR_DESCRIPTION, RNDIS_OID_GEN_VENDOR_DRIVER_VERSION, RNDIS_OID_GEN_CURRENT_PACKET_FILTER, RNDIS_OID_GEN_MAXIMUM_TOTAL_SIZE, RNDIS_OID_GEN_MEDIA_CONNECT_STATUS, RNDIS_OID_GEN_PHYSICAL_MEDIUM, /* the statistical stuff */ RNDIS_OID_GEN_XMIT_OK, RNDIS_OID_GEN_RCV_OK, RNDIS_OID_GEN_XMIT_ERROR, RNDIS_OID_GEN_RCV_ERROR, RNDIS_OID_GEN_RCV_NO_BUFFER, #ifdef RNDIS_OPTIONAL_STATS RNDIS_OID_GEN_DIRECTED_BYTES_XMIT, RNDIS_OID_GEN_DIRECTED_FRAMES_XMIT, RNDIS_OID_GEN_MULTICAST_BYTES_XMIT, RNDIS_OID_GEN_MULTICAST_FRAMES_XMIT, RNDIS_OID_GEN_BROADCAST_BYTES_XMIT, RNDIS_OID_GEN_BROADCAST_FRAMES_XMIT, RNDIS_OID_GEN_DIRECTED_BYTES_RCV, RNDIS_OID_GEN_DIRECTED_FRAMES_RCV, RNDIS_OID_GEN_MULTICAST_BYTES_RCV, RNDIS_OID_GEN_MULTICAST_FRAMES_RCV, RNDIS_OID_GEN_BROADCAST_BYTES_RCV, RNDIS_OID_GEN_BROADCAST_FRAMES_RCV, RNDIS_OID_GEN_RCV_CRC_ERROR, RNDIS_OID_GEN_TRANSMIT_QUEUE_LENGTH, #endif /* RNDIS_OPTIONAL_STATS */ /* mandatory 802.3 */ /* the general stuff */ RNDIS_OID_802_3_PERMANENT_ADDRESS, RNDIS_OID_802_3_CURRENT_ADDRESS, RNDIS_OID_802_3_MULTICAST_LIST, RNDIS_OID_802_3_MAC_OPTIONS, RNDIS_OID_802_3_MAXIMUM_LIST_SIZE, /* the statistical stuff */ RNDIS_OID_802_3_RCV_ERROR_ALIGNMENT, RNDIS_OID_802_3_XMIT_ONE_COLLISION, RNDIS_OID_802_3_XMIT_MORE_COLLISIONS, #ifdef RNDIS_OPTIONAL_STATS RNDIS_OID_802_3_XMIT_DEFERRED, RNDIS_OID_802_3_XMIT_MAX_COLLISIONS, RNDIS_OID_802_3_RCV_OVERRUN, RNDIS_OID_802_3_XMIT_UNDERRUN, RNDIS_OID_802_3_XMIT_HEARTBEAT_FAILURE, RNDIS_OID_802_3_XMIT_TIMES_CRS_LOST, RNDIS_OID_802_3_XMIT_LATE_COLLISIONS, #endif /* RNDIS_OPTIONAL_STATS */ #ifdef RNDIS_PM /* PM and wakeup are "mandatory" for USB, but the RNDIS specs * don't say what they mean ... and the NDIS specs are often * confusing and/or ambiguous in this context. (That is, more * so than their specs for the other OIDs.) * * FIXME someone who knows what these should do, please * implement them! */ /* power management */ OID_PNP_CAPABILITIES, OID_PNP_QUERY_POWER, OID_PNP_SET_POWER, #ifdef RNDIS_WAKEUP /* wake up host */ OID_PNP_ENABLE_WAKE_UP, OID_PNP_ADD_WAKE_UP_PATTERN, OID_PNP_REMOVE_WAKE_UP_PATTERN, #endif /* RNDIS_WAKEUP */ #endif /* RNDIS_PM */ }; /* NDIS Functions */ static int gen_ndis_query_resp(struct rndis_params *params, u32 OID, u8 *buf, unsigned buf_len, rndis_resp_t *r) { int retval = -ENOTSUPP; u32 length = 4; /* usually */ __le32 *outbuf; int i, count; rndis_query_cmplt_type *resp; struct net_device *net; struct rtnl_link_stats64 temp; const struct rtnl_link_stats64 *stats; if (!r) return -ENOMEM; resp = (rndis_query_cmplt_type *)r->buf; if (!resp) return -ENOMEM; if (buf_len && rndis_debug > 1) { pr_debug("query OID %08x value, len %d:\n", OID, buf_len); for (i = 0; i < buf_len; i += 16) { pr_debug("%03d: %08x %08x %08x %08x\n", i, get_unaligned_le32(&buf[i]), get_unaligned_le32(&buf[i + 4]), get_unaligned_le32(&buf[i + 8]), get_unaligned_le32(&buf[i + 12])); } } /* response goes here, right after the header */ outbuf = (__le32 *)&resp[1]; resp->InformationBufferOffset = cpu_to_le32(16); net = params->dev; stats = dev_get_stats(net, &temp); switch (OID) { /* general oids (table 4-1) */ /* mandatory */ case RNDIS_OID_GEN_SUPPORTED_LIST: pr_debug("%s: RNDIS_OID_GEN_SUPPORTED_LIST\n", __func__); length = sizeof(oid_supported_list); count = length / sizeof(u32); for (i = 0; i < count; i++) outbuf[i] = cpu_to_le32(oid_supported_list[i]); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_HARDWARE_STATUS: pr_debug("%s: RNDIS_OID_GEN_HARDWARE_STATUS\n", __func__); /* Bogus question! * Hardware must be ready to receive high level protocols. * BTW: * reddite ergo quae sunt Caesaris Caesari * et quae sunt Dei Deo! */ *outbuf = cpu_to_le32(0); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_MEDIA_SUPPORTED: pr_debug("%s: RNDIS_OID_GEN_MEDIA_SUPPORTED\n", __func__); *outbuf = cpu_to_le32(params->medium); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_MEDIA_IN_USE: pr_debug("%s: RNDIS_OID_GEN_MEDIA_IN_USE\n", __func__); /* one medium, one transport... (maybe you do it better) */ *outbuf = cpu_to_le32(params->medium); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_MAXIMUM_FRAME_SIZE: pr_debug("%s: RNDIS_OID_GEN_MAXIMUM_FRAME_SIZE\n", __func__); if (params->dev) { *outbuf = cpu_to_le32(params->dev->mtu); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_LINK_SPEED: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_LINK_SPEED\n", __func__); if (params->media_state == RNDIS_MEDIA_STATE_DISCONNECTED) *outbuf = cpu_to_le32(0); else *outbuf = cpu_to_le32(params->speed); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_TRANSMIT_BLOCK_SIZE: pr_debug("%s: RNDIS_OID_GEN_TRANSMIT_BLOCK_SIZE\n", __func__); if (params->dev) { *outbuf = cpu_to_le32(params->dev->mtu); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_RECEIVE_BLOCK_SIZE: pr_debug("%s: RNDIS_OID_GEN_RECEIVE_BLOCK_SIZE\n", __func__); if (params->dev) { *outbuf = cpu_to_le32(params->dev->mtu); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_VENDOR_ID: pr_debug("%s: RNDIS_OID_GEN_VENDOR_ID\n", __func__); *outbuf = cpu_to_le32(params->vendorID); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_VENDOR_DESCRIPTION: pr_debug("%s: RNDIS_OID_GEN_VENDOR_DESCRIPTION\n", __func__); if (params->vendorDescr) { length = strlen(params->vendorDescr); memcpy(outbuf, params->vendorDescr, length); } else { outbuf[0] = 0; } retval = 0; break; case RNDIS_OID_GEN_VENDOR_DRIVER_VERSION: pr_debug("%s: RNDIS_OID_GEN_VENDOR_DRIVER_VERSION\n", __func__); /* Created as LE */ *outbuf = rndis_driver_version; retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_CURRENT_PACKET_FILTER: pr_debug("%s: RNDIS_OID_GEN_CURRENT_PACKET_FILTER\n", __func__); *outbuf = cpu_to_le32(*params->filter); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_MAXIMUM_TOTAL_SIZE: pr_debug("%s: RNDIS_OID_GEN_MAXIMUM_TOTAL_SIZE\n", __func__); *outbuf = cpu_to_le32(RNDIS_MAX_TOTAL_SIZE); retval = 0; break; /* mandatory */ case RNDIS_OID_GEN_MEDIA_CONNECT_STATUS: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_MEDIA_CONNECT_STATUS\n", __func__); *outbuf = cpu_to_le32(params->media_state); retval = 0; break; case RNDIS_OID_GEN_PHYSICAL_MEDIUM: pr_debug("%s: RNDIS_OID_GEN_PHYSICAL_MEDIUM\n", __func__); *outbuf = cpu_to_le32(0); retval = 0; break; /* The RNDIS specification is incomplete/wrong. Some versions * of MS-Windows expect OIDs that aren't specified there. Other * versions emit undefined RNDIS messages. DOCUMENT ALL THESE! */ case RNDIS_OID_GEN_MAC_OPTIONS: /* from WinME */ pr_debug("%s: RNDIS_OID_GEN_MAC_OPTIONS\n", __func__); *outbuf = cpu_to_le32( RNDIS_MAC_OPTION_RECEIVE_SERIALIZED | RNDIS_MAC_OPTION_FULL_DUPLEX); retval = 0; break; /* statistics OIDs (table 4-2) */ /* mandatory */ case RNDIS_OID_GEN_XMIT_OK: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_XMIT_OK\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->tx_packets - stats->tx_errors - stats->tx_dropped); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_RCV_OK: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_RCV_OK\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->rx_packets - stats->rx_errors - stats->rx_dropped); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_XMIT_ERROR: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_XMIT_ERROR\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->tx_errors); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_RCV_ERROR: if (rndis_debug > 1) pr_debug("%s: RNDIS_OID_GEN_RCV_ERROR\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->rx_errors); retval = 0; } break; /* mandatory */ case RNDIS_OID_GEN_RCV_NO_BUFFER: pr_debug("%s: RNDIS_OID_GEN_RCV_NO_BUFFER\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->rx_dropped); retval = 0; } break; /* ieee802.3 OIDs (table 4-3) */ /* mandatory */ case RNDIS_OID_802_3_PERMANENT_ADDRESS: pr_debug("%s: RNDIS_OID_802_3_PERMANENT_ADDRESS\n", __func__); if (params->dev) { length = ETH_ALEN; memcpy(outbuf, params->host_mac, length); retval = 0; } break; /* mandatory */ case RNDIS_OID_802_3_CURRENT_ADDRESS: pr_debug("%s: RNDIS_OID_802_3_CURRENT_ADDRESS\n", __func__); if (params->dev) { length = ETH_ALEN; memcpy(outbuf, params->host_mac, length); retval = 0; } break; /* mandatory */ case RNDIS_OID_802_3_MULTICAST_LIST: pr_debug("%s: RNDIS_OID_802_3_MULTICAST_LIST\n", __func__); /* Multicast base address only */ *outbuf = cpu_to_le32(0xE0000000); retval = 0; break; /* mandatory */ case RNDIS_OID_802_3_MAXIMUM_LIST_SIZE: pr_debug("%s: RNDIS_OID_802_3_MAXIMUM_LIST_SIZE\n", __func__); /* Multicast base address only */ *outbuf = cpu_to_le32(1); retval = 0; break; case RNDIS_OID_802_3_MAC_OPTIONS: pr_debug("%s: RNDIS_OID_802_3_MAC_OPTIONS\n", __func__); *outbuf = cpu_to_le32(0); retval = 0; break; /* ieee802.3 statistics OIDs (table 4-4) */ /* mandatory */ case RNDIS_OID_802_3_RCV_ERROR_ALIGNMENT: pr_debug("%s: RNDIS_OID_802_3_RCV_ERROR_ALIGNMENT\n", __func__); if (stats) { *outbuf = cpu_to_le32(stats->rx_frame_errors); retval = 0; } break; /* mandatory */ case RNDIS_OID_802_3_XMIT_ONE_COLLISION: pr_debug("%s: RNDIS_OID_802_3_XMIT_ONE_COLLISION\n", __func__); *outbuf = cpu_to_le32(0); retval = 0; break; /* mandatory */ case RNDIS_OID_802_3_XMIT_MORE_COLLISIONS: pr_debug("%s: RNDIS_OID_802_3_XMIT_MORE_COLLISIONS\n", __func__); *outbuf = cpu_to_le32(0); retval = 0; break; default: pr_warn("%s: query unknown OID 0x%08X\n", __func__, OID); } if (retval < 0) length = 0; resp->InformationBufferLength = cpu_to_le32(length); r->length = length + sizeof(*resp); resp->MessageLength = cpu_to_le32(r->length); return retval; } static int gen_ndis_set_resp(struct rndis_params *params, u32 OID, u8 *buf, u32 buf_len, rndis_resp_t *r) { rndis_set_cmplt_type *resp; int i, retval = -ENOTSUPP; if (!r) return -ENOMEM; resp = (rndis_set_cmplt_type *)r->buf; if (!resp) return -ENOMEM; if (buf_len && rndis_debug > 1) { pr_debug("set OID %08x value, len %d:\n", OID, buf_len); for (i = 0; i < buf_len; i += 16) { pr_debug("%03d: %08x %08x %08x %08x\n", i, get_unaligned_le32(&buf[i]), get_unaligned_le32(&buf[i + 4]), get_unaligned_le32(&buf[i + 8]), get_unaligned_le32(&buf[i + 12])); } } switch (OID) { case RNDIS_OID_GEN_CURRENT_PACKET_FILTER: /* these NDIS_PACKET_TYPE_* bitflags are shared with * cdc_filter; it's not RNDIS-specific * NDIS_PACKET_TYPE_x == USB_CDC_PACKET_TYPE_x for x in: * PROMISCUOUS, DIRECTED, * MULTICAST, ALL_MULTICAST, BROADCAST */ *params->filter = (u16)get_unaligned_le32(buf); pr_debug("%s: RNDIS_OID_GEN_CURRENT_PACKET_FILTER %08x\n", __func__, *params->filter); /* this call has a significant side effect: it's * what makes the packet flow start and stop, like * activating the CDC Ethernet altsetting. */ retval = 0; if (*params->filter) { params->state = RNDIS_DATA_INITIALIZED; netif_carrier_on(params->dev); if (netif_running(params->dev)) netif_wake_queue(params->dev); } else { params->state = RNDIS_INITIALIZED; netif_carrier_off(params->dev); netif_stop_queue(params->dev); } break; case RNDIS_OID_802_3_MULTICAST_LIST: /* I think we can ignore this */ pr_debug("%s: RNDIS_OID_802_3_MULTICAST_LIST\n", __func__); retval = 0; break; default: pr_warn("%s: set unknown OID 0x%08X, size %d\n", __func__, OID, buf_len); } return retval; } /* * Response Functions */ static int rndis_init_response(struct rndis_params *params, rndis_init_msg_type *buf) { rndis_init_cmplt_type *resp; rndis_resp_t *r; if (!params->dev) return -ENOTSUPP; r = rndis_add_response(params, sizeof(rndis_init_cmplt_type)); if (!r) return -ENOMEM; resp = (rndis_init_cmplt_type *)r->buf; resp->MessageType = cpu_to_le32(RNDIS_MSG_INIT_C); resp->MessageLength = cpu_to_le32(52); resp->RequestID = buf->RequestID; /* Still LE in msg buffer */ resp->Status = cpu_to_le32(RNDIS_STATUS_SUCCESS); resp->MajorVersion = cpu_to_le32(RNDIS_MAJOR_VERSION); resp->MinorVersion = cpu_to_le32(RNDIS_MINOR_VERSION); resp->DeviceFlags = cpu_to_le32(RNDIS_DF_CONNECTIONLESS); resp->Medium = cpu_to_le32(RNDIS_MEDIUM_802_3); resp->MaxPacketsPerTransfer = cpu_to_le32(1); resp->MaxTransferSize = cpu_to_le32( params->dev->mtu + sizeof(struct ethhdr) + sizeof(struct rndis_packet_msg_type) + 22); resp->PacketAlignmentFactor = cpu_to_le32(0); resp->AFListOffset = cpu_to_le32(0); resp->AFListSize = cpu_to_le32(0); params->resp_avail(params->v); return 0; } static int rndis_query_response(struct rndis_params *params, rndis_query_msg_type *buf) { rndis_query_cmplt_type *resp; rndis_resp_t *r; /* pr_debug("%s: OID = %08X\n", __func__, cpu_to_le32(buf->OID)); */ if (!params->dev) return -ENOTSUPP; /* * we need more memory: * gen_ndis_query_resp expects enough space for * rndis_query_cmplt_type followed by data. * oid_supported_list is the largest data reply */ r = rndis_add_response(params, sizeof(oid_supported_list) + sizeof(rndis_query_cmplt_type)); if (!r) return -ENOMEM; resp = (rndis_query_cmplt_type *)r->buf; resp->MessageType = cpu_to_le32(RNDIS_MSG_QUERY_C); resp->RequestID = buf->RequestID; /* Still LE in msg buffer */ if (gen_ndis_query_resp(params, le32_to_cpu(buf->OID), le32_to_cpu(buf->InformationBufferOffset) + 8 + (u8 *)buf, le32_to_cpu(buf->InformationBufferLength), r)) { /* OID not supported */ resp->Status = cpu_to_le32(RNDIS_STATUS_NOT_SUPPORTED); resp->MessageLength = cpu_to_le32(sizeof *resp); resp->InformationBufferLength = cpu_to_le32(0); resp->InformationBufferOffset = cpu_to_le32(0); } else resp->Status = cpu_to_le32(RNDIS_STATUS_SUCCESS); params->resp_avail(params->v); return 0; } static int rndis_set_response(struct rndis_params *params, rndis_set_msg_type *buf) { u32 BufLength, BufOffset; rndis_set_cmplt_type *resp; rndis_resp_t *r; BufLength = le32_to_cpu(buf->InformationBufferLength); BufOffset = le32_to_cpu(buf->InformationBufferOffset); if ((BufLength > RNDIS_MAX_TOTAL_SIZE) || (BufOffset > RNDIS_MAX_TOTAL_SIZE) || (BufOffset + 8 >= RNDIS_MAX_TOTAL_SIZE)) return -EINVAL; r = rndis_add_response(params, sizeof(rndis_set_cmplt_type)); if (!r) return -ENOMEM; resp = (rndis_set_cmplt_type *)r->buf; #ifdef VERBOSE_DEBUG pr_debug("%s: Length: %d\n", __func__, BufLength); pr_debug("%s: Offset: %d\n", __func__, BufOffset); pr_debug("%s: InfoBuffer: ", __func__); for (i = 0; i < BufLength; i++) { pr_debug("%02x ", *(((u8 *) buf) + i + 8 + BufOffset)); } pr_debug("\n"); #endif resp->MessageType = cpu_to_le32(RNDIS_MSG_SET_C); resp->MessageLength = cpu_to_le32(16); resp->RequestID = buf->RequestID; /* Still LE in msg buffer */ if (gen_ndis_set_resp(params, le32_to_cpu(buf->OID), ((u8 *)buf) + 8 + BufOffset, BufLength, r)) resp->Status = cpu_to_le32(RNDIS_STATUS_NOT_SUPPORTED); else resp->Status = cpu_to_le32(RNDIS_STATUS_SUCCESS); params->resp_avail(params->v); return 0; } static int rndis_reset_response(struct rndis_params *params, rndis_reset_msg_type *buf) { rndis_reset_cmplt_type *resp; rndis_resp_t *r; u8 *xbuf; u32 length; /* drain the response queue */ while ((xbuf = rndis_get_next_response(params, &length))) rndis_free_response(params, xbuf); r = rndis_add_response(params, sizeof(rndis_reset_cmplt_type)); if (!r) return -ENOMEM; resp = (rndis_reset_cmplt_type *)r->buf; resp->MessageType = cpu_to_le32(RNDIS_MSG_RESET_C); resp->MessageLength = cpu_to_le32(16); resp->Status = cpu_to_le32(RNDIS_STATUS_SUCCESS); /* resent information */ resp->AddressingReset = cpu_to_le32(1); params->resp_avail(params->v); return 0; } static int rndis_keepalive_response(struct rndis_params *params, rndis_keepalive_msg_type *buf) { rndis_keepalive_cmplt_type *resp; rndis_resp_t *r; /* host "should" check only in RNDIS_DATA_INITIALIZED state */ r = rndis_add_response(params, sizeof(rndis_keepalive_cmplt_type)); if (!r) return -ENOMEM; resp = (rndis_keepalive_cmplt_type *)r->buf; resp->MessageType = cpu_to_le32(RNDIS_MSG_KEEPALIVE_C); resp->MessageLength = cpu_to_le32(16); resp->RequestID = buf->RequestID; /* Still LE in msg buffer */ resp->Status = cpu_to_le32(RNDIS_STATUS_SUCCESS); params->resp_avail(params->v); return 0; } /* * Device to Host Comunication */ static int rndis_indicate_status_msg(struct rndis_params *params, u32 status) { rndis_indicate_status_msg_type *resp; rndis_resp_t *r; if (params->state == RNDIS_UNINITIALIZED) return -ENOTSUPP; r = rndis_add_response(params, sizeof(rndis_indicate_status_msg_type)); if (!r) return -ENOMEM; resp = (rndis_indicate_status_msg_type *)r->buf; resp->MessageType = cpu_to_le32(RNDIS_MSG_INDICATE); resp->MessageLength = cpu_to_le32(20); resp->Status = cpu_to_le32(status); resp->StatusBufferLength = cpu_to_le32(0); resp->StatusBufferOffset = cpu_to_le32(0); params->resp_avail(params->v); return 0; } int rndis_signal_connect(struct rndis_params *params) { params->media_state = RNDIS_MEDIA_STATE_CONNECTED; return rndis_indicate_status_msg(params, RNDIS_STATUS_MEDIA_CONNECT); } EXPORT_SYMBOL_GPL(rndis_signal_connect); int rndis_signal_disconnect(struct rndis_params *params) { params->media_state = RNDIS_MEDIA_STATE_DISCONNECTED; return rndis_indicate_status_msg(params, RNDIS_STATUS_MEDIA_DISCONNECT); } EXPORT_SYMBOL_GPL(rndis_signal_disconnect); void rndis_uninit(struct rndis_params *params) { u8 *buf; u32 length; if (!params) return; params->state = RNDIS_UNINITIALIZED; /* drain the response queue */ while ((buf = rndis_get_next_response(params, &length))) rndis_free_response(params, buf); } EXPORT_SYMBOL_GPL(rndis_uninit); void rndis_set_host_mac(struct rndis_params *params, const u8 *addr) { params->host_mac = addr; } EXPORT_SYMBOL_GPL(rndis_set_host_mac); /* * Message Parser */ int rndis_msg_parser(struct rndis_params *params, u8 *buf) { u32 MsgType, MsgLength; __le32 *tmp; if (!buf) return -ENOMEM; tmp = (__le32 *)buf; MsgType = get_unaligned_le32(tmp++); MsgLength = get_unaligned_le32(tmp++); if (!params) return -ENOTSUPP; /* NOTE: RNDIS is *EXTREMELY* chatty ... Windows constantly polls for * rx/tx statistics and link status, in addition to KEEPALIVE traffic * and normal HC level polling to see if there's any IN traffic. */ /* For USB: responses may take up to 10 seconds */ switch (MsgType) { case RNDIS_MSG_INIT: pr_debug("%s: RNDIS_MSG_INIT\n", __func__); params->state = RNDIS_INITIALIZED; return rndis_init_response(params, (rndis_init_msg_type *)buf); case RNDIS_MSG_HALT: pr_debug("%s: RNDIS_MSG_HALT\n", __func__); params->state = RNDIS_UNINITIALIZED; if (params->dev) { netif_carrier_off(params->dev); netif_stop_queue(params->dev); } return 0; case RNDIS_MSG_QUERY: return rndis_query_response(params, (rndis_query_msg_type *)buf); case RNDIS_MSG_SET: return rndis_set_response(params, (rndis_set_msg_type *)buf); case RNDIS_MSG_RESET: pr_debug("%s: RNDIS_MSG_RESET\n", __func__); return rndis_reset_response(params, (rndis_reset_msg_type *)buf); case RNDIS_MSG_KEEPALIVE: /* For USB: host does this every 5 seconds */ if (rndis_debug > 1) pr_debug("%s: RNDIS_MSG_KEEPALIVE\n", __func__); return rndis_keepalive_response(params, (rndis_keepalive_msg_type *) buf); default: /* At least Windows XP emits some undefined RNDIS messages. * In one case those messages seemed to relate to the host * suspending itself. */ pr_warn("%s: unknown RNDIS message 0x%08X len %d\n", __func__, MsgType, MsgLength); /* Garbled message can be huge, so limit what we display */ if (MsgLength > 16) MsgLength = 16; print_hex_dump_bytes(__func__, DUMP_PREFIX_OFFSET, buf, MsgLength); break; } return -ENOTSUPP; } EXPORT_SYMBOL_GPL(rndis_msg_parser); static inline int rndis_get_nr(void) { return ida_simple_get(&rndis_ida, 0, 1000, GFP_KERNEL); } static inline void rndis_put_nr(int nr) { ida_simple_remove(&rndis_ida, nr); } struct rndis_params *rndis_register(void (*resp_avail)(void *v), void *v) { struct rndis_params *params; int i; if (!resp_avail) return ERR_PTR(-EINVAL); i = rndis_get_nr(); if (i < 0) { pr_debug("failed\n"); return ERR_PTR(-ENODEV); } params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) { rndis_put_nr(i); return ERR_PTR(-ENOMEM); } #ifdef CONFIG_USB_GADGET_DEBUG_FILES { struct proc_dir_entry *proc_entry; char name[20]; sprintf(name, NAME_TEMPLATE, i); proc_entry = proc_create_data(name, 0660, NULL, &rndis_proc_ops, params); if (!proc_entry) { kfree(params); rndis_put_nr(i); return ERR_PTR(-EIO); } } #endif params->confignr = i; params->used = 1; params->state = RNDIS_UNINITIALIZED; params->media_state = RNDIS_MEDIA_STATE_DISCONNECTED; params->resp_avail = resp_avail; params->v = v; INIT_LIST_HEAD(&params->resp_queue); spin_lock_init(&params->resp_lock); pr_debug("%s: configNr = %d\n", __func__, i); return params; } EXPORT_SYMBOL_GPL(rndis_register); void rndis_deregister(struct rndis_params *params) { int i; pr_debug("%s:\n", __func__); if (!params) return; i = params->confignr; #ifdef CONFIG_USB_GADGET_DEBUG_FILES { char name[20]; sprintf(name, NAME_TEMPLATE, i); remove_proc_entry(name, NULL); } #endif kfree(params); rndis_put_nr(i); } EXPORT_SYMBOL_GPL(rndis_deregister); int rndis_set_param_dev(struct rndis_params *params, struct net_device *dev, u16 *cdc_filter) { pr_debug("%s:\n", __func__); if (!dev) return -EINVAL; if (!params) return -1; params->dev = dev; params->filter = cdc_filter; return 0; } EXPORT_SYMBOL_GPL(rndis_set_param_dev); int rndis_set_param_vendor(struct rndis_params *params, u32 vendorID, const char *vendorDescr) { pr_debug("%s:\n", __func__); if (!vendorDescr) return -1; if (!params) return -1; params->vendorID = vendorID; params->vendorDescr = vendorDescr; return 0; } EXPORT_SYMBOL_GPL(rndis_set_param_vendor); int rndis_set_param_medium(struct rndis_params *params, u32 medium, u32 speed) { pr_debug("%s: %u %u\n", __func__, medium, speed); if (!params) return -1; params->medium = medium; params->speed = speed; return 0; } EXPORT_SYMBOL_GPL(rndis_set_param_medium); void rndis_add_hdr(struct sk_buff *skb) { struct rndis_packet_msg_type *header; if (!skb) return; header = skb_push(skb, sizeof(*header)); memset(header, 0, sizeof *header); header->MessageType = cpu_to_le32(RNDIS_MSG_PACKET); header->MessageLength = cpu_to_le32(skb->len); header->DataOffset = cpu_to_le32(36); header->DataLength = cpu_to_le32(skb->len - sizeof(*header)); } EXPORT_SYMBOL_GPL(rndis_add_hdr); void rndis_free_response(struct rndis_params *params, u8 *buf) { rndis_resp_t *r, *n; spin_lock(&params->resp_lock); list_for_each_entry_safe(r, n, &params->resp_queue, list) { if (r->buf == buf) { list_del(&r->list); kfree(r); } } spin_unlock(&params->resp_lock); } EXPORT_SYMBOL_GPL(rndis_free_response); u8 *rndis_get_next_response(struct rndis_params *params, u32 *length) { rndis_resp_t *r, *n; if (!length) return NULL; spin_lock(&params->resp_lock); list_for_each_entry_safe(r, n, &params->resp_queue, list) { if (!r->send) { r->send = 1; *length = r->length; spin_unlock(&params->resp_lock); return r->buf; } } spin_unlock(&params->resp_lock); return NULL; } EXPORT_SYMBOL_GPL(rndis_get_next_response); static rndis_resp_t *rndis_add_response(struct rndis_params *params, u32 length) { rndis_resp_t *r; /* NOTE: this gets copied into ether.c USB_BUFSIZ bytes ... */ r = kmalloc(sizeof(rndis_resp_t) + length, GFP_ATOMIC); if (!r) return NULL; r->buf = (u8 *)(r + 1); r->length = length; r->send = 0; spin_lock(&params->resp_lock); list_add_tail(&r->list, &params->resp_queue); spin_unlock(&params->resp_lock); return r; } int rndis_rm_hdr(struct gether *port, struct sk_buff *skb, struct sk_buff_head *list) { /* tmp points to a struct rndis_packet_msg_type */ __le32 *tmp = (void *)skb->data; /* MessageType, MessageLength */ if (cpu_to_le32(RNDIS_MSG_PACKET) != get_unaligned(tmp++)) { dev_kfree_skb_any(skb); return -EINVAL; } tmp++; /* DataOffset, DataLength */ if (!skb_pull(skb, get_unaligned_le32(tmp++) + 8)) { dev_kfree_skb_any(skb); return -EOVERFLOW; } skb_trim(skb, get_unaligned_le32(tmp++)); skb_queue_tail(list, skb); return 0; } EXPORT_SYMBOL_GPL(rndis_rm_hdr); #ifdef CONFIG_USB_GADGET_DEBUG_FILES static int rndis_proc_show(struct seq_file *m, void *v) { rndis_params *param = m->private; seq_printf(m, "Config Nr. %d\n" "used : %s\n" "state : %s\n" "medium : 0x%08X\n" "speed : %u\n" "cable : %s\n" "vendor ID : 0x%08X\n" "vendor : %s\n", param->confignr, (param->used) ? "y" : "n", ({ char *s = "?"; switch (param->state) { case RNDIS_UNINITIALIZED: s = "RNDIS_UNINITIALIZED"; break; case RNDIS_INITIALIZED: s = "RNDIS_INITIALIZED"; break; case RNDIS_DATA_INITIALIZED: s = "RNDIS_DATA_INITIALIZED"; break; } s; }), param->medium, (param->media_state) ? 0 : param->speed*100, (param->media_state) ? "disconnected" : "connected", param->vendorID, param->vendorDescr); return 0; } static ssize_t rndis_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { rndis_params *p = pde_data(file_inode(file)); u32 speed = 0; int i, fl_speed = 0; for (i = 0; i < count; i++) { char c; if (get_user(c, buffer)) return -EFAULT; switch (c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': fl_speed = 1; speed = speed * 10 + c - '0'; break; case 'C': case 'c': rndis_signal_connect(p); break; case 'D': case 'd': rndis_signal_disconnect(p); break; default: if (fl_speed) p->speed = speed; else pr_debug("%c is not valid\n", c); break; } buffer++; } return count; } static int rndis_proc_open(struct inode *inode, struct file *file) { return single_open(file, rndis_proc_show, pde_data(inode)); } static const struct proc_ops rndis_proc_ops = { .proc_open = rndis_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = rndis_proc_write, }; #define NAME_TEMPLATE "driver/rndis-%03d" #endif /* CONFIG_USB_GADGET_DEBUG_FILES */
linux-master
drivers/usb/gadget/function/rndis.c
// SPDX-License-Identifier: GPL-2.0+ /* * u_serial.c - utilities for USB gadget "serial port"/TTY support * * Copyright (C) 2003 Al Borchers ([email protected]) * Copyright (C) 2008 David Brownell * Copyright (C) 2008 by Nokia Corporation * * This code also borrows from usbserial.c, which is * Copyright (C) 1999 - 2002 Greg Kroah-Hartman ([email protected]) * Copyright (C) 2000 Peter Berger ([email protected]) * Copyright (C) 2000 Al Borchers ([email protected]) */ /* #define VERBOSE_DEBUG */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/module.h> #include <linux/console.h> #include <linux/kstrtox.h> #include <linux/kthread.h> #include <linux/workqueue.h> #include <linux/kfifo.h> #include "u_serial.h" /* * This component encapsulates the TTY layer glue needed to provide basic * "serial port" functionality through the USB gadget stack. Each such * port is exposed through a /dev/ttyGS* node. * * After this module has been loaded, the individual TTY port can be requested * (gserial_alloc_line()) and it will stay available until they are removed * (gserial_free_line()). Each one may be connected to a USB function * (gserial_connect), or disconnected (with gserial_disconnect) when the USB * host issues a config change event. Data can only flow when the port is * connected to the host. * * A given TTY port can be made available in multiple configurations. * For example, each one might expose a ttyGS0 node which provides a * login application. In one case that might use CDC ACM interface 0, * while another configuration might use interface 3 for that. The * work to handle that (including descriptor management) is not part * of this component. * * Configurations may expose more than one TTY port. For example, if * ttyGS0 provides login service, then ttyGS1 might provide dialer access * for a telephone or fax link. And ttyGS2 might be something that just * needs a simple byte stream interface for some messaging protocol that * is managed in userspace ... OBEX, PTP, and MTP have been mentioned. * * * gserial is the lifecycle interface, used by USB functions * gs_port is the I/O nexus, used by the tty driver * tty_struct links to the tty/filesystem framework * * gserial <---> gs_port ... links will be null when the USB link is * inactive; managed by gserial_{connect,disconnect}(). each gserial * instance can wrap its own USB control protocol. * gserial->ioport == usb_ep->driver_data ... gs_port * gs_port->port_usb ... gserial * * gs_port <---> tty_struct ... links will be null when the TTY file * isn't opened; managed by gs_open()/gs_close() * gserial->port_tty ... tty_struct * tty_struct->driver_data ... gserial */ /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the * next layer of buffering. For TX that's a circular buffer; for RX * consider it a NOP. A third layer is provided by the TTY code. */ #define QUEUE_SIZE 16 #define WRITE_BUF_SIZE 8192 /* TX only */ #define GS_CONSOLE_BUF_SIZE 8192 /* Prevents race conditions while accessing gser->ioport */ static DEFINE_SPINLOCK(serial_port_lock); /* console info */ struct gs_console { struct console console; struct work_struct work; spinlock_t lock; struct usb_request *req; struct kfifo buf; size_t missed; }; /* * The port structure holds info for each port, one for each minor number * (and thus for each /dev/ node). */ struct gs_port { struct tty_port port; spinlock_t port_lock; /* guard port_* access */ struct gserial *port_usb; #ifdef CONFIG_U_SERIAL_CONSOLE struct gs_console *console; #endif u8 port_num; struct list_head read_pool; int read_started; int read_allocated; struct list_head read_queue; unsigned n_read; struct delayed_work push; struct list_head write_pool; int write_started; int write_allocated; struct kfifo port_write_buf; wait_queue_head_t drain_wait; /* wait while writes drain */ bool write_busy; wait_queue_head_t close_wait; bool suspended; /* port suspended */ bool start_delayed; /* delay start when suspended */ /* REVISIT this state ... */ struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ }; static struct portmaster { struct mutex lock; /* protect open/close */ struct gs_port *port; } ports[MAX_U_SERIAL_PORTS]; #define GS_CLOSE_TIMEOUT 15 /* seconds */ #ifdef VERBOSE_DEBUG #ifndef pr_vdebug #define pr_vdebug(fmt, arg...) \ pr_debug(fmt, ##arg) #endif /* pr_vdebug */ #else #ifndef pr_vdebug #define pr_vdebug(fmt, arg...) \ ({ if (0) pr_debug(fmt, ##arg); }) #endif /* pr_vdebug */ #endif /*-------------------------------------------------------------------------*/ /* I/O glue between TTY (upper) and USB function (lower) driver layers */ /* * gs_alloc_req * * Allocate a usb_request and its buffer. Returns a pointer to the * usb_request or NULL if there is an error. */ struct usb_request * gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags) { struct usb_request *req; req = usb_ep_alloc_request(ep, kmalloc_flags); if (req != NULL) { req->length = len; req->buf = kmalloc(len, kmalloc_flags); if (req->buf == NULL) { usb_ep_free_request(ep, req); return NULL; } } return req; } EXPORT_SYMBOL_GPL(gs_alloc_req); /* * gs_free_req * * Free a usb_request and its buffer. */ void gs_free_req(struct usb_ep *ep, struct usb_request *req) { kfree(req->buf); usb_ep_free_request(ep, req); } EXPORT_SYMBOL_GPL(gs_free_req); /* * gs_send_packet * * If there is data to send, a packet is built in the given * buffer and the size is returned. If there is no data to * send, 0 is returned. * * Called with port_lock held. */ static unsigned gs_send_packet(struct gs_port *port, char *packet, unsigned size) { unsigned len; len = kfifo_len(&port->port_write_buf); if (len < size) size = len; if (size != 0) size = kfifo_out(&port->port_write_buf, packet, size); return size; } /* * gs_start_tx * * This function finds available write requests, calls * gs_send_packet to fill these packets with data, and * continues until either there are no more write requests * available or no more data to send. This function is * run whenever data arrives or write requests are available. * * Context: caller owns port_lock; port_usb is non-null. */ static int gs_start_tx(struct gs_port *port) /* __releases(&port->port_lock) __acquires(&port->port_lock) */ { struct list_head *pool = &port->write_pool; struct usb_ep *in; int status = 0; bool do_tty_wake = false; if (!port->port_usb) return status; in = port->port_usb->in; while (!port->write_busy && !list_empty(pool)) { struct usb_request *req; int len; if (port->write_started >= QUEUE_SIZE) break; req = list_entry(pool->next, struct usb_request, list); len = gs_send_packet(port, req->buf, in->maxpacket); if (len == 0) { wake_up_interruptible(&port->drain_wait); break; } do_tty_wake = true; req->length = len; list_del(&req->list); req->zero = kfifo_is_empty(&port->port_write_buf); pr_vdebug("ttyGS%d: tx len=%d, %3ph ...\n", port->port_num, len, req->buf); /* Drop lock while we call out of driver; completions * could be issued while we do so. Disconnection may * happen too; maybe immediately before we queue this! * * NOTE that we may keep sending data for a while after * the TTY closed (dev->ioport->port_tty is NULL). */ port->write_busy = true; spin_unlock(&port->port_lock); status = usb_ep_queue(in, req, GFP_ATOMIC); spin_lock(&port->port_lock); port->write_busy = false; if (status) { pr_debug("%s: %s %s err %d\n", __func__, "queue", in->name, status); list_add(&req->list, pool); break; } port->write_started++; /* abort immediately after disconnect */ if (!port->port_usb) break; } if (do_tty_wake && port->port.tty) tty_wakeup(port->port.tty); return status; } /* * Context: caller owns port_lock, and port_usb is set */ static unsigned gs_start_rx(struct gs_port *port) /* __releases(&port->port_lock) __acquires(&port->port_lock) */ { struct list_head *pool = &port->read_pool; struct usb_ep *out = port->port_usb->out; while (!list_empty(pool)) { struct usb_request *req; int status; struct tty_struct *tty; /* no more rx if closed */ tty = port->port.tty; if (!tty) break; if (port->read_started >= QUEUE_SIZE) break; req = list_entry(pool->next, struct usb_request, list); list_del(&req->list); req->length = out->maxpacket; /* drop lock while we call out; the controller driver * may need to call us back (e.g. for disconnect) */ spin_unlock(&port->port_lock); status = usb_ep_queue(out, req, GFP_ATOMIC); spin_lock(&port->port_lock); if (status) { pr_debug("%s: %s %s err %d\n", __func__, "queue", out->name, status); list_add(&req->list, pool); break; } port->read_started++; /* abort immediately after disconnect */ if (!port->port_usb) break; } return port->read_started; } /* * RX work takes data out of the RX queue and hands it up to the TTY * layer until it refuses to take any more data (or is throttled back). * Then it issues reads for any further data. * * If the RX queue becomes full enough that no usb_request is queued, * the OUT endpoint may begin NAKing as soon as its FIFO fills up. * So QUEUE_SIZE packets plus however many the FIFO holds (usually two) * can be buffered before the TTY layer's buffers (currently 64 KB). */ static void gs_rx_push(struct work_struct *work) { struct delayed_work *w = to_delayed_work(work); struct gs_port *port = container_of(w, struct gs_port, push); struct tty_struct *tty; struct list_head *queue = &port->read_queue; bool disconnect = false; bool do_push = false; /* hand any queued data to the tty */ spin_lock_irq(&port->port_lock); tty = port->port.tty; while (!list_empty(queue)) { struct usb_request *req; req = list_first_entry(queue, struct usb_request, list); /* leave data queued if tty was rx throttled */ if (tty && tty_throttled(tty)) break; switch (req->status) { case -ESHUTDOWN: disconnect = true; pr_vdebug("ttyGS%d: shutdown\n", port->port_num); break; default: /* presumably a transient fault */ pr_warn("ttyGS%d: unexpected RX status %d\n", port->port_num, req->status); fallthrough; case 0: /* normal completion */ break; } /* push data to (open) tty */ if (req->actual && tty) { char *packet = req->buf; unsigned size = req->actual; unsigned n; int count; /* we may have pushed part of this packet already... */ n = port->n_read; if (n) { packet += n; size -= n; } count = tty_insert_flip_string(&port->port, packet, size); if (count) do_push = true; if (count != size) { /* stop pushing; TTY layer can't handle more */ port->n_read += count; pr_vdebug("ttyGS%d: rx block %d/%d\n", port->port_num, count, req->actual); break; } port->n_read = 0; } list_move(&req->list, &port->read_pool); port->read_started--; } /* Push from tty to ldisc; this is handled by a workqueue, * so we won't get callbacks and can hold port_lock */ if (do_push) tty_flip_buffer_push(&port->port); /* We want our data queue to become empty ASAP, keeping data * in the tty and ldisc (not here). If we couldn't push any * this time around, RX may be starved, so wait until next jiffy. * * We may leave non-empty queue only when there is a tty, and * either it is throttled or there is no more room in flip buffer. */ if (!list_empty(queue) && !tty_throttled(tty)) schedule_delayed_work(&port->push, 1); /* If we're still connected, refill the USB RX queue. */ if (!disconnect && port->port_usb) gs_start_rx(port); spin_unlock_irq(&port->port_lock); } static void gs_read_complete(struct usb_ep *ep, struct usb_request *req) { struct gs_port *port = ep->driver_data; /* Queue all received data until the tty layer is ready for it. */ spin_lock(&port->port_lock); list_add_tail(&req->list, &port->read_queue); schedule_delayed_work(&port->push, 0); spin_unlock(&port->port_lock); } static void gs_write_complete(struct usb_ep *ep, struct usb_request *req) { struct gs_port *port = ep->driver_data; spin_lock(&port->port_lock); list_add(&req->list, &port->write_pool); port->write_started--; switch (req->status) { default: /* presumably a transient fault */ pr_warn("%s: unexpected %s status %d\n", __func__, ep->name, req->status); fallthrough; case 0: /* normal completion */ gs_start_tx(port); break; case -ESHUTDOWN: /* disconnect */ pr_vdebug("%s: %s shutdown\n", __func__, ep->name); break; } spin_unlock(&port->port_lock); } static void gs_free_requests(struct usb_ep *ep, struct list_head *head, int *allocated) { struct usb_request *req; while (!list_empty(head)) { req = list_entry(head->next, struct usb_request, list); list_del(&req->list); gs_free_req(ep, req); if (allocated) (*allocated)--; } } static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head, void (*fn)(struct usb_ep *, struct usb_request *), int *allocated) { int i; struct usb_request *req; int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE; /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't * do quite that many this time, don't fail ... we just won't * be as speedy as we might otherwise be. */ for (i = 0; i < n; i++) { req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); if (!req) return list_empty(head) ? -ENOMEM : 0; req->complete = fn; list_add_tail(&req->list, head); if (allocated) (*allocated)++; } return 0; } /** * gs_start_io - start USB I/O streams * @port: port to use * Context: holding port_lock; port_tty and port_usb are non-null * * We only start I/O when something is connected to both sides of * this port. If nothing is listening on the host side, we may * be pointlessly filling up our TX buffers and FIFO. */ static int gs_start_io(struct gs_port *port) { struct list_head *head = &port->read_pool; struct usb_ep *ep; int status; unsigned started; if (!port->port_usb || !port->port.tty) return -EIO; /* Allocate RX and TX I/O buffers. We can't easily do this much * earlier (with GFP_KERNEL) because the requests are coupled to * endpoints, as are the packet sizes we'll be using. Different * configurations may use different endpoints with a given port; * and high speed vs full speed changes packet sizes too. */ ep = port->port_usb->out; status = gs_alloc_requests(ep, head, gs_read_complete, &port->read_allocated); if (status) return status; status = gs_alloc_requests(port->port_usb->in, &port->write_pool, gs_write_complete, &port->write_allocated); if (status) { gs_free_requests(ep, head, &port->read_allocated); return status; } /* queue read requests */ port->n_read = 0; started = gs_start_rx(port); if (started) { gs_start_tx(port); /* Unblock any pending writes into our circular buffer, in case * we didn't in gs_start_tx() */ tty_wakeup(port->port.tty); } else { gs_free_requests(ep, head, &port->read_allocated); gs_free_requests(port->port_usb->in, &port->write_pool, &port->write_allocated); status = -EIO; } return status; } /*-------------------------------------------------------------------------*/ /* TTY Driver */ /* * gs_open sets up the link between a gs_port and its associated TTY. * That link is broken *only* by TTY close(), and all driver methods * know that. */ static int gs_open(struct tty_struct *tty, struct file *file) { int port_num = tty->index; struct gs_port *port; int status = 0; mutex_lock(&ports[port_num].lock); port = ports[port_num].port; if (!port) { status = -ENODEV; goto out; } spin_lock_irq(&port->port_lock); /* allocate circular buffer on first open */ if (!kfifo_initialized(&port->port_write_buf)) { spin_unlock_irq(&port->port_lock); /* * portmaster's mutex still protects from simultaneous open(), * and close() can't happen, yet. */ status = kfifo_alloc(&port->port_write_buf, WRITE_BUF_SIZE, GFP_KERNEL); if (status) { pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n", port_num, tty, file); goto out; } spin_lock_irq(&port->port_lock); } /* already open? Great. */ if (port->port.count++) goto exit_unlock_port; tty->driver_data = port; port->port.tty = tty; /* if connected, start the I/O stream */ if (port->port_usb) { /* if port is suspended, wait resume to start I/0 stream */ if (!port->suspended) { struct gserial *gser = port->port_usb; pr_debug("gs_open: start ttyGS%d\n", port->port_num); gs_start_io(port); if (gser->connect) gser->connect(gser); } else { pr_debug("delay start of ttyGS%d\n", port->port_num); port->start_delayed = true; } } pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file); exit_unlock_port: spin_unlock_irq(&port->port_lock); out: mutex_unlock(&ports[port_num].lock); return status; } static int gs_close_flush_done(struct gs_port *p) { int cond; /* return true on disconnect or empty buffer or if raced with open() */ spin_lock_irq(&p->port_lock); cond = p->port_usb == NULL || !kfifo_len(&p->port_write_buf) || p->port.count > 1; spin_unlock_irq(&p->port_lock); return cond; } static void gs_close(struct tty_struct *tty, struct file *file) { struct gs_port *port = tty->driver_data; struct gserial *gser; spin_lock_irq(&port->port_lock); if (port->port.count != 1) { raced_with_open: if (port->port.count == 0) WARN_ON(1); else --port->port.count; goto exit; } pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file); gser = port->port_usb; if (gser && !port->suspended && gser->disconnect) gser->disconnect(gser); /* wait for circular write buffer to drain, disconnect, or at * most GS_CLOSE_TIMEOUT seconds; then discard the rest */ if (kfifo_len(&port->port_write_buf) > 0 && gser) { spin_unlock_irq(&port->port_lock); wait_event_interruptible_timeout(port->drain_wait, gs_close_flush_done(port), GS_CLOSE_TIMEOUT * HZ); spin_lock_irq(&port->port_lock); if (port->port.count != 1) goto raced_with_open; gser = port->port_usb; } /* Iff we're disconnected, there can be no I/O in flight so it's * ok to free the circular buffer; else just scrub it. And don't * let the push async work fire again until we're re-opened. */ if (gser == NULL) kfifo_free(&port->port_write_buf); else kfifo_reset(&port->port_write_buf); port->start_delayed = false; port->port.count = 0; port->port.tty = NULL; pr_debug("gs_close: ttyGS%d (%p,%p) done!\n", port->port_num, tty, file); wake_up(&port->close_wait); exit: spin_unlock_irq(&port->port_lock); } static ssize_t gs_write(struct tty_struct *tty, const u8 *buf, size_t count) { struct gs_port *port = tty->driver_data; unsigned long flags; pr_vdebug("gs_write: ttyGS%d (%p) writing %zu bytes\n", port->port_num, tty, count); spin_lock_irqsave(&port->port_lock, flags); if (count) count = kfifo_in(&port->port_write_buf, buf, count); /* treat count == 0 as flush_chars() */ if (port->port_usb) gs_start_tx(port); spin_unlock_irqrestore(&port->port_lock, flags); return count; } static int gs_put_char(struct tty_struct *tty, u8 ch) { struct gs_port *port = tty->driver_data; unsigned long flags; int status; pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n", port->port_num, tty, ch, __builtin_return_address(0)); spin_lock_irqsave(&port->port_lock, flags); status = kfifo_put(&port->port_write_buf, ch); spin_unlock_irqrestore(&port->port_lock, flags); return status; } static void gs_flush_chars(struct tty_struct *tty) { struct gs_port *port = tty->driver_data; unsigned long flags; pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty); spin_lock_irqsave(&port->port_lock, flags); if (port->port_usb) gs_start_tx(port); spin_unlock_irqrestore(&port->port_lock, flags); } static unsigned int gs_write_room(struct tty_struct *tty) { struct gs_port *port = tty->driver_data; unsigned long flags; unsigned int room = 0; spin_lock_irqsave(&port->port_lock, flags); if (port->port_usb) room = kfifo_avail(&port->port_write_buf); spin_unlock_irqrestore(&port->port_lock, flags); pr_vdebug("gs_write_room: (%d,%p) room=%u\n", port->port_num, tty, room); return room; } static unsigned int gs_chars_in_buffer(struct tty_struct *tty) { struct gs_port *port = tty->driver_data; unsigned long flags; unsigned int chars; spin_lock_irqsave(&port->port_lock, flags); chars = kfifo_len(&port->port_write_buf); spin_unlock_irqrestore(&port->port_lock, flags); pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%u\n", port->port_num, tty, chars); return chars; } /* undo side effects of setting TTY_THROTTLED */ static void gs_unthrottle(struct tty_struct *tty) { struct gs_port *port = tty->driver_data; unsigned long flags; spin_lock_irqsave(&port->port_lock, flags); if (port->port_usb) { /* Kickstart read queue processing. We don't do xon/xoff, * rts/cts, or other handshaking with the host, but if the * read queue backs up enough we'll be NAKing OUT packets. */ pr_vdebug("ttyGS%d: unthrottle\n", port->port_num); schedule_delayed_work(&port->push, 0); } spin_unlock_irqrestore(&port->port_lock, flags); } static int gs_break_ctl(struct tty_struct *tty, int duration) { struct gs_port *port = tty->driver_data; int status = 0; struct gserial *gser; pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n", port->port_num, duration); spin_lock_irq(&port->port_lock); gser = port->port_usb; if (gser && gser->send_break) status = gser->send_break(gser, duration); spin_unlock_irq(&port->port_lock); return status; } static const struct tty_operations gs_tty_ops = { .open = gs_open, .close = gs_close, .write = gs_write, .put_char = gs_put_char, .flush_chars = gs_flush_chars, .write_room = gs_write_room, .chars_in_buffer = gs_chars_in_buffer, .unthrottle = gs_unthrottle, .break_ctl = gs_break_ctl, }; /*-------------------------------------------------------------------------*/ static struct tty_driver *gs_tty_driver; #ifdef CONFIG_U_SERIAL_CONSOLE static void gs_console_complete_out(struct usb_ep *ep, struct usb_request *req) { struct gs_console *cons = req->context; switch (req->status) { default: pr_warn("%s: unexpected %s status %d\n", __func__, ep->name, req->status); fallthrough; case 0: /* normal completion */ spin_lock(&cons->lock); req->length = 0; schedule_work(&cons->work); spin_unlock(&cons->lock); break; case -ECONNRESET: case -ESHUTDOWN: /* disconnect */ pr_vdebug("%s: %s shutdown\n", __func__, ep->name); break; } } static void __gs_console_push(struct gs_console *cons) { struct usb_request *req = cons->req; struct usb_ep *ep; size_t size; if (!req) return; /* disconnected */ if (req->length) return; /* busy */ ep = cons->console.data; size = kfifo_out(&cons->buf, req->buf, ep->maxpacket); if (!size) return; if (cons->missed && ep->maxpacket >= 64) { char buf[64]; size_t len; len = sprintf(buf, "\n[missed %zu bytes]\n", cons->missed); kfifo_in(&cons->buf, buf, len); cons->missed = 0; } req->length = size; spin_unlock_irq(&cons->lock); if (usb_ep_queue(ep, req, GFP_ATOMIC)) req->length = 0; spin_lock_irq(&cons->lock); } static void gs_console_work(struct work_struct *work) { struct gs_console *cons = container_of(work, struct gs_console, work); spin_lock_irq(&cons->lock); __gs_console_push(cons); spin_unlock_irq(&cons->lock); } static void gs_console_write(struct console *co, const char *buf, unsigned count) { struct gs_console *cons = container_of(co, struct gs_console, console); unsigned long flags; size_t n; spin_lock_irqsave(&cons->lock, flags); n = kfifo_in(&cons->buf, buf, count); if (n < count) cons->missed += count - n; if (cons->req && !cons->req->length) schedule_work(&cons->work); spin_unlock_irqrestore(&cons->lock, flags); } static struct tty_driver *gs_console_device(struct console *co, int *index) { *index = co->index; return gs_tty_driver; } static int gs_console_connect(struct gs_port *port) { struct gs_console *cons = port->console; struct usb_request *req; struct usb_ep *ep; if (!cons) return 0; ep = port->port_usb->in; req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); if (!req) return -ENOMEM; req->complete = gs_console_complete_out; req->context = cons; req->length = 0; spin_lock(&cons->lock); cons->req = req; cons->console.data = ep; spin_unlock(&cons->lock); pr_debug("ttyGS%d: console connected!\n", port->port_num); schedule_work(&cons->work); return 0; } static void gs_console_disconnect(struct gs_port *port) { struct gs_console *cons = port->console; struct usb_request *req; struct usb_ep *ep; if (!cons) return; spin_lock(&cons->lock); req = cons->req; ep = cons->console.data; cons->req = NULL; spin_unlock(&cons->lock); if (!req) return; usb_ep_dequeue(ep, req); gs_free_req(ep, req); } static int gs_console_init(struct gs_port *port) { struct gs_console *cons; int err; if (port->console) return 0; cons = kzalloc(sizeof(*port->console), GFP_KERNEL); if (!cons) return -ENOMEM; strcpy(cons->console.name, "ttyGS"); cons->console.write = gs_console_write; cons->console.device = gs_console_device; cons->console.flags = CON_PRINTBUFFER; cons->console.index = port->port_num; INIT_WORK(&cons->work, gs_console_work); spin_lock_init(&cons->lock); err = kfifo_alloc(&cons->buf, GS_CONSOLE_BUF_SIZE, GFP_KERNEL); if (err) { pr_err("ttyGS%d: allocate console buffer failed\n", port->port_num); kfree(cons); return err; } port->console = cons; register_console(&cons->console); spin_lock_irq(&port->port_lock); if (port->port_usb) gs_console_connect(port); spin_unlock_irq(&port->port_lock); return 0; } static void gs_console_exit(struct gs_port *port) { struct gs_console *cons = port->console; if (!cons) return; unregister_console(&cons->console); spin_lock_irq(&port->port_lock); if (cons->req) gs_console_disconnect(port); spin_unlock_irq(&port->port_lock); cancel_work_sync(&cons->work); kfifo_free(&cons->buf); kfree(cons); port->console = NULL; } ssize_t gserial_set_console(unsigned char port_num, const char *page, size_t count) { struct gs_port *port; bool enable; int ret; ret = kstrtobool(page, &enable); if (ret) return ret; mutex_lock(&ports[port_num].lock); port = ports[port_num].port; if (WARN_ON(port == NULL)) { ret = -ENXIO; goto out; } if (enable) ret = gs_console_init(port); else gs_console_exit(port); out: mutex_unlock(&ports[port_num].lock); return ret < 0 ? ret : count; } EXPORT_SYMBOL_GPL(gserial_set_console); ssize_t gserial_get_console(unsigned char port_num, char *page) { struct gs_port *port; ssize_t ret; mutex_lock(&ports[port_num].lock); port = ports[port_num].port; if (WARN_ON(port == NULL)) ret = -ENXIO; else ret = sprintf(page, "%u\n", !!port->console); mutex_unlock(&ports[port_num].lock); return ret; } EXPORT_SYMBOL_GPL(gserial_get_console); #else static int gs_console_connect(struct gs_port *port) { return 0; } static void gs_console_disconnect(struct gs_port *port) { } static int gs_console_init(struct gs_port *port) { return -ENOSYS; } static void gs_console_exit(struct gs_port *port) { } #endif static int gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding) { struct gs_port *port; int ret = 0; mutex_lock(&ports[port_num].lock); if (ports[port_num].port) { ret = -EBUSY; goto out; } port = kzalloc(sizeof(struct gs_port), GFP_KERNEL); if (port == NULL) { ret = -ENOMEM; goto out; } tty_port_init(&port->port); spin_lock_init(&port->port_lock); init_waitqueue_head(&port->drain_wait); init_waitqueue_head(&port->close_wait); INIT_DELAYED_WORK(&port->push, gs_rx_push); INIT_LIST_HEAD(&port->read_pool); INIT_LIST_HEAD(&port->read_queue); INIT_LIST_HEAD(&port->write_pool); port->port_num = port_num; port->port_line_coding = *coding; ports[port_num].port = port; out: mutex_unlock(&ports[port_num].lock); return ret; } static int gs_closed(struct gs_port *port) { int cond; spin_lock_irq(&port->port_lock); cond = port->port.count == 0; spin_unlock_irq(&port->port_lock); return cond; } static void gserial_free_port(struct gs_port *port) { cancel_delayed_work_sync(&port->push); /* wait for old opens to finish */ wait_event(port->close_wait, gs_closed(port)); WARN_ON(port->port_usb != NULL); tty_port_destroy(&port->port); kfree(port); } void gserial_free_line(unsigned char port_num) { struct gs_port *port; mutex_lock(&ports[port_num].lock); if (!ports[port_num].port) { mutex_unlock(&ports[port_num].lock); return; } port = ports[port_num].port; gs_console_exit(port); ports[port_num].port = NULL; mutex_unlock(&ports[port_num].lock); gserial_free_port(port); tty_unregister_device(gs_tty_driver, port_num); } EXPORT_SYMBOL_GPL(gserial_free_line); int gserial_alloc_line_no_console(unsigned char *line_num) { struct usb_cdc_line_coding coding; struct gs_port *port; struct device *tty_dev; int ret; int port_num; coding.dwDTERate = cpu_to_le32(9600); coding.bCharFormat = 8; coding.bParityType = USB_CDC_NO_PARITY; coding.bDataBits = USB_CDC_1_STOP_BITS; for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) { ret = gs_port_alloc(port_num, &coding); if (ret == -EBUSY) continue; if (ret) return ret; break; } if (ret) return ret; /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */ port = ports[port_num].port; tty_dev = tty_port_register_device(&port->port, gs_tty_driver, port_num, NULL); if (IS_ERR(tty_dev)) { pr_err("%s: failed to register tty for port %d, err %ld\n", __func__, port_num, PTR_ERR(tty_dev)); ret = PTR_ERR(tty_dev); mutex_lock(&ports[port_num].lock); ports[port_num].port = NULL; mutex_unlock(&ports[port_num].lock); gserial_free_port(port); goto err; } *line_num = port_num; err: return ret; } EXPORT_SYMBOL_GPL(gserial_alloc_line_no_console); int gserial_alloc_line(unsigned char *line_num) { int ret = gserial_alloc_line_no_console(line_num); if (!ret && !*line_num) gs_console_init(ports[*line_num].port); return ret; } EXPORT_SYMBOL_GPL(gserial_alloc_line); /** * gserial_connect - notify TTY I/O glue that USB link is active * @gser: the function, set up with endpoints and descriptors * @port_num: which port is active * Context: any (usually from irq) * * This is called activate endpoints and let the TTY layer know that * the connection is active ... not unlike "carrier detect". It won't * necessarily start I/O queues; unless the TTY is held open by any * task, there would be no point. However, the endpoints will be * activated so the USB host can perform I/O, subject to basic USB * hardware flow control. * * Caller needs to have set up the endpoints and USB function in @dev * before calling this, as well as the appropriate (speed-specific) * endpoint descriptors, and also have allocate @port_num by calling * @gserial_alloc_line(). * * Returns negative errno or zero. * On success, ep->driver_data will be overwritten. */ int gserial_connect(struct gserial *gser, u8 port_num) { struct gs_port *port; unsigned long flags; int status; if (port_num >= MAX_U_SERIAL_PORTS) return -ENXIO; port = ports[port_num].port; if (!port) { pr_err("serial line %d not allocated.\n", port_num); return -EINVAL; } if (port->port_usb) { pr_err("serial line %d is in use.\n", port_num); return -EBUSY; } /* activate the endpoints */ status = usb_ep_enable(gser->in); if (status < 0) return status; gser->in->driver_data = port; status = usb_ep_enable(gser->out); if (status < 0) goto fail_out; gser->out->driver_data = port; /* then tell the tty glue that I/O can work */ spin_lock_irqsave(&port->port_lock, flags); gser->ioport = port; port->port_usb = gser; /* REVISIT unclear how best to handle this state... * we don't really couple it with the Linux TTY. */ gser->port_line_coding = port->port_line_coding; /* REVISIT if waiting on "carrier detect", signal. */ /* if it's already open, start I/O ... and notify the serial * protocol about open/close status (connect/disconnect). */ if (port->port.count) { pr_debug("gserial_connect: start ttyGS%d\n", port->port_num); gs_start_io(port); if (gser->connect) gser->connect(gser); } else { if (gser->disconnect) gser->disconnect(gser); } status = gs_console_connect(port); spin_unlock_irqrestore(&port->port_lock, flags); return status; fail_out: usb_ep_disable(gser->in); return status; } EXPORT_SYMBOL_GPL(gserial_connect); /** * gserial_disconnect - notify TTY I/O glue that USB link is inactive * @gser: the function, on which gserial_connect() was called * Context: any (usually from irq) * * This is called to deactivate endpoints and let the TTY layer know * that the connection went inactive ... not unlike "hangup". * * On return, the state is as if gserial_connect() had never been called; * there is no active USB I/O on these endpoints. */ void gserial_disconnect(struct gserial *gser) { struct gs_port *port = gser->ioport; unsigned long flags; if (!port) return; spin_lock_irqsave(&serial_port_lock, flags); /* tell the TTY glue not to do I/O here any more */ spin_lock(&port->port_lock); gs_console_disconnect(port); /* REVISIT as above: how best to track this? */ port->port_line_coding = gser->port_line_coding; port->port_usb = NULL; gser->ioport = NULL; if (port->port.count > 0) { wake_up_interruptible(&port->drain_wait); if (port->port.tty) tty_hangup(port->port.tty); } port->suspended = false; spin_unlock(&port->port_lock); spin_unlock_irqrestore(&serial_port_lock, flags); /* disable endpoints, aborting down any active I/O */ usb_ep_disable(gser->out); usb_ep_disable(gser->in); /* finally, free any unused/unusable I/O buffers */ spin_lock_irqsave(&port->port_lock, flags); if (port->port.count == 0) kfifo_free(&port->port_write_buf); gs_free_requests(gser->out, &port->read_pool, NULL); gs_free_requests(gser->out, &port->read_queue, NULL); gs_free_requests(gser->in, &port->write_pool, NULL); port->read_allocated = port->read_started = port->write_allocated = port->write_started = 0; spin_unlock_irqrestore(&port->port_lock, flags); } EXPORT_SYMBOL_GPL(gserial_disconnect); void gserial_suspend(struct gserial *gser) { struct gs_port *port; unsigned long flags; spin_lock_irqsave(&serial_port_lock, flags); port = gser->ioport; if (!port) { spin_unlock_irqrestore(&serial_port_lock, flags); return; } spin_lock(&port->port_lock); spin_unlock(&serial_port_lock); port->suspended = true; spin_unlock_irqrestore(&port->port_lock, flags); } EXPORT_SYMBOL_GPL(gserial_suspend); void gserial_resume(struct gserial *gser) { struct gs_port *port; unsigned long flags; spin_lock_irqsave(&serial_port_lock, flags); port = gser->ioport; if (!port) { spin_unlock_irqrestore(&serial_port_lock, flags); return; } spin_lock(&port->port_lock); spin_unlock(&serial_port_lock); port->suspended = false; if (!port->start_delayed) { spin_unlock_irqrestore(&port->port_lock, flags); return; } pr_debug("delayed start ttyGS%d\n", port->port_num); gs_start_io(port); if (gser->connect) gser->connect(gser); port->start_delayed = false; spin_unlock_irqrestore(&port->port_lock, flags); } EXPORT_SYMBOL_GPL(gserial_resume); static int __init userial_init(void) { struct tty_driver *driver; unsigned i; int status; driver = tty_alloc_driver(MAX_U_SERIAL_PORTS, TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV); if (IS_ERR(driver)) return PTR_ERR(driver); driver->driver_name = "g_serial"; driver->name = "ttyGS"; /* uses dynamically assigned dev_t values */ driver->type = TTY_DRIVER_TYPE_SERIAL; driver->subtype = SERIAL_TYPE_NORMAL; driver->init_termios = tty_std_termios; /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on * MS-Windows. Otherwise, most of these flags shouldn't affect * anything unless we were to actually hook up to a serial line. */ driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; driver->init_termios.c_ispeed = 9600; driver->init_termios.c_ospeed = 9600; tty_set_operations(driver, &gs_tty_ops); for (i = 0; i < MAX_U_SERIAL_PORTS; i++) mutex_init(&ports[i].lock); /* export the driver ... */ status = tty_register_driver(driver); if (status) { pr_err("%s: cannot register, err %d\n", __func__, status); goto fail; } gs_tty_driver = driver; pr_debug("%s: registered %d ttyGS* device%s\n", __func__, MAX_U_SERIAL_PORTS, (MAX_U_SERIAL_PORTS == 1) ? "" : "s"); return status; fail: tty_driver_kref_put(driver); return status; } module_init(userial_init); static void __exit userial_cleanup(void) { tty_unregister_driver(gs_tty_driver); tty_driver_kref_put(gs_tty_driver); gs_tty_driver = NULL; } module_exit(userial_cleanup); MODULE_LICENSE("GPL");
linux-master
drivers/usb/gadget/function/u_serial.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_uac1.c -- USB Audio Class 1.0 Function (using u_audio API) * * Copyright (C) 2016 Ruslan Bilovol <[email protected]> * Copyright (C) 2021 Julian Scheel <[email protected]> * * This driver doesn't expect any real Audio codec to be present * on the device - the audio streams are simply sinked to and * sourced from a virtual ALSA sound card created. * * This file is based on f_uac1.c which is * Copyright (C) 2008 Bryan Wu <[email protected]> * Copyright (C) 2008 Analog Devices, Inc */ #include <linux/usb/audio.h> #include <linux/module.h> #include "u_audio.h" #include "u_uac1.h" /* UAC1 spec: 3.7.2.3 Audio Channel Cluster Format */ #define UAC1_CHANNEL_MASK 0x0FFF #define USB_OUT_FU_ID (out_feature_unit_desc->bUnitID) #define USB_IN_FU_ID (in_feature_unit_desc->bUnitID) #define EPIN_EN(_opts) ((_opts)->p_chmask != 0) #define EPOUT_EN(_opts) ((_opts)->c_chmask != 0) #define FUIN_EN(_opts) ((_opts)->p_mute_present \ || (_opts)->p_volume_present) #define FUOUT_EN(_opts) ((_opts)->c_mute_present \ || (_opts)->c_volume_present) struct f_uac1 { struct g_audio g_audio; u8 ac_intf, as_in_intf, as_out_intf; u8 ac_alt, as_in_alt, as_out_alt; /* needed for get_alt() */ struct usb_ctrlrequest setup_cr; /* will be used in data stage */ /* Interrupt IN endpoint of AC interface */ struct usb_ep *int_ep; atomic_t int_count; int ctl_id; /* EP id */ int c_srate; /* current capture srate */ int p_srate; /* current playback prate */ }; static inline struct f_uac1 *func_to_uac1(struct usb_function *f) { return container_of(f, struct f_uac1, g_audio.func); } static inline struct f_uac1_opts *g_audio_to_uac1_opts(struct g_audio *audio) { return container_of(audio->func.fi, struct f_uac1_opts, func_inst); } /* * DESCRIPTORS ... most are static, but strings and full * configuration descriptors are built on demand. */ /* * We have three interfaces - one AudioControl and two AudioStreaming * * The driver implements a simple UAC_1 topology. * USB-OUT -> IT_1 -> OT_2 -> ALSA_Capture * ALSA_Playback -> IT_3 -> OT_4 -> USB-IN */ /* B.3.1 Standard AC Interface Descriptor */ static struct usb_interface_descriptor ac_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bNumEndpoints = DYNAMIC */ .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, }; /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor *ac_header_desc; static struct uac_input_terminal_descriptor usb_out_it_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, .wChannelConfig = cpu_to_le16(0x3), }; static struct uac1_output_terminal_descriptor io_out_ot_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_OUTPUT_TERMINAL_SPEAKER), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ }; static struct uac_input_terminal_descriptor io_in_it_desc = { .bLength = UAC_DT_INPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_INPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_INPUT_TERMINAL_MICROPHONE), .bAssocTerminal = 0, .wChannelConfig = cpu_to_le16(0x3), }; static struct uac1_output_terminal_descriptor usb_in_ot_desc = { .bLength = UAC_DT_OUTPUT_TERMINAL_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_OUTPUT_TERMINAL, /* .bTerminalID = DYNAMIC */ .wTerminalType = cpu_to_le16(UAC_TERMINAL_STREAMING), .bAssocTerminal = 0, /* .bSourceID = DYNAMIC */ }; static struct uac_feature_unit_descriptor *in_feature_unit_desc; static struct uac_feature_unit_descriptor *out_feature_unit_desc; /* AC IN Interrupt Endpoint */ static struct usb_endpoint_descriptor ac_int_ep_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(2), .bInterval = 4, }; /* B.4.1 Standard AS Interface Descriptor */ static struct usb_interface_descriptor as_out_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_out_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_in_interface_alt_0_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; static struct usb_interface_descriptor as_in_interface_alt_1_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bAlternateSetting = 1, .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING, }; /* B.4.2 Class-Specific AS Interface Descriptor */ static struct uac1_as_header_descriptor as_out_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bDelay = 1, .wFormatTag = cpu_to_le16(UAC_FORMAT_TYPE_I_PCM), }; static struct uac1_as_header_descriptor as_in_header_desc = { .bLength = UAC_DT_AS_HEADER_SIZE, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_AS_GENERAL, /* .bTerminalLink = DYNAMIC */ .bDelay = 1, .wFormatTag = cpu_to_le16(UAC_FORMAT_TYPE_I_PCM), }; DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(UAC_MAX_RATES); #define uac_format_type_i_discrete_descriptor \ uac_format_type_i_discrete_descriptor_##UAC_MAX_RATES static struct uac_format_type_i_discrete_descriptor as_out_type_i_desc = { .bLength = 0, /* filled on rate setup */ .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 0, /* filled on rate setup */ }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor as_out_ep_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor as_iso_out_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 1, .wLockDelay = cpu_to_le16(1), }; static struct uac_format_type_i_discrete_descriptor as_in_type_i_desc = { .bLength = 0, /* filled on rate setup */ .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubtype = UAC_FORMAT_TYPE, .bFormatType = UAC_FORMAT_TYPE_I, .bSubframeSize = 2, .bBitResolution = 16, .bSamFreqType = 0, /* filled on rate setup */ }; /* Standard ISO OUT Endpoint Descriptor */ static struct usb_endpoint_descriptor as_in_ep_desc = { .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_SYNC_ASYNC | USB_ENDPOINT_XFER_ISOC, .wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE), .bInterval = 4, }; /* Class-specific AS ISO OUT Endpoint Descriptor */ static struct uac_iso_endpoint_descriptor as_iso_in_desc = { .bLength = UAC_ISO_ENDPOINT_DESC_SIZE, .bDescriptorType = USB_DT_CS_ENDPOINT, .bDescriptorSubtype = UAC_EP_GENERAL, .bmAttributes = 1, .bLockDelayUnits = 0, .wLockDelay = 0, }; static struct usb_descriptor_header *f_audio_desc[] = { (struct usb_descriptor_header *)&ac_interface_desc, (struct usb_descriptor_header *)&ac_header_desc, (struct usb_descriptor_header *)&usb_out_it_desc, (struct usb_descriptor_header *)&io_out_ot_desc, (struct usb_descriptor_header *)&out_feature_unit_desc, (struct usb_descriptor_header *)&io_in_it_desc, (struct usb_descriptor_header *)&usb_in_ot_desc, (struct usb_descriptor_header *)&in_feature_unit_desc, (struct usb_descriptor_header *)&ac_int_ep_desc, (struct usb_descriptor_header *)&as_out_interface_alt_0_desc, (struct usb_descriptor_header *)&as_out_interface_alt_1_desc, (struct usb_descriptor_header *)&as_out_header_desc, (struct usb_descriptor_header *)&as_out_type_i_desc, (struct usb_descriptor_header *)&as_out_ep_desc, (struct usb_descriptor_header *)&as_iso_out_desc, (struct usb_descriptor_header *)&as_in_interface_alt_0_desc, (struct usb_descriptor_header *)&as_in_interface_alt_1_desc, (struct usb_descriptor_header *)&as_in_header_desc, (struct usb_descriptor_header *)&as_in_type_i_desc, (struct usb_descriptor_header *)&as_in_ep_desc, (struct usb_descriptor_header *)&as_iso_in_desc, NULL, }; enum { STR_AC_IF, STR_USB_OUT_IT, STR_USB_OUT_IT_CH_NAMES, STR_IO_OUT_OT, STR_IO_IN_IT, STR_IO_IN_IT_CH_NAMES, STR_USB_IN_OT, STR_FU_IN, STR_FU_OUT, STR_AS_OUT_IF_ALT0, STR_AS_OUT_IF_ALT1, STR_AS_IN_IF_ALT0, STR_AS_IN_IF_ALT1, }; static struct usb_string strings_uac1[] = { /* [STR_AC_IF].s = DYNAMIC, */ [STR_USB_OUT_IT].s = "Playback Input terminal", [STR_USB_OUT_IT_CH_NAMES].s = "Playback Channels", [STR_IO_OUT_OT].s = "Playback Output terminal", [STR_IO_IN_IT].s = "Capture Input terminal", [STR_IO_IN_IT_CH_NAMES].s = "Capture Channels", [STR_USB_IN_OT].s = "Capture Output terminal", [STR_FU_IN].s = "Capture Volume", [STR_FU_OUT].s = "Playback Volume", [STR_AS_OUT_IF_ALT0].s = "Playback Inactive", [STR_AS_OUT_IF_ALT1].s = "Playback Active", [STR_AS_IN_IF_ALT0].s = "Capture Inactive", [STR_AS_IN_IF_ALT1].s = "Capture Active", { }, }; static struct usb_gadget_strings str_uac1 = { .language = 0x0409, /* en-us */ .strings = strings_uac1, }; static struct usb_gadget_strings *uac1_strings[] = { &str_uac1, NULL, }; /* * This function is an ALSA sound card following USB Audio Class Spec 1.0. */ static void uac_cs_attr_sample_rate(struct usb_ep *ep, struct usb_request *req) { struct usb_function *fn = ep->driver_data; struct usb_composite_dev *cdev = fn->config->cdev; struct g_audio *agdev = func_to_g_audio(fn); struct f_uac1 *uac1 = func_to_uac1(fn); u8 *buf = (u8 *)req->buf; u32 val = 0; if (req->actual != 3) { WARN(cdev, "Invalid data size for UAC_EP_CS_ATTR_SAMPLE_RATE.\n"); return; } val = buf[0] | (buf[1] << 8) | (buf[2] << 16); if (uac1->ctl_id == (USB_DIR_IN | 2)) { uac1->p_srate = val; u_audio_set_playback_srate(agdev, uac1->p_srate); } else if (uac1->ctl_id == (USB_DIR_OUT | 1)) { uac1->c_srate = val; u_audio_set_capture_srate(agdev, uac1->c_srate); } } static void audio_notify_complete(struct usb_ep *_ep, struct usb_request *req) { struct g_audio *audio = req->context; struct f_uac1 *uac1 = func_to_uac1(&audio->func); atomic_dec(&uac1->int_count); kfree(req->buf); usb_ep_free_request(_ep, req); } static int audio_notify(struct g_audio *audio, int unit_id, int cs) { struct f_uac1 *uac1 = func_to_uac1(&audio->func); struct usb_request *req; struct uac1_status_word *msg; int ret; if (!uac1->int_ep->enabled) return 0; if (atomic_inc_return(&uac1->int_count) > UAC1_DEF_INT_REQ_NUM) { atomic_dec(&uac1->int_count); return 0; } req = usb_ep_alloc_request(uac1->int_ep, GFP_ATOMIC); if (req == NULL) { ret = -ENOMEM; goto err_dec_int_count; } msg = kmalloc(sizeof(*msg), GFP_ATOMIC); if (msg == NULL) { ret = -ENOMEM; goto err_free_request; } msg->bStatusType = UAC1_STATUS_TYPE_IRQ_PENDING | UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF; msg->bOriginator = unit_id; req->length = sizeof(*msg); req->buf = msg; req->context = audio; req->complete = audio_notify_complete; ret = usb_ep_queue(uac1->int_ep, req, GFP_ATOMIC); if (ret) goto err_free_msg; return 0; err_free_msg: kfree(msg); err_free_request: usb_ep_free_request(uac1->int_ep, req); err_dec_int_count: atomic_dec(&uac1->int_count); return ret; } static int in_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { unsigned int mute; u_audio_get_mute(audio, is_playback, &mute); *(u8 *)req->buf = mute; value = min_t(unsigned int, w_length, 1); } else if (control_selector == UAC_FU_VOLUME) { __le16 c; s16 volume; u_audio_get_volume(audio, is_playback, &volume); c = cpu_to_le16(volume); value = min_t(unsigned int, w_length, sizeof(c)); memcpy(req->buf, &c, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_min(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 min_db; if (is_playback) min_db = opts->p_volume_min; else min_db = opts->c_volume_min; r = cpu_to_le16(min_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_max(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 max_db; if (is_playback) max_db = opts->p_volume_max; else max_db = opts->c_volume_max; r = cpu_to_le16(max_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static int in_rq_res(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; int value = -EOPNOTSUPP; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_VOLUME) { __le16 r; s16 res_db; if (is_playback) res_db = opts->p_volume_res; else res_db = opts->c_volume_res; r = cpu_to_le16(res_db); value = min_t(unsigned int, w_length, sizeof(r)); memcpy(req->buf, &r, value); } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return value; } static void out_rq_cur_complete(struct usb_ep *ep, struct usb_request *req) { struct g_audio *audio = req->context; struct usb_composite_dev *cdev = audio->func.config->cdev; struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); struct f_uac1 *uac1 = func_to_uac1(&audio->func); struct usb_ctrlrequest *cr = &uac1->setup_cr; u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; if (req->status != 0) { dev_dbg(&cdev->gadget->dev, "completion err %d\n", req->status); return; } if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { unsigned int is_playback = 0; if (FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) is_playback = 1; if (control_selector == UAC_FU_MUTE) { u8 mute = *(u8 *)req->buf; u_audio_set_mute(audio, is_playback, mute); return; } else if (control_selector == UAC_FU_VOLUME) { __le16 *c = req->buf; s16 volume; volume = le16_to_cpu(*c); u_audio_set_volume(audio, is_playback, volume); return; } else { dev_err(&audio->gadget->dev, "%s:%d control_selector=%d TODO!\n", __func__, __LINE__, control_selector); usb_ep_set_halt(ep); } } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); usb_ep_set_halt(ep); } } static int out_rq_cur(struct usb_function *fn, const struct usb_ctrlrequest *cr) { struct usb_request *req = fn->config->cdev->req; struct g_audio *audio = func_to_g_audio(fn); struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); struct f_uac1 *uac1 = func_to_uac1(&audio->func); u16 w_length = le16_to_cpu(cr->wLength); u16 w_index = le16_to_cpu(cr->wIndex); u16 w_value = le16_to_cpu(cr->wValue); u8 entity_id = (w_index >> 8) & 0xff; u8 control_selector = w_value >> 8; if ((FUIN_EN(opts) && (entity_id == USB_IN_FU_ID)) || (FUOUT_EN(opts) && (entity_id == USB_OUT_FU_ID))) { memcpy(&uac1->setup_cr, cr, sizeof(*cr)); req->context = audio; req->complete = out_rq_cur_complete; return w_length; } else { dev_err(&audio->gadget->dev, "%s:%d entity_id=%d control_selector=%d TODO!\n", __func__, __LINE__, entity_id, control_selector); } return -EOPNOTSUPP; } static int ac_rq_in(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; int value = -EOPNOTSUPP; u8 ep = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_GET_CUR: return in_rq_cur(f, ctrl); case UAC_GET_MIN: return in_rq_min(f, ctrl); case UAC_GET_MAX: return in_rq_max(f, ctrl); case UAC_GET_RES: return in_rq_res(f, ctrl); case UAC_GET_MEM: break; case UAC_GET_STAT: value = len; break; default: break; } return value; } static int audio_set_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = f->config->cdev->req; struct f_uac1 *uac1 = func_to_uac1(f); int value = -EOPNOTSUPP; u16 ep = le16_to_cpu(ctrl->wIndex); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 cs = w_value >> 8; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_SET_CUR: { if (cs == UAC_EP_CS_ATTR_SAMPLE_RATE) { cdev->gadget->ep0->driver_data = f; uac1->ctl_id = ep; req->complete = uac_cs_attr_sample_rate; } value = len; break; } case UAC_SET_MIN: break; case UAC_SET_MAX: break; case UAC_SET_RES: break; case UAC_SET_MEM: break; default: break; } return value; } static int audio_get_endpoint_req(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = f->config->cdev->req; struct f_uac1 *uac1 = func_to_uac1(f); u8 *buf = (u8 *)req->buf; int value = -EOPNOTSUPP; u8 ep = le16_to_cpu(ctrl->wIndex); u16 len = le16_to_cpu(ctrl->wLength); u16 w_value = le16_to_cpu(ctrl->wValue); u8 cs = w_value >> 8; u32 val = 0; DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n", ctrl->bRequest, w_value, len, ep); switch (ctrl->bRequest) { case UAC_GET_CUR: { if (cs == UAC_EP_CS_ATTR_SAMPLE_RATE) { if (ep == (USB_DIR_IN | 2)) val = uac1->p_srate; else if (ep == (USB_DIR_OUT | 1)) val = uac1->c_srate; buf[2] = (val >> 16) & 0xff; buf[1] = (val >> 8) & 0xff; buf[0] = val & 0xff; } value = len; break; } case UAC_GET_MIN: case UAC_GET_MAX: case UAC_GET_RES: value = len; break; case UAC_GET_MEM: break; default: break; } return value; } static int f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything; interface * activation uses set_alt(). */ switch (ctrl->bRequestType) { case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_set_endpoint_req(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT: value = audio_get_endpoint_req(f, ctrl); break; case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE: if (ctrl->bRequest == UAC_SET_CUR) value = out_rq_cur(f, ctrl); break; case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE: value = ac_rq_in(f, ctrl); break; default: ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "audio response on err %d\n", value); } /* device either stalls (value < 0) or reports success */ return value; } static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct g_audio *audio = func_to_g_audio(f); struct f_uac1 *uac1 = func_to_uac1(f); int ret = 0; /* No i/f has more than 2 alt settings */ if (alt > 1) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } if (intf == uac1->ac_intf) { /* Control I/f has only 1 AltSetting - 0 */ if (alt) { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } /* restart interrupt endpoint */ if (uac1->int_ep) { usb_ep_disable(uac1->int_ep); config_ep_by_speed(gadget, &audio->func, uac1->int_ep); usb_ep_enable(uac1->int_ep); } return 0; } if (intf == uac1->as_out_intf) { uac1->as_out_alt = alt; if (alt) ret = u_audio_start_capture(&uac1->g_audio); else u_audio_stop_capture(&uac1->g_audio); } else if (intf == uac1->as_in_intf) { uac1->as_in_alt = alt; if (alt) ret = u_audio_start_playback(&uac1->g_audio); else u_audio_stop_playback(&uac1->g_audio); } else { dev_err(dev, "%s:%d Error!\n", __func__, __LINE__); return -EINVAL; } return ret; } static int f_audio_get_alt(struct usb_function *f, unsigned intf) { struct usb_composite_dev *cdev = f->config->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct f_uac1 *uac1 = func_to_uac1(f); if (intf == uac1->ac_intf) return uac1->ac_alt; else if (intf == uac1->as_out_intf) return uac1->as_out_alt; else if (intf == uac1->as_in_intf) return uac1->as_in_alt; else dev_err(dev, "%s:%d Invalid Interface %d!\n", __func__, __LINE__, intf); return -EINVAL; } static void f_audio_disable(struct usb_function *f) { struct f_uac1 *uac1 = func_to_uac1(f); uac1->as_out_alt = 0; uac1->as_in_alt = 0; u_audio_stop_playback(&uac1->g_audio); u_audio_stop_capture(&uac1->g_audio); if (uac1->int_ep) usb_ep_disable(uac1->int_ep); } static void f_audio_suspend(struct usb_function *f) { struct f_uac1 *uac1 = func_to_uac1(f); u_audio_suspend(&uac1->g_audio); } /*-------------------------------------------------------------------------*/ static struct uac_feature_unit_descriptor *build_fu_desc(int chmask) { struct uac_feature_unit_descriptor *fu_desc; int channels = num_channels(chmask); int fu_desc_size = UAC_DT_FEATURE_UNIT_SIZE(channels); fu_desc = kzalloc(fu_desc_size, GFP_KERNEL); if (!fu_desc) return NULL; fu_desc->bLength = fu_desc_size; fu_desc->bDescriptorType = USB_DT_CS_INTERFACE; fu_desc->bDescriptorSubtype = UAC_FEATURE_UNIT; fu_desc->bControlSize = 2; /* bUnitID, bSourceID and bmaControls will be defined later */ return fu_desc; } /* B.3.2 Class-Specific AC Interface Descriptor */ static struct uac1_ac_header_descriptor *build_ac_header_desc(struct f_uac1_opts *opts) { struct uac1_ac_header_descriptor *ac_desc; int ac_header_desc_size; int num_ifaces = 0; if (EPOUT_EN(opts)) num_ifaces++; if (EPIN_EN(opts)) num_ifaces++; ac_header_desc_size = UAC_DT_AC_HEADER_SIZE(num_ifaces); ac_desc = kzalloc(ac_header_desc_size, GFP_KERNEL); if (!ac_desc) return NULL; ac_desc->bLength = ac_header_desc_size; ac_desc->bDescriptorType = USB_DT_CS_INTERFACE; ac_desc->bDescriptorSubtype = UAC_HEADER; ac_desc->bcdADC = cpu_to_le16(0x0100); ac_desc->bInCollection = num_ifaces; /* wTotalLength and baInterfaceNr will be defined later */ return ac_desc; } /* Use macro to overcome line length limitation */ #define USBDHDR(p) (struct usb_descriptor_header *)(p) static void setup_descriptor(struct f_uac1_opts *opts) { /* patch descriptors */ int i = 1; /* ID's start with 1 */ if (EPOUT_EN(opts)) usb_out_it_desc.bTerminalID = i++; if (EPIN_EN(opts)) io_in_it_desc.bTerminalID = i++; if (EPOUT_EN(opts)) io_out_ot_desc.bTerminalID = i++; if (EPIN_EN(opts)) usb_in_ot_desc.bTerminalID = i++; if (FUOUT_EN(opts)) out_feature_unit_desc->bUnitID = i++; if (FUIN_EN(opts)) in_feature_unit_desc->bUnitID = i++; if (FUIN_EN(opts)) { usb_in_ot_desc.bSourceID = in_feature_unit_desc->bUnitID; in_feature_unit_desc->bSourceID = io_in_it_desc.bTerminalID; } else { usb_in_ot_desc.bSourceID = io_in_it_desc.bTerminalID; } if (FUOUT_EN(opts)) { io_out_ot_desc.bSourceID = out_feature_unit_desc->bUnitID; out_feature_unit_desc->bSourceID = usb_out_it_desc.bTerminalID; } else { io_out_ot_desc.bSourceID = usb_out_it_desc.bTerminalID; } as_out_header_desc.bTerminalLink = usb_out_it_desc.bTerminalID; as_in_header_desc.bTerminalLink = usb_in_ot_desc.bTerminalID; ac_header_desc->wTotalLength = cpu_to_le16(ac_header_desc->bLength); if (EPIN_EN(opts)) { u16 len = le16_to_cpu(ac_header_desc->wTotalLength); len += sizeof(usb_in_ot_desc); len += sizeof(io_in_it_desc); if (FUIN_EN(opts)) len += in_feature_unit_desc->bLength; ac_header_desc->wTotalLength = cpu_to_le16(len); } if (EPOUT_EN(opts)) { u16 len = le16_to_cpu(ac_header_desc->wTotalLength); len += sizeof(usb_out_it_desc); len += sizeof(io_out_ot_desc); if (FUOUT_EN(opts)) len += out_feature_unit_desc->bLength; ac_header_desc->wTotalLength = cpu_to_le16(len); } i = 0; f_audio_desc[i++] = USBDHDR(&ac_interface_desc); f_audio_desc[i++] = USBDHDR(ac_header_desc); if (EPOUT_EN(opts)) { f_audio_desc[i++] = USBDHDR(&usb_out_it_desc); f_audio_desc[i++] = USBDHDR(&io_out_ot_desc); if (FUOUT_EN(opts)) f_audio_desc[i++] = USBDHDR(out_feature_unit_desc); } if (EPIN_EN(opts)) { f_audio_desc[i++] = USBDHDR(&io_in_it_desc); f_audio_desc[i++] = USBDHDR(&usb_in_ot_desc); if (FUIN_EN(opts)) f_audio_desc[i++] = USBDHDR(in_feature_unit_desc); } if (FUOUT_EN(opts) || FUIN_EN(opts)) f_audio_desc[i++] = USBDHDR(&ac_int_ep_desc); if (EPOUT_EN(opts)) { f_audio_desc[i++] = USBDHDR(&as_out_interface_alt_0_desc); f_audio_desc[i++] = USBDHDR(&as_out_interface_alt_1_desc); f_audio_desc[i++] = USBDHDR(&as_out_header_desc); f_audio_desc[i++] = USBDHDR(&as_out_type_i_desc); f_audio_desc[i++] = USBDHDR(&as_out_ep_desc); f_audio_desc[i++] = USBDHDR(&as_iso_out_desc); } if (EPIN_EN(opts)) { f_audio_desc[i++] = USBDHDR(&as_in_interface_alt_0_desc); f_audio_desc[i++] = USBDHDR(&as_in_interface_alt_1_desc); f_audio_desc[i++] = USBDHDR(&as_in_header_desc); f_audio_desc[i++] = USBDHDR(&as_in_type_i_desc); f_audio_desc[i++] = USBDHDR(&as_in_ep_desc); f_audio_desc[i++] = USBDHDR(&as_iso_in_desc); } f_audio_desc[i] = NULL; } static int f_audio_validate_opts(struct g_audio *audio, struct device *dev) { struct f_uac1_opts *opts = g_audio_to_uac1_opts(audio); if (!opts->p_chmask && !opts->c_chmask) { dev_err(dev, "Error: no playback and capture channels\n"); return -EINVAL; } else if (opts->p_chmask & ~UAC1_CHANNEL_MASK) { dev_err(dev, "Error: unsupported playback channels mask\n"); return -EINVAL; } else if (opts->c_chmask & ~UAC1_CHANNEL_MASK) { dev_err(dev, "Error: unsupported capture channels mask\n"); return -EINVAL; } else if ((opts->p_ssize < 1) || (opts->p_ssize > 4)) { dev_err(dev, "Error: incorrect playback sample size\n"); return -EINVAL; } else if ((opts->c_ssize < 1) || (opts->c_ssize > 4)) { dev_err(dev, "Error: incorrect capture sample size\n"); return -EINVAL; } else if (!opts->p_srates[0]) { dev_err(dev, "Error: incorrect playback sampling rate\n"); return -EINVAL; } else if (!opts->c_srates[0]) { dev_err(dev, "Error: incorrect capture sampling rate\n"); return -EINVAL; } if (opts->p_volume_max <= opts->p_volume_min) { dev_err(dev, "Error: incorrect playback volume max/min\n"); return -EINVAL; } else if (opts->c_volume_max <= opts->c_volume_min) { dev_err(dev, "Error: incorrect capture volume max/min\n"); return -EINVAL; } else if (opts->p_volume_res <= 0) { dev_err(dev, "Error: negative/zero playback volume resolution\n"); return -EINVAL; } else if (opts->c_volume_res <= 0) { dev_err(dev, "Error: negative/zero capture volume resolution\n"); return -EINVAL; } if ((opts->p_volume_max - opts->p_volume_min) % opts->p_volume_res) { dev_err(dev, "Error: incorrect playback volume resolution\n"); return -EINVAL; } else if ((opts->c_volume_max - opts->c_volume_min) % opts->c_volume_res) { dev_err(dev, "Error: incorrect capture volume resolution\n"); return -EINVAL; } return 0; } /* audio function driver setup/binding */ static int f_audio_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct usb_gadget *gadget = cdev->gadget; struct device *dev = &gadget->dev; struct f_uac1 *uac1 = func_to_uac1(f); struct g_audio *audio = func_to_g_audio(f); struct f_uac1_opts *audio_opts; struct usb_ep *ep = NULL; struct usb_string *us; int ba_iface_id; int status; int idx, i; status = f_audio_validate_opts(audio, dev); if (status) return status; audio_opts = container_of(f->fi, struct f_uac1_opts, func_inst); strings_uac1[STR_AC_IF].s = audio_opts->function_name; us = usb_gstrings_attach(cdev, uac1_strings, ARRAY_SIZE(strings_uac1)); if (IS_ERR(us)) return PTR_ERR(us); ac_header_desc = build_ac_header_desc(audio_opts); if (!ac_header_desc) return -ENOMEM; if (FUOUT_EN(audio_opts)) { out_feature_unit_desc = build_fu_desc(audio_opts->c_chmask); if (!out_feature_unit_desc) { status = -ENOMEM; goto fail; } } if (FUIN_EN(audio_opts)) { in_feature_unit_desc = build_fu_desc(audio_opts->p_chmask); if (!in_feature_unit_desc) { status = -ENOMEM; goto err_free_fu; } } ac_interface_desc.iInterface = us[STR_AC_IF].id; usb_out_it_desc.iTerminal = us[STR_USB_OUT_IT].id; usb_out_it_desc.iChannelNames = us[STR_USB_OUT_IT_CH_NAMES].id; io_out_ot_desc.iTerminal = us[STR_IO_OUT_OT].id; as_out_interface_alt_0_desc.iInterface = us[STR_AS_OUT_IF_ALT0].id; as_out_interface_alt_1_desc.iInterface = us[STR_AS_OUT_IF_ALT1].id; io_in_it_desc.iTerminal = us[STR_IO_IN_IT].id; io_in_it_desc.iChannelNames = us[STR_IO_IN_IT_CH_NAMES].id; usb_in_ot_desc.iTerminal = us[STR_USB_IN_OT].id; as_in_interface_alt_0_desc.iInterface = us[STR_AS_IN_IF_ALT0].id; as_in_interface_alt_1_desc.iInterface = us[STR_AS_IN_IF_ALT1].id; if (FUOUT_EN(audio_opts)) { u8 *i_feature; i_feature = (u8 *)out_feature_unit_desc + out_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_OUT].id; } if (FUIN_EN(audio_opts)) { u8 *i_feature; i_feature = (u8 *)in_feature_unit_desc + in_feature_unit_desc->bLength - 1; *i_feature = us[STR_FU_IN].id; } /* Set channel numbers */ usb_out_it_desc.bNrChannels = num_channels(audio_opts->c_chmask); usb_out_it_desc.wChannelConfig = cpu_to_le16(audio_opts->c_chmask); as_out_type_i_desc.bNrChannels = num_channels(audio_opts->c_chmask); as_out_type_i_desc.bSubframeSize = audio_opts->c_ssize; as_out_type_i_desc.bBitResolution = audio_opts->c_ssize * 8; io_in_it_desc.bNrChannels = num_channels(audio_opts->p_chmask); io_in_it_desc.wChannelConfig = cpu_to_le16(audio_opts->p_chmask); as_in_type_i_desc.bNrChannels = num_channels(audio_opts->p_chmask); as_in_type_i_desc.bSubframeSize = audio_opts->p_ssize; as_in_type_i_desc.bBitResolution = audio_opts->p_ssize * 8; if (FUOUT_EN(audio_opts)) { __le16 *bma = (__le16 *)&out_feature_unit_desc->bmaControls[0]; u32 control = 0; if (audio_opts->c_mute_present) control |= UAC_FU_MUTE; if (audio_opts->c_volume_present) control |= UAC_FU_VOLUME; *bma = cpu_to_le16(control); } if (FUIN_EN(audio_opts)) { __le16 *bma = (__le16 *)&in_feature_unit_desc->bmaControls[0]; u32 control = 0; if (audio_opts->p_mute_present) control |= UAC_FU_MUTE; if (audio_opts->p_volume_present) control |= UAC_FU_VOLUME; *bma = cpu_to_le16(control); } /* Set sample rates */ for (i = 0, idx = 0; i < UAC_MAX_RATES; i++) { if (audio_opts->c_srates[i] == 0) break; memcpy(as_out_type_i_desc.tSamFreq[idx++], &audio_opts->c_srates[i], 3); } as_out_type_i_desc.bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(idx); as_out_type_i_desc.bSamFreqType = idx; for (i = 0, idx = 0; i < UAC_MAX_RATES; i++) { if (audio_opts->p_srates[i] == 0) break; memcpy(as_in_type_i_desc.tSamFreq[idx++], &audio_opts->p_srates[i], 3); } as_in_type_i_desc.bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(idx); as_in_type_i_desc.bSamFreqType = idx; uac1->p_srate = audio_opts->p_srates[0]; uac1->c_srate = audio_opts->c_srates[0]; /* allocate instance-specific interface IDs, and patch descriptors */ status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; ac_interface_desc.bInterfaceNumber = status; uac1->ac_intf = status; uac1->ac_alt = 0; ba_iface_id = 0; if (EPOUT_EN(audio_opts)) { status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; as_out_interface_alt_0_desc.bInterfaceNumber = status; as_out_interface_alt_1_desc.bInterfaceNumber = status; ac_header_desc->baInterfaceNr[ba_iface_id++] = status; uac1->as_out_intf = status; uac1->as_out_alt = 0; } if (EPIN_EN(audio_opts)) { status = usb_interface_id(c, f); if (status < 0) goto err_free_fu; as_in_interface_alt_0_desc.bInterfaceNumber = status; as_in_interface_alt_1_desc.bInterfaceNumber = status; ac_header_desc->baInterfaceNr[ba_iface_id++] = status; uac1->as_in_intf = status; uac1->as_in_alt = 0; } audio->gadget = gadget; status = -ENODEV; ac_interface_desc.bNumEndpoints = 0; /* allocate AC interrupt endpoint */ if (FUOUT_EN(audio_opts) || FUIN_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &ac_int_ep_desc); if (!ep) goto err_free_fu; uac1->int_ep = ep; uac1->int_ep->desc = &ac_int_ep_desc; ac_interface_desc.bNumEndpoints = 1; } /* allocate instance-specific endpoints */ if (EPOUT_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &as_out_ep_desc); if (!ep) goto err_free_fu; audio->out_ep = ep; audio->out_ep->desc = &as_out_ep_desc; } if (EPIN_EN(audio_opts)) { ep = usb_ep_autoconfig(cdev->gadget, &as_in_ep_desc); if (!ep) goto err_free_fu; audio->in_ep = ep; audio->in_ep->desc = &as_in_ep_desc; } setup_descriptor(audio_opts); /* copy descriptors, and track endpoint copies */ status = usb_assign_descriptors(f, f_audio_desc, f_audio_desc, NULL, NULL); if (status) goto err_free_fu; audio->out_ep_maxpsize = le16_to_cpu(as_out_ep_desc.wMaxPacketSize); audio->in_ep_maxpsize = le16_to_cpu(as_in_ep_desc.wMaxPacketSize); audio->params.c_chmask = audio_opts->c_chmask; memcpy(audio->params.c_srates, audio_opts->c_srates, sizeof(audio->params.c_srates)); audio->params.c_ssize = audio_opts->c_ssize; if (FUIN_EN(audio_opts)) { audio->params.p_fu.id = USB_IN_FU_ID; audio->params.p_fu.mute_present = audio_opts->p_mute_present; audio->params.p_fu.volume_present = audio_opts->p_volume_present; audio->params.p_fu.volume_min = audio_opts->p_volume_min; audio->params.p_fu.volume_max = audio_opts->p_volume_max; audio->params.p_fu.volume_res = audio_opts->p_volume_res; } audio->params.p_chmask = audio_opts->p_chmask; memcpy(audio->params.p_srates, audio_opts->p_srates, sizeof(audio->params.p_srates)); audio->params.p_ssize = audio_opts->p_ssize; if (FUOUT_EN(audio_opts)) { audio->params.c_fu.id = USB_OUT_FU_ID; audio->params.c_fu.mute_present = audio_opts->c_mute_present; audio->params.c_fu.volume_present = audio_opts->c_volume_present; audio->params.c_fu.volume_min = audio_opts->c_volume_min; audio->params.c_fu.volume_max = audio_opts->c_volume_max; audio->params.c_fu.volume_res = audio_opts->c_volume_res; } audio->params.req_number = audio_opts->req_number; audio->params.fb_max = FBACK_FAST_MAX; if (FUOUT_EN(audio_opts) || FUIN_EN(audio_opts)) audio->notify = audio_notify; status = g_audio_setup(audio, "UAC1_PCM", "UAC1_Gadget"); if (status) goto err_card_register; return 0; err_card_register: usb_free_all_descriptors(f); err_free_fu: kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; fail: kfree(ac_header_desc); ac_header_desc = NULL; return status; } /*-------------------------------------------------------------------------*/ static inline struct f_uac1_opts *to_f_uac1_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_uac1_opts, func_inst.group); } static void f_uac1_attr_release(struct config_item *item) { struct f_uac1_opts *opts = to_f_uac1_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations f_uac1_item_ops = { .release = f_uac1_attr_release, }; #define uac1_kstrtou32 kstrtou32 #define uac1_kstrtos16 kstrtos16 #define uac1_kstrtobool(s, base, res) kstrtobool((s), (res)) static const char *u32_fmt = "%u\n"; static const char *s16_fmt = "%hd\n"; static const char *bool_fmt = "%u\n"; #define UAC1_ATTRIBUTE(type, name) \ static ssize_t f_uac1_opts_##name##_show( \ struct config_item *item, \ char *page) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int result; \ \ mutex_lock(&opts->lock); \ result = sprintf(page, type##_fmt, opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store( \ struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int ret; \ type num; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = uac1_kstrto##type(page, 0, &num); \ if (ret) \ goto end; \ \ opts->name = num; \ ret = len; \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac1_opts_, name) #define UAC1_RATE_ATTRIBUTE(name) \ static ssize_t f_uac1_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int result = 0; \ int i; \ \ mutex_lock(&opts->lock); \ page[0] = '\0'; \ for (i = 0; i < UAC_MAX_RATES; i++) { \ if (opts->name##s[i] == 0) \ break; \ result += sprintf(page + strlen(page), "%u,", \ opts->name##s[i]); \ } \ if (strlen(page) > 0) \ page[strlen(page) - 1] = '\n'; \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ char *split_page = NULL; \ int ret = -EINVAL; \ char *token; \ u32 num; \ int i; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ i = 0; \ memset(opts->name##s, 0x00, sizeof(opts->name##s)); \ split_page = kstrdup(page, GFP_KERNEL); \ while ((token = strsep(&split_page, ",")) != NULL) { \ ret = kstrtou32(token, 0, &num); \ if (ret) \ goto end; \ \ opts->name##s[i++] = num; \ ret = len; \ }; \ \ end: \ kfree(split_page); \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac1_opts_, name) #define UAC1_ATTRIBUTE_STRING(name) \ static ssize_t f_uac1_opts_##name##_show(struct config_item *item, \ char *page) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int result; \ \ mutex_lock(&opts->lock); \ result = snprintf(page, sizeof(opts->name), "%s", opts->name); \ mutex_unlock(&opts->lock); \ \ return result; \ } \ \ static ssize_t f_uac1_opts_##name##_store(struct config_item *item, \ const char *page, size_t len) \ { \ struct f_uac1_opts *opts = to_f_uac1_opts(item); \ int ret = 0; \ \ mutex_lock(&opts->lock); \ if (opts->refcnt) { \ ret = -EBUSY; \ goto end; \ } \ \ ret = snprintf(opts->name, min(sizeof(opts->name), len), \ "%s", page); \ \ end: \ mutex_unlock(&opts->lock); \ return ret; \ } \ \ CONFIGFS_ATTR(f_uac1_opts_, name) UAC1_ATTRIBUTE(u32, c_chmask); UAC1_RATE_ATTRIBUTE(c_srate); UAC1_ATTRIBUTE(u32, c_ssize); UAC1_ATTRIBUTE(u32, p_chmask); UAC1_RATE_ATTRIBUTE(p_srate); UAC1_ATTRIBUTE(u32, p_ssize); UAC1_ATTRIBUTE(u32, req_number); UAC1_ATTRIBUTE(bool, p_mute_present); UAC1_ATTRIBUTE(bool, p_volume_present); UAC1_ATTRIBUTE(s16, p_volume_min); UAC1_ATTRIBUTE(s16, p_volume_max); UAC1_ATTRIBUTE(s16, p_volume_res); UAC1_ATTRIBUTE(bool, c_mute_present); UAC1_ATTRIBUTE(bool, c_volume_present); UAC1_ATTRIBUTE(s16, c_volume_min); UAC1_ATTRIBUTE(s16, c_volume_max); UAC1_ATTRIBUTE(s16, c_volume_res); UAC1_ATTRIBUTE_STRING(function_name); static struct configfs_attribute *f_uac1_attrs[] = { &f_uac1_opts_attr_c_chmask, &f_uac1_opts_attr_c_srate, &f_uac1_opts_attr_c_ssize, &f_uac1_opts_attr_p_chmask, &f_uac1_opts_attr_p_srate, &f_uac1_opts_attr_p_ssize, &f_uac1_opts_attr_req_number, &f_uac1_opts_attr_p_mute_present, &f_uac1_opts_attr_p_volume_present, &f_uac1_opts_attr_p_volume_min, &f_uac1_opts_attr_p_volume_max, &f_uac1_opts_attr_p_volume_res, &f_uac1_opts_attr_c_mute_present, &f_uac1_opts_attr_c_volume_present, &f_uac1_opts_attr_c_volume_min, &f_uac1_opts_attr_c_volume_max, &f_uac1_opts_attr_c_volume_res, &f_uac1_opts_attr_function_name, NULL, }; static const struct config_item_type f_uac1_func_type = { .ct_item_ops = &f_uac1_item_ops, .ct_attrs = f_uac1_attrs, .ct_owner = THIS_MODULE, }; static void f_audio_free_inst(struct usb_function_instance *f) { struct f_uac1_opts *opts; opts = container_of(f, struct f_uac1_opts, func_inst); kfree(opts); } static struct usb_function_instance *f_audio_alloc_inst(void) { struct f_uac1_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = f_audio_free_inst; config_group_init_type_name(&opts->func_inst.group, "", &f_uac1_func_type); opts->c_chmask = UAC1_DEF_CCHMASK; opts->c_srates[0] = UAC1_DEF_CSRATE; opts->c_ssize = UAC1_DEF_CSSIZE; opts->p_chmask = UAC1_DEF_PCHMASK; opts->p_srates[0] = UAC1_DEF_PSRATE; opts->p_ssize = UAC1_DEF_PSSIZE; opts->p_mute_present = UAC1_DEF_MUTE_PRESENT; opts->p_volume_present = UAC1_DEF_VOLUME_PRESENT; opts->p_volume_min = UAC1_DEF_MIN_DB; opts->p_volume_max = UAC1_DEF_MAX_DB; opts->p_volume_res = UAC1_DEF_RES_DB; opts->c_mute_present = UAC1_DEF_MUTE_PRESENT; opts->c_volume_present = UAC1_DEF_VOLUME_PRESENT; opts->c_volume_min = UAC1_DEF_MIN_DB; opts->c_volume_max = UAC1_DEF_MAX_DB; opts->c_volume_res = UAC1_DEF_RES_DB; opts->req_number = UAC1_DEF_REQ_NUM; snprintf(opts->function_name, sizeof(opts->function_name), "AC Interface"); return &opts->func_inst; } static void f_audio_free(struct usb_function *f) { struct g_audio *audio; struct f_uac1_opts *opts; audio = func_to_g_audio(f); opts = container_of(f->fi, struct f_uac1_opts, func_inst); kfree(audio); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void f_audio_unbind(struct usb_configuration *c, struct usb_function *f) { struct g_audio *audio = func_to_g_audio(f); g_audio_cleanup(audio); usb_free_all_descriptors(f); kfree(out_feature_unit_desc); out_feature_unit_desc = NULL; kfree(in_feature_unit_desc); in_feature_unit_desc = NULL; kfree(ac_header_desc); ac_header_desc = NULL; audio->gadget = NULL; } static struct usb_function *f_audio_alloc(struct usb_function_instance *fi) { struct f_uac1 *uac1; struct f_uac1_opts *opts; /* allocate and initialize one new instance */ uac1 = kzalloc(sizeof(*uac1), GFP_KERNEL); if (!uac1) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_uac1_opts, func_inst); mutex_lock(&opts->lock); ++opts->refcnt; mutex_unlock(&opts->lock); uac1->g_audio.func.name = "uac1_func"; uac1->g_audio.func.bind = f_audio_bind; uac1->g_audio.func.unbind = f_audio_unbind; uac1->g_audio.func.set_alt = f_audio_set_alt; uac1->g_audio.func.get_alt = f_audio_get_alt; uac1->g_audio.func.setup = f_audio_setup; uac1->g_audio.func.disable = f_audio_disable; uac1->g_audio.func.suspend = f_audio_suspend; uac1->g_audio.func.free_func = f_audio_free; return &uac1->g_audio.func; } DECLARE_USB_FUNCTION_INIT(uac1, f_audio_alloc_inst, f_audio_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ruslan Bilovol");
linux-master
drivers/usb/gadget/function/f_uac1.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_fs.c -- user mode file system API for USB composite function controllers * * Copyright (C) 2010 Samsung Electronics * Author: Michal Nazarewicz <[email protected]> * * Based on inode.c (GadgetFS) which was: * Copyright (C) 2003-2004 David Brownell * Copyright (C) 2003 Agilent Technologies */ /* #define DEBUG */ /* #define VERBOSE_DEBUG */ #include <linux/blkdev.h> #include <linux/pagemap.h> #include <linux/export.h> #include <linux/fs_parser.h> #include <linux/hid.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched/signal.h> #include <linux/uio.h> #include <linux/vmalloc.h> #include <asm/unaligned.h> #include <linux/usb/ccid.h> #include <linux/usb/composite.h> #include <linux/usb/functionfs.h> #include <linux/aio.h> #include <linux/kthread.h> #include <linux/poll.h> #include <linux/eventfd.h> #include "u_fs.h" #include "u_f.h" #include "u_os_desc.h" #include "configfs.h" #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ /* Reference counter handling */ static void ffs_data_get(struct ffs_data *ffs); static void ffs_data_put(struct ffs_data *ffs); /* Creates new ffs_data object. */ static struct ffs_data *__must_check ffs_data_new(const char *dev_name) __attribute__((malloc)); /* Opened counter handling. */ static void ffs_data_opened(struct ffs_data *ffs); static void ffs_data_closed(struct ffs_data *ffs); /* Called with ffs->mutex held; take over ownership of data. */ static int __must_check __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); static int __must_check __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); /* The function structure ***************************************************/ struct ffs_ep; struct ffs_function { struct usb_configuration *conf; struct usb_gadget *gadget; struct ffs_data *ffs; struct ffs_ep *eps; u8 eps_revmap[16]; short *interfaces_nums; struct usb_function function; }; static struct ffs_function *ffs_func_from_usb(struct usb_function *f) { return container_of(f, struct ffs_function, function); } static inline enum ffs_setup_state ffs_setup_state_clear_cancelled(struct ffs_data *ffs) { return (enum ffs_setup_state) cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); } static void ffs_func_eps_disable(struct ffs_function *func); static int __must_check ffs_func_eps_enable(struct ffs_function *func); static int ffs_func_bind(struct usb_configuration *, struct usb_function *); static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); static void ffs_func_disable(struct usb_function *); static int ffs_func_setup(struct usb_function *, const struct usb_ctrlrequest *); static bool ffs_func_req_match(struct usb_function *, const struct usb_ctrlrequest *, bool config0); static void ffs_func_suspend(struct usb_function *); static void ffs_func_resume(struct usb_function *); static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); /* The endpoints structures *************************************************/ struct ffs_ep { struct usb_ep *ep; /* P: ffs->eps_lock */ struct usb_request *req; /* P: epfile->mutex */ /* [0]: full speed, [1]: high speed, [2]: super speed */ struct usb_endpoint_descriptor *descs[3]; u8 num; }; struct ffs_epfile { /* Protects ep->ep and ep->req. */ struct mutex mutex; struct ffs_data *ffs; struct ffs_ep *ep; /* P: ffs->eps_lock */ struct dentry *dentry; /* * Buffer for holding data from partial reads which may happen since * we’re rounding user read requests to a multiple of a max packet size. * * The pointer is initialised with NULL value and may be set by * __ffs_epfile_read_data function to point to a temporary buffer. * * In normal operation, calls to __ffs_epfile_read_buffered will consume * data from said buffer and eventually free it. Importantly, while the * function is using the buffer, it sets the pointer to NULL. This is * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered * can never run concurrently (they are synchronised by epfile->mutex) * so the latter will not assign a new value to the pointer. * * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is * valid) and sets the pointer to READ_BUFFER_DROP value. This special * value is crux of the synchronisation between ffs_func_eps_disable and * __ffs_epfile_read_data. * * Once __ffs_epfile_read_data is about to finish it will try to set the * pointer back to its old value (as described above), but seeing as the * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free * the buffer. * * == State transitions == * * • ptr == NULL: (initial state) * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP * ◦ __ffs_epfile_read_buffered: nop * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf * ◦ reading finishes: n/a, not in ‘and reading’ state * • ptr == DROP: * ◦ __ffs_epfile_read_buffer_free: nop * ◦ __ffs_epfile_read_buffered: go to ptr == NULL * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop * ◦ reading finishes: n/a, not in ‘and reading’ state * • ptr == buf: * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered * is always called first * ◦ reading finishes: n/a, not in ‘and reading’ state * • ptr == NULL and reading: * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading * ◦ __ffs_epfile_read_buffered: n/a, mutex is held * ◦ __ffs_epfile_read_data: n/a, mutex is held * ◦ reading finishes and … * … all data read: free buf, go to ptr == NULL * … otherwise: go to ptr == buf and reading * • ptr == DROP and reading: * ◦ __ffs_epfile_read_buffer_free: nop * ◦ __ffs_epfile_read_buffered: n/a, mutex is held * ◦ __ffs_epfile_read_data: n/a, mutex is held * ◦ reading finishes: free buf, go to ptr == DROP */ struct ffs_buffer *read_buffer; #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) char name[5]; unsigned char in; /* P: ffs->eps_lock */ unsigned char isoc; /* P: ffs->eps_lock */ unsigned char _pad; }; struct ffs_buffer { size_t length; char *data; char storage[]; }; /* ffs_io_data structure ***************************************************/ struct ffs_io_data { bool aio; bool read; struct kiocb *kiocb; struct iov_iter data; const void *to_free; char *buf; struct mm_struct *mm; struct work_struct work; struct usb_ep *ep; struct usb_request *req; struct sg_table sgt; bool use_sg; struct ffs_data *ffs; int status; struct completion done; }; struct ffs_desc_helper { struct ffs_data *ffs; unsigned interfaces_count; unsigned eps_count; }; static int __must_check ffs_epfiles_create(struct ffs_data *ffs); static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); static struct dentry * ffs_sb_create_file(struct super_block *sb, const char *name, void *data, const struct file_operations *fops); /* Devices management *******************************************************/ DEFINE_MUTEX(ffs_lock); EXPORT_SYMBOL_GPL(ffs_lock); static struct ffs_dev *_ffs_find_dev(const char *name); static struct ffs_dev *_ffs_alloc_dev(void); static void _ffs_free_dev(struct ffs_dev *dev); static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); static void ffs_release_dev(struct ffs_dev *ffs_dev); static int ffs_ready(struct ffs_data *ffs); static void ffs_closed(struct ffs_data *ffs); /* Misc helper functions ****************************************************/ static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) __attribute__((warn_unused_result, nonnull)); static char *ffs_prepare_buffer(const char __user *buf, size_t len) __attribute__((warn_unused_result, nonnull)); /* Control file aka ep0 *****************************************************/ static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) { struct ffs_data *ffs = req->context; complete(&ffs->ep0req_completion); } static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) __releases(&ffs->ev.waitq.lock) { struct usb_request *req = ffs->ep0req; int ret; if (!req) { spin_unlock_irq(&ffs->ev.waitq.lock); return -EINVAL; } req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); spin_unlock_irq(&ffs->ev.waitq.lock); req->buf = data; req->length = len; /* * UDC layer requires to provide a buffer even for ZLP, but should * not use it at all. Let's provide some poisoned pointer to catch * possible bug in the driver. */ if (req->buf == NULL) req->buf = (void *)0xDEADBABE; reinit_completion(&ffs->ep0req_completion); ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); if (ret < 0) return ret; ret = wait_for_completion_interruptible(&ffs->ep0req_completion); if (ret) { usb_ep_dequeue(ffs->gadget->ep0, req); return -EINTR; } ffs->setup_state = FFS_NO_SETUP; return req->status ? req->status : req->actual; } static int __ffs_ep0_stall(struct ffs_data *ffs) { if (ffs->ev.can_stall) { pr_vdebug("ep0 stall\n"); usb_ep_set_halt(ffs->gadget->ep0); ffs->setup_state = FFS_NO_SETUP; return -EL2HLT; } else { pr_debug("bogus ep0 stall!\n"); return -ESRCH; } } static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, size_t len, loff_t *ptr) { struct ffs_data *ffs = file->private_data; ssize_t ret; char *data; /* Fast check if setup was canceled */ if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) return -EIDRM; /* Acquire mutex */ ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); if (ret < 0) return ret; /* Check state */ switch (ffs->state) { case FFS_READ_DESCRIPTORS: case FFS_READ_STRINGS: /* Copy data */ if (len < 16) { ret = -EINVAL; break; } data = ffs_prepare_buffer(buf, len); if (IS_ERR(data)) { ret = PTR_ERR(data); break; } /* Handle data */ if (ffs->state == FFS_READ_DESCRIPTORS) { pr_info("read descriptors\n"); ret = __ffs_data_got_descs(ffs, data, len); if (ret < 0) break; ffs->state = FFS_READ_STRINGS; ret = len; } else { pr_info("read strings\n"); ret = __ffs_data_got_strings(ffs, data, len); if (ret < 0) break; ret = ffs_epfiles_create(ffs); if (ret) { ffs->state = FFS_CLOSING; break; } ffs->state = FFS_ACTIVE; mutex_unlock(&ffs->mutex); ret = ffs_ready(ffs); if (ret < 0) { ffs->state = FFS_CLOSING; return ret; } return len; } break; case FFS_ACTIVE: data = NULL; /* * We're called from user space, we can use _irq * rather then _irqsave */ spin_lock_irq(&ffs->ev.waitq.lock); switch (ffs_setup_state_clear_cancelled(ffs)) { case FFS_SETUP_CANCELLED: ret = -EIDRM; goto done_spin; case FFS_NO_SETUP: ret = -ESRCH; goto done_spin; case FFS_SETUP_PENDING: break; } /* FFS_SETUP_PENDING */ if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { spin_unlock_irq(&ffs->ev.waitq.lock); ret = __ffs_ep0_stall(ffs); break; } /* FFS_SETUP_PENDING and not stall */ len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); spin_unlock_irq(&ffs->ev.waitq.lock); data = ffs_prepare_buffer(buf, len); if (IS_ERR(data)) { ret = PTR_ERR(data); break; } spin_lock_irq(&ffs->ev.waitq.lock); /* * We are guaranteed to be still in FFS_ACTIVE state * but the state of setup could have changed from * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need * to check for that. If that happened we copied data * from user space in vain but it's unlikely. * * For sure we are not in FFS_NO_SETUP since this is * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP * transition can be performed and it's protected by * mutex. */ if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) { ret = -EIDRM; done_spin: spin_unlock_irq(&ffs->ev.waitq.lock); } else { /* unlocks spinlock */ ret = __ffs_ep0_queue_wait(ffs, data, len); } kfree(data); break; default: ret = -EBADFD; break; } mutex_unlock(&ffs->mutex); return ret; } /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, size_t n) __releases(&ffs->ev.waitq.lock) { /* * n cannot be bigger than ffs->ev.count, which cannot be bigger than * size of ffs->ev.types array (which is four) so that's how much space * we reserve. */ struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; const size_t size = n * sizeof *events; unsigned i = 0; memset(events, 0, size); do { events[i].type = ffs->ev.types[i]; if (events[i].type == FUNCTIONFS_SETUP) { events[i].u.setup = ffs->ev.setup; ffs->setup_state = FFS_SETUP_PENDING; } } while (++i < n); ffs->ev.count -= n; if (ffs->ev.count) memmove(ffs->ev.types, ffs->ev.types + n, ffs->ev.count * sizeof *ffs->ev.types); spin_unlock_irq(&ffs->ev.waitq.lock); mutex_unlock(&ffs->mutex); return copy_to_user(buf, events, size) ? -EFAULT : size; } static ssize_t ffs_ep0_read(struct file *file, char __user *buf, size_t len, loff_t *ptr) { struct ffs_data *ffs = file->private_data; char *data = NULL; size_t n; int ret; /* Fast check if setup was canceled */ if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) return -EIDRM; /* Acquire mutex */ ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); if (ret < 0) return ret; /* Check state */ if (ffs->state != FFS_ACTIVE) { ret = -EBADFD; goto done_mutex; } /* * We're called from user space, we can use _irq rather then * _irqsave */ spin_lock_irq(&ffs->ev.waitq.lock); switch (ffs_setup_state_clear_cancelled(ffs)) { case FFS_SETUP_CANCELLED: ret = -EIDRM; break; case FFS_NO_SETUP: n = len / sizeof(struct usb_functionfs_event); if (!n) { ret = -EINVAL; break; } if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { ret = -EAGAIN; break; } if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, ffs->ev.count)) { ret = -EINTR; break; } /* unlocks spinlock */ return __ffs_ep0_read_events(ffs, buf, min(n, (size_t)ffs->ev.count)); case FFS_SETUP_PENDING: if (ffs->ev.setup.bRequestType & USB_DIR_IN) { spin_unlock_irq(&ffs->ev.waitq.lock); ret = __ffs_ep0_stall(ffs); goto done_mutex; } len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); spin_unlock_irq(&ffs->ev.waitq.lock); if (len) { data = kmalloc(len, GFP_KERNEL); if (!data) { ret = -ENOMEM; goto done_mutex; } } spin_lock_irq(&ffs->ev.waitq.lock); /* See ffs_ep0_write() */ if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) { ret = -EIDRM; break; } /* unlocks spinlock */ ret = __ffs_ep0_queue_wait(ffs, data, len); if ((ret > 0) && (copy_to_user(buf, data, len))) ret = -EFAULT; goto done_mutex; default: ret = -EBADFD; break; } spin_unlock_irq(&ffs->ev.waitq.lock); done_mutex: mutex_unlock(&ffs->mutex); kfree(data); return ret; } static int ffs_ep0_open(struct inode *inode, struct file *file) { struct ffs_data *ffs = inode->i_private; if (ffs->state == FFS_CLOSING) return -EBUSY; file->private_data = ffs; ffs_data_opened(ffs); return stream_open(inode, file); } static int ffs_ep0_release(struct inode *inode, struct file *file) { struct ffs_data *ffs = file->private_data; ffs_data_closed(ffs); return 0; } static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) { struct ffs_data *ffs = file->private_data; struct usb_gadget *gadget = ffs->gadget; long ret; if (code == FUNCTIONFS_INTERFACE_REVMAP) { struct ffs_function *func = ffs->func; ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; } else if (gadget && gadget->ops->ioctl) { ret = gadget->ops->ioctl(gadget, code, value); } else { ret = -ENOTTY; } return ret; } static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) { struct ffs_data *ffs = file->private_data; __poll_t mask = EPOLLWRNORM; int ret; poll_wait(file, &ffs->ev.waitq, wait); ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); if (ret < 0) return mask; switch (ffs->state) { case FFS_READ_DESCRIPTORS: case FFS_READ_STRINGS: mask |= EPOLLOUT; break; case FFS_ACTIVE: switch (ffs->setup_state) { case FFS_NO_SETUP: if (ffs->ev.count) mask |= EPOLLIN; break; case FFS_SETUP_PENDING: case FFS_SETUP_CANCELLED: mask |= (EPOLLIN | EPOLLOUT); break; } break; case FFS_CLOSING: break; case FFS_DEACTIVATED: break; } mutex_unlock(&ffs->mutex); return mask; } static const struct file_operations ffs_ep0_operations = { .llseek = no_llseek, .open = ffs_ep0_open, .write = ffs_ep0_write, .read = ffs_ep0_read, .release = ffs_ep0_release, .unlocked_ioctl = ffs_ep0_ioctl, .poll = ffs_ep0_poll, }; /* "Normal" endpoints operations ********************************************/ static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) { struct ffs_io_data *io_data = req->context; if (req->status) io_data->status = req->status; else io_data->status = req->actual; complete(&io_data->done); } static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) { ssize_t ret = copy_to_iter(data, data_len, iter); if (ret == data_len) return ret; if (iov_iter_count(iter)) return -EFAULT; /* * Dear user space developer! * * TL;DR: To stop getting below error message in your kernel log, change * user space code using functionfs to align read buffers to a max * packet size. * * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max * packet size. When unaligned buffer is passed to functionfs, it * internally uses a larger, aligned buffer so that such UDCs are happy. * * Unfortunately, this means that host may send more data than was * requested in read(2) system call. f_fs doesn’t know what to do with * that excess data so it simply drops it. * * Was the buffer aligned in the first place, no such problem would * happen. * * Data may be dropped only in AIO reads. Synchronous reads are handled * by splitting a request into multiple parts. This splitting may still * be a problem though so it’s likely best to align the buffer * regardless of it being AIO or not.. * * This only affects OUT endpoints, i.e. reading data with a read(2), * aio_read(2) etc. system calls. Writing data to an IN endpoint is not * affected. */ pr_err("functionfs read size %d > requested size %zd, dropping excess data. " "Align read buffer size to max packet size to avoid the problem.\n", data_len, ret); return ret; } /* * allocate a virtually contiguous buffer and create a scatterlist describing it * @sg_table - pointer to a place to be filled with sg_table contents * @size - required buffer size */ static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) { struct page **pages; void *vaddr, *ptr; unsigned int n_pages; int i; vaddr = vmalloc(sz); if (!vaddr) return NULL; n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { vfree(vaddr); return NULL; } for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) pages[i] = vmalloc_to_page(ptr); if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { kvfree(pages); vfree(vaddr); return NULL; } kvfree(pages); return vaddr; } static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, size_t data_len) { if (io_data->use_sg) return ffs_build_sg_list(&io_data->sgt, data_len); return kmalloc(data_len, GFP_KERNEL); } static inline void ffs_free_buffer(struct ffs_io_data *io_data) { if (!io_data->buf) return; if (io_data->use_sg) { sg_free_table(&io_data->sgt); vfree(io_data->buf); } else { kfree(io_data->buf); } } static void ffs_user_copy_worker(struct work_struct *work) { struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, work); int ret = io_data->status; bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; if (io_data->read && ret > 0) { kthread_use_mm(io_data->mm); ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); kthread_unuse_mm(io_data->mm); } io_data->kiocb->ki_complete(io_data->kiocb, ret); if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) eventfd_signal(io_data->ffs->ffs_eventfd, 1); if (io_data->read) kfree(io_data->to_free); ffs_free_buffer(io_data); kfree(io_data); } static void ffs_epfile_async_io_complete(struct usb_ep *_ep, struct usb_request *req) { struct ffs_io_data *io_data = req->context; struct ffs_data *ffs = io_data->ffs; io_data->status = req->status ? req->status : req->actual; usb_ep_free_request(_ep, req); INIT_WORK(&io_data->work, ffs_user_copy_worker); queue_work(ffs->io_completion_wq, &io_data->work); } static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) { /* * See comment in struct ffs_epfile for full read_buffer pointer * synchronisation story. */ struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); if (buf && buf != READ_BUFFER_DROP) kfree(buf); } /* Assumes epfile->mutex is held. */ static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, struct iov_iter *iter) { /* * Null out epfile->read_buffer so ffs_func_eps_disable does not free * the buffer while we are using it. See comment in struct ffs_epfile * for full read_buffer pointer synchronisation story. */ struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); ssize_t ret; if (!buf || buf == READ_BUFFER_DROP) return 0; ret = copy_to_iter(buf->data, buf->length, iter); if (buf->length == ret) { kfree(buf); return ret; } if (iov_iter_count(iter)) { ret = -EFAULT; } else { buf->length -= ret; buf->data += ret; } if (cmpxchg(&epfile->read_buffer, NULL, buf)) kfree(buf); return ret; } /* Assumes epfile->mutex is held. */ static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, void *data, int data_len, struct iov_iter *iter) { struct ffs_buffer *buf; ssize_t ret = copy_to_iter(data, data_len, iter); if (data_len == ret) return ret; if (iov_iter_count(iter)) return -EFAULT; /* See ffs_copy_to_iter for more context. */ pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", data_len, ret); data_len -= ret; buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); if (!buf) return -ENOMEM; buf->length = data_len; buf->data = buf->storage; memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); /* * At this point read_buffer is NULL or READ_BUFFER_DROP (if * ffs_func_eps_disable has been called in the meanwhile). See comment * in struct ffs_epfile for full read_buffer pointer synchronisation * story. */ if (cmpxchg(&epfile->read_buffer, NULL, buf)) kfree(buf); return ret; } static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) { struct ffs_epfile *epfile = file->private_data; struct usb_request *req; struct ffs_ep *ep; char *data = NULL; ssize_t ret, data_len = -EINVAL; int halt; /* Are we still active? */ if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) return -ENODEV; /* Wait for endpoint to be enabled */ ep = epfile->ep; if (!ep) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; ret = wait_event_interruptible( epfile->ffs->wait, (ep = epfile->ep)); if (ret) return -EINTR; } /* Do we halt? */ halt = (!io_data->read == !epfile->in); if (halt && epfile->isoc) return -EINVAL; /* We will be using request and read_buffer */ ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); if (ret) goto error; /* Allocate & copy */ if (!halt) { struct usb_gadget *gadget; /* * Do we have buffered data from previous partial read? Check * that for synchronous case only because we do not have * facility to ‘wake up’ a pending asynchronous read and push * buffered data to it which we would need to make things behave * consistently. */ if (!io_data->aio && io_data->read) { ret = __ffs_epfile_read_buffered(epfile, &io_data->data); if (ret) goto error_mutex; } /* * if we _do_ wait above, the epfile->ffs->gadget might be NULL * before the waiting completes, so do not assign to 'gadget' * earlier */ gadget = epfile->ffs->gadget; spin_lock_irq(&epfile->ffs->eps_lock); /* In the meantime, endpoint got disabled or changed. */ if (epfile->ep != ep) { ret = -ESHUTDOWN; goto error_lock; } data_len = iov_iter_count(&io_data->data); /* * Controller may require buffer size to be aligned to * maxpacketsize of an out endpoint. */ if (io_data->read) data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; spin_unlock_irq(&epfile->ffs->eps_lock); data = ffs_alloc_buffer(io_data, data_len); if (!data) { ret = -ENOMEM; goto error_mutex; } if (!io_data->read && !copy_from_iter_full(data, data_len, &io_data->data)) { ret = -EFAULT; goto error_mutex; } } spin_lock_irq(&epfile->ffs->eps_lock); if (epfile->ep != ep) { /* In the meantime, endpoint got disabled or changed. */ ret = -ESHUTDOWN; } else if (halt) { ret = usb_ep_set_halt(ep->ep); if (!ret) ret = -EBADMSG; } else if (data_len == -EINVAL) { /* * Sanity Check: even though data_len can't be used * uninitialized at the time I write this comment, some * compilers complain about this situation. * In order to keep the code clean from warnings, data_len is * being initialized to -EINVAL during its declaration, which * means we can't rely on compiler anymore to warn no future * changes won't result in data_len being used uninitialized. * For such reason, we're adding this redundant sanity check * here. */ WARN(1, "%s: data_len == -EINVAL\n", __func__); ret = -EINVAL; } else if (!io_data->aio) { bool interrupted = false; req = ep->req; if (io_data->use_sg) { req->buf = NULL; req->sg = io_data->sgt.sgl; req->num_sgs = io_data->sgt.nents; } else { req->buf = data; req->num_sgs = 0; } req->length = data_len; io_data->buf = data; init_completion(&io_data->done); req->context = io_data; req->complete = ffs_epfile_io_complete; ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); if (ret < 0) goto error_lock; spin_unlock_irq(&epfile->ffs->eps_lock); if (wait_for_completion_interruptible(&io_data->done)) { spin_lock_irq(&epfile->ffs->eps_lock); if (epfile->ep != ep) { ret = -ESHUTDOWN; goto error_lock; } /* * To avoid race condition with ffs_epfile_io_complete, * dequeue the request first then check * status. usb_ep_dequeue API should guarantee no race * condition with req->complete callback. */ usb_ep_dequeue(ep->ep, req); spin_unlock_irq(&epfile->ffs->eps_lock); wait_for_completion(&io_data->done); interrupted = io_data->status < 0; } if (interrupted) ret = -EINTR; else if (io_data->read && io_data->status > 0) ret = __ffs_epfile_read_data(epfile, data, io_data->status, &io_data->data); else ret = io_data->status; goto error_mutex; } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { ret = -ENOMEM; } else { if (io_data->use_sg) { req->buf = NULL; req->sg = io_data->sgt.sgl; req->num_sgs = io_data->sgt.nents; } else { req->buf = data; req->num_sgs = 0; } req->length = data_len; io_data->buf = data; io_data->ep = ep->ep; io_data->req = req; io_data->ffs = epfile->ffs; req->context = io_data; req->complete = ffs_epfile_async_io_complete; ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); if (ret) { io_data->req = NULL; usb_ep_free_request(ep->ep, req); goto error_lock; } ret = -EIOCBQUEUED; /* * Do not kfree the buffer in this function. It will be freed * by ffs_user_copy_worker. */ data = NULL; } error_lock: spin_unlock_irq(&epfile->ffs->eps_lock); error_mutex: mutex_unlock(&epfile->mutex); error: if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ ffs_free_buffer(io_data); return ret; } static int ffs_epfile_open(struct inode *inode, struct file *file) { struct ffs_epfile *epfile = inode->i_private; if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) return -ENODEV; file->private_data = epfile; ffs_data_opened(epfile->ffs); return stream_open(inode, file); } static int ffs_aio_cancel(struct kiocb *kiocb) { struct ffs_io_data *io_data = kiocb->private; struct ffs_epfile *epfile = kiocb->ki_filp->private_data; unsigned long flags; int value; spin_lock_irqsave(&epfile->ffs->eps_lock, flags); if (io_data && io_data->ep && io_data->req) value = usb_ep_dequeue(io_data->ep, io_data->req); else value = -EINVAL; spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); return value; } static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) { struct ffs_io_data io_data, *p = &io_data; ssize_t res; if (!is_sync_kiocb(kiocb)) { p = kzalloc(sizeof(io_data), GFP_KERNEL); if (!p) return -ENOMEM; p->aio = true; } else { memset(p, 0, sizeof(*p)); p->aio = false; } p->read = false; p->kiocb = kiocb; p->data = *from; p->mm = current->mm; kiocb->private = p; if (p->aio) kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); res = ffs_epfile_io(kiocb->ki_filp, p); if (res == -EIOCBQUEUED) return res; if (p->aio) kfree(p); else *from = p->data; return res; } static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) { struct ffs_io_data io_data, *p = &io_data; ssize_t res; if (!is_sync_kiocb(kiocb)) { p = kzalloc(sizeof(io_data), GFP_KERNEL); if (!p) return -ENOMEM; p->aio = true; } else { memset(p, 0, sizeof(*p)); p->aio = false; } p->read = true; p->kiocb = kiocb; if (p->aio) { p->to_free = dup_iter(&p->data, to, GFP_KERNEL); if (!iter_is_ubuf(&p->data) && !p->to_free) { kfree(p); return -ENOMEM; } } else { p->data = *to; p->to_free = NULL; } p->mm = current->mm; kiocb->private = p; if (p->aio) kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); res = ffs_epfile_io(kiocb->ki_filp, p); if (res == -EIOCBQUEUED) return res; if (p->aio) { kfree(p->to_free); kfree(p); } else { *to = p->data; } return res; } static int ffs_epfile_release(struct inode *inode, struct file *file) { struct ffs_epfile *epfile = inode->i_private; __ffs_epfile_read_buffer_free(epfile); ffs_data_closed(epfile->ffs); return 0; } static long ffs_epfile_ioctl(struct file *file, unsigned code, unsigned long value) { struct ffs_epfile *epfile = file->private_data; struct ffs_ep *ep; int ret; if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) return -ENODEV; /* Wait for endpoint to be enabled */ ep = epfile->ep; if (!ep) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; ret = wait_event_interruptible( epfile->ffs->wait, (ep = epfile->ep)); if (ret) return -EINTR; } spin_lock_irq(&epfile->ffs->eps_lock); /* In the meantime, endpoint got disabled or changed. */ if (epfile->ep != ep) { spin_unlock_irq(&epfile->ffs->eps_lock); return -ESHUTDOWN; } switch (code) { case FUNCTIONFS_FIFO_STATUS: ret = usb_ep_fifo_status(epfile->ep->ep); break; case FUNCTIONFS_FIFO_FLUSH: usb_ep_fifo_flush(epfile->ep->ep); ret = 0; break; case FUNCTIONFS_CLEAR_HALT: ret = usb_ep_clear_halt(epfile->ep->ep); break; case FUNCTIONFS_ENDPOINT_REVMAP: ret = epfile->ep->num; break; case FUNCTIONFS_ENDPOINT_DESC: { int desc_idx; struct usb_endpoint_descriptor desc1, *desc; switch (epfile->ffs->gadget->speed) { case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: desc_idx = 2; break; case USB_SPEED_HIGH: desc_idx = 1; break; default: desc_idx = 0; } desc = epfile->ep->descs[desc_idx]; memcpy(&desc1, desc, desc->bLength); spin_unlock_irq(&epfile->ffs->eps_lock); ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); if (ret) ret = -EFAULT; return ret; } default: ret = -ENOTTY; } spin_unlock_irq(&epfile->ffs->eps_lock); return ret; } static const struct file_operations ffs_epfile_operations = { .llseek = no_llseek, .open = ffs_epfile_open, .write_iter = ffs_epfile_write_iter, .read_iter = ffs_epfile_read_iter, .release = ffs_epfile_release, .unlocked_ioctl = ffs_epfile_ioctl, .compat_ioctl = compat_ptr_ioctl, }; /* File system and super block operations ***********************************/ /* * Mounting the file system creates a controller file, used first for * function configuration then later for event monitoring. */ static struct inode *__must_check ffs_sb_make_inode(struct super_block *sb, void *data, const struct file_operations *fops, const struct inode_operations *iops, struct ffs_file_perms *perms) { struct inode *inode; inode = new_inode(sb); if (inode) { struct timespec64 ts = inode_set_ctime_current(inode); inode->i_ino = get_next_ino(); inode->i_mode = perms->mode; inode->i_uid = perms->uid; inode->i_gid = perms->gid; inode->i_atime = ts; inode->i_mtime = ts; inode->i_private = data; if (fops) inode->i_fop = fops; if (iops) inode->i_op = iops; } return inode; } /* Create "regular" file */ static struct dentry *ffs_sb_create_file(struct super_block *sb, const char *name, void *data, const struct file_operations *fops) { struct ffs_data *ffs = sb->s_fs_info; struct dentry *dentry; struct inode *inode; dentry = d_alloc_name(sb->s_root, name); if (!dentry) return NULL; inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); if (!inode) { dput(dentry); return NULL; } d_add(dentry, inode); return dentry; } /* Super block */ static const struct super_operations ffs_sb_operations = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, }; struct ffs_sb_fill_data { struct ffs_file_perms perms; umode_t root_mode; const char *dev_name; bool no_disconnect; struct ffs_data *ffs_data; }; static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) { struct ffs_sb_fill_data *data = fc->fs_private; struct inode *inode; struct ffs_data *ffs = data->ffs_data; ffs->sb = sb; data->ffs_data = NULL; sb->s_fs_info = ffs; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = FUNCTIONFS_MAGIC; sb->s_op = &ffs_sb_operations; sb->s_time_gran = 1; /* Root inode */ data->perms.mode = data->root_mode; inode = ffs_sb_make_inode(sb, NULL, &simple_dir_operations, &simple_dir_inode_operations, &data->perms); sb->s_root = d_make_root(inode); if (!sb->s_root) return -ENOMEM; /* EP0 file */ if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) return -ENOMEM; return 0; } enum { Opt_no_disconnect, Opt_rmode, Opt_fmode, Opt_mode, Opt_uid, Opt_gid, }; static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { fsparam_bool ("no_disconnect", Opt_no_disconnect), fsparam_u32 ("rmode", Opt_rmode), fsparam_u32 ("fmode", Opt_fmode), fsparam_u32 ("mode", Opt_mode), fsparam_u32 ("uid", Opt_uid), fsparam_u32 ("gid", Opt_gid), {} }; static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct ffs_sb_fill_data *data = fc->fs_private; struct fs_parse_result result; int opt; opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_no_disconnect: data->no_disconnect = result.boolean; break; case Opt_rmode: data->root_mode = (result.uint_32 & 0555) | S_IFDIR; break; case Opt_fmode: data->perms.mode = (result.uint_32 & 0666) | S_IFREG; break; case Opt_mode: data->root_mode = (result.uint_32 & 0555) | S_IFDIR; data->perms.mode = (result.uint_32 & 0666) | S_IFREG; break; case Opt_uid: data->perms.uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(data->perms.uid)) goto unmapped_value; break; case Opt_gid: data->perms.gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(data->perms.gid)) goto unmapped_value; break; default: return -ENOPARAM; } return 0; unmapped_value: return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); } /* * Set up the superblock for a mount. */ static int ffs_fs_get_tree(struct fs_context *fc) { struct ffs_sb_fill_data *ctx = fc->fs_private; struct ffs_data *ffs; int ret; if (!fc->source) return invalf(fc, "No source specified"); ffs = ffs_data_new(fc->source); if (!ffs) return -ENOMEM; ffs->file_perms = ctx->perms; ffs->no_disconnect = ctx->no_disconnect; ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); if (!ffs->dev_name) { ffs_data_put(ffs); return -ENOMEM; } ret = ffs_acquire_dev(ffs->dev_name, ffs); if (ret) { ffs_data_put(ffs); return ret; } ctx->ffs_data = ffs; return get_tree_nodev(fc, ffs_sb_fill); } static void ffs_fs_free_fc(struct fs_context *fc) { struct ffs_sb_fill_data *ctx = fc->fs_private; if (ctx) { if (ctx->ffs_data) { ffs_data_put(ctx->ffs_data); } kfree(ctx); } } static const struct fs_context_operations ffs_fs_context_ops = { .free = ffs_fs_free_fc, .parse_param = ffs_fs_parse_param, .get_tree = ffs_fs_get_tree, }; static int ffs_fs_init_fs_context(struct fs_context *fc) { struct ffs_sb_fill_data *ctx; ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->perms.mode = S_IFREG | 0600; ctx->perms.uid = GLOBAL_ROOT_UID; ctx->perms.gid = GLOBAL_ROOT_GID; ctx->root_mode = S_IFDIR | 0500; ctx->no_disconnect = false; fc->fs_private = ctx; fc->ops = &ffs_fs_context_ops; return 0; } static void ffs_fs_kill_sb(struct super_block *sb) { kill_litter_super(sb); if (sb->s_fs_info) ffs_data_closed(sb->s_fs_info); } static struct file_system_type ffs_fs_type = { .owner = THIS_MODULE, .name = "functionfs", .init_fs_context = ffs_fs_init_fs_context, .parameters = ffs_fs_fs_parameters, .kill_sb = ffs_fs_kill_sb, }; MODULE_ALIAS_FS("functionfs"); /* Driver's main init/cleanup functions *************************************/ static int functionfs_init(void) { int ret; ret = register_filesystem(&ffs_fs_type); if (!ret) pr_info("file system registered\n"); else pr_err("failed registering file system (%d)\n", ret); return ret; } static void functionfs_cleanup(void) { pr_info("unloading\n"); unregister_filesystem(&ffs_fs_type); } /* ffs_data and ffs_function construction and destruction code **************/ static void ffs_data_clear(struct ffs_data *ffs); static void ffs_data_reset(struct ffs_data *ffs); static void ffs_data_get(struct ffs_data *ffs) { refcount_inc(&ffs->ref); } static void ffs_data_opened(struct ffs_data *ffs) { refcount_inc(&ffs->ref); if (atomic_add_return(1, &ffs->opened) == 1 && ffs->state == FFS_DEACTIVATED) { ffs->state = FFS_CLOSING; ffs_data_reset(ffs); } } static void ffs_data_put(struct ffs_data *ffs) { if (refcount_dec_and_test(&ffs->ref)) { pr_info("%s(): freeing\n", __func__); ffs_data_clear(ffs); ffs_release_dev(ffs->private_data); BUG_ON(waitqueue_active(&ffs->ev.waitq) || swait_active(&ffs->ep0req_completion.wait) || waitqueue_active(&ffs->wait)); destroy_workqueue(ffs->io_completion_wq); kfree(ffs->dev_name); kfree(ffs); } } static void ffs_data_closed(struct ffs_data *ffs) { struct ffs_epfile *epfiles; unsigned long flags; if (atomic_dec_and_test(&ffs->opened)) { if (ffs->no_disconnect) { ffs->state = FFS_DEACTIVATED; spin_lock_irqsave(&ffs->eps_lock, flags); epfiles = ffs->epfiles; ffs->epfiles = NULL; spin_unlock_irqrestore(&ffs->eps_lock, flags); if (epfiles) ffs_epfiles_destroy(epfiles, ffs->eps_count); if (ffs->setup_state == FFS_SETUP_PENDING) __ffs_ep0_stall(ffs); } else { ffs->state = FFS_CLOSING; ffs_data_reset(ffs); } } if (atomic_read(&ffs->opened) < 0) { ffs->state = FFS_CLOSING; ffs_data_reset(ffs); } ffs_data_put(ffs); } static struct ffs_data *ffs_data_new(const char *dev_name) { struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); if (!ffs) return NULL; ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); if (!ffs->io_completion_wq) { kfree(ffs); return NULL; } refcount_set(&ffs->ref, 1); atomic_set(&ffs->opened, 0); ffs->state = FFS_READ_DESCRIPTORS; mutex_init(&ffs->mutex); spin_lock_init(&ffs->eps_lock); init_waitqueue_head(&ffs->ev.waitq); init_waitqueue_head(&ffs->wait); init_completion(&ffs->ep0req_completion); /* XXX REVISIT need to update it in some places, or do we? */ ffs->ev.can_stall = 1; return ffs; } static void ffs_data_clear(struct ffs_data *ffs) { struct ffs_epfile *epfiles; unsigned long flags; ffs_closed(ffs); BUG_ON(ffs->gadget); spin_lock_irqsave(&ffs->eps_lock, flags); epfiles = ffs->epfiles; ffs->epfiles = NULL; spin_unlock_irqrestore(&ffs->eps_lock, flags); /* * potential race possible between ffs_func_eps_disable * & ffs_epfile_release therefore maintaining a local * copy of epfile will save us from use-after-free. */ if (epfiles) { ffs_epfiles_destroy(epfiles, ffs->eps_count); ffs->epfiles = NULL; } if (ffs->ffs_eventfd) { eventfd_ctx_put(ffs->ffs_eventfd); ffs->ffs_eventfd = NULL; } kfree(ffs->raw_descs_data); kfree(ffs->raw_strings); kfree(ffs->stringtabs); } static void ffs_data_reset(struct ffs_data *ffs) { ffs_data_clear(ffs); ffs->raw_descs_data = NULL; ffs->raw_descs = NULL; ffs->raw_strings = NULL; ffs->stringtabs = NULL; ffs->raw_descs_length = 0; ffs->fs_descs_count = 0; ffs->hs_descs_count = 0; ffs->ss_descs_count = 0; ffs->strings_count = 0; ffs->interfaces_count = 0; ffs->eps_count = 0; ffs->ev.count = 0; ffs->state = FFS_READ_DESCRIPTORS; ffs->setup_state = FFS_NO_SETUP; ffs->flags = 0; ffs->ms_os_descs_ext_prop_count = 0; ffs->ms_os_descs_ext_prop_name_len = 0; ffs->ms_os_descs_ext_prop_data_len = 0; } static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) { struct usb_gadget_strings **lang; int first_id; if (WARN_ON(ffs->state != FFS_ACTIVE || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) return -EBADFD; first_id = usb_string_ids_n(cdev, ffs->strings_count); if (first_id < 0) return first_id; ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); if (!ffs->ep0req) return -ENOMEM; ffs->ep0req->complete = ffs_ep0_complete; ffs->ep0req->context = ffs; lang = ffs->stringtabs; if (lang) { for (; *lang; ++lang) { struct usb_string *str = (*lang)->strings; int id = first_id; for (; str->s; ++id, ++str) str->id = id; } } ffs->gadget = cdev->gadget; ffs_data_get(ffs); return 0; } static void functionfs_unbind(struct ffs_data *ffs) { if (!WARN_ON(!ffs->gadget)) { /* dequeue before freeing ep0req */ usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); mutex_lock(&ffs->mutex); usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); ffs->ep0req = NULL; ffs->gadget = NULL; clear_bit(FFS_FL_BOUND, &ffs->flags); mutex_unlock(&ffs->mutex); ffs_data_put(ffs); } } static int ffs_epfiles_create(struct ffs_data *ffs) { struct ffs_epfile *epfile, *epfiles; unsigned i, count; count = ffs->eps_count; epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); if (!epfiles) return -ENOMEM; epfile = epfiles; for (i = 1; i <= count; ++i, ++epfile) { epfile->ffs = ffs; mutex_init(&epfile->mutex); if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); else sprintf(epfile->name, "ep%u", i); epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, epfile, &ffs_epfile_operations); if (!epfile->dentry) { ffs_epfiles_destroy(epfiles, i - 1); return -ENOMEM; } } ffs->epfiles = epfiles; return 0; } static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) { struct ffs_epfile *epfile = epfiles; for (; count; --count, ++epfile) { BUG_ON(mutex_is_locked(&epfile->mutex)); if (epfile->dentry) { d_delete(epfile->dentry); dput(epfile->dentry); epfile->dentry = NULL; } } kfree(epfiles); } static void ffs_func_eps_disable(struct ffs_function *func) { struct ffs_ep *ep; struct ffs_epfile *epfile; unsigned short count; unsigned long flags; spin_lock_irqsave(&func->ffs->eps_lock, flags); count = func->ffs->eps_count; epfile = func->ffs->epfiles; ep = func->eps; while (count--) { /* pending requests get nuked */ if (ep->ep) usb_ep_disable(ep->ep); ++ep; if (epfile) { epfile->ep = NULL; __ffs_epfile_read_buffer_free(epfile); ++epfile; } } spin_unlock_irqrestore(&func->ffs->eps_lock, flags); } static int ffs_func_eps_enable(struct ffs_function *func) { struct ffs_data *ffs; struct ffs_ep *ep; struct ffs_epfile *epfile; unsigned short count; unsigned long flags; int ret = 0; spin_lock_irqsave(&func->ffs->eps_lock, flags); ffs = func->ffs; ep = func->eps; epfile = ffs->epfiles; count = ffs->eps_count; while(count--) { ep->ep->driver_data = ep; ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); if (ret) { pr_err("%s: config_ep_by_speed(%s) returned %d\n", __func__, ep->ep->name, ret); break; } ret = usb_ep_enable(ep->ep); if (!ret) { epfile->ep = ep; epfile->in = usb_endpoint_dir_in(ep->ep->desc); epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); } else { break; } ++ep; ++epfile; } wake_up_interruptible(&ffs->wait); spin_unlock_irqrestore(&func->ffs->eps_lock, flags); return ret; } /* Parsing and building descriptors and strings *****************************/ /* * This validates if data pointed by data is a valid USB descriptor as * well as record how many interfaces, endpoints and strings are * required by given configuration. Returns address after the * descriptor or NULL if data is invalid. */ enum ffs_entity_type { FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT }; enum ffs_os_desc_type { FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP }; typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, u8 *valuep, struct usb_descriptor_header *desc, void *priv); typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, struct usb_os_desc_header *h, void *data, unsigned len, void *priv); static int __must_check ffs_do_single_desc(char *data, unsigned len, ffs_entity_callback entity, void *priv, int *current_class) { struct usb_descriptor_header *_ds = (void *)data; u8 length; int ret; /* At least two bytes are required: length and type */ if (len < 2) { pr_vdebug("descriptor too short\n"); return -EINVAL; } /* If we have at least as many bytes as the descriptor takes? */ length = _ds->bLength; if (len < length) { pr_vdebug("descriptor longer then available data\n"); return -EINVAL; } #define __entity_check_INTERFACE(val) 1 #define __entity_check_STRING(val) (val) #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) #define __entity(type, val) do { \ pr_vdebug("entity " #type "(%02x)\n", (val)); \ if (!__entity_check_ ##type(val)) { \ pr_vdebug("invalid entity's value\n"); \ return -EINVAL; \ } \ ret = entity(FFS_ ##type, &val, _ds, priv); \ if (ret < 0) { \ pr_debug("entity " #type "(%02x); ret = %d\n", \ (val), ret); \ return ret; \ } \ } while (0) /* Parse descriptor depending on type. */ switch (_ds->bDescriptorType) { case USB_DT_DEVICE: case USB_DT_CONFIG: case USB_DT_STRING: case USB_DT_DEVICE_QUALIFIER: /* function can't have any of those */ pr_vdebug("descriptor reserved for gadget: %d\n", _ds->bDescriptorType); return -EINVAL; case USB_DT_INTERFACE: { struct usb_interface_descriptor *ds = (void *)_ds; pr_vdebug("interface descriptor\n"); if (length != sizeof *ds) goto inv_length; __entity(INTERFACE, ds->bInterfaceNumber); if (ds->iInterface) __entity(STRING, ds->iInterface); *current_class = ds->bInterfaceClass; } break; case USB_DT_ENDPOINT: { struct usb_endpoint_descriptor *ds = (void *)_ds; pr_vdebug("endpoint descriptor\n"); if (length != USB_DT_ENDPOINT_SIZE && length != USB_DT_ENDPOINT_AUDIO_SIZE) goto inv_length; __entity(ENDPOINT, ds->bEndpointAddress); } break; case USB_TYPE_CLASS | 0x01: if (*current_class == USB_INTERFACE_CLASS_HID) { pr_vdebug("hid descriptor\n"); if (length != sizeof(struct hid_descriptor)) goto inv_length; break; } else if (*current_class == USB_INTERFACE_CLASS_CCID) { pr_vdebug("ccid descriptor\n"); if (length != sizeof(struct ccid_descriptor)) goto inv_length; break; } else { pr_vdebug("unknown descriptor: %d for class %d\n", _ds->bDescriptorType, *current_class); return -EINVAL; } case USB_DT_OTG: if (length != sizeof(struct usb_otg_descriptor)) goto inv_length; break; case USB_DT_INTERFACE_ASSOCIATION: { struct usb_interface_assoc_descriptor *ds = (void *)_ds; pr_vdebug("interface association descriptor\n"); if (length != sizeof *ds) goto inv_length; if (ds->iFunction) __entity(STRING, ds->iFunction); } break; case USB_DT_SS_ENDPOINT_COMP: pr_vdebug("EP SS companion descriptor\n"); if (length != sizeof(struct usb_ss_ep_comp_descriptor)) goto inv_length; break; case USB_DT_OTHER_SPEED_CONFIG: case USB_DT_INTERFACE_POWER: case USB_DT_DEBUG: case USB_DT_SECURITY: case USB_DT_CS_RADIO_CONTROL: /* TODO */ pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); return -EINVAL; default: /* We should never be here */ pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); return -EINVAL; inv_length: pr_vdebug("invalid length: %d (descriptor %d)\n", _ds->bLength, _ds->bDescriptorType); return -EINVAL; } #undef __entity #undef __entity_check_DESCRIPTOR #undef __entity_check_INTERFACE #undef __entity_check_STRING #undef __entity_check_ENDPOINT return length; } static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, ffs_entity_callback entity, void *priv) { const unsigned _len = len; unsigned long num = 0; int current_class = -1; for (;;) { int ret; if (num == count) data = NULL; /* Record "descriptor" entity */ ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); if (ret < 0) { pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", num, ret); return ret; } if (!data) return _len - len; ret = ffs_do_single_desc(data, len, entity, priv, &current_class); if (ret < 0) { pr_debug("%s returns %d\n", __func__, ret); return ret; } len -= ret; data += ret; ++num; } } static int __ffs_data_do_entity(enum ffs_entity_type type, u8 *valuep, struct usb_descriptor_header *desc, void *priv) { struct ffs_desc_helper *helper = priv; struct usb_endpoint_descriptor *d; switch (type) { case FFS_DESCRIPTOR: break; case FFS_INTERFACE: /* * Interfaces are indexed from zero so if we * encountered interface "n" then there are at least * "n+1" interfaces. */ if (*valuep >= helper->interfaces_count) helper->interfaces_count = *valuep + 1; break; case FFS_STRING: /* * Strings are indexed from 1 (0 is reserved * for languages list) */ if (*valuep > helper->ffs->strings_count) helper->ffs->strings_count = *valuep; break; case FFS_ENDPOINT: d = (void *)desc; helper->eps_count++; if (helper->eps_count >= FFS_MAX_EPS_COUNT) return -EINVAL; /* Check if descriptors for any speed were already parsed */ if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) helper->ffs->eps_addrmap[helper->eps_count] = d->bEndpointAddress; else if (helper->ffs->eps_addrmap[helper->eps_count] != d->bEndpointAddress) return -EINVAL; break; } return 0; } static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, struct usb_os_desc_header *desc) { u16 bcd_version = le16_to_cpu(desc->bcdVersion); u16 w_index = le16_to_cpu(desc->wIndex); if (bcd_version == 0x1) { pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); } else if (bcd_version != 0x100) { pr_vdebug("unsupported os descriptors version: 0x%x\n", bcd_version); return -EINVAL; } switch (w_index) { case 0x4: *next_type = FFS_OS_DESC_EXT_COMPAT; break; case 0x5: *next_type = FFS_OS_DESC_EXT_PROP; break; default: pr_vdebug("unsupported os descriptor type: %d", w_index); return -EINVAL; } return sizeof(*desc); } /* * Process all extended compatibility/extended property descriptors * of a feature descriptor */ static int __must_check ffs_do_single_os_desc(char *data, unsigned len, enum ffs_os_desc_type type, u16 feature_count, ffs_os_desc_callback entity, void *priv, struct usb_os_desc_header *h) { int ret; const unsigned _len = len; /* loop over all ext compat/ext prop descriptors */ while (feature_count--) { ret = entity(type, h, data, len, priv); if (ret < 0) { pr_debug("bad OS descriptor, type: %d\n", type); return ret; } data += ret; len -= ret; } return _len - len; } /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ static int __must_check ffs_do_os_descs(unsigned count, char *data, unsigned len, ffs_os_desc_callback entity, void *priv) { const unsigned _len = len; unsigned long num = 0; for (num = 0; num < count; ++num) { int ret; enum ffs_os_desc_type type; u16 feature_count; struct usb_os_desc_header *desc = (void *)data; if (len < sizeof(*desc)) return -EINVAL; /* * Record "descriptor" entity. * Process dwLength, bcdVersion, wIndex, get b/wCount. * Move the data pointer to the beginning of extended * compatibilities proper or extended properties proper * portions of the data */ if (le32_to_cpu(desc->dwLength) > len) return -EINVAL; ret = __ffs_do_os_desc_header(&type, desc); if (ret < 0) { pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", num, ret); return ret; } /* * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" */ feature_count = le16_to_cpu(desc->wCount); if (type == FFS_OS_DESC_EXT_COMPAT && (feature_count > 255 || desc->Reserved)) return -EINVAL; len -= ret; data += ret; /* * Process all function/property descriptors * of this Feature Descriptor */ ret = ffs_do_single_os_desc(data, len, type, feature_count, entity, priv, desc); if (ret < 0) { pr_debug("%s returns %d\n", __func__, ret); return ret; } len -= ret; data += ret; } return _len - len; } /* * Validate contents of the buffer from userspace related to OS descriptors. */ static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, struct usb_os_desc_header *h, void *data, unsigned len, void *priv) { struct ffs_data *ffs = priv; u8 length; switch (type) { case FFS_OS_DESC_EXT_COMPAT: { struct usb_ext_compat_desc *d = data; int i; if (len < sizeof(*d) || d->bFirstInterfaceNumber >= ffs->interfaces_count) return -EINVAL; if (d->Reserved1 != 1) { /* * According to the spec, Reserved1 must be set to 1 * but older kernels incorrectly rejected non-zero * values. We fix it here to avoid returning EINVAL * in response to values we used to accept. */ pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); d->Reserved1 = 1; } for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) if (d->Reserved2[i]) return -EINVAL; length = sizeof(struct usb_ext_compat_desc); } break; case FFS_OS_DESC_EXT_PROP: { struct usb_ext_prop_desc *d = data; u32 type, pdl; u16 pnl; if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) return -EINVAL; length = le32_to_cpu(d->dwSize); if (len < length) return -EINVAL; type = le32_to_cpu(d->dwPropertyDataType); if (type < USB_EXT_PROP_UNICODE || type > USB_EXT_PROP_UNICODE_MULTI) { pr_vdebug("unsupported os descriptor property type: %d", type); return -EINVAL; } pnl = le16_to_cpu(d->wPropertyNameLength); if (length < 14 + pnl) { pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", length, pnl, type); return -EINVAL; } pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); if (length != 14 + pnl + pdl) { pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", length, pnl, pdl, type); return -EINVAL; } ++ffs->ms_os_descs_ext_prop_count; /* property name reported to the host as "WCHAR"s */ ffs->ms_os_descs_ext_prop_name_len += pnl * 2; ffs->ms_os_descs_ext_prop_data_len += pdl; } break; default: pr_vdebug("unknown descriptor: %d\n", type); return -EINVAL; } return length; } static int __ffs_data_got_descs(struct ffs_data *ffs, char *const _data, size_t len) { char *data = _data, *raw_descs; unsigned os_descs_count = 0, counts[3], flags; int ret = -EINVAL, i; struct ffs_desc_helper helper; if (get_unaligned_le32(data + 4) != len) goto error; switch (get_unaligned_le32(data)) { case FUNCTIONFS_DESCRIPTORS_MAGIC: flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; data += 8; len -= 8; break; case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: flags = get_unaligned_le32(data + 8); ffs->user_flags = flags; if (flags & ~(FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC | FUNCTIONFS_HAS_SS_DESC | FUNCTIONFS_HAS_MS_OS_DESC | FUNCTIONFS_VIRTUAL_ADDR | FUNCTIONFS_EVENTFD | FUNCTIONFS_ALL_CTRL_RECIP | FUNCTIONFS_CONFIG0_SETUP)) { ret = -ENOSYS; goto error; } data += 12; len -= 12; break; default: goto error; } if (flags & FUNCTIONFS_EVENTFD) { if (len < 4) goto error; ffs->ffs_eventfd = eventfd_ctx_fdget((int)get_unaligned_le32(data)); if (IS_ERR(ffs->ffs_eventfd)) { ret = PTR_ERR(ffs->ffs_eventfd); ffs->ffs_eventfd = NULL; goto error; } data += 4; len -= 4; } /* Read fs_count, hs_count and ss_count (if present) */ for (i = 0; i < 3; ++i) { if (!(flags & (1 << i))) { counts[i] = 0; } else if (len < 4) { goto error; } else { counts[i] = get_unaligned_le32(data); data += 4; len -= 4; } } if (flags & (1 << i)) { if (len < 4) { goto error; } os_descs_count = get_unaligned_le32(data); data += 4; len -= 4; } /* Read descriptors */ raw_descs = data; helper.ffs = ffs; for (i = 0; i < 3; ++i) { if (!counts[i]) continue; helper.interfaces_count = 0; helper.eps_count = 0; ret = ffs_do_descs(counts[i], data, len, __ffs_data_do_entity, &helper); if (ret < 0) goto error; if (!ffs->eps_count && !ffs->interfaces_count) { ffs->eps_count = helper.eps_count; ffs->interfaces_count = helper.interfaces_count; } else { if (ffs->eps_count != helper.eps_count) { ret = -EINVAL; goto error; } if (ffs->interfaces_count != helper.interfaces_count) { ret = -EINVAL; goto error; } } data += ret; len -= ret; } if (os_descs_count) { ret = ffs_do_os_descs(os_descs_count, data, len, __ffs_data_do_os_desc, ffs); if (ret < 0) goto error; data += ret; len -= ret; } if (raw_descs == data || len) { ret = -EINVAL; goto error; } ffs->raw_descs_data = _data; ffs->raw_descs = raw_descs; ffs->raw_descs_length = data - raw_descs; ffs->fs_descs_count = counts[0]; ffs->hs_descs_count = counts[1]; ffs->ss_descs_count = counts[2]; ffs->ms_os_descs_count = os_descs_count; return 0; error: kfree(_data); return ret; } static int __ffs_data_got_strings(struct ffs_data *ffs, char *const _data, size_t len) { u32 str_count, needed_count, lang_count; struct usb_gadget_strings **stringtabs, *t; const char *data = _data; struct usb_string *s; if (len < 16 || get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || get_unaligned_le32(data + 4) != len) goto error; str_count = get_unaligned_le32(data + 8); lang_count = get_unaligned_le32(data + 12); /* if one is zero the other must be zero */ if (!str_count != !lang_count) goto error; /* Do we have at least as many strings as descriptors need? */ needed_count = ffs->strings_count; if (str_count < needed_count) goto error; /* * If we don't need any strings just return and free all * memory. */ if (!needed_count) { kfree(_data); return 0; } /* Allocate everything in one chunk so there's less maintenance. */ { unsigned i = 0; vla_group(d); vla_item(d, struct usb_gadget_strings *, stringtabs, size_add(lang_count, 1)); vla_item(d, struct usb_gadget_strings, stringtab, lang_count); vla_item(d, struct usb_string, strings, size_mul(lang_count, (needed_count + 1))); char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); if (!vlabuf) { kfree(_data); return -ENOMEM; } /* Initialize the VLA pointers */ stringtabs = vla_ptr(vlabuf, d, stringtabs); t = vla_ptr(vlabuf, d, stringtab); i = lang_count; do { *stringtabs++ = t++; } while (--i); *stringtabs = NULL; /* stringtabs = vlabuf = d_stringtabs for later kfree */ stringtabs = vla_ptr(vlabuf, d, stringtabs); t = vla_ptr(vlabuf, d, stringtab); s = vla_ptr(vlabuf, d, strings); } /* For each language */ data += 16; len -= 16; do { /* lang_count > 0 so we can use do-while */ unsigned needed = needed_count; u32 str_per_lang = str_count; if (len < 3) goto error_free; t->language = get_unaligned_le16(data); t->strings = s; ++t; data += 2; len -= 2; /* For each string */ do { /* str_count > 0 so we can use do-while */ size_t length = strnlen(data, len); if (length == len) goto error_free; /* * User may provide more strings then we need, * if that's the case we simply ignore the * rest */ if (needed) { /* * s->id will be set while adding * function to configuration so for * now just leave garbage here. */ s->s = data; --needed; ++s; } data += length + 1; len -= length + 1; } while (--str_per_lang); s->id = 0; /* terminator */ s->s = NULL; ++s; } while (--lang_count); /* Some garbage left? */ if (len) goto error_free; /* Done! */ ffs->stringtabs = stringtabs; ffs->raw_strings = _data; return 0; error_free: kfree(stringtabs); error: kfree(_data); return -EINVAL; } /* Events handling and management *******************************************/ static void __ffs_event_add(struct ffs_data *ffs, enum usb_functionfs_event_type type) { enum usb_functionfs_event_type rem_type1, rem_type2 = type; int neg = 0; /* * Abort any unhandled setup * * We do not need to worry about some cmpxchg() changing value * of ffs->setup_state without holding the lock because when * state is FFS_SETUP_PENDING cmpxchg() in several places in * the source does nothing. */ if (ffs->setup_state == FFS_SETUP_PENDING) ffs->setup_state = FFS_SETUP_CANCELLED; /* * Logic of this function guarantees that there are at most four pending * evens on ffs->ev.types queue. This is important because the queue * has space for four elements only and __ffs_ep0_read_events function * depends on that limit as well. If more event types are added, those * limits have to be revisited or guaranteed to still hold. */ switch (type) { case FUNCTIONFS_RESUME: rem_type2 = FUNCTIONFS_SUSPEND; fallthrough; case FUNCTIONFS_SUSPEND: case FUNCTIONFS_SETUP: rem_type1 = type; /* Discard all similar events */ break; case FUNCTIONFS_BIND: case FUNCTIONFS_UNBIND: case FUNCTIONFS_DISABLE: case FUNCTIONFS_ENABLE: /* Discard everything other then power management. */ rem_type1 = FUNCTIONFS_SUSPEND; rem_type2 = FUNCTIONFS_RESUME; neg = 1; break; default: WARN(1, "%d: unknown event, this should not happen\n", type); return; } { u8 *ev = ffs->ev.types, *out = ev; unsigned n = ffs->ev.count; for (; n; --n, ++ev) if ((*ev == rem_type1 || *ev == rem_type2) == neg) *out++ = *ev; else pr_vdebug("purging event %d\n", *ev); ffs->ev.count = out - ffs->ev.types; } pr_vdebug("adding event %d\n", type); ffs->ev.types[ffs->ev.count++] = type; wake_up_locked(&ffs->ev.waitq); if (ffs->ffs_eventfd) eventfd_signal(ffs->ffs_eventfd, 1); } static void ffs_event_add(struct ffs_data *ffs, enum usb_functionfs_event_type type) { unsigned long flags; spin_lock_irqsave(&ffs->ev.waitq.lock, flags); __ffs_event_add(ffs, type); spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); } /* Bind/unbind USB function hooks *******************************************/ static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) { int i; for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) if (ffs->eps_addrmap[i] == endpoint_address) return i; return -ENOENT; } static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, struct usb_descriptor_header *desc, void *priv) { struct usb_endpoint_descriptor *ds = (void *)desc; struct ffs_function *func = priv; struct ffs_ep *ffs_ep; unsigned ep_desc_id; int idx; static const char *speed_names[] = { "full", "high", "super" }; if (type != FFS_DESCRIPTOR) return 0; /* * If ss_descriptors is not NULL, we are reading super speed * descriptors; if hs_descriptors is not NULL, we are reading high * speed descriptors; otherwise, we are reading full speed * descriptors. */ if (func->function.ss_descriptors) { ep_desc_id = 2; func->function.ss_descriptors[(long)valuep] = desc; } else if (func->function.hs_descriptors) { ep_desc_id = 1; func->function.hs_descriptors[(long)valuep] = desc; } else { ep_desc_id = 0; func->function.fs_descriptors[(long)valuep] = desc; } if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) return 0; idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; if (idx < 0) return idx; ffs_ep = func->eps + idx; if (ffs_ep->descs[ep_desc_id]) { pr_err("two %sspeed descriptors for EP %d\n", speed_names[ep_desc_id], ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); return -EINVAL; } ffs_ep->descs[ep_desc_id] = ds; ffs_dump_mem(": Original ep desc", ds, ds->bLength); if (ffs_ep->ep) { ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; if (!ds->wMaxPacketSize) ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; } else { struct usb_request *req; struct usb_ep *ep; u8 bEndpointAddress; u16 wMaxPacketSize; /* * We back up bEndpointAddress because autoconfig overwrites * it with physical endpoint address. */ bEndpointAddress = ds->bEndpointAddress; /* * We back up wMaxPacketSize because autoconfig treats * endpoint descriptors as if they were full speed. */ wMaxPacketSize = ds->wMaxPacketSize; pr_vdebug("autoconfig\n"); ep = usb_ep_autoconfig(func->gadget, ds); if (!ep) return -ENOTSUPP; ep->driver_data = func->eps + idx; req = usb_ep_alloc_request(ep, GFP_KERNEL); if (!req) return -ENOMEM; ffs_ep->ep = ep; ffs_ep->req = req; func->eps_revmap[ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK] = idx + 1; /* * If we use virtual address mapping, we restore * original bEndpointAddress value. */ if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) ds->bEndpointAddress = bEndpointAddress; /* * Restore wMaxPacketSize which was potentially * overwritten by autoconfig. */ ds->wMaxPacketSize = wMaxPacketSize; } ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); return 0; } static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, struct usb_descriptor_header *desc, void *priv) { struct ffs_function *func = priv; unsigned idx; u8 newValue; switch (type) { default: case FFS_DESCRIPTOR: /* Handled in previous pass by __ffs_func_bind_do_descs() */ return 0; case FFS_INTERFACE: idx = *valuep; if (func->interfaces_nums[idx] < 0) { int id = usb_interface_id(func->conf, &func->function); if (id < 0) return id; func->interfaces_nums[idx] = id; } newValue = func->interfaces_nums[idx]; break; case FFS_STRING: /* String' IDs are allocated when fsf_data is bound to cdev */ newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; break; case FFS_ENDPOINT: /* * USB_DT_ENDPOINT are handled in * __ffs_func_bind_do_descs(). */ if (desc->bDescriptorType == USB_DT_ENDPOINT) return 0; idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; if (!func->eps[idx].ep) return -EINVAL; { struct usb_endpoint_descriptor **descs; descs = func->eps[idx].descs; newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; } break; } pr_vdebug("%02x -> %02x\n", *valuep, newValue); *valuep = newValue; return 0; } static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, struct usb_os_desc_header *h, void *data, unsigned len, void *priv) { struct ffs_function *func = priv; u8 length = 0; switch (type) { case FFS_OS_DESC_EXT_COMPAT: { struct usb_ext_compat_desc *desc = data; struct usb_os_desc_table *t; t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, ARRAY_SIZE(desc->CompatibleID) + ARRAY_SIZE(desc->SubCompatibleID)); length = sizeof(*desc); } break; case FFS_OS_DESC_EXT_PROP: { struct usb_ext_prop_desc *desc = data; struct usb_os_desc_table *t; struct usb_os_desc_ext_prop *ext_prop; char *ext_prop_name; char *ext_prop_data; t = &func->function.os_desc_table[h->interface]; t->if_id = func->interfaces_nums[h->interface]; ext_prop = func->ffs->ms_os_descs_ext_prop_avail; func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); ext_prop->data_len = le32_to_cpu(*(__le32 *) usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); length = ext_prop->name_len + ext_prop->data_len + 14; ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; func->ffs->ms_os_descs_ext_prop_name_avail += ext_prop->name_len; ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; func->ffs->ms_os_descs_ext_prop_data_avail += ext_prop->data_len; memcpy(ext_prop_data, usb_ext_prop_data_ptr(data, ext_prop->name_len), ext_prop->data_len); /* unicode data reported to the host as "WCHAR"s */ switch (ext_prop->type) { case USB_EXT_PROP_UNICODE: case USB_EXT_PROP_UNICODE_ENV: case USB_EXT_PROP_UNICODE_LINK: case USB_EXT_PROP_UNICODE_MULTI: ext_prop->data_len *= 2; break; } ext_prop->data = ext_prop_data; memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), ext_prop->name_len); /* property name reported to the host as "WCHAR"s */ ext_prop->name_len *= 2; ext_prop->name = ext_prop_name; t->os_desc->ext_prop_len += ext_prop->name_len + ext_prop->data_len + 14; ++t->os_desc->ext_prop_count; list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); } break; default: pr_vdebug("unknown descriptor: %d\n", type); } return length; } static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, struct usb_configuration *c) { struct ffs_function *func = ffs_func_from_usb(f); struct f_fs_opts *ffs_opts = container_of(f->fi, struct f_fs_opts, func_inst); struct ffs_data *ffs_data; int ret; /* * Legacy gadget triggers binding in functionfs_ready_callback, * which already uses locking; taking the same lock here would * cause a deadlock. * * Configfs-enabled gadgets however do need ffs_dev_lock. */ if (!ffs_opts->no_configfs) ffs_dev_lock(); ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; ffs_data = ffs_opts->dev->ffs_data; if (!ffs_opts->no_configfs) ffs_dev_unlock(); if (ret) return ERR_PTR(ret); func->ffs = ffs_data; func->conf = c; func->gadget = c->cdev->gadget; /* * in drivers/usb/gadget/configfs.c:configfs_composite_bind() * configurations are bound in sequence with list_for_each_entry, * in each configuration its functions are bound in sequence * with list_for_each_entry, so we assume no race condition * with regard to ffs_opts->bound access */ if (!ffs_opts->refcnt) { ret = functionfs_bind(func->ffs, c->cdev); if (ret) return ERR_PTR(ret); } ffs_opts->refcnt++; func->function.strings = func->ffs->stringtabs; return ffs_opts; } static int _ffs_func_bind(struct usb_configuration *c, struct usb_function *f) { struct ffs_function *func = ffs_func_from_usb(f); struct ffs_data *ffs = func->ffs; const int full = !!func->ffs->fs_descs_count; const int high = !!func->ffs->hs_descs_count; const int super = !!func->ffs->ss_descs_count; int fs_len, hs_len, ss_len, ret, i; struct ffs_ep *eps_ptr; /* Make it a single chunk, less management later on */ vla_group(d); vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, full ? ffs->fs_descs_count + 1 : 0); vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, high ? ffs->hs_descs_count + 1 : 0); vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, super ? ffs->ss_descs_count + 1 : 0); vla_item_with_sz(d, short, inums, ffs->interfaces_count); vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, c->cdev->use_os_string ? ffs->interfaces_count : 0); vla_item_with_sz(d, char[16], ext_compat, c->cdev->use_os_string ? ffs->interfaces_count : 0); vla_item_with_sz(d, struct usb_os_desc, os_desc, c->cdev->use_os_string ? ffs->interfaces_count : 0); vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, ffs->ms_os_descs_ext_prop_count); vla_item_with_sz(d, char, ext_prop_name, ffs->ms_os_descs_ext_prop_name_len); vla_item_with_sz(d, char, ext_prop_data, ffs->ms_os_descs_ext_prop_data_len); vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); char *vlabuf; /* Has descriptors only for speeds gadget does not support */ if (!(full | high | super)) return -ENOTSUPP; /* Allocate a single chunk, less management later on */ vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); if (!vlabuf) return -ENOMEM; ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); ffs->ms_os_descs_ext_prop_name_avail = vla_ptr(vlabuf, d, ext_prop_name); ffs->ms_os_descs_ext_prop_data_avail = vla_ptr(vlabuf, d, ext_prop_data); /* Copy descriptors */ memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, ffs->raw_descs_length); memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); eps_ptr = vla_ptr(vlabuf, d, eps); for (i = 0; i < ffs->eps_count; i++) eps_ptr[i].num = -1; /* Save pointers * d_eps == vlabuf, func->eps used to kfree vlabuf later */ func->eps = vla_ptr(vlabuf, d, eps); func->interfaces_nums = vla_ptr(vlabuf, d, inums); /* * Go through all the endpoint descriptors and allocate * endpoints first, so that later we can rewrite the endpoint * numbers without worrying that it may be described later on. */ if (full) { func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); fs_len = ffs_do_descs(ffs->fs_descs_count, vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, __ffs_func_bind_do_descs, func); if (fs_len < 0) { ret = fs_len; goto error; } } else { fs_len = 0; } if (high) { func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); hs_len = ffs_do_descs(ffs->hs_descs_count, vla_ptr(vlabuf, d, raw_descs) + fs_len, d_raw_descs__sz - fs_len, __ffs_func_bind_do_descs, func); if (hs_len < 0) { ret = hs_len; goto error; } } else { hs_len = 0; } if (super) { func->function.ss_descriptors = func->function.ssp_descriptors = vla_ptr(vlabuf, d, ss_descs); ss_len = ffs_do_descs(ffs->ss_descs_count, vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, d_raw_descs__sz - fs_len - hs_len, __ffs_func_bind_do_descs, func); if (ss_len < 0) { ret = ss_len; goto error; } } else { ss_len = 0; } /* * Now handle interface numbers allocation and interface and * endpoint numbers rewriting. We can do that in one go * now. */ ret = ffs_do_descs(ffs->fs_descs_count + (high ? ffs->hs_descs_count : 0) + (super ? ffs->ss_descs_count : 0), vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, __ffs_func_bind_do_nums, func); if (ret < 0) goto error; func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); if (c->cdev->use_os_string) { for (i = 0; i < ffs->interfaces_count; ++i) { struct usb_os_desc *desc; desc = func->function.os_desc_table[i].os_desc = vla_ptr(vlabuf, d, os_desc) + i * sizeof(struct usb_os_desc); desc->ext_compat_id = vla_ptr(vlabuf, d, ext_compat) + i * 16; INIT_LIST_HEAD(&desc->ext_prop); } ret = ffs_do_os_descs(ffs->ms_os_descs_count, vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len + ss_len, d_raw_descs__sz - fs_len - hs_len - ss_len, __ffs_func_bind_do_os_desc, func); if (ret < 0) goto error; } func->function.os_desc_n = c->cdev->use_os_string ? ffs->interfaces_count : 0; /* And we're done */ ffs_event_add(ffs, FUNCTIONFS_BIND); return 0; error: /* XXX Do we need to release all claimed endpoints here? */ return ret; } static int ffs_func_bind(struct usb_configuration *c, struct usb_function *f) { struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); struct ffs_function *func = ffs_func_from_usb(f); int ret; if (IS_ERR(ffs_opts)) return PTR_ERR(ffs_opts); ret = _ffs_func_bind(c, f); if (ret && !--ffs_opts->refcnt) functionfs_unbind(func->ffs); return ret; } /* Other USB function hooks *************************************************/ static void ffs_reset_work(struct work_struct *work) { struct ffs_data *ffs = container_of(work, struct ffs_data, reset_work); ffs_data_reset(ffs); } static int ffs_func_set_alt(struct usb_function *f, unsigned interface, unsigned alt) { struct ffs_function *func = ffs_func_from_usb(f); struct ffs_data *ffs = func->ffs; int ret = 0, intf; if (alt != (unsigned)-1) { intf = ffs_func_revmap_intf(func, interface); if (intf < 0) return intf; } if (ffs->func) ffs_func_eps_disable(ffs->func); if (ffs->state == FFS_DEACTIVATED) { ffs->state = FFS_CLOSING; INIT_WORK(&ffs->reset_work, ffs_reset_work); schedule_work(&ffs->reset_work); return -ENODEV; } if (ffs->state != FFS_ACTIVE) return -ENODEV; if (alt == (unsigned)-1) { ffs->func = NULL; ffs_event_add(ffs, FUNCTIONFS_DISABLE); return 0; } ffs->func = func; ret = ffs_func_eps_enable(func); if (ret >= 0) ffs_event_add(ffs, FUNCTIONFS_ENABLE); return ret; } static void ffs_func_disable(struct usb_function *f) { ffs_func_set_alt(f, 0, (unsigned)-1); } static int ffs_func_setup(struct usb_function *f, const struct usb_ctrlrequest *creq) { struct ffs_function *func = ffs_func_from_usb(f); struct ffs_data *ffs = func->ffs; unsigned long flags; int ret; pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); /* * Most requests directed to interface go through here * (notable exceptions are set/get interface) so we need to * handle them. All other either handled by composite or * passed to usb_configuration->setup() (if one is set). No * matter, we will handle requests directed to endpoint here * as well (as it's straightforward). Other request recipient * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP * is being used. */ if (ffs->state != FFS_ACTIVE) return -ENODEV; switch (creq->bRequestType & USB_RECIP_MASK) { case USB_RECIP_INTERFACE: ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); if (ret < 0) return ret; break; case USB_RECIP_ENDPOINT: ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); if (ret < 0) return ret; if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) ret = func->ffs->eps_addrmap[ret]; break; default: if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) ret = le16_to_cpu(creq->wIndex); else return -EOPNOTSUPP; } spin_lock_irqsave(&ffs->ev.waitq.lock, flags); ffs->ev.setup = *creq; ffs->ev.setup.wIndex = cpu_to_le16(ret); __ffs_event_add(ffs, FUNCTIONFS_SETUP); spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; } static bool ffs_func_req_match(struct usb_function *f, const struct usb_ctrlrequest *creq, bool config0) { struct ffs_function *func = ffs_func_from_usb(f); if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) return false; switch (creq->bRequestType & USB_RECIP_MASK) { case USB_RECIP_INTERFACE: return (ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)) >= 0); case USB_RECIP_ENDPOINT: return (ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)) >= 0); default: return (bool) (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP); } } static void ffs_func_suspend(struct usb_function *f) { ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); } static void ffs_func_resume(struct usb_function *f) { ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); } /* Endpoint and interface numbers reverse mapping ***************************/ static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) { num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; return num ? num : -EDOM; } static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) { short *nums = func->interfaces_nums; unsigned count = func->ffs->interfaces_count; for (; count; --count, ++nums) { if (*nums >= 0 && *nums == intf) return nums - func->interfaces_nums; } return -EDOM; } /* Devices management *******************************************************/ static LIST_HEAD(ffs_devices); static struct ffs_dev *_ffs_do_find_dev(const char *name) { struct ffs_dev *dev; if (!name) return NULL; list_for_each_entry(dev, &ffs_devices, entry) { if (strcmp(dev->name, name) == 0) return dev; } return NULL; } /* * ffs_lock must be taken by the caller of this function */ static struct ffs_dev *_ffs_get_single_dev(void) { struct ffs_dev *dev; if (list_is_singular(&ffs_devices)) { dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); if (dev->single) return dev; } return NULL; } /* * ffs_lock must be taken by the caller of this function */ static struct ffs_dev *_ffs_find_dev(const char *name) { struct ffs_dev *dev; dev = _ffs_get_single_dev(); if (dev) return dev; return _ffs_do_find_dev(name); } /* Configfs support *********************************************************/ static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_fs_opts, func_inst.group); } static void ffs_attr_release(struct config_item *item) { struct f_fs_opts *opts = to_ffs_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations ffs_item_ops = { .release = ffs_attr_release, }; static const struct config_item_type ffs_func_type = { .ct_item_ops = &ffs_item_ops, .ct_owner = THIS_MODULE, }; /* Function registration interface ******************************************/ static void ffs_free_inst(struct usb_function_instance *f) { struct f_fs_opts *opts; opts = to_f_fs_opts(f); ffs_release_dev(opts->dev); ffs_dev_lock(); _ffs_free_dev(opts->dev); ffs_dev_unlock(); kfree(opts); } static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) { if (strlen(name) >= sizeof_field(struct ffs_dev, name)) return -ENAMETOOLONG; return ffs_name_dev(to_f_fs_opts(fi)->dev, name); } static struct usb_function_instance *ffs_alloc_inst(void) { struct f_fs_opts *opts; struct ffs_dev *dev; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); opts->func_inst.set_inst_name = ffs_set_inst_name; opts->func_inst.free_func_inst = ffs_free_inst; ffs_dev_lock(); dev = _ffs_alloc_dev(); ffs_dev_unlock(); if (IS_ERR(dev)) { kfree(opts); return ERR_CAST(dev); } opts->dev = dev; dev->opts = opts; config_group_init_type_name(&opts->func_inst.group, "", &ffs_func_type); return &opts->func_inst; } static void ffs_free(struct usb_function *f) { kfree(ffs_func_from_usb(f)); } static void ffs_func_unbind(struct usb_configuration *c, struct usb_function *f) { struct ffs_function *func = ffs_func_from_usb(f); struct ffs_data *ffs = func->ffs; struct f_fs_opts *opts = container_of(f->fi, struct f_fs_opts, func_inst); struct ffs_ep *ep = func->eps; unsigned count = ffs->eps_count; unsigned long flags; if (ffs->func == func) { ffs_func_eps_disable(func); ffs->func = NULL; } /* Drain any pending AIO completions */ drain_workqueue(ffs->io_completion_wq); ffs_event_add(ffs, FUNCTIONFS_UNBIND); if (!--opts->refcnt) functionfs_unbind(ffs); /* cleanup after autoconfig */ spin_lock_irqsave(&func->ffs->eps_lock, flags); while (count--) { if (ep->ep && ep->req) usb_ep_free_request(ep->ep, ep->req); ep->req = NULL; ++ep; } spin_unlock_irqrestore(&func->ffs->eps_lock, flags); kfree(func->eps); func->eps = NULL; /* * eps, descriptors and interfaces_nums are allocated in the * same chunk so only one free is required. */ func->function.fs_descriptors = NULL; func->function.hs_descriptors = NULL; func->function.ss_descriptors = NULL; func->function.ssp_descriptors = NULL; func->interfaces_nums = NULL; } static struct usb_function *ffs_alloc(struct usb_function_instance *fi) { struct ffs_function *func; func = kzalloc(sizeof(*func), GFP_KERNEL); if (!func) return ERR_PTR(-ENOMEM); func->function.name = "Function FS Gadget"; func->function.bind = ffs_func_bind; func->function.unbind = ffs_func_unbind; func->function.set_alt = ffs_func_set_alt; func->function.disable = ffs_func_disable; func->function.setup = ffs_func_setup; func->function.req_match = ffs_func_req_match; func->function.suspend = ffs_func_suspend; func->function.resume = ffs_func_resume; func->function.free_func = ffs_free; return &func->function; } /* * ffs_lock must be taken by the caller of this function */ static struct ffs_dev *_ffs_alloc_dev(void) { struct ffs_dev *dev; int ret; if (_ffs_get_single_dev()) return ERR_PTR(-EBUSY); dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); if (list_empty(&ffs_devices)) { ret = functionfs_init(); if (ret) { kfree(dev); return ERR_PTR(ret); } } list_add(&dev->entry, &ffs_devices); return dev; } int ffs_name_dev(struct ffs_dev *dev, const char *name) { struct ffs_dev *existing; int ret = 0; ffs_dev_lock(); existing = _ffs_do_find_dev(name); if (!existing) strscpy(dev->name, name, ARRAY_SIZE(dev->name)); else if (existing != dev) ret = -EBUSY; ffs_dev_unlock(); return ret; } EXPORT_SYMBOL_GPL(ffs_name_dev); int ffs_single_dev(struct ffs_dev *dev) { int ret; ret = 0; ffs_dev_lock(); if (!list_is_singular(&ffs_devices)) ret = -EBUSY; else dev->single = true; ffs_dev_unlock(); return ret; } EXPORT_SYMBOL_GPL(ffs_single_dev); /* * ffs_lock must be taken by the caller of this function */ static void _ffs_free_dev(struct ffs_dev *dev) { list_del(&dev->entry); kfree(dev); if (list_empty(&ffs_devices)) functionfs_cleanup(); } static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) { int ret = 0; struct ffs_dev *ffs_dev; ffs_dev_lock(); ffs_dev = _ffs_find_dev(dev_name); if (!ffs_dev) { ret = -ENOENT; } else if (ffs_dev->mounted) { ret = -EBUSY; } else if (ffs_dev->ffs_acquire_dev_callback && ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { ret = -ENOENT; } else { ffs_dev->mounted = true; ffs_dev->ffs_data = ffs_data; ffs_data->private_data = ffs_dev; } ffs_dev_unlock(); return ret; } static void ffs_release_dev(struct ffs_dev *ffs_dev) { ffs_dev_lock(); if (ffs_dev && ffs_dev->mounted) { ffs_dev->mounted = false; if (ffs_dev->ffs_data) { ffs_dev->ffs_data->private_data = NULL; ffs_dev->ffs_data = NULL; } if (ffs_dev->ffs_release_dev_callback) ffs_dev->ffs_release_dev_callback(ffs_dev); } ffs_dev_unlock(); } static int ffs_ready(struct ffs_data *ffs) { struct ffs_dev *ffs_obj; int ret = 0; ffs_dev_lock(); ffs_obj = ffs->private_data; if (!ffs_obj) { ret = -EINVAL; goto done; } if (WARN_ON(ffs_obj->desc_ready)) { ret = -EBUSY; goto done; } ffs_obj->desc_ready = true; if (ffs_obj->ffs_ready_callback) { ret = ffs_obj->ffs_ready_callback(ffs); if (ret) goto done; } set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); done: ffs_dev_unlock(); return ret; } static void ffs_closed(struct ffs_data *ffs) { struct ffs_dev *ffs_obj; struct f_fs_opts *opts; struct config_item *ci; ffs_dev_lock(); ffs_obj = ffs->private_data; if (!ffs_obj) goto done; ffs_obj->desc_ready = false; if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && ffs_obj->ffs_closed_callback) ffs_obj->ffs_closed_callback(ffs); if (ffs_obj->opts) opts = ffs_obj->opts; else goto done; if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) goto done; ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; ffs_dev_unlock(); if (test_bit(FFS_FL_BOUND, &ffs->flags)) unregister_gadget_item(ci); return; done: ffs_dev_unlock(); } /* Misc helper functions ****************************************************/ static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) { return nonblock ? mutex_trylock(mutex) ? 0 : -EAGAIN : mutex_lock_interruptible(mutex); } static char *ffs_prepare_buffer(const char __user *buf, size_t len) { char *data; if (!len) return NULL; data = memdup_user(buf, len); if (IS_ERR(data)) return data; pr_vdebug("Buffer from user space:\n"); ffs_dump_mem("", data, len); return data; } DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Nazarewicz");
linux-master
drivers/usb/gadget/function/f_fs.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_loopback.c - USB peripheral loopback configuration driver * * Copyright (C) 2003-2008 David Brownell * Copyright (C) 2008 by Nokia Corporation */ /* #define VERBOSE_DEBUG */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/module.h> #include <linux/err.h> #include <linux/usb/composite.h> #include "g_zero.h" #include "u_f.h" /* * LOOPBACK FUNCTION ... a testing vehicle for USB peripherals, * * This takes messages of various sizes written OUT to a device, and loops * them back so they can be read IN from it. It has been used by certain * test applications. It supports limited testing of data queueing logic. */ struct f_loopback { struct usb_function function; struct usb_ep *in_ep; struct usb_ep *out_ep; unsigned qlen; unsigned buflen; }; static inline struct f_loopback *func_to_loop(struct usb_function *f) { return container_of(f, struct f_loopback, function); } /*-------------------------------------------------------------------------*/ static struct usb_interface_descriptor loopback_intf = { .bLength = sizeof(loopback_intf), .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, /* .iInterface = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor fs_loop_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_loop_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *fs_loopback_descs[] = { (struct usb_descriptor_header *) &loopback_intf, (struct usb_descriptor_header *) &fs_loop_sink_desc, (struct usb_descriptor_header *) &fs_loop_source_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor hs_loop_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_loop_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *hs_loopback_descs[] = { (struct usb_descriptor_header *) &loopback_intf, (struct usb_descriptor_header *) &hs_loop_source_desc, (struct usb_descriptor_header *) &hs_loop_sink_desc, NULL, }; /* super speed support: */ static struct usb_endpoint_descriptor ss_loop_source_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_loop_source_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = 0, }; static struct usb_endpoint_descriptor ss_loop_sink_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_loop_sink_comp_desc = { .bLength = USB_DT_SS_EP_COMP_SIZE, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .bMaxBurst = 0, .bmAttributes = 0, .wBytesPerInterval = 0, }; static struct usb_descriptor_header *ss_loopback_descs[] = { (struct usb_descriptor_header *) &loopback_intf, (struct usb_descriptor_header *) &ss_loop_source_desc, (struct usb_descriptor_header *) &ss_loop_source_comp_desc, (struct usb_descriptor_header *) &ss_loop_sink_desc, (struct usb_descriptor_header *) &ss_loop_sink_comp_desc, NULL, }; /* function-specific strings: */ static struct usb_string strings_loopback[] = { [0].s = "loop input to output", { } /* end of list */ }; static struct usb_gadget_strings stringtab_loop = { .language = 0x0409, /* en-us */ .strings = strings_loopback, }; static struct usb_gadget_strings *loopback_strings[] = { &stringtab_loop, NULL, }; /*-------------------------------------------------------------------------*/ static int loopback_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_loopback *loop = func_to_loop(f); int id; int ret; /* allocate interface ID(s) */ id = usb_interface_id(c, f); if (id < 0) return id; loopback_intf.bInterfaceNumber = id; id = usb_string_id(cdev); if (id < 0) return id; strings_loopback[0].id = id; loopback_intf.iInterface = id; /* allocate endpoints */ loop->in_ep = usb_ep_autoconfig(cdev->gadget, &fs_loop_source_desc); if (!loop->in_ep) { autoconf_fail: ERROR(cdev, "%s: can't autoconfigure on %s\n", f->name, cdev->gadget->name); return -ENODEV; } loop->out_ep = usb_ep_autoconfig(cdev->gadget, &fs_loop_sink_desc); if (!loop->out_ep) goto autoconf_fail; /* support high speed hardware */ hs_loop_source_desc.bEndpointAddress = fs_loop_source_desc.bEndpointAddress; hs_loop_sink_desc.bEndpointAddress = fs_loop_sink_desc.bEndpointAddress; /* support super speed hardware */ ss_loop_source_desc.bEndpointAddress = fs_loop_source_desc.bEndpointAddress; ss_loop_sink_desc.bEndpointAddress = fs_loop_sink_desc.bEndpointAddress; ret = usb_assign_descriptors(f, fs_loopback_descs, hs_loopback_descs, ss_loopback_descs, ss_loopback_descs); if (ret) return ret; DBG(cdev, "%s: IN/%s, OUT/%s\n", f->name, loop->in_ep->name, loop->out_ep->name); return 0; } static void lb_free_func(struct usb_function *f) { struct f_lb_opts *opts; opts = container_of(f->fi, struct f_lb_opts, func_inst); mutex_lock(&opts->lock); opts->refcnt--; mutex_unlock(&opts->lock); usb_free_all_descriptors(f); kfree(func_to_loop(f)); } static void loopback_complete(struct usb_ep *ep, struct usb_request *req) { struct f_loopback *loop = ep->driver_data; struct usb_composite_dev *cdev = loop->function.config->cdev; int status = req->status; switch (status) { case 0: /* normal completion? */ if (ep == loop->out_ep) { /* * We received some data from the host so let's * queue it so host can read the from our in ep */ struct usb_request *in_req = req->context; in_req->zero = (req->actual < req->length); in_req->length = req->actual; ep = loop->in_ep; req = in_req; } else { /* * We have just looped back a bunch of data * to host. Now let's wait for some more data. */ req = req->context; ep = loop->out_ep; } /* queue the buffer back to host or for next bunch of data */ status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status == 0) { return; } else { ERROR(cdev, "Unable to loop back buffer to %s: %d\n", ep->name, status); goto free_req; } /* "should never get here" */ default: ERROR(cdev, "%s loop complete --> %d, %d/%d\n", ep->name, status, req->actual, req->length); fallthrough; /* NOTE: since this driver doesn't maintain an explicit record * of requests it submitted (just maintains qlen count), we * rely on the hardware driver to clean up on disconnect or * endpoint disable. */ case -ECONNABORTED: /* hardware forced ep reset */ case -ECONNRESET: /* request dequeued */ case -ESHUTDOWN: /* disconnect from host */ free_req: usb_ep_free_request(ep == loop->in_ep ? loop->out_ep : loop->in_ep, req->context); free_ep_req(ep, req); return; } } static void disable_loopback(struct f_loopback *loop) { struct usb_composite_dev *cdev; cdev = loop->function.config->cdev; disable_endpoints(cdev, loop->in_ep, loop->out_ep, NULL, NULL); VDBG(cdev, "%s disabled\n", loop->function.name); } static inline struct usb_request *lb_alloc_ep_req(struct usb_ep *ep, int len) { return alloc_ep_req(ep, len); } static int alloc_requests(struct usb_composite_dev *cdev, struct f_loopback *loop) { struct usb_request *in_req, *out_req; int i; int result = 0; /* * allocate a bunch of read buffers and queue them all at once. * we buffer at most 'qlen' transfers; We allocate buffers only * for out transfer and reuse them in IN transfers to implement * our loopback functionality */ for (i = 0; i < loop->qlen && result == 0; i++) { result = -ENOMEM; in_req = usb_ep_alloc_request(loop->in_ep, GFP_ATOMIC); if (!in_req) goto fail; out_req = lb_alloc_ep_req(loop->out_ep, loop->buflen); if (!out_req) goto fail_in; in_req->complete = loopback_complete; out_req->complete = loopback_complete; in_req->buf = out_req->buf; /* length will be set in complete routine */ in_req->context = out_req; out_req->context = in_req; result = usb_ep_queue(loop->out_ep, out_req, GFP_ATOMIC); if (result) { ERROR(cdev, "%s queue req --> %d\n", loop->out_ep->name, result); goto fail_out; } } return 0; fail_out: free_ep_req(loop->out_ep, out_req); fail_in: usb_ep_free_request(loop->in_ep, in_req); fail: return result; } static int enable_endpoint(struct usb_composite_dev *cdev, struct f_loopback *loop, struct usb_ep *ep) { int result; result = config_ep_by_speed(cdev->gadget, &(loop->function), ep); if (result) goto out; result = usb_ep_enable(ep); if (result < 0) goto out; ep->driver_data = loop; result = 0; out: return result; } static int enable_loopback(struct usb_composite_dev *cdev, struct f_loopback *loop) { int result = 0; result = enable_endpoint(cdev, loop, loop->in_ep); if (result) goto out; result = enable_endpoint(cdev, loop, loop->out_ep); if (result) goto disable_in; result = alloc_requests(cdev, loop); if (result) goto disable_out; DBG(cdev, "%s enabled\n", loop->function.name); return 0; disable_out: usb_ep_disable(loop->out_ep); disable_in: usb_ep_disable(loop->in_ep); out: return result; } static int loopback_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_loopback *loop = func_to_loop(f); struct usb_composite_dev *cdev = f->config->cdev; /* we know alt is zero */ disable_loopback(loop); return enable_loopback(cdev, loop); } static void loopback_disable(struct usb_function *f) { struct f_loopback *loop = func_to_loop(f); disable_loopback(loop); } static struct usb_function *loopback_alloc(struct usb_function_instance *fi) { struct f_loopback *loop; struct f_lb_opts *lb_opts; loop = kzalloc(sizeof *loop, GFP_KERNEL); if (!loop) return ERR_PTR(-ENOMEM); lb_opts = container_of(fi, struct f_lb_opts, func_inst); mutex_lock(&lb_opts->lock); lb_opts->refcnt++; mutex_unlock(&lb_opts->lock); loop->buflen = lb_opts->bulk_buflen; loop->qlen = lb_opts->qlen; if (!loop->qlen) loop->qlen = 32; loop->function.name = "loopback"; loop->function.bind = loopback_bind; loop->function.set_alt = loopback_set_alt; loop->function.disable = loopback_disable; loop->function.strings = loopback_strings; loop->function.free_func = lb_free_func; return &loop->function; } static inline struct f_lb_opts *to_f_lb_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_lb_opts, func_inst.group); } static void lb_attr_release(struct config_item *item) { struct f_lb_opts *lb_opts = to_f_lb_opts(item); usb_put_function_instance(&lb_opts->func_inst); } static struct configfs_item_operations lb_item_ops = { .release = lb_attr_release, }; static ssize_t f_lb_opts_qlen_show(struct config_item *item, char *page) { struct f_lb_opts *opts = to_f_lb_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%d\n", opts->qlen); mutex_unlock(&opts->lock); return result; } static ssize_t f_lb_opts_qlen_store(struct config_item *item, const char *page, size_t len) { struct f_lb_opts *opts = to_f_lb_opts(item); int ret; u32 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou32(page, 0, &num); if (ret) goto end; opts->qlen = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_lb_opts_, qlen); static ssize_t f_lb_opts_bulk_buflen_show(struct config_item *item, char *page) { struct f_lb_opts *opts = to_f_lb_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%d\n", opts->bulk_buflen); mutex_unlock(&opts->lock); return result; } static ssize_t f_lb_opts_bulk_buflen_store(struct config_item *item, const char *page, size_t len) { struct f_lb_opts *opts = to_f_lb_opts(item); int ret; u32 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou32(page, 0, &num); if (ret) goto end; opts->bulk_buflen = num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_lb_opts_, bulk_buflen); static struct configfs_attribute *lb_attrs[] = { &f_lb_opts_attr_qlen, &f_lb_opts_attr_bulk_buflen, NULL, }; static const struct config_item_type lb_func_type = { .ct_item_ops = &lb_item_ops, .ct_attrs = lb_attrs, .ct_owner = THIS_MODULE, }; static void lb_free_instance(struct usb_function_instance *fi) { struct f_lb_opts *lb_opts; lb_opts = container_of(fi, struct f_lb_opts, func_inst); kfree(lb_opts); } static struct usb_function_instance *loopback_alloc_instance(void) { struct f_lb_opts *lb_opts; lb_opts = kzalloc(sizeof(*lb_opts), GFP_KERNEL); if (!lb_opts) return ERR_PTR(-ENOMEM); mutex_init(&lb_opts->lock); lb_opts->func_inst.free_func_inst = lb_free_instance; lb_opts->bulk_buflen = GZERO_BULK_BUFLEN; lb_opts->qlen = GZERO_QLEN; config_group_init_type_name(&lb_opts->func_inst.group, "", &lb_func_type); return &lb_opts->func_inst; } DECLARE_USB_FUNCTION(Loopback, loopback_alloc_instance, loopback_alloc); int __init lb_modinit(void) { return usb_function_register(&Loopbackusb_func); } void __exit lb_modexit(void) { usb_function_unregister(&Loopbackusb_func); } MODULE_LICENSE("GPL");
linux-master
drivers/usb/gadget/function/f_loopback.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_ecm.c -- USB CDC Ethernet (ECM) link function driver * * Copyright (C) 2003-2005,2008 David Brownell * Copyright (C) 2008 Nokia Corporation */ /* #define VERBOSE_DEBUG */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/etherdevice.h> #include "u_ether.h" #include "u_ether_configfs.h" #include "u_ecm.h" /* * This function is a "CDC Ethernet Networking Control Model" (CDC ECM) * Ethernet link. The data transfer model is simple (packets sent and * received over bulk endpoints using normal short packet termination), * and the control model exposes various data and optional notifications. * * ECM is well standardized and (except for Microsoft) supported by most * operating systems with USB host support. It's the preferred interop * solution for Ethernet over USB, at least for firmware based solutions. * (Hardware solutions tend to be more minimalist.) A newer and simpler * "Ethernet Emulation Model" (CDC EEM) hasn't yet caught on. * * Note that ECM requires the use of "alternate settings" for its data * interface. This means that the set_alt() method has real work to do, * and also means that a get_alt() method is required. */ enum ecm_notify_state { ECM_NOTIFY_NONE, /* don't notify */ ECM_NOTIFY_CONNECT, /* issue CONNECT next */ ECM_NOTIFY_SPEED, /* issue SPEED_CHANGE next */ }; struct f_ecm { struct gether port; u8 ctrl_id, data_id; char ethaddr[14]; struct usb_ep *notify; struct usb_request *notify_req; u8 notify_state; atomic_t notify_count; bool is_open; /* FIXME is_open needs some irq-ish locking * ... possibly the same as port.ioport */ }; static inline struct f_ecm *func_to_ecm(struct usb_function *f) { return container_of(f, struct f_ecm, port.func); } /*-------------------------------------------------------------------------*/ /* * Include the status endpoint if we can, even though it's optional. * * Use wMaxPacketSize big enough to fit CDC_NOTIFY_SPEED_CHANGE in one * packet, to simplify cancellation; and a big transfer interval, to * waste less bandwidth. * * Some drivers (like Linux 2.4 cdc-ether!) "need" it to exist even * if they ignore the connect/disconnect notifications that real aether * can provide. More advanced cdc configurations might want to support * encapsulated commands (vendor-specific, using control-OUT). */ #define ECM_STATUS_INTERVAL_MS 32 #define ECM_STATUS_BYTECOUNT 16 /* 8 byte header + data */ /* interface descriptor: */ static struct usb_interface_assoc_descriptor ecm_iad_descriptor = { .bLength = sizeof ecm_iad_descriptor, .bDescriptorType = USB_DT_INTERFACE_ASSOCIATION, /* .bFirstInterface = DYNAMIC, */ .bInterfaceCount = 2, /* control + data */ .bFunctionClass = USB_CLASS_COMM, .bFunctionSubClass = USB_CDC_SUBCLASS_ETHERNET, .bFunctionProtocol = USB_CDC_PROTO_NONE, /* .iFunction = DYNAMIC */ }; static struct usb_interface_descriptor ecm_control_intf = { .bLength = sizeof ecm_control_intf, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ /* status endpoint is optional; this could be patched later */ .bNumEndpoints = 1, .bInterfaceClass = USB_CLASS_COMM, .bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, .bInterfaceProtocol = USB_CDC_PROTO_NONE, /* .iInterface = DYNAMIC */ }; static struct usb_cdc_header_desc ecm_header_desc = { .bLength = sizeof ecm_header_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_HEADER_TYPE, .bcdCDC = cpu_to_le16(0x0110), }; static struct usb_cdc_union_desc ecm_union_desc = { .bLength = sizeof(ecm_union_desc), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_UNION_TYPE, /* .bMasterInterface0 = DYNAMIC */ /* .bSlaveInterface0 = DYNAMIC */ }; static struct usb_cdc_ether_desc ecm_desc = { .bLength = sizeof ecm_desc, .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_ETHERNET_TYPE, /* this descriptor actually adds value, surprise! */ /* .iMACAddress = DYNAMIC */ .bmEthernetStatistics = cpu_to_le32(0), /* no statistics */ .wMaxSegmentSize = cpu_to_le16(ETH_FRAME_LEN), .wNumberMCFilters = cpu_to_le16(0), .bNumberPowerFilters = 0, }; /* the default data interface has no endpoints ... */ static struct usb_interface_descriptor ecm_data_nop_intf = { .bLength = sizeof ecm_data_nop_intf, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 1, .bAlternateSetting = 0, .bNumEndpoints = 0, .bInterfaceClass = USB_CLASS_CDC_DATA, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, /* .iInterface = DYNAMIC */ }; /* ... but the "real" data interface has two bulk endpoints */ static struct usb_interface_descriptor ecm_data_intf = { .bLength = sizeof ecm_data_intf, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 1, .bAlternateSetting = 1, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_CDC_DATA, .bInterfaceSubClass = 0, .bInterfaceProtocol = 0, /* .iInterface = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor fs_ecm_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(ECM_STATUS_BYTECOUNT), .bInterval = ECM_STATUS_INTERVAL_MS, }; static struct usb_endpoint_descriptor fs_ecm_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor fs_ecm_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *ecm_fs_function[] = { /* CDC ECM control descriptors */ (struct usb_descriptor_header *) &ecm_iad_descriptor, (struct usb_descriptor_header *) &ecm_control_intf, (struct usb_descriptor_header *) &ecm_header_desc, (struct usb_descriptor_header *) &ecm_union_desc, (struct usb_descriptor_header *) &ecm_desc, /* NOTE: status endpoint might need to be removed */ (struct usb_descriptor_header *) &fs_ecm_notify_desc, /* data interface, altsettings 0 and 1 */ (struct usb_descriptor_header *) &ecm_data_nop_intf, (struct usb_descriptor_header *) &ecm_data_intf, (struct usb_descriptor_header *) &fs_ecm_in_desc, (struct usb_descriptor_header *) &fs_ecm_out_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor hs_ecm_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(ECM_STATUS_BYTECOUNT), .bInterval = USB_MS_TO_HS_INTERVAL(ECM_STATUS_INTERVAL_MS), }; static struct usb_endpoint_descriptor hs_ecm_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor hs_ecm_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *ecm_hs_function[] = { /* CDC ECM control descriptors */ (struct usb_descriptor_header *) &ecm_iad_descriptor, (struct usb_descriptor_header *) &ecm_control_intf, (struct usb_descriptor_header *) &ecm_header_desc, (struct usb_descriptor_header *) &ecm_union_desc, (struct usb_descriptor_header *) &ecm_desc, /* NOTE: status endpoint might need to be removed */ (struct usb_descriptor_header *) &hs_ecm_notify_desc, /* data interface, altsettings 0 and 1 */ (struct usb_descriptor_header *) &ecm_data_nop_intf, (struct usb_descriptor_header *) &ecm_data_intf, (struct usb_descriptor_header *) &hs_ecm_in_desc, (struct usb_descriptor_header *) &hs_ecm_out_desc, NULL, }; /* super speed support: */ static struct usb_endpoint_descriptor ss_ecm_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(ECM_STATUS_BYTECOUNT), .bInterval = USB_MS_TO_HS_INTERVAL(ECM_STATUS_INTERVAL_MS), }; static struct usb_ss_ep_comp_descriptor ss_ecm_intr_comp_desc = { .bLength = sizeof ss_ecm_intr_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 3 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ .wBytesPerInterval = cpu_to_le16(ECM_STATUS_BYTECOUNT), }; static struct usb_endpoint_descriptor ss_ecm_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor ss_ecm_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_ecm_bulk_comp_desc = { .bLength = sizeof ss_ecm_bulk_comp_desc, .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 2 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ }; static struct usb_descriptor_header *ecm_ss_function[] = { /* CDC ECM control descriptors */ (struct usb_descriptor_header *) &ecm_iad_descriptor, (struct usb_descriptor_header *) &ecm_control_intf, (struct usb_descriptor_header *) &ecm_header_desc, (struct usb_descriptor_header *) &ecm_union_desc, (struct usb_descriptor_header *) &ecm_desc, /* NOTE: status endpoint might need to be removed */ (struct usb_descriptor_header *) &ss_ecm_notify_desc, (struct usb_descriptor_header *) &ss_ecm_intr_comp_desc, /* data interface, altsettings 0 and 1 */ (struct usb_descriptor_header *) &ecm_data_nop_intf, (struct usb_descriptor_header *) &ecm_data_intf, (struct usb_descriptor_header *) &ss_ecm_in_desc, (struct usb_descriptor_header *) &ss_ecm_bulk_comp_desc, (struct usb_descriptor_header *) &ss_ecm_out_desc, (struct usb_descriptor_header *) &ss_ecm_bulk_comp_desc, NULL, }; /* string descriptors: */ static struct usb_string ecm_string_defs[] = { [0].s = "CDC Ethernet Control Model (ECM)", [1].s = "", [2].s = "CDC Ethernet Data", [3].s = "CDC ECM", { } /* end of list */ }; static struct usb_gadget_strings ecm_string_table = { .language = 0x0409, /* en-us */ .strings = ecm_string_defs, }; static struct usb_gadget_strings *ecm_strings[] = { &ecm_string_table, NULL, }; /*-------------------------------------------------------------------------*/ static void ecm_do_notify(struct f_ecm *ecm) { struct usb_request *req = ecm->notify_req; struct usb_cdc_notification *event; struct usb_composite_dev *cdev = ecm->port.func.config->cdev; __le32 *data; int status; /* notification already in flight? */ if (atomic_read(&ecm->notify_count)) return; event = req->buf; switch (ecm->notify_state) { case ECM_NOTIFY_NONE: return; case ECM_NOTIFY_CONNECT: event->bNotificationType = USB_CDC_NOTIFY_NETWORK_CONNECTION; if (ecm->is_open) event->wValue = cpu_to_le16(1); else event->wValue = cpu_to_le16(0); event->wLength = 0; req->length = sizeof *event; DBG(cdev, "notify connect %s\n", ecm->is_open ? "true" : "false"); ecm->notify_state = ECM_NOTIFY_SPEED; break; case ECM_NOTIFY_SPEED: event->bNotificationType = USB_CDC_NOTIFY_SPEED_CHANGE; event->wValue = cpu_to_le16(0); event->wLength = cpu_to_le16(8); req->length = ECM_STATUS_BYTECOUNT; /* SPEED_CHANGE data is up/down speeds in bits/sec */ data = req->buf + sizeof *event; data[0] = cpu_to_le32(gether_bitrate(cdev->gadget)); data[1] = data[0]; DBG(cdev, "notify speed %d\n", gether_bitrate(cdev->gadget)); ecm->notify_state = ECM_NOTIFY_NONE; break; } event->bmRequestType = 0xA1; event->wIndex = cpu_to_le16(ecm->ctrl_id); atomic_inc(&ecm->notify_count); status = usb_ep_queue(ecm->notify, req, GFP_ATOMIC); if (status < 0) { atomic_dec(&ecm->notify_count); DBG(cdev, "notify --> %d\n", status); } } static void ecm_notify(struct f_ecm *ecm) { /* NOTE on most versions of Linux, host side cdc-ethernet * won't listen for notifications until its netdevice opens. * The first notification then sits in the FIFO for a long * time, and the second one is queued. */ ecm->notify_state = ECM_NOTIFY_CONNECT; ecm_do_notify(ecm); } static void ecm_notify_complete(struct usb_ep *ep, struct usb_request *req) { struct f_ecm *ecm = req->context; struct usb_composite_dev *cdev = ecm->port.func.config->cdev; struct usb_cdc_notification *event = req->buf; switch (req->status) { case 0: /* no fault */ atomic_dec(&ecm->notify_count); break; case -ECONNRESET: case -ESHUTDOWN: atomic_set(&ecm->notify_count, 0); ecm->notify_state = ECM_NOTIFY_NONE; break; default: DBG(cdev, "event %02x --> %d\n", event->bNotificationType, req->status); atomic_dec(&ecm->notify_count); break; } ecm_do_notify(ecm); } static int ecm_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_ecm *ecm = func_to_ecm(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); /* composite driver infrastructure handles everything except * CDC class messages; interface activation uses set_alt(). */ switch ((ctrl->bRequestType << 8) | ctrl->bRequest) { case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_SET_ETHERNET_PACKET_FILTER: /* see 6.2.30: no data, wIndex = interface, * wValue = packet filter bitmap */ if (w_length != 0 || w_index != ecm->ctrl_id) goto invalid; DBG(cdev, "packet filter %02x\n", w_value); /* REVISIT locking of cdc_filter. This assumes the UDC * driver won't have a concurrent packet TX irq running on * another CPU; or that if it does, this write is atomic... */ ecm->port.cdc_filter = w_value; value = 0; break; /* and optionally: * case USB_CDC_SEND_ENCAPSULATED_COMMAND: * case USB_CDC_GET_ENCAPSULATED_RESPONSE: * case USB_CDC_SET_ETHERNET_MULTICAST_FILTERS: * case USB_CDC_SET_ETHERNET_PM_PATTERN_FILTER: * case USB_CDC_GET_ETHERNET_PM_PATTERN_FILTER: * case USB_CDC_GET_ETHERNET_STATISTIC: */ default: invalid: DBG(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { DBG(cdev, "ecm req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) ERROR(cdev, "ecm req %02x.%02x response err %d\n", ctrl->bRequestType, ctrl->bRequest, value); } /* device either stalls (value < 0) or reports success */ return value; } static int ecm_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct f_ecm *ecm = func_to_ecm(f); struct usb_composite_dev *cdev = f->config->cdev; /* Control interface has only altsetting 0 */ if (intf == ecm->ctrl_id) { if (alt != 0) goto fail; VDBG(cdev, "reset ecm control %d\n", intf); usb_ep_disable(ecm->notify); if (!(ecm->notify->desc)) { VDBG(cdev, "init ecm ctrl %d\n", intf); if (config_ep_by_speed(cdev->gadget, f, ecm->notify)) goto fail; } usb_ep_enable(ecm->notify); /* Data interface has two altsettings, 0 and 1 */ } else if (intf == ecm->data_id) { if (alt > 1) goto fail; if (ecm->port.in_ep->enabled) { DBG(cdev, "reset ecm\n"); gether_disconnect(&ecm->port); } if (!ecm->port.in_ep->desc || !ecm->port.out_ep->desc) { DBG(cdev, "init ecm\n"); if (config_ep_by_speed(cdev->gadget, f, ecm->port.in_ep) || config_ep_by_speed(cdev->gadget, f, ecm->port.out_ep)) { ecm->port.in_ep->desc = NULL; ecm->port.out_ep->desc = NULL; goto fail; } } /* CDC Ethernet only sends data in non-default altsettings. * Changing altsettings resets filters, statistics, etc. */ if (alt == 1) { struct net_device *net; /* Enable zlps by default for ECM conformance; * override for musb_hdrc (avoids txdma ovhead). */ ecm->port.is_zlp_ok = gadget_is_zlp_supported(cdev->gadget); ecm->port.cdc_filter = DEFAULT_FILTER; DBG(cdev, "activate ecm\n"); net = gether_connect(&ecm->port); if (IS_ERR(net)) return PTR_ERR(net); } /* NOTE this can be a minor disagreement with the ECM spec, * which says speed notifications will "always" follow * connection notifications. But we allow one connect to * follow another (if the first is in flight), and instead * just guarantee that a speed notification is always sent. */ ecm_notify(ecm); } else goto fail; return 0; fail: return -EINVAL; } /* Because the data interface supports multiple altsettings, * this ECM function *MUST* implement a get_alt() method. */ static int ecm_get_alt(struct usb_function *f, unsigned intf) { struct f_ecm *ecm = func_to_ecm(f); if (intf == ecm->ctrl_id) return 0; return ecm->port.in_ep->enabled ? 1 : 0; } static void ecm_disable(struct usb_function *f) { struct f_ecm *ecm = func_to_ecm(f); struct usb_composite_dev *cdev = f->config->cdev; DBG(cdev, "ecm deactivated\n"); if (ecm->port.in_ep->enabled) { gether_disconnect(&ecm->port); } else { ecm->port.in_ep->desc = NULL; ecm->port.out_ep->desc = NULL; } usb_ep_disable(ecm->notify); ecm->notify->desc = NULL; } /*-------------------------------------------------------------------------*/ /* * Callbacks let us notify the host about connect/disconnect when the * net device is opened or closed. * * For testing, note that link states on this side include both opened * and closed variants of: * * - disconnected/unconfigured * - configured but inactive (data alt 0) * - configured and active (data alt 1) * * Each needs to be tested with unplug, rmmod, SET_CONFIGURATION, and * SET_INTERFACE (altsetting). Remember also that "configured" doesn't * imply the host is actually polling the notification endpoint, and * likewise that "active" doesn't imply it's actually using the data * endpoints for traffic. */ static void ecm_open(struct gether *geth) { struct f_ecm *ecm = func_to_ecm(&geth->func); DBG(ecm->port.func.config->cdev, "%s\n", __func__); ecm->is_open = true; ecm_notify(ecm); } static void ecm_close(struct gether *geth) { struct f_ecm *ecm = func_to_ecm(&geth->func); DBG(ecm->port.func.config->cdev, "%s\n", __func__); ecm->is_open = false; ecm_notify(ecm); } /*-------------------------------------------------------------------------*/ /* ethernet function driver setup/binding */ static int ecm_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_ecm *ecm = func_to_ecm(f); struct usb_string *us; int status = 0; struct usb_ep *ep; struct f_ecm_opts *ecm_opts; if (!can_support_ecm(cdev->gadget)) return -EINVAL; ecm_opts = container_of(f->fi, struct f_ecm_opts, func_inst); mutex_lock(&ecm_opts->lock); gether_set_gadget(ecm_opts->net, cdev->gadget); if (!ecm_opts->bound) { status = gether_register_netdev(ecm_opts->net); ecm_opts->bound = true; } mutex_unlock(&ecm_opts->lock); if (status) return status; ecm_string_defs[1].s = ecm->ethaddr; us = usb_gstrings_attach(cdev, ecm_strings, ARRAY_SIZE(ecm_string_defs)); if (IS_ERR(us)) return PTR_ERR(us); ecm_control_intf.iInterface = us[0].id; ecm_data_intf.iInterface = us[2].id; ecm_desc.iMACAddress = us[1].id; ecm_iad_descriptor.iFunction = us[3].id; /* allocate instance-specific interface IDs */ status = usb_interface_id(c, f); if (status < 0) goto fail; ecm->ctrl_id = status; ecm_iad_descriptor.bFirstInterface = status; ecm_control_intf.bInterfaceNumber = status; ecm_union_desc.bMasterInterface0 = status; status = usb_interface_id(c, f); if (status < 0) goto fail; ecm->data_id = status; ecm_data_nop_intf.bInterfaceNumber = status; ecm_data_intf.bInterfaceNumber = status; ecm_union_desc.bSlaveInterface0 = status; status = -ENODEV; /* allocate instance-specific endpoints */ ep = usb_ep_autoconfig(cdev->gadget, &fs_ecm_in_desc); if (!ep) goto fail; ecm->port.in_ep = ep; ep = usb_ep_autoconfig(cdev->gadget, &fs_ecm_out_desc); if (!ep) goto fail; ecm->port.out_ep = ep; /* NOTE: a status/notification endpoint is *OPTIONAL* but we * don't treat it that way. It's simpler, and some newer CDC * profiles (wireless handsets) no longer treat it as optional. */ ep = usb_ep_autoconfig(cdev->gadget, &fs_ecm_notify_desc); if (!ep) goto fail; ecm->notify = ep; status = -ENOMEM; /* allocate notification request and buffer */ ecm->notify_req = usb_ep_alloc_request(ep, GFP_KERNEL); if (!ecm->notify_req) goto fail; ecm->notify_req->buf = kmalloc(ECM_STATUS_BYTECOUNT, GFP_KERNEL); if (!ecm->notify_req->buf) goto fail; ecm->notify_req->context = ecm; ecm->notify_req->complete = ecm_notify_complete; /* support all relevant hardware speeds... we expect that when * hardware is dual speed, all bulk-capable endpoints work at * both speeds */ hs_ecm_in_desc.bEndpointAddress = fs_ecm_in_desc.bEndpointAddress; hs_ecm_out_desc.bEndpointAddress = fs_ecm_out_desc.bEndpointAddress; hs_ecm_notify_desc.bEndpointAddress = fs_ecm_notify_desc.bEndpointAddress; ss_ecm_in_desc.bEndpointAddress = fs_ecm_in_desc.bEndpointAddress; ss_ecm_out_desc.bEndpointAddress = fs_ecm_out_desc.bEndpointAddress; ss_ecm_notify_desc.bEndpointAddress = fs_ecm_notify_desc.bEndpointAddress; status = usb_assign_descriptors(f, ecm_fs_function, ecm_hs_function, ecm_ss_function, ecm_ss_function); if (status) goto fail; /* NOTE: all that is done without knowing or caring about * the network link ... which is unavailable to this code * until we're activated via set_alt(). */ ecm->port.open = ecm_open; ecm->port.close = ecm_close; DBG(cdev, "CDC Ethernet: IN/%s OUT/%s NOTIFY/%s\n", ecm->port.in_ep->name, ecm->port.out_ep->name, ecm->notify->name); return 0; fail: if (ecm->notify_req) { kfree(ecm->notify_req->buf); usb_ep_free_request(ecm->notify, ecm->notify_req); } ERROR(cdev, "%s: can't bind, err %d\n", f->name, status); return status; } static inline struct f_ecm_opts *to_f_ecm_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_ecm_opts, func_inst.group); } /* f_ecm_item_ops */ USB_ETHERNET_CONFIGFS_ITEM(ecm); /* f_ecm_opts_dev_addr */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_DEV_ADDR(ecm); /* f_ecm_opts_host_addr */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_HOST_ADDR(ecm); /* f_ecm_opts_qmult */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_QMULT(ecm); /* f_ecm_opts_ifname */ USB_ETHERNET_CONFIGFS_ITEM_ATTR_IFNAME(ecm); static struct configfs_attribute *ecm_attrs[] = { &ecm_opts_attr_dev_addr, &ecm_opts_attr_host_addr, &ecm_opts_attr_qmult, &ecm_opts_attr_ifname, NULL, }; static const struct config_item_type ecm_func_type = { .ct_item_ops = &ecm_item_ops, .ct_attrs = ecm_attrs, .ct_owner = THIS_MODULE, }; static void ecm_free_inst(struct usb_function_instance *f) { struct f_ecm_opts *opts; opts = container_of(f, struct f_ecm_opts, func_inst); if (opts->bound) gether_cleanup(netdev_priv(opts->net)); else free_netdev(opts->net); kfree(opts); } static struct usb_function_instance *ecm_alloc_inst(void) { struct f_ecm_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = ecm_free_inst; opts->net = gether_setup_default(); if (IS_ERR(opts->net)) { struct net_device *net = opts->net; kfree(opts); return ERR_CAST(net); } config_group_init_type_name(&opts->func_inst.group, "", &ecm_func_type); return &opts->func_inst; } static void ecm_suspend(struct usb_function *f) { struct f_ecm *ecm = func_to_ecm(f); struct usb_composite_dev *cdev = ecm->port.func.config->cdev; DBG(cdev, "ECM Suspend\n"); gether_suspend(&ecm->port); } static void ecm_resume(struct usb_function *f) { struct f_ecm *ecm = func_to_ecm(f); struct usb_composite_dev *cdev = ecm->port.func.config->cdev; DBG(cdev, "ECM Resume\n"); gether_resume(&ecm->port); } static void ecm_free(struct usb_function *f) { struct f_ecm *ecm; struct f_ecm_opts *opts; ecm = func_to_ecm(f); opts = container_of(f->fi, struct f_ecm_opts, func_inst); kfree(ecm); mutex_lock(&opts->lock); opts->refcnt--; mutex_unlock(&opts->lock); } static void ecm_unbind(struct usb_configuration *c, struct usb_function *f) { struct f_ecm *ecm = func_to_ecm(f); DBG(c->cdev, "ecm unbind\n"); usb_free_all_descriptors(f); if (atomic_read(&ecm->notify_count)) { usb_ep_dequeue(ecm->notify, ecm->notify_req); atomic_set(&ecm->notify_count, 0); } kfree(ecm->notify_req->buf); usb_ep_free_request(ecm->notify, ecm->notify_req); } static struct usb_function *ecm_alloc(struct usb_function_instance *fi) { struct f_ecm *ecm; struct f_ecm_opts *opts; int status; /* allocate and initialize one new instance */ ecm = kzalloc(sizeof(*ecm), GFP_KERNEL); if (!ecm) return ERR_PTR(-ENOMEM); opts = container_of(fi, struct f_ecm_opts, func_inst); mutex_lock(&opts->lock); opts->refcnt++; /* export host's Ethernet address in CDC format */ status = gether_get_host_addr_cdc(opts->net, ecm->ethaddr, sizeof(ecm->ethaddr)); if (status < 12) { kfree(ecm); mutex_unlock(&opts->lock); return ERR_PTR(-EINVAL); } ecm->port.ioport = netdev_priv(opts->net); mutex_unlock(&opts->lock); ecm->port.cdc_filter = DEFAULT_FILTER; ecm->port.func.name = "cdc_ethernet"; /* descriptors are per-instance copies */ ecm->port.func.bind = ecm_bind; ecm->port.func.unbind = ecm_unbind; ecm->port.func.set_alt = ecm_set_alt; ecm->port.func.get_alt = ecm_get_alt; ecm->port.func.setup = ecm_setup; ecm->port.func.disable = ecm_disable; ecm->port.func.free_func = ecm_free; ecm->port.func.suspend = ecm_suspend; ecm->port.func.resume = ecm_resume; return &ecm->port.func; } DECLARE_USB_FUNCTION_INIT(ecm, ecm_alloc_inst, ecm_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Brownell");
linux-master
drivers/usb/gadget/function/f_ecm.c
// SPDX-License-Identifier: GPL-2.0+ /* * u_uac1.c -- ALSA audio utilities for Gadget stack * * Copyright (C) 2008 Bryan Wu <[email protected]> * Copyright (C) 2008 Analog Devices, Inc */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/ctype.h> #include <linux/random.h> #include <linux/syscalls.h> #include "u_uac1_legacy.h" /* * This component encapsulates the ALSA devices for USB audio gadget */ /*-------------------------------------------------------------------------*/ /* * Some ALSA internal helper functions */ static int snd_interval_refine_set(struct snd_interval *i, unsigned int val) { struct snd_interval t; t.empty = 0; t.min = t.max = val; t.openmin = t.openmax = 0; t.integer = 1; return snd_interval_refine(i, &t); } static int _snd_pcm_hw_param_set(struct snd_pcm_hw_params *params, snd_pcm_hw_param_t var, unsigned int val, int dir) { int changed; if (hw_is_mask(var)) { struct snd_mask *m = hw_param_mask(params, var); if (val == 0 && dir < 0) { changed = -EINVAL; snd_mask_none(m); } else { if (dir > 0) val++; else if (dir < 0) val--; changed = snd_mask_refine_set( hw_param_mask(params, var), val); } } else if (hw_is_interval(var)) { struct snd_interval *i = hw_param_interval(params, var); if (val == 0 && dir < 0) { changed = -EINVAL; snd_interval_none(i); } else if (dir == 0) changed = snd_interval_refine_set(i, val); else { struct snd_interval t; t.openmin = 1; t.openmax = 1; t.empty = 0; t.integer = 0; if (dir < 0) { t.min = val - 1; t.max = val; } else { t.min = val; t.max = val+1; } changed = snd_interval_refine(i, &t); } } else return -EINVAL; if (changed) { params->cmask |= 1 << var; params->rmask |= 1 << var; } return changed; } /*-------------------------------------------------------------------------*/ /* * Set default hardware params */ static int playback_default_hw_params(struct gaudio_snd_dev *snd) { struct snd_pcm_substream *substream = snd->substream; struct snd_pcm_hw_params *params; snd_pcm_sframes_t result; /* * SNDRV_PCM_ACCESS_RW_INTERLEAVED, * SNDRV_PCM_FORMAT_S16_LE * CHANNELS: 2 * RATE: 48000 */ snd->access = SNDRV_PCM_ACCESS_RW_INTERLEAVED; snd->format = SNDRV_PCM_FORMAT_S16_LE; snd->channels = 2; snd->rate = 48000; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; _snd_pcm_hw_params_any(params); _snd_pcm_hw_param_set(params, SNDRV_PCM_HW_PARAM_ACCESS, snd->access, 0); _snd_pcm_hw_param_set(params, SNDRV_PCM_HW_PARAM_FORMAT, snd->format, 0); _snd_pcm_hw_param_set(params, SNDRV_PCM_HW_PARAM_CHANNELS, snd->channels, 0); _snd_pcm_hw_param_set(params, SNDRV_PCM_HW_PARAM_RATE, snd->rate, 0); snd_pcm_kernel_ioctl(substream, SNDRV_PCM_IOCTL_DROP, NULL); snd_pcm_kernel_ioctl(substream, SNDRV_PCM_IOCTL_HW_PARAMS, params); result = snd_pcm_kernel_ioctl(substream, SNDRV_PCM_IOCTL_PREPARE, NULL); if (result < 0) { ERROR(snd->card, "Preparing sound card failed: %d\n", (int)result); kfree(params); return result; } /* Store the hardware parameters */ snd->access = params_access(params); snd->format = params_format(params); snd->channels = params_channels(params); snd->rate = params_rate(params); kfree(params); INFO(snd->card, "Hardware params: access %x, format %x, channels %d, rate %d\n", snd->access, snd->format, snd->channels, snd->rate); return 0; } /* * Playback audio buffer data by ALSA PCM device */ size_t u_audio_playback(struct gaudio *card, void *buf, size_t count) { struct gaudio_snd_dev *snd = &card->playback; struct snd_pcm_substream *substream = snd->substream; struct snd_pcm_runtime *runtime = substream->runtime; ssize_t result; snd_pcm_sframes_t frames; try_again: if (runtime->state == SNDRV_PCM_STATE_XRUN || runtime->state == SNDRV_PCM_STATE_SUSPENDED) { result = snd_pcm_kernel_ioctl(substream, SNDRV_PCM_IOCTL_PREPARE, NULL); if (result < 0) { ERROR(card, "Preparing sound card failed: %d\n", (int)result); return result; } } frames = bytes_to_frames(runtime, count); result = snd_pcm_kernel_write(snd->substream, buf, frames); if (result != frames) { ERROR(card, "Playback error: %d\n", (int)result); goto try_again; } return 0; } int u_audio_get_playback_channels(struct gaudio *card) { return card->playback.channels; } int u_audio_get_playback_rate(struct gaudio *card) { return card->playback.rate; } /* * Open ALSA PCM and control device files * Initial the PCM or control device */ static int gaudio_open_snd_dev(struct gaudio *card) { struct snd_pcm_file *pcm_file; struct gaudio_snd_dev *snd; struct f_uac1_legacy_opts *opts; char *fn_play, *fn_cap, *fn_cntl; opts = container_of(card->func.fi, struct f_uac1_legacy_opts, func_inst); fn_play = opts->fn_play; fn_cap = opts->fn_cap; fn_cntl = opts->fn_cntl; /* Open control device */ snd = &card->control; snd->filp = filp_open(fn_cntl, O_RDWR, 0); if (IS_ERR(snd->filp)) { int ret = PTR_ERR(snd->filp); ERROR(card, "unable to open sound control device file: %s\n", fn_cntl); snd->filp = NULL; return ret; } snd->card = card; /* Open PCM playback device and setup substream */ snd = &card->playback; snd->filp = filp_open(fn_play, O_WRONLY, 0); if (IS_ERR(snd->filp)) { int ret = PTR_ERR(snd->filp); ERROR(card, "No such PCM playback device: %s\n", fn_play); snd->filp = NULL; return ret; } pcm_file = snd->filp->private_data; snd->substream = pcm_file->substream; snd->card = card; playback_default_hw_params(snd); /* Open PCM capture device and setup substream */ snd = &card->capture; snd->filp = filp_open(fn_cap, O_RDONLY, 0); if (IS_ERR(snd->filp)) { ERROR(card, "No such PCM capture device: %s\n", fn_cap); snd->substream = NULL; snd->card = NULL; snd->filp = NULL; } else { pcm_file = snd->filp->private_data; snd->substream = pcm_file->substream; snd->card = card; } return 0; } /* * Close ALSA PCM and control device files */ static int gaudio_close_snd_dev(struct gaudio *gau) { struct gaudio_snd_dev *snd; /* Close control device */ snd = &gau->control; if (snd->filp) filp_close(snd->filp, NULL); /* Close PCM playback device and setup substream */ snd = &gau->playback; if (snd->filp) filp_close(snd->filp, NULL); /* Close PCM capture device and setup substream */ snd = &gau->capture; if (snd->filp) filp_close(snd->filp, NULL); return 0; } /* * gaudio_setup - setup ALSA interface and preparing for USB transfer * * This sets up PCM, mixer or MIDI ALSA devices fore USB gadget using. * * Returns negative errno, or zero on success */ int gaudio_setup(struct gaudio *card) { int ret; ret = gaudio_open_snd_dev(card); if (ret) ERROR(card, "we need at least one control device\n"); return ret; } /* * gaudio_cleanup - remove ALSA device interface * * This is called to free all resources allocated by @gaudio_setup(). */ void gaudio_cleanup(struct gaudio *the_card) { if (the_card) gaudio_close_snd_dev(the_card); }
linux-master
drivers/usb/gadget/function/u_uac1_legacy.c
// SPDX-License-Identifier: GPL-2.0+ /* * uvc_video.c -- USB Video Class Gadget driver * * Copyright (C) 2009-2010 * Laurent Pinchart ([email protected]) */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/usb/video.h> #include <asm/unaligned.h> #include <media/v4l2-dev.h> #include "uvc.h" #include "uvc_queue.h" #include "uvc_video.h" /* -------------------------------------------------------------------------- * Video codecs */ static int uvc_video_encode_header(struct uvc_video *video, struct uvc_buffer *buf, u8 *data, int len) { struct uvc_device *uvc = container_of(video, struct uvc_device, video); struct usb_composite_dev *cdev = uvc->func.config->cdev; struct timespec64 ts = ns_to_timespec64(buf->buf.vb2_buf.timestamp); int pos = 2; data[1] = UVC_STREAM_EOH | video->fid; if (video->queue.buf_used == 0 && ts.tv_sec) { /* dwClockFrequency is 48 MHz */ u32 pts = ((u64)ts.tv_sec * USEC_PER_SEC + ts.tv_nsec / NSEC_PER_USEC) * 48; data[1] |= UVC_STREAM_PTS; put_unaligned_le32(pts, &data[pos]); pos += 4; } if (cdev->gadget->ops->get_frame) { u32 sof, stc; sof = usb_gadget_frame_number(cdev->gadget); ktime_get_ts64(&ts); stc = ((u64)ts.tv_sec * USEC_PER_SEC + ts.tv_nsec / NSEC_PER_USEC) * 48; data[1] |= UVC_STREAM_SCR; put_unaligned_le32(stc, &data[pos]); put_unaligned_le16(sof, &data[pos+4]); pos += 6; } data[0] = pos; if (buf->bytesused - video->queue.buf_used <= len - pos) data[1] |= UVC_STREAM_EOF; return pos; } static int uvc_video_encode_data(struct uvc_video *video, struct uvc_buffer *buf, u8 *data, int len) { struct uvc_video_queue *queue = &video->queue; unsigned int nbytes; void *mem; /* Copy video data to the USB buffer. */ mem = buf->mem + queue->buf_used; nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); memcpy(data, mem, nbytes); queue->buf_used += nbytes; return nbytes; } static void uvc_video_encode_bulk(struct usb_request *req, struct uvc_video *video, struct uvc_buffer *buf) { void *mem = req->buf; struct uvc_request *ureq = req->context; int len = video->req_size; int ret; /* Add a header at the beginning of the payload. */ if (video->payload_size == 0) { ret = uvc_video_encode_header(video, buf, mem, len); video->payload_size += ret; mem += ret; len -= ret; } /* Process video data. */ len = min((int)(video->max_payload_size - video->payload_size), len); ret = uvc_video_encode_data(video, buf, mem, len); video->payload_size += ret; len -= ret; req->length = video->req_size - len; req->zero = video->payload_size == video->max_payload_size; if (buf->bytesused == video->queue.buf_used) { video->queue.buf_used = 0; buf->state = UVC_BUF_STATE_DONE; list_del(&buf->queue); video->fid ^= UVC_STREAM_FID; ureq->last_buf = buf; video->payload_size = 0; } if (video->payload_size == video->max_payload_size || video->queue.flags & UVC_QUEUE_DROP_INCOMPLETE || buf->bytesused == video->queue.buf_used) video->payload_size = 0; } static void uvc_video_encode_isoc_sg(struct usb_request *req, struct uvc_video *video, struct uvc_buffer *buf) { unsigned int pending = buf->bytesused - video->queue.buf_used; struct uvc_request *ureq = req->context; struct scatterlist *sg, *iter; unsigned int len = video->req_size; unsigned int sg_left, part = 0; unsigned int i; int header_len; sg = ureq->sgt.sgl; sg_init_table(sg, ureq->sgt.nents); /* Init the header. */ header_len = uvc_video_encode_header(video, buf, ureq->header, video->req_size); sg_set_buf(sg, ureq->header, header_len); len -= header_len; if (pending <= len) len = pending; req->length = (len == pending) ? len + header_len : video->req_size; /* Init the pending sgs with payload */ sg = sg_next(sg); for_each_sg(sg, iter, ureq->sgt.nents - 1, i) { if (!len || !buf->sg || !buf->sg->length) break; sg_left = buf->sg->length - buf->offset; part = min_t(unsigned int, len, sg_left); sg_set_page(iter, sg_page(buf->sg), part, buf->offset); if (part == sg_left) { buf->offset = 0; buf->sg = sg_next(buf->sg); } else { buf->offset += part; } len -= part; } /* Assign the video data with header. */ req->buf = NULL; req->sg = ureq->sgt.sgl; req->num_sgs = i + 1; req->length -= len; video->queue.buf_used += req->length - header_len; if (buf->bytesused == video->queue.buf_used || !buf->sg || video->queue.flags & UVC_QUEUE_DROP_INCOMPLETE) { video->queue.buf_used = 0; buf->state = UVC_BUF_STATE_DONE; buf->offset = 0; list_del(&buf->queue); video->fid ^= UVC_STREAM_FID; ureq->last_buf = buf; } } static void uvc_video_encode_isoc(struct usb_request *req, struct uvc_video *video, struct uvc_buffer *buf) { void *mem = req->buf; struct uvc_request *ureq = req->context; int len = video->req_size; int ret; /* Add the header. */ ret = uvc_video_encode_header(video, buf, mem, len); mem += ret; len -= ret; /* Process video data. */ ret = uvc_video_encode_data(video, buf, mem, len); len -= ret; req->length = video->req_size - len; if (buf->bytesused == video->queue.buf_used || video->queue.flags & UVC_QUEUE_DROP_INCOMPLETE) { video->queue.buf_used = 0; buf->state = UVC_BUF_STATE_DONE; list_del(&buf->queue); video->fid ^= UVC_STREAM_FID; ureq->last_buf = buf; } } /* -------------------------------------------------------------------------- * Request handling */ static int uvcg_video_ep_queue(struct uvc_video *video, struct usb_request *req) { int ret; ret = usb_ep_queue(video->ep, req, GFP_ATOMIC); if (ret < 0) { uvcg_err(&video->uvc->func, "Failed to queue request (%d).\n", ret); /* If the endpoint is disabled the descriptor may be NULL. */ if (video->ep->desc) { /* Isochronous endpoints can't be halted. */ if (usb_endpoint_xfer_bulk(video->ep->desc)) usb_ep_set_halt(video->ep); } } return ret; } static void uvc_video_complete(struct usb_ep *ep, struct usb_request *req) { struct uvc_request *ureq = req->context; struct uvc_video *video = ureq->video; struct uvc_video_queue *queue = &video->queue; struct uvc_device *uvc = video->uvc; unsigned long flags; switch (req->status) { case 0: break; case -EXDEV: uvcg_dbg(&video->uvc->func, "VS request missed xfer.\n"); queue->flags |= UVC_QUEUE_DROP_INCOMPLETE; break; case -ESHUTDOWN: /* disconnect from host. */ uvcg_dbg(&video->uvc->func, "VS request cancelled.\n"); uvcg_queue_cancel(queue, 1); break; default: uvcg_warn(&video->uvc->func, "VS request completed with status %d.\n", req->status); uvcg_queue_cancel(queue, 0); } if (ureq->last_buf) { uvcg_complete_buffer(&video->queue, ureq->last_buf); ureq->last_buf = NULL; } spin_lock_irqsave(&video->req_lock, flags); list_add_tail(&req->list, &video->req_free); spin_unlock_irqrestore(&video->req_lock, flags); if (uvc->state == UVC_STATE_STREAMING) queue_work(video->async_wq, &video->pump); } static int uvc_video_free_requests(struct uvc_video *video) { unsigned int i; if (video->ureq) { for (i = 0; i < video->uvc_num_requests; ++i) { sg_free_table(&video->ureq[i].sgt); if (video->ureq[i].req) { usb_ep_free_request(video->ep, video->ureq[i].req); video->ureq[i].req = NULL; } if (video->ureq[i].req_buffer) { kfree(video->ureq[i].req_buffer); video->ureq[i].req_buffer = NULL; } } kfree(video->ureq); video->ureq = NULL; } INIT_LIST_HEAD(&video->req_free); video->req_size = 0; return 0; } static int uvc_video_alloc_requests(struct uvc_video *video) { unsigned int req_size; unsigned int i; int ret = -ENOMEM; BUG_ON(video->req_size); req_size = video->ep->maxpacket * max_t(unsigned int, video->ep->maxburst, 1) * (video->ep->mult); video->ureq = kcalloc(video->uvc_num_requests, sizeof(struct uvc_request), GFP_KERNEL); if (video->ureq == NULL) return -ENOMEM; for (i = 0; i < video->uvc_num_requests; ++i) { video->ureq[i].req_buffer = kmalloc(req_size, GFP_KERNEL); if (video->ureq[i].req_buffer == NULL) goto error; video->ureq[i].req = usb_ep_alloc_request(video->ep, GFP_KERNEL); if (video->ureq[i].req == NULL) goto error; video->ureq[i].req->buf = video->ureq[i].req_buffer; video->ureq[i].req->length = 0; video->ureq[i].req->complete = uvc_video_complete; video->ureq[i].req->context = &video->ureq[i]; video->ureq[i].video = video; video->ureq[i].last_buf = NULL; list_add_tail(&video->ureq[i].req->list, &video->req_free); /* req_size/PAGE_SIZE + 1 for overruns and + 1 for header */ sg_alloc_table(&video->ureq[i].sgt, DIV_ROUND_UP(req_size - UVCG_REQUEST_HEADER_LEN, PAGE_SIZE) + 2, GFP_KERNEL); } video->req_size = req_size; return 0; error: uvc_video_free_requests(video); return ret; } /* -------------------------------------------------------------------------- * Video streaming */ /* * uvcg_video_pump - Pump video data into the USB requests * * This function fills the available USB requests (listed in req_free) with * video data from the queued buffers. */ static void uvcg_video_pump(struct work_struct *work) { struct uvc_video *video = container_of(work, struct uvc_video, pump); struct uvc_video_queue *queue = &video->queue; /* video->max_payload_size is only set when using bulk transfer */ bool is_bulk = video->max_payload_size; struct usb_request *req = NULL; struct uvc_buffer *buf; unsigned long flags; bool buf_done; int ret; while (video->ep->enabled) { /* * Retrieve the first available USB request, protected by the * request lock. */ spin_lock_irqsave(&video->req_lock, flags); if (list_empty(&video->req_free)) { spin_unlock_irqrestore(&video->req_lock, flags); return; } req = list_first_entry(&video->req_free, struct usb_request, list); list_del(&req->list); spin_unlock_irqrestore(&video->req_lock, flags); /* * Retrieve the first available video buffer and fill the * request, protected by the video queue irqlock. */ spin_lock_irqsave(&queue->irqlock, flags); buf = uvcg_queue_head(queue); if (buf != NULL) { video->encode(req, video, buf); buf_done = buf->state == UVC_BUF_STATE_DONE; } else if (!(queue->flags & UVC_QUEUE_DISCONNECTED) && !is_bulk) { /* * No video buffer available; the queue is still connected and * we're transferring over ISOC. Queue a 0 length request to * prevent missed ISOC transfers. */ req->length = 0; buf_done = false; } else { /* * Either the queue has been disconnected or no video buffer * available for bulk transfer. Either way, stop processing * further. */ spin_unlock_irqrestore(&queue->irqlock, flags); break; } /* * With USB3 handling more requests at a higher speed, we can't * afford to generate an interrupt for every request. Decide to * interrupt: * * - When no more requests are available in the free queue, as * this may be our last chance to refill the endpoint's * request queue. * * - When this is request is the last request for the video * buffer, as we want to start sending the next video buffer * ASAP in case it doesn't get started already in the next * iteration of this loop. * * - Four times over the length of the requests queue (as * indicated by video->uvc_num_requests), as a trade-off * between latency and interrupt load. */ if (list_empty(&video->req_free) || buf_done || !(video->req_int_count % DIV_ROUND_UP(video->uvc_num_requests, 4))) { video->req_int_count = 0; req->no_interrupt = 0; } else { req->no_interrupt = 1; } /* Queue the USB request */ ret = uvcg_video_ep_queue(video, req); spin_unlock_irqrestore(&queue->irqlock, flags); if (ret < 0) { uvcg_queue_cancel(queue, 0); break; } /* Endpoint now owns the request */ req = NULL; video->req_int_count++; } if (!req) return; spin_lock_irqsave(&video->req_lock, flags); list_add_tail(&req->list, &video->req_free); spin_unlock_irqrestore(&video->req_lock, flags); return; } /* * Enable or disable the video stream. */ int uvcg_video_enable(struct uvc_video *video, int enable) { unsigned int i; int ret; if (video->ep == NULL) { uvcg_info(&video->uvc->func, "Video enable failed, device is uninitialized.\n"); return -ENODEV; } if (!enable) { cancel_work_sync(&video->pump); uvcg_queue_cancel(&video->queue, 0); for (i = 0; i < video->uvc_num_requests; ++i) if (video->ureq && video->ureq[i].req) usb_ep_dequeue(video->ep, video->ureq[i].req); uvc_video_free_requests(video); uvcg_queue_enable(&video->queue, 0); return 0; } if ((ret = uvcg_queue_enable(&video->queue, 1)) < 0) return ret; if ((ret = uvc_video_alloc_requests(video)) < 0) return ret; if (video->max_payload_size) { video->encode = uvc_video_encode_bulk; video->payload_size = 0; } else video->encode = video->queue.use_sg ? uvc_video_encode_isoc_sg : uvc_video_encode_isoc; video->req_int_count = 0; queue_work(video->async_wq, &video->pump); return ret; } /* * Initialize the UVC video stream. */ int uvcg_video_init(struct uvc_video *video, struct uvc_device *uvc) { INIT_LIST_HEAD(&video->req_free); spin_lock_init(&video->req_lock); INIT_WORK(&video->pump, uvcg_video_pump); /* Allocate a work queue for asynchronous video pump handler. */ video->async_wq = alloc_workqueue("uvcgadget", WQ_UNBOUND | WQ_HIGHPRI, 0); if (!video->async_wq) return -EINVAL; video->uvc = uvc; video->fcc = V4L2_PIX_FMT_YUYV; video->bpp = 16; video->width = 320; video->height = 240; video->imagesize = 320 * 240 * 2; /* Initialize the video buffers queue. */ uvcg_queue_init(&video->queue, uvc->v4l2_dev.dev->parent, V4L2_BUF_TYPE_VIDEO_OUTPUT, &video->mutex); return 0; }
linux-master
drivers/usb/gadget/function/uvc_video.c
// SPDX-License-Identifier: GPL-2.0+ /* * f_printer.c - USB printer function driver * * Copied from drivers/usb/gadget/legacy/printer.c, * which was: * * printer.c -- Printer gadget driver * * Copyright (C) 2003-2005 David Brownell * Copyright (C) 2006 Craig W. Nadler */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/idr.h> #include <linux/timer.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/moduleparam.h> #include <linux/fs.h> #include <linux/poll.h> #include <linux/types.h> #include <linux/ctype.h> #include <linux/cdev.h> #include <linux/kref.h> #include <asm/byteorder.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/uaccess.h> #include <asm/unaligned.h> #include <linux/usb/ch9.h> #include <linux/usb/composite.h> #include <linux/usb/gadget.h> #include <linux/usb/g_printer.h> #include "u_printer.h" #define PRINTER_MINORS 4 #define GET_DEVICE_ID 0 #define GET_PORT_STATUS 1 #define SOFT_RESET 2 #define DEFAULT_Q_LEN 10 /* same as legacy g_printer gadget */ static int major, minors; static const struct class usb_gadget_class = { .name = "usb_printer_gadget", }; static DEFINE_IDA(printer_ida); static DEFINE_MUTEX(printer_ida_lock); /* protects access do printer_ida */ /*-------------------------------------------------------------------------*/ struct printer_dev { spinlock_t lock; /* lock this structure */ /* lock buffer lists during read/write calls */ struct mutex lock_printer_io; struct usb_gadget *gadget; s8 interface; struct usb_ep *in_ep, *out_ep; struct kref kref; struct list_head rx_reqs; /* List of free RX structs */ struct list_head rx_reqs_active; /* List of Active RX xfers */ struct list_head rx_buffers; /* List of completed xfers */ /* wait until there is data to be read. */ wait_queue_head_t rx_wait; struct list_head tx_reqs; /* List of free TX structs */ struct list_head tx_reqs_active; /* List of Active TX xfers */ /* Wait until there are write buffers available to use. */ wait_queue_head_t tx_wait; /* Wait until all write buffers have been sent. */ wait_queue_head_t tx_flush_wait; struct usb_request *current_rx_req; size_t current_rx_bytes; u8 *current_rx_buf; u8 printer_status; u8 reset_printer; int minor; struct cdev printer_cdev; u8 printer_cdev_open; wait_queue_head_t wait; unsigned q_len; char **pnp_string; /* We don't own memory! */ struct usb_function function; }; static inline struct printer_dev *func_to_printer(struct usb_function *f) { return container_of(f, struct printer_dev, function); } /*-------------------------------------------------------------------------*/ /* * DESCRIPTORS ... most are static, but strings and (full) configuration * descriptors are built on demand. */ /* holds our biggest descriptor */ #define USB_DESC_BUFSIZE 256 #define USB_BUFSIZE 8192 static struct usb_interface_descriptor intf_desc = { .bLength = sizeof(intf_desc), .bDescriptorType = USB_DT_INTERFACE, .bNumEndpoints = 2, .bInterfaceClass = USB_CLASS_PRINTER, .bInterfaceSubClass = 1, /* Printer Sub-Class */ .bInterfaceProtocol = 2, /* Bi-Directional */ .iInterface = 0 }; static struct usb_endpoint_descriptor fs_ep_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK }; static struct usb_endpoint_descriptor fs_ep_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK }; static struct usb_descriptor_header *fs_printer_function[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &fs_ep_in_desc, (struct usb_descriptor_header *) &fs_ep_out_desc, NULL }; /* * usb 2.0 devices need to expose both high speed and full speed * descriptors, unless they only run at full speed. */ static struct usb_endpoint_descriptor hs_ep_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512) }; static struct usb_endpoint_descriptor hs_ep_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512) }; static struct usb_descriptor_header *hs_printer_function[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &hs_ep_in_desc, (struct usb_descriptor_header *) &hs_ep_out_desc, NULL }; /* * Added endpoint descriptors for 3.0 devices */ static struct usb_endpoint_descriptor ss_ep_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_ep_in_comp_desc = { .bLength = sizeof(ss_ep_in_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_endpoint_descriptor ss_ep_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor ss_ep_out_comp_desc = { .bLength = sizeof(ss_ep_out_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_descriptor_header *ss_printer_function[] = { (struct usb_descriptor_header *) &intf_desc, (struct usb_descriptor_header *) &ss_ep_in_desc, (struct usb_descriptor_header *) &ss_ep_in_comp_desc, (struct usb_descriptor_header *) &ss_ep_out_desc, (struct usb_descriptor_header *) &ss_ep_out_comp_desc, NULL }; /* maxpacket and other transfer characteristics vary by speed. */ static inline struct usb_endpoint_descriptor *ep_desc(struct usb_gadget *gadget, struct usb_endpoint_descriptor *fs, struct usb_endpoint_descriptor *hs, struct usb_endpoint_descriptor *ss) { switch (gadget->speed) { case USB_SPEED_SUPER: return ss; case USB_SPEED_HIGH: return hs; default: return fs; } } /*-------------------------------------------------------------------------*/ static void printer_dev_free(struct kref *kref) { struct printer_dev *dev = container_of(kref, struct printer_dev, kref); kfree(dev); } static struct usb_request * printer_req_alloc(struct usb_ep *ep, unsigned len, gfp_t gfp_flags) { struct usb_request *req; req = usb_ep_alloc_request(ep, gfp_flags); if (req != NULL) { req->length = len; req->buf = kmalloc(len, gfp_flags); if (req->buf == NULL) { usb_ep_free_request(ep, req); return NULL; } } return req; } static void printer_req_free(struct usb_ep *ep, struct usb_request *req) { if (ep != NULL && req != NULL) { kfree(req->buf); usb_ep_free_request(ep, req); } } /*-------------------------------------------------------------------------*/ static void rx_complete(struct usb_ep *ep, struct usb_request *req) { struct printer_dev *dev = ep->driver_data; int status = req->status; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); list_del_init(&req->list); /* Remode from Active List */ switch (status) { /* normal completion */ case 0: if (req->actual > 0) { list_add_tail(&req->list, &dev->rx_buffers); DBG(dev, "G_Printer : rx length %d\n", req->actual); } else { list_add(&req->list, &dev->rx_reqs); } break; /* software-driven interface shutdown */ case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ VDBG(dev, "rx shutdown, code %d\n", status); list_add(&req->list, &dev->rx_reqs); break; /* for hardware automagic (such as pxa) */ case -ECONNABORTED: /* endpoint reset */ DBG(dev, "rx %s reset\n", ep->name); list_add(&req->list, &dev->rx_reqs); break; /* data overrun */ case -EOVERFLOW: fallthrough; default: DBG(dev, "rx status %d\n", status); list_add(&req->list, &dev->rx_reqs); break; } wake_up_interruptible(&dev->rx_wait); spin_unlock_irqrestore(&dev->lock, flags); } static void tx_complete(struct usb_ep *ep, struct usb_request *req) { struct printer_dev *dev = ep->driver_data; switch (req->status) { default: VDBG(dev, "tx err %d\n", req->status); fallthrough; case -ECONNRESET: /* unlink */ case -ESHUTDOWN: /* disconnect etc */ break; case 0: break; } spin_lock(&dev->lock); /* Take the request struct off the active list and put it on the * free list. */ list_del_init(&req->list); list_add(&req->list, &dev->tx_reqs); wake_up_interruptible(&dev->tx_wait); if (likely(list_empty(&dev->tx_reqs_active))) wake_up_interruptible(&dev->tx_flush_wait); spin_unlock(&dev->lock); } /*-------------------------------------------------------------------------*/ static int printer_open(struct inode *inode, struct file *fd) { struct printer_dev *dev; unsigned long flags; int ret = -EBUSY; dev = container_of(inode->i_cdev, struct printer_dev, printer_cdev); spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); return -ENODEV; } if (!dev->printer_cdev_open) { dev->printer_cdev_open = 1; fd->private_data = dev; ret = 0; /* Change the printer status to show that it's on-line. */ dev->printer_status |= PRINTER_SELECTED; } spin_unlock_irqrestore(&dev->lock, flags); kref_get(&dev->kref); return ret; } static int printer_close(struct inode *inode, struct file *fd) { struct printer_dev *dev = fd->private_data; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); dev->printer_cdev_open = 0; fd->private_data = NULL; /* Change printer status to show that the printer is off-line. */ dev->printer_status &= ~PRINTER_SELECTED; spin_unlock_irqrestore(&dev->lock, flags); kref_put(&dev->kref, printer_dev_free); return 0; } /* This function must be called with interrupts turned off. */ static void setup_rx_reqs(struct printer_dev *dev) { struct usb_request *req; while (likely(!list_empty(&dev->rx_reqs))) { int error; req = container_of(dev->rx_reqs.next, struct usb_request, list); list_del_init(&req->list); /* The USB Host sends us whatever amount of data it wants to * so we always set the length field to the full USB_BUFSIZE. * If the amount of data is more than the read() caller asked * for it will be stored in the request buffer until it is * asked for by read(). */ req->length = USB_BUFSIZE; req->complete = rx_complete; /* here, we unlock, and only unlock, to avoid deadlock. */ spin_unlock(&dev->lock); error = usb_ep_queue(dev->out_ep, req, GFP_ATOMIC); spin_lock(&dev->lock); if (error) { DBG(dev, "rx submit --> %d\n", error); list_add(&req->list, &dev->rx_reqs); break; } /* if the req is empty, then add it into dev->rx_reqs_active. */ else if (list_empty(&req->list)) list_add(&req->list, &dev->rx_reqs_active); } } static ssize_t printer_read(struct file *fd, char __user *buf, size_t len, loff_t *ptr) { struct printer_dev *dev = fd->private_data; unsigned long flags; size_t size; size_t bytes_copied; struct usb_request *req; /* This is a pointer to the current USB rx request. */ struct usb_request *current_rx_req; /* This is the number of bytes in the current rx buffer. */ size_t current_rx_bytes; /* This is a pointer to the current rx buffer. */ u8 *current_rx_buf; if (len == 0) return -EINVAL; DBG(dev, "printer_read trying to read %d bytes\n", (int)len); mutex_lock(&dev->lock_printer_io); spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return -ENODEV; } /* We will use this flag later to check if a printer reset happened * after we turn interrupts back on. */ dev->reset_printer = 0; setup_rx_reqs(dev); bytes_copied = 0; current_rx_req = dev->current_rx_req; current_rx_bytes = dev->current_rx_bytes; current_rx_buf = dev->current_rx_buf; dev->current_rx_req = NULL; dev->current_rx_bytes = 0; dev->current_rx_buf = NULL; /* Check if there is any data in the read buffers. Please note that * current_rx_bytes is the number of bytes in the current rx buffer. * If it is zero then check if there are any other rx_buffers that * are on the completed list. We are only out of data if all rx * buffers are empty. */ if ((current_rx_bytes == 0) && (likely(list_empty(&dev->rx_buffers)))) { /* Turn interrupts back on before sleeping. */ spin_unlock_irqrestore(&dev->lock, flags); /* * If no data is available check if this is a NON-Blocking * call or not. */ if (fd->f_flags & (O_NONBLOCK|O_NDELAY)) { mutex_unlock(&dev->lock_printer_io); return -EAGAIN; } /* Sleep until data is available */ wait_event_interruptible(dev->rx_wait, (likely(!list_empty(&dev->rx_buffers)))); spin_lock_irqsave(&dev->lock, flags); } /* We have data to return then copy it to the caller's buffer.*/ while ((current_rx_bytes || likely(!list_empty(&dev->rx_buffers))) && len) { if (current_rx_bytes == 0) { req = container_of(dev->rx_buffers.next, struct usb_request, list); list_del_init(&req->list); if (req->actual && req->buf) { current_rx_req = req; current_rx_bytes = req->actual; current_rx_buf = req->buf; } else { list_add(&req->list, &dev->rx_reqs); continue; } } /* Don't leave irqs off while doing memory copies */ spin_unlock_irqrestore(&dev->lock, flags); if (len > current_rx_bytes) size = current_rx_bytes; else size = len; size -= copy_to_user(buf, current_rx_buf, size); bytes_copied += size; len -= size; buf += size; spin_lock_irqsave(&dev->lock, flags); /* We've disconnected or reset so return. */ if (dev->reset_printer) { list_add(&current_rx_req->list, &dev->rx_reqs); spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return -EAGAIN; } /* If we not returning all the data left in this RX request * buffer then adjust the amount of data left in the buffer. * Othewise if we are done with this RX request buffer then * requeue it to get any incoming data from the USB host. */ if (size < current_rx_bytes) { current_rx_bytes -= size; current_rx_buf += size; } else { list_add(&current_rx_req->list, &dev->rx_reqs); current_rx_bytes = 0; current_rx_buf = NULL; current_rx_req = NULL; } } dev->current_rx_req = current_rx_req; dev->current_rx_bytes = current_rx_bytes; dev->current_rx_buf = current_rx_buf; spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); DBG(dev, "printer_read returned %d bytes\n", (int)bytes_copied); if (bytes_copied) return bytes_copied; else return -EAGAIN; } static ssize_t printer_write(struct file *fd, const char __user *buf, size_t len, loff_t *ptr) { struct printer_dev *dev = fd->private_data; unsigned long flags; size_t size; /* Amount of data in a TX request. */ size_t bytes_copied = 0; struct usb_request *req; int value; DBG(dev, "printer_write trying to send %d bytes\n", (int)len); if (len == 0) return -EINVAL; mutex_lock(&dev->lock_printer_io); spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return -ENODEV; } /* Check if a printer reset happens while we have interrupts on */ dev->reset_printer = 0; /* Check if there is any available write buffers */ if (likely(list_empty(&dev->tx_reqs))) { /* Turn interrupts back on before sleeping. */ spin_unlock_irqrestore(&dev->lock, flags); /* * If write buffers are available check if this is * a NON-Blocking call or not. */ if (fd->f_flags & (O_NONBLOCK|O_NDELAY)) { mutex_unlock(&dev->lock_printer_io); return -EAGAIN; } /* Sleep until a write buffer is available */ wait_event_interruptible(dev->tx_wait, (likely(!list_empty(&dev->tx_reqs)))); spin_lock_irqsave(&dev->lock, flags); } while (likely(!list_empty(&dev->tx_reqs)) && len) { if (len > USB_BUFSIZE) size = USB_BUFSIZE; else size = len; req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del_init(&req->list); req->complete = tx_complete; req->length = size; /* Check if we need to send a zero length packet. */ if (len > size) /* They will be more TX requests so no yet. */ req->zero = 0; else /* If the data amount is not a multiple of the * maxpacket size then send a zero length packet. */ req->zero = ((len % dev->in_ep->maxpacket) == 0); /* Don't leave irqs off while doing memory copies */ spin_unlock_irqrestore(&dev->lock, flags); if (copy_from_user(req->buf, buf, size)) { list_add(&req->list, &dev->tx_reqs); mutex_unlock(&dev->lock_printer_io); return bytes_copied; } bytes_copied += size; len -= size; buf += size; spin_lock_irqsave(&dev->lock, flags); /* We've disconnected or reset so free the req and buffer */ if (dev->reset_printer) { list_add(&req->list, &dev->tx_reqs); spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return -EAGAIN; } list_add(&req->list, &dev->tx_reqs_active); /* here, we unlock, and only unlock, to avoid deadlock. */ spin_unlock(&dev->lock); value = usb_ep_queue(dev->in_ep, req, GFP_ATOMIC); spin_lock(&dev->lock); if (value) { list_move(&req->list, &dev->tx_reqs); spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return -EAGAIN; } } spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); DBG(dev, "printer_write sent %d bytes\n", (int)bytes_copied); if (bytes_copied) return bytes_copied; else return -EAGAIN; } static int printer_fsync(struct file *fd, loff_t start, loff_t end, int datasync) { struct printer_dev *dev = fd->private_data; struct inode *inode = file_inode(fd); unsigned long flags; int tx_list_empty; inode_lock(inode); spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); inode_unlock(inode); return -ENODEV; } tx_list_empty = (likely(list_empty(&dev->tx_reqs))); spin_unlock_irqrestore(&dev->lock, flags); if (!tx_list_empty) { /* Sleep until all data has been sent */ wait_event_interruptible(dev->tx_flush_wait, (likely(list_empty(&dev->tx_reqs_active)))); } inode_unlock(inode); return 0; } static __poll_t printer_poll(struct file *fd, poll_table *wait) { struct printer_dev *dev = fd->private_data; unsigned long flags; __poll_t status = 0; mutex_lock(&dev->lock_printer_io); spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); return EPOLLERR | EPOLLHUP; } setup_rx_reqs(dev); spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->lock_printer_io); poll_wait(fd, &dev->rx_wait, wait); poll_wait(fd, &dev->tx_wait, wait); spin_lock_irqsave(&dev->lock, flags); if (likely(!list_empty(&dev->tx_reqs))) status |= EPOLLOUT | EPOLLWRNORM; if (likely(dev->current_rx_bytes) || likely(!list_empty(&dev->rx_buffers))) status |= EPOLLIN | EPOLLRDNORM; spin_unlock_irqrestore(&dev->lock, flags); return status; } static long printer_ioctl(struct file *fd, unsigned int code, unsigned long arg) { struct printer_dev *dev = fd->private_data; unsigned long flags; int status = 0; DBG(dev, "printer_ioctl: cmd=0x%4.4x, arg=%lu\n", code, arg); /* handle ioctls */ spin_lock_irqsave(&dev->lock, flags); if (dev->interface < 0) { spin_unlock_irqrestore(&dev->lock, flags); return -ENODEV; } switch (code) { case GADGET_GET_PRINTER_STATUS: status = (int)dev->printer_status; break; case GADGET_SET_PRINTER_STATUS: dev->printer_status = (u8)arg; break; default: /* could not handle ioctl */ DBG(dev, "printer_ioctl: ERROR cmd=0x%4.4xis not supported\n", code); status = -ENOTTY; } spin_unlock_irqrestore(&dev->lock, flags); return status; } /* used after endpoint configuration */ static const struct file_operations printer_io_operations = { .owner = THIS_MODULE, .open = printer_open, .read = printer_read, .write = printer_write, .fsync = printer_fsync, .poll = printer_poll, .unlocked_ioctl = printer_ioctl, .release = printer_close, .llseek = noop_llseek, }; /*-------------------------------------------------------------------------*/ static int set_printer_interface(struct printer_dev *dev) { int result = 0; dev->in_ep->desc = ep_desc(dev->gadget, &fs_ep_in_desc, &hs_ep_in_desc, &ss_ep_in_desc); dev->in_ep->driver_data = dev; dev->out_ep->desc = ep_desc(dev->gadget, &fs_ep_out_desc, &hs_ep_out_desc, &ss_ep_out_desc); dev->out_ep->driver_data = dev; result = usb_ep_enable(dev->in_ep); if (result != 0) { DBG(dev, "enable %s --> %d\n", dev->in_ep->name, result); goto done; } result = usb_ep_enable(dev->out_ep); if (result != 0) { DBG(dev, "enable %s --> %d\n", dev->out_ep->name, result); goto done; } done: /* on error, disable any endpoints */ if (result != 0) { (void) usb_ep_disable(dev->in_ep); (void) usb_ep_disable(dev->out_ep); dev->in_ep->desc = NULL; dev->out_ep->desc = NULL; } /* caller is responsible for cleanup on error */ return result; } static void printer_reset_interface(struct printer_dev *dev) { unsigned long flags; if (dev->interface < 0) return; if (dev->in_ep->desc) usb_ep_disable(dev->in_ep); if (dev->out_ep->desc) usb_ep_disable(dev->out_ep); spin_lock_irqsave(&dev->lock, flags); dev->in_ep->desc = NULL; dev->out_ep->desc = NULL; dev->interface = -1; spin_unlock_irqrestore(&dev->lock, flags); } /* Change our operational Interface. */ static int set_interface(struct printer_dev *dev, unsigned number) { int result = 0; /* Free the current interface */ printer_reset_interface(dev); result = set_printer_interface(dev); if (result) printer_reset_interface(dev); else dev->interface = number; if (!result) INFO(dev, "Using interface %x\n", number); return result; } static void printer_soft_reset(struct printer_dev *dev) { struct usb_request *req; if (usb_ep_disable(dev->in_ep)) DBG(dev, "Failed to disable USB in_ep\n"); if (usb_ep_disable(dev->out_ep)) DBG(dev, "Failed to disable USB out_ep\n"); if (dev->current_rx_req != NULL) { list_add(&dev->current_rx_req->list, &dev->rx_reqs); dev->current_rx_req = NULL; } dev->current_rx_bytes = 0; dev->current_rx_buf = NULL; dev->reset_printer = 1; while (likely(!(list_empty(&dev->rx_buffers)))) { req = container_of(dev->rx_buffers.next, struct usb_request, list); list_del_init(&req->list); list_add(&req->list, &dev->rx_reqs); } while (likely(!(list_empty(&dev->rx_reqs_active)))) { req = container_of(dev->rx_buffers.next, struct usb_request, list); list_del_init(&req->list); list_add(&req->list, &dev->rx_reqs); } while (likely(!(list_empty(&dev->tx_reqs_active)))) { req = container_of(dev->tx_reqs_active.next, struct usb_request, list); list_del_init(&req->list); list_add(&req->list, &dev->tx_reqs); } if (usb_ep_enable(dev->in_ep)) DBG(dev, "Failed to enable USB in_ep\n"); if (usb_ep_enable(dev->out_ep)) DBG(dev, "Failed to enable USB out_ep\n"); wake_up_interruptible(&dev->rx_wait); wake_up_interruptible(&dev->tx_wait); wake_up_interruptible(&dev->tx_flush_wait); } /*-------------------------------------------------------------------------*/ static bool gprinter_req_match(struct usb_function *f, const struct usb_ctrlrequest *ctrl, bool config0) { struct printer_dev *dev = func_to_printer(f); u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); if (config0) return false; if ((ctrl->bRequestType & USB_RECIP_MASK) != USB_RECIP_INTERFACE || (ctrl->bRequestType & USB_TYPE_MASK) != USB_TYPE_CLASS) return false; switch (ctrl->bRequest) { case GET_DEVICE_ID: w_index >>= 8; if (USB_DIR_IN & ctrl->bRequestType) break; return false; case GET_PORT_STATUS: if (!w_value && w_length == 1 && (USB_DIR_IN & ctrl->bRequestType)) break; return false; case SOFT_RESET: if (!w_value && !w_length && !(USB_DIR_IN & ctrl->bRequestType)) break; fallthrough; default: return false; } return w_index == dev->interface; } /* * The setup() callback implements all the ep0 functionality that's not * handled lower down. */ static int printer_func_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct printer_dev *dev = func_to_printer(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; u8 *buf = req->buf; int value = -EOPNOTSUPP; u16 wIndex = le16_to_cpu(ctrl->wIndex); u16 wValue = le16_to_cpu(ctrl->wValue); u16 wLength = le16_to_cpu(ctrl->wLength); DBG(dev, "ctrl req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, wValue, wIndex, wLength); switch (ctrl->bRequestType&USB_TYPE_MASK) { case USB_TYPE_CLASS: switch (ctrl->bRequest) { case GET_DEVICE_ID: /* Get the IEEE-1284 PNP String */ /* Only one printer interface is supported. */ if ((wIndex>>8) != dev->interface) break; if (!*dev->pnp_string) { value = 0; break; } value = strlen(*dev->pnp_string); buf[0] = (value >> 8) & 0xFF; buf[1] = value & 0xFF; memcpy(buf + 2, *dev->pnp_string, value); DBG(dev, "1284 PNP String: %x %s\n", value, *dev->pnp_string); break; case GET_PORT_STATUS: /* Get Port Status */ /* Only one printer interface is supported. */ if (wIndex != dev->interface) break; buf[0] = dev->printer_status; value = min_t(u16, wLength, 1); break; case SOFT_RESET: /* Soft Reset */ /* Only one printer interface is supported. */ if (wIndex != dev->interface) break; printer_soft_reset(dev); value = 0; break; default: goto unknown; } break; default: unknown: VDBG(dev, "unknown ctrl req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, wValue, wIndex, wLength); break; } /* host either stalls (value < 0) or reports success */ if (value >= 0) { req->length = value; req->zero = value < wLength; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) { ERROR(dev, "%s:%d Error!\n", __func__, __LINE__); req->status = 0; } } return value; } static int printer_func_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_gadget *gadget = c->cdev->gadget; struct printer_dev *dev = func_to_printer(f); struct device *pdev; struct usb_composite_dev *cdev = c->cdev; struct usb_ep *in_ep; struct usb_ep *out_ep = NULL; struct usb_request *req; dev_t devt; int id; int ret; u32 i; id = usb_interface_id(c, f); if (id < 0) return id; intf_desc.bInterfaceNumber = id; /* finish hookup to lower layer ... */ dev->gadget = gadget; /* all we really need is bulk IN/OUT */ in_ep = usb_ep_autoconfig(cdev->gadget, &fs_ep_in_desc); if (!in_ep) { autoconf_fail: dev_err(&cdev->gadget->dev, "can't autoconfigure on %s\n", cdev->gadget->name); return -ENODEV; } out_ep = usb_ep_autoconfig(cdev->gadget, &fs_ep_out_desc); if (!out_ep) goto autoconf_fail; /* assumes that all endpoints are dual-speed */ hs_ep_in_desc.bEndpointAddress = fs_ep_in_desc.bEndpointAddress; hs_ep_out_desc.bEndpointAddress = fs_ep_out_desc.bEndpointAddress; ss_ep_in_desc.bEndpointAddress = fs_ep_in_desc.bEndpointAddress; ss_ep_out_desc.bEndpointAddress = fs_ep_out_desc.bEndpointAddress; ret = usb_assign_descriptors(f, fs_printer_function, hs_printer_function, ss_printer_function, ss_printer_function); if (ret) return ret; dev->in_ep = in_ep; dev->out_ep = out_ep; ret = -ENOMEM; for (i = 0; i < dev->q_len; i++) { req = printer_req_alloc(dev->in_ep, USB_BUFSIZE, GFP_KERNEL); if (!req) goto fail_tx_reqs; list_add(&req->list, &dev->tx_reqs); } for (i = 0; i < dev->q_len; i++) { req = printer_req_alloc(dev->out_ep, USB_BUFSIZE, GFP_KERNEL); if (!req) goto fail_rx_reqs; list_add(&req->list, &dev->rx_reqs); } /* Setup the sysfs files for the printer gadget. */ devt = MKDEV(major, dev->minor); pdev = device_create(&usb_gadget_class, NULL, devt, NULL, "g_printer%d", dev->minor); if (IS_ERR(pdev)) { ERROR(dev, "Failed to create device: g_printer\n"); ret = PTR_ERR(pdev); goto fail_rx_reqs; } /* * Register a character device as an interface to a user mode * program that handles the printer specific functionality. */ cdev_init(&dev->printer_cdev, &printer_io_operations); dev->printer_cdev.owner = THIS_MODULE; ret = cdev_add(&dev->printer_cdev, devt, 1); if (ret) { ERROR(dev, "Failed to open char device\n"); goto fail_cdev_add; } return 0; fail_cdev_add: device_destroy(&usb_gadget_class, devt); fail_rx_reqs: while (!list_empty(&dev->rx_reqs)) { req = container_of(dev->rx_reqs.next, struct usb_request, list); list_del(&req->list); printer_req_free(dev->out_ep, req); } fail_tx_reqs: while (!list_empty(&dev->tx_reqs)) { req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del(&req->list); printer_req_free(dev->in_ep, req); } usb_free_all_descriptors(f); return ret; } static int printer_func_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct printer_dev *dev = func_to_printer(f); int ret = -ENOTSUPP; if (!alt) ret = set_interface(dev, intf); return ret; } static void printer_func_disable(struct usb_function *f) { struct printer_dev *dev = func_to_printer(f); printer_reset_interface(dev); } static inline struct f_printer_opts *to_f_printer_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_printer_opts, func_inst.group); } static void printer_attr_release(struct config_item *item) { struct f_printer_opts *opts = to_f_printer_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations printer_item_ops = { .release = printer_attr_release, }; static ssize_t f_printer_opts_pnp_string_show(struct config_item *item, char *page) { struct f_printer_opts *opts = to_f_printer_opts(item); int result = 0; mutex_lock(&opts->lock); if (!opts->pnp_string) goto unlock; result = strscpy(page, opts->pnp_string, PAGE_SIZE); if (result < 1) { result = PAGE_SIZE; } else if (page[result - 1] != '\n' && result + 1 < PAGE_SIZE) { page[result++] = '\n'; page[result] = '\0'; } unlock: mutex_unlock(&opts->lock); return result; } static ssize_t f_printer_opts_pnp_string_store(struct config_item *item, const char *page, size_t len) { struct f_printer_opts *opts = to_f_printer_opts(item); char *new_pnp; int result; mutex_lock(&opts->lock); new_pnp = kstrndup(page, len, GFP_KERNEL); if (!new_pnp) { result = -ENOMEM; goto unlock; } if (opts->pnp_string_allocated) kfree(opts->pnp_string); opts->pnp_string_allocated = true; opts->pnp_string = new_pnp; result = len; unlock: mutex_unlock(&opts->lock); return result; } CONFIGFS_ATTR(f_printer_opts_, pnp_string); static ssize_t f_printer_opts_q_len_show(struct config_item *item, char *page) { struct f_printer_opts *opts = to_f_printer_opts(item); int result; mutex_lock(&opts->lock); result = sprintf(page, "%d\n", opts->q_len); mutex_unlock(&opts->lock); return result; } static ssize_t f_printer_opts_q_len_store(struct config_item *item, const char *page, size_t len) { struct f_printer_opts *opts = to_f_printer_opts(item); int ret; u16 num; mutex_lock(&opts->lock); if (opts->refcnt) { ret = -EBUSY; goto end; } ret = kstrtou16(page, 0, &num); if (ret) goto end; opts->q_len = (unsigned)num; ret = len; end: mutex_unlock(&opts->lock); return ret; } CONFIGFS_ATTR(f_printer_opts_, q_len); static struct configfs_attribute *printer_attrs[] = { &f_printer_opts_attr_pnp_string, &f_printer_opts_attr_q_len, NULL, }; static const struct config_item_type printer_func_type = { .ct_item_ops = &printer_item_ops, .ct_attrs = printer_attrs, .ct_owner = THIS_MODULE, }; static inline int gprinter_get_minor(void) { int ret; ret = ida_simple_get(&printer_ida, 0, 0, GFP_KERNEL); if (ret >= PRINTER_MINORS) { ida_simple_remove(&printer_ida, ret); ret = -ENODEV; } return ret; } static inline void gprinter_put_minor(int minor) { ida_simple_remove(&printer_ida, minor); } static int gprinter_setup(int); static void gprinter_cleanup(void); static void gprinter_free_inst(struct usb_function_instance *f) { struct f_printer_opts *opts; opts = container_of(f, struct f_printer_opts, func_inst); mutex_lock(&printer_ida_lock); gprinter_put_minor(opts->minor); if (ida_is_empty(&printer_ida)) gprinter_cleanup(); mutex_unlock(&printer_ida_lock); if (opts->pnp_string_allocated) kfree(opts->pnp_string); kfree(opts); } static struct usb_function_instance *gprinter_alloc_inst(void) { struct f_printer_opts *opts; struct usb_function_instance *ret; int status = 0; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); mutex_init(&opts->lock); opts->func_inst.free_func_inst = gprinter_free_inst; ret = &opts->func_inst; /* Make sure q_len is initialized, otherwise the bound device can't support read/write! */ opts->q_len = DEFAULT_Q_LEN; mutex_lock(&printer_ida_lock); if (ida_is_empty(&printer_ida)) { status = gprinter_setup(PRINTER_MINORS); if (status) { ret = ERR_PTR(status); kfree(opts); goto unlock; } } opts->minor = gprinter_get_minor(); if (opts->minor < 0) { ret = ERR_PTR(opts->minor); kfree(opts); if (ida_is_empty(&printer_ida)) gprinter_cleanup(); goto unlock; } config_group_init_type_name(&opts->func_inst.group, "", &printer_func_type); unlock: mutex_unlock(&printer_ida_lock); return ret; } static void gprinter_free(struct usb_function *f) { struct printer_dev *dev = func_to_printer(f); struct f_printer_opts *opts; opts = container_of(f->fi, struct f_printer_opts, func_inst); kref_put(&dev->kref, printer_dev_free); mutex_lock(&opts->lock); --opts->refcnt; mutex_unlock(&opts->lock); } static void printer_func_unbind(struct usb_configuration *c, struct usb_function *f) { struct printer_dev *dev; struct usb_request *req; dev = func_to_printer(f); device_destroy(&usb_gadget_class, MKDEV(major, dev->minor)); /* Remove Character Device */ cdev_del(&dev->printer_cdev); /* we must already have been disconnected ... no i/o may be active */ WARN_ON(!list_empty(&dev->tx_reqs_active)); WARN_ON(!list_empty(&dev->rx_reqs_active)); /* Free all memory for this driver. */ while (!list_empty(&dev->tx_reqs)) { req = container_of(dev->tx_reqs.next, struct usb_request, list); list_del(&req->list); printer_req_free(dev->in_ep, req); } if (dev->current_rx_req != NULL) printer_req_free(dev->out_ep, dev->current_rx_req); while (!list_empty(&dev->rx_reqs)) { req = container_of(dev->rx_reqs.next, struct usb_request, list); list_del(&req->list); printer_req_free(dev->out_ep, req); } while (!list_empty(&dev->rx_buffers)) { req = container_of(dev->rx_buffers.next, struct usb_request, list); list_del(&req->list); printer_req_free(dev->out_ep, req); } usb_free_all_descriptors(f); } static struct usb_function *gprinter_alloc(struct usb_function_instance *fi) { struct printer_dev *dev; struct f_printer_opts *opts; opts = container_of(fi, struct f_printer_opts, func_inst); mutex_lock(&opts->lock); if (opts->minor >= minors) { mutex_unlock(&opts->lock); return ERR_PTR(-ENOENT); } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { mutex_unlock(&opts->lock); return ERR_PTR(-ENOMEM); } kref_init(&dev->kref); ++opts->refcnt; dev->minor = opts->minor; dev->pnp_string = &opts->pnp_string; dev->q_len = opts->q_len; mutex_unlock(&opts->lock); dev->function.name = "printer"; dev->function.bind = printer_func_bind; dev->function.setup = printer_func_setup; dev->function.unbind = printer_func_unbind; dev->function.set_alt = printer_func_set_alt; dev->function.disable = printer_func_disable; dev->function.req_match = gprinter_req_match; dev->function.free_func = gprinter_free; INIT_LIST_HEAD(&dev->tx_reqs); INIT_LIST_HEAD(&dev->rx_reqs); INIT_LIST_HEAD(&dev->rx_buffers); INIT_LIST_HEAD(&dev->tx_reqs_active); INIT_LIST_HEAD(&dev->rx_reqs_active); spin_lock_init(&dev->lock); mutex_init(&dev->lock_printer_io); init_waitqueue_head(&dev->rx_wait); init_waitqueue_head(&dev->tx_wait); init_waitqueue_head(&dev->tx_flush_wait); dev->interface = -1; dev->printer_cdev_open = 0; dev->printer_status = PRINTER_NOT_ERROR; dev->current_rx_req = NULL; dev->current_rx_bytes = 0; dev->current_rx_buf = NULL; return &dev->function; } DECLARE_USB_FUNCTION_INIT(printer, gprinter_alloc_inst, gprinter_alloc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Craig Nadler"); static int gprinter_setup(int count) { int status; dev_t devt; status = class_register(&usb_gadget_class); if (status) return status; status = alloc_chrdev_region(&devt, 0, count, "USB printer gadget"); if (status) { pr_err("alloc_chrdev_region %d\n", status); class_unregister(&usb_gadget_class); return status; } major = MAJOR(devt); minors = count; return status; } static void gprinter_cleanup(void) { if (major) { unregister_chrdev_region(MKDEV(major, 0), minors); major = minors = 0; } class_unregister(&usb_gadget_class); }
linux-master
drivers/usb/gadget/function/f_printer.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> * * Based on dummy_hcd.c, which is: * Copyright (C) 2003 David Brownell * Copyright (C) 2003-2005 Alan Stern */ #include <linux/usb.h> #include <linux/timer.h> #include <linux/usb/ch9.h> #include "vudc.h" #define DEV_REQUEST (USB_TYPE_STANDARD | USB_RECIP_DEVICE) #define DEV_INREQUEST (DEV_REQUEST | USB_DIR_IN) #define INTF_REQUEST (USB_TYPE_STANDARD | USB_RECIP_INTERFACE) #define INTF_INREQUEST (INTF_REQUEST | USB_DIR_IN) #define EP_REQUEST (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT) #define EP_INREQUEST (EP_REQUEST | USB_DIR_IN) static int get_frame_limit(enum usb_device_speed speed) { switch (speed) { case USB_SPEED_LOW: return 8 /*bytes*/ * 12 /*packets*/; case USB_SPEED_FULL: return 64 /*bytes*/ * 19 /*packets*/; case USB_SPEED_HIGH: return 512 /*bytes*/ * 13 /*packets*/ * 8 /*uframes*/; case USB_SPEED_SUPER: /* Bus speed is 500000 bytes/ms, so use a little less */ return 490000; default: /* error */ return -1; } } /* * handle_control_request() - handles all control transfers * @udc: pointer to vudc * @urb: the urb request to handle * @setup: pointer to the setup data for a USB device control * request * @status: pointer to request handling status * * Return 0 - if the request was handled * 1 - if the request wasn't handles * error code on error * * Adapted from drivers/usb/gadget/udc/dummy_hcd.c */ static int handle_control_request(struct vudc *udc, struct urb *urb, struct usb_ctrlrequest *setup, int *status) { struct vep *ep2; int ret_val = 1; unsigned int w_index; unsigned int w_value; w_index = le16_to_cpu(setup->wIndex); w_value = le16_to_cpu(setup->wValue); switch (setup->bRequest) { case USB_REQ_SET_ADDRESS: if (setup->bRequestType != DEV_REQUEST) break; udc->address = w_value; ret_val = 0; *status = 0; break; case USB_REQ_SET_FEATURE: if (setup->bRequestType == DEV_REQUEST) { ret_val = 0; switch (w_value) { case USB_DEVICE_REMOTE_WAKEUP: break; case USB_DEVICE_B_HNP_ENABLE: udc->gadget.b_hnp_enable = 1; break; case USB_DEVICE_A_HNP_SUPPORT: udc->gadget.a_hnp_support = 1; break; case USB_DEVICE_A_ALT_HNP_SUPPORT: udc->gadget.a_alt_hnp_support = 1; break; default: ret_val = -EOPNOTSUPP; } if (ret_val == 0) { udc->devstatus |= (1 << w_value); *status = 0; } } else if (setup->bRequestType == EP_REQUEST) { /* endpoint halt */ ep2 = vudc_find_endpoint(udc, w_index); if (!ep2 || ep2->ep.name == udc->ep[0].ep.name) { ret_val = -EOPNOTSUPP; break; } ep2->halted = 1; ret_val = 0; *status = 0; } break; case USB_REQ_CLEAR_FEATURE: if (setup->bRequestType == DEV_REQUEST) { ret_val = 0; switch (w_value) { case USB_DEVICE_REMOTE_WAKEUP: w_value = USB_DEVICE_REMOTE_WAKEUP; break; case USB_DEVICE_U1_ENABLE: case USB_DEVICE_U2_ENABLE: case USB_DEVICE_LTM_ENABLE: ret_val = -EOPNOTSUPP; break; default: ret_val = -EOPNOTSUPP; break; } if (ret_val == 0) { udc->devstatus &= ~(1 << w_value); *status = 0; } } else if (setup->bRequestType == EP_REQUEST) { /* endpoint halt */ ep2 = vudc_find_endpoint(udc, w_index); if (!ep2) { ret_val = -EOPNOTSUPP; break; } if (!ep2->wedged) ep2->halted = 0; ret_val = 0; *status = 0; } break; case USB_REQ_GET_STATUS: if (setup->bRequestType == DEV_INREQUEST || setup->bRequestType == INTF_INREQUEST || setup->bRequestType == EP_INREQUEST) { char *buf; /* * device: remote wakeup, selfpowered * interface: nothing * endpoint: halt */ buf = (char *)urb->transfer_buffer; if (urb->transfer_buffer_length > 0) { if (setup->bRequestType == EP_INREQUEST) { ep2 = vudc_find_endpoint(udc, w_index); if (!ep2) { ret_val = -EOPNOTSUPP; break; } buf[0] = ep2->halted; } else if (setup->bRequestType == DEV_INREQUEST) { buf[0] = (u8)udc->devstatus; } else buf[0] = 0; } if (urb->transfer_buffer_length > 1) buf[1] = 0; urb->actual_length = min_t(u32, 2, urb->transfer_buffer_length); ret_val = 0; *status = 0; } break; } return ret_val; } /* Adapted from dummy_hcd.c ; caller must hold lock */ static int transfer(struct vudc *udc, struct urb *urb, struct vep *ep, int limit) { struct vrequest *req; int sent = 0; top: /* if there's no request queued, the device is NAKing; return */ list_for_each_entry(req, &ep->req_queue, req_entry) { unsigned int host_len, dev_len, len; void *ubuf_pos, *rbuf_pos; int is_short, to_host; int rescan = 0; /* * 1..N packets of ep->ep.maxpacket each ... the last one * may be short (including zero length). * * writer can send a zlp explicitly (length 0) or implicitly * (length mod maxpacket zero, and 'zero' flag); they always * terminate reads. */ host_len = urb->transfer_buffer_length - urb->actual_length; dev_len = req->req.length - req->req.actual; len = min(host_len, dev_len); to_host = usb_pipein(urb->pipe); if (unlikely(len == 0)) is_short = 1; else { /* send multiple of maxpacket first, then remainder */ if (len >= ep->ep.maxpacket) { is_short = 0; if (len % ep->ep.maxpacket > 0) rescan = 1; len -= len % ep->ep.maxpacket; } else { is_short = 1; } ubuf_pos = urb->transfer_buffer + urb->actual_length; rbuf_pos = req->req.buf + req->req.actual; if (urb->pipe & USB_DIR_IN) memcpy(ubuf_pos, rbuf_pos, len); else memcpy(rbuf_pos, ubuf_pos, len); urb->actual_length += len; req->req.actual += len; sent += len; } /* * short packets terminate, maybe with overflow/underflow. * it's only really an error to write too much. * * partially filling a buffer optionally blocks queue advances * (so completion handlers can clean up the queue) but we don't * need to emulate such data-in-flight. */ if (is_short) { if (host_len == dev_len) { req->req.status = 0; urb->status = 0; } else if (to_host) { req->req.status = 0; if (dev_len > host_len) urb->status = -EOVERFLOW; else urb->status = 0; } else { urb->status = 0; if (host_len > dev_len) req->req.status = -EOVERFLOW; else req->req.status = 0; } /* many requests terminate without a short packet */ /* also check if we need to send zlp */ } else { if (req->req.length == req->req.actual) { if (req->req.zero && to_host) rescan = 1; else req->req.status = 0; } if (urb->transfer_buffer_length == urb->actual_length) { if (urb->transfer_flags & URB_ZERO_PACKET && !to_host) rescan = 1; else urb->status = 0; } } /* device side completion --> continuable */ if (req->req.status != -EINPROGRESS) { list_del_init(&req->req_entry); spin_unlock(&udc->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&udc->lock); /* requests might have been unlinked... */ rescan = 1; } /* host side completion --> terminate */ if (urb->status != -EINPROGRESS) break; /* rescan to continue with any other queued i/o */ if (rescan) goto top; } return sent; } static void v_timer(struct timer_list *t) { struct vudc *udc = from_timer(udc, t, tr_timer.timer); struct transfer_timer *timer = &udc->tr_timer; struct urbp *urb_p, *tmp; unsigned long flags; struct usb_ep *_ep; struct vep *ep; int ret = 0; int total, limit; spin_lock_irqsave(&udc->lock, flags); total = get_frame_limit(udc->gadget.speed); if (total < 0) { /* unknown speed, or not set yet */ timer->state = VUDC_TR_IDLE; spin_unlock_irqrestore(&udc->lock, flags); return; } /* is it next frame now? */ if (time_after(jiffies, timer->frame_start + msecs_to_jiffies(1))) { timer->frame_limit = total; /* FIXME: how to make it accurate? */ timer->frame_start = jiffies; } else { total = timer->frame_limit; } /* We have to clear ep0 flags separately as it's not on the list */ udc->ep[0].already_seen = 0; list_for_each_entry(_ep, &udc->gadget.ep_list, ep_list) { ep = to_vep(_ep); ep->already_seen = 0; } restart: list_for_each_entry_safe(urb_p, tmp, &udc->urb_queue, urb_entry) { struct urb *urb = urb_p->urb; ep = urb_p->ep; if (urb->unlinked) goto return_urb; if (timer->state != VUDC_TR_RUNNING) continue; if (!ep) { urb->status = -EPROTO; goto return_urb; } /* Used up bandwidth? */ if (total <= 0 && ep->type == USB_ENDPOINT_XFER_BULK) continue; if (ep->already_seen) continue; ep->already_seen = 1; if (ep == &udc->ep[0] && urb_p->new) { ep->setup_stage = 1; urb_p->new = 0; } if (ep->halted && !ep->setup_stage) { urb->status = -EPIPE; goto return_urb; } if (ep == &udc->ep[0] && ep->setup_stage) { /* TODO - flush any stale requests */ ep->setup_stage = 0; ep->halted = 0; ret = handle_control_request(udc, urb, (struct usb_ctrlrequest *) urb->setup_packet, (&urb->status)); if (ret > 0) { spin_unlock(&udc->lock); ret = udc->driver->setup(&udc->gadget, (struct usb_ctrlrequest *) urb->setup_packet); spin_lock(&udc->lock); } if (ret >= 0) { /* no delays (max 64kb data stage) */ limit = 64 * 1024; goto treat_control_like_bulk; } else { urb->status = -EPIPE; urb->actual_length = 0; goto return_urb; } } limit = total; switch (ep->type) { case USB_ENDPOINT_XFER_ISOC: /* TODO: support */ urb->status = -EXDEV; break; case USB_ENDPOINT_XFER_INT: /* * TODO: figure out bandwidth guarantees * for now, give unlimited bandwidth */ limit += urb->transfer_buffer_length; fallthrough; default: treat_control_like_bulk: total -= transfer(udc, urb, ep, limit); } if (urb->status == -EINPROGRESS) continue; return_urb: if (ep) ep->already_seen = ep->setup_stage = 0; spin_lock(&udc->lock_tx); list_del(&urb_p->urb_entry); if (!urb->unlinked) { v_enqueue_ret_submit(udc, urb_p); } else { v_enqueue_ret_unlink(udc, urb_p->seqnum, urb->unlinked); free_urbp_and_urb(urb_p); } wake_up(&udc->tx_waitq); spin_unlock(&udc->lock_tx); goto restart; } /* TODO - also wait on empty usb_request queues? */ if (list_empty(&udc->urb_queue)) timer->state = VUDC_TR_IDLE; else mod_timer(&timer->timer, timer->frame_start + msecs_to_jiffies(1)); spin_unlock_irqrestore(&udc->lock, flags); } /* All timer functions are run with udc->lock held */ void v_init_timer(struct vudc *udc) { struct transfer_timer *t = &udc->tr_timer; timer_setup(&t->timer, v_timer, 0); t->state = VUDC_TR_STOPPED; } void v_start_timer(struct vudc *udc) { struct transfer_timer *t = &udc->tr_timer; dev_dbg(&udc->pdev->dev, "timer start"); switch (t->state) { case VUDC_TR_RUNNING: return; case VUDC_TR_IDLE: return v_kick_timer(udc, jiffies); case VUDC_TR_STOPPED: t->state = VUDC_TR_IDLE; t->frame_start = jiffies; t->frame_limit = get_frame_limit(udc->gadget.speed); return v_kick_timer(udc, jiffies); } } void v_kick_timer(struct vudc *udc, unsigned long time) { struct transfer_timer *t = &udc->tr_timer; dev_dbg(&udc->pdev->dev, "timer kick"); switch (t->state) { case VUDC_TR_RUNNING: return; case VUDC_TR_IDLE: t->state = VUDC_TR_RUNNING; fallthrough; case VUDC_TR_STOPPED: /* we may want to kick timer to unqueue urbs */ mod_timer(&t->timer, time); } } void v_stop_timer(struct vudc *udc) { struct transfer_timer *t = &udc->tr_timer; /* timer itself will take care of stopping */ dev_dbg(&udc->pdev->dev, "timer stop"); t->state = VUDC_TR_STOPPED; }
linux-master
drivers/usb/usbip/vudc_transfer.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <asm/byteorder.h> #include <linux/kthread.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/scatterlist.h> #include "usbip_common.h" #include "stub.h" static int is_clear_halt_cmd(struct urb *urb) { struct usb_ctrlrequest *req; req = (struct usb_ctrlrequest *) urb->setup_packet; return (req->bRequest == USB_REQ_CLEAR_FEATURE) && (req->bRequestType == USB_RECIP_ENDPOINT) && (req->wValue == USB_ENDPOINT_HALT); } static int is_set_interface_cmd(struct urb *urb) { struct usb_ctrlrequest *req; req = (struct usb_ctrlrequest *) urb->setup_packet; return (req->bRequest == USB_REQ_SET_INTERFACE) && (req->bRequestType == USB_RECIP_INTERFACE); } static int is_set_configuration_cmd(struct urb *urb) { struct usb_ctrlrequest *req; req = (struct usb_ctrlrequest *) urb->setup_packet; return (req->bRequest == USB_REQ_SET_CONFIGURATION) && (req->bRequestType == USB_RECIP_DEVICE); } static int is_reset_device_cmd(struct urb *urb) { struct usb_ctrlrequest *req; __u16 value; __u16 index; req = (struct usb_ctrlrequest *) urb->setup_packet; value = le16_to_cpu(req->wValue); index = le16_to_cpu(req->wIndex); if ((req->bRequest == USB_REQ_SET_FEATURE) && (req->bRequestType == USB_RT_PORT) && (value == USB_PORT_FEAT_RESET)) { usbip_dbg_stub_rx("reset_device_cmd, port %u\n", index); return 1; } else return 0; } static int tweak_clear_halt_cmd(struct urb *urb) { struct usb_ctrlrequest *req; int target_endp; int target_dir; int target_pipe; int ret; req = (struct usb_ctrlrequest *) urb->setup_packet; /* * The stalled endpoint is specified in the wIndex value. The endpoint * of the urb is the target of this clear_halt request (i.e., control * endpoint). */ target_endp = le16_to_cpu(req->wIndex) & 0x000f; /* the stalled endpoint direction is IN or OUT?. USB_DIR_IN is 0x80. */ target_dir = le16_to_cpu(req->wIndex) & 0x0080; if (target_dir) target_pipe = usb_rcvctrlpipe(urb->dev, target_endp); else target_pipe = usb_sndctrlpipe(urb->dev, target_endp); ret = usb_clear_halt(urb->dev, target_pipe); if (ret < 0) dev_err(&urb->dev->dev, "usb_clear_halt error: devnum %d endp %d ret %d\n", urb->dev->devnum, target_endp, ret); else dev_info(&urb->dev->dev, "usb_clear_halt done: devnum %d endp %d\n", urb->dev->devnum, target_endp); return ret; } static int tweak_set_interface_cmd(struct urb *urb) { struct usb_ctrlrequest *req; __u16 alternate; __u16 interface; int ret; req = (struct usb_ctrlrequest *) urb->setup_packet; alternate = le16_to_cpu(req->wValue); interface = le16_to_cpu(req->wIndex); usbip_dbg_stub_rx("set_interface: inf %u alt %u\n", interface, alternate); ret = usb_set_interface(urb->dev, interface, alternate); if (ret < 0) dev_err(&urb->dev->dev, "usb_set_interface error: inf %u alt %u ret %d\n", interface, alternate, ret); else dev_info(&urb->dev->dev, "usb_set_interface done: inf %u alt %u\n", interface, alternate); return ret; } static int tweak_set_configuration_cmd(struct urb *urb) { struct stub_priv *priv = (struct stub_priv *) urb->context; struct stub_device *sdev = priv->sdev; struct usb_ctrlrequest *req; __u16 config; int err; req = (struct usb_ctrlrequest *) urb->setup_packet; config = le16_to_cpu(req->wValue); usb_lock_device(sdev->udev); err = usb_set_configuration(sdev->udev, config); usb_unlock_device(sdev->udev); if (err && err != -ENODEV) dev_err(&sdev->udev->dev, "can't set config #%d, error %d\n", config, err); return 0; } static int tweak_reset_device_cmd(struct urb *urb) { struct stub_priv *priv = (struct stub_priv *) urb->context; struct stub_device *sdev = priv->sdev; dev_info(&urb->dev->dev, "usb_queue_reset_device\n"); if (usb_lock_device_for_reset(sdev->udev, NULL) < 0) { dev_err(&urb->dev->dev, "could not obtain lock to reset device\n"); return 0; } usb_reset_device(sdev->udev); usb_unlock_device(sdev->udev); return 0; } /* * clear_halt, set_interface, and set_configuration require special tricks. */ static void tweak_special_requests(struct urb *urb) { if (!urb || !urb->setup_packet) return; if (usb_pipetype(urb->pipe) != PIPE_CONTROL) return; if (is_clear_halt_cmd(urb)) /* tweak clear_halt */ tweak_clear_halt_cmd(urb); else if (is_set_interface_cmd(urb)) /* tweak set_interface */ tweak_set_interface_cmd(urb); else if (is_set_configuration_cmd(urb)) /* tweak set_configuration */ tweak_set_configuration_cmd(urb); else if (is_reset_device_cmd(urb)) tweak_reset_device_cmd(urb); else usbip_dbg_stub_rx("no need to tweak\n"); } /* * stub_recv_unlink() unlinks the URB by a call to usb_unlink_urb(). * By unlinking the urb asynchronously, stub_rx can continuously * process coming urbs. Even if the urb is unlinked, its completion * handler will be called and stub_tx will send a return pdu. * * See also comments about unlinking strategy in vhci_hcd.c. */ static int stub_recv_cmd_unlink(struct stub_device *sdev, struct usbip_header *pdu) { int ret, i; unsigned long flags; struct stub_priv *priv; spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry(priv, &sdev->priv_init, list) { if (priv->seqnum != pdu->u.cmd_unlink.seqnum) continue; /* * This matched urb is not completed yet (i.e., be in * flight in usb hcd hardware/driver). Now we are * cancelling it. The unlinking flag means that we are * now not going to return the normal result pdu of a * submission request, but going to return a result pdu * of the unlink request. */ priv->unlinking = 1; /* * In the case that unlinking flag is on, prev->seqnum * is changed from the seqnum of the cancelling urb to * the seqnum of the unlink request. This will be used * to make the result pdu of the unlink request. */ priv->seqnum = pdu->base.seqnum; spin_unlock_irqrestore(&sdev->priv_lock, flags); /* * usb_unlink_urb() is now out of spinlocking to avoid * spinlock recursion since stub_complete() is * sometimes called in this context but not in the * interrupt context. If stub_complete() is executed * before we call usb_unlink_urb(), usb_unlink_urb() * will return an error value. In this case, stub_tx * will return the result pdu of this unlink request * though submission is completed and actual unlinking * is not executed. OK? */ /* In the above case, urb->status is not -ECONNRESET, * so a driver in a client host will know the failure * of the unlink request ? */ for (i = priv->completed_urbs; i < priv->num_urbs; i++) { ret = usb_unlink_urb(priv->urbs[i]); if (ret != -EINPROGRESS) dev_err(&priv->urbs[i]->dev->dev, "failed to unlink %d/%d urb of seqnum %lu, ret %d\n", i + 1, priv->num_urbs, priv->seqnum, ret); } return 0; } usbip_dbg_stub_rx("seqnum %d is not pending\n", pdu->u.cmd_unlink.seqnum); /* * The urb of the unlink target is not found in priv_init queue. It was * already completed and its results is/was going to be sent by a * CMD_RET pdu. In this case, usb_unlink_urb() is not needed. We only * return the completeness of this unlink request to vhci_hcd. */ stub_enqueue_ret_unlink(sdev, pdu->base.seqnum, 0); spin_unlock_irqrestore(&sdev->priv_lock, flags); return 0; } static int valid_request(struct stub_device *sdev, struct usbip_header *pdu) { struct usbip_device *ud = &sdev->ud; int valid = 0; if (pdu->base.devid == sdev->devid) { spin_lock_irq(&ud->lock); if (ud->status == SDEV_ST_USED) { /* A request is valid. */ valid = 1; } spin_unlock_irq(&ud->lock); } return valid; } static struct stub_priv *stub_priv_alloc(struct stub_device *sdev, struct usbip_header *pdu) { struct stub_priv *priv; struct usbip_device *ud = &sdev->ud; unsigned long flags; spin_lock_irqsave(&sdev->priv_lock, flags); priv = kmem_cache_zalloc(stub_priv_cache, GFP_ATOMIC); if (!priv) { dev_err(&sdev->udev->dev, "alloc stub_priv\n"); spin_unlock_irqrestore(&sdev->priv_lock, flags); usbip_event_add(ud, SDEV_EVENT_ERROR_MALLOC); return NULL; } priv->seqnum = pdu->base.seqnum; priv->sdev = sdev; /* * After a stub_priv is linked to a list_head, * our error handler can free allocated data. */ list_add_tail(&priv->list, &sdev->priv_init); spin_unlock_irqrestore(&sdev->priv_lock, flags); return priv; } static int get_pipe(struct stub_device *sdev, struct usbip_header *pdu) { struct usb_device *udev = sdev->udev; struct usb_host_endpoint *ep; struct usb_endpoint_descriptor *epd = NULL; int epnum = pdu->base.ep; int dir = pdu->base.direction; if (epnum < 0 || epnum > 15) goto err_ret; if (dir == USBIP_DIR_IN) ep = udev->ep_in[epnum & 0x7f]; else ep = udev->ep_out[epnum & 0x7f]; if (!ep) goto err_ret; epd = &ep->desc; if (usb_endpoint_xfer_control(epd)) { if (dir == USBIP_DIR_OUT) return usb_sndctrlpipe(udev, epnum); else return usb_rcvctrlpipe(udev, epnum); } if (usb_endpoint_xfer_bulk(epd)) { if (dir == USBIP_DIR_OUT) return usb_sndbulkpipe(udev, epnum); else return usb_rcvbulkpipe(udev, epnum); } if (usb_endpoint_xfer_int(epd)) { if (dir == USBIP_DIR_OUT) return usb_sndintpipe(udev, epnum); else return usb_rcvintpipe(udev, epnum); } if (usb_endpoint_xfer_isoc(epd)) { /* validate number of packets */ if (pdu->u.cmd_submit.number_of_packets < 0 || pdu->u.cmd_submit.number_of_packets > USBIP_MAX_ISO_PACKETS) { dev_err(&sdev->udev->dev, "CMD_SUBMIT: isoc invalid num packets %d\n", pdu->u.cmd_submit.number_of_packets); return -1; } if (dir == USBIP_DIR_OUT) return usb_sndisocpipe(udev, epnum); else return usb_rcvisocpipe(udev, epnum); } err_ret: /* NOT REACHED */ dev_err(&sdev->udev->dev, "CMD_SUBMIT: invalid epnum %d\n", epnum); return -1; } static void masking_bogus_flags(struct urb *urb) { int xfertype; struct usb_device *dev; struct usb_host_endpoint *ep; int is_out; unsigned int allowed; if (!urb || urb->hcpriv || !urb->complete) return; dev = urb->dev; if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) return; ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out) [usb_pipeendpoint(urb->pipe)]; if (!ep) return; xfertype = usb_endpoint_type(&ep->desc); if (xfertype == USB_ENDPOINT_XFER_CONTROL) { struct usb_ctrlrequest *setup = (struct usb_ctrlrequest *) urb->setup_packet; if (!setup) return; is_out = !(setup->bRequestType & USB_DIR_IN) || !setup->wLength; } else { is_out = usb_endpoint_dir_out(&ep->desc); } /* enforce simple/standard policy */ allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER); switch (xfertype) { case USB_ENDPOINT_XFER_BULK: if (is_out) allowed |= URB_ZERO_PACKET; fallthrough; default: /* all non-iso endpoints */ if (!is_out) allowed |= URB_SHORT_NOT_OK; break; case USB_ENDPOINT_XFER_ISOC: allowed |= URB_ISO_ASAP; break; } urb->transfer_flags &= allowed; } static int stub_recv_xbuff(struct usbip_device *ud, struct stub_priv *priv) { int ret; int i; for (i = 0; i < priv->num_urbs; i++) { ret = usbip_recv_xbuff(ud, priv->urbs[i]); if (ret < 0) break; } return ret; } static void stub_recv_cmd_submit(struct stub_device *sdev, struct usbip_header *pdu) { struct stub_priv *priv; struct usbip_device *ud = &sdev->ud; struct usb_device *udev = sdev->udev; struct scatterlist *sgl = NULL, *sg; void *buffer = NULL; unsigned long long buf_len; int nents; int num_urbs = 1; int pipe = get_pipe(sdev, pdu); int use_sg = pdu->u.cmd_submit.transfer_flags & USBIP_URB_DMA_MAP_SG; int support_sg = 1; int np = 0; int ret, i; if (pipe == -1) return; /* * Smatch reported the error case where use_sg is true and buf_len is 0. * In this case, It adds SDEV_EVENT_ERROR_MALLOC and stub_priv will be * released by stub event handler and connection will be shut down. */ priv = stub_priv_alloc(sdev, pdu); if (!priv) return; buf_len = (unsigned long long)pdu->u.cmd_submit.transfer_buffer_length; if (use_sg && !buf_len) { dev_err(&udev->dev, "sg buffer with zero length\n"); goto err_malloc; } /* allocate urb transfer buffer, if needed */ if (buf_len) { if (use_sg) { sgl = sgl_alloc(buf_len, GFP_KERNEL, &nents); if (!sgl) goto err_malloc; /* Check if the server's HCD supports SG */ if (!udev->bus->sg_tablesize) { /* * If the server's HCD doesn't support SG, break * a single SG request into several URBs and map * each SG list entry to corresponding URB * buffer. The previously allocated SG list is * stored in priv->sgl (If the server's HCD * support SG, SG list is stored only in * urb->sg) and it is used as an indicator that * the server split single SG request into * several URBs. Later, priv->sgl is used by * stub_complete() and stub_send_ret_submit() to * reassemble the divied URBs. */ support_sg = 0; num_urbs = nents; priv->completed_urbs = 0; pdu->u.cmd_submit.transfer_flags &= ~USBIP_URB_DMA_MAP_SG; } } else { buffer = kzalloc(buf_len, GFP_KERNEL); if (!buffer) goto err_malloc; } } /* allocate urb array */ priv->num_urbs = num_urbs; priv->urbs = kmalloc_array(num_urbs, sizeof(*priv->urbs), GFP_KERNEL); if (!priv->urbs) goto err_urbs; /* setup a urb */ if (support_sg) { if (usb_pipeisoc(pipe)) np = pdu->u.cmd_submit.number_of_packets; priv->urbs[0] = usb_alloc_urb(np, GFP_KERNEL); if (!priv->urbs[0]) goto err_urb; if (buf_len) { if (use_sg) { priv->urbs[0]->sg = sgl; priv->urbs[0]->num_sgs = nents; priv->urbs[0]->transfer_buffer = NULL; } else { priv->urbs[0]->transfer_buffer = buffer; } } /* copy urb setup packet */ priv->urbs[0]->setup_packet = kmemdup(&pdu->u.cmd_submit.setup, 8, GFP_KERNEL); if (!priv->urbs[0]->setup_packet) { usbip_event_add(ud, SDEV_EVENT_ERROR_MALLOC); return; } usbip_pack_pdu(pdu, priv->urbs[0], USBIP_CMD_SUBMIT, 0); } else { for_each_sg(sgl, sg, nents, i) { priv->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); /* The URBs which is previously allocated will be freed * in stub_device_cleanup_urbs() if error occurs. */ if (!priv->urbs[i]) goto err_urb; usbip_pack_pdu(pdu, priv->urbs[i], USBIP_CMD_SUBMIT, 0); priv->urbs[i]->transfer_buffer = sg_virt(sg); priv->urbs[i]->transfer_buffer_length = sg->length; } priv->sgl = sgl; } for (i = 0; i < num_urbs; i++) { /* set other members from the base header of pdu */ priv->urbs[i]->context = (void *) priv; priv->urbs[i]->dev = udev; priv->urbs[i]->pipe = pipe; priv->urbs[i]->complete = stub_complete; /* no need to submit an intercepted request, but harmless? */ tweak_special_requests(priv->urbs[i]); masking_bogus_flags(priv->urbs[i]); } if (stub_recv_xbuff(ud, priv) < 0) return; if (usbip_recv_iso(ud, priv->urbs[0]) < 0) return; /* urb is now ready to submit */ for (i = 0; i < priv->num_urbs; i++) { ret = usb_submit_urb(priv->urbs[i], GFP_KERNEL); if (ret == 0) usbip_dbg_stub_rx("submit urb ok, seqnum %u\n", pdu->base.seqnum); else { dev_err(&udev->dev, "submit_urb error, %d\n", ret); usbip_dump_header(pdu); usbip_dump_urb(priv->urbs[i]); /* * Pessimistic. * This connection will be discarded. */ usbip_event_add(ud, SDEV_EVENT_ERROR_SUBMIT); break; } } usbip_dbg_stub_rx("Leave\n"); return; err_urb: kfree(priv->urbs); err_urbs: kfree(buffer); sgl_free(sgl); err_malloc: usbip_event_add(ud, SDEV_EVENT_ERROR_MALLOC); } /* recv a pdu */ static void stub_rx_pdu(struct usbip_device *ud) { int ret; struct usbip_header pdu; struct stub_device *sdev = container_of(ud, struct stub_device, ud); struct device *dev = &sdev->udev->dev; usbip_dbg_stub_rx("Enter\n"); memset(&pdu, 0, sizeof(pdu)); /* receive a pdu header */ ret = usbip_recv(ud->tcp_socket, &pdu, sizeof(pdu)); if (ret != sizeof(pdu)) { dev_err(dev, "recv a header, %d\n", ret); usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); return; } usbip_header_correct_endian(&pdu, 0); if (usbip_dbg_flag_stub_rx) usbip_dump_header(&pdu); if (!valid_request(sdev, &pdu)) { dev_err(dev, "recv invalid request\n"); usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); return; } switch (pdu.base.command) { case USBIP_CMD_UNLINK: stub_recv_cmd_unlink(sdev, &pdu); break; case USBIP_CMD_SUBMIT: stub_recv_cmd_submit(sdev, &pdu); break; default: /* NOTREACHED */ dev_err(dev, "unknown pdu\n"); usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); break; } } int stub_rx_loop(void *data) { struct usbip_device *ud = data; while (!kthread_should_stop()) { if (usbip_event_happened(ud)) break; stub_rx_pdu(ud); } return 0; }
linux-master
drivers/usb/usbip/stub_rx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi * Copyright (C) 2015 Nobuo Iwata */ #include <linux/kthread.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "usbip_common.h" struct usbip_event { struct list_head node; struct usbip_device *ud; }; static DEFINE_SPINLOCK(event_lock); static LIST_HEAD(event_list); static void set_event(struct usbip_device *ud, unsigned long event) { unsigned long flags; spin_lock_irqsave(&ud->lock, flags); ud->event |= event; spin_unlock_irqrestore(&ud->lock, flags); } static void unset_event(struct usbip_device *ud, unsigned long event) { unsigned long flags; spin_lock_irqsave(&ud->lock, flags); ud->event &= ~event; spin_unlock_irqrestore(&ud->lock, flags); } static struct usbip_device *get_event(void) { struct usbip_event *ue = NULL; struct usbip_device *ud = NULL; unsigned long flags; spin_lock_irqsave(&event_lock, flags); if (!list_empty(&event_list)) { ue = list_first_entry(&event_list, struct usbip_event, node); list_del(&ue->node); } spin_unlock_irqrestore(&event_lock, flags); if (ue) { ud = ue->ud; kfree(ue); } return ud; } static struct task_struct *worker_context; static void event_handler(struct work_struct *work) { struct usbip_device *ud; if (worker_context == NULL) { worker_context = current; } while ((ud = get_event()) != NULL) { usbip_dbg_eh("pending event %lx\n", ud->event); mutex_lock(&ud->sysfs_lock); /* * NOTE: shutdown must come first. * Shutdown the device. */ if (ud->event & USBIP_EH_SHUTDOWN) { ud->eh_ops.shutdown(ud); unset_event(ud, USBIP_EH_SHUTDOWN); } /* Reset the device. */ if (ud->event & USBIP_EH_RESET) { ud->eh_ops.reset(ud); unset_event(ud, USBIP_EH_RESET); } /* Mark the device as unusable. */ if (ud->event & USBIP_EH_UNUSABLE) { ud->eh_ops.unusable(ud); unset_event(ud, USBIP_EH_UNUSABLE); } mutex_unlock(&ud->sysfs_lock); wake_up(&ud->eh_waitq); } } int usbip_start_eh(struct usbip_device *ud) { init_waitqueue_head(&ud->eh_waitq); ud->event = 0; return 0; } EXPORT_SYMBOL_GPL(usbip_start_eh); void usbip_stop_eh(struct usbip_device *ud) { unsigned long pending = ud->event & ~USBIP_EH_BYE; if (!(ud->event & USBIP_EH_BYE)) usbip_dbg_eh("usbip_eh stopping but not removed\n"); if (pending) usbip_dbg_eh("usbip_eh waiting completion %lx\n", pending); wait_event_interruptible(ud->eh_waitq, !(ud->event & ~USBIP_EH_BYE)); usbip_dbg_eh("usbip_eh has stopped\n"); } EXPORT_SYMBOL_GPL(usbip_stop_eh); #define WORK_QUEUE_NAME "usbip_event" static struct workqueue_struct *usbip_queue; static DECLARE_WORK(usbip_work, event_handler); int usbip_init_eh(void) { usbip_queue = create_singlethread_workqueue(WORK_QUEUE_NAME); if (usbip_queue == NULL) { pr_err("failed to create usbip_event\n"); return -ENOMEM; } return 0; } void usbip_finish_eh(void) { destroy_workqueue(usbip_queue); usbip_queue = NULL; } void usbip_event_add(struct usbip_device *ud, unsigned long event) { struct usbip_event *ue; unsigned long flags; if (ud->event & USBIP_EH_BYE) return; set_event(ud, event); spin_lock_irqsave(&event_lock, flags); list_for_each_entry_reverse(ue, &event_list, node) { if (ue->ud == ud) goto out; } ue = kmalloc(sizeof(struct usbip_event), GFP_ATOMIC); if (ue == NULL) goto out; ue->ud = ud; list_add_tail(&ue->node, &event_list); queue_work(usbip_queue, &usbip_work); out: spin_unlock_irqrestore(&event_lock, flags); } EXPORT_SYMBOL_GPL(usbip_event_add); int usbip_event_happened(struct usbip_device *ud) { int happened = 0; unsigned long flags; spin_lock_irqsave(&ud->lock, flags); if (ud->event != 0) happened = 1; spin_unlock_irqrestore(&ud->lock, flags); return happened; } EXPORT_SYMBOL_GPL(usbip_event_happened); int usbip_in_eh(struct task_struct *task) { if (task == worker_context) return 1; return 0; } EXPORT_SYMBOL_GPL(usbip_in_eh);
linux-master
drivers/usb/usbip/usbip_event.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> * Krzysztof Opasiak <[email protected]> */ #include <linux/device.h> #include <linux/list.h> #include <linux/usb/gadget.h> #include <linux/usb/ch9.h> #include <linux/sysfs.h> #include <linux/kthread.h> #include <linux/byteorder/generic.h> #include "usbip_common.h" #include "vudc.h" #include <net/sock.h> /* called with udc->lock held */ int get_gadget_descs(struct vudc *udc) { struct vrequest *usb_req; struct vep *ep0 = to_vep(udc->gadget.ep0); struct usb_device_descriptor *ddesc = &udc->dev_desc; struct usb_ctrlrequest req; int ret; if (!udc->driver || !udc->pullup) return -EINVAL; req.bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req.bRequest = USB_REQ_GET_DESCRIPTOR; req.wValue = cpu_to_le16(USB_DT_DEVICE << 8); req.wIndex = cpu_to_le16(0); req.wLength = cpu_to_le16(sizeof(*ddesc)); spin_unlock(&udc->lock); ret = udc->driver->setup(&(udc->gadget), &req); spin_lock(&udc->lock); if (ret < 0) goto out; /* assuming request queue is empty; request is now on top */ usb_req = list_last_entry(&ep0->req_queue, struct vrequest, req_entry); list_del(&usb_req->req_entry); if (usb_req->req.length > sizeof(*ddesc)) { ret = -EOVERFLOW; goto giveback_req; } memcpy(ddesc, usb_req->req.buf, sizeof(*ddesc)); udc->desc_cached = 1; ret = 0; giveback_req: usb_req->req.status = 0; usb_req->req.actual = usb_req->req.length; usb_gadget_giveback_request(&(ep0->ep), &(usb_req->req)); out: return ret; } /* * Exposes device descriptor from the gadget driver. */ static ssize_t dev_desc_read(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *out, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct vudc *udc = (struct vudc *)dev_get_drvdata(dev); char *desc_ptr = (char *) &udc->dev_desc; unsigned long flags; int ret; spin_lock_irqsave(&udc->lock, flags); if (!udc->desc_cached) { ret = -ENODEV; goto unlock; } memcpy(out, desc_ptr + off, count); ret = count; unlock: spin_unlock_irqrestore(&udc->lock, flags); return ret; } static BIN_ATTR_RO(dev_desc, sizeof(struct usb_device_descriptor)); static ssize_t usbip_sockfd_store(struct device *dev, struct device_attribute *attr, const char *in, size_t count) { struct vudc *udc = (struct vudc *) dev_get_drvdata(dev); int rv; int sockfd = 0; int err; struct socket *socket; unsigned long flags; int ret; struct task_struct *tcp_rx = NULL; struct task_struct *tcp_tx = NULL; rv = kstrtoint(in, 0, &sockfd); if (rv != 0) return -EINVAL; if (!udc) { dev_err(dev, "no device"); return -ENODEV; } mutex_lock(&udc->ud.sysfs_lock); spin_lock_irqsave(&udc->lock, flags); /* Don't export what we don't have */ if (!udc->driver || !udc->pullup) { dev_err(dev, "gadget not bound"); ret = -ENODEV; goto unlock; } if (sockfd != -1) { if (udc->connected) { dev_err(dev, "Device already connected"); ret = -EBUSY; goto unlock; } spin_lock(&udc->ud.lock); if (udc->ud.status != SDEV_ST_AVAILABLE) { ret = -EINVAL; goto unlock_ud; } socket = sockfd_lookup(sockfd, &err); if (!socket) { dev_err(dev, "failed to lookup sock"); ret = -EINVAL; goto unlock_ud; } if (socket->type != SOCK_STREAM) { dev_err(dev, "Expecting SOCK_STREAM - found %d", socket->type); ret = -EINVAL; goto sock_err; } /* unlock and create threads and get tasks */ spin_unlock(&udc->ud.lock); spin_unlock_irqrestore(&udc->lock, flags); tcp_rx = kthread_create(&v_rx_loop, &udc->ud, "vudc_rx"); if (IS_ERR(tcp_rx)) { sockfd_put(socket); mutex_unlock(&udc->ud.sysfs_lock); return -EINVAL; } tcp_tx = kthread_create(&v_tx_loop, &udc->ud, "vudc_tx"); if (IS_ERR(tcp_tx)) { kthread_stop(tcp_rx); sockfd_put(socket); mutex_unlock(&udc->ud.sysfs_lock); return -EINVAL; } /* get task structs now */ get_task_struct(tcp_rx); get_task_struct(tcp_tx); /* lock and update udc->ud state */ spin_lock_irqsave(&udc->lock, flags); spin_lock(&udc->ud.lock); udc->ud.tcp_socket = socket; udc->ud.tcp_rx = tcp_rx; udc->ud.tcp_tx = tcp_tx; udc->ud.status = SDEV_ST_USED; spin_unlock(&udc->ud.lock); ktime_get_ts64(&udc->start_time); v_start_timer(udc); udc->connected = 1; spin_unlock_irqrestore(&udc->lock, flags); wake_up_process(udc->ud.tcp_rx); wake_up_process(udc->ud.tcp_tx); mutex_unlock(&udc->ud.sysfs_lock); return count; } else { if (!udc->connected) { dev_err(dev, "Device not connected"); ret = -EINVAL; goto unlock; } spin_lock(&udc->ud.lock); if (udc->ud.status != SDEV_ST_USED) { ret = -EINVAL; goto unlock_ud; } spin_unlock(&udc->ud.lock); usbip_event_add(&udc->ud, VUDC_EVENT_DOWN); } spin_unlock_irqrestore(&udc->lock, flags); mutex_unlock(&udc->ud.sysfs_lock); return count; sock_err: sockfd_put(socket); unlock_ud: spin_unlock(&udc->ud.lock); unlock: spin_unlock_irqrestore(&udc->lock, flags); mutex_unlock(&udc->ud.sysfs_lock); return ret; } static DEVICE_ATTR_WO(usbip_sockfd); static ssize_t usbip_status_show(struct device *dev, struct device_attribute *attr, char *out) { struct vudc *udc = (struct vudc *) dev_get_drvdata(dev); int status; if (!udc) { dev_err(dev, "no device"); return -ENODEV; } spin_lock_irq(&udc->ud.lock); status = udc->ud.status; spin_unlock_irq(&udc->ud.lock); return sysfs_emit(out, "%d\n", status); } static DEVICE_ATTR_RO(usbip_status); static struct attribute *dev_attrs[] = { &dev_attr_usbip_sockfd.attr, &dev_attr_usbip_status.attr, NULL, }; static struct bin_attribute *dev_bin_attrs[] = { &bin_attr_dev_desc, NULL, }; static const struct attribute_group vudc_attr_group = { .attrs = dev_attrs, .bin_attrs = dev_bin_attrs, }; const struct attribute_group *vudc_groups[] = { &vudc_attr_group, NULL, };
linux-master
drivers/usb/usbip/vudc_sysfs.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> */ #include <net/sock.h> #include <linux/list.h> #include <linux/kthread.h> #include "usbip_common.h" #include "vudc.h" static inline void setup_base_pdu(struct usbip_header_basic *base, __u32 command, __u32 seqnum) { base->command = command; base->seqnum = seqnum; base->devid = 0; base->ep = 0; base->direction = 0; } static void setup_ret_submit_pdu(struct usbip_header *rpdu, struct urbp *urb_p) { setup_base_pdu(&rpdu->base, USBIP_RET_SUBMIT, urb_p->seqnum); usbip_pack_pdu(rpdu, urb_p->urb, USBIP_RET_SUBMIT, 1); } static void setup_ret_unlink_pdu(struct usbip_header *rpdu, struct v_unlink *unlink) { setup_base_pdu(&rpdu->base, USBIP_RET_UNLINK, unlink->seqnum); rpdu->u.ret_unlink.status = unlink->status; } static int v_send_ret_unlink(struct vudc *udc, struct v_unlink *unlink) { struct msghdr msg; struct kvec iov[1]; size_t txsize; int ret; struct usbip_header pdu_header; txsize = 0; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); memset(&iov, 0, sizeof(iov)); /* 1. setup usbip_header */ setup_ret_unlink_pdu(&pdu_header, unlink); usbip_header_correct_endian(&pdu_header, 1); iov[0].iov_base = &pdu_header; iov[0].iov_len = sizeof(pdu_header); txsize += sizeof(pdu_header); ret = kernel_sendmsg(udc->ud.tcp_socket, &msg, iov, 1, txsize); if (ret != txsize) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_TCP); if (ret >= 0) return -EPIPE; return ret; } kfree(unlink); return txsize; } static int v_send_ret_submit(struct vudc *udc, struct urbp *urb_p) { struct urb *urb = urb_p->urb; struct usbip_header pdu_header; struct usbip_iso_packet_descriptor *iso_buffer = NULL; struct kvec *iov = NULL; int iovnum = 0; int ret = 0; size_t txsize; struct msghdr msg; txsize = 0; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); if (urb->actual_length > 0 && !urb->transfer_buffer) { dev_err(&udc->gadget.dev, "urb: actual_length %d transfer_buffer null\n", urb->actual_length); return -1; } if (urb_p->type == USB_ENDPOINT_XFER_ISOC) iovnum = 2 + urb->number_of_packets; else iovnum = 2; iov = kcalloc(iovnum, sizeof(*iov), GFP_KERNEL); if (!iov) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_MALLOC); ret = -ENOMEM; goto out; } iovnum = 0; /* 1. setup usbip_header */ setup_ret_submit_pdu(&pdu_header, urb_p); usbip_dbg_stub_tx("setup txdata seqnum: %d\n", pdu_header.base.seqnum); usbip_header_correct_endian(&pdu_header, 1); iov[iovnum].iov_base = &pdu_header; iov[iovnum].iov_len = sizeof(pdu_header); iovnum++; txsize += sizeof(pdu_header); /* 2. setup transfer buffer */ if (urb_p->type != USB_ENDPOINT_XFER_ISOC && usb_pipein(urb->pipe) && urb->actual_length > 0) { iov[iovnum].iov_base = urb->transfer_buffer; iov[iovnum].iov_len = urb->actual_length; iovnum++; txsize += urb->actual_length; } else if (urb_p->type == USB_ENDPOINT_XFER_ISOC && usb_pipein(urb->pipe)) { /* FIXME - copypasted from stub_tx, refactor */ int i; for (i = 0; i < urb->number_of_packets; i++) { iov[iovnum].iov_base = urb->transfer_buffer + urb->iso_frame_desc[i].offset; iov[iovnum].iov_len = urb->iso_frame_desc[i].actual_length; iovnum++; txsize += urb->iso_frame_desc[i].actual_length; } if (txsize != sizeof(pdu_header) + urb->actual_length) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_TCP); ret = -EPIPE; goto out; } } /* else - no buffer to send */ /* 3. setup iso_packet_descriptor */ if (urb_p->type == USB_ENDPOINT_XFER_ISOC) { ssize_t len = 0; iso_buffer = usbip_alloc_iso_desc_pdu(urb, &len); if (!iso_buffer) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_MALLOC); ret = -ENOMEM; goto out; } iov[iovnum].iov_base = iso_buffer; iov[iovnum].iov_len = len; txsize += len; iovnum++; } ret = kernel_sendmsg(udc->ud.tcp_socket, &msg, iov, iovnum, txsize); if (ret != txsize) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_TCP); if (ret >= 0) ret = -EPIPE; goto out; } out: kfree(iov); kfree(iso_buffer); free_urbp_and_urb(urb_p); if (ret < 0) return ret; return txsize; } static int v_send_ret(struct vudc *udc) { unsigned long flags; struct tx_item *txi; size_t total_size = 0; int ret = 0; spin_lock_irqsave(&udc->lock_tx, flags); while (!list_empty(&udc->tx_queue)) { txi = list_first_entry(&udc->tx_queue, struct tx_item, tx_entry); list_del(&txi->tx_entry); spin_unlock_irqrestore(&udc->lock_tx, flags); switch (txi->type) { case TX_SUBMIT: ret = v_send_ret_submit(udc, txi->s); break; case TX_UNLINK: ret = v_send_ret_unlink(udc, txi->u); break; } kfree(txi); if (ret < 0) return ret; total_size += ret; spin_lock_irqsave(&udc->lock_tx, flags); } spin_unlock_irqrestore(&udc->lock_tx, flags); return total_size; } int v_tx_loop(void *data) { struct usbip_device *ud = (struct usbip_device *) data; struct vudc *udc = container_of(ud, struct vudc, ud); int ret; while (!kthread_should_stop()) { if (usbip_event_happened(&udc->ud)) break; ret = v_send_ret(udc); if (ret < 0) { pr_warn("v_tx exit with error %d", ret); break; } wait_event_interruptible(udc->tx_waitq, (!list_empty(&udc->tx_queue) || kthread_should_stop())); } return 0; } /* called with spinlocks held */ void v_enqueue_ret_unlink(struct vudc *udc, __u32 seqnum, __u32 status) { struct tx_item *txi; struct v_unlink *unlink; txi = kzalloc(sizeof(*txi), GFP_ATOMIC); if (!txi) { usbip_event_add(&udc->ud, VDEV_EVENT_ERROR_MALLOC); return; } unlink = kzalloc(sizeof(*unlink), GFP_ATOMIC); if (!unlink) { kfree(txi); usbip_event_add(&udc->ud, VDEV_EVENT_ERROR_MALLOC); return; } unlink->seqnum = seqnum; unlink->status = status; txi->type = TX_UNLINK; txi->u = unlink; list_add_tail(&txi->tx_entry, &udc->tx_queue); } /* called with spinlocks held */ void v_enqueue_ret_submit(struct vudc *udc, struct urbp *urb_p) { struct tx_item *txi; txi = kzalloc(sizeof(*txi), GFP_ATOMIC); if (!txi) { usbip_event_add(&udc->ud, VDEV_EVENT_ERROR_MALLOC); return; } txi->type = TX_SUBMIT; txi->s = urb_p; list_add_tail(&txi->tx_entry, &udc->tx_queue); }
linux-master
drivers/usb/usbip/vudc_tx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <linux/kthread.h> #include <linux/slab.h> #include "usbip_common.h" #include "vhci.h" /* get URB from transmitted urb queue. caller must hold vdev->priv_lock */ struct urb *pickup_urb_and_free_priv(struct vhci_device *vdev, __u32 seqnum) { struct vhci_priv *priv, *tmp; struct urb *urb = NULL; int status; list_for_each_entry_safe(priv, tmp, &vdev->priv_rx, list) { if (priv->seqnum != seqnum) continue; urb = priv->urb; status = urb->status; usbip_dbg_vhci_rx("find urb seqnum %u\n", seqnum); switch (status) { case -ENOENT: fallthrough; case -ECONNRESET: dev_dbg(&urb->dev->dev, "urb seq# %u was unlinked %ssynchronously\n", seqnum, status == -ENOENT ? "" : "a"); break; case -EINPROGRESS: /* no info output */ break; default: dev_dbg(&urb->dev->dev, "urb seq# %u may be in a error, status %d\n", seqnum, status); } list_del(&priv->list); kfree(priv); urb->hcpriv = NULL; break; } return urb; } static void vhci_recv_ret_submit(struct vhci_device *vdev, struct usbip_header *pdu) { struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); struct vhci *vhci = vhci_hcd->vhci; struct usbip_device *ud = &vdev->ud; struct urb *urb; unsigned long flags; spin_lock_irqsave(&vdev->priv_lock, flags); urb = pickup_urb_and_free_priv(vdev, pdu->base.seqnum); spin_unlock_irqrestore(&vdev->priv_lock, flags); if (!urb) { pr_err("cannot find a urb of seqnum %u max seqnum %d\n", pdu->base.seqnum, atomic_read(&vhci_hcd->seqnum)); usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return; } /* unpack the pdu to a urb */ usbip_pack_pdu(pdu, urb, USBIP_RET_SUBMIT, 0); /* recv transfer buffer */ if (usbip_recv_xbuff(ud, urb) < 0) { urb->status = -EPROTO; goto error; } /* recv iso_packet_descriptor */ if (usbip_recv_iso(ud, urb) < 0) { urb->status = -EPROTO; goto error; } /* restore the padding in iso packets */ usbip_pad_iso(ud, urb); error: if (usbip_dbg_flag_vhci_rx) usbip_dump_urb(urb); if (urb->num_sgs) urb->transfer_flags &= ~URB_DMA_MAP_SG; usbip_dbg_vhci_rx("now giveback urb %u\n", pdu->base.seqnum); spin_lock_irqsave(&vhci->lock, flags); usb_hcd_unlink_urb_from_ep(vhci_hcd_to_hcd(vhci_hcd), urb); spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_giveback_urb(vhci_hcd_to_hcd(vhci_hcd), urb, urb->status); usbip_dbg_vhci_rx("Leave\n"); } static struct vhci_unlink *dequeue_pending_unlink(struct vhci_device *vdev, struct usbip_header *pdu) { struct vhci_unlink *unlink, *tmp; unsigned long flags; spin_lock_irqsave(&vdev->priv_lock, flags); list_for_each_entry_safe(unlink, tmp, &vdev->unlink_rx, list) { pr_info("unlink->seqnum %lu\n", unlink->seqnum); if (unlink->seqnum == pdu->base.seqnum) { usbip_dbg_vhci_rx("found pending unlink, %lu\n", unlink->seqnum); list_del(&unlink->list); spin_unlock_irqrestore(&vdev->priv_lock, flags); return unlink; } } spin_unlock_irqrestore(&vdev->priv_lock, flags); return NULL; } static void vhci_recv_ret_unlink(struct vhci_device *vdev, struct usbip_header *pdu) { struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); struct vhci *vhci = vhci_hcd->vhci; struct vhci_unlink *unlink; struct urb *urb; unsigned long flags; usbip_dump_header(pdu); unlink = dequeue_pending_unlink(vdev, pdu); if (!unlink) { pr_info("cannot find the pending unlink %u\n", pdu->base.seqnum); return; } spin_lock_irqsave(&vdev->priv_lock, flags); urb = pickup_urb_and_free_priv(vdev, unlink->unlink_seqnum); spin_unlock_irqrestore(&vdev->priv_lock, flags); if (!urb) { /* * I get the result of a unlink request. But, it seems that I * already received the result of its submit result and gave * back the URB. */ pr_info("the urb (seqnum %d) was already given back\n", pdu->base.seqnum); } else { usbip_dbg_vhci_rx("now giveback urb %d\n", pdu->base.seqnum); /* If unlink is successful, status is -ECONNRESET */ urb->status = pdu->u.ret_unlink.status; pr_info("urb->status %d\n", urb->status); spin_lock_irqsave(&vhci->lock, flags); usb_hcd_unlink_urb_from_ep(vhci_hcd_to_hcd(vhci_hcd), urb); spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_giveback_urb(vhci_hcd_to_hcd(vhci_hcd), urb, urb->status); } kfree(unlink); } static int vhci_priv_tx_empty(struct vhci_device *vdev) { int empty = 0; unsigned long flags; spin_lock_irqsave(&vdev->priv_lock, flags); empty = list_empty(&vdev->priv_rx); spin_unlock_irqrestore(&vdev->priv_lock, flags); return empty; } /* recv a pdu */ static void vhci_rx_pdu(struct usbip_device *ud) { int ret; struct usbip_header pdu; struct vhci_device *vdev = container_of(ud, struct vhci_device, ud); usbip_dbg_vhci_rx("Enter\n"); memset(&pdu, 0, sizeof(pdu)); /* receive a pdu header */ ret = usbip_recv(ud->tcp_socket, &pdu, sizeof(pdu)); if (ret < 0) { if (ret == -ECONNRESET) pr_info("connection reset by peer\n"); else if (ret == -EAGAIN) { /* ignore if connection was idle */ if (vhci_priv_tx_empty(vdev)) return; pr_info("connection timed out with pending urbs\n"); } else if (ret != -ERESTARTSYS) pr_info("xmit failed %d\n", ret); usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return; } if (ret == 0) { pr_info("connection closed"); usbip_event_add(ud, VDEV_EVENT_DOWN); return; } if (ret != sizeof(pdu)) { pr_err("received pdu size is %d, should be %d\n", ret, (unsigned int)sizeof(pdu)); usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return; } usbip_header_correct_endian(&pdu, 0); if (usbip_dbg_flag_vhci_rx) usbip_dump_header(&pdu); switch (pdu.base.command) { case USBIP_RET_SUBMIT: vhci_recv_ret_submit(vdev, &pdu); break; case USBIP_RET_UNLINK: vhci_recv_ret_unlink(vdev, &pdu); break; default: /* NOT REACHED */ pr_err("unknown pdu %u\n", pdu.base.command); usbip_dump_header(&pdu); usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); break; } } int vhci_rx_loop(void *data) { struct usbip_device *ud = data; while (!kthread_should_stop()) { if (usbip_event_happened(ud)) break; usbip_kcov_remote_start(ud); vhci_rx_pdu(ud); usbip_kcov_remote_stop(); } return 0; }
linux-master
drivers/usb/usbip/vhci_rx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> * Krzysztof Opasiak <[email protected]> */ #include <linux/device.h> #include <linux/list.h> #include <linux/module.h> #include "vudc.h" static unsigned int vudc_number = 1; module_param_named(num, vudc_number, uint, S_IRUGO); MODULE_PARM_DESC(num, "number of emulated controllers"); static struct platform_driver vudc_driver = { .probe = vudc_probe, .remove = vudc_remove, .driver = { .name = GADGET_NAME, .dev_groups = vudc_groups, }, }; static LIST_HEAD(vudc_devices); static int __init vudc_init(void) { int retval = -ENOMEM; int i; struct vudc_device *udc_dev = NULL, *udc_dev2 = NULL; if (usb_disabled()) return -ENODEV; if (vudc_number < 1) { pr_err("Number of emulated UDC must be no less than 1"); return -EINVAL; } retval = platform_driver_register(&vudc_driver); if (retval < 0) goto out; for (i = 0; i < vudc_number; i++) { udc_dev = alloc_vudc_device(i); if (!udc_dev) { retval = -ENOMEM; goto cleanup; } retval = platform_device_add(udc_dev->pdev); if (retval < 0) { put_vudc_device(udc_dev); goto cleanup; } list_add_tail(&udc_dev->dev_entry, &vudc_devices); if (!platform_get_drvdata(udc_dev->pdev)) { /* * The udc was added successfully but its probe * function failed for some reason. */ retval = -EINVAL; goto cleanup; } } goto out; cleanup: list_for_each_entry_safe(udc_dev, udc_dev2, &vudc_devices, dev_entry) { list_del(&udc_dev->dev_entry); /* * Just do platform_device_del() here, put_vudc_device() * calls the platform_device_put() */ platform_device_del(udc_dev->pdev); put_vudc_device(udc_dev); } platform_driver_unregister(&vudc_driver); out: return retval; } module_init(vudc_init); static void __exit vudc_cleanup(void) { struct vudc_device *udc_dev = NULL, *udc_dev2 = NULL; list_for_each_entry_safe(udc_dev, udc_dev2, &vudc_devices, dev_entry) { list_del(&udc_dev->dev_entry); /* * Just do platform_device_del() here, put_vudc_device() * calls the platform_device_put() */ platform_device_del(udc_dev->pdev); put_vudc_device(udc_dev); } platform_driver_unregister(&vudc_driver); } module_exit(vudc_cleanup); MODULE_DESCRIPTION("USB over IP Device Controller"); MODULE_AUTHOR("Krzysztof Opasiak, Karol Kosik, Igor Kotrasinski"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/usbip/vudc_main.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> */ #include <net/sock.h> #include <linux/list.h> #include <linux/kthread.h> #include "usbip_common.h" #include "vudc.h" static int alloc_urb_from_cmd(struct urb **urbp, struct usbip_header *pdu, u8 type) { struct urb *urb; if (type == USB_ENDPOINT_XFER_ISOC) urb = usb_alloc_urb(pdu->u.cmd_submit.number_of_packets, GFP_KERNEL); else urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) goto err; usbip_pack_pdu(pdu, urb, USBIP_CMD_SUBMIT, 0); if (urb->transfer_buffer_length > 0) { urb->transfer_buffer = kzalloc(urb->transfer_buffer_length, GFP_KERNEL); if (!urb->transfer_buffer) goto free_urb; } urb->setup_packet = kmemdup(&pdu->u.cmd_submit.setup, 8, GFP_KERNEL); if (!urb->setup_packet) goto free_buffer; /* * FIXME - we only setup pipe enough for usbip functions * to behave nicely */ urb->pipe |= pdu->base.direction == USBIP_DIR_IN ? USB_DIR_IN : USB_DIR_OUT; *urbp = urb; return 0; free_buffer: kfree(urb->transfer_buffer); urb->transfer_buffer = NULL; free_urb: usb_free_urb(urb); err: return -ENOMEM; } static int v_recv_cmd_unlink(struct vudc *udc, struct usbip_header *pdu) { unsigned long flags; struct urbp *urb_p; spin_lock_irqsave(&udc->lock, flags); list_for_each_entry(urb_p, &udc->urb_queue, urb_entry) { if (urb_p->seqnum != pdu->u.cmd_unlink.seqnum) continue; urb_p->urb->unlinked = -ECONNRESET; urb_p->seqnum = pdu->base.seqnum; v_kick_timer(udc, jiffies); spin_unlock_irqrestore(&udc->lock, flags); return 0; } /* Not found, completed / not queued */ spin_lock(&udc->lock_tx); v_enqueue_ret_unlink(udc, pdu->base.seqnum, 0); wake_up(&udc->tx_waitq); spin_unlock(&udc->lock_tx); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int v_recv_cmd_submit(struct vudc *udc, struct usbip_header *pdu) { int ret = 0; struct urbp *urb_p; u8 address; unsigned long flags; urb_p = alloc_urbp(); if (!urb_p) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_MALLOC); return -ENOMEM; } /* base.ep is pipeendpoint(pipe) */ address = pdu->base.ep; if (pdu->base.direction == USBIP_DIR_IN) address |= USB_DIR_IN; spin_lock_irqsave(&udc->lock, flags); urb_p->ep = vudc_find_endpoint(udc, address); if (!urb_p->ep) { /* we don't know the type, there may be isoc data! */ dev_err(&udc->pdev->dev, "request to nonexistent endpoint"); spin_unlock_irqrestore(&udc->lock, flags); usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_TCP); ret = -EPIPE; goto free_urbp; } urb_p->type = urb_p->ep->type; spin_unlock_irqrestore(&udc->lock, flags); urb_p->new = 1; urb_p->seqnum = pdu->base.seqnum; if (urb_p->ep->type == USB_ENDPOINT_XFER_ISOC) { /* validate packet size and number of packets */ unsigned int maxp, packets, bytes; maxp = usb_endpoint_maxp(urb_p->ep->desc); maxp *= usb_endpoint_maxp_mult(urb_p->ep->desc); bytes = pdu->u.cmd_submit.transfer_buffer_length; packets = DIV_ROUND_UP(bytes, maxp); if (pdu->u.cmd_submit.number_of_packets < 0 || pdu->u.cmd_submit.number_of_packets > packets) { dev_err(&udc->gadget.dev, "CMD_SUBMIT: isoc invalid num packets %d\n", pdu->u.cmd_submit.number_of_packets); ret = -EMSGSIZE; goto free_urbp; } } ret = alloc_urb_from_cmd(&urb_p->urb, pdu, urb_p->ep->type); if (ret) { usbip_event_add(&udc->ud, VUDC_EVENT_ERROR_MALLOC); ret = -ENOMEM; goto free_urbp; } urb_p->urb->status = -EINPROGRESS; /* FIXME: more pipe setup to please usbip_common */ BUILD_BUG_ON_MSG(PIPE_BULK != 3, "PIPE_* doesn't range from 0 to 3"); urb_p->urb->pipe &= ~(PIPE_BULK << 30); switch (urb_p->ep->type) { case USB_ENDPOINT_XFER_BULK: urb_p->urb->pipe |= (PIPE_BULK << 30); break; case USB_ENDPOINT_XFER_INT: urb_p->urb->pipe |= (PIPE_INTERRUPT << 30); break; case USB_ENDPOINT_XFER_CONTROL: urb_p->urb->pipe |= (PIPE_CONTROL << 30); break; case USB_ENDPOINT_XFER_ISOC: urb_p->urb->pipe |= (PIPE_ISOCHRONOUS << 30); break; } ret = usbip_recv_xbuff(&udc->ud, urb_p->urb); if (ret < 0) goto free_urbp; ret = usbip_recv_iso(&udc->ud, urb_p->urb); if (ret < 0) goto free_urbp; spin_lock_irqsave(&udc->lock, flags); v_kick_timer(udc, jiffies); list_add_tail(&urb_p->urb_entry, &udc->urb_queue); spin_unlock_irqrestore(&udc->lock, flags); return 0; free_urbp: free_urbp_and_urb(urb_p); return ret; } static int v_rx_pdu(struct usbip_device *ud) { int ret; struct usbip_header pdu; struct vudc *udc = container_of(ud, struct vudc, ud); memset(&pdu, 0, sizeof(pdu)); ret = usbip_recv(ud->tcp_socket, &pdu, sizeof(pdu)); if (ret != sizeof(pdu)) { usbip_event_add(ud, VUDC_EVENT_ERROR_TCP); if (ret >= 0) return -EPIPE; return ret; } usbip_header_correct_endian(&pdu, 0); spin_lock_irq(&ud->lock); ret = (ud->status == SDEV_ST_USED); spin_unlock_irq(&ud->lock); if (!ret) { usbip_event_add(ud, VUDC_EVENT_ERROR_TCP); return -EBUSY; } switch (pdu.base.command) { case USBIP_CMD_UNLINK: ret = v_recv_cmd_unlink(udc, &pdu); break; case USBIP_CMD_SUBMIT: ret = v_recv_cmd_submit(udc, &pdu); break; default: ret = -EPIPE; pr_err("rx: unknown command"); break; } return ret; } int v_rx_loop(void *data) { struct usbip_device *ud = data; int ret = 0; while (!kthread_should_stop()) { if (usbip_event_happened(ud)) break; ret = v_rx_pdu(ud); if (ret < 0) { pr_warn("v_rx exit with error %d", ret); break; } } return ret; }
linux-master
drivers/usb/usbip/vudc_rx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi * Copyright (C) 2015-2016 Nobuo Iwata */ #include <linux/kthread.h> #include <linux/file.h> #include <linux/net.h> #include <linux/platform_device.h> #include <linux/slab.h> /* Hardening for Spectre-v1 */ #include <linux/nospec.h> #include "usbip_common.h" #include "vhci.h" /* TODO: refine locking ?*/ /* * output example: * hub port sta spd dev sockfd local_busid * hs 0000 004 000 00000000 000003 1-2.3 * ................................................ * ss 0008 004 000 00000000 000004 2-3.4 * ................................................ * * Output includes socket fd instead of socket pointer address to avoid * leaking kernel memory address in: * /sys/devices/platform/vhci_hcd.0/status and in debug output. * The socket pointer address is not used at the moment and it was made * visible as a convenient way to find IP address from socket pointer * address by looking up /proc/net/{tcp,tcp6}. As this opens a security * hole, the change is made to use sockfd instead. * */ static void port_show_vhci(char **out, int hub, int port, struct vhci_device *vdev) { if (hub == HUB_SPEED_HIGH) *out += sprintf(*out, "hs %04u %03u ", port, vdev->ud.status); else /* hub == HUB_SPEED_SUPER */ *out += sprintf(*out, "ss %04u %03u ", port, vdev->ud.status); if (vdev->ud.status == VDEV_ST_USED) { *out += sprintf(*out, "%03u %08x ", vdev->speed, vdev->devid); *out += sprintf(*out, "%06u %s", vdev->ud.sockfd, dev_name(&vdev->udev->dev)); } else { *out += sprintf(*out, "000 00000000 "); *out += sprintf(*out, "000000 0-0"); } *out += sprintf(*out, "\n"); } /* Sysfs entry to show port status */ static ssize_t status_show_vhci(int pdev_nr, char *out) { struct platform_device *pdev = vhcis[pdev_nr].pdev; struct vhci *vhci; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; char *s = out; int i; unsigned long flags; if (!pdev || !out) { usbip_dbg_vhci_sysfs("show status error\n"); return 0; } hcd = platform_get_drvdata(pdev); vhci_hcd = hcd_to_vhci_hcd(hcd); vhci = vhci_hcd->vhci; spin_lock_irqsave(&vhci->lock, flags); for (i = 0; i < VHCI_HC_PORTS; i++) { struct vhci_device *vdev = &vhci->vhci_hcd_hs->vdev[i]; spin_lock(&vdev->ud.lock); port_show_vhci(&out, HUB_SPEED_HIGH, pdev_nr * VHCI_PORTS + i, vdev); spin_unlock(&vdev->ud.lock); } for (i = 0; i < VHCI_HC_PORTS; i++) { struct vhci_device *vdev = &vhci->vhci_hcd_ss->vdev[i]; spin_lock(&vdev->ud.lock); port_show_vhci(&out, HUB_SPEED_SUPER, pdev_nr * VHCI_PORTS + VHCI_HC_PORTS + i, vdev); spin_unlock(&vdev->ud.lock); } spin_unlock_irqrestore(&vhci->lock, flags); return out - s; } static ssize_t status_show_not_ready(int pdev_nr, char *out) { char *s = out; int i = 0; for (i = 0; i < VHCI_HC_PORTS; i++) { out += sprintf(out, "hs %04u %03u ", (pdev_nr * VHCI_PORTS) + i, VDEV_ST_NOTASSIGNED); out += sprintf(out, "000 00000000 0000000000000000 0-0"); out += sprintf(out, "\n"); } for (i = 0; i < VHCI_HC_PORTS; i++) { out += sprintf(out, "ss %04u %03u ", (pdev_nr * VHCI_PORTS) + VHCI_HC_PORTS + i, VDEV_ST_NOTASSIGNED); out += sprintf(out, "000 00000000 0000000000000000 0-0"); out += sprintf(out, "\n"); } return out - s; } static int status_name_to_id(const char *name) { char *c; long val; int ret; c = strchr(name, '.'); if (c == NULL) return 0; ret = kstrtol(c+1, 10, &val); if (ret < 0) return ret; return val; } static ssize_t status_show(struct device *dev, struct device_attribute *attr, char *out) { char *s = out; int pdev_nr; out += sprintf(out, "hub port sta spd dev sockfd local_busid\n"); pdev_nr = status_name_to_id(attr->attr.name); if (pdev_nr < 0) out += status_show_not_ready(pdev_nr, out); else out += status_show_vhci(pdev_nr, out); return out - s; } static ssize_t nports_show(struct device *dev, struct device_attribute *attr, char *out) { char *s = out; /* * Half the ports are for SPEED_HIGH and half for SPEED_SUPER, * thus the * 2. */ out += sprintf(out, "%d\n", VHCI_PORTS * vhci_num_controllers); return out - s; } static DEVICE_ATTR_RO(nports); /* Sysfs entry to shutdown a virtual connection */ static int vhci_port_disconnect(struct vhci_hcd *vhci_hcd, __u32 rhport) { struct vhci_device *vdev = &vhci_hcd->vdev[rhport]; struct vhci *vhci = vhci_hcd->vhci; unsigned long flags; usbip_dbg_vhci_sysfs("enter\n"); mutex_lock(&vdev->ud.sysfs_lock); /* lock */ spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->ud.lock); if (vdev->ud.status == VDEV_ST_NULL) { pr_err("not connected %d\n", vdev->ud.status); /* unlock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); mutex_unlock(&vdev->ud.sysfs_lock); return -EINVAL; } /* unlock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); usbip_event_add(&vdev->ud, VDEV_EVENT_DOWN); mutex_unlock(&vdev->ud.sysfs_lock); return 0; } static int valid_port(__u32 *pdev_nr, __u32 *rhport) { if (*pdev_nr >= vhci_num_controllers) { pr_err("pdev %u\n", *pdev_nr); return 0; } *pdev_nr = array_index_nospec(*pdev_nr, vhci_num_controllers); if (*rhport >= VHCI_HC_PORTS) { pr_err("rhport %u\n", *rhport); return 0; } *rhport = array_index_nospec(*rhport, VHCI_HC_PORTS); return 1; } static ssize_t detach_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { __u32 port = 0, pdev_nr = 0, rhport = 0; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; int ret; if (kstrtoint(buf, 10, &port) < 0) return -EINVAL; pdev_nr = port_to_pdev_nr(port); rhport = port_to_rhport(port); if (!valid_port(&pdev_nr, &rhport)) return -EINVAL; hcd = platform_get_drvdata(vhcis[pdev_nr].pdev); if (hcd == NULL) { dev_err(dev, "port is not ready %u\n", port); return -EAGAIN; } usbip_dbg_vhci_sysfs("rhport %d\n", rhport); if ((port / VHCI_HC_PORTS) % 2) vhci_hcd = hcd_to_vhci_hcd(hcd)->vhci->vhci_hcd_ss; else vhci_hcd = hcd_to_vhci_hcd(hcd)->vhci->vhci_hcd_hs; ret = vhci_port_disconnect(vhci_hcd, rhport); if (ret < 0) return -EINVAL; usbip_dbg_vhci_sysfs("Leave\n"); return count; } static DEVICE_ATTR_WO(detach); static int valid_args(__u32 *pdev_nr, __u32 *rhport, enum usb_device_speed speed) { if (!valid_port(pdev_nr, rhport)) { return 0; } switch (speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_WIRELESS: case USB_SPEED_SUPER: break; default: pr_err("Failed attach request for unsupported USB speed: %s\n", usb_speed_string(speed)); return 0; } return 1; } /* Sysfs entry to establish a virtual connection */ /* * To start a new USB/IP attachment, a userland program needs to setup a TCP * connection and then write its socket descriptor with remote device * information into this sysfs file. * * A remote device is virtually attached to the root-hub port of @rhport with * @speed. @devid is embedded into a request to specify the remote device in a * server host. * * write() returns 0 on success, else negative errno. */ static ssize_t attach_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct socket *socket; int sockfd = 0; __u32 port = 0, pdev_nr = 0, rhport = 0, devid = 0, speed = 0; struct usb_hcd *hcd; struct vhci_hcd *vhci_hcd; struct vhci_device *vdev; struct vhci *vhci; int err; unsigned long flags; struct task_struct *tcp_rx = NULL; struct task_struct *tcp_tx = NULL; /* * @rhport: port number of vhci_hcd * @sockfd: socket descriptor of an established TCP connection * @devid: unique device identifier in a remote host * @speed: usb device speed in a remote host */ if (sscanf(buf, "%u %u %u %u", &port, &sockfd, &devid, &speed) != 4) return -EINVAL; pdev_nr = port_to_pdev_nr(port); rhport = port_to_rhport(port); usbip_dbg_vhci_sysfs("port(%u) pdev(%d) rhport(%u)\n", port, pdev_nr, rhport); usbip_dbg_vhci_sysfs("sockfd(%u) devid(%u) speed(%u)\n", sockfd, devid, speed); /* check received parameters */ if (!valid_args(&pdev_nr, &rhport, speed)) return -EINVAL; hcd = platform_get_drvdata(vhcis[pdev_nr].pdev); if (hcd == NULL) { dev_err(dev, "port %d is not ready\n", port); return -EAGAIN; } vhci_hcd = hcd_to_vhci_hcd(hcd); vhci = vhci_hcd->vhci; if (speed == USB_SPEED_SUPER) vdev = &vhci->vhci_hcd_ss->vdev[rhport]; else vdev = &vhci->vhci_hcd_hs->vdev[rhport]; mutex_lock(&vdev->ud.sysfs_lock); /* Extract socket from fd. */ socket = sockfd_lookup(sockfd, &err); if (!socket) { dev_err(dev, "failed to lookup sock"); err = -EINVAL; goto unlock_mutex; } if (socket->type != SOCK_STREAM) { dev_err(dev, "Expecting SOCK_STREAM - found %d", socket->type); sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } /* create threads before locking */ tcp_rx = kthread_create(vhci_rx_loop, &vdev->ud, "vhci_rx"); if (IS_ERR(tcp_rx)) { sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } tcp_tx = kthread_create(vhci_tx_loop, &vdev->ud, "vhci_tx"); if (IS_ERR(tcp_tx)) { kthread_stop(tcp_rx); sockfd_put(socket); err = -EINVAL; goto unlock_mutex; } /* get task structs now */ get_task_struct(tcp_rx); get_task_struct(tcp_tx); /* now begin lock until setting vdev status set */ spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->ud.lock); if (vdev->ud.status != VDEV_ST_NULL) { /* end of the lock */ spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); sockfd_put(socket); kthread_stop_put(tcp_rx); kthread_stop_put(tcp_tx); dev_err(dev, "port %d already used\n", rhport); /* * Will be retried from userspace * if there's another free port. */ err = -EBUSY; goto unlock_mutex; } dev_info(dev, "pdev(%u) rhport(%u) sockfd(%d)\n", pdev_nr, rhport, sockfd); dev_info(dev, "devid(%u) speed(%u) speed_str(%s)\n", devid, speed, usb_speed_string(speed)); vdev->devid = devid; vdev->speed = speed; vdev->ud.sockfd = sockfd; vdev->ud.tcp_socket = socket; vdev->ud.tcp_rx = tcp_rx; vdev->ud.tcp_tx = tcp_tx; vdev->ud.status = VDEV_ST_NOTASSIGNED; usbip_kcov_handle_init(&vdev->ud); spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); /* end the lock */ wake_up_process(vdev->ud.tcp_rx); wake_up_process(vdev->ud.tcp_tx); rh_port_connect(vdev, speed); dev_info(dev, "Device attached\n"); mutex_unlock(&vdev->ud.sysfs_lock); return count; unlock_mutex: mutex_unlock(&vdev->ud.sysfs_lock); return err; } static DEVICE_ATTR_WO(attach); #define MAX_STATUS_NAME 16 struct status_attr { struct device_attribute attr; char name[MAX_STATUS_NAME+1]; }; static struct status_attr *status_attrs; static void set_status_attr(int id) { struct status_attr *status; status = status_attrs + id; if (id == 0) strcpy(status->name, "status"); else snprintf(status->name, MAX_STATUS_NAME+1, "status.%d", id); status->attr.attr.name = status->name; status->attr.attr.mode = S_IRUGO; status->attr.show = status_show; sysfs_attr_init(&status->attr.attr); } static int init_status_attrs(void) { int id; status_attrs = kcalloc(vhci_num_controllers, sizeof(struct status_attr), GFP_KERNEL); if (status_attrs == NULL) return -ENOMEM; for (id = 0; id < vhci_num_controllers; id++) set_status_attr(id); return 0; } static void finish_status_attrs(void) { kfree(status_attrs); } struct attribute_group vhci_attr_group = { .attrs = NULL, }; int vhci_init_attr_group(void) { struct attribute **attrs; int ret, i; attrs = kcalloc((vhci_num_controllers + 5), sizeof(struct attribute *), GFP_KERNEL); if (attrs == NULL) return -ENOMEM; ret = init_status_attrs(); if (ret) { kfree(attrs); return ret; } *attrs = &dev_attr_nports.attr; *(attrs + 1) = &dev_attr_detach.attr; *(attrs + 2) = &dev_attr_attach.attr; *(attrs + 3) = &dev_attr_usbip_debug.attr; for (i = 0; i < vhci_num_controllers; i++) *(attrs + i + 4) = &((status_attrs + i)->attr.attr); vhci_attr_group.attrs = attrs; return 0; } void vhci_finish_attr_group(void) { finish_status_attrs(); kfree(vhci_attr_group.attrs); }
linux-master
drivers/usb/usbip/vhci_sysfs.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <linux/kthread.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include "usbip_common.h" #include "vhci.h" static void setup_cmd_submit_pdu(struct usbip_header *pdup, struct urb *urb) { struct vhci_priv *priv = ((struct vhci_priv *)urb->hcpriv); struct vhci_device *vdev = priv->vdev; usbip_dbg_vhci_tx("URB, local devnum %u, remote devid %u\n", usb_pipedevice(urb->pipe), vdev->devid); pdup->base.command = USBIP_CMD_SUBMIT; pdup->base.seqnum = priv->seqnum; pdup->base.devid = vdev->devid; pdup->base.direction = usb_pipein(urb->pipe) ? USBIP_DIR_IN : USBIP_DIR_OUT; pdup->base.ep = usb_pipeendpoint(urb->pipe); usbip_pack_pdu(pdup, urb, USBIP_CMD_SUBMIT, 1); if (urb->setup_packet) memcpy(pdup->u.cmd_submit.setup, urb->setup_packet, 8); } static struct vhci_priv *dequeue_from_priv_tx(struct vhci_device *vdev) { struct vhci_priv *priv, *tmp; unsigned long flags; spin_lock_irqsave(&vdev->priv_lock, flags); list_for_each_entry_safe(priv, tmp, &vdev->priv_tx, list) { list_move_tail(&priv->list, &vdev->priv_rx); spin_unlock_irqrestore(&vdev->priv_lock, flags); return priv; } spin_unlock_irqrestore(&vdev->priv_lock, flags); return NULL; } static int vhci_send_cmd_submit(struct vhci_device *vdev) { struct usbip_iso_packet_descriptor *iso_buffer = NULL; struct vhci_priv *priv = NULL; struct scatterlist *sg; struct msghdr msg; struct kvec *iov; size_t txsize; size_t total_size = 0; int iovnum; int err = -ENOMEM; int i; while ((priv = dequeue_from_priv_tx(vdev)) != NULL) { int ret; struct urb *urb = priv->urb; struct usbip_header pdu_header; txsize = 0; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); memset(&iov, 0, sizeof(iov)); usbip_dbg_vhci_tx("setup txdata urb seqnum %lu\n", priv->seqnum); if (urb->num_sgs && usb_pipeout(urb->pipe)) iovnum = 2 + urb->num_sgs; else iovnum = 3; iov = kcalloc(iovnum, sizeof(*iov), GFP_KERNEL); if (!iov) { usbip_event_add(&vdev->ud, SDEV_EVENT_ERROR_MALLOC); return -ENOMEM; } if (urb->num_sgs) urb->transfer_flags |= URB_DMA_MAP_SG; /* 1. setup usbip_header */ setup_cmd_submit_pdu(&pdu_header, urb); usbip_header_correct_endian(&pdu_header, 1); iovnum = 0; iov[iovnum].iov_base = &pdu_header; iov[iovnum].iov_len = sizeof(pdu_header); txsize += sizeof(pdu_header); iovnum++; /* 2. setup transfer buffer */ if (!usb_pipein(urb->pipe) && urb->transfer_buffer_length > 0) { if (urb->num_sgs && !usb_endpoint_xfer_isoc(&urb->ep->desc)) { for_each_sg(urb->sg, sg, urb->num_sgs, i) { iov[iovnum].iov_base = sg_virt(sg); iov[iovnum].iov_len = sg->length; iovnum++; } } else { iov[iovnum].iov_base = urb->transfer_buffer; iov[iovnum].iov_len = urb->transfer_buffer_length; iovnum++; } txsize += urb->transfer_buffer_length; } /* 3. setup iso_packet_descriptor */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ssize_t len = 0; iso_buffer = usbip_alloc_iso_desc_pdu(urb, &len); if (!iso_buffer) { usbip_event_add(&vdev->ud, SDEV_EVENT_ERROR_MALLOC); goto err_iso_buffer; } iov[iovnum].iov_base = iso_buffer; iov[iovnum].iov_len = len; iovnum++; txsize += len; } ret = kernel_sendmsg(vdev->ud.tcp_socket, &msg, iov, iovnum, txsize); if (ret != txsize) { pr_err("sendmsg failed!, ret=%d for %zd\n", ret, txsize); usbip_event_add(&vdev->ud, VDEV_EVENT_ERROR_TCP); err = -EPIPE; goto err_tx; } kfree(iov); /* This is only for isochronous case */ kfree(iso_buffer); iso_buffer = NULL; usbip_dbg_vhci_tx("send txdata\n"); total_size += txsize; } return total_size; err_tx: kfree(iso_buffer); err_iso_buffer: kfree(iov); return err; } static struct vhci_unlink *dequeue_from_unlink_tx(struct vhci_device *vdev) { struct vhci_unlink *unlink, *tmp; unsigned long flags; spin_lock_irqsave(&vdev->priv_lock, flags); list_for_each_entry_safe(unlink, tmp, &vdev->unlink_tx, list) { list_move_tail(&unlink->list, &vdev->unlink_rx); spin_unlock_irqrestore(&vdev->priv_lock, flags); return unlink; } spin_unlock_irqrestore(&vdev->priv_lock, flags); return NULL; } static int vhci_send_cmd_unlink(struct vhci_device *vdev) { struct vhci_unlink *unlink = NULL; struct msghdr msg; struct kvec iov; size_t txsize; size_t total_size = 0; while ((unlink = dequeue_from_unlink_tx(vdev)) != NULL) { int ret; struct usbip_header pdu_header; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); memset(&iov, 0, sizeof(iov)); usbip_dbg_vhci_tx("setup cmd unlink, %lu\n", unlink->seqnum); /* 1. setup usbip_header */ pdu_header.base.command = USBIP_CMD_UNLINK; pdu_header.base.seqnum = unlink->seqnum; pdu_header.base.devid = vdev->devid; pdu_header.base.ep = 0; pdu_header.u.cmd_unlink.seqnum = unlink->unlink_seqnum; usbip_header_correct_endian(&pdu_header, 1); iov.iov_base = &pdu_header; iov.iov_len = sizeof(pdu_header); txsize = sizeof(pdu_header); ret = kernel_sendmsg(vdev->ud.tcp_socket, &msg, &iov, 1, txsize); if (ret != txsize) { pr_err("sendmsg failed!, ret=%d for %zd\n", ret, txsize); usbip_event_add(&vdev->ud, VDEV_EVENT_ERROR_TCP); return -1; } usbip_dbg_vhci_tx("send txdata\n"); total_size += txsize; } return total_size; } int vhci_tx_loop(void *data) { struct usbip_device *ud = data; struct vhci_device *vdev = container_of(ud, struct vhci_device, ud); while (!kthread_should_stop()) { if (vhci_send_cmd_submit(vdev) < 0) break; if (vhci_send_cmd_unlink(vdev) < 0) break; wait_event_interruptible(vdev->waitq_tx, (!list_empty(&vdev->priv_tx) || !list_empty(&vdev->unlink_tx) || kthread_should_stop())); usbip_dbg_vhci_tx("pending urbs ?, now wake up\n"); } return 0; }
linux-master
drivers/usb/usbip/vhci_tx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <linux/device.h> #include <linux/file.h> #include <linux/kthread.h> #include <linux/module.h> #include "usbip_common.h" #include "stub.h" /* * usbip_status shows the status of usbip-host as long as this driver is bound * to the target device. */ static ssize_t usbip_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct stub_device *sdev = dev_get_drvdata(dev); int status; if (!sdev) { dev_err(dev, "sdev is null\n"); return -ENODEV; } spin_lock_irq(&sdev->ud.lock); status = sdev->ud.status; spin_unlock_irq(&sdev->ud.lock); return sysfs_emit(buf, "%d\n", status); } static DEVICE_ATTR_RO(usbip_status); /* * usbip_sockfd gets a socket descriptor of an established TCP connection that * is used to transfer usbip requests by kernel threads. -1 is a magic number * by which usbip connection is finished. */ static ssize_t usbip_sockfd_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct stub_device *sdev = dev_get_drvdata(dev); int sockfd = 0; struct socket *socket; int rv; struct task_struct *tcp_rx = NULL; struct task_struct *tcp_tx = NULL; if (!sdev) { dev_err(dev, "sdev is null\n"); return -ENODEV; } rv = sscanf(buf, "%d", &sockfd); if (rv != 1) return -EINVAL; if (sockfd != -1) { int err; dev_info(dev, "stub up\n"); mutex_lock(&sdev->ud.sysfs_lock); spin_lock_irq(&sdev->ud.lock); if (sdev->ud.status != SDEV_ST_AVAILABLE) { dev_err(dev, "not ready\n"); goto err; } socket = sockfd_lookup(sockfd, &err); if (!socket) { dev_err(dev, "failed to lookup sock"); goto err; } if (socket->type != SOCK_STREAM) { dev_err(dev, "Expecting SOCK_STREAM - found %d", socket->type); goto sock_err; } /* unlock and create threads and get tasks */ spin_unlock_irq(&sdev->ud.lock); tcp_rx = kthread_create(stub_rx_loop, &sdev->ud, "stub_rx"); if (IS_ERR(tcp_rx)) { sockfd_put(socket); goto unlock_mutex; } tcp_tx = kthread_create(stub_tx_loop, &sdev->ud, "stub_tx"); if (IS_ERR(tcp_tx)) { kthread_stop(tcp_rx); sockfd_put(socket); goto unlock_mutex; } /* get task structs now */ get_task_struct(tcp_rx); get_task_struct(tcp_tx); /* lock and update sdev->ud state */ spin_lock_irq(&sdev->ud.lock); sdev->ud.tcp_socket = socket; sdev->ud.sockfd = sockfd; sdev->ud.tcp_rx = tcp_rx; sdev->ud.tcp_tx = tcp_tx; sdev->ud.status = SDEV_ST_USED; spin_unlock_irq(&sdev->ud.lock); wake_up_process(sdev->ud.tcp_rx); wake_up_process(sdev->ud.tcp_tx); mutex_unlock(&sdev->ud.sysfs_lock); } else { dev_info(dev, "stub down\n"); mutex_lock(&sdev->ud.sysfs_lock); spin_lock_irq(&sdev->ud.lock); if (sdev->ud.status != SDEV_ST_USED) goto err; spin_unlock_irq(&sdev->ud.lock); usbip_event_add(&sdev->ud, SDEV_EVENT_DOWN); mutex_unlock(&sdev->ud.sysfs_lock); } return count; sock_err: sockfd_put(socket); err: spin_unlock_irq(&sdev->ud.lock); unlock_mutex: mutex_unlock(&sdev->ud.sysfs_lock); return -EINVAL; } static DEVICE_ATTR_WO(usbip_sockfd); static struct attribute *usbip_attrs[] = { &dev_attr_usbip_status.attr, &dev_attr_usbip_sockfd.attr, &dev_attr_usbip_debug.attr, NULL, }; ATTRIBUTE_GROUPS(usbip); static void stub_shutdown_connection(struct usbip_device *ud) { struct stub_device *sdev = container_of(ud, struct stub_device, ud); /* * When removing an exported device, kernel panic sometimes occurred * and then EIP was sk_wait_data of stub_rx thread. Is this because * sk_wait_data returned though stub_rx thread was already finished by * step 1? */ if (ud->tcp_socket) { dev_dbg(&sdev->udev->dev, "shutdown sockfd %d\n", ud->sockfd); kernel_sock_shutdown(ud->tcp_socket, SHUT_RDWR); } /* 1. stop threads */ if (ud->tcp_rx) { kthread_stop_put(ud->tcp_rx); ud->tcp_rx = NULL; } if (ud->tcp_tx) { kthread_stop_put(ud->tcp_tx); ud->tcp_tx = NULL; } /* * 2. close the socket * * tcp_socket is freed after threads are killed so that usbip_xmit does * not touch NULL socket. */ if (ud->tcp_socket) { sockfd_put(ud->tcp_socket); ud->tcp_socket = NULL; ud->sockfd = -1; } /* 3. free used data */ stub_device_cleanup_urbs(sdev); /* 4. free stub_unlink */ { unsigned long flags; struct stub_unlink *unlink, *tmp; spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry_safe(unlink, tmp, &sdev->unlink_tx, list) { list_del(&unlink->list); kfree(unlink); } list_for_each_entry_safe(unlink, tmp, &sdev->unlink_free, list) { list_del(&unlink->list); kfree(unlink); } spin_unlock_irqrestore(&sdev->priv_lock, flags); } } static void stub_device_reset(struct usbip_device *ud) { struct stub_device *sdev = container_of(ud, struct stub_device, ud); struct usb_device *udev = sdev->udev; int ret; dev_dbg(&udev->dev, "device reset"); ret = usb_lock_device_for_reset(udev, NULL); if (ret < 0) { dev_err(&udev->dev, "lock for reset\n"); spin_lock_irq(&ud->lock); ud->status = SDEV_ST_ERROR; spin_unlock_irq(&ud->lock); return; } /* try to reset the device */ ret = usb_reset_device(udev); usb_unlock_device(udev); spin_lock_irq(&ud->lock); if (ret) { dev_err(&udev->dev, "device reset\n"); ud->status = SDEV_ST_ERROR; } else { dev_info(&udev->dev, "device reset\n"); ud->status = SDEV_ST_AVAILABLE; } spin_unlock_irq(&ud->lock); } static void stub_device_unusable(struct usbip_device *ud) { spin_lock_irq(&ud->lock); ud->status = SDEV_ST_ERROR; spin_unlock_irq(&ud->lock); } /** * stub_device_alloc - allocate a new stub_device struct * @udev: usb_device of a new device * * Allocates and initializes a new stub_device struct. */ static struct stub_device *stub_device_alloc(struct usb_device *udev) { struct stub_device *sdev; int busnum = udev->bus->busnum; int devnum = udev->devnum; dev_dbg(&udev->dev, "allocating stub device"); /* yes, it's a new device */ sdev = kzalloc(sizeof(struct stub_device), GFP_KERNEL); if (!sdev) return NULL; sdev->udev = usb_get_dev(udev); /* * devid is defined with devnum when this driver is first allocated. * devnum may change later if a device is reset. However, devid never * changes during a usbip connection. */ sdev->devid = (busnum << 16) | devnum; sdev->ud.side = USBIP_STUB; sdev->ud.status = SDEV_ST_AVAILABLE; spin_lock_init(&sdev->ud.lock); mutex_init(&sdev->ud.sysfs_lock); sdev->ud.tcp_socket = NULL; sdev->ud.sockfd = -1; INIT_LIST_HEAD(&sdev->priv_init); INIT_LIST_HEAD(&sdev->priv_tx); INIT_LIST_HEAD(&sdev->priv_free); INIT_LIST_HEAD(&sdev->unlink_free); INIT_LIST_HEAD(&sdev->unlink_tx); spin_lock_init(&sdev->priv_lock); init_waitqueue_head(&sdev->tx_waitq); sdev->ud.eh_ops.shutdown = stub_shutdown_connection; sdev->ud.eh_ops.reset = stub_device_reset; sdev->ud.eh_ops.unusable = stub_device_unusable; usbip_start_eh(&sdev->ud); dev_dbg(&udev->dev, "register new device\n"); return sdev; } static void stub_device_free(struct stub_device *sdev) { kfree(sdev); } static int stub_probe(struct usb_device *udev) { struct stub_device *sdev = NULL; const char *udev_busid = dev_name(&udev->dev); struct bus_id_priv *busid_priv; int rc = 0; char save_status; dev_dbg(&udev->dev, "Enter probe\n"); /* Not sure if this is our device. Allocate here to avoid * calling alloc while holding busid_table lock. */ sdev = stub_device_alloc(udev); if (!sdev) return -ENOMEM; /* check we should claim or not by busid_table */ busid_priv = get_busid_priv(udev_busid); if (!busid_priv || (busid_priv->status == STUB_BUSID_REMOV) || (busid_priv->status == STUB_BUSID_OTHER)) { dev_info(&udev->dev, "%s is not in match_busid table... skip!\n", udev_busid); /* * Return value should be ENODEV or ENOXIO to continue trying * other matched drivers by the driver core. * See driver_probe_device() in driver/base/dd.c */ rc = -ENODEV; if (!busid_priv) goto sdev_free; goto call_put_busid_priv; } if (udev->descriptor.bDeviceClass == USB_CLASS_HUB) { dev_dbg(&udev->dev, "%s is a usb hub device... skip!\n", udev_busid); rc = -ENODEV; goto call_put_busid_priv; } if (!strcmp(udev->bus->bus_name, "vhci_hcd")) { dev_dbg(&udev->dev, "%s is attached on vhci_hcd... skip!\n", udev_busid); rc = -ENODEV; goto call_put_busid_priv; } dev_info(&udev->dev, "usbip-host: register new device (bus %u dev %u)\n", udev->bus->busnum, udev->devnum); busid_priv->shutdown_busid = 0; /* set private data to usb_device */ dev_set_drvdata(&udev->dev, sdev); busid_priv->sdev = sdev; busid_priv->udev = udev; save_status = busid_priv->status; busid_priv->status = STUB_BUSID_ALLOC; /* release the busid_lock */ put_busid_priv(busid_priv); /* * Claim this hub port. * It doesn't matter what value we pass as owner * (struct dev_state) as long as it is unique. */ rc = usb_hub_claim_port(udev->parent, udev->portnum, (struct usb_dev_state *) udev); if (rc) { dev_dbg(&udev->dev, "unable to claim port\n"); goto err_port; } return 0; err_port: dev_set_drvdata(&udev->dev, NULL); /* we already have busid_priv, just lock busid_lock */ spin_lock(&busid_priv->busid_lock); busid_priv->sdev = NULL; busid_priv->status = save_status; spin_unlock(&busid_priv->busid_lock); /* lock is released - go to free */ goto sdev_free; call_put_busid_priv: /* release the busid_lock */ put_busid_priv(busid_priv); sdev_free: usb_put_dev(udev); stub_device_free(sdev); return rc; } static void shutdown_busid(struct bus_id_priv *busid_priv) { usbip_event_add(&busid_priv->sdev->ud, SDEV_EVENT_REMOVED); /* wait for the stop of the event handler */ usbip_stop_eh(&busid_priv->sdev->ud); } /* * called in usb_disconnect() or usb_deregister() * but only if actconfig(active configuration) exists */ static void stub_disconnect(struct usb_device *udev) { struct stub_device *sdev; const char *udev_busid = dev_name(&udev->dev); struct bus_id_priv *busid_priv; int rc; dev_dbg(&udev->dev, "Enter disconnect\n"); busid_priv = get_busid_priv(udev_busid); if (!busid_priv) { BUG(); return; } sdev = dev_get_drvdata(&udev->dev); /* get stub_device */ if (!sdev) { dev_err(&udev->dev, "could not get device"); /* release busid_lock */ put_busid_priv(busid_priv); return; } dev_set_drvdata(&udev->dev, NULL); /* release busid_lock before call to remove device files */ put_busid_priv(busid_priv); /* * NOTE: rx/tx threads are invoked for each usb_device. */ /* release port */ rc = usb_hub_release_port(udev->parent, udev->portnum, (struct usb_dev_state *) udev); if (rc) { dev_dbg(&udev->dev, "unable to release port\n"); return; } /* If usb reset is called from event handler */ if (usbip_in_eh(current)) return; /* we already have busid_priv, just lock busid_lock */ spin_lock(&busid_priv->busid_lock); if (!busid_priv->shutdown_busid) busid_priv->shutdown_busid = 1; /* release busid_lock */ spin_unlock(&busid_priv->busid_lock); /* shutdown the current connection */ shutdown_busid(busid_priv); usb_put_dev(sdev->udev); /* we already have busid_priv, just lock busid_lock */ spin_lock(&busid_priv->busid_lock); /* free sdev */ busid_priv->sdev = NULL; stub_device_free(sdev); if (busid_priv->status == STUB_BUSID_ALLOC) busid_priv->status = STUB_BUSID_ADDED; /* release busid_lock */ spin_unlock(&busid_priv->busid_lock); return; } #ifdef CONFIG_PM /* These functions need usb_port_suspend and usb_port_resume, * which reside in drivers/usb/core/usb.h. Skip for now. */ static int stub_suspend(struct usb_device *udev, pm_message_t message) { dev_dbg(&udev->dev, "stub_suspend\n"); return 0; } static int stub_resume(struct usb_device *udev, pm_message_t message) { dev_dbg(&udev->dev, "stub_resume\n"); return 0; } #endif /* CONFIG_PM */ struct usb_device_driver stub_driver = { .name = "usbip-host", .probe = stub_probe, .disconnect = stub_disconnect, #ifdef CONFIG_PM .suspend = stub_suspend, .resume = stub_resume, #endif .supports_autosuspend = 0, .dev_groups = usbip_groups, };
linux-master
drivers/usb/usbip/stub_dev.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Karol Kosik <[email protected]> * Copyright (C) 2015-2016 Samsung Electronics * Igor Kotrasinski <[email protected]> * Krzysztof Opasiak <[email protected]> */ #include <linux/device.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/platform_device.h> #include <linux/usb.h> #include <linux/usb/gadget.h> #include <linux/usb/hcd.h> #include <linux/kthread.h> #include <linux/file.h> #include <linux/byteorder/generic.h> #include "usbip_common.h" #include "vudc.h" #define VIRTUAL_ENDPOINTS (1 /* ep0 */ + 15 /* in eps */ + 15 /* out eps */) /* urb-related structures alloc / free */ static void free_urb(struct urb *urb) { if (!urb) return; kfree(urb->setup_packet); urb->setup_packet = NULL; kfree(urb->transfer_buffer); urb->transfer_buffer = NULL; usb_free_urb(urb); } struct urbp *alloc_urbp(void) { struct urbp *urb_p; urb_p = kzalloc(sizeof(*urb_p), GFP_KERNEL); if (!urb_p) return urb_p; urb_p->urb = NULL; urb_p->ep = NULL; INIT_LIST_HEAD(&urb_p->urb_entry); return urb_p; } static void free_urbp(struct urbp *urb_p) { kfree(urb_p); } void free_urbp_and_urb(struct urbp *urb_p) { if (!urb_p) return; free_urb(urb_p->urb); free_urbp(urb_p); } /* utilities ; almost verbatim from dummy_hcd.c */ /* called with spinlock held */ static void nuke(struct vudc *udc, struct vep *ep) { struct vrequest *req; while (!list_empty(&ep->req_queue)) { req = list_first_entry(&ep->req_queue, struct vrequest, req_entry); list_del_init(&req->req_entry); req->req.status = -ESHUTDOWN; spin_unlock(&udc->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&udc->lock); } } /* caller must hold lock */ static void stop_activity(struct vudc *udc) { int i; struct urbp *urb_p, *tmp; udc->address = 0; for (i = 0; i < VIRTUAL_ENDPOINTS; i++) nuke(udc, &udc->ep[i]); list_for_each_entry_safe(urb_p, tmp, &udc->urb_queue, urb_entry) { list_del(&urb_p->urb_entry); free_urbp_and_urb(urb_p); } } struct vep *vudc_find_endpoint(struct vudc *udc, u8 address) { int i; if ((address & ~USB_DIR_IN) == 0) return &udc->ep[0]; for (i = 1; i < VIRTUAL_ENDPOINTS; i++) { struct vep *ep = &udc->ep[i]; if (!ep->desc) continue; if (ep->desc->bEndpointAddress == address) return ep; } return NULL; } /* gadget ops */ static int vgadget_get_frame(struct usb_gadget *_gadget) { struct timespec64 now; struct vudc *udc = usb_gadget_to_vudc(_gadget); ktime_get_ts64(&now); return ((now.tv_sec - udc->start_time.tv_sec) * 1000 + (now.tv_nsec - udc->start_time.tv_nsec) / NSEC_PER_MSEC) & 0x7FF; } static int vgadget_set_selfpowered(struct usb_gadget *_gadget, int value) { struct vudc *udc = usb_gadget_to_vudc(_gadget); if (value) udc->devstatus |= (1 << USB_DEVICE_SELF_POWERED); else udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED); return 0; } static int vgadget_pullup(struct usb_gadget *_gadget, int value) { struct vudc *udc = usb_gadget_to_vudc(_gadget); unsigned long flags; int ret; spin_lock_irqsave(&udc->lock, flags); value = !!value; if (value == udc->pullup) goto unlock; udc->pullup = value; if (value) { udc->gadget.speed = min_t(u8, USB_SPEED_HIGH, udc->driver->max_speed); udc->ep[0].ep.maxpacket = 64; /* * This is the first place where we can ask our * gadget driver for descriptors. */ ret = get_gadget_descs(udc); if (ret) { dev_err(&udc->gadget.dev, "Unable go get desc: %d", ret); goto unlock; } spin_unlock_irqrestore(&udc->lock, flags); usbip_start_eh(&udc->ud); } else { /* Invalidate descriptors */ udc->desc_cached = 0; spin_unlock_irqrestore(&udc->lock, flags); usbip_event_add(&udc->ud, VUDC_EVENT_REMOVED); usbip_stop_eh(&udc->ud); /* Wait for eh completion */ } return 0; unlock: spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int vgadget_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { struct vudc *udc = usb_gadget_to_vudc(g); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); udc->driver = driver; udc->pullup = udc->connected = udc->desc_cached = 0; spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int vgadget_udc_stop(struct usb_gadget *g) { struct vudc *udc = usb_gadget_to_vudc(g); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); udc->driver = NULL; spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_gadget_ops vgadget_ops = { .get_frame = vgadget_get_frame, .set_selfpowered = vgadget_set_selfpowered, .pullup = vgadget_pullup, .udc_start = vgadget_udc_start, .udc_stop = vgadget_udc_stop, }; /* endpoint ops */ static int vep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct vep *ep; struct vudc *udc; unsigned int maxp; unsigned long flags; ep = to_vep(_ep); udc = ep_to_vudc(ep); if (!_ep || !desc || ep->desc || _ep->caps.type_control || desc->bDescriptorType != USB_DT_ENDPOINT) return -EINVAL; if (!udc->driver) return -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); maxp = usb_endpoint_maxp(desc); _ep->maxpacket = maxp; ep->desc = desc; ep->type = usb_endpoint_type(desc); ep->halted = ep->wedged = 0; spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int vep_disable(struct usb_ep *_ep) { struct vep *ep; struct vudc *udc; unsigned long flags; ep = to_vep(_ep); udc = ep_to_vudc(ep); if (!_ep || !ep->desc || _ep->caps.type_control) return -EINVAL; spin_lock_irqsave(&udc->lock, flags); ep->desc = NULL; nuke(udc, ep); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static struct usb_request *vep_alloc_request(struct usb_ep *_ep, gfp_t mem_flags) { struct vrequest *req; if (!_ep) return NULL; req = kzalloc(sizeof(*req), mem_flags); if (!req) return NULL; INIT_LIST_HEAD(&req->req_entry); return &req->req; } static void vep_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct vrequest *req; /* ep is always valid here - see usb_ep_free_request() */ if (!_req) return; req = to_vrequest(_req); kfree(req); } static int vep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t mem_flags) { struct vep *ep; struct vrequest *req; struct vudc *udc; unsigned long flags; if (!_ep || !_req) return -EINVAL; ep = to_vep(_ep); req = to_vrequest(_req); udc = ep_to_vudc(ep); spin_lock_irqsave(&udc->lock, flags); _req->actual = 0; _req->status = -EINPROGRESS; list_add_tail(&req->req_entry, &ep->req_queue); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int vep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct vep *ep; struct vrequest *req; struct vudc *udc; struct vrequest *lst; unsigned long flags; int ret = -EINVAL; if (!_ep || !_req) return ret; ep = to_vep(_ep); req = to_vrequest(_req); udc = req->udc; if (!udc->driver) return -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); list_for_each_entry(lst, &ep->req_queue, req_entry) { if (&lst->req == _req) { list_del_init(&lst->req_entry); _req->status = -ECONNRESET; ret = 0; break; } } spin_unlock_irqrestore(&udc->lock, flags); if (ret == 0) usb_gadget_giveback_request(_ep, _req); return ret; } static int vep_set_halt_and_wedge(struct usb_ep *_ep, int value, int wedged) { struct vep *ep; struct vudc *udc; unsigned long flags; int ret = 0; ep = to_vep(_ep); if (!_ep) return -EINVAL; udc = ep_to_vudc(ep); if (!udc->driver) return -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); if (!value) ep->halted = ep->wedged = 0; else if (ep->desc && (ep->desc->bEndpointAddress & USB_DIR_IN) && !list_empty(&ep->req_queue)) ret = -EAGAIN; else { ep->halted = 1; if (wedged) ep->wedged = 1; } spin_unlock_irqrestore(&udc->lock, flags); return ret; } static int vep_set_halt(struct usb_ep *_ep, int value) { return vep_set_halt_and_wedge(_ep, value, 0); } static int vep_set_wedge(struct usb_ep *_ep) { return vep_set_halt_and_wedge(_ep, 1, 1); } static const struct usb_ep_ops vep_ops = { .enable = vep_enable, .disable = vep_disable, .alloc_request = vep_alloc_request, .free_request = vep_free_request, .queue = vep_queue, .dequeue = vep_dequeue, .set_halt = vep_set_halt, .set_wedge = vep_set_wedge, }; /* shutdown / reset / error handlers */ static void vudc_shutdown(struct usbip_device *ud) { struct vudc *udc = container_of(ud, struct vudc, ud); int call_disconnect = 0; unsigned long flags; dev_dbg(&udc->pdev->dev, "device shutdown"); if (ud->tcp_socket) kernel_sock_shutdown(ud->tcp_socket, SHUT_RDWR); if (ud->tcp_rx) { kthread_stop_put(ud->tcp_rx); ud->tcp_rx = NULL; } if (ud->tcp_tx) { kthread_stop_put(ud->tcp_tx); ud->tcp_tx = NULL; } if (ud->tcp_socket) { sockfd_put(ud->tcp_socket); ud->tcp_socket = NULL; } spin_lock_irqsave(&udc->lock, flags); stop_activity(udc); if (udc->connected && udc->driver->disconnect) call_disconnect = 1; udc->connected = 0; spin_unlock_irqrestore(&udc->lock, flags); if (call_disconnect) udc->driver->disconnect(&udc->gadget); } static void vudc_device_reset(struct usbip_device *ud) { struct vudc *udc = container_of(ud, struct vudc, ud); unsigned long flags; dev_dbg(&udc->pdev->dev, "device reset"); spin_lock_irqsave(&udc->lock, flags); stop_activity(udc); spin_unlock_irqrestore(&udc->lock, flags); if (udc->driver) usb_gadget_udc_reset(&udc->gadget, udc->driver); spin_lock_irqsave(&ud->lock, flags); ud->status = SDEV_ST_AVAILABLE; spin_unlock_irqrestore(&ud->lock, flags); } static void vudc_device_unusable(struct usbip_device *ud) { unsigned long flags; spin_lock_irqsave(&ud->lock, flags); ud->status = SDEV_ST_ERROR; spin_unlock_irqrestore(&ud->lock, flags); } /* device setup / cleanup */ struct vudc_device *alloc_vudc_device(int devid) { struct vudc_device *udc_dev; udc_dev = kzalloc(sizeof(*udc_dev), GFP_KERNEL); if (!udc_dev) return NULL; INIT_LIST_HEAD(&udc_dev->dev_entry); udc_dev->pdev = platform_device_alloc(GADGET_NAME, devid); if (!udc_dev->pdev) { kfree(udc_dev); udc_dev = NULL; } return udc_dev; } void put_vudc_device(struct vudc_device *udc_dev) { platform_device_put(udc_dev->pdev); kfree(udc_dev); } static int init_vudc_hw(struct vudc *udc) { int i; struct usbip_device *ud = &udc->ud; struct vep *ep; udc->ep = kcalloc(VIRTUAL_ENDPOINTS, sizeof(*udc->ep), GFP_KERNEL); if (!udc->ep) goto nomem_ep; INIT_LIST_HEAD(&udc->gadget.ep_list); /* create ep0 and 15 in, 15 out general purpose eps */ for (i = 0; i < VIRTUAL_ENDPOINTS; ++i) { int is_out = i % 2; int num = (i + 1) / 2; ep = &udc->ep[i]; sprintf(ep->name, "ep%d%s", num, i ? (is_out ? "out" : "in") : ""); ep->ep.name = ep->name; ep->ep.ops = &vep_ops; usb_ep_set_maxpacket_limit(&ep->ep, ~0); ep->ep.max_streams = 16; ep->gadget = &udc->gadget; INIT_LIST_HEAD(&ep->req_queue); if (i == 0) { /* ep0 */ ep->ep.caps.type_control = true; ep->ep.caps.dir_out = true; ep->ep.caps.dir_in = true; udc->gadget.ep0 = &ep->ep; } else { /* All other eps */ ep->ep.caps.type_iso = true; ep->ep.caps.type_int = true; ep->ep.caps.type_bulk = true; if (is_out) ep->ep.caps.dir_out = true; else ep->ep.caps.dir_in = true; list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); } } spin_lock_init(&udc->lock); spin_lock_init(&udc->lock_tx); INIT_LIST_HEAD(&udc->urb_queue); INIT_LIST_HEAD(&udc->tx_queue); init_waitqueue_head(&udc->tx_waitq); spin_lock_init(&ud->lock); mutex_init(&ud->sysfs_lock); ud->status = SDEV_ST_AVAILABLE; ud->side = USBIP_VUDC; ud->eh_ops.shutdown = vudc_shutdown; ud->eh_ops.reset = vudc_device_reset; ud->eh_ops.unusable = vudc_device_unusable; v_init_timer(udc); return 0; nomem_ep: return -ENOMEM; } static void cleanup_vudc_hw(struct vudc *udc) { kfree(udc->ep); } /* platform driver ops */ int vudc_probe(struct platform_device *pdev) { struct vudc *udc; int ret = -ENOMEM; udc = kzalloc(sizeof(*udc), GFP_KERNEL); if (!udc) goto out; udc->gadget.name = GADGET_NAME; udc->gadget.ops = &vgadget_ops; udc->gadget.max_speed = USB_SPEED_HIGH; udc->gadget.dev.parent = &pdev->dev; udc->pdev = pdev; ret = init_vudc_hw(udc); if (ret) goto err_init_vudc_hw; ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (ret < 0) goto err_add_udc; platform_set_drvdata(pdev, udc); return ret; err_add_udc: cleanup_vudc_hw(udc); err_init_vudc_hw: kfree(udc); out: return ret; } int vudc_remove(struct platform_device *pdev) { struct vudc *udc = platform_get_drvdata(pdev); usb_del_gadget_udc(&udc->gadget); cleanup_vudc_hw(udc); kfree(udc); return 0; }
linux-master
drivers/usb/usbip/vudc_dev.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <linux/kthread.h> #include <linux/socket.h> #include <linux/scatterlist.h> #include "usbip_common.h" #include "stub.h" /* be in spin_lock_irqsave(&sdev->priv_lock, flags) */ void stub_enqueue_ret_unlink(struct stub_device *sdev, __u32 seqnum, __u32 status) { struct stub_unlink *unlink; unlink = kzalloc(sizeof(struct stub_unlink), GFP_ATOMIC); if (!unlink) { usbip_event_add(&sdev->ud, VDEV_EVENT_ERROR_MALLOC); return; } unlink->seqnum = seqnum; unlink->status = status; list_add_tail(&unlink->list, &sdev->unlink_tx); } /** * stub_complete - completion handler of a usbip urb * @urb: pointer to the urb completed * * When a urb has completed, the USB core driver calls this function mostly in * the interrupt context. To return the result of a urb, the completed urb is * linked to the pending list of returning. * */ void stub_complete(struct urb *urb) { struct stub_priv *priv = (struct stub_priv *) urb->context; struct stub_device *sdev = priv->sdev; unsigned long flags; usbip_dbg_stub_tx("complete! status %d\n", urb->status); switch (urb->status) { case 0: /* OK */ break; case -ENOENT: dev_info(&urb->dev->dev, "stopped by a call to usb_kill_urb() because of cleaning up a virtual connection\n"); return; case -ECONNRESET: dev_info(&urb->dev->dev, "unlinked by a call to usb_unlink_urb()\n"); break; case -EPIPE: dev_info(&urb->dev->dev, "endpoint %d is stalled\n", usb_pipeendpoint(urb->pipe)); break; case -ESHUTDOWN: dev_info(&urb->dev->dev, "device removed?\n"); break; default: dev_info(&urb->dev->dev, "urb completion with non-zero status %d\n", urb->status); break; } /* * If the server breaks single SG request into the several URBs, the * URBs must be reassembled before sending completed URB to the vhci. * Don't wake up the tx thread until all the URBs are completed. */ if (priv->sgl) { priv->completed_urbs++; /* Only save the first error status */ if (urb->status && !priv->urb_status) priv->urb_status = urb->status; if (priv->completed_urbs < priv->num_urbs) return; } /* link a urb to the queue of tx. */ spin_lock_irqsave(&sdev->priv_lock, flags); if (sdev->ud.tcp_socket == NULL) { usbip_dbg_stub_tx("ignore urb for closed connection\n"); /* It will be freed in stub_device_cleanup_urbs(). */ } else if (priv->unlinking) { stub_enqueue_ret_unlink(sdev, priv->seqnum, urb->status); stub_free_priv_and_urb(priv); } else { list_move_tail(&priv->list, &sdev->priv_tx); } spin_unlock_irqrestore(&sdev->priv_lock, flags); /* wake up tx_thread */ wake_up(&sdev->tx_waitq); } static inline void setup_base_pdu(struct usbip_header_basic *base, __u32 command, __u32 seqnum) { base->command = command; base->seqnum = seqnum; base->devid = 0; base->ep = 0; base->direction = 0; } static void setup_ret_submit_pdu(struct usbip_header *rpdu, struct urb *urb) { struct stub_priv *priv = (struct stub_priv *) urb->context; setup_base_pdu(&rpdu->base, USBIP_RET_SUBMIT, priv->seqnum); usbip_pack_pdu(rpdu, urb, USBIP_RET_SUBMIT, 1); } static void setup_ret_unlink_pdu(struct usbip_header *rpdu, struct stub_unlink *unlink) { setup_base_pdu(&rpdu->base, USBIP_RET_UNLINK, unlink->seqnum); rpdu->u.ret_unlink.status = unlink->status; } static struct stub_priv *dequeue_from_priv_tx(struct stub_device *sdev) { unsigned long flags; struct stub_priv *priv, *tmp; spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry_safe(priv, tmp, &sdev->priv_tx, list) { list_move_tail(&priv->list, &sdev->priv_free); spin_unlock_irqrestore(&sdev->priv_lock, flags); return priv; } spin_unlock_irqrestore(&sdev->priv_lock, flags); return NULL; } static int stub_send_ret_submit(struct stub_device *sdev) { unsigned long flags; struct stub_priv *priv, *tmp; struct msghdr msg; size_t txsize; size_t total_size = 0; while ((priv = dequeue_from_priv_tx(sdev)) != NULL) { struct urb *urb = priv->urbs[0]; struct usbip_header pdu_header; struct usbip_iso_packet_descriptor *iso_buffer = NULL; struct kvec *iov = NULL; struct scatterlist *sg; u32 actual_length = 0; int iovnum = 0; int ret; int i; txsize = 0; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); if (urb->actual_length > 0 && !urb->transfer_buffer && !urb->num_sgs) { dev_err(&sdev->udev->dev, "urb: actual_length %d transfer_buffer null\n", urb->actual_length); return -1; } if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) iovnum = 2 + urb->number_of_packets; else if (usb_pipein(urb->pipe) && urb->actual_length > 0 && urb->num_sgs) iovnum = 1 + urb->num_sgs; else if (usb_pipein(urb->pipe) && priv->sgl) iovnum = 1 + priv->num_urbs; else iovnum = 2; iov = kcalloc(iovnum, sizeof(struct kvec), GFP_KERNEL); if (!iov) { usbip_event_add(&sdev->ud, SDEV_EVENT_ERROR_MALLOC); return -1; } iovnum = 0; /* 1. setup usbip_header */ setup_ret_submit_pdu(&pdu_header, urb); usbip_dbg_stub_tx("setup txdata seqnum: %d\n", pdu_header.base.seqnum); if (priv->sgl) { for (i = 0; i < priv->num_urbs; i++) actual_length += priv->urbs[i]->actual_length; pdu_header.u.ret_submit.status = priv->urb_status; pdu_header.u.ret_submit.actual_length = actual_length; } usbip_header_correct_endian(&pdu_header, 1); iov[iovnum].iov_base = &pdu_header; iov[iovnum].iov_len = sizeof(pdu_header); iovnum++; txsize += sizeof(pdu_header); /* 2. setup transfer buffer */ if (usb_pipein(urb->pipe) && priv->sgl) { /* If the server split a single SG request into several * URBs because the server's HCD doesn't support SG, * reassemble the split URB buffers into a single * return command. */ for (i = 0; i < priv->num_urbs; i++) { iov[iovnum].iov_base = priv->urbs[i]->transfer_buffer; iov[iovnum].iov_len = priv->urbs[i]->actual_length; iovnum++; } txsize += actual_length; } else if (usb_pipein(urb->pipe) && usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS && urb->actual_length > 0) { if (urb->num_sgs) { unsigned int copy = urb->actual_length; int size; for_each_sg(urb->sg, sg, urb->num_sgs, i) { if (copy == 0) break; if (copy < sg->length) size = copy; else size = sg->length; iov[iovnum].iov_base = sg_virt(sg); iov[iovnum].iov_len = size; iovnum++; copy -= size; } } else { iov[iovnum].iov_base = urb->transfer_buffer; iov[iovnum].iov_len = urb->actual_length; iovnum++; } txsize += urb->actual_length; } else if (usb_pipein(urb->pipe) && usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { /* * For isochronous packets: actual length is the sum of * the actual length of the individual, packets, but as * the packet offsets are not changed there will be * padding between the packets. To optimally use the * bandwidth the padding is not transmitted. */ int i; for (i = 0; i < urb->number_of_packets; i++) { iov[iovnum].iov_base = urb->transfer_buffer + urb->iso_frame_desc[i].offset; iov[iovnum].iov_len = urb->iso_frame_desc[i].actual_length; iovnum++; txsize += urb->iso_frame_desc[i].actual_length; } if (txsize != sizeof(pdu_header) + urb->actual_length) { dev_err(&sdev->udev->dev, "actual length of urb %d does not match iso packet sizes %zu\n", urb->actual_length, txsize-sizeof(pdu_header)); kfree(iov); usbip_event_add(&sdev->ud, SDEV_EVENT_ERROR_TCP); return -1; } } /* 3. setup iso_packet_descriptor */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ssize_t len = 0; iso_buffer = usbip_alloc_iso_desc_pdu(urb, &len); if (!iso_buffer) { usbip_event_add(&sdev->ud, SDEV_EVENT_ERROR_MALLOC); kfree(iov); return -1; } iov[iovnum].iov_base = iso_buffer; iov[iovnum].iov_len = len; txsize += len; iovnum++; } ret = kernel_sendmsg(sdev->ud.tcp_socket, &msg, iov, iovnum, txsize); if (ret != txsize) { dev_err(&sdev->udev->dev, "sendmsg failed!, retval %d for %zd\n", ret, txsize); kfree(iov); kfree(iso_buffer); usbip_event_add(&sdev->ud, SDEV_EVENT_ERROR_TCP); return -1; } kfree(iov); kfree(iso_buffer); total_size += txsize; } spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry_safe(priv, tmp, &sdev->priv_free, list) { stub_free_priv_and_urb(priv); } spin_unlock_irqrestore(&sdev->priv_lock, flags); return total_size; } static struct stub_unlink *dequeue_from_unlink_tx(struct stub_device *sdev) { unsigned long flags; struct stub_unlink *unlink, *tmp; spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry_safe(unlink, tmp, &sdev->unlink_tx, list) { list_move_tail(&unlink->list, &sdev->unlink_free); spin_unlock_irqrestore(&sdev->priv_lock, flags); return unlink; } spin_unlock_irqrestore(&sdev->priv_lock, flags); return NULL; } static int stub_send_ret_unlink(struct stub_device *sdev) { unsigned long flags; struct stub_unlink *unlink, *tmp; struct msghdr msg; struct kvec iov[1]; size_t txsize; size_t total_size = 0; while ((unlink = dequeue_from_unlink_tx(sdev)) != NULL) { int ret; struct usbip_header pdu_header; txsize = 0; memset(&pdu_header, 0, sizeof(pdu_header)); memset(&msg, 0, sizeof(msg)); memset(&iov, 0, sizeof(iov)); usbip_dbg_stub_tx("setup ret unlink %lu\n", unlink->seqnum); /* 1. setup usbip_header */ setup_ret_unlink_pdu(&pdu_header, unlink); usbip_header_correct_endian(&pdu_header, 1); iov[0].iov_base = &pdu_header; iov[0].iov_len = sizeof(pdu_header); txsize += sizeof(pdu_header); ret = kernel_sendmsg(sdev->ud.tcp_socket, &msg, iov, 1, txsize); if (ret != txsize) { dev_err(&sdev->udev->dev, "sendmsg failed!, retval %d for %zd\n", ret, txsize); usbip_event_add(&sdev->ud, SDEV_EVENT_ERROR_TCP); return -1; } usbip_dbg_stub_tx("send txdata\n"); total_size += txsize; } spin_lock_irqsave(&sdev->priv_lock, flags); list_for_each_entry_safe(unlink, tmp, &sdev->unlink_free, list) { list_del(&unlink->list); kfree(unlink); } spin_unlock_irqrestore(&sdev->priv_lock, flags); return total_size; } int stub_tx_loop(void *data) { struct usbip_device *ud = data; struct stub_device *sdev = container_of(ud, struct stub_device, ud); while (!kthread_should_stop()) { if (usbip_event_happened(ud)) break; /* * send_ret_submit comes earlier than send_ret_unlink. stub_rx * looks at only priv_init queue. If the completion of a URB is * earlier than the receive of CMD_UNLINK, priv is moved to * priv_tx queue and stub_rx does not find the target priv. In * this case, vhci_rx receives the result of the submit request * and then receives the result of the unlink request. The * result of the submit is given back to the usbcore as the * completion of the unlink request. The request of the * unlink is ignored. This is ok because a driver who calls * usb_unlink_urb() understands the unlink was too late by * getting the status of the given-backed URB which has the * status of usb_submit_urb(). */ if (stub_send_ret_submit(sdev) < 0) break; if (stub_send_ret_unlink(sdev) < 0) break; wait_event_interruptible(sdev->tx_waitq, (!list_empty(&sdev->priv_tx) || !list_empty(&sdev->unlink_tx) || kthread_should_stop())); } return 0; }
linux-master
drivers/usb/usbip/stub_tx.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi */ #include <linux/string.h> #include <linux/module.h> #include <linux/device.h> #include <linux/scatterlist.h> #include "usbip_common.h" #include "stub.h" #define DRIVER_AUTHOR "Takahiro Hirofuchi" #define DRIVER_DESC "USB/IP Host Driver" struct kmem_cache *stub_priv_cache; /* * busid_tables defines matching busids that usbip can grab. A user can change * dynamically what device is locally used and what device is exported to a * remote host. */ #define MAX_BUSID 16 static struct bus_id_priv busid_table[MAX_BUSID]; static DEFINE_SPINLOCK(busid_table_lock); static void init_busid_table(void) { int i; /* * This also sets the bus_table[i].status to * STUB_BUSID_OTHER, which is 0. */ memset(busid_table, 0, sizeof(busid_table)); for (i = 0; i < MAX_BUSID; i++) spin_lock_init(&busid_table[i].busid_lock); } /* * Find the index of the busid by name. * Must be called with busid_table_lock held. */ static int get_busid_idx(const char *busid) { int i; int idx = -1; for (i = 0; i < MAX_BUSID; i++) { spin_lock(&busid_table[i].busid_lock); if (busid_table[i].name[0]) if (!strncmp(busid_table[i].name, busid, BUSID_SIZE)) { idx = i; spin_unlock(&busid_table[i].busid_lock); break; } spin_unlock(&busid_table[i].busid_lock); } return idx; } /* Returns holding busid_lock. Should call put_busid_priv() to unlock */ struct bus_id_priv *get_busid_priv(const char *busid) { int idx; struct bus_id_priv *bid = NULL; spin_lock(&busid_table_lock); idx = get_busid_idx(busid); if (idx >= 0) { bid = &(busid_table[idx]); /* get busid_lock before returning */ spin_lock(&bid->busid_lock); } spin_unlock(&busid_table_lock); return bid; } void put_busid_priv(struct bus_id_priv *bid) { if (bid) spin_unlock(&bid->busid_lock); } static int add_match_busid(char *busid) { int i; int ret = -1; spin_lock(&busid_table_lock); /* already registered? */ if (get_busid_idx(busid) >= 0) { ret = 0; goto out; } for (i = 0; i < MAX_BUSID; i++) { spin_lock(&busid_table[i].busid_lock); if (!busid_table[i].name[0]) { strscpy(busid_table[i].name, busid, BUSID_SIZE); if ((busid_table[i].status != STUB_BUSID_ALLOC) && (busid_table[i].status != STUB_BUSID_REMOV)) busid_table[i].status = STUB_BUSID_ADDED; ret = 0; spin_unlock(&busid_table[i].busid_lock); break; } spin_unlock(&busid_table[i].busid_lock); } out: spin_unlock(&busid_table_lock); return ret; } int del_match_busid(char *busid) { int idx; int ret = -1; spin_lock(&busid_table_lock); idx = get_busid_idx(busid); if (idx < 0) goto out; /* found */ ret = 0; spin_lock(&busid_table[idx].busid_lock); if (busid_table[idx].status == STUB_BUSID_OTHER) memset(busid_table[idx].name, 0, BUSID_SIZE); if ((busid_table[idx].status != STUB_BUSID_OTHER) && (busid_table[idx].status != STUB_BUSID_ADDED)) busid_table[idx].status = STUB_BUSID_REMOV; spin_unlock(&busid_table[idx].busid_lock); out: spin_unlock(&busid_table_lock); return ret; } static ssize_t match_busid_show(struct device_driver *drv, char *buf) { int i; char *out = buf; spin_lock(&busid_table_lock); for (i = 0; i < MAX_BUSID; i++) { spin_lock(&busid_table[i].busid_lock); if (busid_table[i].name[0]) out += sprintf(out, "%s ", busid_table[i].name); spin_unlock(&busid_table[i].busid_lock); } spin_unlock(&busid_table_lock); out += sprintf(out, "\n"); return out - buf; } static ssize_t match_busid_store(struct device_driver *dev, const char *buf, size_t count) { char busid[BUSID_SIZE]; if (count < 5) return -EINVAL; /* busid needs to include \0 termination */ if (strscpy(busid, buf + 4, BUSID_SIZE) < 0) return -EINVAL; if (!strncmp(buf, "add ", 4)) { if (add_match_busid(busid) < 0) return -ENOMEM; pr_debug("add busid %s\n", busid); return count; } if (!strncmp(buf, "del ", 4)) { if (del_match_busid(busid) < 0) return -ENODEV; pr_debug("del busid %s\n", busid); return count; } return -EINVAL; } static DRIVER_ATTR_RW(match_busid); static int do_rebind(char *busid, struct bus_id_priv *busid_priv) { int ret = 0; /* device_attach() callers should hold parent lock for USB */ if (busid_priv->udev->dev.parent) device_lock(busid_priv->udev->dev.parent); ret = device_attach(&busid_priv->udev->dev); if (busid_priv->udev->dev.parent) device_unlock(busid_priv->udev->dev.parent); if (ret < 0) dev_err(&busid_priv->udev->dev, "rebind failed\n"); return ret; } static void stub_device_rebind(void) { #if IS_MODULE(CONFIG_USBIP_HOST) struct bus_id_priv *busid_priv; int i; /* update status to STUB_BUSID_OTHER so probe ignores the device */ spin_lock(&busid_table_lock); for (i = 0; i < MAX_BUSID; i++) { if (busid_table[i].name[0] && busid_table[i].shutdown_busid) { busid_priv = &(busid_table[i]); busid_priv->status = STUB_BUSID_OTHER; } } spin_unlock(&busid_table_lock); /* now run rebind - no need to hold locks. driver files are removed */ for (i = 0; i < MAX_BUSID; i++) { if (busid_table[i].name[0] && busid_table[i].shutdown_busid) { busid_priv = &(busid_table[i]); do_rebind(busid_table[i].name, busid_priv); } } #endif } static ssize_t rebind_store(struct device_driver *dev, const char *buf, size_t count) { int ret; int len; struct bus_id_priv *bid; /* buf length should be less that BUSID_SIZE */ len = strnlen(buf, BUSID_SIZE); if (!(len < BUSID_SIZE)) return -EINVAL; bid = get_busid_priv(buf); if (!bid) return -ENODEV; /* mark the device for deletion so probe ignores it during rescan */ bid->status = STUB_BUSID_OTHER; /* release the busid lock */ put_busid_priv(bid); ret = do_rebind((char *) buf, bid); if (ret < 0) return ret; /* delete device from busid_table */ del_match_busid((char *) buf); return count; } static DRIVER_ATTR_WO(rebind); static struct stub_priv *stub_priv_pop_from_listhead(struct list_head *listhead) { struct stub_priv *priv, *tmp; list_for_each_entry_safe(priv, tmp, listhead, list) { list_del_init(&priv->list); return priv; } return NULL; } void stub_free_priv_and_urb(struct stub_priv *priv) { struct urb *urb; int i; for (i = 0; i < priv->num_urbs; i++) { urb = priv->urbs[i]; if (!urb) return; kfree(urb->setup_packet); urb->setup_packet = NULL; if (urb->transfer_buffer && !priv->sgl) { kfree(urb->transfer_buffer); urb->transfer_buffer = NULL; } if (urb->num_sgs) { sgl_free(urb->sg); urb->sg = NULL; urb->num_sgs = 0; } usb_free_urb(urb); } if (!list_empty(&priv->list)) list_del(&priv->list); if (priv->sgl) sgl_free(priv->sgl); kfree(priv->urbs); kmem_cache_free(stub_priv_cache, priv); } static struct stub_priv *stub_priv_pop(struct stub_device *sdev) { unsigned long flags; struct stub_priv *priv; spin_lock_irqsave(&sdev->priv_lock, flags); priv = stub_priv_pop_from_listhead(&sdev->priv_init); if (priv) goto done; priv = stub_priv_pop_from_listhead(&sdev->priv_tx); if (priv) goto done; priv = stub_priv_pop_from_listhead(&sdev->priv_free); done: spin_unlock_irqrestore(&sdev->priv_lock, flags); return priv; } void stub_device_cleanup_urbs(struct stub_device *sdev) { struct stub_priv *priv; int i; dev_dbg(&sdev->udev->dev, "Stub device cleaning up urbs\n"); while ((priv = stub_priv_pop(sdev))) { for (i = 0; i < priv->num_urbs; i++) usb_kill_urb(priv->urbs[i]); stub_free_priv_and_urb(priv); } } static int __init usbip_host_init(void) { int ret; init_busid_table(); stub_priv_cache = KMEM_CACHE(stub_priv, SLAB_HWCACHE_ALIGN); if (!stub_priv_cache) { pr_err("kmem_cache_create failed\n"); return -ENOMEM; } ret = usb_register_device_driver(&stub_driver, THIS_MODULE); if (ret) { pr_err("usb_register failed %d\n", ret); goto err_usb_register; } ret = driver_create_file(&stub_driver.drvwrap.driver, &driver_attr_match_busid); if (ret) { pr_err("driver_create_file failed\n"); goto err_create_file; } ret = driver_create_file(&stub_driver.drvwrap.driver, &driver_attr_rebind); if (ret) { pr_err("driver_create_file failed\n"); goto err_create_file; } return ret; err_create_file: usb_deregister_device_driver(&stub_driver); err_usb_register: kmem_cache_destroy(stub_priv_cache); return ret; } static void __exit usbip_host_exit(void) { driver_remove_file(&stub_driver.drvwrap.driver, &driver_attr_match_busid); driver_remove_file(&stub_driver.drvwrap.driver, &driver_attr_rebind); /* * deregister() calls stub_disconnect() for all devices. Device * specific data is cleared in stub_disconnect(). */ usb_deregister_device_driver(&stub_driver); /* initiate scan to attach devices */ stub_device_rebind(); kmem_cache_destroy(stub_priv_cache); } module_init(usbip_host_init); module_exit(usbip_host_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/usbip/stub_main.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi * Copyright (C) 2015-2016 Samsung Electronics * Krzysztof Opasiak <[email protected]> */ #include <asm/byteorder.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/stat.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <net/sock.h> #include "usbip_common.h" #define DRIVER_AUTHOR "Takahiro Hirofuchi <[email protected]>" #define DRIVER_DESC "USB/IP Core" #ifdef CONFIG_USBIP_DEBUG unsigned long usbip_debug_flag = 0xffffffff; #else unsigned long usbip_debug_flag; #endif EXPORT_SYMBOL_GPL(usbip_debug_flag); module_param(usbip_debug_flag, ulong, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(usbip_debug_flag, "debug flags (defined in usbip_common.h)"); /* FIXME */ struct device_attribute dev_attr_usbip_debug; EXPORT_SYMBOL_GPL(dev_attr_usbip_debug); static ssize_t usbip_debug_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lx\n", usbip_debug_flag); } static ssize_t usbip_debug_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { if (sscanf(buf, "%lx", &usbip_debug_flag) != 1) return -EINVAL; return count; } DEVICE_ATTR_RW(usbip_debug); static void usbip_dump_buffer(char *buff, int bufflen) { print_hex_dump(KERN_DEBUG, "usbip-core", DUMP_PREFIX_OFFSET, 16, 4, buff, bufflen, false); } static void usbip_dump_pipe(unsigned int p) { unsigned char type = usb_pipetype(p); unsigned char ep = usb_pipeendpoint(p); unsigned char dev = usb_pipedevice(p); unsigned char dir = usb_pipein(p); pr_debug("dev(%d) ep(%d) [%s] ", dev, ep, dir ? "IN" : "OUT"); switch (type) { case PIPE_ISOCHRONOUS: pr_debug("ISO\n"); break; case PIPE_INTERRUPT: pr_debug("INT\n"); break; case PIPE_CONTROL: pr_debug("CTRL\n"); break; case PIPE_BULK: pr_debug("BULK\n"); break; default: pr_debug("ERR\n"); break; } } static void usbip_dump_usb_device(struct usb_device *udev) { struct device *dev = &udev->dev; int i; dev_dbg(dev, " devnum(%d) devpath(%s) usb speed(%s)", udev->devnum, udev->devpath, usb_speed_string(udev->speed)); pr_debug("tt hub ttport %d\n", udev->ttport); dev_dbg(dev, " "); for (i = 0; i < 16; i++) pr_debug(" %2u", i); pr_debug("\n"); dev_dbg(dev, " toggle0(IN) :"); for (i = 0; i < 16; i++) pr_debug(" %2u", (udev->toggle[0] & (1 << i)) ? 1 : 0); pr_debug("\n"); dev_dbg(dev, " toggle1(OUT):"); for (i = 0; i < 16; i++) pr_debug(" %2u", (udev->toggle[1] & (1 << i)) ? 1 : 0); pr_debug("\n"); dev_dbg(dev, " epmaxp_in :"); for (i = 0; i < 16; i++) { if (udev->ep_in[i]) pr_debug(" %2u", le16_to_cpu(udev->ep_in[i]->desc.wMaxPacketSize)); } pr_debug("\n"); dev_dbg(dev, " epmaxp_out :"); for (i = 0; i < 16; i++) { if (udev->ep_out[i]) pr_debug(" %2u", le16_to_cpu(udev->ep_out[i]->desc.wMaxPacketSize)); } pr_debug("\n"); dev_dbg(dev, "parent %s, bus %s\n", dev_name(&udev->parent->dev), udev->bus->bus_name); dev_dbg(dev, "have_langid %d, string_langid %d\n", udev->have_langid, udev->string_langid); dev_dbg(dev, "maxchild %d\n", udev->maxchild); } static void usbip_dump_request_type(__u8 rt) { switch (rt & USB_RECIP_MASK) { case USB_RECIP_DEVICE: pr_debug("DEVICE"); break; case USB_RECIP_INTERFACE: pr_debug("INTERF"); break; case USB_RECIP_ENDPOINT: pr_debug("ENDPOI"); break; case USB_RECIP_OTHER: pr_debug("OTHER "); break; default: pr_debug("------"); break; } } static void usbip_dump_usb_ctrlrequest(struct usb_ctrlrequest *cmd) { if (!cmd) { pr_debug(" : null pointer\n"); return; } pr_debug(" "); pr_debug("bRequestType(%02X) bRequest(%02X) wValue(%04X) wIndex(%04X) wLength(%04X) ", cmd->bRequestType, cmd->bRequest, cmd->wValue, cmd->wIndex, cmd->wLength); pr_debug("\n "); if ((cmd->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { pr_debug("STANDARD "); switch (cmd->bRequest) { case USB_REQ_GET_STATUS: pr_debug("GET_STATUS\n"); break; case USB_REQ_CLEAR_FEATURE: pr_debug("CLEAR_FEAT\n"); break; case USB_REQ_SET_FEATURE: pr_debug("SET_FEAT\n"); break; case USB_REQ_SET_ADDRESS: pr_debug("SET_ADDRRS\n"); break; case USB_REQ_GET_DESCRIPTOR: pr_debug("GET_DESCRI\n"); break; case USB_REQ_SET_DESCRIPTOR: pr_debug("SET_DESCRI\n"); break; case USB_REQ_GET_CONFIGURATION: pr_debug("GET_CONFIG\n"); break; case USB_REQ_SET_CONFIGURATION: pr_debug("SET_CONFIG\n"); break; case USB_REQ_GET_INTERFACE: pr_debug("GET_INTERF\n"); break; case USB_REQ_SET_INTERFACE: pr_debug("SET_INTERF\n"); break; case USB_REQ_SYNCH_FRAME: pr_debug("SYNC_FRAME\n"); break; default: pr_debug("REQ(%02X)\n", cmd->bRequest); break; } usbip_dump_request_type(cmd->bRequestType); } else if ((cmd->bRequestType & USB_TYPE_MASK) == USB_TYPE_CLASS) { pr_debug("CLASS\n"); } else if ((cmd->bRequestType & USB_TYPE_MASK) == USB_TYPE_VENDOR) { pr_debug("VENDOR\n"); } else if ((cmd->bRequestType & USB_TYPE_MASK) == USB_TYPE_RESERVED) { pr_debug("RESERVED\n"); } } void usbip_dump_urb(struct urb *urb) { struct device *dev; if (!urb) { pr_debug("urb: null pointer!!\n"); return; } if (!urb->dev) { pr_debug("urb->dev: null pointer!!\n"); return; } dev = &urb->dev->dev; usbip_dump_usb_device(urb->dev); dev_dbg(dev, " pipe :%08x ", urb->pipe); usbip_dump_pipe(urb->pipe); dev_dbg(dev, " status :%d\n", urb->status); dev_dbg(dev, " transfer_flags :%08X\n", urb->transfer_flags); dev_dbg(dev, " transfer_buffer_length:%d\n", urb->transfer_buffer_length); dev_dbg(dev, " actual_length :%d\n", urb->actual_length); if (urb->setup_packet && usb_pipetype(urb->pipe) == PIPE_CONTROL) usbip_dump_usb_ctrlrequest( (struct usb_ctrlrequest *)urb->setup_packet); dev_dbg(dev, " start_frame :%d\n", urb->start_frame); dev_dbg(dev, " number_of_packets :%d\n", urb->number_of_packets); dev_dbg(dev, " interval :%d\n", urb->interval); dev_dbg(dev, " error_count :%d\n", urb->error_count); } EXPORT_SYMBOL_GPL(usbip_dump_urb); void usbip_dump_header(struct usbip_header *pdu) { pr_debug("BASE: cmd %u seq %u devid %u dir %u ep %u\n", pdu->base.command, pdu->base.seqnum, pdu->base.devid, pdu->base.direction, pdu->base.ep); switch (pdu->base.command) { case USBIP_CMD_SUBMIT: pr_debug("USBIP_CMD_SUBMIT: x_flags %u x_len %u sf %u #p %d iv %d\n", pdu->u.cmd_submit.transfer_flags, pdu->u.cmd_submit.transfer_buffer_length, pdu->u.cmd_submit.start_frame, pdu->u.cmd_submit.number_of_packets, pdu->u.cmd_submit.interval); break; case USBIP_CMD_UNLINK: pr_debug("USBIP_CMD_UNLINK: seq %u\n", pdu->u.cmd_unlink.seqnum); break; case USBIP_RET_SUBMIT: pr_debug("USBIP_RET_SUBMIT: st %d al %u sf %d #p %d ec %d\n", pdu->u.ret_submit.status, pdu->u.ret_submit.actual_length, pdu->u.ret_submit.start_frame, pdu->u.ret_submit.number_of_packets, pdu->u.ret_submit.error_count); break; case USBIP_RET_UNLINK: pr_debug("USBIP_RET_UNLINK: status %d\n", pdu->u.ret_unlink.status); break; default: /* NOT REACHED */ pr_err("unknown command\n"); break; } } EXPORT_SYMBOL_GPL(usbip_dump_header); /* Receive data over TCP/IP. */ int usbip_recv(struct socket *sock, void *buf, int size) { int result; struct kvec iov = {.iov_base = buf, .iov_len = size}; struct msghdr msg = {.msg_flags = MSG_NOSIGNAL}; int total = 0; if (!sock || !buf || !size) return -EINVAL; iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, size); usbip_dbg_xmit("enter\n"); do { sock->sk->sk_allocation = GFP_NOIO; sock->sk->sk_use_task_frag = false; result = sock_recvmsg(sock, &msg, MSG_WAITALL); if (result <= 0) goto err; total += result; } while (msg_data_left(&msg)); if (usbip_dbg_flag_xmit) { pr_debug("receiving....\n"); usbip_dump_buffer(buf, size); pr_debug("received, osize %d ret %d size %zd total %d\n", size, result, msg_data_left(&msg), total); } return total; err: return result; } EXPORT_SYMBOL_GPL(usbip_recv); /* there may be more cases to tweak the flags. */ static unsigned int tweak_transfer_flags(unsigned int flags) { flags &= ~URB_NO_TRANSFER_DMA_MAP; return flags; } /* * USBIP driver packs URB transfer flags in PDUs that are exchanged * between Server (usbip_host) and Client (vhci_hcd). URB_* flags * are internal to kernel and could change. Where as USBIP URB flags * exchanged in PDUs are USBIP user API must not change. * * USBIP_URB* flags are exported as explicit API and client and server * do mapping from kernel flags to USBIP_URB*. Details as follows: * * Client tx path (USBIP_CMD_SUBMIT): * - Maps URB_* to USBIP_URB_* when it sends USBIP_CMD_SUBMIT packet. * * Server rx path (USBIP_CMD_SUBMIT): * - Maps USBIP_URB_* to URB_* when it receives USBIP_CMD_SUBMIT packet. * * Flags aren't included in USBIP_CMD_UNLINK and USBIP_RET_SUBMIT packets * and no special handling is needed for them in the following cases: * - Server rx path (USBIP_CMD_UNLINK) * - Client rx path & Server tx path (USBIP_RET_SUBMIT) * * Code paths: * usbip_pack_pdu() is the common routine that handles packing pdu from * urb and unpack pdu to an urb. * * usbip_pack_cmd_submit() and usbip_pack_ret_submit() handle * USBIP_CMD_SUBMIT and USBIP_RET_SUBMIT respectively. * * usbip_map_urb_to_usbip() and usbip_map_usbip_to_urb() are used * by usbip_pack_cmd_submit() and usbip_pack_ret_submit() to map * flags. */ struct urb_to_usbip_flags { u32 urb_flag; u32 usbip_flag; }; #define NUM_USBIP_FLAGS 17 static const struct urb_to_usbip_flags flag_map[NUM_USBIP_FLAGS] = { {URB_SHORT_NOT_OK, USBIP_URB_SHORT_NOT_OK}, {URB_ISO_ASAP, USBIP_URB_ISO_ASAP}, {URB_NO_TRANSFER_DMA_MAP, USBIP_URB_NO_TRANSFER_DMA_MAP}, {URB_ZERO_PACKET, USBIP_URB_ZERO_PACKET}, {URB_NO_INTERRUPT, USBIP_URB_NO_INTERRUPT}, {URB_FREE_BUFFER, USBIP_URB_FREE_BUFFER}, {URB_DIR_IN, USBIP_URB_DIR_IN}, {URB_DIR_OUT, USBIP_URB_DIR_OUT}, {URB_DIR_MASK, USBIP_URB_DIR_MASK}, {URB_DMA_MAP_SINGLE, USBIP_URB_DMA_MAP_SINGLE}, {URB_DMA_MAP_PAGE, USBIP_URB_DMA_MAP_PAGE}, {URB_DMA_MAP_SG, USBIP_URB_DMA_MAP_SG}, {URB_MAP_LOCAL, USBIP_URB_MAP_LOCAL}, {URB_SETUP_MAP_SINGLE, USBIP_URB_SETUP_MAP_SINGLE}, {URB_SETUP_MAP_LOCAL, USBIP_URB_SETUP_MAP_LOCAL}, {URB_DMA_SG_COMBINED, USBIP_URB_DMA_SG_COMBINED}, {URB_ALIGNED_TEMP_BUFFER, USBIP_URB_ALIGNED_TEMP_BUFFER}, }; static unsigned int urb_to_usbip(unsigned int flags) { unsigned int map_flags = 0; int loop; for (loop = 0; loop < NUM_USBIP_FLAGS; loop++) { if (flags & flag_map[loop].urb_flag) map_flags |= flag_map[loop].usbip_flag; } return map_flags; } static unsigned int usbip_to_urb(unsigned int flags) { unsigned int map_flags = 0; int loop; for (loop = 0; loop < NUM_USBIP_FLAGS; loop++) { if (flags & flag_map[loop].usbip_flag) map_flags |= flag_map[loop].urb_flag; } return map_flags; } static void usbip_pack_cmd_submit(struct usbip_header *pdu, struct urb *urb, int pack) { struct usbip_header_cmd_submit *spdu = &pdu->u.cmd_submit; /* * Some members are not still implemented in usbip. I hope this issue * will be discussed when usbip is ported to other operating systems. */ if (pack) { /* map after tweaking the urb flags */ spdu->transfer_flags = urb_to_usbip(tweak_transfer_flags(urb->transfer_flags)); spdu->transfer_buffer_length = urb->transfer_buffer_length; spdu->start_frame = urb->start_frame; spdu->number_of_packets = urb->number_of_packets; spdu->interval = urb->interval; } else { urb->transfer_flags = usbip_to_urb(spdu->transfer_flags); urb->transfer_buffer_length = spdu->transfer_buffer_length; urb->start_frame = spdu->start_frame; urb->number_of_packets = spdu->number_of_packets; urb->interval = spdu->interval; } } static void usbip_pack_ret_submit(struct usbip_header *pdu, struct urb *urb, int pack) { struct usbip_header_ret_submit *rpdu = &pdu->u.ret_submit; if (pack) { rpdu->status = urb->status; rpdu->actual_length = urb->actual_length; rpdu->start_frame = urb->start_frame; rpdu->number_of_packets = urb->number_of_packets; rpdu->error_count = urb->error_count; } else { urb->status = rpdu->status; urb->actual_length = rpdu->actual_length; urb->start_frame = rpdu->start_frame; urb->number_of_packets = rpdu->number_of_packets; urb->error_count = rpdu->error_count; } } void usbip_pack_pdu(struct usbip_header *pdu, struct urb *urb, int cmd, int pack) { switch (cmd) { case USBIP_CMD_SUBMIT: usbip_pack_cmd_submit(pdu, urb, pack); break; case USBIP_RET_SUBMIT: usbip_pack_ret_submit(pdu, urb, pack); break; default: /* NOT REACHED */ pr_err("unknown command\n"); break; } } EXPORT_SYMBOL_GPL(usbip_pack_pdu); static void correct_endian_basic(struct usbip_header_basic *base, int send) { if (send) { base->command = cpu_to_be32(base->command); base->seqnum = cpu_to_be32(base->seqnum); base->devid = cpu_to_be32(base->devid); base->direction = cpu_to_be32(base->direction); base->ep = cpu_to_be32(base->ep); } else { base->command = be32_to_cpu(base->command); base->seqnum = be32_to_cpu(base->seqnum); base->devid = be32_to_cpu(base->devid); base->direction = be32_to_cpu(base->direction); base->ep = be32_to_cpu(base->ep); } } static void correct_endian_cmd_submit(struct usbip_header_cmd_submit *pdu, int send) { if (send) { pdu->transfer_flags = cpu_to_be32(pdu->transfer_flags); cpu_to_be32s(&pdu->transfer_buffer_length); cpu_to_be32s(&pdu->start_frame); cpu_to_be32s(&pdu->number_of_packets); cpu_to_be32s(&pdu->interval); } else { pdu->transfer_flags = be32_to_cpu(pdu->transfer_flags); be32_to_cpus(&pdu->transfer_buffer_length); be32_to_cpus(&pdu->start_frame); be32_to_cpus(&pdu->number_of_packets); be32_to_cpus(&pdu->interval); } } static void correct_endian_ret_submit(struct usbip_header_ret_submit *pdu, int send) { if (send) { cpu_to_be32s(&pdu->status); cpu_to_be32s(&pdu->actual_length); cpu_to_be32s(&pdu->start_frame); cpu_to_be32s(&pdu->number_of_packets); cpu_to_be32s(&pdu->error_count); } else { be32_to_cpus(&pdu->status); be32_to_cpus(&pdu->actual_length); be32_to_cpus(&pdu->start_frame); be32_to_cpus(&pdu->number_of_packets); be32_to_cpus(&pdu->error_count); } } static void correct_endian_cmd_unlink(struct usbip_header_cmd_unlink *pdu, int send) { if (send) pdu->seqnum = cpu_to_be32(pdu->seqnum); else pdu->seqnum = be32_to_cpu(pdu->seqnum); } static void correct_endian_ret_unlink(struct usbip_header_ret_unlink *pdu, int send) { if (send) cpu_to_be32s(&pdu->status); else be32_to_cpus(&pdu->status); } void usbip_header_correct_endian(struct usbip_header *pdu, int send) { __u32 cmd = 0; if (send) cmd = pdu->base.command; correct_endian_basic(&pdu->base, send); if (!send) cmd = pdu->base.command; switch (cmd) { case USBIP_CMD_SUBMIT: correct_endian_cmd_submit(&pdu->u.cmd_submit, send); break; case USBIP_RET_SUBMIT: correct_endian_ret_submit(&pdu->u.ret_submit, send); break; case USBIP_CMD_UNLINK: correct_endian_cmd_unlink(&pdu->u.cmd_unlink, send); break; case USBIP_RET_UNLINK: correct_endian_ret_unlink(&pdu->u.ret_unlink, send); break; default: /* NOT REACHED */ pr_err("unknown command\n"); break; } } EXPORT_SYMBOL_GPL(usbip_header_correct_endian); static void usbip_iso_packet_correct_endian( struct usbip_iso_packet_descriptor *iso, int send) { /* does not need all members. but copy all simply. */ if (send) { iso->offset = cpu_to_be32(iso->offset); iso->length = cpu_to_be32(iso->length); iso->status = cpu_to_be32(iso->status); iso->actual_length = cpu_to_be32(iso->actual_length); } else { iso->offset = be32_to_cpu(iso->offset); iso->length = be32_to_cpu(iso->length); iso->status = be32_to_cpu(iso->status); iso->actual_length = be32_to_cpu(iso->actual_length); } } static void usbip_pack_iso(struct usbip_iso_packet_descriptor *iso, struct usb_iso_packet_descriptor *uiso, int pack) { if (pack) { iso->offset = uiso->offset; iso->length = uiso->length; iso->status = uiso->status; iso->actual_length = uiso->actual_length; } else { uiso->offset = iso->offset; uiso->length = iso->length; uiso->status = iso->status; uiso->actual_length = iso->actual_length; } } /* must free buffer */ struct usbip_iso_packet_descriptor* usbip_alloc_iso_desc_pdu(struct urb *urb, ssize_t *bufflen) { struct usbip_iso_packet_descriptor *iso; int np = urb->number_of_packets; ssize_t size = np * sizeof(*iso); int i; iso = kzalloc(size, GFP_KERNEL); if (!iso) return NULL; for (i = 0; i < np; i++) { usbip_pack_iso(&iso[i], &urb->iso_frame_desc[i], 1); usbip_iso_packet_correct_endian(&iso[i], 1); } *bufflen = size; return iso; } EXPORT_SYMBOL_GPL(usbip_alloc_iso_desc_pdu); /* some members of urb must be substituted before. */ int usbip_recv_iso(struct usbip_device *ud, struct urb *urb) { void *buff; struct usbip_iso_packet_descriptor *iso; int np = urb->number_of_packets; int size = np * sizeof(*iso); int i; int ret; int total_length = 0; if (!usb_pipeisoc(urb->pipe)) return 0; /* my Bluetooth dongle gets ISO URBs which are np = 0 */ if (np == 0) return 0; buff = kzalloc(size, GFP_KERNEL); if (!buff) return -ENOMEM; ret = usbip_recv(ud->tcp_socket, buff, size); if (ret != size) { dev_err(&urb->dev->dev, "recv iso_frame_descriptor, %d\n", ret); kfree(buff); if (ud->side == USBIP_STUB || ud->side == USBIP_VUDC) usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); else usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return -EPIPE; } iso = (struct usbip_iso_packet_descriptor *) buff; for (i = 0; i < np; i++) { usbip_iso_packet_correct_endian(&iso[i], 0); usbip_pack_iso(&iso[i], &urb->iso_frame_desc[i], 0); total_length += urb->iso_frame_desc[i].actual_length; } kfree(buff); if (total_length != urb->actual_length) { dev_err(&urb->dev->dev, "total length of iso packets %d not equal to actual length of buffer %d\n", total_length, urb->actual_length); if (ud->side == USBIP_STUB || ud->side == USBIP_VUDC) usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); else usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return -EPIPE; } return ret; } EXPORT_SYMBOL_GPL(usbip_recv_iso); /* * This functions restores the padding which was removed for optimizing * the bandwidth during transfer over tcp/ip * * buffer and iso packets need to be stored and be in propeper endian in urb * before calling this function */ void usbip_pad_iso(struct usbip_device *ud, struct urb *urb) { int np = urb->number_of_packets; int i; int actualoffset = urb->actual_length; if (!usb_pipeisoc(urb->pipe)) return; /* if no packets or length of data is 0, then nothing to unpack */ if (np == 0 || urb->actual_length == 0) return; /* * if actual_length is transfer_buffer_length then no padding is * present. */ if (urb->actual_length == urb->transfer_buffer_length) return; /* * loop over all packets from last to first (to prevent overwriting * memory when padding) and move them into the proper place */ for (i = np-1; i > 0; i--) { actualoffset -= urb->iso_frame_desc[i].actual_length; memmove(urb->transfer_buffer + urb->iso_frame_desc[i].offset, urb->transfer_buffer + actualoffset, urb->iso_frame_desc[i].actual_length); } } EXPORT_SYMBOL_GPL(usbip_pad_iso); /* some members of urb must be substituted before. */ int usbip_recv_xbuff(struct usbip_device *ud, struct urb *urb) { struct scatterlist *sg; int ret = 0; int recv; int size; int copy; int i; if (ud->side == USBIP_STUB || ud->side == USBIP_VUDC) { /* the direction of urb must be OUT. */ if (usb_pipein(urb->pipe)) return 0; size = urb->transfer_buffer_length; } else { /* the direction of urb must be IN. */ if (usb_pipeout(urb->pipe)) return 0; size = urb->actual_length; } /* no need to recv xbuff */ if (!(size > 0)) return 0; if (size > urb->transfer_buffer_length) /* should not happen, probably malicious packet */ goto error; if (urb->num_sgs) { copy = size; for_each_sg(urb->sg, sg, urb->num_sgs, i) { int recv_size; if (copy < sg->length) recv_size = copy; else recv_size = sg->length; recv = usbip_recv(ud->tcp_socket, sg_virt(sg), recv_size); if (recv != recv_size) goto error; copy -= recv; ret += recv; if (!copy) break; } if (ret != size) goto error; } else { ret = usbip_recv(ud->tcp_socket, urb->transfer_buffer, size); if (ret != size) goto error; } return ret; error: dev_err(&urb->dev->dev, "recv xbuf, %d\n", ret); if (ud->side == USBIP_STUB || ud->side == USBIP_VUDC) usbip_event_add(ud, SDEV_EVENT_ERROR_TCP); else usbip_event_add(ud, VDEV_EVENT_ERROR_TCP); return -EPIPE; } EXPORT_SYMBOL_GPL(usbip_recv_xbuff); static int __init usbip_core_init(void) { return usbip_init_eh(); } static void __exit usbip_core_exit(void) { usbip_finish_eh(); return; } module_init(usbip_core_init); module_exit(usbip_core_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/usbip/usbip_common.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2003-2008 Takahiro Hirofuchi * Copyright (C) 2015-2016 Nobuo Iwata */ #include <linux/init.h> #include <linux/file.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "usbip_common.h" #include "vhci.h" #define DRIVER_AUTHOR "Takahiro Hirofuchi" #define DRIVER_DESC "USB/IP 'Virtual' Host Controller (VHCI) Driver" /* * TODO * - update root hub emulation * - move the emulation code to userland ? * porting to other operating systems * minimize kernel code * - add suspend/resume code * - clean up everything */ /* See usb gadget dummy hcd */ static int vhci_hub_status(struct usb_hcd *hcd, char *buff); static int vhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buff, u16 wLength); static int vhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags); static int vhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status); static int vhci_start(struct usb_hcd *vhci_hcd); static void vhci_stop(struct usb_hcd *hcd); static int vhci_get_frame_number(struct usb_hcd *hcd); static const char driver_name[] = "vhci_hcd"; static const char driver_desc[] = "USB/IP Virtual Host Controller"; int vhci_num_controllers = VHCI_NR_HCS; struct vhci *vhcis; static const char * const bit_desc[] = { "CONNECTION", /*0*/ "ENABLE", /*1*/ "SUSPEND", /*2*/ "OVER_CURRENT", /*3*/ "RESET", /*4*/ "L1", /*5*/ "R6", /*6*/ "R7", /*7*/ "POWER", /*8*/ "LOWSPEED", /*9*/ "HIGHSPEED", /*10*/ "PORT_TEST", /*11*/ "INDICATOR", /*12*/ "R13", /*13*/ "R14", /*14*/ "R15", /*15*/ "C_CONNECTION", /*16*/ "C_ENABLE", /*17*/ "C_SUSPEND", /*18*/ "C_OVER_CURRENT", /*19*/ "C_RESET", /*20*/ "C_L1", /*21*/ "R22", /*22*/ "R23", /*23*/ "R24", /*24*/ "R25", /*25*/ "R26", /*26*/ "R27", /*27*/ "R28", /*28*/ "R29", /*29*/ "R30", /*30*/ "R31", /*31*/ }; static const char * const bit_desc_ss[] = { "CONNECTION", /*0*/ "ENABLE", /*1*/ "SUSPEND", /*2*/ "OVER_CURRENT", /*3*/ "RESET", /*4*/ "L1", /*5*/ "R6", /*6*/ "R7", /*7*/ "R8", /*8*/ "POWER", /*9*/ "HIGHSPEED", /*10*/ "PORT_TEST", /*11*/ "INDICATOR", /*12*/ "R13", /*13*/ "R14", /*14*/ "R15", /*15*/ "C_CONNECTION", /*16*/ "C_ENABLE", /*17*/ "C_SUSPEND", /*18*/ "C_OVER_CURRENT", /*19*/ "C_RESET", /*20*/ "C_BH_RESET", /*21*/ "C_LINK_STATE", /*22*/ "C_CONFIG_ERROR", /*23*/ "R24", /*24*/ "R25", /*25*/ "R26", /*26*/ "R27", /*27*/ "R28", /*28*/ "R29", /*29*/ "R30", /*30*/ "R31", /*31*/ }; static void dump_port_status_diff(u32 prev_status, u32 new_status, bool usb3) { int i = 0; u32 bit = 1; const char * const *desc = bit_desc; if (usb3) desc = bit_desc_ss; pr_debug("status prev -> new: %08x -> %08x\n", prev_status, new_status); while (bit) { u32 prev = prev_status & bit; u32 new = new_status & bit; char change; if (!prev && new) change = '+'; else if (prev && !new) change = '-'; else change = ' '; if (prev || new) { pr_debug(" %c%s\n", change, desc[i]); if (bit == 1) /* USB_PORT_STAT_CONNECTION */ pr_debug(" %c%s\n", change, "USB_PORT_STAT_SPEED_5GBPS"); } bit <<= 1; i++; } pr_debug("\n"); } void rh_port_connect(struct vhci_device *vdev, enum usb_device_speed speed) { struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); struct vhci *vhci = vhci_hcd->vhci; int rhport = vdev->rhport; u32 status; unsigned long flags; usbip_dbg_vhci_rh("rh_port_connect %d\n", rhport); spin_lock_irqsave(&vhci->lock, flags); status = vhci_hcd->port_status[rhport]; status |= USB_PORT_STAT_CONNECTION | (1 << USB_PORT_FEAT_C_CONNECTION); switch (speed) { case USB_SPEED_HIGH: status |= USB_PORT_STAT_HIGH_SPEED; break; case USB_SPEED_LOW: status |= USB_PORT_STAT_LOW_SPEED; break; default: break; } vhci_hcd->port_status[rhport] = status; spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_poll_rh_status(vhci_hcd_to_hcd(vhci_hcd)); } static void rh_port_disconnect(struct vhci_device *vdev) { struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); struct vhci *vhci = vhci_hcd->vhci; int rhport = vdev->rhport; u32 status; unsigned long flags; usbip_dbg_vhci_rh("rh_port_disconnect %d\n", rhport); spin_lock_irqsave(&vhci->lock, flags); status = vhci_hcd->port_status[rhport]; status &= ~USB_PORT_STAT_CONNECTION; status |= (1 << USB_PORT_FEAT_C_CONNECTION); vhci_hcd->port_status[rhport] = status; spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_poll_rh_status(vhci_hcd_to_hcd(vhci_hcd)); } #define PORT_C_MASK \ ((USB_PORT_STAT_C_CONNECTION \ | USB_PORT_STAT_C_ENABLE \ | USB_PORT_STAT_C_SUSPEND \ | USB_PORT_STAT_C_OVERCURRENT \ | USB_PORT_STAT_C_RESET) << 16) /* * Returns 0 if the status hasn't changed, or the number of bytes in buf. * Ports are 0-indexed from the HCD point of view, * and 1-indexed from the USB core pointer of view. * * @buf: a bitmap to show which port status has been changed. * bit 0: reserved * bit 1: the status of port 0 has been changed. * bit 2: the status of port 1 has been changed. * ... */ static int vhci_hub_status(struct usb_hcd *hcd, char *buf) { struct vhci_hcd *vhci_hcd = hcd_to_vhci_hcd(hcd); struct vhci *vhci = vhci_hcd->vhci; int retval = DIV_ROUND_UP(VHCI_HC_PORTS + 1, 8); int rhport; int changed = 0; unsigned long flags; memset(buf, 0, retval); spin_lock_irqsave(&vhci->lock, flags); if (!HCD_HW_ACCESSIBLE(hcd)) { usbip_dbg_vhci_rh("hw accessible flag not on?\n"); goto done; } /* check pseudo status register for each port */ for (rhport = 0; rhport < VHCI_HC_PORTS; rhport++) { if ((vhci_hcd->port_status[rhport] & PORT_C_MASK)) { /* The status of a port has been changed, */ usbip_dbg_vhci_rh("port %d status changed\n", rhport); buf[(rhport + 1) / 8] |= 1 << (rhport + 1) % 8; changed = 1; } } if ((hcd->state == HC_STATE_SUSPENDED) && (changed == 1)) usb_hcd_resume_root_hub(hcd); done: spin_unlock_irqrestore(&vhci->lock, flags); return changed ? retval : 0; } /* usb 3.0 root hub device descriptor */ static struct { struct usb_bos_descriptor bos; struct usb_ss_cap_descriptor ss_cap; } __packed usb3_bos_desc = { .bos = { .bLength = USB_DT_BOS_SIZE, .bDescriptorType = USB_DT_BOS, .wTotalLength = cpu_to_le16(sizeof(usb3_bos_desc)), .bNumDeviceCaps = 1, }, .ss_cap = { .bLength = USB_DT_USB_SS_CAP_SIZE, .bDescriptorType = USB_DT_DEVICE_CAPABILITY, .bDevCapabilityType = USB_SS_CAP_TYPE, .wSpeedSupported = cpu_to_le16(USB_5GBPS_OPERATION), .bFunctionalitySupport = ilog2(USB_5GBPS_OPERATION), }, }; static inline void ss_hub_descriptor(struct usb_hub_descriptor *desc) { memset(desc, 0, sizeof *desc); desc->bDescriptorType = USB_DT_SS_HUB; desc->bDescLength = 12; desc->wHubCharacteristics = cpu_to_le16( HUB_CHAR_INDV_PORT_LPSM | HUB_CHAR_COMMON_OCPM); desc->bNbrPorts = VHCI_HC_PORTS; desc->u.ss.bHubHdrDecLat = 0x04; /* Worst case: 0.4 micro sec*/ desc->u.ss.DeviceRemovable = 0xffff; } static inline void hub_descriptor(struct usb_hub_descriptor *desc) { int width; memset(desc, 0, sizeof(*desc)); desc->bDescriptorType = USB_DT_HUB; desc->wHubCharacteristics = cpu_to_le16( HUB_CHAR_INDV_PORT_LPSM | HUB_CHAR_COMMON_OCPM); desc->bNbrPorts = VHCI_HC_PORTS; BUILD_BUG_ON(VHCI_HC_PORTS > USB_MAXCHILDREN); width = desc->bNbrPorts / 8 + 1; desc->bDescLength = USB_DT_HUB_NONVAR_SIZE + 2 * width; memset(&desc->u.hs.DeviceRemovable[0], 0, width); memset(&desc->u.hs.DeviceRemovable[width], 0xff, width); } static int vhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct vhci_hcd *vhci_hcd; struct vhci *vhci; int retval = 0; int rhport = -1; unsigned long flags; bool invalid_rhport = false; u32 prev_port_status[VHCI_HC_PORTS]; if (!HCD_HW_ACCESSIBLE(hcd)) return -ETIMEDOUT; /* * NOTE: * wIndex (bits 0-7) shows the port number and begins from 1? */ wIndex = ((__u8)(wIndex & 0x00ff)); usbip_dbg_vhci_rh("typeReq %x wValue %x wIndex %x\n", typeReq, wValue, wIndex); /* * wIndex can be 0 for some request types (typeReq). rhport is * in valid range when wIndex >= 1 and < VHCI_HC_PORTS. * * Reference port_status[] only with valid rhport when * invalid_rhport is false. */ if (wIndex < 1 || wIndex > VHCI_HC_PORTS) { invalid_rhport = true; if (wIndex > VHCI_HC_PORTS) pr_err("invalid port number %d\n", wIndex); } else rhport = wIndex - 1; vhci_hcd = hcd_to_vhci_hcd(hcd); vhci = vhci_hcd->vhci; spin_lock_irqsave(&vhci->lock, flags); /* store old status and compare now and old later */ if (usbip_dbg_flag_vhci_rh) { if (!invalid_rhport) memcpy(prev_port_status, vhci_hcd->port_status, sizeof(prev_port_status)); } switch (typeReq) { case ClearHubFeature: usbip_dbg_vhci_rh(" ClearHubFeature\n"); break; case ClearPortFeature: if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } switch (wValue) { case USB_PORT_FEAT_SUSPEND: if (hcd->speed == HCD_USB3) { pr_err(" ClearPortFeature: USB_PORT_FEAT_SUSPEND req not " "supported for USB 3.0 roothub\n"); goto error; } usbip_dbg_vhci_rh( " ClearPortFeature: USB_PORT_FEAT_SUSPEND\n"); if (vhci_hcd->port_status[rhport] & USB_PORT_STAT_SUSPEND) { /* 20msec signaling */ vhci_hcd->resuming = 1; vhci_hcd->re_timeout = jiffies + msecs_to_jiffies(20); } break; case USB_PORT_FEAT_POWER: usbip_dbg_vhci_rh( " ClearPortFeature: USB_PORT_FEAT_POWER\n"); if (hcd->speed == HCD_USB3) vhci_hcd->port_status[rhport] &= ~USB_SS_PORT_STAT_POWER; else vhci_hcd->port_status[rhport] &= ~USB_PORT_STAT_POWER; break; default: usbip_dbg_vhci_rh(" ClearPortFeature: default %x\n", wValue); if (wValue >= 32) goto error; vhci_hcd->port_status[rhport] &= ~(1 << wValue); break; } break; case GetHubDescriptor: usbip_dbg_vhci_rh(" GetHubDescriptor\n"); if (hcd->speed == HCD_USB3 && (wLength < USB_DT_SS_HUB_SIZE || wValue != (USB_DT_SS_HUB << 8))) { pr_err("Wrong hub descriptor type for USB 3.0 roothub.\n"); goto error; } if (hcd->speed == HCD_USB3) ss_hub_descriptor((struct usb_hub_descriptor *) buf); else hub_descriptor((struct usb_hub_descriptor *) buf); break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: if (hcd->speed != HCD_USB3) goto error; if ((wValue >> 8) != USB_DT_BOS) goto error; memcpy(buf, &usb3_bos_desc, sizeof(usb3_bos_desc)); retval = sizeof(usb3_bos_desc); break; case GetHubStatus: usbip_dbg_vhci_rh(" GetHubStatus\n"); *(__le32 *) buf = cpu_to_le32(0); break; case GetPortStatus: usbip_dbg_vhci_rh(" GetPortStatus port %x\n", wIndex); if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); retval = -EPIPE; goto error; } /* we do not care about resume. */ /* whoever resets or resumes must GetPortStatus to * complete it!! */ if (vhci_hcd->resuming && time_after(jiffies, vhci_hcd->re_timeout)) { vhci_hcd->port_status[rhport] |= (1 << USB_PORT_FEAT_C_SUSPEND); vhci_hcd->port_status[rhport] &= ~(1 << USB_PORT_FEAT_SUSPEND); vhci_hcd->resuming = 0; vhci_hcd->re_timeout = 0; } if ((vhci_hcd->port_status[rhport] & (1 << USB_PORT_FEAT_RESET)) != 0 && time_after(jiffies, vhci_hcd->re_timeout)) { vhci_hcd->port_status[rhport] |= (1 << USB_PORT_FEAT_C_RESET); vhci_hcd->port_status[rhport] &= ~(1 << USB_PORT_FEAT_RESET); vhci_hcd->re_timeout = 0; /* * A few drivers do usb reset during probe when * the device could be in VDEV_ST_USED state */ if (vhci_hcd->vdev[rhport].ud.status == VDEV_ST_NOTASSIGNED || vhci_hcd->vdev[rhport].ud.status == VDEV_ST_USED) { usbip_dbg_vhci_rh( " enable rhport %d (status %u)\n", rhport, vhci_hcd->vdev[rhport].ud.status); vhci_hcd->port_status[rhport] |= USB_PORT_STAT_ENABLE; } if (hcd->speed < HCD_USB3) { switch (vhci_hcd->vdev[rhport].speed) { case USB_SPEED_HIGH: vhci_hcd->port_status[rhport] |= USB_PORT_STAT_HIGH_SPEED; break; case USB_SPEED_LOW: vhci_hcd->port_status[rhport] |= USB_PORT_STAT_LOW_SPEED; break; default: pr_err("vhci_device speed not set\n"); break; } } } ((__le16 *) buf)[0] = cpu_to_le16(vhci_hcd->port_status[rhport]); ((__le16 *) buf)[1] = cpu_to_le16(vhci_hcd->port_status[rhport] >> 16); usbip_dbg_vhci_rh(" GetPortStatus bye %x %x\n", ((u16 *)buf)[0], ((u16 *)buf)[1]); break; case SetHubFeature: usbip_dbg_vhci_rh(" SetHubFeature\n"); retval = -EPIPE; break; case SetPortFeature: switch (wValue) { case USB_PORT_FEAT_LINK_STATE: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_LINK_STATE\n"); if (hcd->speed != HCD_USB3) { pr_err("USB_PORT_FEAT_LINK_STATE req not " "supported for USB 2.0 roothub\n"); goto error; } /* * Since this is dummy we don't have an actual link so * there is nothing to do for the SET_LINK_STATE cmd */ break; case USB_PORT_FEAT_U1_TIMEOUT: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_U1_TIMEOUT\n"); fallthrough; case USB_PORT_FEAT_U2_TIMEOUT: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_U2_TIMEOUT\n"); /* TODO: add suspend/resume support! */ if (hcd->speed != HCD_USB3) { pr_err("USB_PORT_FEAT_U1/2_TIMEOUT req not " "supported for USB 2.0 roothub\n"); goto error; } break; case USB_PORT_FEAT_SUSPEND: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_SUSPEND\n"); /* Applicable only for USB2.0 hub */ if (hcd->speed == HCD_USB3) { pr_err("USB_PORT_FEAT_SUSPEND req not " "supported for USB 3.0 roothub\n"); goto error; } if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } vhci_hcd->port_status[rhport] |= USB_PORT_STAT_SUSPEND; break; case USB_PORT_FEAT_POWER: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_POWER\n"); if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } if (hcd->speed == HCD_USB3) vhci_hcd->port_status[rhport] |= USB_SS_PORT_STAT_POWER; else vhci_hcd->port_status[rhport] |= USB_PORT_STAT_POWER; break; case USB_PORT_FEAT_BH_PORT_RESET: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_BH_PORT_RESET\n"); if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } /* Applicable only for USB3.0 hub */ if (hcd->speed != HCD_USB3) { pr_err("USB_PORT_FEAT_BH_PORT_RESET req not " "supported for USB 2.0 roothub\n"); goto error; } fallthrough; case USB_PORT_FEAT_RESET: usbip_dbg_vhci_rh( " SetPortFeature: USB_PORT_FEAT_RESET\n"); if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } /* if it's already enabled, disable */ if (hcd->speed == HCD_USB3) { vhci_hcd->port_status[rhport] = 0; vhci_hcd->port_status[rhport] = (USB_SS_PORT_STAT_POWER | USB_PORT_STAT_CONNECTION | USB_PORT_STAT_RESET); } else if (vhci_hcd->port_status[rhport] & USB_PORT_STAT_ENABLE) { vhci_hcd->port_status[rhport] &= ~(USB_PORT_STAT_ENABLE | USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED); } /* 50msec reset signaling */ vhci_hcd->re_timeout = jiffies + msecs_to_jiffies(50); fallthrough; default: usbip_dbg_vhci_rh(" SetPortFeature: default %d\n", wValue); if (invalid_rhport) { pr_err("invalid port number %d\n", wIndex); goto error; } if (wValue >= 32) goto error; if (hcd->speed == HCD_USB3) { if ((vhci_hcd->port_status[rhport] & USB_SS_PORT_STAT_POWER) != 0) { vhci_hcd->port_status[rhport] |= (1 << wValue); } } else if ((vhci_hcd->port_status[rhport] & USB_PORT_STAT_POWER) != 0) { vhci_hcd->port_status[rhport] |= (1 << wValue); } } break; case GetPortErrorCount: usbip_dbg_vhci_rh(" GetPortErrorCount\n"); if (hcd->speed != HCD_USB3) { pr_err("GetPortErrorCount req not " "supported for USB 2.0 roothub\n"); goto error; } /* We'll always return 0 since this is a dummy hub */ *(__le32 *) buf = cpu_to_le32(0); break; case SetHubDepth: usbip_dbg_vhci_rh(" SetHubDepth\n"); if (hcd->speed != HCD_USB3) { pr_err("SetHubDepth req not supported for " "USB 2.0 roothub\n"); goto error; } break; default: pr_err("default hub control req: %04x v%04x i%04x l%d\n", typeReq, wValue, wIndex, wLength); error: /* "protocol stall" on error */ retval = -EPIPE; } if (usbip_dbg_flag_vhci_rh) { pr_debug("port %d\n", rhport); /* Only dump valid port status */ if (!invalid_rhport) { dump_port_status_diff(prev_port_status[rhport], vhci_hcd->port_status[rhport], hcd->speed == HCD_USB3); } } usbip_dbg_vhci_rh(" bye\n"); spin_unlock_irqrestore(&vhci->lock, flags); if (!invalid_rhport && (vhci_hcd->port_status[rhport] & PORT_C_MASK) != 0) { usb_hcd_poll_rh_status(hcd); } return retval; } static void vhci_tx_urb(struct urb *urb, struct vhci_device *vdev) { struct vhci_priv *priv; struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); unsigned long flags; priv = kzalloc(sizeof(struct vhci_priv), GFP_ATOMIC); if (!priv) { usbip_event_add(&vdev->ud, VDEV_EVENT_ERROR_MALLOC); return; } spin_lock_irqsave(&vdev->priv_lock, flags); priv->seqnum = atomic_inc_return(&vhci_hcd->seqnum); if (priv->seqnum == 0xffff) dev_info(&urb->dev->dev, "seqnum max\n"); priv->vdev = vdev; priv->urb = urb; urb->hcpriv = (void *) priv; list_add_tail(&priv->list, &vdev->priv_tx); wake_up(&vdev->waitq_tx); spin_unlock_irqrestore(&vdev->priv_lock, flags); } static int vhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct vhci_hcd *vhci_hcd = hcd_to_vhci_hcd(hcd); struct vhci *vhci = vhci_hcd->vhci; struct device *dev = &urb->dev->dev; u8 portnum = urb->dev->portnum; int ret = 0; struct vhci_device *vdev; unsigned long flags; if (portnum > VHCI_HC_PORTS) { pr_err("invalid port number %d\n", portnum); return -ENODEV; } vdev = &vhci_hcd->vdev[portnum-1]; if (!urb->transfer_buffer && !urb->num_sgs && urb->transfer_buffer_length) { dev_dbg(dev, "Null URB transfer buffer\n"); return -EINVAL; } spin_lock_irqsave(&vhci->lock, flags); if (urb->status != -EINPROGRESS) { dev_err(dev, "URB already unlinked!, status %d\n", urb->status); spin_unlock_irqrestore(&vhci->lock, flags); return urb->status; } /* refuse enqueue for dead connection */ spin_lock(&vdev->ud.lock); if (vdev->ud.status == VDEV_ST_NULL || vdev->ud.status == VDEV_ST_ERROR) { dev_err(dev, "enqueue for inactive port %d\n", vdev->rhport); spin_unlock(&vdev->ud.lock); spin_unlock_irqrestore(&vhci->lock, flags); return -ENODEV; } spin_unlock(&vdev->ud.lock); ret = usb_hcd_link_urb_to_ep(hcd, urb); if (ret) goto no_need_unlink; /* * The enumeration process is as follows; * * 1. Get_Descriptor request to DevAddrs(0) EndPoint(0) * to get max packet length of default pipe * * 2. Set_Address request to DevAddr(0) EndPoint(0) * */ if (usb_pipedevice(urb->pipe) == 0) { __u8 type = usb_pipetype(urb->pipe); struct usb_ctrlrequest *ctrlreq = (struct usb_ctrlrequest *) urb->setup_packet; if (type != PIPE_CONTROL || !ctrlreq) { dev_err(dev, "invalid request to devnum 0\n"); ret = -EINVAL; goto no_need_xmit; } switch (ctrlreq->bRequest) { case USB_REQ_SET_ADDRESS: /* set_address may come when a device is reset */ dev_info(dev, "SetAddress Request (%d) to port %d\n", ctrlreq->wValue, vdev->rhport); usb_put_dev(vdev->udev); vdev->udev = usb_get_dev(urb->dev); spin_lock(&vdev->ud.lock); vdev->ud.status = VDEV_ST_USED; spin_unlock(&vdev->ud.lock); if (urb->status == -EINPROGRESS) { /* This request is successfully completed. */ /* If not -EINPROGRESS, possibly unlinked. */ urb->status = 0; } goto no_need_xmit; case USB_REQ_GET_DESCRIPTOR: if (ctrlreq->wValue == cpu_to_le16(USB_DT_DEVICE << 8)) usbip_dbg_vhci_hc( "Not yet?:Get_Descriptor to device 0 (get max pipe size)\n"); usb_put_dev(vdev->udev); vdev->udev = usb_get_dev(urb->dev); goto out; default: /* NOT REACHED */ dev_err(dev, "invalid request to devnum 0 bRequest %u, wValue %u\n", ctrlreq->bRequest, ctrlreq->wValue); ret = -EINVAL; goto no_need_xmit; } } out: vhci_tx_urb(urb, vdev); spin_unlock_irqrestore(&vhci->lock, flags); return 0; no_need_xmit: usb_hcd_unlink_urb_from_ep(hcd, urb); no_need_unlink: spin_unlock_irqrestore(&vhci->lock, flags); if (!ret) { /* usb_hcd_giveback_urb() should be called with * irqs disabled */ local_irq_disable(); usb_hcd_giveback_urb(hcd, urb, urb->status); local_irq_enable(); } return ret; } /* * vhci_rx gives back the urb after receiving the reply of the urb. If an * unlink pdu is sent or not, vhci_rx receives a normal return pdu and gives * back its urb. For the driver unlinking the urb, the content of the urb is * not important, but the calling to its completion handler is important; the * completion of unlinking is notified by the completion handler. * * * CLIENT SIDE * * - When vhci_hcd receives RET_SUBMIT, * * - case 1a). the urb of the pdu is not unlinking. * - normal case * => just give back the urb * * - case 1b). the urb of the pdu is unlinking. * - usbip.ko will return a reply of the unlinking request. * => give back the urb now and go to case 2b). * * - When vhci_hcd receives RET_UNLINK, * * - case 2a). a submit request is still pending in vhci_hcd. * - urb was really pending in usbip.ko and urb_unlink_urb() was * completed there. * => free a pending submit request * => notify unlink completeness by giving back the urb * * - case 2b). a submit request is *not* pending in vhci_hcd. * - urb was already given back to the core driver. * => do not give back the urb * * * SERVER SIDE * * - When usbip receives CMD_UNLINK, * * - case 3a). the urb of the unlink request is now in submission. * => do usb_unlink_urb(). * => after the unlink is completed, send RET_UNLINK. * * - case 3b). the urb of the unlink request is not in submission. * - may be already completed or never be received * => send RET_UNLINK * */ static int vhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct vhci_hcd *vhci_hcd = hcd_to_vhci_hcd(hcd); struct vhci *vhci = vhci_hcd->vhci; struct vhci_priv *priv; struct vhci_device *vdev; unsigned long flags; spin_lock_irqsave(&vhci->lock, flags); priv = urb->hcpriv; if (!priv) { /* URB was never linked! or will be soon given back by * vhci_rx. */ spin_unlock_irqrestore(&vhci->lock, flags); return -EIDRM; } { int ret = 0; ret = usb_hcd_check_unlink_urb(hcd, urb, status); if (ret) { spin_unlock_irqrestore(&vhci->lock, flags); return ret; } } /* send unlink request here? */ vdev = priv->vdev; if (!vdev->ud.tcp_socket) { /* tcp connection is closed */ spin_lock(&vdev->priv_lock); list_del(&priv->list); kfree(priv); urb->hcpriv = NULL; spin_unlock(&vdev->priv_lock); /* * If tcp connection is alive, we have sent CMD_UNLINK. * vhci_rx will receive RET_UNLINK and give back the URB. * Otherwise, we give back it here. */ usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_giveback_urb(hcd, urb, urb->status); spin_lock_irqsave(&vhci->lock, flags); } else { /* tcp connection is alive */ struct vhci_unlink *unlink; spin_lock(&vdev->priv_lock); /* setup CMD_UNLINK pdu */ unlink = kzalloc(sizeof(struct vhci_unlink), GFP_ATOMIC); if (!unlink) { spin_unlock(&vdev->priv_lock); spin_unlock_irqrestore(&vhci->lock, flags); usbip_event_add(&vdev->ud, VDEV_EVENT_ERROR_MALLOC); return -ENOMEM; } unlink->seqnum = atomic_inc_return(&vhci_hcd->seqnum); if (unlink->seqnum == 0xffff) pr_info("seqnum max\n"); unlink->unlink_seqnum = priv->seqnum; /* send cmd_unlink and try to cancel the pending URB in the * peer */ list_add_tail(&unlink->list, &vdev->unlink_tx); wake_up(&vdev->waitq_tx); spin_unlock(&vdev->priv_lock); } spin_unlock_irqrestore(&vhci->lock, flags); usbip_dbg_vhci_hc("leave\n"); return 0; } static void vhci_cleanup_unlink_list(struct vhci_device *vdev, struct list_head *unlink_list) { struct vhci_hcd *vhci_hcd = vdev_to_vhci_hcd(vdev); struct usb_hcd *hcd = vhci_hcd_to_hcd(vhci_hcd); struct vhci *vhci = vhci_hcd->vhci; struct vhci_unlink *unlink, *tmp; unsigned long flags; spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->priv_lock); list_for_each_entry_safe(unlink, tmp, unlink_list, list) { struct urb *urb; urb = pickup_urb_and_free_priv(vdev, unlink->unlink_seqnum); if (!urb) { list_del(&unlink->list); kfree(unlink); continue; } urb->status = -ENODEV; usb_hcd_unlink_urb_from_ep(hcd, urb); list_del(&unlink->list); spin_unlock(&vdev->priv_lock); spin_unlock_irqrestore(&vhci->lock, flags); usb_hcd_giveback_urb(hcd, urb, urb->status); spin_lock_irqsave(&vhci->lock, flags); spin_lock(&vdev->priv_lock); kfree(unlink); } spin_unlock(&vdev->priv_lock); spin_unlock_irqrestore(&vhci->lock, flags); } static void vhci_device_unlink_cleanup(struct vhci_device *vdev) { /* give back URB of unsent unlink request */ vhci_cleanup_unlink_list(vdev, &vdev->unlink_tx); /* give back URB of unanswered unlink request */ vhci_cleanup_unlink_list(vdev, &vdev->unlink_rx); } /* * The important thing is that only one context begins cleanup. * This is why error handling and cleanup become simple. * We do not want to consider race condition as possible. */ static void vhci_shutdown_connection(struct usbip_device *ud) { struct vhci_device *vdev = container_of(ud, struct vhci_device, ud); /* need this? see stub_dev.c */ if (ud->tcp_socket) { pr_debug("shutdown tcp_socket %d\n", ud->sockfd); kernel_sock_shutdown(ud->tcp_socket, SHUT_RDWR); } /* kill threads related to this sdev */ if (vdev->ud.tcp_rx) { kthread_stop_put(vdev->ud.tcp_rx); vdev->ud.tcp_rx = NULL; } if (vdev->ud.tcp_tx) { kthread_stop_put(vdev->ud.tcp_tx); vdev->ud.tcp_tx = NULL; } pr_info("stop threads\n"); /* active connection is closed */ if (vdev->ud.tcp_socket) { sockfd_put(vdev->ud.tcp_socket); vdev->ud.tcp_socket = NULL; vdev->ud.sockfd = -1; } pr_info("release socket\n"); vhci_device_unlink_cleanup(vdev); /* * rh_port_disconnect() is a trigger of ... * usb_disable_device(): * disable all the endpoints for a USB device. * usb_disable_endpoint(): * disable endpoints. pending urbs are unlinked(dequeued). * * NOTE: After calling rh_port_disconnect(), the USB device drivers of a * detached device should release used urbs in a cleanup function (i.e. * xxx_disconnect()). Therefore, vhci_hcd does not need to release * pushed urbs and their private data in this function. * * NOTE: vhci_dequeue() must be considered carefully. When shutting down * a connection, vhci_shutdown_connection() expects vhci_dequeue() * gives back pushed urbs and frees their private data by request of * the cleanup function of a USB driver. When unlinking a urb with an * active connection, vhci_dequeue() does not give back the urb which * is actually given back by vhci_rx after receiving its return pdu. * */ rh_port_disconnect(vdev); pr_info("disconnect device\n"); } static void vhci_device_reset(struct usbip_device *ud) { struct vhci_device *vdev = container_of(ud, struct vhci_device, ud); unsigned long flags; spin_lock_irqsave(&ud->lock, flags); vdev->speed = 0; vdev->devid = 0; usb_put_dev(vdev->udev); vdev->udev = NULL; if (ud->tcp_socket) { sockfd_put(ud->tcp_socket); ud->tcp_socket = NULL; ud->sockfd = -1; } ud->status = VDEV_ST_NULL; spin_unlock_irqrestore(&ud->lock, flags); } static void vhci_device_unusable(struct usbip_device *ud) { unsigned long flags; spin_lock_irqsave(&ud->lock, flags); ud->status = VDEV_ST_ERROR; spin_unlock_irqrestore(&ud->lock, flags); } static void vhci_device_init(struct vhci_device *vdev) { memset(vdev, 0, sizeof(struct vhci_device)); vdev->ud.side = USBIP_VHCI; vdev->ud.status = VDEV_ST_NULL; spin_lock_init(&vdev->ud.lock); mutex_init(&vdev->ud.sysfs_lock); INIT_LIST_HEAD(&vdev->priv_rx); INIT_LIST_HEAD(&vdev->priv_tx); INIT_LIST_HEAD(&vdev->unlink_tx); INIT_LIST_HEAD(&vdev->unlink_rx); spin_lock_init(&vdev->priv_lock); init_waitqueue_head(&vdev->waitq_tx); vdev->ud.eh_ops.shutdown = vhci_shutdown_connection; vdev->ud.eh_ops.reset = vhci_device_reset; vdev->ud.eh_ops.unusable = vhci_device_unusable; usbip_start_eh(&vdev->ud); } static int hcd_name_to_id(const char *name) { char *c; long val; int ret; c = strchr(name, '.'); if (c == NULL) return 0; ret = kstrtol(c+1, 10, &val); if (ret < 0) return ret; return val; } static int vhci_setup(struct usb_hcd *hcd) { struct vhci *vhci = *((void **)dev_get_platdata(hcd->self.controller)); if (usb_hcd_is_primary_hcd(hcd)) { vhci->vhci_hcd_hs = hcd_to_vhci_hcd(hcd); vhci->vhci_hcd_hs->vhci = vhci; /* * Mark the first roothub as being USB 2.0. * The USB 3.0 roothub will be registered later by * vhci_hcd_probe() */ hcd->speed = HCD_USB2; hcd->self.root_hub->speed = USB_SPEED_HIGH; } else { vhci->vhci_hcd_ss = hcd_to_vhci_hcd(hcd); vhci->vhci_hcd_ss->vhci = vhci; hcd->speed = HCD_USB3; hcd->self.root_hub->speed = USB_SPEED_SUPER; } /* * Support SG. * sg_tablesize is an arbitrary value to alleviate memory pressure * on the host. */ hcd->self.sg_tablesize = 32; hcd->self.no_sg_constraint = 1; return 0; } static int vhci_start(struct usb_hcd *hcd) { struct vhci_hcd *vhci_hcd = hcd_to_vhci_hcd(hcd); int id, rhport; int err; usbip_dbg_vhci_hc("enter vhci_start\n"); if (usb_hcd_is_primary_hcd(hcd)) spin_lock_init(&vhci_hcd->vhci->lock); /* initialize private data of usb_hcd */ for (rhport = 0; rhport < VHCI_HC_PORTS; rhport++) { struct vhci_device *vdev = &vhci_hcd->vdev[rhport]; vhci_device_init(vdev); vdev->rhport = rhport; } atomic_set(&vhci_hcd->seqnum, 0); hcd->power_budget = 0; /* no limit */ hcd->uses_new_polling = 1; #ifdef CONFIG_USB_OTG hcd->self.otg_port = 1; #endif id = hcd_name_to_id(hcd_name(hcd)); if (id < 0) { pr_err("invalid vhci name %s\n", hcd_name(hcd)); return -EINVAL; } /* vhci_hcd is now ready to be controlled through sysfs */ if (id == 0 && usb_hcd_is_primary_hcd(hcd)) { err = vhci_init_attr_group(); if (err) { dev_err(hcd_dev(hcd), "init attr group failed, err = %d\n", err); return err; } err = sysfs_create_group(&hcd_dev(hcd)->kobj, &vhci_attr_group); if (err) { dev_err(hcd_dev(hcd), "create sysfs files failed, err = %d\n", err); vhci_finish_attr_group(); return err; } pr_info("created sysfs %s\n", hcd_name(hcd)); } return 0; } static void vhci_stop(struct usb_hcd *hcd) { struct vhci_hcd *vhci_hcd = hcd_to_vhci_hcd(hcd); int id, rhport; usbip_dbg_vhci_hc("stop VHCI controller\n"); /* 1. remove the userland interface of vhci_hcd */ id = hcd_name_to_id(hcd_name(hcd)); if (id == 0 && usb_hcd_is_primary_hcd(hcd)) { sysfs_remove_group(&hcd_dev(hcd)->kobj, &vhci_attr_group); vhci_finish_attr_group(); } /* 2. shutdown all the ports of vhci_hcd */ for (rhport = 0; rhport < VHCI_HC_PORTS; rhport++) { struct vhci_device *vdev = &vhci_hcd->vdev[rhport]; usbip_event_add(&vdev->ud, VDEV_EVENT_REMOVED); usbip_stop_eh(&vdev->ud); } } static int vhci_get_frame_number(struct usb_hcd *hcd) { dev_err_ratelimited(&hcd->self.root_hub->dev, "Not yet implemented\n"); return 0; } #ifdef CONFIG_PM /* FIXME: suspend/resume */ static int vhci_bus_suspend(struct usb_hcd *hcd) { struct vhci *vhci = *((void **)dev_get_platdata(hcd->self.controller)); unsigned long flags; dev_dbg(&hcd->self.root_hub->dev, "%s\n", __func__); spin_lock_irqsave(&vhci->lock, flags); hcd->state = HC_STATE_SUSPENDED; spin_unlock_irqrestore(&vhci->lock, flags); return 0; } static int vhci_bus_resume(struct usb_hcd *hcd) { struct vhci *vhci = *((void **)dev_get_platdata(hcd->self.controller)); int rc = 0; unsigned long flags; dev_dbg(&hcd->self.root_hub->dev, "%s\n", __func__); spin_lock_irqsave(&vhci->lock, flags); if (!HCD_HW_ACCESSIBLE(hcd)) rc = -ESHUTDOWN; else hcd->state = HC_STATE_RUNNING; spin_unlock_irqrestore(&vhci->lock, flags); return rc; } #else #define vhci_bus_suspend NULL #define vhci_bus_resume NULL #endif /* Change a group of bulk endpoints to support multiple stream IDs */ static int vhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags) { dev_dbg(&hcd->self.root_hub->dev, "vhci_alloc_streams not implemented\n"); return 0; } /* Reverts a group of bulk endpoints back to not using stream IDs. */ static int vhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags) { dev_dbg(&hcd->self.root_hub->dev, "vhci_free_streams not implemented\n"); return 0; } static const struct hc_driver vhci_hc_driver = { .description = driver_name, .product_desc = driver_desc, .hcd_priv_size = sizeof(struct vhci_hcd), .flags = HCD_USB3 | HCD_SHARED, .reset = vhci_setup, .start = vhci_start, .stop = vhci_stop, .urb_enqueue = vhci_urb_enqueue, .urb_dequeue = vhci_urb_dequeue, .get_frame_number = vhci_get_frame_number, .hub_status_data = vhci_hub_status, .hub_control = vhci_hub_control, .bus_suspend = vhci_bus_suspend, .bus_resume = vhci_bus_resume, .alloc_streams = vhci_alloc_streams, .free_streams = vhci_free_streams, }; static int vhci_hcd_probe(struct platform_device *pdev) { struct vhci *vhci = *((void **)dev_get_platdata(&pdev->dev)); struct usb_hcd *hcd_hs; struct usb_hcd *hcd_ss; int ret; usbip_dbg_vhci_hc("name %s id %d\n", pdev->name, pdev->id); /* * Allocate and initialize hcd. * Our private data is also allocated automatically. */ hcd_hs = usb_create_hcd(&vhci_hc_driver, &pdev->dev, dev_name(&pdev->dev)); if (!hcd_hs) { pr_err("create primary hcd failed\n"); return -ENOMEM; } hcd_hs->has_tt = 1; /* * Finish generic HCD structure initialization and register. * Call the driver's reset() and start() routines. */ ret = usb_add_hcd(hcd_hs, 0, 0); if (ret != 0) { pr_err("usb_add_hcd hs failed %d\n", ret); goto put_usb2_hcd; } hcd_ss = usb_create_shared_hcd(&vhci_hc_driver, &pdev->dev, dev_name(&pdev->dev), hcd_hs); if (!hcd_ss) { ret = -ENOMEM; pr_err("create shared hcd failed\n"); goto remove_usb2_hcd; } ret = usb_add_hcd(hcd_ss, 0, 0); if (ret) { pr_err("usb_add_hcd ss failed %d\n", ret); goto put_usb3_hcd; } usbip_dbg_vhci_hc("bye\n"); return 0; put_usb3_hcd: usb_put_hcd(hcd_ss); remove_usb2_hcd: usb_remove_hcd(hcd_hs); put_usb2_hcd: usb_put_hcd(hcd_hs); vhci->vhci_hcd_hs = NULL; vhci->vhci_hcd_ss = NULL; return ret; } static void vhci_hcd_remove(struct platform_device *pdev) { struct vhci *vhci = *((void **)dev_get_platdata(&pdev->dev)); /* * Disconnects the root hub, * then reverses the effects of usb_add_hcd(), * invoking the HCD's stop() methods. */ usb_remove_hcd(vhci_hcd_to_hcd(vhci->vhci_hcd_ss)); usb_put_hcd(vhci_hcd_to_hcd(vhci->vhci_hcd_ss)); usb_remove_hcd(vhci_hcd_to_hcd(vhci->vhci_hcd_hs)); usb_put_hcd(vhci_hcd_to_hcd(vhci->vhci_hcd_hs)); vhci->vhci_hcd_hs = NULL; vhci->vhci_hcd_ss = NULL; } #ifdef CONFIG_PM /* what should happen for USB/IP under suspend/resume? */ static int vhci_hcd_suspend(struct platform_device *pdev, pm_message_t state) { struct usb_hcd *hcd; struct vhci *vhci; int rhport; int connected = 0; int ret = 0; unsigned long flags; dev_dbg(&pdev->dev, "%s\n", __func__); hcd = platform_get_drvdata(pdev); if (!hcd) return 0; vhci = *((void **)dev_get_platdata(hcd->self.controller)); spin_lock_irqsave(&vhci->lock, flags); for (rhport = 0; rhport < VHCI_HC_PORTS; rhport++) { if (vhci->vhci_hcd_hs->port_status[rhport] & USB_PORT_STAT_CONNECTION) connected += 1; if (vhci->vhci_hcd_ss->port_status[rhport] & USB_PORT_STAT_CONNECTION) connected += 1; } spin_unlock_irqrestore(&vhci->lock, flags); if (connected > 0) { dev_info(&pdev->dev, "We have %d active connection%s. Do not suspend.\n", connected, (connected == 1 ? "" : "s")); ret = -EBUSY; } else { dev_info(&pdev->dev, "suspend vhci_hcd"); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); } return ret; } static int vhci_hcd_resume(struct platform_device *pdev) { struct usb_hcd *hcd; dev_dbg(&pdev->dev, "%s\n", __func__); hcd = platform_get_drvdata(pdev); if (!hcd) return 0; set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); usb_hcd_poll_rh_status(hcd); return 0; } #else #define vhci_hcd_suspend NULL #define vhci_hcd_resume NULL #endif static struct platform_driver vhci_driver = { .probe = vhci_hcd_probe, .remove_new = vhci_hcd_remove, .suspend = vhci_hcd_suspend, .resume = vhci_hcd_resume, .driver = { .name = driver_name, }, }; static void del_platform_devices(void) { struct platform_device *pdev; int i; for (i = 0; i < vhci_num_controllers; i++) { pdev = vhcis[i].pdev; if (pdev != NULL) platform_device_unregister(pdev); vhcis[i].pdev = NULL; } sysfs_remove_link(&platform_bus.kobj, driver_name); } static int __init vhci_hcd_init(void) { int i, ret; if (usb_disabled()) return -ENODEV; if (vhci_num_controllers < 1) vhci_num_controllers = 1; vhcis = kcalloc(vhci_num_controllers, sizeof(struct vhci), GFP_KERNEL); if (vhcis == NULL) return -ENOMEM; for (i = 0; i < vhci_num_controllers; i++) { vhcis[i].pdev = platform_device_alloc(driver_name, i); if (!vhcis[i].pdev) { i--; while (i >= 0) platform_device_put(vhcis[i--].pdev); ret = -ENOMEM; goto err_device_alloc; } } for (i = 0; i < vhci_num_controllers; i++) { void *vhci = &vhcis[i]; ret = platform_device_add_data(vhcis[i].pdev, &vhci, sizeof(void *)); if (ret) goto err_driver_register; } ret = platform_driver_register(&vhci_driver); if (ret) goto err_driver_register; for (i = 0; i < vhci_num_controllers; i++) { ret = platform_device_add(vhcis[i].pdev); if (ret < 0) { i--; while (i >= 0) platform_device_del(vhcis[i--].pdev); goto err_add_hcd; } } return ret; err_add_hcd: platform_driver_unregister(&vhci_driver); err_driver_register: for (i = 0; i < vhci_num_controllers; i++) platform_device_put(vhcis[i].pdev); err_device_alloc: kfree(vhcis); return ret; } static void __exit vhci_hcd_exit(void) { del_platform_devices(); platform_driver_unregister(&vhci_driver); kfree(vhcis); } module_init(vhci_hcd_init); module_exit(vhci_hcd_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/usbip/vhci_hcd.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include <linux/dma-mapping.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/reset.h> #include "mtu3.h" #include "mtu3_dr.h" #include "mtu3_debug.h" /* u2-port0 should be powered on and enabled; */ int ssusb_check_clocks(struct ssusb_mtk *ssusb, u32 ex_clks) { void __iomem *ibase = ssusb->ippc_base; u32 value, check_val; int ret; check_val = ex_clks | SSUSB_SYS125_RST_B_STS | SSUSB_SYSPLL_STABLE | SSUSB_REF_RST_B_STS; ret = readl_poll_timeout(ibase + U3D_SSUSB_IP_PW_STS1, value, (check_val == (value & check_val)), 100, 20000); if (ret) { dev_err(ssusb->dev, "clks of sts1 are not stable!\n"); return ret; } ret = readl_poll_timeout(ibase + U3D_SSUSB_IP_PW_STS2, value, (value & SSUSB_U2_MAC_SYS_RST_B_STS), 100, 10000); if (ret) { dev_err(ssusb->dev, "mac2 clock is not stable\n"); return ret; } return 0; } static int wait_for_ip_sleep(struct ssusb_mtk *ssusb) { bool sleep_check = true; u32 value; int ret; if (!ssusb->is_host) sleep_check = ssusb_gadget_ip_sleep_check(ssusb); if (!sleep_check) return 0; /* wait for ip enter sleep mode */ ret = readl_poll_timeout(ssusb->ippc_base + U3D_SSUSB_IP_PW_STS1, value, (value & SSUSB_IP_SLEEP_STS), 100, 100000); if (ret) { dev_err(ssusb->dev, "ip sleep failed!!!\n"); ret = -EBUSY; } else { /* workaround: avoid wrong wakeup signal latch for some soc */ usleep_range(100, 200); } return ret; } static int ssusb_phy_init(struct ssusb_mtk *ssusb) { int i; int ret; for (i = 0; i < ssusb->num_phys; i++) { ret = phy_init(ssusb->phys[i]); if (ret) goto exit_phy; } return 0; exit_phy: for (; i > 0; i--) phy_exit(ssusb->phys[i - 1]); return ret; } static int ssusb_phy_exit(struct ssusb_mtk *ssusb) { int i; for (i = 0; i < ssusb->num_phys; i++) phy_exit(ssusb->phys[i]); return 0; } static int ssusb_phy_power_on(struct ssusb_mtk *ssusb) { int i; int ret; for (i = 0; i < ssusb->num_phys; i++) { ret = phy_power_on(ssusb->phys[i]); if (ret) goto power_off_phy; } return 0; power_off_phy: for (; i > 0; i--) phy_power_off(ssusb->phys[i - 1]); return ret; } static void ssusb_phy_power_off(struct ssusb_mtk *ssusb) { unsigned int i; for (i = 0; i < ssusb->num_phys; i++) phy_power_off(ssusb->phys[i]); } static int ssusb_rscs_init(struct ssusb_mtk *ssusb) { int ret = 0; ret = regulator_enable(ssusb->vusb33); if (ret) { dev_err(ssusb->dev, "failed to enable vusb33\n"); goto vusb33_err; } ret = clk_bulk_prepare_enable(BULK_CLKS_CNT, ssusb->clks); if (ret) goto clks_err; ret = ssusb_phy_init(ssusb); if (ret) { dev_err(ssusb->dev, "failed to init phy\n"); goto phy_init_err; } ret = ssusb_phy_power_on(ssusb); if (ret) { dev_err(ssusb->dev, "failed to power on phy\n"); goto phy_err; } return 0; phy_err: ssusb_phy_exit(ssusb); phy_init_err: clk_bulk_disable_unprepare(BULK_CLKS_CNT, ssusb->clks); clks_err: regulator_disable(ssusb->vusb33); vusb33_err: return ret; } static void ssusb_rscs_exit(struct ssusb_mtk *ssusb) { clk_bulk_disable_unprepare(BULK_CLKS_CNT, ssusb->clks); regulator_disable(ssusb->vusb33); ssusb_phy_power_off(ssusb); ssusb_phy_exit(ssusb); } static void ssusb_ip_sw_reset(struct ssusb_mtk *ssusb) { /* reset whole ip (xhci & u3d) */ mtu3_setbits(ssusb->ippc_base, U3D_SSUSB_IP_PW_CTRL0, SSUSB_IP_SW_RST); udelay(1); mtu3_clrbits(ssusb->ippc_base, U3D_SSUSB_IP_PW_CTRL0, SSUSB_IP_SW_RST); /* * device ip may be powered on in firmware/BROM stage before entering * kernel stage; * power down device ip, otherwise ip-sleep will fail when working as * host only mode */ mtu3_setbits(ssusb->ippc_base, U3D_SSUSB_IP_PW_CTRL2, SSUSB_IP_DEV_PDN); } static void ssusb_u3_drd_check(struct ssusb_mtk *ssusb) { struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; u32 dev_u3p_num; u32 host_u3p_num; u32 value; /* u3 port0 is disabled */ if (ssusb->u3p_dis_msk & BIT(0)) { otg_sx->is_u3_drd = false; goto out; } value = mtu3_readl(ssusb->ippc_base, U3D_SSUSB_IP_DEV_CAP); dev_u3p_num = SSUSB_IP_DEV_U3_PORT_NUM(value); value = mtu3_readl(ssusb->ippc_base, U3D_SSUSB_IP_XHCI_CAP); host_u3p_num = SSUSB_IP_XHCI_U3_PORT_NUM(value); otg_sx->is_u3_drd = !!(dev_u3p_num && host_u3p_num); out: dev_info(ssusb->dev, "usb3-drd: %d\n", otg_sx->is_u3_drd); } static int get_ssusb_rscs(struct platform_device *pdev, struct ssusb_mtk *ssusb) { struct device_node *node = pdev->dev.of_node; struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; struct clk_bulk_data *clks = ssusb->clks; struct device *dev = &pdev->dev; int i; int ret; ssusb->vusb33 = devm_regulator_get(dev, "vusb33"); if (IS_ERR(ssusb->vusb33)) { dev_err(dev, "failed to get vusb33\n"); return PTR_ERR(ssusb->vusb33); } clks[0].id = "sys_ck"; clks[1].id = "ref_ck"; clks[2].id = "mcu_ck"; clks[3].id = "dma_ck"; clks[4].id = "xhci_ck"; clks[5].id = "frmcnt_ck"; ret = devm_clk_bulk_get_optional(dev, BULK_CLKS_CNT, clks); if (ret) return ret; ssusb->num_phys = of_count_phandle_with_args(node, "phys", "#phy-cells"); if (ssusb->num_phys > 0) { ssusb->phys = devm_kcalloc(dev, ssusb->num_phys, sizeof(*ssusb->phys), GFP_KERNEL); if (!ssusb->phys) return -ENOMEM; } else { ssusb->num_phys = 0; } for (i = 0; i < ssusb->num_phys; i++) { ssusb->phys[i] = devm_of_phy_get_by_index(dev, node, i); if (IS_ERR(ssusb->phys[i])) { dev_err(dev, "failed to get phy-%d\n", i); return PTR_ERR(ssusb->phys[i]); } } ssusb->ippc_base = devm_platform_ioremap_resource_byname(pdev, "ippc"); if (IS_ERR(ssusb->ippc_base)) return PTR_ERR(ssusb->ippc_base); ssusb->wakeup_irq = platform_get_irq_byname_optional(pdev, "wakeup"); if (ssusb->wakeup_irq == -EPROBE_DEFER) return ssusb->wakeup_irq; ssusb->dr_mode = usb_get_dr_mode(dev); if (ssusb->dr_mode == USB_DR_MODE_UNKNOWN) ssusb->dr_mode = USB_DR_MODE_OTG; of_property_read_u32(node, "mediatek,u3p-dis-msk", &ssusb->u3p_dis_msk); if (ssusb->dr_mode == USB_DR_MODE_PERIPHERAL) goto out; /* if host role is supported */ ret = ssusb_wakeup_of_property_parse(ssusb, node); if (ret) { dev_err(dev, "failed to parse uwk property\n"); return ret; } /* optional property, ignore the error if it does not exist */ of_property_read_u32(node, "mediatek,u2p-dis-msk", &ssusb->u2p_dis_msk); otg_sx->vbus = devm_regulator_get(dev, "vbus"); if (IS_ERR(otg_sx->vbus)) { dev_err(dev, "failed to get vbus\n"); return PTR_ERR(otg_sx->vbus); } if (ssusb->dr_mode == USB_DR_MODE_HOST) goto out; /* if dual-role mode is supported */ otg_sx->manual_drd_enabled = of_property_read_bool(node, "enable-manual-drd"); otg_sx->role_sw_used = of_property_read_bool(node, "usb-role-switch"); /* can't disable port0 when use dual-role mode */ ssusb->u2p_dis_msk &= ~0x1; if (otg_sx->role_sw_used || otg_sx->manual_drd_enabled) goto out; if (of_property_read_bool(node, "extcon")) { otg_sx->edev = extcon_get_edev_by_phandle(ssusb->dev, 0); if (IS_ERR(otg_sx->edev)) { return dev_err_probe(dev, PTR_ERR(otg_sx->edev), "couldn't get extcon device\n"); } } out: dev_info(dev, "dr_mode: %d, drd: %s\n", ssusb->dr_mode, otg_sx->manual_drd_enabled ? "manual" : "auto"); dev_info(dev, "u2p_dis_msk: %x, u3p_dis_msk: %x\n", ssusb->u2p_dis_msk, ssusb->u3p_dis_msk); return 0; } static int mtu3_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct ssusb_mtk *ssusb; int ret = -ENOMEM; /* all elements are set to ZERO as default value */ ssusb = devm_kzalloc(dev, sizeof(*ssusb), GFP_KERNEL); if (!ssusb) return -ENOMEM; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "No suitable DMA config available\n"); return -ENOTSUPP; } platform_set_drvdata(pdev, ssusb); ssusb->dev = dev; ret = get_ssusb_rscs(pdev, ssusb); if (ret) return ret; ssusb_debugfs_create_root(ssusb); /* enable power domain */ pm_runtime_set_active(dev); pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, 4000); pm_runtime_enable(dev); pm_runtime_get_sync(dev); device_init_wakeup(dev, true); ret = ssusb_rscs_init(ssusb); if (ret) goto comm_init_err; if (ssusb->wakeup_irq > 0) { ret = dev_pm_set_dedicated_wake_irq_reverse(dev, ssusb->wakeup_irq); if (ret) { dev_err(dev, "failed to set wakeup irq %d\n", ssusb->wakeup_irq); goto comm_exit; } dev_info(dev, "wakeup irq %d\n", ssusb->wakeup_irq); } ret = device_reset_optional(dev); if (ret) { dev_err_probe(dev, ret, "failed to reset controller\n"); goto comm_exit; } ssusb_ip_sw_reset(ssusb); ssusb_u3_drd_check(ssusb); if (IS_ENABLED(CONFIG_USB_MTU3_HOST)) ssusb->dr_mode = USB_DR_MODE_HOST; else if (IS_ENABLED(CONFIG_USB_MTU3_GADGET)) ssusb->dr_mode = USB_DR_MODE_PERIPHERAL; /* default as host */ ssusb->is_host = !(ssusb->dr_mode == USB_DR_MODE_PERIPHERAL); switch (ssusb->dr_mode) { case USB_DR_MODE_PERIPHERAL: ret = ssusb_gadget_init(ssusb); if (ret) { dev_err(dev, "failed to initialize gadget\n"); goto comm_exit; } break; case USB_DR_MODE_HOST: ret = ssusb_host_init(ssusb, node); if (ret) { dev_err(dev, "failed to initialize host\n"); goto comm_exit; } break; case USB_DR_MODE_OTG: ret = ssusb_gadget_init(ssusb); if (ret) { dev_err(dev, "failed to initialize gadget\n"); goto comm_exit; } ret = ssusb_host_init(ssusb, node); if (ret) { dev_err(dev, "failed to initialize host\n"); goto gadget_exit; } ret = ssusb_otg_switch_init(ssusb); if (ret) { dev_err(dev, "failed to initialize switch\n"); goto host_exit; } break; default: dev_err(dev, "unsupported mode: %d\n", ssusb->dr_mode); ret = -EINVAL; goto comm_exit; } device_enable_async_suspend(dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); pm_runtime_forbid(dev); return 0; host_exit: ssusb_host_exit(ssusb); gadget_exit: ssusb_gadget_exit(ssusb); comm_exit: ssusb_rscs_exit(ssusb); comm_init_err: pm_runtime_put_noidle(dev); pm_runtime_disable(dev); ssusb_debugfs_remove_root(ssusb); return ret; } static int mtu3_remove(struct platform_device *pdev) { struct ssusb_mtk *ssusb = platform_get_drvdata(pdev); pm_runtime_get_sync(&pdev->dev); switch (ssusb->dr_mode) { case USB_DR_MODE_PERIPHERAL: ssusb_gadget_exit(ssusb); break; case USB_DR_MODE_HOST: ssusb_host_exit(ssusb); break; case USB_DR_MODE_OTG: ssusb_otg_switch_exit(ssusb); ssusb_gadget_exit(ssusb); ssusb_host_exit(ssusb); break; default: return -EINVAL; } ssusb_rscs_exit(ssusb); ssusb_debugfs_remove_root(ssusb); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); return 0; } static int resume_ip_and_ports(struct ssusb_mtk *ssusb, pm_message_t msg) { switch (ssusb->dr_mode) { case USB_DR_MODE_PERIPHERAL: ssusb_gadget_resume(ssusb, msg); break; case USB_DR_MODE_HOST: ssusb_host_resume(ssusb, false); break; case USB_DR_MODE_OTG: ssusb_host_resume(ssusb, !ssusb->is_host); if (!ssusb->is_host) ssusb_gadget_resume(ssusb, msg); break; default: return -EINVAL; } return 0; } static int mtu3_suspend_common(struct device *dev, pm_message_t msg) { struct ssusb_mtk *ssusb = dev_get_drvdata(dev); int ret = 0; dev_dbg(dev, "%s\n", __func__); switch (ssusb->dr_mode) { case USB_DR_MODE_PERIPHERAL: ret = ssusb_gadget_suspend(ssusb, msg); if (ret) goto err; break; case USB_DR_MODE_HOST: ssusb_host_suspend(ssusb); break; case USB_DR_MODE_OTG: if (!ssusb->is_host) { ret = ssusb_gadget_suspend(ssusb, msg); if (ret) goto err; } ssusb_host_suspend(ssusb); break; default: return -EINVAL; } ret = wait_for_ip_sleep(ssusb); if (ret) goto sleep_err; ssusb_phy_power_off(ssusb); clk_bulk_disable_unprepare(BULK_CLKS_CNT, ssusb->clks); ssusb_wakeup_set(ssusb, true); return 0; sleep_err: resume_ip_and_ports(ssusb, msg); err: return ret; } static int mtu3_resume_common(struct device *dev, pm_message_t msg) { struct ssusb_mtk *ssusb = dev_get_drvdata(dev); int ret; dev_dbg(dev, "%s\n", __func__); ssusb_wakeup_set(ssusb, false); ret = clk_bulk_prepare_enable(BULK_CLKS_CNT, ssusb->clks); if (ret) goto clks_err; ret = ssusb_phy_power_on(ssusb); if (ret) goto phy_err; return resume_ip_and_ports(ssusb, msg); phy_err: clk_bulk_disable_unprepare(BULK_CLKS_CNT, ssusb->clks); clks_err: return ret; } static int __maybe_unused mtu3_suspend(struct device *dev) { return mtu3_suspend_common(dev, PMSG_SUSPEND); } static int __maybe_unused mtu3_resume(struct device *dev) { return mtu3_resume_common(dev, PMSG_SUSPEND); } static int __maybe_unused mtu3_runtime_suspend(struct device *dev) { if (!device_may_wakeup(dev)) return 0; return mtu3_suspend_common(dev, PMSG_AUTO_SUSPEND); } static int __maybe_unused mtu3_runtime_resume(struct device *dev) { if (!device_may_wakeup(dev)) return 0; return mtu3_resume_common(dev, PMSG_AUTO_SUSPEND); } static const struct dev_pm_ops mtu3_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(mtu3_suspend, mtu3_resume) SET_RUNTIME_PM_OPS(mtu3_runtime_suspend, mtu3_runtime_resume, NULL) }; #define DEV_PM_OPS (IS_ENABLED(CONFIG_PM) ? &mtu3_pm_ops : NULL) static const struct of_device_id mtu3_of_match[] = { {.compatible = "mediatek,mt8173-mtu3",}, {.compatible = "mediatek,mtu3",}, {}, }; MODULE_DEVICE_TABLE(of, mtu3_of_match); static struct platform_driver mtu3_driver = { .probe = mtu3_probe, .remove = mtu3_remove, .driver = { .name = MTU3_DRIVER_NAME, .pm = DEV_PM_OPS, .of_match_table = mtu3_of_match, }, }; module_platform_driver(mtu3_driver); MODULE_AUTHOR("Chunfeng Yun <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MediaTek USB3 DRD Controller Driver");
linux-master
drivers/usb/mtu3/mtu3_plat.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_debugfs.c - debugfs interface * * Copyright (C) 2019 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include <linux/uaccess.h> #include "mtu3.h" #include "mtu3_dr.h" #include "mtu3_debug.h" #define dump_register(nm) \ { \ .name = __stringify(nm), \ .offset = U3D_ ##nm, \ } #define dump_prb_reg(nm, os) \ { \ .name = nm, \ .offset = os, \ } static const struct debugfs_reg32 mtu3_ippc_regs[] = { dump_register(SSUSB_IP_PW_CTRL0), dump_register(SSUSB_IP_PW_CTRL1), dump_register(SSUSB_IP_PW_CTRL2), dump_register(SSUSB_IP_PW_CTRL3), dump_register(SSUSB_IP_PW_STS1), dump_register(SSUSB_OTG_STS), dump_register(SSUSB_IP_XHCI_CAP), dump_register(SSUSB_IP_DEV_CAP), dump_register(SSUSB_U3_CTRL_0P), dump_register(SSUSB_U2_CTRL_0P), dump_register(SSUSB_HW_ID), dump_register(SSUSB_HW_SUB_ID), dump_register(SSUSB_IP_SPARE0), }; static const struct debugfs_reg32 mtu3_dev_regs[] = { dump_register(LV1ISR), dump_register(LV1IER), dump_register(EPISR), dump_register(EPIER), dump_register(EP0CSR), dump_register(RXCOUNT0), dump_register(QISAR0), dump_register(QIER0), dump_register(QISAR1), dump_register(QIER1), dump_register(CAP_EPNTXFFSZ), dump_register(CAP_EPNRXFFSZ), dump_register(CAP_EPINFO), dump_register(MISC_CTRL), }; static const struct debugfs_reg32 mtu3_csr_regs[] = { dump_register(DEVICE_CONF), dump_register(DEV_LINK_INTR_ENABLE), dump_register(DEV_LINK_INTR), dump_register(LTSSM_CTRL), dump_register(USB3_CONFIG), dump_register(LINK_STATE_MACHINE), dump_register(LTSSM_INTR_ENABLE), dump_register(LTSSM_INTR), dump_register(U3U2_SWITCH_CTRL), dump_register(POWER_MANAGEMENT), dump_register(DEVICE_CONTROL), dump_register(COMMON_USB_INTR_ENABLE), dump_register(COMMON_USB_INTR), dump_register(USB20_MISC_CONTROL), dump_register(USB20_OPSTATE), }; static int mtu3_link_state_show(struct seq_file *sf, void *unused) { struct mtu3 *mtu = sf->private; void __iomem *mbase = mtu->mac_base; seq_printf(sf, "opstate: %#x, ltssm: %#x\n", mtu3_readl(mbase, U3D_USB20_OPSTATE), LTSSM_STATE(mtu3_readl(mbase, U3D_LINK_STATE_MACHINE))); return 0; } static int mtu3_ep_used_show(struct seq_file *sf, void *unused) { struct mtu3 *mtu = sf->private; struct mtu3_ep *mep; unsigned long flags; int used = 0; int i; spin_lock_irqsave(&mtu->lock, flags); for (i = 0; i < mtu->num_eps; i++) { mep = mtu->in_eps + i; if (mep->flags & MTU3_EP_ENABLED) { seq_printf(sf, "%s - type: %s\n", mep->name, usb_ep_type_string(mep->type)); used++; } mep = mtu->out_eps + i; if (mep->flags & MTU3_EP_ENABLED) { seq_printf(sf, "%s - type: %s\n", mep->name, usb_ep_type_string(mep->type)); used++; } } seq_printf(sf, "total used: %d eps\n", used); spin_unlock_irqrestore(&mtu->lock, flags); return 0; } DEFINE_SHOW_ATTRIBUTE(mtu3_link_state); DEFINE_SHOW_ATTRIBUTE(mtu3_ep_used); static void mtu3_debugfs_regset(struct mtu3 *mtu, void __iomem *base, const struct debugfs_reg32 *regs, size_t nregs, const char *name, struct dentry *parent) { struct debugfs_regset32 *regset; struct mtu3_regset *mregs; mregs = devm_kzalloc(mtu->dev, sizeof(*mregs), GFP_KERNEL); if (!mregs) return; sprintf(mregs->name, "%s", name); regset = &mregs->regset; regset->regs = regs; regset->nregs = nregs; regset->base = base; debugfs_create_regset32(mregs->name, 0444, parent, regset); } static void mtu3_debugfs_ep_regset(struct mtu3 *mtu, struct mtu3_ep *mep, struct dentry *parent) { struct debugfs_reg32 *regs; int epnum = mep->epnum; int in = mep->is_in; regs = devm_kcalloc(mtu->dev, 7, sizeof(*regs), GFP_KERNEL); if (!regs) return; regs[0].name = in ? "TCR0" : "RCR0"; regs[0].offset = in ? MU3D_EP_TXCR0(epnum) : MU3D_EP_RXCR0(epnum); regs[1].name = in ? "TCR1" : "RCR1"; regs[1].offset = in ? MU3D_EP_TXCR1(epnum) : MU3D_EP_RXCR1(epnum); regs[2].name = in ? "TCR2" : "RCR2"; regs[2].offset = in ? MU3D_EP_TXCR2(epnum) : MU3D_EP_RXCR2(epnum); regs[3].name = in ? "TQHIAR" : "RQHIAR"; regs[3].offset = in ? USB_QMU_TQHIAR(epnum) : USB_QMU_RQHIAR(epnum); regs[4].name = in ? "TQCSR" : "RQCSR"; regs[4].offset = in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum); regs[5].name = in ? "TQSAR" : "RQSAR"; regs[5].offset = in ? USB_QMU_TQSAR(epnum) : USB_QMU_RQSAR(epnum); regs[6].name = in ? "TQCPR" : "RQCPR"; regs[6].offset = in ? USB_QMU_TQCPR(epnum) : USB_QMU_RQCPR(epnum); mtu3_debugfs_regset(mtu, mtu->mac_base, regs, 7, "ep-regs", parent); } static int mtu3_ep_info_show(struct seq_file *sf, void *unused) { struct mtu3_ep *mep = sf->private; struct mtu3 *mtu = mep->mtu; unsigned long flags; spin_lock_irqsave(&mtu->lock, flags); seq_printf(sf, "ep - type:%s, maxp:%d, slot:%d, flags:%x\n", usb_ep_type_string(mep->type), mep->maxp, mep->slot, mep->flags); spin_unlock_irqrestore(&mtu->lock, flags); return 0; } static int mtu3_fifo_show(struct seq_file *sf, void *unused) { struct mtu3_ep *mep = sf->private; struct mtu3 *mtu = mep->mtu; unsigned long flags; spin_lock_irqsave(&mtu->lock, flags); seq_printf(sf, "fifo - seg_size:%d, addr:%d, size:%d\n", mep->fifo_seg_size, mep->fifo_addr, mep->fifo_size); spin_unlock_irqrestore(&mtu->lock, flags); return 0; } static int mtu3_qmu_ring_show(struct seq_file *sf, void *unused) { struct mtu3_ep *mep = sf->private; struct mtu3 *mtu = mep->mtu; struct mtu3_gpd_ring *ring; unsigned long flags; ring = &mep->gpd_ring; spin_lock_irqsave(&mtu->lock, flags); seq_printf(sf, "qmu-ring - dma:%pad, start:%p, end:%p, enq:%p, dep:%p\n", &ring->dma, ring->start, ring->end, ring->enqueue, ring->dequeue); spin_unlock_irqrestore(&mtu->lock, flags); return 0; } static int mtu3_qmu_gpd_show(struct seq_file *sf, void *unused) { struct mtu3_ep *mep = sf->private; struct mtu3 *mtu = mep->mtu; struct mtu3_gpd_ring *ring; struct qmu_gpd *gpd; dma_addr_t dma; unsigned long flags; int i; spin_lock_irqsave(&mtu->lock, flags); ring = &mep->gpd_ring; gpd = ring->start; if (!gpd || !(mep->flags & MTU3_EP_ENABLED)) { seq_puts(sf, "empty!\n"); goto out; } for (i = 0; i < MAX_GPD_NUM; i++, gpd++) { dma = ring->dma + i * sizeof(*gpd); seq_printf(sf, "gpd.%03d -> %pad, %p: %08x %08x %08x %08x\n", i, &dma, gpd, gpd->dw0_info, gpd->next_gpd, gpd->buffer, gpd->dw3_info); } out: spin_unlock_irqrestore(&mtu->lock, flags); return 0; } static const struct mtu3_file_map mtu3_ep_files[] = { {"ep-info", mtu3_ep_info_show, }, {"fifo", mtu3_fifo_show, }, {"qmu-ring", mtu3_qmu_ring_show, }, {"qmu-gpd", mtu3_qmu_gpd_show, }, }; static int mtu3_ep_open(struct inode *inode, struct file *file) { const char *file_name = file_dentry(file)->d_iname; const struct mtu3_file_map *f_map; int i; for (i = 0; i < ARRAY_SIZE(mtu3_ep_files); i++) { f_map = &mtu3_ep_files[i]; if (strcmp(f_map->name, file_name) == 0) break; } return single_open(file, f_map->show, inode->i_private); } static const struct file_operations mtu3_ep_fops = { .open = mtu3_ep_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct debugfs_reg32 mtu3_prb_regs[] = { dump_prb_reg("enable", U3D_SSUSB_PRB_CTRL0), dump_prb_reg("byte-sell", U3D_SSUSB_PRB_CTRL1), dump_prb_reg("byte-selh", U3D_SSUSB_PRB_CTRL2), dump_prb_reg("module-sel", U3D_SSUSB_PRB_CTRL3), dump_prb_reg("sw-out", U3D_SSUSB_PRB_CTRL4), dump_prb_reg("data", U3D_SSUSB_PRB_CTRL5), }; static int mtu3_probe_show(struct seq_file *sf, void *unused) { const char *file_name = file_dentry(sf->file)->d_iname; struct mtu3 *mtu = sf->private; const struct debugfs_reg32 *regs; int i; for (i = 0; i < ARRAY_SIZE(mtu3_prb_regs); i++) { regs = &mtu3_prb_regs[i]; if (strcmp(regs->name, file_name) == 0) break; } seq_printf(sf, "0x%04x - 0x%08x\n", (u32)regs->offset, mtu3_readl(mtu->ippc_base, (u32)regs->offset)); return 0; } static int mtu3_probe_open(struct inode *inode, struct file *file) { return single_open(file, mtu3_probe_show, inode->i_private); } static ssize_t mtu3_probe_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { const char *file_name = file_dentry(file)->d_iname; struct seq_file *sf = file->private_data; struct mtu3 *mtu = sf->private; const struct debugfs_reg32 *regs; char buf[32]; u32 val; int i; if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) return -EFAULT; if (kstrtou32(buf, 0, &val)) return -EINVAL; for (i = 0; i < ARRAY_SIZE(mtu3_prb_regs); i++) { regs = &mtu3_prb_regs[i]; if (strcmp(regs->name, file_name) == 0) break; } mtu3_writel(mtu->ippc_base, (u32)regs->offset, val); return count; } static const struct file_operations mtu3_probe_fops = { .open = mtu3_probe_open, .write = mtu3_probe_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void mtu3_debugfs_create_prb_files(struct mtu3 *mtu) { struct ssusb_mtk *ssusb = mtu->ssusb; const struct debugfs_reg32 *regs; struct dentry *dir_prb; int i; dir_prb = debugfs_create_dir("probe", ssusb->dbgfs_root); for (i = 0; i < ARRAY_SIZE(mtu3_prb_regs); i++) { regs = &mtu3_prb_regs[i]; debugfs_create_file(regs->name, 0644, dir_prb, mtu, &mtu3_probe_fops); } mtu3_debugfs_regset(mtu, mtu->ippc_base, mtu3_prb_regs, ARRAY_SIZE(mtu3_prb_regs), "regs", dir_prb); } static void mtu3_debugfs_create_ep_dir(struct mtu3_ep *mep, struct dentry *parent) { const struct mtu3_file_map *files; struct dentry *dir_ep; int i; dir_ep = debugfs_create_dir(mep->name, parent); mtu3_debugfs_ep_regset(mep->mtu, mep, dir_ep); for (i = 0; i < ARRAY_SIZE(mtu3_ep_files); i++) { files = &mtu3_ep_files[i]; debugfs_create_file(files->name, 0444, dir_ep, mep, &mtu3_ep_fops); } } static void mtu3_debugfs_create_ep_dirs(struct mtu3 *mtu) { struct ssusb_mtk *ssusb = mtu->ssusb; struct dentry *dir_eps; int i; dir_eps = debugfs_create_dir("eps", ssusb->dbgfs_root); for (i = 1; i < mtu->num_eps; i++) { mtu3_debugfs_create_ep_dir(mtu->in_eps + i, dir_eps); mtu3_debugfs_create_ep_dir(mtu->out_eps + i, dir_eps); } } void ssusb_dev_debugfs_init(struct ssusb_mtk *ssusb) { struct mtu3 *mtu = ssusb->u3d; struct dentry *dir_regs; dir_regs = debugfs_create_dir("regs", ssusb->dbgfs_root); mtu3_debugfs_regset(mtu, mtu->ippc_base, mtu3_ippc_regs, ARRAY_SIZE(mtu3_ippc_regs), "reg-ippc", dir_regs); mtu3_debugfs_regset(mtu, mtu->mac_base, mtu3_dev_regs, ARRAY_SIZE(mtu3_dev_regs), "reg-dev", dir_regs); mtu3_debugfs_regset(mtu, mtu->mac_base, mtu3_csr_regs, ARRAY_SIZE(mtu3_csr_regs), "reg-csr", dir_regs); mtu3_debugfs_create_ep_dirs(mtu); mtu3_debugfs_create_prb_files(mtu); debugfs_create_file("link-state", 0444, ssusb->dbgfs_root, mtu, &mtu3_link_state_fops); debugfs_create_file("ep-used", 0444, ssusb->dbgfs_root, mtu, &mtu3_ep_used_fops); } static int ssusb_mode_show(struct seq_file *sf, void *unused) { struct ssusb_mtk *ssusb = sf->private; seq_printf(sf, "current mode: %s(%s drd)\n(echo device/host)\n", ssusb->is_host ? "host" : "device", ssusb->otg_switch.manual_drd_enabled ? "manual" : "auto"); return 0; } static int ssusb_mode_open(struct inode *inode, struct file *file) { return single_open(file, ssusb_mode_show, inode->i_private); } static ssize_t ssusb_mode_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *sf = file->private_data; struct ssusb_mtk *ssusb = sf->private; char buf[16]; if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) return -EFAULT; if (!strncmp(buf, "host", 4) && !ssusb->is_host) { ssusb_mode_switch(ssusb, 1); } else if (!strncmp(buf, "device", 6) && ssusb->is_host) { ssusb_mode_switch(ssusb, 0); } else { dev_err(ssusb->dev, "wrong or duplicated setting\n"); return -EINVAL; } return count; } static const struct file_operations ssusb_mode_fops = { .open = ssusb_mode_open, .write = ssusb_mode_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int ssusb_vbus_show(struct seq_file *sf, void *unused) { struct ssusb_mtk *ssusb = sf->private; struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; seq_printf(sf, "vbus state: %s\n(echo on/off)\n", regulator_is_enabled(otg_sx->vbus) ? "on" : "off"); return 0; } static int ssusb_vbus_open(struct inode *inode, struct file *file) { return single_open(file, ssusb_vbus_show, inode->i_private); } static ssize_t ssusb_vbus_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *sf = file->private_data; struct ssusb_mtk *ssusb = sf->private; struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; char buf[16]; bool enable; if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) return -EFAULT; if (kstrtobool(buf, &enable)) { dev_err(ssusb->dev, "wrong setting\n"); return -EINVAL; } ssusb_set_vbus(otg_sx, enable); return count; } static const struct file_operations ssusb_vbus_fops = { .open = ssusb_vbus_open, .write = ssusb_vbus_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; void ssusb_dr_debugfs_init(struct ssusb_mtk *ssusb) { struct dentry *root = ssusb->dbgfs_root; debugfs_create_file("mode", 0644, root, ssusb, &ssusb_mode_fops); debugfs_create_file("vbus", 0644, root, ssusb, &ssusb_vbus_fops); } void ssusb_debugfs_create_root(struct ssusb_mtk *ssusb) { ssusb->dbgfs_root = debugfs_create_dir(dev_name(ssusb->dev), usb_debug_root); } void ssusb_debugfs_remove_root(struct ssusb_mtk *ssusb) { debugfs_remove_recursive(ssusb->dbgfs_root); ssusb->dbgfs_root = NULL; }
linux-master
drivers/usb/mtu3/mtu3_debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_gadget_ep0.c - MediaTek USB3 DRD peripheral driver ep0 handling * * Copyright (c) 2016 MediaTek Inc. * * Author: Chunfeng.Yun <[email protected]> */ #include <linux/iopoll.h> #include <linux/usb/composite.h> #include "mtu3.h" #include "mtu3_debug.h" #include "mtu3_trace.h" /* ep0 is always mtu3->in_eps[0] */ #define next_ep0_request(mtu) next_request((mtu)->ep0) /* for high speed test mode; see USB 2.0 spec 7.1.20 */ static const u8 mtu3_test_packet[53] = { /* implicit SYNC then DATA0 to start */ /* JKJKJKJK x9 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* JJKKJJKK x8 */ 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, /* JJJJKKKK x8 */ 0xee, 0xee, 0xee, 0xee, 0xee, 0xee, 0xee, 0xee, /* JJJJJJJKKKKKKK x8 */ 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* JJJJJJJK x8 */ 0x7f, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, /* JKKKKKKK x10, JK */ 0xfc, 0x7e, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, 0x7e, /* implicit CRC16 then EOP to end */ }; static char *decode_ep0_state(struct mtu3 *mtu) { switch (mtu->ep0_state) { case MU3D_EP0_STATE_SETUP: return "SETUP"; case MU3D_EP0_STATE_TX: return "IN"; case MU3D_EP0_STATE_RX: return "OUT"; case MU3D_EP0_STATE_TX_END: return "TX-END"; case MU3D_EP0_STATE_STALL: return "STALL"; default: return "??"; } } static void ep0_req_giveback(struct mtu3 *mtu, struct usb_request *req) { mtu3_req_complete(mtu->ep0, req, 0); } static int forward_to_driver(struct mtu3 *mtu, const struct usb_ctrlrequest *setup) __releases(mtu->lock) __acquires(mtu->lock) { int ret; if (!mtu->gadget_driver || !mtu->async_callbacks) return -EOPNOTSUPP; spin_unlock(&mtu->lock); ret = mtu->gadget_driver->setup(&mtu->g, setup); spin_lock(&mtu->lock); dev_dbg(mtu->dev, "%s ret %d\n", __func__, ret); return ret; } static void ep0_write_fifo(struct mtu3_ep *mep, const u8 *src, u16 len) { void __iomem *fifo = mep->mtu->mac_base + U3D_FIFO0; u16 index = 0; dev_dbg(mep->mtu->dev, "%s: ep%din, len=%d, buf=%p\n", __func__, mep->epnum, len, src); if (len >= 4) { iowrite32_rep(fifo, src, len >> 2); index = len & ~0x03; } if (len & 0x02) { writew(*(u16 *)&src[index], fifo); index += 2; } if (len & 0x01) writeb(src[index], fifo); } static void ep0_read_fifo(struct mtu3_ep *mep, u8 *dst, u16 len) { void __iomem *fifo = mep->mtu->mac_base + U3D_FIFO0; u32 value; u16 index = 0; dev_dbg(mep->mtu->dev, "%s: ep%dout len=%d buf=%p\n", __func__, mep->epnum, len, dst); if (len >= 4) { ioread32_rep(fifo, dst, len >> 2); index = len & ~0x03; } if (len & 0x3) { value = readl(fifo); memcpy(&dst[index], &value, len & 0x3); } } static void ep0_load_test_packet(struct mtu3 *mtu) { /* * because the length of test packet is less than max packet of HS ep0, * write it into fifo directly. */ ep0_write_fifo(mtu->ep0, mtu3_test_packet, sizeof(mtu3_test_packet)); } /* * A. send STALL for setup transfer without data stage: * set SENDSTALL and SETUPPKTRDY at the same time; * B. send STALL for other cases: * set SENDSTALL only. */ static void ep0_stall_set(struct mtu3_ep *mep0, bool set, u32 pktrdy) { struct mtu3 *mtu = mep0->mtu; void __iomem *mbase = mtu->mac_base; u32 csr; /* EP0_SENTSTALL is W1C */ csr = mtu3_readl(mbase, U3D_EP0CSR) & EP0_W1C_BITS; if (set) csr |= EP0_SENDSTALL | pktrdy; else csr = (csr & ~EP0_SENDSTALL) | EP0_SENTSTALL; mtu3_writel(mtu->mac_base, U3D_EP0CSR, csr); mtu->delayed_status = false; mtu->ep0_state = MU3D_EP0_STATE_SETUP; dev_dbg(mtu->dev, "ep0: %s STALL, ep0_state: %s\n", set ? "SEND" : "CLEAR", decode_ep0_state(mtu)); } static void ep0_do_status_stage(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 value; value = mtu3_readl(mbase, U3D_EP0CSR) & EP0_W1C_BITS; mtu3_writel(mbase, U3D_EP0CSR, value | EP0_SETUPPKTRDY | EP0_DATAEND); } static int ep0_queue(struct mtu3_ep *mep0, struct mtu3_request *mreq); static void ep0_dummy_complete(struct usb_ep *ep, struct usb_request *req) {} static void ep0_set_sel_complete(struct usb_ep *ep, struct usb_request *req) { struct mtu3_request *mreq; struct mtu3 *mtu; struct usb_set_sel_req sel; memcpy(&sel, req->buf, sizeof(sel)); mreq = to_mtu3_request(req); mtu = mreq->mtu; dev_dbg(mtu->dev, "u1sel:%d, u1pel:%d, u2sel:%d, u2pel:%d\n", sel.u1_sel, sel.u1_pel, sel.u2_sel, sel.u2_pel); } /* queue data stage to handle 6 byte SET_SEL request */ static int ep0_set_sel(struct mtu3 *mtu, struct usb_ctrlrequest *setup) { int ret; u16 length = le16_to_cpu(setup->wLength); if (unlikely(length != 6)) { dev_err(mtu->dev, "%s wrong wLength:%d\n", __func__, length); return -EINVAL; } mtu->ep0_req.mep = mtu->ep0; mtu->ep0_req.request.length = 6; mtu->ep0_req.request.buf = mtu->setup_buf; mtu->ep0_req.request.complete = ep0_set_sel_complete; ret = ep0_queue(mtu->ep0, &mtu->ep0_req); return ret < 0 ? ret : 1; } static int ep0_get_status(struct mtu3 *mtu, const struct usb_ctrlrequest *setup) { struct mtu3_ep *mep = NULL; int handled = 1; u8 result[2] = {0, 0}; u8 epnum = 0; int is_in; switch (setup->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: result[0] = mtu->is_self_powered << USB_DEVICE_SELF_POWERED; result[0] |= mtu->may_wakeup << USB_DEVICE_REMOTE_WAKEUP; if (mtu->g.speed >= USB_SPEED_SUPER) { result[0] |= mtu->u1_enable << USB_DEV_STAT_U1_ENABLED; result[0] |= mtu->u2_enable << USB_DEV_STAT_U2_ENABLED; } dev_dbg(mtu->dev, "%s result=%x, U1=%x, U2=%x\n", __func__, result[0], mtu->u1_enable, mtu->u2_enable); break; case USB_RECIP_INTERFACE: /* status of function remote wakeup, forward request */ handled = 0; break; case USB_RECIP_ENDPOINT: epnum = (u8) le16_to_cpu(setup->wIndex); is_in = epnum & USB_DIR_IN; epnum &= USB_ENDPOINT_NUMBER_MASK; if (epnum >= mtu->num_eps) { handled = -EINVAL; break; } if (!epnum) break; mep = (is_in ? mtu->in_eps : mtu->out_eps) + epnum; if (!mep->desc) { handled = -EINVAL; break; } if (mep->flags & MTU3_EP_STALL) result[0] |= 1 << USB_ENDPOINT_HALT; break; default: /* class, vendor, etc ... delegate */ handled = 0; break; } if (handled > 0) { int ret; /* prepare a data stage for GET_STATUS */ dev_dbg(mtu->dev, "get_status=%x\n", *(u16 *)result); memcpy(mtu->setup_buf, result, sizeof(result)); mtu->ep0_req.mep = mtu->ep0; mtu->ep0_req.request.length = 2; mtu->ep0_req.request.buf = &mtu->setup_buf; mtu->ep0_req.request.complete = ep0_dummy_complete; ret = ep0_queue(mtu->ep0, &mtu->ep0_req); if (ret < 0) handled = ret; } return handled; } static int handle_test_mode(struct mtu3 *mtu, struct usb_ctrlrequest *setup) { void __iomem *mbase = mtu->mac_base; int handled = 1; u32 value; switch (le16_to_cpu(setup->wIndex) >> 8) { case USB_TEST_J: dev_dbg(mtu->dev, "USB_TEST_J\n"); mtu->test_mode_nr = TEST_J_MODE; break; case USB_TEST_K: dev_dbg(mtu->dev, "USB_TEST_K\n"); mtu->test_mode_nr = TEST_K_MODE; break; case USB_TEST_SE0_NAK: dev_dbg(mtu->dev, "USB_TEST_SE0_NAK\n"); mtu->test_mode_nr = TEST_SE0_NAK_MODE; break; case USB_TEST_PACKET: dev_dbg(mtu->dev, "USB_TEST_PACKET\n"); mtu->test_mode_nr = TEST_PACKET_MODE; break; default: handled = -EINVAL; goto out; } mtu->test_mode = true; /* no TX completion interrupt, and need restart platform after test */ if (mtu->test_mode_nr == TEST_PACKET_MODE) ep0_load_test_packet(mtu); /* send status before entering test mode. */ ep0_do_status_stage(mtu); /* wait for ACK status sent by host */ readl_poll_timeout_atomic(mbase + U3D_EP0CSR, value, !(value & EP0_DATAEND), 100, 5000); mtu3_writel(mbase, U3D_USB2_TEST_MODE, mtu->test_mode_nr); mtu->ep0_state = MU3D_EP0_STATE_SETUP; out: return handled; } static int ep0_handle_feature_dev(struct mtu3 *mtu, struct usb_ctrlrequest *setup, bool set) { void __iomem *mbase = mtu->mac_base; int handled = -EINVAL; u32 lpc; switch (le16_to_cpu(setup->wValue)) { case USB_DEVICE_REMOTE_WAKEUP: mtu->may_wakeup = !!set; handled = 1; break; case USB_DEVICE_TEST_MODE: if (!set || (mtu->g.speed != USB_SPEED_HIGH) || (le16_to_cpu(setup->wIndex) & 0xff)) break; handled = handle_test_mode(mtu, setup); break; case USB_DEVICE_U1_ENABLE: if (mtu->g.speed < USB_SPEED_SUPER || mtu->g.state != USB_STATE_CONFIGURED) break; lpc = mtu3_readl(mbase, U3D_LINK_POWER_CONTROL); if (set) lpc |= SW_U1_REQUEST_ENABLE; else lpc &= ~SW_U1_REQUEST_ENABLE; mtu3_writel(mbase, U3D_LINK_POWER_CONTROL, lpc); mtu->u1_enable = !!set; handled = 1; break; case USB_DEVICE_U2_ENABLE: if (mtu->g.speed < USB_SPEED_SUPER || mtu->g.state != USB_STATE_CONFIGURED) break; lpc = mtu3_readl(mbase, U3D_LINK_POWER_CONTROL); if (set) lpc |= SW_U2_REQUEST_ENABLE; else lpc &= ~SW_U2_REQUEST_ENABLE; mtu3_writel(mbase, U3D_LINK_POWER_CONTROL, lpc); mtu->u2_enable = !!set; handled = 1; break; default: handled = -EINVAL; break; } return handled; } static int ep0_handle_feature(struct mtu3 *mtu, struct usb_ctrlrequest *setup, bool set) { struct mtu3_ep *mep; int handled = -EINVAL; int is_in; u16 value; u16 index; u8 epnum; value = le16_to_cpu(setup->wValue); index = le16_to_cpu(setup->wIndex); switch (setup->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: handled = ep0_handle_feature_dev(mtu, setup, set); break; case USB_RECIP_INTERFACE: /* superspeed only */ if (value == USB_INTRF_FUNC_SUSPEND && mtu->g.speed >= USB_SPEED_SUPER) { /* forward the request for function suspend */ mtu->may_wakeup = !!(index & USB_INTRF_FUNC_SUSPEND_RW); handled = 0; } break; case USB_RECIP_ENDPOINT: epnum = index & USB_ENDPOINT_NUMBER_MASK; if (epnum == 0 || epnum >= mtu->num_eps || value != USB_ENDPOINT_HALT) break; is_in = index & USB_DIR_IN; mep = (is_in ? mtu->in_eps : mtu->out_eps) + epnum; if (!mep->desc) break; handled = 1; /* ignore request if endpoint is wedged */ if (mep->flags & MTU3_EP_WEDGE) break; mtu3_ep_stall_set(mep, set); break; default: /* class, vendor, etc ... delegate */ handled = 0; break; } return handled; } /* * handle all control requests can be handled * returns: * negative errno - error happened * zero - need delegate SETUP to gadget driver * positive - already handled */ static int handle_standard_request(struct mtu3 *mtu, struct usb_ctrlrequest *setup) { void __iomem *mbase = mtu->mac_base; enum usb_device_state state = mtu->g.state; int handled = -EINVAL; u32 dev_conf; u16 value; value = le16_to_cpu(setup->wValue); /* the gadget driver handles everything except what we must handle */ switch (setup->bRequest) { case USB_REQ_SET_ADDRESS: /* change it after the status stage */ mtu->address = (u8) (value & 0x7f); dev_dbg(mtu->dev, "set address to 0x%x\n", mtu->address); dev_conf = mtu3_readl(mbase, U3D_DEVICE_CONF); dev_conf &= ~DEV_ADDR_MSK; dev_conf |= DEV_ADDR(mtu->address); mtu3_writel(mbase, U3D_DEVICE_CONF, dev_conf); if (mtu->address) usb_gadget_set_state(&mtu->g, USB_STATE_ADDRESS); else usb_gadget_set_state(&mtu->g, USB_STATE_DEFAULT); handled = 1; break; case USB_REQ_SET_CONFIGURATION: if (state == USB_STATE_ADDRESS) { usb_gadget_set_state(&mtu->g, USB_STATE_CONFIGURED); } else if (state == USB_STATE_CONFIGURED) { /* * USB2 spec sec 9.4.7, if wValue is 0 then dev * is moved to addressed state */ if (!value) usb_gadget_set_state(&mtu->g, USB_STATE_ADDRESS); } handled = 0; break; case USB_REQ_CLEAR_FEATURE: handled = ep0_handle_feature(mtu, setup, 0); break; case USB_REQ_SET_FEATURE: handled = ep0_handle_feature(mtu, setup, 1); break; case USB_REQ_GET_STATUS: handled = ep0_get_status(mtu, setup); break; case USB_REQ_SET_SEL: handled = ep0_set_sel(mtu, setup); break; case USB_REQ_SET_ISOCH_DELAY: handled = 1; break; default: /* delegate SET_CONFIGURATION, etc */ handled = 0; } return handled; } /* receive an data packet (OUT) */ static void ep0_rx_state(struct mtu3 *mtu) { struct mtu3_request *mreq; struct usb_request *req; void __iomem *mbase = mtu->mac_base; u32 maxp; u32 csr; u16 count = 0; dev_dbg(mtu->dev, "%s\n", __func__); csr = mtu3_readl(mbase, U3D_EP0CSR) & EP0_W1C_BITS; mreq = next_ep0_request(mtu); req = &mreq->request; /* read packet and ack; or stall because of gadget driver bug */ if (req) { void *buf = req->buf + req->actual; unsigned int len = req->length - req->actual; /* read the buffer */ count = mtu3_readl(mbase, U3D_RXCOUNT0); if (count > len) { req->status = -EOVERFLOW; count = len; } ep0_read_fifo(mtu->ep0, buf, count); req->actual += count; csr |= EP0_RXPKTRDY; maxp = mtu->g.ep0->maxpacket; if (count < maxp || req->actual == req->length) { mtu->ep0_state = MU3D_EP0_STATE_SETUP; dev_dbg(mtu->dev, "ep0 state: %s\n", decode_ep0_state(mtu)); csr |= EP0_DATAEND; } else { req = NULL; } } else { csr |= EP0_RXPKTRDY | EP0_SENDSTALL; dev_dbg(mtu->dev, "%s: SENDSTALL\n", __func__); } mtu3_writel(mbase, U3D_EP0CSR, csr); /* give back the request if have received all data */ if (req) ep0_req_giveback(mtu, req); } /* transmitting to the host (IN) */ static void ep0_tx_state(struct mtu3 *mtu) { struct mtu3_request *mreq = next_ep0_request(mtu); struct usb_request *req; u32 csr; u8 *src; u32 count; u32 maxp; dev_dbg(mtu->dev, "%s\n", __func__); if (!mreq) return; maxp = mtu->g.ep0->maxpacket; req = &mreq->request; /* load the data */ src = (u8 *)req->buf + req->actual; count = min(maxp, req->length - req->actual); if (count) ep0_write_fifo(mtu->ep0, src, count); dev_dbg(mtu->dev, "%s act=%d, len=%d, cnt=%d, maxp=%d zero=%d\n", __func__, req->actual, req->length, count, maxp, req->zero); req->actual += count; if ((count < maxp) || ((req->actual == req->length) && !req->zero)) mtu->ep0_state = MU3D_EP0_STATE_TX_END; /* send it out, triggering a "txpktrdy cleared" irq */ csr = mtu3_readl(mtu->mac_base, U3D_EP0CSR) & EP0_W1C_BITS; mtu3_writel(mtu->mac_base, U3D_EP0CSR, csr | EP0_TXPKTRDY); dev_dbg(mtu->dev, "%s ep0csr=0x%x\n", __func__, mtu3_readl(mtu->mac_base, U3D_EP0CSR)); } static void ep0_read_setup(struct mtu3 *mtu, struct usb_ctrlrequest *setup) { struct mtu3_request *mreq; u32 count; u32 csr; csr = mtu3_readl(mtu->mac_base, U3D_EP0CSR) & EP0_W1C_BITS; count = mtu3_readl(mtu->mac_base, U3D_RXCOUNT0); ep0_read_fifo(mtu->ep0, (u8 *)setup, count); dev_dbg(mtu->dev, "SETUP req%02x.%02x v%04x i%04x l%04x\n", setup->bRequestType, setup->bRequest, le16_to_cpu(setup->wValue), le16_to_cpu(setup->wIndex), le16_to_cpu(setup->wLength)); /* clean up any leftover transfers */ mreq = next_ep0_request(mtu); if (mreq) ep0_req_giveback(mtu, &mreq->request); if (le16_to_cpu(setup->wLength) == 0) { ; /* no data stage, nothing to do */ } else if (setup->bRequestType & USB_DIR_IN) { mtu3_writel(mtu->mac_base, U3D_EP0CSR, csr | EP0_SETUPPKTRDY | EP0_DPHTX); mtu->ep0_state = MU3D_EP0_STATE_TX; } else { mtu3_writel(mtu->mac_base, U3D_EP0CSR, (csr | EP0_SETUPPKTRDY) & (~EP0_DPHTX)); mtu->ep0_state = MU3D_EP0_STATE_RX; } } static int ep0_handle_setup(struct mtu3 *mtu) __releases(mtu->lock) __acquires(mtu->lock) { struct usb_ctrlrequest setup; struct mtu3_request *mreq; int handled = 0; ep0_read_setup(mtu, &setup); trace_mtu3_handle_setup(&setup); if ((setup.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) handled = handle_standard_request(mtu, &setup); dev_dbg(mtu->dev, "handled %d, ep0_state: %s\n", handled, decode_ep0_state(mtu)); if (handled < 0) goto stall; else if (handled > 0) goto finish; handled = forward_to_driver(mtu, &setup); if (handled < 0) { stall: dev_dbg(mtu->dev, "%s stall (%d)\n", __func__, handled); ep0_stall_set(mtu->ep0, true, le16_to_cpu(setup.wLength) ? 0 : EP0_SETUPPKTRDY); return 0; } finish: if (mtu->test_mode) { ; /* nothing to do */ } else if (handled == USB_GADGET_DELAYED_STATUS) { mreq = next_ep0_request(mtu); if (mreq) { /* already asked us to continue delayed status */ ep0_do_status_stage(mtu); ep0_req_giveback(mtu, &mreq->request); } else { /* do delayed STATUS stage till receive ep0_queue */ mtu->delayed_status = true; } } else if (le16_to_cpu(setup.wLength) == 0) { /* no data stage */ ep0_do_status_stage(mtu); /* complete zlp request directly */ mreq = next_ep0_request(mtu); if (mreq && !mreq->request.length) ep0_req_giveback(mtu, &mreq->request); } return 0; } irqreturn_t mtu3_ep0_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; struct mtu3_request *mreq; u32 int_status; irqreturn_t ret = IRQ_NONE; u32 csr; u32 len; int_status = mtu3_readl(mbase, U3D_EPISR); int_status &= mtu3_readl(mbase, U3D_EPIER); mtu3_writel(mbase, U3D_EPISR, int_status); /* W1C */ /* only handle ep0's */ if (!(int_status & (EP0ISR | SETUPENDISR))) return IRQ_NONE; /* abort current SETUP, and process new one */ if (int_status & SETUPENDISR) mtu->ep0_state = MU3D_EP0_STATE_SETUP; csr = mtu3_readl(mbase, U3D_EP0CSR); dev_dbg(mtu->dev, "%s csr=0x%x\n", __func__, csr); /* we sent a stall.. need to clear it now.. */ if (csr & EP0_SENTSTALL) { ep0_stall_set(mtu->ep0, false, 0); csr = mtu3_readl(mbase, U3D_EP0CSR); ret = IRQ_HANDLED; } dev_dbg(mtu->dev, "ep0_state: %s\n", decode_ep0_state(mtu)); mtu3_dbg_trace(mtu->dev, "ep0_state %s", decode_ep0_state(mtu)); switch (mtu->ep0_state) { case MU3D_EP0_STATE_TX: /* irq on clearing txpktrdy */ if ((csr & EP0_FIFOFULL) == 0) { ep0_tx_state(mtu); ret = IRQ_HANDLED; } break; case MU3D_EP0_STATE_RX: /* irq on set rxpktrdy */ if (csr & EP0_RXPKTRDY) { ep0_rx_state(mtu); ret = IRQ_HANDLED; } break; case MU3D_EP0_STATE_TX_END: mtu3_writel(mbase, U3D_EP0CSR, (csr & EP0_W1C_BITS) | EP0_DATAEND); mreq = next_ep0_request(mtu); if (mreq) ep0_req_giveback(mtu, &mreq->request); mtu->ep0_state = MU3D_EP0_STATE_SETUP; ret = IRQ_HANDLED; dev_dbg(mtu->dev, "ep0_state: %s\n", decode_ep0_state(mtu)); break; case MU3D_EP0_STATE_SETUP: if (!(csr & EP0_SETUPPKTRDY)) break; len = mtu3_readl(mbase, U3D_RXCOUNT0); if (len != 8) { dev_err(mtu->dev, "SETUP packet len %d != 8 ?\n", len); break; } ep0_handle_setup(mtu); ret = IRQ_HANDLED; break; default: /* can't happen */ ep0_stall_set(mtu->ep0, true, 0); WARN_ON(1); break; } return ret; } static int mtu3_ep0_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { /* always enabled */ return -EINVAL; } static int mtu3_ep0_disable(struct usb_ep *ep) { /* always enabled */ return -EINVAL; } static int ep0_queue(struct mtu3_ep *mep, struct mtu3_request *mreq) { struct mtu3 *mtu = mep->mtu; mreq->mtu = mtu; mreq->request.actual = 0; mreq->request.status = -EINPROGRESS; dev_dbg(mtu->dev, "%s %s (ep0_state: %s), len#%d\n", __func__, mep->name, decode_ep0_state(mtu), mreq->request.length); switch (mtu->ep0_state) { case MU3D_EP0_STATE_SETUP: case MU3D_EP0_STATE_RX: /* control-OUT data */ case MU3D_EP0_STATE_TX: /* control-IN data */ break; default: dev_err(mtu->dev, "%s, error in ep0 state %s\n", __func__, decode_ep0_state(mtu)); return -EINVAL; } if (mtu->delayed_status) { mtu->delayed_status = false; ep0_do_status_stage(mtu); /* needn't giveback the request for handling delay STATUS */ return 0; } if (!list_empty(&mep->req_list)) return -EBUSY; list_add_tail(&mreq->list, &mep->req_list); /* sequence #1, IN ... start writing the data */ if (mtu->ep0_state == MU3D_EP0_STATE_TX) ep0_tx_state(mtu); return 0; } static int mtu3_ep0_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp) { struct mtu3_ep *mep; struct mtu3_request *mreq; struct mtu3 *mtu; unsigned long flags; int ret = 0; if (!ep || !req) return -EINVAL; mep = to_mtu3_ep(ep); mtu = mep->mtu; mreq = to_mtu3_request(req); spin_lock_irqsave(&mtu->lock, flags); ret = ep0_queue(mep, mreq); spin_unlock_irqrestore(&mtu->lock, flags); return ret; } static int mtu3_ep0_dequeue(struct usb_ep *ep, struct usb_request *req) { /* we just won't support this */ return -EINVAL; } static int mtu3_ep0_halt(struct usb_ep *ep, int value) { struct mtu3_ep *mep; struct mtu3 *mtu; unsigned long flags; int ret = 0; if (!ep || !value) return -EINVAL; mep = to_mtu3_ep(ep); mtu = mep->mtu; dev_dbg(mtu->dev, "%s\n", __func__); spin_lock_irqsave(&mtu->lock, flags); if (!list_empty(&mep->req_list)) { ret = -EBUSY; goto cleanup; } switch (mtu->ep0_state) { /* * stalls are usually issued after parsing SETUP packet, either * directly in irq context from setup() or else later. */ case MU3D_EP0_STATE_TX: case MU3D_EP0_STATE_TX_END: case MU3D_EP0_STATE_RX: case MU3D_EP0_STATE_SETUP: ep0_stall_set(mtu->ep0, true, 0); break; default: dev_dbg(mtu->dev, "ep0 can't halt in state %s\n", decode_ep0_state(mtu)); ret = -EINVAL; } cleanup: spin_unlock_irqrestore(&mtu->lock, flags); return ret; } const struct usb_ep_ops mtu3_ep0_ops = { .enable = mtu3_ep0_enable, .disable = mtu3_ep0_disable, .alloc_request = mtu3_alloc_request, .free_request = mtu3_free_request, .queue = mtu3_ep0_queue, .dequeue = mtu3_ep0_dequeue, .set_halt = mtu3_ep0_halt, };
linux-master
drivers/usb/mtu3/mtu3_gadget_ep0.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_core.c - hardware access layer and gadget init/exit of * MediaTek usb3 Dual-Role Controller Driver * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include "mtu3.h" #include "mtu3_dr.h" #include "mtu3_debug.h" #include "mtu3_trace.h" static int ep_fifo_alloc(struct mtu3_ep *mep, u32 seg_size) { struct mtu3_fifo_info *fifo = mep->fifo; u32 num_bits = DIV_ROUND_UP(seg_size, MTU3_EP_FIFO_UNIT); u32 start_bit; /* ensure that @mep->fifo_seg_size is power of two */ num_bits = roundup_pow_of_two(num_bits); if (num_bits > fifo->limit) return -EINVAL; mep->fifo_seg_size = num_bits * MTU3_EP_FIFO_UNIT; num_bits = num_bits * (mep->slot + 1); start_bit = bitmap_find_next_zero_area(fifo->bitmap, fifo->limit, 0, num_bits, 0); if (start_bit >= fifo->limit) return -EOVERFLOW; bitmap_set(fifo->bitmap, start_bit, num_bits); mep->fifo_size = num_bits * MTU3_EP_FIFO_UNIT; mep->fifo_addr = fifo->base + MTU3_EP_FIFO_UNIT * start_bit; dev_dbg(mep->mtu->dev, "%s fifo:%#x/%#x, start_bit: %d\n", __func__, mep->fifo_seg_size, mep->fifo_size, start_bit); return mep->fifo_addr; } static void ep_fifo_free(struct mtu3_ep *mep) { struct mtu3_fifo_info *fifo = mep->fifo; u32 addr = mep->fifo_addr; u32 bits = mep->fifo_size / MTU3_EP_FIFO_UNIT; u32 start_bit; if (unlikely(addr < fifo->base || bits > fifo->limit)) return; start_bit = (addr - fifo->base) / MTU3_EP_FIFO_UNIT; bitmap_clear(fifo->bitmap, start_bit, bits); mep->fifo_size = 0; mep->fifo_seg_size = 0; dev_dbg(mep->mtu->dev, "%s size:%#x/%#x, start_bit: %d\n", __func__, mep->fifo_seg_size, mep->fifo_size, start_bit); } /* enable/disable U3D SS function */ static inline void mtu3_ss_func_set(struct mtu3 *mtu, bool enable) { /* If usb3_en==0, LTSSM will go to SS.Disable state */ if (enable) mtu3_setbits(mtu->mac_base, U3D_USB3_CONFIG, USB3_EN); else mtu3_clrbits(mtu->mac_base, U3D_USB3_CONFIG, USB3_EN); dev_dbg(mtu->dev, "USB3_EN = %d\n", !!enable); } /* set/clear U3D HS device soft connect */ static inline void mtu3_hs_softconn_set(struct mtu3 *mtu, bool enable) { if (enable) { mtu3_setbits(mtu->mac_base, U3D_POWER_MANAGEMENT, SOFT_CONN | SUSPENDM_ENABLE); } else { mtu3_clrbits(mtu->mac_base, U3D_POWER_MANAGEMENT, SOFT_CONN | SUSPENDM_ENABLE); } dev_dbg(mtu->dev, "SOFTCONN = %d\n", !!enable); } /* only port0 of U2/U3 supports device mode */ static int mtu3_device_enable(struct mtu3 *mtu) { void __iomem *ibase = mtu->ippc_base; u32 check_clk = 0; mtu3_clrbits(ibase, U3D_SSUSB_IP_PW_CTRL2, SSUSB_IP_DEV_PDN); if (mtu->u3_capable) { check_clk = SSUSB_U3_MAC_RST_B_STS; mtu3_clrbits(ibase, SSUSB_U3_CTRL(0), (SSUSB_U3_PORT_DIS | SSUSB_U3_PORT_PDN | SSUSB_U3_PORT_HOST_SEL)); } mtu3_clrbits(ibase, SSUSB_U2_CTRL(0), (SSUSB_U2_PORT_DIS | SSUSB_U2_PORT_PDN | SSUSB_U2_PORT_HOST_SEL)); if (mtu->ssusb->dr_mode == USB_DR_MODE_OTG) { mtu3_setbits(ibase, SSUSB_U2_CTRL(0), SSUSB_U2_PORT_OTG_SEL); if (mtu->u3_capable) mtu3_setbits(ibase, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_DUAL_MODE); } return ssusb_check_clocks(mtu->ssusb, check_clk); } static void mtu3_device_disable(struct mtu3 *mtu) { void __iomem *ibase = mtu->ippc_base; if (mtu->u3_capable) mtu3_setbits(ibase, SSUSB_U3_CTRL(0), (SSUSB_U3_PORT_DIS | SSUSB_U3_PORT_PDN)); mtu3_setbits(ibase, SSUSB_U2_CTRL(0), SSUSB_U2_PORT_DIS | SSUSB_U2_PORT_PDN); if (mtu->ssusb->dr_mode == USB_DR_MODE_OTG) { mtu3_clrbits(ibase, SSUSB_U2_CTRL(0), SSUSB_U2_PORT_OTG_SEL); if (mtu->u3_capable) mtu3_clrbits(ibase, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_DUAL_MODE); } mtu3_setbits(ibase, U3D_SSUSB_IP_PW_CTRL2, SSUSB_IP_DEV_PDN); } static void mtu3_dev_power_on(struct mtu3 *mtu) { void __iomem *ibase = mtu->ippc_base; mtu3_clrbits(ibase, U3D_SSUSB_IP_PW_CTRL2, SSUSB_IP_DEV_PDN); if (mtu->u3_capable) mtu3_clrbits(ibase, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_PDN); mtu3_clrbits(ibase, SSUSB_U2_CTRL(0), SSUSB_U2_PORT_PDN); } static void mtu3_dev_power_down(struct mtu3 *mtu) { void __iomem *ibase = mtu->ippc_base; if (mtu->u3_capable) mtu3_setbits(ibase, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_PDN); mtu3_setbits(ibase, SSUSB_U2_CTRL(0), SSUSB_U2_PORT_PDN); mtu3_setbits(ibase, U3D_SSUSB_IP_PW_CTRL2, SSUSB_IP_DEV_PDN); } /* reset U3D's device module. */ static void mtu3_device_reset(struct mtu3 *mtu) { void __iomem *ibase = mtu->ippc_base; mtu3_setbits(ibase, U3D_SSUSB_DEV_RST_CTRL, SSUSB_DEV_SW_RST); udelay(1); mtu3_clrbits(ibase, U3D_SSUSB_DEV_RST_CTRL, SSUSB_DEV_SW_RST); } static void mtu3_intr_status_clear(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; /* Clear EP0 and Tx/Rx EPn interrupts status */ mtu3_writel(mbase, U3D_EPISR, ~0x0); /* Clear U2 USB common interrupts status */ mtu3_writel(mbase, U3D_COMMON_USB_INTR, ~0x0); /* Clear U3 LTSSM interrupts status */ mtu3_writel(mbase, U3D_LTSSM_INTR, ~0x0); /* Clear speed change interrupt status */ mtu3_writel(mbase, U3D_DEV_LINK_INTR, ~0x0); /* Clear QMU interrupt status */ mtu3_writel(mbase, U3D_QISAR0, ~0x0); } /* disable all interrupts */ static void mtu3_intr_disable(struct mtu3 *mtu) { /* Disable level 1 interrupts */ mtu3_writel(mtu->mac_base, U3D_LV1IECR, ~0x0); /* Disable endpoint interrupts */ mtu3_writel(mtu->mac_base, U3D_EPIECR, ~0x0); mtu3_intr_status_clear(mtu); } /* enable system global interrupt */ static void mtu3_intr_enable(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 value; /*Enable level 1 interrupts (BMU, QMU, MAC3, DMA, MAC2, EPCTL) */ value = BMU_INTR | QMU_INTR | MAC3_INTR | MAC2_INTR | EP_CTRL_INTR; mtu3_writel(mbase, U3D_LV1IESR, value); /* Enable U2 common USB interrupts */ value = SUSPEND_INTR | RESUME_INTR | RESET_INTR; mtu3_writel(mbase, U3D_COMMON_USB_INTR_ENABLE, value); if (mtu->u3_capable) { /* Enable U3 LTSSM interrupts */ value = HOT_RST_INTR | WARM_RST_INTR | ENTER_U3_INTR | EXIT_U3_INTR; mtu3_writel(mbase, U3D_LTSSM_INTR_ENABLE, value); } /* Enable QMU interrupts. */ value = TXQ_CSERR_INT | TXQ_LENERR_INT | RXQ_CSERR_INT | RXQ_LENERR_INT | RXQ_ZLPERR_INT; mtu3_writel(mbase, U3D_QIESR1, value); /* Enable speed change interrupt */ mtu3_writel(mbase, U3D_DEV_LINK_INTR_ENABLE, SSUSB_DEV_SPEED_CHG_INTR); } static void mtu3_set_speed(struct mtu3 *mtu, enum usb_device_speed speed) { void __iomem *mbase = mtu->mac_base; if (speed > mtu->max_speed) speed = mtu->max_speed; switch (speed) { case USB_SPEED_FULL: /* disable U3 SS function */ mtu3_clrbits(mbase, U3D_USB3_CONFIG, USB3_EN); /* disable HS function */ mtu3_clrbits(mbase, U3D_POWER_MANAGEMENT, HS_ENABLE); break; case USB_SPEED_HIGH: mtu3_clrbits(mbase, U3D_USB3_CONFIG, USB3_EN); /* HS/FS detected by HW */ mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, HS_ENABLE); break; case USB_SPEED_SUPER: mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, HS_ENABLE); mtu3_clrbits(mtu->ippc_base, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_SSP_SPEED); break; case USB_SPEED_SUPER_PLUS: mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, HS_ENABLE); mtu3_setbits(mtu->ippc_base, SSUSB_U3_CTRL(0), SSUSB_U3_PORT_SSP_SPEED); break; default: dev_err(mtu->dev, "invalid speed: %s\n", usb_speed_string(speed)); return; } mtu->speed = speed; dev_dbg(mtu->dev, "set speed: %s\n", usb_speed_string(speed)); } /* CSR registers will be reset to default value if port is disabled */ static void mtu3_csr_init(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; if (mtu->u3_capable) { /* disable LGO_U1/U2 by default */ mtu3_clrbits(mbase, U3D_LINK_POWER_CONTROL, SW_U1_REQUEST_ENABLE | SW_U2_REQUEST_ENABLE); /* enable accept LGO_U1/U2 link command from host */ mtu3_setbits(mbase, U3D_LINK_POWER_CONTROL, SW_U1_ACCEPT_ENABLE | SW_U2_ACCEPT_ENABLE); /* device responses to u3_exit from host automatically */ mtu3_clrbits(mbase, U3D_LTSSM_CTRL, SOFT_U3_EXIT_EN); /* automatically build U2 link when U3 detect fail */ mtu3_setbits(mbase, U3D_USB2_TEST_MODE, U2U3_AUTO_SWITCH); /* auto clear SOFT_CONN when clear USB3_EN if work as HS */ mtu3_setbits(mbase, U3D_U3U2_SWITCH_CTRL, SOFTCON_CLR_AUTO_EN); } /* delay about 0.1us from detecting reset to send chirp-K */ mtu3_clrbits(mbase, U3D_LINK_RESET_INFO, WTCHRP_MSK); /* enable automatical HWRW from L1 */ mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, LPM_HRWE); } /* reset: u2 - data toggle, u3 - SeqN, flow control status etc */ static void mtu3_ep_reset(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; u32 rst_bit = EP_RST(mep->is_in, mep->epnum); mtu3_setbits(mtu->mac_base, U3D_EP_RST, rst_bit); mtu3_clrbits(mtu->mac_base, U3D_EP_RST, rst_bit); } /* set/clear the stall and toggle bits for non-ep0 */ void mtu3_ep_stall_set(struct mtu3_ep *mep, bool set) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; u8 epnum = mep->epnum; u32 csr; if (mep->is_in) { /* TX */ csr = mtu3_readl(mbase, MU3D_EP_TXCR0(epnum)) & TX_W1C_BITS; if (set) csr |= TX_SENDSTALL; else csr = (csr & (~TX_SENDSTALL)) | TX_SENTSTALL; mtu3_writel(mbase, MU3D_EP_TXCR0(epnum), csr); } else { /* RX */ csr = mtu3_readl(mbase, MU3D_EP_RXCR0(epnum)) & RX_W1C_BITS; if (set) csr |= RX_SENDSTALL; else csr = (csr & (~RX_SENDSTALL)) | RX_SENTSTALL; mtu3_writel(mbase, MU3D_EP_RXCR0(epnum), csr); } if (!set) { mtu3_ep_reset(mep); mep->flags &= ~MTU3_EP_STALL; } else { mep->flags |= MTU3_EP_STALL; } dev_dbg(mtu->dev, "%s: %s\n", mep->name, set ? "SEND STALL" : "CLEAR STALL, with EP RESET"); } void mtu3_dev_on_off(struct mtu3 *mtu, int is_on) { if (mtu->u3_capable && mtu->speed >= USB_SPEED_SUPER) mtu3_ss_func_set(mtu, is_on); else mtu3_hs_softconn_set(mtu, is_on); dev_info(mtu->dev, "gadget (%s) pullup D%s\n", usb_speed_string(mtu->speed), is_on ? "+" : "-"); } void mtu3_start(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; dev_dbg(mtu->dev, "%s devctl 0x%x\n", __func__, mtu3_readl(mbase, U3D_DEVICE_CONTROL)); mtu3_dev_power_on(mtu); mtu3_csr_init(mtu); mtu3_set_speed(mtu, mtu->speed); /* Initialize the default interrupts */ mtu3_intr_enable(mtu); mtu->is_active = 1; if (mtu->softconnect) mtu3_dev_on_off(mtu, 1); } void mtu3_stop(struct mtu3 *mtu) { dev_dbg(mtu->dev, "%s\n", __func__); mtu3_intr_disable(mtu); if (mtu->softconnect) mtu3_dev_on_off(mtu, 0); mtu->is_active = 0; mtu3_dev_power_down(mtu); } static void mtu3_dev_suspend(struct mtu3 *mtu) { if (!mtu->is_active) return; mtu3_intr_disable(mtu); mtu3_dev_power_down(mtu); } static void mtu3_dev_resume(struct mtu3 *mtu) { if (!mtu->is_active) return; mtu3_dev_power_on(mtu); mtu3_intr_enable(mtu); } /* for non-ep0 */ int mtu3_config_ep(struct mtu3 *mtu, struct mtu3_ep *mep, int interval, int burst, int mult) { void __iomem *mbase = mtu->mac_base; bool gen2cp = mtu->gen2cp; int epnum = mep->epnum; u32 csr0, csr1, csr2; int fifo_sgsz, fifo_addr; int num_pkts; fifo_addr = ep_fifo_alloc(mep, mep->maxp); if (fifo_addr < 0) { dev_err(mtu->dev, "alloc ep fifo failed(%d)\n", mep->maxp); return -ENOMEM; } fifo_sgsz = ilog2(mep->fifo_seg_size); dev_dbg(mtu->dev, "%s fifosz: %x(%x/%x)\n", __func__, fifo_sgsz, mep->fifo_seg_size, mep->fifo_size); if (mep->is_in) { csr0 = TX_TXMAXPKTSZ(mep->maxp); csr0 |= TX_DMAREQEN; num_pkts = (burst + 1) * (mult + 1) - 1; csr1 = TX_SS_BURST(burst) | TX_SLOT(mep->slot); csr1 |= TX_MAX_PKT(gen2cp, num_pkts) | TX_MULT(gen2cp, mult); csr2 = TX_FIFOADDR(fifo_addr >> 4); csr2 |= TX_FIFOSEGSIZE(fifo_sgsz); switch (mep->type) { case USB_ENDPOINT_XFER_BULK: csr1 |= TX_TYPE(TYPE_BULK); break; case USB_ENDPOINT_XFER_ISOC: csr1 |= TX_TYPE(TYPE_ISO); csr2 |= TX_BINTERVAL(interval); break; case USB_ENDPOINT_XFER_INT: csr1 |= TX_TYPE(TYPE_INT); csr2 |= TX_BINTERVAL(interval); break; } /* Enable QMU Done interrupt */ mtu3_setbits(mbase, U3D_QIESR0, QMU_TX_DONE_INT(epnum)); mtu3_writel(mbase, MU3D_EP_TXCR0(epnum), csr0); mtu3_writel(mbase, MU3D_EP_TXCR1(epnum), csr1); mtu3_writel(mbase, MU3D_EP_TXCR2(epnum), csr2); dev_dbg(mtu->dev, "U3D_TX%d CSR0:%#x, CSR1:%#x, CSR2:%#x\n", epnum, mtu3_readl(mbase, MU3D_EP_TXCR0(epnum)), mtu3_readl(mbase, MU3D_EP_TXCR1(epnum)), mtu3_readl(mbase, MU3D_EP_TXCR2(epnum))); } else { csr0 = RX_RXMAXPKTSZ(mep->maxp); csr0 |= RX_DMAREQEN; num_pkts = (burst + 1) * (mult + 1) - 1; csr1 = RX_SS_BURST(burst) | RX_SLOT(mep->slot); csr1 |= RX_MAX_PKT(gen2cp, num_pkts) | RX_MULT(gen2cp, mult); csr2 = RX_FIFOADDR(fifo_addr >> 4); csr2 |= RX_FIFOSEGSIZE(fifo_sgsz); switch (mep->type) { case USB_ENDPOINT_XFER_BULK: csr1 |= RX_TYPE(TYPE_BULK); break; case USB_ENDPOINT_XFER_ISOC: csr1 |= RX_TYPE(TYPE_ISO); csr2 |= RX_BINTERVAL(interval); break; case USB_ENDPOINT_XFER_INT: csr1 |= RX_TYPE(TYPE_INT); csr2 |= RX_BINTERVAL(interval); break; } /*Enable QMU Done interrupt */ mtu3_setbits(mbase, U3D_QIESR0, QMU_RX_DONE_INT(epnum)); mtu3_writel(mbase, MU3D_EP_RXCR0(epnum), csr0); mtu3_writel(mbase, MU3D_EP_RXCR1(epnum), csr1); mtu3_writel(mbase, MU3D_EP_RXCR2(epnum), csr2); dev_dbg(mtu->dev, "U3D_RX%d CSR0:%#x, CSR1:%#x, CSR2:%#x\n", epnum, mtu3_readl(mbase, MU3D_EP_RXCR0(epnum)), mtu3_readl(mbase, MU3D_EP_RXCR1(epnum)), mtu3_readl(mbase, MU3D_EP_RXCR2(epnum))); } dev_dbg(mtu->dev, "csr0:%#x, csr1:%#x, csr2:%#x\n", csr0, csr1, csr2); dev_dbg(mtu->dev, "%s: %s, fifo-addr:%#x, fifo-size:%#x(%#x/%#x)\n", __func__, mep->name, mep->fifo_addr, mep->fifo_size, fifo_sgsz, mep->fifo_seg_size); return 0; } /* for non-ep0 */ void mtu3_deconfig_ep(struct mtu3 *mtu, struct mtu3_ep *mep) { void __iomem *mbase = mtu->mac_base; int epnum = mep->epnum; if (mep->is_in) { mtu3_writel(mbase, MU3D_EP_TXCR0(epnum), 0); mtu3_writel(mbase, MU3D_EP_TXCR1(epnum), 0); mtu3_writel(mbase, MU3D_EP_TXCR2(epnum), 0); mtu3_setbits(mbase, U3D_QIECR0, QMU_TX_DONE_INT(epnum)); } else { mtu3_writel(mbase, MU3D_EP_RXCR0(epnum), 0); mtu3_writel(mbase, MU3D_EP_RXCR1(epnum), 0); mtu3_writel(mbase, MU3D_EP_RXCR2(epnum), 0); mtu3_setbits(mbase, U3D_QIECR0, QMU_RX_DONE_INT(epnum)); } mtu3_ep_reset(mep); ep_fifo_free(mep); dev_dbg(mtu->dev, "%s: %s\n", __func__, mep->name); } /* * Two scenarios: * 1. when device IP supports SS, the fifo of EP0, TX EPs, RX EPs * are separated; * 2. when supports only HS, the fifo is shared for all EPs, and * the capability registers of @EPNTXFFSZ or @EPNRXFFSZ indicate * the total fifo size of non-ep0, and ep0's is fixed to 64B, * so the total fifo size is 64B + @EPNTXFFSZ; * Due to the first 64B should be reserved for EP0, non-ep0's fifo * starts from offset 64 and are divided into two equal parts for * TX or RX EPs for simplification. */ static void get_ep_fifo_config(struct mtu3 *mtu) { struct mtu3_fifo_info *tx_fifo; struct mtu3_fifo_info *rx_fifo; u32 fifosize; if (mtu->separate_fifo) { fifosize = mtu3_readl(mtu->mac_base, U3D_CAP_EPNTXFFSZ); tx_fifo = &mtu->tx_fifo; tx_fifo->base = 0; tx_fifo->limit = fifosize / MTU3_EP_FIFO_UNIT; bitmap_zero(tx_fifo->bitmap, MTU3_FIFO_BIT_SIZE); fifosize = mtu3_readl(mtu->mac_base, U3D_CAP_EPNRXFFSZ); rx_fifo = &mtu->rx_fifo; rx_fifo->base = 0; rx_fifo->limit = fifosize / MTU3_EP_FIFO_UNIT; bitmap_zero(rx_fifo->bitmap, MTU3_FIFO_BIT_SIZE); mtu->slot = MTU3_U3_IP_SLOT_DEFAULT; } else { fifosize = mtu3_readl(mtu->mac_base, U3D_CAP_EPNTXFFSZ); tx_fifo = &mtu->tx_fifo; tx_fifo->base = MTU3_U2_IP_EP0_FIFO_SIZE; tx_fifo->limit = (fifosize / MTU3_EP_FIFO_UNIT) >> 1; bitmap_zero(tx_fifo->bitmap, MTU3_FIFO_BIT_SIZE); rx_fifo = &mtu->rx_fifo; rx_fifo->base = tx_fifo->base + tx_fifo->limit * MTU3_EP_FIFO_UNIT; rx_fifo->limit = tx_fifo->limit; bitmap_zero(rx_fifo->bitmap, MTU3_FIFO_BIT_SIZE); mtu->slot = MTU3_U2_IP_SLOT_DEFAULT; } dev_dbg(mtu->dev, "%s, TX: base-%d, limit-%d; RX: base-%d, limit-%d\n", __func__, tx_fifo->base, tx_fifo->limit, rx_fifo->base, rx_fifo->limit); } static void mtu3_ep0_setup(struct mtu3 *mtu) { u32 maxpacket = mtu->g.ep0->maxpacket; u32 csr; dev_dbg(mtu->dev, "%s maxpacket: %d\n", __func__, maxpacket); csr = mtu3_readl(mtu->mac_base, U3D_EP0CSR); csr &= ~EP0_MAXPKTSZ_MSK; csr |= EP0_MAXPKTSZ(maxpacket); csr &= EP0_W1C_BITS; mtu3_writel(mtu->mac_base, U3D_EP0CSR, csr); /* Enable EP0 interrupt */ mtu3_writel(mtu->mac_base, U3D_EPIESR, EP0ISR | SETUPENDISR); } static int mtu3_mem_alloc(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; struct mtu3_ep *ep_array; int in_ep_num, out_ep_num; u32 cap_epinfo; int ret; int i; cap_epinfo = mtu3_readl(mbase, U3D_CAP_EPINFO); in_ep_num = CAP_TX_EP_NUM(cap_epinfo); out_ep_num = CAP_RX_EP_NUM(cap_epinfo); dev_info(mtu->dev, "fifosz/epnum: Tx=%#x/%d, Rx=%#x/%d\n", mtu3_readl(mbase, U3D_CAP_EPNTXFFSZ), in_ep_num, mtu3_readl(mbase, U3D_CAP_EPNRXFFSZ), out_ep_num); /* one for ep0, another is reserved */ mtu->num_eps = min(in_ep_num, out_ep_num) + 1; ep_array = kcalloc(mtu->num_eps * 2, sizeof(*ep_array), GFP_KERNEL); if (ep_array == NULL) return -ENOMEM; mtu->ep_array = ep_array; mtu->in_eps = ep_array; mtu->out_eps = &ep_array[mtu->num_eps]; /* ep0 uses in_eps[0], out_eps[0] is reserved */ mtu->ep0 = mtu->in_eps; mtu->ep0->mtu = mtu; mtu->ep0->epnum = 0; for (i = 1; i < mtu->num_eps; i++) { struct mtu3_ep *mep = mtu->in_eps + i; mep->fifo = &mtu->tx_fifo; mep = mtu->out_eps + i; mep->fifo = &mtu->rx_fifo; } get_ep_fifo_config(mtu); ret = mtu3_qmu_init(mtu); if (ret) kfree(mtu->ep_array); return ret; } static void mtu3_mem_free(struct mtu3 *mtu) { mtu3_qmu_exit(mtu); kfree(mtu->ep_array); } static void mtu3_regs_init(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; /* be sure interrupts are disabled before registration of ISR */ mtu3_intr_disable(mtu); mtu3_csr_init(mtu); /* U2/U3 detected by HW */ mtu3_writel(mbase, U3D_DEVICE_CONF, 0); /* vbus detected by HW */ mtu3_clrbits(mbase, U3D_MISC_CTRL, VBUS_FRC_EN | VBUS_ON); /* use new QMU format when HW version >= 0x1003 */ if (mtu->gen2cp) mtu3_writel(mbase, U3D_QFCR, ~0x0); } static irqreturn_t mtu3_link_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; enum usb_device_speed udev_speed; u32 maxpkt = 64; u32 link; u32 speed; link = mtu3_readl(mbase, U3D_DEV_LINK_INTR); link &= mtu3_readl(mbase, U3D_DEV_LINK_INTR_ENABLE); mtu3_writel(mbase, U3D_DEV_LINK_INTR, link); /* W1C */ dev_dbg(mtu->dev, "=== LINK[%x] ===\n", link); if (!(link & SSUSB_DEV_SPEED_CHG_INTR)) return IRQ_NONE; speed = SSUSB_DEV_SPEED(mtu3_readl(mbase, U3D_DEVICE_CONF)); switch (speed) { case MTU3_SPEED_FULL: udev_speed = USB_SPEED_FULL; /*BESLCK = 4 < BESLCK_U3 = 10 < BESLDCK = 15 */ mtu3_writel(mbase, U3D_USB20_LPM_PARAMETER, LPM_BESLDCK(0xf) | LPM_BESLCK(4) | LPM_BESLCK_U3(0xa)); mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, LPM_BESL_STALL | LPM_BESLD_STALL); break; case MTU3_SPEED_HIGH: udev_speed = USB_SPEED_HIGH; /*BESLCK = 4 < BESLCK_U3 = 10 < BESLDCK = 15 */ mtu3_writel(mbase, U3D_USB20_LPM_PARAMETER, LPM_BESLDCK(0xf) | LPM_BESLCK(4) | LPM_BESLCK_U3(0xa)); mtu3_setbits(mbase, U3D_POWER_MANAGEMENT, LPM_BESL_STALL | LPM_BESLD_STALL); break; case MTU3_SPEED_SUPER: udev_speed = USB_SPEED_SUPER; maxpkt = 512; break; case MTU3_SPEED_SUPER_PLUS: udev_speed = USB_SPEED_SUPER_PLUS; maxpkt = 512; break; default: udev_speed = USB_SPEED_UNKNOWN; break; } dev_dbg(mtu->dev, "%s: %s\n", __func__, usb_speed_string(udev_speed)); mtu3_dbg_trace(mtu->dev, "link speed %s", usb_speed_string(udev_speed)); mtu->g.speed = udev_speed; mtu->g.ep0->maxpacket = maxpkt; mtu->ep0_state = MU3D_EP0_STATE_SETUP; mtu->connected = !!(udev_speed != USB_SPEED_UNKNOWN); if (udev_speed == USB_SPEED_UNKNOWN) { mtu3_gadget_disconnect(mtu); pm_runtime_put(mtu->dev); } else { pm_runtime_get(mtu->dev); mtu3_ep0_setup(mtu); } return IRQ_HANDLED; } static irqreturn_t mtu3_u3_ltssm_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 ltssm; ltssm = mtu3_readl(mbase, U3D_LTSSM_INTR); ltssm &= mtu3_readl(mbase, U3D_LTSSM_INTR_ENABLE); mtu3_writel(mbase, U3D_LTSSM_INTR, ltssm); /* W1C */ dev_dbg(mtu->dev, "=== LTSSM[%x] ===\n", ltssm); trace_mtu3_u3_ltssm_isr(ltssm); if (ltssm & (HOT_RST_INTR | WARM_RST_INTR)) mtu3_gadget_reset(mtu); if (ltssm & VBUS_FALL_INTR) { mtu3_ss_func_set(mtu, false); mtu3_gadget_reset(mtu); } if (ltssm & VBUS_RISE_INTR) mtu3_ss_func_set(mtu, true); if (ltssm & EXIT_U3_INTR) mtu3_gadget_resume(mtu); if (ltssm & ENTER_U3_INTR) mtu3_gadget_suspend(mtu); return IRQ_HANDLED; } static irqreturn_t mtu3_u2_common_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 u2comm; u2comm = mtu3_readl(mbase, U3D_COMMON_USB_INTR); u2comm &= mtu3_readl(mbase, U3D_COMMON_USB_INTR_ENABLE); mtu3_writel(mbase, U3D_COMMON_USB_INTR, u2comm); /* W1C */ dev_dbg(mtu->dev, "=== U2COMM[%x] ===\n", u2comm); trace_mtu3_u2_common_isr(u2comm); if (u2comm & SUSPEND_INTR) mtu3_gadget_suspend(mtu); if (u2comm & RESUME_INTR) mtu3_gadget_resume(mtu); if (u2comm & RESET_INTR) mtu3_gadget_reset(mtu); return IRQ_HANDLED; } static irqreturn_t mtu3_irq(int irq, void *data) { struct mtu3 *mtu = (struct mtu3 *)data; unsigned long flags; u32 level1; spin_lock_irqsave(&mtu->lock, flags); /* U3D_LV1ISR is RU */ level1 = mtu3_readl(mtu->mac_base, U3D_LV1ISR); level1 &= mtu3_readl(mtu->mac_base, U3D_LV1IER); if (level1 & EP_CTRL_INTR) mtu3_link_isr(mtu); if (level1 & MAC2_INTR) mtu3_u2_common_isr(mtu); if (level1 & MAC3_INTR) mtu3_u3_ltssm_isr(mtu); if (level1 & BMU_INTR) mtu3_ep0_isr(mtu); if (level1 & QMU_INTR) mtu3_qmu_isr(mtu); spin_unlock_irqrestore(&mtu->lock, flags); return IRQ_HANDLED; } static void mtu3_check_params(struct mtu3 *mtu) { /* device's u3 port (port0) is disabled */ if (mtu->u3_capable && (mtu->ssusb->u3p_dis_msk & BIT(0))) mtu->u3_capable = 0; /* check the max_speed parameter */ switch (mtu->max_speed) { case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: break; default: dev_err(mtu->dev, "invalid max_speed: %s\n", usb_speed_string(mtu->max_speed)); fallthrough; case USB_SPEED_UNKNOWN: /* default as SSP */ mtu->max_speed = USB_SPEED_SUPER_PLUS; break; } if (!mtu->u3_capable && (mtu->max_speed > USB_SPEED_HIGH)) mtu->max_speed = USB_SPEED_HIGH; mtu->speed = mtu->max_speed; dev_info(mtu->dev, "max_speed: %s\n", usb_speed_string(mtu->max_speed)); } static int mtu3_hw_init(struct mtu3 *mtu) { u32 value; int ret; value = mtu3_readl(mtu->ippc_base, U3D_SSUSB_IP_TRUNK_VERS); mtu->hw_version = IP_TRUNK_VERS(value); mtu->gen2cp = !!(mtu->hw_version >= MTU3_TRUNK_VERS_1003); value = mtu3_readl(mtu->ippc_base, U3D_SSUSB_IP_DEV_CAP); mtu->u3_capable = !!SSUSB_IP_DEV_U3_PORT_NUM(value); /* usb3 ip uses separate fifo */ mtu->separate_fifo = mtu->u3_capable; dev_info(mtu->dev, "IP version 0x%x(%s IP)\n", mtu->hw_version, mtu->u3_capable ? "U3" : "U2"); mtu3_check_params(mtu); mtu3_device_reset(mtu); ret = mtu3_device_enable(mtu); if (ret) { dev_err(mtu->dev, "device enable failed %d\n", ret); return ret; } ret = mtu3_mem_alloc(mtu); if (ret) return -ENOMEM; mtu3_regs_init(mtu); return 0; } static void mtu3_hw_exit(struct mtu3 *mtu) { mtu3_device_disable(mtu); mtu3_mem_free(mtu); } /* * we set 32-bit DMA mask by default, here check whether the controller * supports 36-bit DMA or not, if it does, set 36-bit DMA mask. */ static int mtu3_set_dma_mask(struct mtu3 *mtu) { struct device *dev = mtu->dev; bool is_36bit = false; int ret = 0; u32 value; value = mtu3_readl(mtu->mac_base, U3D_MISC_CTRL); if (value & DMA_ADDR_36BIT) { is_36bit = true; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(36)); /* If set 36-bit DMA mask fails, fall back to 32-bit DMA mask */ if (ret) { is_36bit = false; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); } } dev_info(dev, "dma mask: %s bits\n", is_36bit ? "36" : "32"); return ret; } int ssusb_gadget_init(struct ssusb_mtk *ssusb) { struct device *dev = ssusb->dev; struct platform_device *pdev = to_platform_device(dev); struct mtu3 *mtu = NULL; int ret = -ENOMEM; mtu = devm_kzalloc(dev, sizeof(struct mtu3), GFP_KERNEL); if (mtu == NULL) return -ENOMEM; mtu->irq = platform_get_irq_byname_optional(pdev, "device"); if (mtu->irq < 0) { if (mtu->irq == -EPROBE_DEFER) return mtu->irq; /* for backward compatibility */ mtu->irq = platform_get_irq(pdev, 0); if (mtu->irq < 0) return mtu->irq; } dev_info(dev, "irq %d\n", mtu->irq); mtu->mac_base = devm_platform_ioremap_resource_byname(pdev, "mac"); if (IS_ERR(mtu->mac_base)) { dev_err(dev, "error mapping memory for dev mac\n"); return PTR_ERR(mtu->mac_base); } spin_lock_init(&mtu->lock); mtu->dev = dev; mtu->ippc_base = ssusb->ippc_base; ssusb->mac_base = mtu->mac_base; ssusb->u3d = mtu; mtu->ssusb = ssusb; mtu->max_speed = usb_get_maximum_speed(dev); dev_dbg(dev, "mac_base=0x%p, ippc_base=0x%p\n", mtu->mac_base, mtu->ippc_base); ret = mtu3_hw_init(mtu); if (ret) { dev_err(dev, "mtu3 hw init failed:%d\n", ret); return ret; } ret = mtu3_set_dma_mask(mtu); if (ret) { dev_err(dev, "mtu3 set dma_mask failed:%d\n", ret); goto dma_mask_err; } ret = devm_request_threaded_irq(dev, mtu->irq, NULL, mtu3_irq, IRQF_ONESHOT, dev_name(dev), mtu); if (ret) { dev_err(dev, "request irq %d failed!\n", mtu->irq); goto irq_err; } /* power down device IP for power saving by default */ mtu3_stop(mtu); ret = mtu3_gadget_setup(mtu); if (ret) { dev_err(dev, "mtu3 gadget init failed:%d\n", ret); goto gadget_err; } ssusb_dev_debugfs_init(ssusb); dev_dbg(dev, " %s() done...\n", __func__); return 0; gadget_err: device_init_wakeup(dev, false); dma_mask_err: irq_err: mtu3_hw_exit(mtu); ssusb->u3d = NULL; dev_err(dev, " %s() fail...\n", __func__); return ret; } void ssusb_gadget_exit(struct ssusb_mtk *ssusb) { struct mtu3 *mtu = ssusb->u3d; mtu3_gadget_cleanup(mtu); device_init_wakeup(ssusb->dev, false); mtu3_hw_exit(mtu); } bool ssusb_gadget_ip_sleep_check(struct ssusb_mtk *ssusb) { struct mtu3 *mtu = ssusb->u3d; /* host only, should wait for ip sleep */ if (!mtu) return true; /* device is started and pullup D+, ip can sleep */ if (mtu->is_active && mtu->softconnect) return true; /* ip can't sleep if not pullup D+ when support device mode */ return false; } int ssusb_gadget_suspend(struct ssusb_mtk *ssusb, pm_message_t msg) { struct mtu3 *mtu = ssusb->u3d; if (!mtu->gadget_driver) return 0; if (mtu->connected) return -EBUSY; mtu3_dev_suspend(mtu); synchronize_irq(mtu->irq); return 0; } int ssusb_gadget_resume(struct ssusb_mtk *ssusb, pm_message_t msg) { struct mtu3 *mtu = ssusb->u3d; if (!mtu->gadget_driver) return 0; mtu3_dev_resume(mtu); return 0; }
linux-master
drivers/usb/mtu3/mtu3_core.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_dr.c - dual role switch and host glue layer * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include <linux/clk.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/regmap.h> #include "mtu3.h" #include "mtu3_dr.h" /* mt8173 etc */ #define PERI_WK_CTRL1 0x4 #define WC1_IS_C(x) (((x) & 0xf) << 26) /* cycle debounce */ #define WC1_IS_EN BIT(25) #define WC1_IS_P BIT(6) /* polarity for ip sleep */ /* mt8183 */ #define PERI_WK_CTRL0 0x0 #define WC0_IS_C(x) ((u32)(((x) & 0xf) << 28)) /* cycle debounce */ #define WC0_IS_P BIT(12) /* polarity */ #define WC0_IS_EN BIT(6) /* mt8192 */ #define WC0_SSUSB0_CDEN BIT(6) #define WC0_IS_SPM_EN BIT(1) /* mt2712 etc */ #define PERI_SSUSB_SPM_CTRL 0x0 #define SSC_IP_SLEEP_EN BIT(4) #define SSC_SPM_INT_EN BIT(1) enum ssusb_uwk_vers { SSUSB_UWK_V1 = 1, SSUSB_UWK_V2, SSUSB_UWK_V1_1 = 101, /* specific revision 1.01 */ SSUSB_UWK_V1_2, /* specific revision 1.02 */ }; /* * ip-sleep wakeup mode: * all clocks can be turn off, but power domain should be kept on */ static void ssusb_wakeup_ip_sleep_set(struct ssusb_mtk *ssusb, bool enable) { u32 reg, msk, val; switch (ssusb->uwk_vers) { case SSUSB_UWK_V1: reg = ssusb->uwk_reg_base + PERI_WK_CTRL1; msk = WC1_IS_EN | WC1_IS_C(0xf) | WC1_IS_P; val = enable ? (WC1_IS_EN | WC1_IS_C(0x8)) : 0; break; case SSUSB_UWK_V1_1: reg = ssusb->uwk_reg_base + PERI_WK_CTRL0; msk = WC0_IS_EN | WC0_IS_C(0xf) | WC0_IS_P; val = enable ? (WC0_IS_EN | WC0_IS_C(0x1)) : 0; break; case SSUSB_UWK_V1_2: reg = ssusb->uwk_reg_base + PERI_WK_CTRL0; msk = WC0_SSUSB0_CDEN | WC0_IS_SPM_EN; val = enable ? msk : 0; break; case SSUSB_UWK_V2: reg = ssusb->uwk_reg_base + PERI_SSUSB_SPM_CTRL; msk = SSC_IP_SLEEP_EN | SSC_SPM_INT_EN; val = enable ? msk : 0; break; default: return; } regmap_update_bits(ssusb->uwk, reg, msk, val); } int ssusb_wakeup_of_property_parse(struct ssusb_mtk *ssusb, struct device_node *dn) { struct of_phandle_args args; int ret; /* wakeup function is optional */ ssusb->uwk_en = of_property_read_bool(dn, "wakeup-source"); if (!ssusb->uwk_en) return 0; ret = of_parse_phandle_with_fixed_args(dn, "mediatek,syscon-wakeup", 2, 0, &args); if (ret) return ret; ssusb->uwk_reg_base = args.args[0]; ssusb->uwk_vers = args.args[1]; ssusb->uwk = syscon_node_to_regmap(args.np); of_node_put(args.np); dev_info(ssusb->dev, "uwk - reg:0x%x, version:%d\n", ssusb->uwk_reg_base, ssusb->uwk_vers); return PTR_ERR_OR_ZERO(ssusb->uwk); } void ssusb_wakeup_set(struct ssusb_mtk *ssusb, bool enable) { if (ssusb->uwk_en) ssusb_wakeup_ip_sleep_set(ssusb, enable); } static void host_ports_num_get(struct ssusb_mtk *ssusb) { u32 xhci_cap; xhci_cap = mtu3_readl(ssusb->ippc_base, U3D_SSUSB_IP_XHCI_CAP); ssusb->u2_ports = SSUSB_IP_XHCI_U2_PORT_NUM(xhci_cap); ssusb->u3_ports = SSUSB_IP_XHCI_U3_PORT_NUM(xhci_cap); dev_dbg(ssusb->dev, "host - u2_ports:%d, u3_ports:%d\n", ssusb->u2_ports, ssusb->u3_ports); } /* only configure ports will be used later */ static int ssusb_host_enable(struct ssusb_mtk *ssusb) { void __iomem *ibase = ssusb->ippc_base; int num_u3p = ssusb->u3_ports; int num_u2p = ssusb->u2_ports; int u3_ports_disabled; u32 check_clk; u32 value; int i; /* power on host ip */ mtu3_clrbits(ibase, U3D_SSUSB_IP_PW_CTRL1, SSUSB_IP_HOST_PDN); /* power on and enable u3 ports except skipped ones */ u3_ports_disabled = 0; for (i = 0; i < num_u3p; i++) { if ((0x1 << i) & ssusb->u3p_dis_msk) { u3_ports_disabled++; continue; } value = mtu3_readl(ibase, SSUSB_U3_CTRL(i)); value &= ~(SSUSB_U3_PORT_PDN | SSUSB_U3_PORT_DIS); value |= SSUSB_U3_PORT_HOST_SEL; mtu3_writel(ibase, SSUSB_U3_CTRL(i), value); } /* power on and enable all u2 ports */ for (i = 0; i < num_u2p; i++) { if ((0x1 << i) & ssusb->u2p_dis_msk) continue; value = mtu3_readl(ibase, SSUSB_U2_CTRL(i)); value &= ~(SSUSB_U2_PORT_PDN | SSUSB_U2_PORT_DIS); value |= SSUSB_U2_PORT_HOST_SEL; mtu3_writel(ibase, SSUSB_U2_CTRL(i), value); } check_clk = SSUSB_XHCI_RST_B_STS; if (num_u3p > u3_ports_disabled) check_clk = SSUSB_U3_MAC_RST_B_STS; return ssusb_check_clocks(ssusb, check_clk); } static int ssusb_host_disable(struct ssusb_mtk *ssusb) { void __iomem *ibase = ssusb->ippc_base; int num_u3p = ssusb->u3_ports; int num_u2p = ssusb->u2_ports; u32 value; int i; /* power down and disable u3 ports except skipped ones */ for (i = 0; i < num_u3p; i++) { if ((0x1 << i) & ssusb->u3p_dis_msk) continue; value = mtu3_readl(ibase, SSUSB_U3_CTRL(i)); value |= SSUSB_U3_PORT_PDN | SSUSB_U3_PORT_DIS; mtu3_writel(ibase, SSUSB_U3_CTRL(i), value); } /* power down and disable u2 ports except skipped ones */ for (i = 0; i < num_u2p; i++) { if ((0x1 << i) & ssusb->u2p_dis_msk) continue; value = mtu3_readl(ibase, SSUSB_U2_CTRL(i)); value |= SSUSB_U2_PORT_PDN | SSUSB_U2_PORT_DIS; mtu3_writel(ibase, SSUSB_U2_CTRL(i), value); } /* power down host ip */ mtu3_setbits(ibase, U3D_SSUSB_IP_PW_CTRL1, SSUSB_IP_HOST_PDN); return 0; } int ssusb_host_resume(struct ssusb_mtk *ssusb, bool p0_skipped) { void __iomem *ibase = ssusb->ippc_base; int u3p_skip_msk = ssusb->u3p_dis_msk; int u2p_skip_msk = ssusb->u2p_dis_msk; int num_u3p = ssusb->u3_ports; int num_u2p = ssusb->u2_ports; u32 value; int i; if (p0_skipped) { u2p_skip_msk |= 0x1; if (ssusb->otg_switch.is_u3_drd) u3p_skip_msk |= 0x1; } /* power on host ip */ mtu3_clrbits(ibase, U3D_SSUSB_IP_PW_CTRL1, SSUSB_IP_HOST_PDN); /* power on u3 ports except skipped ones */ for (i = 0; i < num_u3p; i++) { if ((0x1 << i) & u3p_skip_msk) continue; value = mtu3_readl(ibase, SSUSB_U3_CTRL(i)); value &= ~SSUSB_U3_PORT_PDN; mtu3_writel(ibase, SSUSB_U3_CTRL(i), value); } /* power on all u2 ports except skipped ones */ for (i = 0; i < num_u2p; i++) { if ((0x1 << i) & u2p_skip_msk) continue; value = mtu3_readl(ibase, SSUSB_U2_CTRL(i)); value &= ~SSUSB_U2_PORT_PDN; mtu3_writel(ibase, SSUSB_U2_CTRL(i), value); } return 0; } /* here not skip port0 due to PDN can be set repeatedly */ int ssusb_host_suspend(struct ssusb_mtk *ssusb) { void __iomem *ibase = ssusb->ippc_base; int num_u3p = ssusb->u3_ports; int num_u2p = ssusb->u2_ports; u32 value; int i; /* power down u3 ports except skipped ones */ for (i = 0; i < num_u3p; i++) { if ((0x1 << i) & ssusb->u3p_dis_msk) continue; value = mtu3_readl(ibase, SSUSB_U3_CTRL(i)); value |= SSUSB_U3_PORT_PDN; mtu3_writel(ibase, SSUSB_U3_CTRL(i), value); } /* power down u2 ports except skipped ones */ for (i = 0; i < num_u2p; i++) { if ((0x1 << i) & ssusb->u2p_dis_msk) continue; value = mtu3_readl(ibase, SSUSB_U2_CTRL(i)); value |= SSUSB_U2_PORT_PDN; mtu3_writel(ibase, SSUSB_U2_CTRL(i), value); } /* power down host ip */ mtu3_setbits(ibase, U3D_SSUSB_IP_PW_CTRL1, SSUSB_IP_HOST_PDN); return 0; } static void ssusb_host_setup(struct ssusb_mtk *ssusb) { host_ports_num_get(ssusb); /* * power on host and power on/enable all ports * if support OTG, gadget driver will switch port0 to device mode */ ssusb_host_enable(ssusb); ssusb_set_force_mode(ssusb, MTU3_DR_FORCE_HOST); /* if port0 supports dual-role, works as host mode by default */ ssusb_set_vbus(&ssusb->otg_switch, 1); } static void ssusb_host_cleanup(struct ssusb_mtk *ssusb) { if (ssusb->is_host) ssusb_set_vbus(&ssusb->otg_switch, 0); ssusb_host_disable(ssusb); } /* * If host supports multiple ports, the VBUSes(5V) of ports except port0 * which supports OTG are better to be enabled by default in DTS. * Because the host driver will keep link with devices attached when system * enters suspend mode, so no need to control VBUSes after initialization. */ int ssusb_host_init(struct ssusb_mtk *ssusb, struct device_node *parent_dn) { struct device *parent_dev = ssusb->dev; int ret; ssusb_host_setup(ssusb); ret = of_platform_populate(parent_dn, NULL, NULL, parent_dev); if (ret) { dev_dbg(parent_dev, "failed to create child devices at %pOF\n", parent_dn); return ret; } dev_info(parent_dev, "xHCI platform device register success...\n"); return 0; } void ssusb_host_exit(struct ssusb_mtk *ssusb) { of_platform_depopulate(ssusb->dev); ssusb_host_cleanup(ssusb); }
linux-master
drivers/usb/mtu3/mtu3_host.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_dr.c - dual role switch and host glue layer * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include "mtu3.h" #include "mtu3_dr.h" #include "mtu3_debug.h" #define USB2_PORT 2 #define USB3_PORT 3 static inline struct ssusb_mtk *otg_sx_to_ssusb(struct otg_switch_mtk *otg_sx) { return container_of(otg_sx, struct ssusb_mtk, otg_switch); } static void toggle_opstate(struct ssusb_mtk *ssusb) { mtu3_setbits(ssusb->mac_base, U3D_DEVICE_CONTROL, DC_SESSION); mtu3_setbits(ssusb->mac_base, U3D_POWER_MANAGEMENT, SOFT_CONN); } /* only port0 supports dual-role mode */ static int ssusb_port0_switch(struct ssusb_mtk *ssusb, int version, bool tohost) { void __iomem *ibase = ssusb->ippc_base; u32 value; dev_dbg(ssusb->dev, "%s (switch u%d port0 to %s)\n", __func__, version, tohost ? "host" : "device"); if (version == USB2_PORT) { /* 1. power off and disable u2 port0 */ value = mtu3_readl(ibase, SSUSB_U2_CTRL(0)); value |= SSUSB_U2_PORT_PDN | SSUSB_U2_PORT_DIS; mtu3_writel(ibase, SSUSB_U2_CTRL(0), value); /* 2. power on, enable u2 port0 and select its mode */ value = mtu3_readl(ibase, SSUSB_U2_CTRL(0)); value &= ~(SSUSB_U2_PORT_PDN | SSUSB_U2_PORT_DIS); value = tohost ? (value | SSUSB_U2_PORT_HOST_SEL) : (value & (~SSUSB_U2_PORT_HOST_SEL)); mtu3_writel(ibase, SSUSB_U2_CTRL(0), value); } else { /* 1. power off and disable u3 port0 */ value = mtu3_readl(ibase, SSUSB_U3_CTRL(0)); value |= SSUSB_U3_PORT_PDN | SSUSB_U3_PORT_DIS; mtu3_writel(ibase, SSUSB_U3_CTRL(0), value); /* 2. power on, enable u3 port0 and select its mode */ value = mtu3_readl(ibase, SSUSB_U3_CTRL(0)); value &= ~(SSUSB_U3_PORT_PDN | SSUSB_U3_PORT_DIS); value = tohost ? (value | SSUSB_U3_PORT_HOST_SEL) : (value & (~SSUSB_U3_PORT_HOST_SEL)); mtu3_writel(ibase, SSUSB_U3_CTRL(0), value); } return 0; } static void switch_port_to_host(struct ssusb_mtk *ssusb) { u32 check_clk = 0; dev_dbg(ssusb->dev, "%s\n", __func__); ssusb_port0_switch(ssusb, USB2_PORT, true); if (ssusb->otg_switch.is_u3_drd) { ssusb_port0_switch(ssusb, USB3_PORT, true); check_clk = SSUSB_U3_MAC_RST_B_STS; } ssusb_check_clocks(ssusb, check_clk); /* after all clocks are stable */ toggle_opstate(ssusb); } static void switch_port_to_device(struct ssusb_mtk *ssusb) { u32 check_clk = 0; dev_dbg(ssusb->dev, "%s\n", __func__); ssusb_port0_switch(ssusb, USB2_PORT, false); if (ssusb->otg_switch.is_u3_drd) { ssusb_port0_switch(ssusb, USB3_PORT, false); check_clk = SSUSB_U3_MAC_RST_B_STS; } ssusb_check_clocks(ssusb, check_clk); } int ssusb_set_vbus(struct otg_switch_mtk *otg_sx, int is_on) { struct ssusb_mtk *ssusb = otg_sx_to_ssusb(otg_sx); struct regulator *vbus = otg_sx->vbus; int ret; /* vbus is optional */ if (!vbus) return 0; dev_dbg(ssusb->dev, "%s: turn %s\n", __func__, is_on ? "on" : "off"); if (is_on) { ret = regulator_enable(vbus); if (ret) { dev_err(ssusb->dev, "vbus regulator enable failed\n"); return ret; } } else { regulator_disable(vbus); } return 0; } static void ssusb_mode_sw_work(struct work_struct *work) { struct otg_switch_mtk *otg_sx = container_of(work, struct otg_switch_mtk, dr_work); struct ssusb_mtk *ssusb = otg_sx_to_ssusb(otg_sx); struct mtu3 *mtu = ssusb->u3d; enum usb_role desired_role = otg_sx->desired_role; enum usb_role current_role; current_role = ssusb->is_host ? USB_ROLE_HOST : USB_ROLE_DEVICE; if (desired_role == USB_ROLE_NONE) { /* the default mode is host as probe does */ desired_role = USB_ROLE_HOST; if (otg_sx->default_role == USB_ROLE_DEVICE) desired_role = USB_ROLE_DEVICE; } if (current_role == desired_role) return; dev_dbg(ssusb->dev, "set role : %s\n", usb_role_string(desired_role)); mtu3_dbg_trace(ssusb->dev, "set role : %s", usb_role_string(desired_role)); pm_runtime_get_sync(ssusb->dev); switch (desired_role) { case USB_ROLE_HOST: ssusb_set_force_mode(ssusb, MTU3_DR_FORCE_HOST); mtu3_stop(mtu); switch_port_to_host(ssusb); ssusb_set_vbus(otg_sx, 1); ssusb->is_host = true; break; case USB_ROLE_DEVICE: ssusb_set_force_mode(ssusb, MTU3_DR_FORCE_DEVICE); ssusb->is_host = false; ssusb_set_vbus(otg_sx, 0); switch_port_to_device(ssusb); mtu3_start(mtu); break; case USB_ROLE_NONE: default: dev_err(ssusb->dev, "invalid role\n"); } pm_runtime_put(ssusb->dev); } static void ssusb_set_mode(struct otg_switch_mtk *otg_sx, enum usb_role role) { struct ssusb_mtk *ssusb = otg_sx_to_ssusb(otg_sx); if (ssusb->dr_mode != USB_DR_MODE_OTG) return; otg_sx->desired_role = role; queue_work(system_freezable_wq, &otg_sx->dr_work); } static int ssusb_id_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct otg_switch_mtk *otg_sx = container_of(nb, struct otg_switch_mtk, id_nb); ssusb_set_mode(otg_sx, event ? USB_ROLE_HOST : USB_ROLE_DEVICE); return NOTIFY_DONE; } static int ssusb_extcon_register(struct otg_switch_mtk *otg_sx) { struct ssusb_mtk *ssusb = otg_sx_to_ssusb(otg_sx); struct extcon_dev *edev = otg_sx->edev; int ret; /* extcon is optional */ if (!edev) return 0; otg_sx->id_nb.notifier_call = ssusb_id_notifier; ret = devm_extcon_register_notifier(ssusb->dev, edev, EXTCON_USB_HOST, &otg_sx->id_nb); if (ret < 0) { dev_err(ssusb->dev, "failed to register notifier for USB-HOST\n"); return ret; } ret = extcon_get_state(edev, EXTCON_USB_HOST); dev_dbg(ssusb->dev, "EXTCON_USB_HOST: %d\n", ret); /* default as host, switch to device mode if needed */ if (!ret) ssusb_set_mode(otg_sx, USB_ROLE_DEVICE); return 0; } /* * We provide an interface via debugfs to switch between host and device modes * depending on user input. * This is useful in special cases, such as uses TYPE-A receptacle but also * wants to support dual-role mode. */ void ssusb_mode_switch(struct ssusb_mtk *ssusb, int to_host) { struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; ssusb_set_mode(otg_sx, to_host ? USB_ROLE_HOST : USB_ROLE_DEVICE); } void ssusb_set_force_mode(struct ssusb_mtk *ssusb, enum mtu3_dr_force_mode mode) { u32 value; value = mtu3_readl(ssusb->ippc_base, SSUSB_U2_CTRL(0)); switch (mode) { case MTU3_DR_FORCE_DEVICE: value |= SSUSB_U2_PORT_FORCE_IDDIG | SSUSB_U2_PORT_RG_IDDIG; break; case MTU3_DR_FORCE_HOST: value |= SSUSB_U2_PORT_FORCE_IDDIG; value &= ~SSUSB_U2_PORT_RG_IDDIG; break; case MTU3_DR_FORCE_NONE: value &= ~(SSUSB_U2_PORT_FORCE_IDDIG | SSUSB_U2_PORT_RG_IDDIG); break; default: return; } mtu3_writel(ssusb->ippc_base, SSUSB_U2_CTRL(0), value); } static int ssusb_role_sw_set(struct usb_role_switch *sw, enum usb_role role) { struct ssusb_mtk *ssusb = usb_role_switch_get_drvdata(sw); struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; ssusb_set_mode(otg_sx, role); return 0; } static enum usb_role ssusb_role_sw_get(struct usb_role_switch *sw) { struct ssusb_mtk *ssusb = usb_role_switch_get_drvdata(sw); return ssusb->is_host ? USB_ROLE_HOST : USB_ROLE_DEVICE; } static int ssusb_role_sw_register(struct otg_switch_mtk *otg_sx) { struct usb_role_switch_desc role_sx_desc = { 0 }; struct ssusb_mtk *ssusb = otg_sx_to_ssusb(otg_sx); struct device *dev = ssusb->dev; enum usb_dr_mode mode; if (!otg_sx->role_sw_used) return 0; mode = usb_get_role_switch_default_mode(dev); if (mode == USB_DR_MODE_PERIPHERAL) otg_sx->default_role = USB_ROLE_DEVICE; else otg_sx->default_role = USB_ROLE_HOST; role_sx_desc.set = ssusb_role_sw_set; role_sx_desc.get = ssusb_role_sw_get; role_sx_desc.fwnode = dev_fwnode(dev); role_sx_desc.driver_data = ssusb; role_sx_desc.allow_userspace_control = true; otg_sx->role_sw = usb_role_switch_register(dev, &role_sx_desc); if (IS_ERR(otg_sx->role_sw)) return PTR_ERR(otg_sx->role_sw); ssusb_set_mode(otg_sx, otg_sx->default_role); return 0; } int ssusb_otg_switch_init(struct ssusb_mtk *ssusb) { struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; int ret = 0; INIT_WORK(&otg_sx->dr_work, ssusb_mode_sw_work); if (otg_sx->manual_drd_enabled) ssusb_dr_debugfs_init(ssusb); else if (otg_sx->role_sw_used) ret = ssusb_role_sw_register(otg_sx); else ret = ssusb_extcon_register(otg_sx); return ret; } void ssusb_otg_switch_exit(struct ssusb_mtk *ssusb) { struct otg_switch_mtk *otg_sx = &ssusb->otg_switch; cancel_work_sync(&otg_sx->dr_work); usb_role_switch_unregister(otg_sx->role_sw); }
linux-master
drivers/usb/mtu3/mtu3_dr.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_qmu.c - Queue Management Unit driver for device controller * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ /* * Queue Management Unit (QMU) is designed to unload SW effort * to serve DMA interrupts. * By preparing General Purpose Descriptor (GPD) and Buffer Descriptor (BD), * SW links data buffers and triggers QMU to send / receive data to * host / from device at a time. * And now only GPD is supported. * * For more detailed information, please refer to QMU Programming Guide */ #include <linux/dmapool.h> #include <linux/iopoll.h> #include "mtu3.h" #include "mtu3_trace.h" #define QMU_CHECKSUM_LEN 16 #define GPD_FLAGS_HWO BIT(0) #define GPD_FLAGS_BDP BIT(1) #define GPD_FLAGS_BPS BIT(2) #define GPD_FLAGS_ZLP BIT(6) #define GPD_FLAGS_IOC BIT(7) #define GET_GPD_HWO(gpd) (le32_to_cpu((gpd)->dw0_info) & GPD_FLAGS_HWO) #define GPD_RX_BUF_LEN_OG(x) (((x) & 0xffff) << 16) #define GPD_RX_BUF_LEN_EL(x) (((x) & 0xfffff) << 12) #define GPD_RX_BUF_LEN(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_RX_BUF_LEN_EL(x_) : GPD_RX_BUF_LEN_OG(x_); \ }) #define GPD_DATA_LEN_OG(x) ((x) & 0xffff) #define GPD_DATA_LEN_EL(x) ((x) & 0xfffff) #define GPD_DATA_LEN(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_DATA_LEN_EL(x_) : GPD_DATA_LEN_OG(x_); \ }) #define GPD_EXT_FLAG_ZLP BIT(29) #define GPD_EXT_NGP_OG(x) (((x) & 0xf) << 20) #define GPD_EXT_BUF_OG(x) (((x) & 0xf) << 16) #define GPD_EXT_NGP_EL(x) (((x) & 0xf) << 28) #define GPD_EXT_BUF_EL(x) (((x) & 0xf) << 24) #define GPD_EXT_NGP(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_EXT_NGP_EL(x_) : GPD_EXT_NGP_OG(x_); \ }) #define GPD_EXT_BUF(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_EXT_BUF_EL(x_) : GPD_EXT_BUF_OG(x_); \ }) #define HILO_GEN64(hi, lo) (((u64)(hi) << 32) + (lo)) #define HILO_DMA(hi, lo) \ ((dma_addr_t)HILO_GEN64((le32_to_cpu(hi)), (le32_to_cpu(lo)))) static dma_addr_t read_txq_cur_addr(void __iomem *mbase, u8 epnum) { u32 txcpr; u32 txhiar; txcpr = mtu3_readl(mbase, USB_QMU_TQCPR(epnum)); txhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum)); return HILO_DMA(QMU_CUR_GPD_ADDR_HI(txhiar), txcpr); } static dma_addr_t read_rxq_cur_addr(void __iomem *mbase, u8 epnum) { u32 rxcpr; u32 rxhiar; rxcpr = mtu3_readl(mbase, USB_QMU_RQCPR(epnum)); rxhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum)); return HILO_DMA(QMU_CUR_GPD_ADDR_HI(rxhiar), rxcpr); } static void write_txq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma) { u32 tqhiar; mtu3_writel(mbase, USB_QMU_TQSAR(epnum), cpu_to_le32(lower_32_bits(dma))); tqhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum)); tqhiar &= ~QMU_START_ADDR_HI_MSK; tqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma)); mtu3_writel(mbase, USB_QMU_TQHIAR(epnum), tqhiar); } static void write_rxq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma) { u32 rqhiar; mtu3_writel(mbase, USB_QMU_RQSAR(epnum), cpu_to_le32(lower_32_bits(dma))); rqhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum)); rqhiar &= ~QMU_START_ADDR_HI_MSK; rqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma)); mtu3_writel(mbase, USB_QMU_RQHIAR(epnum), rqhiar); } static struct qmu_gpd *gpd_dma_to_virt(struct mtu3_gpd_ring *ring, dma_addr_t dma_addr) { dma_addr_t dma_base = ring->dma; struct qmu_gpd *gpd_head = ring->start; u32 offset = (dma_addr - dma_base) / sizeof(*gpd_head); if (offset >= MAX_GPD_NUM) return NULL; return gpd_head + offset; } static dma_addr_t gpd_virt_to_dma(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd) { dma_addr_t dma_base = ring->dma; struct qmu_gpd *gpd_head = ring->start; u32 offset; offset = gpd - gpd_head; if (offset >= MAX_GPD_NUM) return 0; return dma_base + (offset * sizeof(*gpd)); } static void gpd_ring_init(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd) { ring->start = gpd; ring->enqueue = gpd; ring->dequeue = gpd; ring->end = gpd + MAX_GPD_NUM - 1; } static void reset_gpd_list(struct mtu3_ep *mep) { struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->start; if (gpd) { gpd->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd_ring_init(ring, gpd); } } int mtu3_gpd_ring_alloc(struct mtu3_ep *mep) { struct qmu_gpd *gpd; struct mtu3_gpd_ring *ring = &mep->gpd_ring; /* software own all gpds as default */ gpd = dma_pool_zalloc(mep->mtu->qmu_gpd_pool, GFP_ATOMIC, &ring->dma); if (gpd == NULL) return -ENOMEM; gpd_ring_init(ring, gpd); return 0; } void mtu3_gpd_ring_free(struct mtu3_ep *mep) { struct mtu3_gpd_ring *ring = &mep->gpd_ring; dma_pool_free(mep->mtu->qmu_gpd_pool, ring->start, ring->dma); memset(ring, 0, sizeof(*ring)); } void mtu3_qmu_resume(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; int epnum = mep->epnum; u32 offset; offset = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum); mtu3_writel(mbase, offset, QMU_Q_RESUME); if (!(mtu3_readl(mbase, offset) & QMU_Q_ACTIVE)) mtu3_writel(mbase, offset, QMU_Q_RESUME); } static struct qmu_gpd *advance_enq_gpd(struct mtu3_gpd_ring *ring) { if (ring->enqueue < ring->end) ring->enqueue++; else ring->enqueue = ring->start; return ring->enqueue; } /* @dequeue may be NULL if ring is unallocated or freed */ static struct qmu_gpd *advance_deq_gpd(struct mtu3_gpd_ring *ring) { if (ring->dequeue < ring->end) ring->dequeue++; else ring->dequeue = ring->start; return ring->dequeue; } /* check if a ring is emtpy */ static bool gpd_ring_empty(struct mtu3_gpd_ring *ring) { struct qmu_gpd *enq = ring->enqueue; struct qmu_gpd *next; if (ring->enqueue < ring->end) next = enq + 1; else next = ring->start; /* one gpd is reserved to simplify gpd preparation */ return next == ring->dequeue; } int mtu3_prepare_transfer(struct mtu3_ep *mep) { return gpd_ring_empty(&mep->gpd_ring); } static int mtu3_prepare_tx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { struct qmu_gpd *enq; struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->enqueue; struct usb_request *req = &mreq->request; struct mtu3 *mtu = mep->mtu; dma_addr_t enq_dma; u32 ext_addr; gpd->dw0_info = 0; /* SW own it */ gpd->buffer = cpu_to_le32(lower_32_bits(req->dma)); ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma)); gpd->dw3_info = cpu_to_le32(GPD_DATA_LEN(mtu, req->length)); /* get the next GPD */ enq = advance_enq_gpd(ring); enq_dma = gpd_virt_to_dma(ring, enq); dev_dbg(mep->mtu->dev, "TX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n", mep->epnum, gpd, enq, &enq_dma); enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma)); ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma)); gpd->dw0_info = cpu_to_le32(ext_addr); if (req->zero) { if (mtu->gen2cp) gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_ZLP); else gpd->dw3_info |= cpu_to_le32(GPD_EXT_FLAG_ZLP); } /* prevent reorder, make sure GPD's HWO is set last */ mb(); gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO); mreq->gpd = gpd; trace_mtu3_prepare_gpd(mep, gpd); return 0; } static int mtu3_prepare_rx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { struct qmu_gpd *enq; struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->enqueue; struct usb_request *req = &mreq->request; struct mtu3 *mtu = mep->mtu; dma_addr_t enq_dma; u32 ext_addr; gpd->dw0_info = 0; /* SW own it */ gpd->buffer = cpu_to_le32(lower_32_bits(req->dma)); ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma)); gpd->dw0_info = cpu_to_le32(GPD_RX_BUF_LEN(mtu, req->length)); /* get the next GPD */ enq = advance_enq_gpd(ring); enq_dma = gpd_virt_to_dma(ring, enq); dev_dbg(mep->mtu->dev, "RX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n", mep->epnum, gpd, enq, &enq_dma); enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma)); ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma)); gpd->dw3_info = cpu_to_le32(ext_addr); /* prevent reorder, make sure GPD's HWO is set last */ mb(); gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO); mreq->gpd = gpd; trace_mtu3_prepare_gpd(mep, gpd); return 0; } void mtu3_insert_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { if (mep->is_in) mtu3_prepare_tx_gpd(mep, mreq); else mtu3_prepare_rx_gpd(mep, mreq); } int mtu3_qmu_start(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; struct mtu3_gpd_ring *ring = &mep->gpd_ring; u8 epnum = mep->epnum; if (mep->is_in) { /* set QMU start address */ write_txq_start_addr(mbase, epnum, ring->dma); mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_DMAREQEN); /* send zero length packet according to ZLP flag in GPD */ mtu3_setbits(mbase, U3D_QCR1, QMU_TX_ZLP(epnum)); mtu3_writel(mbase, U3D_TQERRIESR0, QMU_TX_LEN_ERR(epnum) | QMU_TX_CS_ERR(epnum)); if (mtu3_readl(mbase, USB_QMU_TQCSR(epnum)) & QMU_Q_ACTIVE) { dev_warn(mtu->dev, "Tx %d Active Now!\n", epnum); return 0; } mtu3_writel(mbase, USB_QMU_TQCSR(epnum), QMU_Q_START); } else { write_rxq_start_addr(mbase, epnum, ring->dma); mtu3_setbits(mbase, MU3D_EP_RXCR0(epnum), RX_DMAREQEN); /* don't expect ZLP */ mtu3_clrbits(mbase, U3D_QCR3, QMU_RX_ZLP(epnum)); /* move to next GPD when receive ZLP */ mtu3_setbits(mbase, U3D_QCR3, QMU_RX_COZ(epnum)); mtu3_writel(mbase, U3D_RQERRIESR0, QMU_RX_LEN_ERR(epnum) | QMU_RX_CS_ERR(epnum)); mtu3_writel(mbase, U3D_RQERRIESR1, QMU_RX_ZLP_ERR(epnum)); if (mtu3_readl(mbase, USB_QMU_RQCSR(epnum)) & QMU_Q_ACTIVE) { dev_warn(mtu->dev, "Rx %d Active Now!\n", epnum); return 0; } mtu3_writel(mbase, USB_QMU_RQCSR(epnum), QMU_Q_START); } return 0; } /* may called in atomic context */ void mtu3_qmu_stop(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; int epnum = mep->epnum; u32 value = 0; u32 qcsr; int ret; qcsr = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum); if (!(mtu3_readl(mbase, qcsr) & QMU_Q_ACTIVE)) { dev_dbg(mtu->dev, "%s's qmu is inactive now!\n", mep->name); return; } mtu3_writel(mbase, qcsr, QMU_Q_STOP); if (mep->is_in) mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_FLUSHFIFO); ret = readl_poll_timeout_atomic(mbase + qcsr, value, !(value & QMU_Q_ACTIVE), 1, 1000); if (ret) { dev_err(mtu->dev, "stop %s's qmu failed\n", mep->name); return; } /* flush fifo again to make sure the fifo is empty */ if (mep->is_in) mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_FLUSHFIFO); dev_dbg(mtu->dev, "%s's qmu stop now!\n", mep->name); } void mtu3_qmu_flush(struct mtu3_ep *mep) { dev_dbg(mep->mtu->dev, "%s flush QMU %s\n", __func__, ((mep->is_in) ? "TX" : "RX")); /*Stop QMU */ mtu3_qmu_stop(mep); reset_gpd_list(mep); } /* * QMU can't transfer zero length packet directly (a hardware limit * on old SoCs), so when needs to send ZLP, we intentionally trigger * a length error interrupt, and in the ISR sends a ZLP by BMU. */ static void qmu_tx_zlp_error_handler(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->in_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd_current = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; u32 txcsr = 0; int ret; mreq = next_request(mep); if (mreq && mreq->request.length != 0) return; cur_gpd_dma = read_txq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); if (GPD_DATA_LEN(mtu, le32_to_cpu(gpd_current->dw3_info)) != 0) { dev_err(mtu->dev, "TX EP%d buffer length error(!=0)\n", epnum); return; } dev_dbg(mtu->dev, "%s send ZLP for req=%p\n", __func__, mreq); trace_mtu3_zlp_exp_gpd(mep, gpd_current); mtu3_clrbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN); ret = readl_poll_timeout_atomic(mbase + MU3D_EP_TXCR0(mep->epnum), txcsr, !(txcsr & TX_FIFOFULL), 1, 1000); if (ret) { dev_err(mtu->dev, "%s wait for fifo empty fail\n", __func__); return; } mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_TXPKTRDY); /* prevent reorder, make sure GPD's HWO is set last */ mb(); /* by pass the current GDP */ gpd_current->dw0_info |= cpu_to_le32(GPD_FLAGS_BPS | GPD_FLAGS_HWO); /*enable DMAREQEN, switch back to QMU mode */ mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN); mtu3_qmu_resume(mep); } /* * when rx error happens (except zlperr), QMU will stop, and RQCPR saves * the GPD encountered error, Done irq will arise after resuming QMU again. */ static void qmu_error_rx(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->out_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd_current = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; cur_gpd_dma = read_rxq_cur_addr(mtu->mac_base, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); mreq = next_request(mep); if (!mreq || mreq->gpd != gpd_current) { dev_err(mtu->dev, "no correct RX req is found\n"); return; } mreq->request.status = -EAGAIN; /* by pass the current GDP */ gpd_current->dw0_info |= cpu_to_le32(GPD_FLAGS_BPS | GPD_FLAGS_HWO); mtu3_qmu_resume(mep); dev_dbg(mtu->dev, "%s EP%d, current=%p, req=%p\n", __func__, epnum, gpd_current, mreq); } /* * NOTE: request list maybe is already empty as following case: * queue_tx --> qmu_interrupt(clear interrupt pending, schedule tasklet)--> * queue_tx --> process_tasklet(meanwhile, the second one is transferred, * tasklet process both of them)-->qmu_interrupt for second one. * To avoid upper case, put qmu_done_tx in ISR directly to process it. */ static void qmu_done_tx(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->in_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd = ring->dequeue; struct qmu_gpd *gpd_current = NULL; struct usb_request *request = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; /*transfer phy address got from QMU register to virtual address */ cur_gpd_dma = read_txq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n", __func__, epnum, gpd, gpd_current, ring->enqueue); while (gpd && gpd != gpd_current && !GET_GPD_HWO(gpd)) { mreq = next_request(mep); if (mreq == NULL || mreq->gpd != gpd) { dev_err(mtu->dev, "no correct TX req is found\n"); break; } request = &mreq->request; request->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info)); trace_mtu3_complete_gpd(mep, gpd); mtu3_req_complete(mep, request, 0); gpd = advance_deq_gpd(ring); } dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n", __func__, epnum, ring->dequeue, ring->enqueue); } static void qmu_done_rx(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->out_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd = ring->dequeue; struct qmu_gpd *gpd_current = NULL; struct usb_request *req = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; cur_gpd_dma = read_rxq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n", __func__, epnum, gpd, gpd_current, ring->enqueue); while (gpd && gpd != gpd_current && !GET_GPD_HWO(gpd)) { mreq = next_request(mep); if (mreq == NULL || mreq->gpd != gpd) { dev_err(mtu->dev, "no correct RX req is found\n"); break; } req = &mreq->request; req->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info)); trace_mtu3_complete_gpd(mep, gpd); mtu3_req_complete(mep, req, 0); gpd = advance_deq_gpd(ring); } dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n", __func__, epnum, ring->dequeue, ring->enqueue); } static void qmu_done_isr(struct mtu3 *mtu, u32 done_status) { int i; for (i = 1; i < mtu->num_eps; i++) { if (done_status & QMU_RX_DONE_INT(i)) qmu_done_rx(mtu, i); if (done_status & QMU_TX_DONE_INT(i)) qmu_done_tx(mtu, i); } } static void qmu_exception_isr(struct mtu3 *mtu, u32 qmu_status) { void __iomem *mbase = mtu->mac_base; u32 errval; int i; if ((qmu_status & RXQ_CSERR_INT) || (qmu_status & RXQ_LENERR_INT)) { errval = mtu3_readl(mbase, U3D_RQERRIR0); mtu3_writel(mbase, U3D_RQERRIR0, errval); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_RX_CS_ERR(i)) dev_err(mtu->dev, "Rx %d CS error!\n", i); if (errval & QMU_RX_LEN_ERR(i)) dev_err(mtu->dev, "RX %d Length error\n", i); if (errval & (QMU_RX_CS_ERR(i) | QMU_RX_LEN_ERR(i))) qmu_error_rx(mtu, i); } } if (qmu_status & RXQ_ZLPERR_INT) { errval = mtu3_readl(mbase, U3D_RQERRIR1); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_RX_ZLP_ERR(i)) dev_dbg(mtu->dev, "RX EP%d Recv ZLP\n", i); } mtu3_writel(mbase, U3D_RQERRIR1, errval); } if ((qmu_status & TXQ_CSERR_INT) || (qmu_status & TXQ_LENERR_INT)) { errval = mtu3_readl(mbase, U3D_TQERRIR0); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_TX_CS_ERR(i)) dev_err(mtu->dev, "Tx %d checksum error!\n", i); if (errval & QMU_TX_LEN_ERR(i)) qmu_tx_zlp_error_handler(mtu, i); } mtu3_writel(mbase, U3D_TQERRIR0, errval); } } irqreturn_t mtu3_qmu_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 qmu_status; u32 qmu_done_status; /* U3D_QISAR1 is read update */ qmu_status = mtu3_readl(mbase, U3D_QISAR1); qmu_status &= mtu3_readl(mbase, U3D_QIER1); qmu_done_status = mtu3_readl(mbase, U3D_QISAR0); qmu_done_status &= mtu3_readl(mbase, U3D_QIER0); mtu3_writel(mbase, U3D_QISAR0, qmu_done_status); /* W1C */ dev_dbg(mtu->dev, "=== QMUdone[tx=%x, rx=%x] QMUexp[%x] ===\n", (qmu_done_status & 0xFFFF), qmu_done_status >> 16, qmu_status); trace_mtu3_qmu_isr(qmu_done_status, qmu_status); if (qmu_done_status) qmu_done_isr(mtu, qmu_done_status); if (qmu_status) qmu_exception_isr(mtu, qmu_status); return IRQ_HANDLED; } int mtu3_qmu_init(struct mtu3 *mtu) { compiletime_assert(QMU_GPD_SIZE == 16, "QMU_GPD size SHOULD be 16B"); mtu->qmu_gpd_pool = dma_pool_create("QMU_GPD", mtu->dev, QMU_GPD_RING_SIZE, QMU_GPD_SIZE, 0); if (!mtu->qmu_gpd_pool) return -ENOMEM; return 0; } void mtu3_qmu_exit(struct mtu3 *mtu) { dma_pool_destroy(mtu->qmu_gpd_pool); }
linux-master
drivers/usb/mtu3/mtu3_qmu.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_trace.c - trace support * * Copyright (C) 2019 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #define CREATE_TRACE_POINTS #include "mtu3_debug.h" #include "mtu3_trace.h" void mtu3_dbg_trace(struct device *dev, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; trace_mtu3_log(dev, &vaf); va_end(args); }
linux-master
drivers/usb/mtu3/mtu3_trace.c
// SPDX-License-Identifier: GPL-2.0 /* * mtu3_gadget.c - MediaTek usb3 DRD peripheral support * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun <[email protected]> */ #include "mtu3.h" #include "mtu3_trace.h" void mtu3_req_complete(struct mtu3_ep *mep, struct usb_request *req, int status) __releases(mep->mtu->lock) __acquires(mep->mtu->lock) { struct mtu3_request *mreq = to_mtu3_request(req); struct mtu3 *mtu = mreq->mtu; list_del(&mreq->list); if (req->status == -EINPROGRESS) req->status = status; trace_mtu3_req_complete(mreq); /* ep0 makes use of PIO, needn't unmap it */ if (mep->epnum) usb_gadget_unmap_request(&mtu->g, req, mep->is_in); dev_dbg(mtu->dev, "%s complete req: %p, sts %d, %d/%d\n", mep->name, req, req->status, req->actual, req->length); spin_unlock(&mtu->lock); usb_gadget_giveback_request(&mep->ep, req); spin_lock(&mtu->lock); } static void nuke(struct mtu3_ep *mep, const int status) { struct mtu3_request *mreq = NULL; if (list_empty(&mep->req_list)) return; dev_dbg(mep->mtu->dev, "abort %s's req: sts %d\n", mep->name, status); /* exclude EP0 */ if (mep->epnum) mtu3_qmu_flush(mep); while (!list_empty(&mep->req_list)) { mreq = list_first_entry(&mep->req_list, struct mtu3_request, list); mtu3_req_complete(mep, &mreq->request, status); } } static int mtu3_ep_enable(struct mtu3_ep *mep) { const struct usb_endpoint_descriptor *desc; const struct usb_ss_ep_comp_descriptor *comp_desc; struct mtu3 *mtu = mep->mtu; u32 interval = 0; u32 mult = 0; u32 burst = 0; int ret; desc = mep->desc; comp_desc = mep->comp_desc; mep->type = usb_endpoint_type(desc); mep->maxp = usb_endpoint_maxp(desc); switch (mtu->g.speed) { case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { interval = desc->bInterval; interval = clamp_val(interval, 1, 16); if (usb_endpoint_xfer_isoc(desc) && comp_desc) mult = comp_desc->bmAttributes; } if (comp_desc) burst = comp_desc->bMaxBurst; break; case USB_SPEED_HIGH: if (usb_endpoint_xfer_isoc(desc) || usb_endpoint_xfer_int(desc)) { interval = desc->bInterval; interval = clamp_val(interval, 1, 16); mult = usb_endpoint_maxp_mult(desc) - 1; } break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(desc)) interval = clamp_val(desc->bInterval, 1, 16); else if (usb_endpoint_xfer_int(desc)) interval = clamp_val(desc->bInterval, 1, 255); break; default: break; /*others are ignored */ } dev_dbg(mtu->dev, "%s maxp:%d, interval:%d, burst:%d, mult:%d\n", __func__, mep->maxp, interval, burst, mult); mep->ep.maxpacket = mep->maxp; mep->ep.desc = desc; mep->ep.comp_desc = comp_desc; /* slot mainly affects bulk/isoc transfer, so ignore int */ mep->slot = usb_endpoint_xfer_int(desc) ? 0 : mtu->slot; ret = mtu3_config_ep(mtu, mep, interval, burst, mult); if (ret < 0) return ret; ret = mtu3_gpd_ring_alloc(mep); if (ret < 0) { mtu3_deconfig_ep(mtu, mep); return ret; } mtu3_qmu_start(mep); return 0; } static int mtu3_ep_disable(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; /* abort all pending requests */ nuke(mep, -ESHUTDOWN); mtu3_qmu_stop(mep); mtu3_deconfig_ep(mtu, mep); mtu3_gpd_ring_free(mep); mep->desc = NULL; mep->ep.desc = NULL; mep->comp_desc = NULL; mep->type = 0; mep->flags = 0; return 0; } static int mtu3_gadget_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct mtu3_ep *mep; struct mtu3 *mtu; unsigned long flags; int ret = -EINVAL; if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { pr_debug("%s invalid parameters\n", __func__); return -EINVAL; } if (!desc->wMaxPacketSize) { pr_debug("%s missing wMaxPacketSize\n", __func__); return -EINVAL; } mep = to_mtu3_ep(ep); mtu = mep->mtu; /* check ep number and direction against endpoint */ if (usb_endpoint_num(desc) != mep->epnum) return -EINVAL; if (!!usb_endpoint_dir_in(desc) ^ !!mep->is_in) return -EINVAL; dev_dbg(mtu->dev, "%s %s\n", __func__, ep->name); if (mep->flags & MTU3_EP_ENABLED) { dev_WARN_ONCE(mtu->dev, true, "%s is already enabled\n", mep->name); return 0; } spin_lock_irqsave(&mtu->lock, flags); mep->desc = desc; mep->comp_desc = ep->comp_desc; ret = mtu3_ep_enable(mep); if (ret) goto error; mep->flags = MTU3_EP_ENABLED; mtu->active_ep++; error: spin_unlock_irqrestore(&mtu->lock, flags); dev_dbg(mtu->dev, "%s active_ep=%d\n", __func__, mtu->active_ep); trace_mtu3_gadget_ep_enable(mep); return ret; } static int mtu3_gadget_ep_disable(struct usb_ep *ep) { struct mtu3_ep *mep = to_mtu3_ep(ep); struct mtu3 *mtu = mep->mtu; unsigned long flags; dev_dbg(mtu->dev, "%s %s\n", __func__, mep->name); trace_mtu3_gadget_ep_disable(mep); if (!(mep->flags & MTU3_EP_ENABLED)) { dev_warn(mtu->dev, "%s is already disabled\n", mep->name); return 0; } spin_lock_irqsave(&mtu->lock, flags); mtu3_ep_disable(mep); mep->flags = 0; mtu->active_ep--; spin_unlock_irqrestore(&(mtu->lock), flags); dev_dbg(mtu->dev, "%s active_ep=%d, mtu3 is_active=%d\n", __func__, mtu->active_ep, mtu->is_active); return 0; } struct usb_request *mtu3_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct mtu3_ep *mep = to_mtu3_ep(ep); struct mtu3_request *mreq; mreq = kzalloc(sizeof(*mreq), gfp_flags); if (!mreq) return NULL; mreq->request.dma = DMA_ADDR_INVALID; mreq->epnum = mep->epnum; mreq->mep = mep; INIT_LIST_HEAD(&mreq->list); trace_mtu3_alloc_request(mreq); return &mreq->request; } void mtu3_free_request(struct usb_ep *ep, struct usb_request *req) { struct mtu3_request *mreq = to_mtu3_request(req); trace_mtu3_free_request(mreq); kfree(mreq); } static int mtu3_gadget_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct mtu3_ep *mep = to_mtu3_ep(ep); struct mtu3_request *mreq = to_mtu3_request(req); struct mtu3 *mtu = mep->mtu; unsigned long flags; int ret = 0; if (!req->buf) return -ENODATA; if (mreq->mep != mep) return -EINVAL; dev_dbg(mtu->dev, "%s %s EP%d(%s), req=%p, maxp=%d, len#%d\n", __func__, mep->is_in ? "TX" : "RX", mreq->epnum, ep->name, mreq, ep->maxpacket, mreq->request.length); if (req->length > GPD_BUF_SIZE || (mtu->gen2cp && req->length > GPD_BUF_SIZE_EL)) { dev_warn(mtu->dev, "req length > supported MAX:%d requested:%d\n", mtu->gen2cp ? GPD_BUF_SIZE_EL : GPD_BUF_SIZE, req->length); return -EOPNOTSUPP; } /* don't queue if the ep is down */ if (!mep->desc) { dev_dbg(mtu->dev, "req=%p queued to %s while it's disabled\n", req, ep->name); return -ESHUTDOWN; } mreq->mtu = mtu; mreq->request.actual = 0; mreq->request.status = -EINPROGRESS; ret = usb_gadget_map_request(&mtu->g, req, mep->is_in); if (ret) { dev_err(mtu->dev, "dma mapping failed\n"); return ret; } spin_lock_irqsave(&mtu->lock, flags); if (mtu3_prepare_transfer(mep)) { ret = -EAGAIN; goto error; } list_add_tail(&mreq->list, &mep->req_list); mtu3_insert_gpd(mep, mreq); mtu3_qmu_resume(mep); error: spin_unlock_irqrestore(&mtu->lock, flags); trace_mtu3_gadget_queue(mreq); return ret; } static int mtu3_gadget_dequeue(struct usb_ep *ep, struct usb_request *req) { struct mtu3_ep *mep = to_mtu3_ep(ep); struct mtu3_request *mreq = to_mtu3_request(req); struct mtu3_request *r; struct mtu3 *mtu = mep->mtu; unsigned long flags; int ret = 0; if (mreq->mep != mep) return -EINVAL; dev_dbg(mtu->dev, "%s : req=%p\n", __func__, req); trace_mtu3_gadget_dequeue(mreq); spin_lock_irqsave(&mtu->lock, flags); list_for_each_entry(r, &mep->req_list, list) { if (r == mreq) break; } if (r != mreq) { dev_dbg(mtu->dev, "req=%p not queued to %s\n", req, ep->name); ret = -EINVAL; goto done; } mtu3_qmu_flush(mep); /* REVISIT: set BPS ?? */ mtu3_req_complete(mep, req, -ECONNRESET); mtu3_qmu_start(mep); done: spin_unlock_irqrestore(&mtu->lock, flags); return ret; } /* * Set or clear the halt bit of an EP. * A halted EP won't TX/RX any data but will queue requests. */ static int mtu3_gadget_ep_set_halt(struct usb_ep *ep, int value) { struct mtu3_ep *mep = to_mtu3_ep(ep); struct mtu3 *mtu = mep->mtu; struct mtu3_request *mreq; unsigned long flags; int ret = 0; dev_dbg(mtu->dev, "%s : %s...", __func__, ep->name); spin_lock_irqsave(&mtu->lock, flags); if (mep->type == USB_ENDPOINT_XFER_ISOC) { ret = -EINVAL; goto done; } mreq = next_request(mep); if (value) { /* * If there is not request for TX-EP, QMU will not transfer * data to TX-FIFO, so no need check whether TX-FIFO * holds bytes or not here */ if (mreq) { dev_dbg(mtu->dev, "req in progress, cannot halt %s\n", ep->name); ret = -EAGAIN; goto done; } } else { mep->flags &= ~MTU3_EP_WEDGE; } dev_dbg(mtu->dev, "%s %s stall\n", ep->name, value ? "set" : "clear"); mtu3_ep_stall_set(mep, value); done: spin_unlock_irqrestore(&mtu->lock, flags); trace_mtu3_gadget_ep_set_halt(mep); return ret; } /* Sets the halt feature with the clear requests ignored */ static int mtu3_gadget_ep_set_wedge(struct usb_ep *ep) { struct mtu3_ep *mep = to_mtu3_ep(ep); mep->flags |= MTU3_EP_WEDGE; return usb_ep_set_halt(ep); } static const struct usb_ep_ops mtu3_ep_ops = { .enable = mtu3_gadget_ep_enable, .disable = mtu3_gadget_ep_disable, .alloc_request = mtu3_alloc_request, .free_request = mtu3_free_request, .queue = mtu3_gadget_queue, .dequeue = mtu3_gadget_dequeue, .set_halt = mtu3_gadget_ep_set_halt, .set_wedge = mtu3_gadget_ep_set_wedge, }; static int mtu3_gadget_get_frame(struct usb_gadget *gadget) { struct mtu3 *mtu = gadget_to_mtu3(gadget); return (int)mtu3_readl(mtu->mac_base, U3D_USB20_FRAME_NUM); } static void function_wake_notif(struct mtu3 *mtu, u8 intf) { mtu3_writel(mtu->mac_base, U3D_DEV_NOTIF_0, TYPE_FUNCTION_WAKE | DEV_NOTIF_VAL_FW(intf)); mtu3_setbits(mtu->mac_base, U3D_DEV_NOTIF_0, SEND_DEV_NOTIF); } static int mtu3_gadget_wakeup(struct usb_gadget *gadget) { struct mtu3 *mtu = gadget_to_mtu3(gadget); unsigned long flags; dev_dbg(mtu->dev, "%s\n", __func__); /* remote wakeup feature is not enabled by host */ if (!mtu->may_wakeup) return -EOPNOTSUPP; spin_lock_irqsave(&mtu->lock, flags); if (mtu->g.speed >= USB_SPEED_SUPER) { /* * class driver may do function wakeup even UFP is in U0, * and UX_EXIT only takes effect in U1/U2/U3; */ mtu3_setbits(mtu->mac_base, U3D_LINK_POWER_CONTROL, UX_EXIT); /* * Assume there's only one function on the composite device * and enable remote wake for the first interface. * FIXME if the IAD (interface association descriptor) shows * there is more than one function. */ function_wake_notif(mtu, 0); } else { mtu3_setbits(mtu->mac_base, U3D_POWER_MANAGEMENT, RESUME); spin_unlock_irqrestore(&mtu->lock, flags); usleep_range(10000, 11000); spin_lock_irqsave(&mtu->lock, flags); mtu3_clrbits(mtu->mac_base, U3D_POWER_MANAGEMENT, RESUME); } spin_unlock_irqrestore(&mtu->lock, flags); return 0; } static int mtu3_gadget_set_self_powered(struct usb_gadget *gadget, int is_selfpowered) { struct mtu3 *mtu = gadget_to_mtu3(gadget); mtu->is_self_powered = !!is_selfpowered; return 0; } static int mtu3_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct mtu3 *mtu = gadget_to_mtu3(gadget); unsigned long flags; dev_dbg(mtu->dev, "%s (%s) for %sactive device\n", __func__, is_on ? "on" : "off", mtu->is_active ? "" : "in"); pm_runtime_get_sync(mtu->dev); /* we'd rather not pullup unless the device is active. */ spin_lock_irqsave(&mtu->lock, flags); is_on = !!is_on; if (!mtu->is_active) { /* save it for mtu3_start() to process the request */ mtu->softconnect = is_on; } else if (is_on != mtu->softconnect) { mtu->softconnect = is_on; mtu3_dev_on_off(mtu, is_on); } spin_unlock_irqrestore(&mtu->lock, flags); pm_runtime_put(mtu->dev); return 0; } static int mtu3_gadget_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct mtu3 *mtu = gadget_to_mtu3(gadget); unsigned long flags; if (mtu->gadget_driver) { dev_err(mtu->dev, "%s is already bound to %s\n", mtu->g.name, mtu->gadget_driver->driver.name); return -EBUSY; } dev_dbg(mtu->dev, "bind driver %s\n", driver->function); pm_runtime_get_sync(mtu->dev); spin_lock_irqsave(&mtu->lock, flags); mtu->softconnect = 0; mtu->gadget_driver = driver; if (mtu->ssusb->dr_mode == USB_DR_MODE_PERIPHERAL) mtu3_start(mtu); spin_unlock_irqrestore(&mtu->lock, flags); pm_runtime_put(mtu->dev); return 0; } static void stop_activity(struct mtu3 *mtu) { struct usb_gadget_driver *driver = mtu->gadget_driver; int i; /* don't disconnect if it's not connected */ if (mtu->g.speed == USB_SPEED_UNKNOWN) driver = NULL; else mtu->g.speed = USB_SPEED_UNKNOWN; /* deactivate the hardware */ if (mtu->softconnect) { mtu->softconnect = 0; mtu3_dev_on_off(mtu, 0); } /* * killing any outstanding requests will quiesce the driver; * then report disconnect */ nuke(mtu->ep0, -ESHUTDOWN); for (i = 1; i < mtu->num_eps; i++) { nuke(mtu->in_eps + i, -ESHUTDOWN); nuke(mtu->out_eps + i, -ESHUTDOWN); } if (driver) { spin_unlock(&mtu->lock); driver->disconnect(&mtu->g); spin_lock(&mtu->lock); } } static int mtu3_gadget_stop(struct usb_gadget *g) { struct mtu3 *mtu = gadget_to_mtu3(g); unsigned long flags; dev_dbg(mtu->dev, "%s\n", __func__); spin_lock_irqsave(&mtu->lock, flags); stop_activity(mtu); mtu->gadget_driver = NULL; if (mtu->ssusb->dr_mode == USB_DR_MODE_PERIPHERAL) mtu3_stop(mtu); spin_unlock_irqrestore(&mtu->lock, flags); synchronize_irq(mtu->irq); return 0; } static void mtu3_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) { struct mtu3 *mtu = gadget_to_mtu3(g); unsigned long flags; dev_dbg(mtu->dev, "%s %s\n", __func__, usb_speed_string(speed)); spin_lock_irqsave(&mtu->lock, flags); mtu->speed = speed; spin_unlock_irqrestore(&mtu->lock, flags); } static void mtu3_gadget_async_callbacks(struct usb_gadget *g, bool enable) { struct mtu3 *mtu = gadget_to_mtu3(g); unsigned long flags; dev_dbg(mtu->dev, "%s %s\n", __func__, enable ? "en" : "dis"); spin_lock_irqsave(&mtu->lock, flags); mtu->async_callbacks = enable; spin_unlock_irqrestore(&mtu->lock, flags); } static const struct usb_gadget_ops mtu3_gadget_ops = { .get_frame = mtu3_gadget_get_frame, .wakeup = mtu3_gadget_wakeup, .set_selfpowered = mtu3_gadget_set_self_powered, .pullup = mtu3_gadget_pullup, .udc_start = mtu3_gadget_start, .udc_stop = mtu3_gadget_stop, .udc_set_speed = mtu3_gadget_set_speed, .udc_async_callbacks = mtu3_gadget_async_callbacks, }; static void mtu3_state_reset(struct mtu3 *mtu) { mtu->address = 0; mtu->ep0_state = MU3D_EP0_STATE_SETUP; mtu->may_wakeup = 0; mtu->u1_enable = 0; mtu->u2_enable = 0; mtu->delayed_status = false; mtu->test_mode = false; } static void init_hw_ep(struct mtu3 *mtu, struct mtu3_ep *mep, u32 epnum, u32 is_in) { mep->epnum = epnum; mep->mtu = mtu; mep->is_in = is_in; INIT_LIST_HEAD(&mep->req_list); sprintf(mep->name, "ep%d%s", epnum, !epnum ? "" : (is_in ? "in" : "out")); mep->ep.name = mep->name; INIT_LIST_HEAD(&mep->ep.ep_list); /* initialize maxpacket as SS */ if (!epnum) { usb_ep_set_maxpacket_limit(&mep->ep, 512); mep->ep.caps.type_control = true; mep->ep.ops = &mtu3_ep0_ops; mtu->g.ep0 = &mep->ep; } else { usb_ep_set_maxpacket_limit(&mep->ep, 1024); mep->ep.caps.type_iso = true; mep->ep.caps.type_bulk = true; mep->ep.caps.type_int = true; mep->ep.ops = &mtu3_ep_ops; list_add_tail(&mep->ep.ep_list, &mtu->g.ep_list); } dev_dbg(mtu->dev, "%s, name=%s, maxp=%d\n", __func__, mep->ep.name, mep->ep.maxpacket); if (!epnum) { mep->ep.caps.dir_in = true; mep->ep.caps.dir_out = true; } else if (is_in) { mep->ep.caps.dir_in = true; } else { mep->ep.caps.dir_out = true; } } static void mtu3_gadget_init_eps(struct mtu3 *mtu) { u8 epnum; /* initialize endpoint list just once */ INIT_LIST_HEAD(&(mtu->g.ep_list)); dev_dbg(mtu->dev, "%s num_eps(1 for a pair of tx&rx ep)=%d\n", __func__, mtu->num_eps); init_hw_ep(mtu, mtu->ep0, 0, 0); for (epnum = 1; epnum < mtu->num_eps; epnum++) { init_hw_ep(mtu, mtu->in_eps + epnum, epnum, 1); init_hw_ep(mtu, mtu->out_eps + epnum, epnum, 0); } } int mtu3_gadget_setup(struct mtu3 *mtu) { mtu->g.ops = &mtu3_gadget_ops; mtu->g.max_speed = mtu->max_speed; mtu->g.speed = USB_SPEED_UNKNOWN; mtu->g.sg_supported = 0; mtu->g.name = MTU3_DRIVER_NAME; mtu->g.irq = mtu->irq; mtu->is_active = 0; mtu->delayed_status = false; mtu3_gadget_init_eps(mtu); return usb_add_gadget_udc(mtu->dev, &mtu->g); } void mtu3_gadget_cleanup(struct mtu3 *mtu) { usb_del_gadget_udc(&mtu->g); } void mtu3_gadget_resume(struct mtu3 *mtu) { dev_dbg(mtu->dev, "gadget RESUME\n"); if (mtu->async_callbacks && mtu->gadget_driver && mtu->gadget_driver->resume) { spin_unlock(&mtu->lock); mtu->gadget_driver->resume(&mtu->g); spin_lock(&mtu->lock); } } /* called when SOF packets stop for 3+ msec or enters U3 */ void mtu3_gadget_suspend(struct mtu3 *mtu) { dev_dbg(mtu->dev, "gadget SUSPEND\n"); if (mtu->async_callbacks && mtu->gadget_driver && mtu->gadget_driver->suspend) { spin_unlock(&mtu->lock); mtu->gadget_driver->suspend(&mtu->g); spin_lock(&mtu->lock); } } /* called when VBUS drops below session threshold, and in other cases */ void mtu3_gadget_disconnect(struct mtu3 *mtu) { dev_dbg(mtu->dev, "gadget DISCONNECT\n"); if (mtu->async_callbacks && mtu->gadget_driver && mtu->gadget_driver->disconnect) { spin_unlock(&mtu->lock); mtu->gadget_driver->disconnect(&mtu->g); spin_lock(&mtu->lock); } mtu3_state_reset(mtu); usb_gadget_set_state(&mtu->g, USB_STATE_NOTATTACHED); } void mtu3_gadget_reset(struct mtu3 *mtu) { dev_dbg(mtu->dev, "gadget RESET\n"); /* report disconnect, if we didn't flush EP state */ if (mtu->g.speed != USB_SPEED_UNKNOWN) mtu3_gadget_disconnect(mtu); else mtu3_state_reset(mtu); }
linux-master
drivers/usb/mtu3/mtu3_gadget.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak <[email protected]> * */ #include <linux/moduleparam.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/iopoll.h> #include <linux/delay.h> #include <linux/log2.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/irq.h> #include <linux/dmi.h> #include "core.h" #include "gadget-export.h" #include "drd.h" #include "cdnsp-gadget.h" #include "cdnsp-trace.h" unsigned int cdnsp_port_speed(unsigned int port_status) { /*Detect gadget speed based on PORTSC register*/ if (DEV_SUPERSPEEDPLUS(port_status)) return USB_SPEED_SUPER_PLUS; else if (DEV_SUPERSPEED(port_status)) return USB_SPEED_SUPER; else if (DEV_HIGHSPEED(port_status)) return USB_SPEED_HIGH; else if (DEV_FULLSPEED(port_status)) return USB_SPEED_FULL; /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/ return USB_SPEED_UNKNOWN; } /* * Given a port state, this function returns a value that would result in the * port being in the same state, if the value was written to the port status * control register. * Save Read Only (RO) bits and save read/write bits where * writing a 0 clears the bit and writing a 1 sets the bit (RWS). * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. */ u32 cdnsp_port_state_to_neutral(u32 state) { /* Save read-only status and port state. */ return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS); } /** * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities * with capability ID id. * @base: PCI MMIO registers base address. * @start: Address at which to start looking, (0 or HCC_PARAMS to start at * beginning of list) * @id: Extended capability ID to search for. * * Returns the offset of the next matching extended capability structure. * Some capabilities can occur several times, * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all. */ int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id) { u32 offset = start; u32 next; u32 val; if (!start || start == HCC_PARAMS_OFFSET) { val = readl(base + HCC_PARAMS_OFFSET); if (val == ~0) return 0; offset = HCC_EXT_CAPS(val) << 2; if (!offset) return 0; } do { val = readl(base + offset); if (val == ~0) return 0; if (EXT_CAPS_ID(val) == id && offset != start) return offset; next = EXT_CAPS_NEXT(val); offset += next << 2; } while (next); return 0; } void cdnsp_set_link_state(struct cdnsp_device *pdev, __le32 __iomem *port_regs, u32 link_state) { int port_num = 0xFF; u32 temp; temp = readl(port_regs); temp = cdnsp_port_state_to_neutral(temp); temp |= PORT_WKCONN_E | PORT_WKDISC_E; writel(temp, port_regs); temp &= ~PORT_PLS_MASK; temp |= PORT_LINK_STROBE | link_state; if (pdev->active_port) port_num = pdev->active_port->port_num; trace_cdnsp_handle_port_status(port_num, readl(port_regs)); writel(temp, port_regs); trace_cdnsp_link_state_changed(port_num, readl(port_regs)); } static void cdnsp_disable_port(struct cdnsp_device *pdev, __le32 __iomem *port_regs) { u32 temp = cdnsp_port_state_to_neutral(readl(port_regs)); writel(temp | PORT_PED, port_regs); } static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev, __le32 __iomem *port_regs) { u32 portsc = readl(port_regs); writel(cdnsp_port_state_to_neutral(portsc) | (portsc & PORT_CHANGE_BITS), port_regs); } static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) { __le32 __iomem *reg; void __iomem *base; u32 offset = 0; base = &pdev->cap_regs->hc_capbase; offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; bit = readl(reg) | bit; writel(bit, reg); } static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) { __le32 __iomem *reg; void __iomem *base; u32 offset = 0; base = &pdev->cap_regs->hc_capbase; offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; bit = readl(reg) & ~bit; writel(bit, reg); } /* * Disable interrupts and begin the controller halting process. */ static void cdnsp_quiesce(struct cdnsp_device *pdev) { u32 halted; u32 mask; u32 cmd; mask = ~(u32)(CDNSP_IRQS); halted = readl(&pdev->op_regs->status) & STS_HALT; if (!halted) mask &= ~(CMD_R_S | CMD_DEVEN); cmd = readl(&pdev->op_regs->command); cmd &= mask; writel(cmd, &pdev->op_regs->command); } /* * Force controller into halt state. * * Disable any IRQs and clear the run/stop bit. * Controller will complete any current and actively pipelined transactions, and * should halt within 16 ms of the run/stop bit being cleared. * Read controller Halted bit in the status register to see when the * controller is finished. */ int cdnsp_halt(struct cdnsp_device *pdev) { int ret; u32 val; cdnsp_quiesce(pdev); ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val, val & STS_HALT, 1, CDNSP_MAX_HALT_USEC); if (ret) { dev_err(pdev->dev, "ERROR: Device halt failed\n"); return ret; } pdev->cdnsp_state |= CDNSP_STATE_HALTED; return 0; } /* * device controller died, register read returns 0xffffffff, or command never * ends. */ void cdnsp_died(struct cdnsp_device *pdev) { dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n"); pdev->cdnsp_state |= CDNSP_STATE_DYING; cdnsp_halt(pdev); } /* * Set the run bit and wait for the device to be running. */ static int cdnsp_start(struct cdnsp_device *pdev) { u32 temp; int ret; temp = readl(&pdev->op_regs->command); temp |= (CMD_R_S | CMD_DEVEN); writel(temp, &pdev->op_regs->command); pdev->cdnsp_state = 0; /* * Wait for the STS_HALT Status bit to be 0 to indicate the device is * running. */ ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, !(temp & STS_HALT), 1, CDNSP_MAX_HALT_USEC); if (ret) { pdev->cdnsp_state = CDNSP_STATE_DYING; dev_err(pdev->dev, "ERROR: Controller run failed\n"); } return ret; } /* * Reset a halted controller. * * This resets pipelines, timers, counters, state machines, etc. * Transactions will be terminated immediately, and operational registers * will be set to their defaults. */ int cdnsp_reset(struct cdnsp_device *pdev) { u32 command; u32 temp; int ret; temp = readl(&pdev->op_regs->status); if (temp == ~(u32)0) { dev_err(pdev->dev, "Device not accessible, reset failed.\n"); return -ENODEV; } if ((temp & STS_HALT) == 0) { dev_err(pdev->dev, "Controller not halted, aborting reset.\n"); return -EINVAL; } command = readl(&pdev->op_regs->command); command |= CMD_RESET; writel(command, &pdev->op_regs->command); ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp, !(temp & CMD_RESET), 1, 10 * 1000); if (ret) { dev_err(pdev->dev, "ERROR: Controller reset failed\n"); return ret; } /* * CDNSP cannot write any doorbells or operational registers other * than status until the "Controller Not Ready" flag is cleared. */ ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, !(temp & STS_CNR), 1, 10 * 1000); if (ret) { dev_err(pdev->dev, "ERROR: Controller not ready to work\n"); return ret; } dev_dbg(pdev->dev, "Controller ready to work"); return ret; } /* * cdnsp_get_endpoint_index - Find the index for an endpoint given its * descriptor.Use the return value to right shift 1 for the bitmask. * * Index = (epnum * 2) + direction - 1, * where direction = 0 for OUT, 1 for IN. * For control endpoints, the IN index is used (OUT index is unused), so * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) */ static unsigned int cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc) { unsigned int index = (unsigned int)usb_endpoint_num(desc); if (usb_endpoint_xfer_control(desc)) return index * 2; return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; } /* * Find the flag for this endpoint (for use in the control context). Use the * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is * bit 1, etc. */ static unsigned int cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc) { return 1 << (cdnsp_get_endpoint_index(desc) + 1); } int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq) { struct cdnsp_device *pdev = pep->pdev; struct usb_request *request; int ret; if (preq->epnum == 0 && !list_empty(&pep->pending_list)) { trace_cdnsp_request_enqueue_busy(preq); return -EBUSY; } request = &preq->request; request->actual = 0; request->status = -EINPROGRESS; preq->direction = pep->direction; preq->epnum = pep->number; preq->td.drbl = 0; ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction); if (ret) { trace_cdnsp_request_enqueue_error(preq); return ret; } list_add_tail(&preq->list, &pep->pending_list); trace_cdnsp_request_enqueue(preq); switch (usb_endpoint_type(pep->endpoint.desc)) { case USB_ENDPOINT_XFER_CONTROL: ret = cdnsp_queue_ctrl_tx(pdev, preq); break; case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: ret = cdnsp_queue_bulk_tx(pdev, preq); break; case USB_ENDPOINT_XFER_ISOC: ret = cdnsp_queue_isoc_tx(pdev, preq); } if (ret) goto unmap; return 0; unmap: usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, pep->direction); list_del(&preq->list); trace_cdnsp_request_enqueue_error(preq); return ret; } /* * Remove the request's TD from the endpoint ring. This may cause the * controller to stop USB transfers, potentially stopping in the middle of a * TRB buffer. The controller should pick up where it left off in the TD, * unless a Set Transfer Ring Dequeue Pointer is issued. * * The TRBs that make up the buffers for the canceled request will be "removed" * from the ring. Since the ring is a contiguous structure, they can't be * physically removed. Instead, there are two options: * * 1) If the controller is in the middle of processing the request to be * canceled, we simply move the ring's dequeue pointer past those TRBs * using the Set Transfer Ring Dequeue Pointer command. This will be * the common case, when drivers timeout on the last submitted request * and attempt to cancel. * * 2) If the controller is in the middle of a different TD, we turn the TRBs * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained. * The controller will need to invalidate the any TRBs it has cached after * the stop endpoint command. * * 3) The TD may have completed by the time the Stop Endpoint Command * completes, so software needs to handle that case too. * */ int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq) { struct cdnsp_device *pdev = pep->pdev; int ret_stop = 0; int ret_rem; trace_cdnsp_request_dequeue(preq); if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) ret_stop = cdnsp_cmd_stop_ep(pdev, pep); ret_rem = cdnsp_remove_request(pdev, preq, pep); return ret_rem ? ret_rem : ret_stop; } static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev) { struct cdnsp_input_control_ctx *ctrl_ctx; struct cdnsp_slot_ctx *slot_ctx; struct cdnsp_ep_ctx *ep_ctx; int i; ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); /* * When a device's add flag and drop flag are zero, any subsequent * configure endpoint command will leave that endpoint's state * untouched. Make sure we don't leave any old state in the input * endpoint contexts. */ ctrl_ctx->drop_flags = 0; ctrl_ctx->add_flags = 0; slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); /* Endpoint 0 is always valid */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) { ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = 0; ep_ctx->deq = 0; ep_ctx->tx_info = 0; } } /* Issue a configure endpoint command and wait for it to finish. */ static int cdnsp_configure_endpoint(struct cdnsp_device *pdev) { int ret; cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); if (ret) { dev_err(pdev->dev, "ERR: unexpected command completion code 0x%x.\n", ret); return -EINVAL; } return ret; } static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { struct cdnsp_segment *segment; union cdnsp_trb *event; u32 cycle_state; u32 data; event = pdev->event_ring->dequeue; segment = pdev->event_ring->deq_seg; cycle_state = pdev->event_ring->cycle_state; while (1) { data = le32_to_cpu(event->trans_event.flags); /* Check the owner of the TRB. */ if ((data & TRB_CYCLE) != cycle_state) break; if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER && TRB_TO_EP_ID(data) == (pep->idx + 1)) { data |= TRB_EVENT_INVALIDATE; event->trans_event.flags = cpu_to_le32(data); } if (cdnsp_last_trb_on_seg(segment, event)) { cycle_state ^= 1; segment = pdev->event_ring->deq_seg->next; event = segment->trbs; } else { event++; } } } int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev) { struct cdnsp_segment *event_deq_seg; union cdnsp_trb *cmd_trb; dma_addr_t cmd_deq_dma; union cdnsp_trb *event; u32 cycle_state; int ret, val; u64 cmd_dma; u32 flags; cmd_trb = pdev->cmd.command_trb; pdev->cmd.status = 0; trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic); ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val, !CMD_RING_BUSY(val), 1, CDNSP_CMD_TIMEOUT); if (ret) { dev_err(pdev->dev, "ERR: Timeout while waiting for command\n"); trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic); pdev->cdnsp_state = CDNSP_STATE_DYING; return -ETIMEDOUT; } event = pdev->event_ring->dequeue; event_deq_seg = pdev->event_ring->deq_seg; cycle_state = pdev->event_ring->cycle_state; cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb); if (!cmd_deq_dma) return -EINVAL; while (1) { flags = le32_to_cpu(event->event_cmd.flags); /* Check the owner of the TRB. */ if ((flags & TRB_CYCLE) != cycle_state) return -EINVAL; cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb); /* * Check whether the completion event is for last queued * command. */ if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION || cmd_dma != (u64)cmd_deq_dma) { if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { event++; continue; } if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, event)) cycle_state ^= 1; event_deq_seg = event_deq_seg->next; event = event_deq_seg->trbs; continue; } trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic); pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)); if (pdev->cmd.status == COMP_SUCCESS) return 0; return -pdev->cmd.status; } } int cdnsp_halt_endpoint(struct cdnsp_device *pdev, struct cdnsp_ep *pep, int value) { int ret; trace_cdnsp_ep_halt(value ? "Set" : "Clear"); ret = cdnsp_cmd_stop_ep(pdev, pep); if (ret) return ret; if (value) { if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) { cdnsp_queue_halt_endpoint(pdev, pep->idx); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); } pep->ep_state |= EP_HALTED; } else { cdnsp_queue_reset_ep(pdev, pep->idx); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx); if (ret) return ret; pep->ep_state &= ~EP_HALTED; if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE)) cdnsp_ring_doorbell_for_active_rings(pdev, pep); pep->ep_state &= ~EP_WEDGE; } return 0; } static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { struct cdnsp_input_control_ctx *ctrl_ctx; struct cdnsp_slot_ctx *slot_ctx; int ret = 0; u32 ep_sts; int i; ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); /* Don't issue the command if there's no endpoints to update. */ if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0) return 0; ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) { __le32 le32 = cpu_to_le32(BIT(i)); if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) || (ctrl_ctx->add_flags & le32) || i == 1) { slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); break; } } ep_sts = GET_EP_CTX_STATE(pep->out_ctx); if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) && ep_sts == EP_STATE_DISABLED) || (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags)) ret = cdnsp_configure_endpoint(pdev); trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx)); trace_cdnsp_handle_cmd_config_ep(pep->out_ctx); cdnsp_zero_in_ctx(pdev); return ret; } /* * This submits a Reset Device Command, which will set the device state to 0, * set the device address to 0, and disable all the endpoints except the default * control endpoint. The USB core should come back and call * cdnsp_setup_device(), and then re-set up the configuration. */ int cdnsp_reset_device(struct cdnsp_device *pdev) { struct cdnsp_slot_ctx *slot_ctx; int slot_state; int ret, i; slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); slot_ctx->dev_info = 0; pdev->device_address = 0; /* If device is not setup, there is no point in resetting it. */ slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); trace_cdnsp_reset_device(slot_ctx); if (slot_state <= SLOT_STATE_DEFAULT && pdev->eps[0].ep_state & EP_HALTED) { cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); } /* * During Reset Device command controller shall transition the * endpoint ep0 to the Running State. */ pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED); pdev->eps[0].ep_state |= EP_ENABLED; if (slot_state <= SLOT_STATE_DEFAULT) return 0; cdnsp_queue_reset_device(pdev); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); /* * After Reset Device command all not default endpoints * are in Disabled state. */ for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED; trace_cdnsp_handle_cmd_reset_dev(slot_ctx); if (ret) dev_err(pdev->dev, "Reset device failed with error code %d", ret); return ret; } /* * Sets the MaxPStreams field and the Linear Stream Array field. * Sets the dequeue pointer to the stream context array. */ static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev, struct cdnsp_ep_ctx *ep_ctx, struct cdnsp_stream_info *stream_info) { u32 max_primary_streams; /* MaxPStreams is the number of stream context array entries, not the * number we're actually using. Must be in 2^(MaxPstreams + 1) format. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. */ max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) | EP_HAS_LSA); ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); } /* * The drivers use this function to prepare a bulk endpoints to use streams. * * Don't allow the call to succeed if endpoint only supports one stream * (which means it doesn't support streams at all). */ int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc); unsigned int num_stream_ctxs; int ret; if (num_streams == 0) return 0; if (num_streams > STREAM_NUM_STREAMS) return -EINVAL; /* * Add two to the number of streams requested to account for * stream 0 that is reserved for controller usage and one additional * for TASK SET FULL response. */ num_streams += 2; /* The stream context array size must be a power of two */ num_stream_ctxs = roundup_pow_of_two(num_streams); trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams); ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams); if (ret) return ret; cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info); pep->ep_state |= EP_HAS_STREAMS; pep->stream_info.td_count = 0; pep->stream_info.first_prime_det = 0; /* Subtract 1 for stream 0, which drivers can't use. */ return num_streams - 1; } int cdnsp_disable_slot(struct cdnsp_device *pdev) { int ret; cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); pdev->slot_id = 0; pdev->active_port = NULL; trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE); memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE); return ret; } int cdnsp_enable_slot(struct cdnsp_device *pdev) { struct cdnsp_slot_ctx *slot_ctx; int slot_state; int ret; /* If device is not setup, there is no point in resetting it */ slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); if (slot_state != SLOT_STATE_DISABLED) return 0; cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); if (ret) goto show_trace; pdev->slot_id = 1; show_trace: trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); return ret; } /* * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS. */ int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup) { struct cdnsp_input_control_ctx *ctrl_ctx; struct cdnsp_slot_ctx *slot_ctx; int dev_state = 0; int ret; if (!pdev->slot_id) { trace_cdnsp_slot_id("incorrect"); return -EINVAL; } if (!pdev->active_port->port_num) return -EINVAL; slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) { trace_cdnsp_slot_already_in_default(slot_ctx); return 0; } slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) { ret = cdnsp_setup_addressable_priv_dev(pdev); if (ret) return ret; } cdnsp_copy_ep0_dequeue_into_input_ctx(pdev); ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); ctrl_ctx->drop_flags = 0; trace_cdnsp_setup_device_slot(slot_ctx); cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx)); /* Zero the input context control for later use. */ ctrl_ctx->add_flags = 0; ctrl_ctx->drop_flags = 0; return ret; } void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev, struct usb_request *req, int enable) { if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable) return; trace_cdnsp_lpm(enable); if (enable) writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE, &pdev->active_port->regs->portpmsc); else writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc); } static int cdnsp_get_frame(struct cdnsp_device *pdev) { return readl(&pdev->run_regs->microframe_index) >> 3; } static int cdnsp_gadget_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct cdnsp_input_control_ctx *ctrl_ctx; struct cdnsp_device *pdev; struct cdnsp_ep *pep; unsigned long flags; u32 added_ctxs; int ret; if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || !desc->wMaxPacketSize) return -EINVAL; pep = to_cdnsp_ep(ep); pdev = pep->pdev; pep->ep_state &= ~EP_UNCONFIGURED; if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, "%s is already enabled\n", pep->name)) return 0; spin_lock_irqsave(&pdev->lock, flags); added_ctxs = cdnsp_get_endpoint_flag(desc); if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { dev_err(pdev->dev, "ERROR: Bad endpoint number\n"); ret = -EINVAL; goto unlock; } pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; if (pdev->gadget.speed == USB_SPEED_FULL) { if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT) pep->interval = desc->bInterval << 3; if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) pep->interval = BIT(desc->bInterval - 1) << 3; } if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) { if (pep->interval > BIT(12)) { dev_err(pdev->dev, "bInterval %d not supported\n", desc->bInterval); ret = -EINVAL; goto unlock; } cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); } ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC); if (ret) goto unlock; ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); ctrl_ctx->add_flags = cpu_to_le32(added_ctxs); ctrl_ctx->drop_flags = 0; ret = cdnsp_update_eps_configuration(pdev, pep); if (ret) { cdnsp_free_endpoint_rings(pdev, pep); goto unlock; } pep->ep_state |= EP_ENABLED; pep->ep_state &= ~EP_STOPPED; unlock: trace_cdnsp_ep_enable_end(pep, 0); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdnsp_gadget_ep_disable(struct usb_ep *ep) { struct cdnsp_input_control_ctx *ctrl_ctx; struct cdnsp_request *preq; struct cdnsp_device *pdev; struct cdnsp_ep *pep; unsigned long flags; u32 drop_flag; int ret = 0; if (!ep) return -EINVAL; pep = to_cdnsp_ep(ep); pdev = pep->pdev; spin_lock_irqsave(&pdev->lock, flags); if (!(pep->ep_state & EP_ENABLED)) { dev_err(pdev->dev, "%s is already disabled\n", pep->name); ret = -EINVAL; goto finish; } pep->ep_state |= EP_DIS_IN_RROGRESS; /* Endpoint was unconfigured by Reset Device command. */ if (!(pep->ep_state & EP_UNCONFIGURED)) { cdnsp_cmd_stop_ep(pdev, pep); cdnsp_cmd_flush_ep(pdev, pep); } /* Remove all queued USB requests. */ while (!list_empty(&pep->pending_list)) { preq = next_request(&pep->pending_list); cdnsp_ep_dequeue(pep, preq); } cdnsp_invalidate_ep_events(pdev, pep); pep->ep_state &= ~EP_DIS_IN_RROGRESS; drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc); ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); ctrl_ctx->drop_flags = cpu_to_le32(drop_flag); ctrl_ctx->add_flags = 0; cdnsp_endpoint_zero(pdev, pep); if (!(pep->ep_state & EP_UNCONFIGURED)) ret = cdnsp_update_eps_configuration(pdev, pep); cdnsp_free_endpoint_rings(pdev, pep); pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED); pep->ep_state |= EP_STOPPED; finish: trace_cdnsp_ep_disable_end(pep, 0); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct cdnsp_ep *pep = to_cdnsp_ep(ep); struct cdnsp_request *preq; preq = kzalloc(sizeof(*preq), gfp_flags); if (!preq) return NULL; preq->epnum = pep->number; preq->pep = pep; trace_cdnsp_alloc_request(preq); return &preq->request; } static void cdnsp_gadget_ep_free_request(struct usb_ep *ep, struct usb_request *request) { struct cdnsp_request *preq = to_cdnsp_request(request); trace_cdnsp_free_request(preq); kfree(preq); } static int cdnsp_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags) { struct cdnsp_request *preq; struct cdnsp_device *pdev; struct cdnsp_ep *pep; unsigned long flags; int ret; if (!request || !ep) return -EINVAL; pep = to_cdnsp_ep(ep); pdev = pep->pdev; if (!(pep->ep_state & EP_ENABLED)) { dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", pep->name); return -EINVAL; } preq = to_cdnsp_request(request); spin_lock_irqsave(&pdev->lock, flags); ret = cdnsp_ep_enqueue(pep, preq); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep, struct usb_request *request) { struct cdnsp_ep *pep = to_cdnsp_ep(ep); struct cdnsp_device *pdev = pep->pdev; unsigned long flags; int ret; if (!pep->endpoint.desc) { dev_err(pdev->dev, "%s: can't dequeue to disabled endpoint\n", pep->name); return -ESHUTDOWN; } /* Requests has been dequeued during disabling endpoint. */ if (!(pep->ep_state & EP_ENABLED)) return 0; spin_lock_irqsave(&pdev->lock, flags); ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request)); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value) { struct cdnsp_ep *pep = to_cdnsp_ep(ep); struct cdnsp_device *pdev = pep->pdev; struct cdnsp_request *preq; unsigned long flags; int ret; spin_lock_irqsave(&pdev->lock, flags); preq = next_request(&pep->pending_list); if (value) { if (preq) { trace_cdnsp_ep_busy_try_halt_again(pep, 0); ret = -EAGAIN; goto done; } } ret = cdnsp_halt_endpoint(pdev, pep, value); done: spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep) { struct cdnsp_ep *pep = to_cdnsp_ep(ep); struct cdnsp_device *pdev = pep->pdev; unsigned long flags; int ret; spin_lock_irqsave(&pdev->lock, flags); pep->ep_state |= EP_WEDGE; ret = cdnsp_halt_endpoint(pdev, pep, 1); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static const struct usb_ep_ops cdnsp_gadget_ep0_ops = { .enable = cdnsp_gadget_ep_enable, .disable = cdnsp_gadget_ep_disable, .alloc_request = cdnsp_gadget_ep_alloc_request, .free_request = cdnsp_gadget_ep_free_request, .queue = cdnsp_gadget_ep_queue, .dequeue = cdnsp_gadget_ep_dequeue, .set_halt = cdnsp_gadget_ep_set_halt, .set_wedge = cdnsp_gadget_ep_set_wedge, }; static const struct usb_ep_ops cdnsp_gadget_ep_ops = { .enable = cdnsp_gadget_ep_enable, .disable = cdnsp_gadget_ep_disable, .alloc_request = cdnsp_gadget_ep_alloc_request, .free_request = cdnsp_gadget_ep_free_request, .queue = cdnsp_gadget_ep_queue, .dequeue = cdnsp_gadget_ep_dequeue, .set_halt = cdnsp_gadget_ep_set_halt, .set_wedge = cdnsp_gadget_ep_set_wedge, }; void cdnsp_gadget_giveback(struct cdnsp_ep *pep, struct cdnsp_request *preq, int status) { struct cdnsp_device *pdev = pep->pdev; list_del(&preq->list); if (preq->request.status == -EINPROGRESS) preq->request.status = status; usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, preq->direction); trace_cdnsp_request_giveback(preq); if (preq != &pdev->ep0_preq) { spin_unlock(&pdev->lock); usb_gadget_giveback_request(&pep->endpoint, &preq->request); spin_lock(&pdev->lock); } } static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, }; static int cdnsp_run(struct cdnsp_device *pdev, enum usb_device_speed speed) { u32 fs_speed = 0; u32 temp; int ret; temp = readl(&pdev->ir_set->irq_control); temp &= ~IMOD_INTERVAL_MASK; temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK); writel(temp, &pdev->ir_set->irq_control); temp = readl(&pdev->port3x_regs->mode_addr); switch (speed) { case USB_SPEED_SUPER_PLUS: temp |= CFG_3XPORT_SSP_SUPPORT; break; case USB_SPEED_SUPER: temp &= ~CFG_3XPORT_SSP_SUPPORT; break; case USB_SPEED_HIGH: break; case USB_SPEED_FULL: fs_speed = PORT_REG6_FORCE_FS; break; default: dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", speed); fallthrough; case USB_SPEED_UNKNOWN: /* Default to superspeed. */ speed = USB_SPEED_SUPER; break; } if (speed >= USB_SPEED_SUPER) { writel(temp, &pdev->port3x_regs->mode_addr); cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc, XDEV_RXDETECT); } else { cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); } cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc, XDEV_RXDETECT); cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6); ret = cdnsp_start(pdev); if (ret) { ret = -ENODEV; goto err; } temp = readl(&pdev->op_regs->command); temp |= (CMD_INTE); writel(temp, &pdev->op_regs->command); temp = readl(&pdev->ir_set->irq_pending); writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending); trace_cdnsp_init("Controller ready to work"); return 0; err: cdnsp_halt(pdev); return ret; } static int cdnsp_gadget_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { enum usb_device_speed max_speed = driver->max_speed; struct cdnsp_device *pdev = gadget_to_cdnsp(g); unsigned long flags; int ret; spin_lock_irqsave(&pdev->lock, flags); pdev->gadget_driver = driver; /* limit speed if necessary */ max_speed = min(driver->max_speed, g->max_speed); ret = cdnsp_run(pdev, max_speed); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } /* * Update Event Ring Dequeue Pointer: * - When all events have finished * - To avoid "Event Ring Full Error" condition */ void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev, union cdnsp_trb *event_ring_deq, u8 clear_ehb) { u64 temp_64; dma_addr_t deq; temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); /* If necessary, update the HW's version of the event ring deq ptr. */ if (event_ring_deq != pdev->event_ring->dequeue) { deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, pdev->event_ring->dequeue); temp_64 &= ERST_PTR_MASK; temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK); } /* Clear the event handler busy flag (RW1C). */ if (clear_ehb) temp_64 |= ERST_EHB; else temp_64 &= ~ERST_EHB; cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue); } static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev) { struct cdnsp_segment *seg; u64 val_64; int i; cdnsp_initialize_ring_info(pdev->cmd_ring); seg = pdev->cmd_ring->first_seg; for (i = 0; i < pdev->cmd_ring->num_segs; i++) { memset(seg->trbs, 0, sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1)); seg = seg->next; } /* Set the address in the Command Ring Control register. */ val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | pdev->cmd_ring->cycle_state; cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); } static void cdnsp_consume_all_events(struct cdnsp_device *pdev) { struct cdnsp_segment *event_deq_seg; union cdnsp_trb *event_ring_deq; union cdnsp_trb *event; u32 cycle_bit; event_ring_deq = pdev->event_ring->dequeue; event_deq_seg = pdev->event_ring->deq_seg; event = pdev->event_ring->dequeue; /* Update ring dequeue pointer. */ while (1) { cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE); /* Does the controller or driver own the TRB? */ if (cycle_bit != pdev->event_ring->cycle_state) break; cdnsp_inc_deq(pdev, pdev->event_ring); if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { event++; continue; } if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, event)) cycle_bit ^= 1; event_deq_seg = event_deq_seg->next; event = event_deq_seg->trbs; } cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); } static void cdnsp_stop(struct cdnsp_device *pdev) { u32 temp; cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]); /* Remove internally queued request for ep0. */ if (!list_empty(&pdev->eps[0].pending_list)) { struct cdnsp_request *req; req = next_request(&pdev->eps[0].pending_list); if (req == &pdev->ep0_preq) cdnsp_ep_dequeue(&pdev->eps[0], req); } cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc); cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); cdnsp_disable_slot(pdev); cdnsp_halt(pdev); temp = readl(&pdev->op_regs->status); writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status); temp = readl(&pdev->ir_set->irq_pending); writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending); cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc); cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc); /* Clear interrupt line */ temp = readl(&pdev->ir_set->irq_pending); temp |= IMAN_IP; writel(temp, &pdev->ir_set->irq_pending); cdnsp_consume_all_events(pdev); cdnsp_clear_cmd_ring(pdev); trace_cdnsp_exit("Controller stopped."); } /* * Stop controller. * This function is called by the gadget core when the driver is removed. * Disable slot, disable IRQs, and quiesce the controller. */ static int cdnsp_gadget_udc_stop(struct usb_gadget *g) { struct cdnsp_device *pdev = gadget_to_cdnsp(g); unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); cdnsp_stop(pdev); pdev->gadget_driver = NULL; spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdnsp_gadget_get_frame(struct usb_gadget *g) { struct cdnsp_device *pdev = gadget_to_cdnsp(g); return cdnsp_get_frame(pdev); } static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev) { struct cdnsp_port_regs __iomem *port_regs; u32 portpm, portsc; port_regs = pdev->active_port->regs; portsc = readl(&port_regs->portsc) & PORT_PLS_MASK; /* Remote wakeup feature is not enabled by host. */ if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) { portpm = readl(&port_regs->portpmsc); if (!(portpm & PORT_RWE)) return; } if (portsc == XDEV_U3 && !pdev->may_wakeup) return; cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING; } static int cdnsp_gadget_wakeup(struct usb_gadget *g) { struct cdnsp_device *pdev = gadget_to_cdnsp(g); unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); __cdnsp_gadget_wakeup(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g, int is_selfpowered) { struct cdnsp_device *pdev = gadget_to_cdnsp(g); unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); g->is_selfpowered = !!is_selfpowered; spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct cdnsp_device *pdev = gadget_to_cdnsp(gadget); struct cdns *cdns = dev_get_drvdata(pdev->dev); unsigned long flags; trace_cdnsp_pullup(is_on); /* * Disable events handling while controller is being * enabled/disabled. */ disable_irq(cdns->dev_irq); spin_lock_irqsave(&pdev->lock, flags); if (!is_on) { cdnsp_reset_device(pdev); cdns_clear_vbus(cdns); } else { cdns_set_vbus(cdns); } spin_unlock_irqrestore(&pdev->lock, flags); enable_irq(cdns->dev_irq); return 0; } static const struct usb_gadget_ops cdnsp_gadget_ops = { .get_frame = cdnsp_gadget_get_frame, .wakeup = cdnsp_gadget_wakeup, .set_selfpowered = cdnsp_gadget_set_selfpowered, .pullup = cdnsp_gadget_pullup, .udc_start = cdnsp_gadget_udc_start, .udc_stop = cdnsp_gadget_udc_stop, }; static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { void __iomem *reg = &pdev->cap_regs->hc_capbase; int endpoints; reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID); if (!pep->direction) { pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET); pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET); pep->buffering = (pep->buffering + 1) / 2; pep->buffering_period = (pep->buffering_period + 1) / 2; return; } endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2; /* Set to XBUF_TX_TAG_MASK_0 register. */ reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32); /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */ reg += pep->number * sizeof(u32) * 2; pep->buffering = (readl(reg) + 1) / 2; pep->buffering_period = pep->buffering; } static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev) { int max_streams = HCC_MAX_PSA(pdev->hcc_params); struct cdnsp_ep *pep; int i; INIT_LIST_HEAD(&pdev->gadget.ep_list); if (max_streams < STREAM_LOG_STREAMS) { dev_err(pdev->dev, "Stream size %d not supported\n", max_streams); return -EINVAL; } max_streams = STREAM_LOG_STREAMS; for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { bool direction = !(i & 1); /* Start from OUT endpoint. */ u8 epnum = ((i + 1) >> 1); if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction)) continue; pep = &pdev->eps[i]; pep->pdev = pdev; pep->number = epnum; pep->direction = direction; /* 0 for OUT, 1 for IN. */ /* * Ep0 is bidirectional, so ep0in and ep0out are represented by * pdev->eps[0] */ if (epnum == 0) { snprintf(pep->name, sizeof(pep->name), "ep%d%s", epnum, "BiDir"); pep->idx = 0; usb_ep_set_maxpacket_limit(&pep->endpoint, 512); pep->endpoint.maxburst = 1; pep->endpoint.ops = &cdnsp_gadget_ep0_ops; pep->endpoint.desc = &cdnsp_gadget_ep0_desc; pep->endpoint.comp_desc = NULL; pep->endpoint.caps.type_control = true; pep->endpoint.caps.dir_in = true; pep->endpoint.caps.dir_out = true; pdev->ep0_preq.epnum = pep->number; pdev->ep0_preq.pep = pep; pdev->gadget.ep0 = &pep->endpoint; } else { snprintf(pep->name, sizeof(pep->name), "ep%d%s", epnum, (pep->direction) ? "in" : "out"); pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1; usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); pep->endpoint.max_streams = max_streams; pep->endpoint.ops = &cdnsp_gadget_ep_ops; list_add_tail(&pep->endpoint.ep_list, &pdev->gadget.ep_list); pep->endpoint.caps.type_iso = true; pep->endpoint.caps.type_bulk = true; pep->endpoint.caps.type_int = true; pep->endpoint.caps.dir_in = direction; pep->endpoint.caps.dir_out = !direction; } pep->endpoint.name = pep->name; pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx); pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx); cdnsp_get_ep_buffering(pdev, pep); dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: " "CTRL: %s, INT: %s, BULK: %s, ISOC %s, " "SupDir IN: %s, OUT: %s\n", pep->name, 1024, (pep->endpoint.caps.type_control) ? "yes" : "no", (pep->endpoint.caps.type_int) ? "yes" : "no", (pep->endpoint.caps.type_bulk) ? "yes" : "no", (pep->endpoint.caps.type_iso) ? "yes" : "no", (pep->endpoint.caps.dir_in) ? "yes" : "no", (pep->endpoint.caps.dir_out) ? "yes" : "no"); INIT_LIST_HEAD(&pep->pending_list); } return 0; } static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev) { struct cdnsp_ep *pep; int i; for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { pep = &pdev->eps[i]; if (pep->number != 0 && pep->out_ctx) list_del(&pep->endpoint.ep_list); } } void cdnsp_disconnect_gadget(struct cdnsp_device *pdev) { pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING; if (pdev->gadget_driver && pdev->gadget_driver->disconnect) { spin_unlock(&pdev->lock); pdev->gadget_driver->disconnect(&pdev->gadget); spin_lock(&pdev->lock); } pdev->gadget.speed = USB_SPEED_UNKNOWN; usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING; } void cdnsp_suspend_gadget(struct cdnsp_device *pdev) { if (pdev->gadget_driver && pdev->gadget_driver->suspend) { spin_unlock(&pdev->lock); pdev->gadget_driver->suspend(&pdev->gadget); spin_lock(&pdev->lock); } } void cdnsp_resume_gadget(struct cdnsp_device *pdev) { if (pdev->gadget_driver && pdev->gadget_driver->resume) { spin_unlock(&pdev->lock); pdev->gadget_driver->resume(&pdev->gadget); spin_lock(&pdev->lock); } } void cdnsp_irq_reset(struct cdnsp_device *pdev) { struct cdnsp_port_regs __iomem *port_regs; cdnsp_reset_device(pdev); port_regs = pdev->active_port->regs; pdev->gadget.speed = cdnsp_port_speed(readl(port_regs)); spin_unlock(&pdev->lock); usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); spin_lock(&pdev->lock); switch (pdev->gadget.speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); pdev->gadget.ep0->maxpacket = 512; break; case USB_SPEED_HIGH: case USB_SPEED_FULL: cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64); pdev->gadget.ep0->maxpacket = 64; break; default: /* Low speed is not supported. */ dev_err(pdev->dev, "Unknown device speed\n"); break; } cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY); usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); } static void cdnsp_get_rev_cap(struct cdnsp_device *pdev) { void __iomem *reg = &pdev->cap_regs->hc_capbase; reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP); pdev->rev_cap = reg; dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n", readl(&pdev->rev_cap->ctrl_revision), readl(&pdev->rev_cap->rtl_revision), readl(&pdev->rev_cap->ep_supported), readl(&pdev->rev_cap->rx_buff_size), readl(&pdev->rev_cap->tx_buff_size)); } static int cdnsp_gen_setup(struct cdnsp_device *pdev) { int ret; u32 reg; pdev->cap_regs = pdev->regs; pdev->op_regs = pdev->regs + HC_LENGTH(readl(&pdev->cap_regs->hc_capbase)); pdev->run_regs = pdev->regs + (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK); /* Cache read-only capability registers */ pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1); pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase); pdev->hci_version = HC_VERSION(pdev->hcc_params); pdev->hcc_params = readl(&pdev->cap_regs->hcc_params); cdnsp_get_rev_cap(pdev); /* Make sure the Device Controller is halted. */ ret = cdnsp_halt(pdev); if (ret) return ret; /* Reset the internal controller memory state and registers. */ ret = cdnsp_reset(pdev); if (ret) return ret; /* * Set dma_mask and coherent_dma_mask to 64-bits, * if controller supports 64-bit addressing. */ if (HCC_64BIT_ADDR(pdev->hcc_params) && !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) { dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n"); dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64)); } else { /* * This is to avoid error in cases where a 32-bit USB * controller is used on a 64-bit capable system. */ ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n"); dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32)); } spin_lock_init(&pdev->lock); ret = cdnsp_mem_init(pdev); if (ret) return ret; /* * Software workaround for U1: after transition * to U1 the controller starts gating clock, and in some cases, * it causes that controller stack. */ reg = readl(&pdev->port3x_regs->mode_2); reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN; writel(reg, &pdev->port3x_regs->mode_2); return 0; } static int __cdnsp_gadget_init(struct cdns *cdns) { struct cdnsp_device *pdev; u32 max_speed; int ret = -ENOMEM; cdns_drd_gadget_on(cdns); pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); if (!pdev) return -ENOMEM; pm_runtime_get_sync(cdns->dev); cdns->gadget_dev = pdev; pdev->dev = cdns->dev; pdev->regs = cdns->dev_regs; max_speed = usb_get_maximum_speed(cdns->dev); switch (max_speed) { case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: break; default: dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed); fallthrough; case USB_SPEED_UNKNOWN: /* Default to SSP */ max_speed = USB_SPEED_SUPER_PLUS; break; } pdev->gadget.ops = &cdnsp_gadget_ops; pdev->gadget.name = "cdnsp-gadget"; pdev->gadget.speed = USB_SPEED_UNKNOWN; pdev->gadget.sg_supported = 1; pdev->gadget.max_speed = max_speed; pdev->gadget.lpm_capable = 1; pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL); if (!pdev->setup_buf) goto free_pdev; /* * Controller supports not aligned buffer but it should improve * performance. */ pdev->gadget.quirk_ep_out_aligned_size = true; ret = cdnsp_gen_setup(pdev); if (ret) { dev_err(pdev->dev, "Generic initialization failed %d\n", ret); goto free_setup; } ret = cdnsp_gadget_init_endpoints(pdev); if (ret) { dev_err(pdev->dev, "failed to initialize endpoints\n"); goto halt_pdev; } ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget); if (ret) { dev_err(pdev->dev, "failed to register udc\n"); goto free_endpoints; } ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq, cdnsp_irq_handler, cdnsp_thread_irq_handler, IRQF_SHARED, dev_name(pdev->dev), pdev); if (ret) goto del_gadget; return 0; del_gadget: usb_del_gadget_udc(&pdev->gadget); free_endpoints: cdnsp_gadget_free_endpoints(pdev); halt_pdev: cdnsp_halt(pdev); cdnsp_reset(pdev); cdnsp_mem_cleanup(pdev); free_setup: kfree(pdev->setup_buf); free_pdev: kfree(pdev); return ret; } static void cdnsp_gadget_exit(struct cdns *cdns) { struct cdnsp_device *pdev = cdns->gadget_dev; devm_free_irq(pdev->dev, cdns->dev_irq, pdev); pm_runtime_mark_last_busy(cdns->dev); pm_runtime_put_autosuspend(cdns->dev); usb_del_gadget_udc(&pdev->gadget); cdnsp_gadget_free_endpoints(pdev); cdnsp_mem_cleanup(pdev); kfree(pdev); cdns->gadget_dev = NULL; cdns_drd_gadget_off(cdns); } static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup) { struct cdnsp_device *pdev = cdns->gadget_dev; unsigned long flags; if (pdev->link_state == XDEV_U3) return 0; spin_lock_irqsave(&pdev->lock, flags); cdnsp_disconnect_gadget(pdev); cdnsp_stop(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated) { struct cdnsp_device *pdev = cdns->gadget_dev; enum usb_device_speed max_speed; unsigned long flags; int ret; if (!pdev->gadget_driver) return 0; spin_lock_irqsave(&pdev->lock, flags); max_speed = pdev->gadget_driver->max_speed; /* Limit speed if necessary. */ max_speed = min(max_speed, pdev->gadget.max_speed); ret = cdnsp_run(pdev, max_speed); if (pdev->link_state == XDEV_U3) __cdnsp_gadget_wakeup(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return ret; } /** * cdnsp_gadget_init - initialize device structure * @cdns: cdnsp instance * * This function initializes the gadget. */ int cdnsp_gadget_init(struct cdns *cdns) { struct cdns_role_driver *rdrv; rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); if (!rdrv) return -ENOMEM; rdrv->start = __cdnsp_gadget_init; rdrv->stop = cdnsp_gadget_exit; rdrv->suspend = cdnsp_gadget_suspend; rdrv->resume = cdnsp_gadget_resume; rdrv->state = CDNS_ROLE_STATE_INACTIVE; rdrv->name = "gadget"; cdns->roles[USB_ROLE_DEVICE] = rdrv; return 0; }
linux-master
drivers/usb/cdns3/cdnsp-gadget.c
// SPDX-License-Identifier: GPL-2.0 /* * cdns3-imx.c - NXP i.MX specific Glue layer for Cadence USB Controller * * Copyright (C) 2019 NXP */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/of_platform.h> #include <linux/iopoll.h> #include <linux/pm_runtime.h> #include "core.h" #define USB3_CORE_CTRL1 0x00 #define USB3_CORE_CTRL2 0x04 #define USB3_INT_REG 0x08 #define USB3_CORE_STATUS 0x0c #define XHCI_DEBUG_LINK_ST 0x10 #define XHCI_DEBUG_BUS 0x14 #define USB3_SSPHY_CTRL1 0x40 #define USB3_SSPHY_CTRL2 0x44 #define USB3_SSPHY_STATUS 0x4c #define USB2_PHY_CTRL1 0x50 #define USB2_PHY_CTRL2 0x54 #define USB2_PHY_STATUS 0x5c /* Register bits definition */ /* USB3_CORE_CTRL1 */ #define SW_RESET_MASK GENMASK(31, 26) #define PWR_SW_RESET BIT(31) #define APB_SW_RESET BIT(30) #define AXI_SW_RESET BIT(29) #define RW_SW_RESET BIT(28) #define PHY_SW_RESET BIT(27) #define PHYAHB_SW_RESET BIT(26) #define ALL_SW_RESET (PWR_SW_RESET | APB_SW_RESET | AXI_SW_RESET | \ RW_SW_RESET | PHY_SW_RESET | PHYAHB_SW_RESET) #define OC_DISABLE BIT(9) #define MDCTRL_CLK_SEL BIT(7) #define MODE_STRAP_MASK (0x7) #define DEV_MODE (1 << 2) #define HOST_MODE (1 << 1) #define OTG_MODE (1 << 0) /* USB3_INT_REG */ #define CLK_125_REQ BIT(29) #define LPM_CLK_REQ BIT(28) #define DEVU3_WAEKUP_EN BIT(14) #define OTG_WAKEUP_EN BIT(12) #define DEV_INT_EN (3 << 8) /* DEV INT b9:8 */ #define HOST_INT1_EN (1 << 0) /* HOST INT b7:0 */ /* USB3_CORE_STATUS */ #define MDCTRL_CLK_STATUS BIT(15) #define DEV_POWER_ON_READY BIT(13) #define HOST_POWER_ON_READY BIT(12) /* USB3_SSPHY_STATUS */ #define CLK_VALID_MASK (0x3f << 26) #define CLK_VALID_COMPARE_BITS (0xf << 28) #define PHY_REFCLK_REQ (1 << 0) /* OTG registers definition */ #define OTGSTS 0x4 /* OTGSTS */ #define OTG_NRDY BIT(11) /* xHCI registers definition */ #define XECP_PM_PMCSR 0x8018 #define XECP_AUX_CTRL_REG1 0x8120 /* Register bits definition */ /* XECP_AUX_CTRL_REG1 */ #define CFG_RXDET_P3_EN BIT(15) /* XECP_PM_PMCSR */ #define PS_MASK GENMASK(1, 0) #define PS_D0 0 #define PS_D1 1 struct cdns_imx { struct device *dev; void __iomem *noncore; struct clk_bulk_data *clks; int num_clks; struct platform_device *cdns3_pdev; }; static inline u32 cdns_imx_readl(struct cdns_imx *data, u32 offset) { return readl(data->noncore + offset); } static inline void cdns_imx_writel(struct cdns_imx *data, u32 offset, u32 value) { writel(value, data->noncore + offset); } static const struct clk_bulk_data imx_cdns3_core_clks[] = { { .id = "lpm" }, { .id = "bus" }, { .id = "aclk" }, { .id = "ipg" }, { .id = "core" }, }; static int cdns_imx_noncore_init(struct cdns_imx *data) { u32 value; int ret; struct device *dev = data->dev; cdns_imx_writel(data, USB3_SSPHY_STATUS, CLK_VALID_MASK); udelay(1); ret = readl_poll_timeout(data->noncore + USB3_SSPHY_STATUS, value, (value & CLK_VALID_COMPARE_BITS) == CLK_VALID_COMPARE_BITS, 10, 100000); if (ret) { dev_err(dev, "wait clkvld timeout\n"); return ret; } value = cdns_imx_readl(data, USB3_CORE_CTRL1); value |= ALL_SW_RESET; cdns_imx_writel(data, USB3_CORE_CTRL1, value); udelay(1); value = cdns_imx_readl(data, USB3_CORE_CTRL1); value = (value & ~MODE_STRAP_MASK) | OTG_MODE | OC_DISABLE; cdns_imx_writel(data, USB3_CORE_CTRL1, value); value = cdns_imx_readl(data, USB3_INT_REG); value |= HOST_INT1_EN | DEV_INT_EN; cdns_imx_writel(data, USB3_INT_REG, value); value = cdns_imx_readl(data, USB3_CORE_CTRL1); value &= ~ALL_SW_RESET; cdns_imx_writel(data, USB3_CORE_CTRL1, value); return ret; } static int cdns_imx_platform_suspend(struct device *dev, bool suspend, bool wakeup); static struct cdns3_platform_data cdns_imx_pdata = { .platform_suspend = cdns_imx_platform_suspend, .quirks = CDNS3_DEFAULT_PM_RUNTIME_ALLOW, }; static const struct of_dev_auxdata cdns_imx_auxdata[] = { { .compatible = "cdns,usb3", .platform_data = &cdns_imx_pdata, }, {}, }; static int cdns_imx_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct cdns_imx *data; int ret; if (!node) return -ENODEV; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); data->dev = dev; data->noncore = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(data->noncore)) { dev_err(dev, "can't map IOMEM resource\n"); return PTR_ERR(data->noncore); } data->num_clks = ARRAY_SIZE(imx_cdns3_core_clks); data->clks = devm_kmemdup(dev, imx_cdns3_core_clks, sizeof(imx_cdns3_core_clks), GFP_KERNEL); if (!data->clks) return -ENOMEM; ret = devm_clk_bulk_get(dev, data->num_clks, data->clks); if (ret) return ret; ret = clk_bulk_prepare_enable(data->num_clks, data->clks); if (ret) return ret; ret = cdns_imx_noncore_init(data); if (ret) goto err; ret = of_platform_populate(node, NULL, cdns_imx_auxdata, dev); if (ret) { dev_err(dev, "failed to create children: %d\n", ret); goto err; } device_set_wakeup_capable(dev, true); pm_runtime_set_active(dev); pm_runtime_enable(dev); return ret; err: clk_bulk_disable_unprepare(data->num_clks, data->clks); return ret; } static void cdns_imx_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cdns_imx *data = dev_get_drvdata(dev); pm_runtime_get_sync(dev); of_platform_depopulate(dev); clk_bulk_disable_unprepare(data->num_clks, data->clks); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); platform_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static void cdns3_set_wakeup(struct cdns_imx *data, bool enable) { u32 value; value = cdns_imx_readl(data, USB3_INT_REG); if (enable) value |= OTG_WAKEUP_EN | DEVU3_WAEKUP_EN; else value &= ~(OTG_WAKEUP_EN | DEVU3_WAEKUP_EN); cdns_imx_writel(data, USB3_INT_REG, value); } static int cdns_imx_platform_suspend(struct device *dev, bool suspend, bool wakeup) { struct cdns *cdns = dev_get_drvdata(dev); struct device *parent = dev->parent; struct cdns_imx *data = dev_get_drvdata(parent); void __iomem *otg_regs = (void __iomem *)(cdns->otg_regs); void __iomem *xhci_regs = cdns->xhci_regs; u32 value; int ret = 0; if (cdns->role != USB_ROLE_HOST) return 0; if (suspend) { /* SW request low power when all usb ports allow to it ??? */ value = readl(xhci_regs + XECP_PM_PMCSR); value &= ~PS_MASK; value |= PS_D1; writel(value, xhci_regs + XECP_PM_PMCSR); /* mdctrl_clk_sel */ value = cdns_imx_readl(data, USB3_CORE_CTRL1); value |= MDCTRL_CLK_SEL; cdns_imx_writel(data, USB3_CORE_CTRL1, value); /* wait for mdctrl_clk_status */ value = cdns_imx_readl(data, USB3_CORE_STATUS); ret = readl_poll_timeout(data->noncore + USB3_CORE_STATUS, value, (value & MDCTRL_CLK_STATUS) == MDCTRL_CLK_STATUS, 10, 100000); if (ret) dev_warn(parent, "wait mdctrl_clk_status timeout\n"); /* wait lpm_clk_req to be 0 */ value = cdns_imx_readl(data, USB3_INT_REG); ret = readl_poll_timeout(data->noncore + USB3_INT_REG, value, (value & LPM_CLK_REQ) != LPM_CLK_REQ, 10, 100000); if (ret) dev_warn(parent, "wait lpm_clk_req timeout\n"); /* wait phy_refclk_req to be 0 */ value = cdns_imx_readl(data, USB3_SSPHY_STATUS); ret = readl_poll_timeout(data->noncore + USB3_SSPHY_STATUS, value, (value & PHY_REFCLK_REQ) != PHY_REFCLK_REQ, 10, 100000); if (ret) dev_warn(parent, "wait phy_refclk_req timeout\n"); cdns3_set_wakeup(data, wakeup); } else { cdns3_set_wakeup(data, false); /* SW request D0 */ value = readl(xhci_regs + XECP_PM_PMCSR); value &= ~PS_MASK; value |= PS_D0; writel(value, xhci_regs + XECP_PM_PMCSR); /* clr CFG_RXDET_P3_EN */ value = readl(xhci_regs + XECP_AUX_CTRL_REG1); value &= ~CFG_RXDET_P3_EN; writel(value, xhci_regs + XECP_AUX_CTRL_REG1); /* clear mdctrl_clk_sel */ value = cdns_imx_readl(data, USB3_CORE_CTRL1); value &= ~MDCTRL_CLK_SEL; cdns_imx_writel(data, USB3_CORE_CTRL1, value); /* wait CLK_125_REQ to be 1 */ value = cdns_imx_readl(data, USB3_INT_REG); ret = readl_poll_timeout(data->noncore + USB3_INT_REG, value, (value & CLK_125_REQ) == CLK_125_REQ, 10, 100000); if (ret) dev_warn(parent, "wait CLK_125_REQ timeout\n"); /* wait for mdctrl_clk_status is cleared */ value = cdns_imx_readl(data, USB3_CORE_STATUS); ret = readl_poll_timeout(data->noncore + USB3_CORE_STATUS, value, (value & MDCTRL_CLK_STATUS) != MDCTRL_CLK_STATUS, 10, 100000); if (ret) dev_warn(parent, "wait mdctrl_clk_status cleared timeout\n"); /* Wait until OTG_NRDY is 0 */ value = readl(otg_regs + OTGSTS); ret = readl_poll_timeout(otg_regs + OTGSTS, value, (value & OTG_NRDY) != OTG_NRDY, 10, 100000); if (ret) dev_warn(parent, "wait OTG ready timeout\n"); } return ret; } static int cdns_imx_resume(struct device *dev) { struct cdns_imx *data = dev_get_drvdata(dev); return clk_bulk_prepare_enable(data->num_clks, data->clks); } static int cdns_imx_suspend(struct device *dev) { struct cdns_imx *data = dev_get_drvdata(dev); clk_bulk_disable_unprepare(data->num_clks, data->clks); return 0; } /* Indicate if the controller was power lost before */ static inline bool cdns_imx_is_power_lost(struct cdns_imx *data) { u32 value; value = cdns_imx_readl(data, USB3_CORE_CTRL1); if ((value & SW_RESET_MASK) == ALL_SW_RESET) return true; else return false; } static int __maybe_unused cdns_imx_system_suspend(struct device *dev) { pm_runtime_put_sync(dev); return 0; } static int __maybe_unused cdns_imx_system_resume(struct device *dev) { struct cdns_imx *data = dev_get_drvdata(dev); int ret; ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "Could not get runtime PM.\n"); return ret; } if (cdns_imx_is_power_lost(data)) { dev_dbg(dev, "resume from power lost\n"); ret = cdns_imx_noncore_init(data); if (ret) cdns_imx_suspend(dev); } return ret; } #else static int cdns_imx_platform_suspend(struct device *dev, bool suspend, bool wakeup) { return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops cdns_imx_pm_ops = { SET_RUNTIME_PM_OPS(cdns_imx_suspend, cdns_imx_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(cdns_imx_system_suspend, cdns_imx_system_resume) }; static const struct of_device_id cdns_imx_of_match[] = { { .compatible = "fsl,imx8qm-usb3", }, {}, }; MODULE_DEVICE_TABLE(of, cdns_imx_of_match); static struct platform_driver cdns_imx_driver = { .probe = cdns_imx_probe, .remove_new = cdns_imx_remove, .driver = { .name = "cdns3-imx", .of_match_table = cdns_imx_of_match, .pm = &cdns_imx_pm_ops, }, }; module_platform_driver(cdns_imx_driver); MODULE_ALIAS("platform:cdns3-imx"); MODULE_AUTHOR("Peter Chen <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence USB3 i.MX Glue Layer");
linux-master
drivers/usb/cdns3/cdns3-imx.c
// SPDX-License-Identifier: GPL-2.0 /** * cdns3-starfive.c - StarFive specific Glue layer for Cadence USB Controller * * Copyright (C) 2023 StarFive Technology Co., Ltd. * * Author: Minda Chen <[email protected]> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/mfd/syscon.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/of_platform.h> #include <linux/reset.h> #include <linux/regmap.h> #include <linux/usb/otg.h> #include "core.h" #define USB_STRAP_HOST BIT(17) #define USB_STRAP_DEVICE BIT(18) #define USB_STRAP_MASK GENMASK(18, 16) #define USB_SUSPENDM_HOST BIT(19) #define USB_SUSPENDM_MASK BIT(19) #define USB_MISC_CFG_MASK GENMASK(23, 20) #define USB_SUSPENDM_BYPS BIT(20) #define USB_PLL_EN BIT(22) #define USB_REFCLK_MODE BIT(23) struct cdns_starfive { struct device *dev; struct regmap *stg_syscon; struct reset_control *resets; struct clk_bulk_data *clks; int num_clks; u32 stg_usb_mode; }; static void cdns_mode_init(struct platform_device *pdev, struct cdns_starfive *data) { enum usb_dr_mode mode; regmap_update_bits(data->stg_syscon, data->stg_usb_mode, USB_MISC_CFG_MASK, USB_SUSPENDM_BYPS | USB_PLL_EN | USB_REFCLK_MODE); /* dr mode setting */ mode = usb_get_dr_mode(&pdev->dev); switch (mode) { case USB_DR_MODE_HOST: regmap_update_bits(data->stg_syscon, data->stg_usb_mode, USB_STRAP_MASK, USB_STRAP_HOST); regmap_update_bits(data->stg_syscon, data->stg_usb_mode, USB_SUSPENDM_MASK, USB_SUSPENDM_HOST); break; case USB_DR_MODE_PERIPHERAL: regmap_update_bits(data->stg_syscon, data->stg_usb_mode, USB_STRAP_MASK, USB_STRAP_DEVICE); regmap_update_bits(data->stg_syscon, data->stg_usb_mode, USB_SUSPENDM_MASK, 0); break; default: break; } } static int cdns_clk_rst_init(struct cdns_starfive *data) { int ret; ret = clk_bulk_prepare_enable(data->num_clks, data->clks); if (ret) return dev_err_probe(data->dev, ret, "failed to enable clocks\n"); ret = reset_control_deassert(data->resets); if (ret) { dev_err(data->dev, "failed to reset clocks\n"); goto err_clk_init; } return ret; err_clk_init: clk_bulk_disable_unprepare(data->num_clks, data->clks); return ret; } static void cdns_clk_rst_deinit(struct cdns_starfive *data) { reset_control_assert(data->resets); clk_bulk_disable_unprepare(data->num_clks, data->clks); } static int cdns_starfive_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cdns_starfive *data; unsigned int args; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->dev = dev; data->stg_syscon = syscon_regmap_lookup_by_phandle_args(pdev->dev.of_node, "starfive,stg-syscon", 1, &args); if (IS_ERR(data->stg_syscon)) return dev_err_probe(dev, PTR_ERR(data->stg_syscon), "Failed to parse starfive,stg-syscon\n"); data->stg_usb_mode = args; data->num_clks = devm_clk_bulk_get_all(data->dev, &data->clks); if (data->num_clks < 0) return dev_err_probe(data->dev, -ENODEV, "Failed to get clocks\n"); data->resets = devm_reset_control_array_get_exclusive(data->dev); if (IS_ERR(data->resets)) return dev_err_probe(data->dev, PTR_ERR(data->resets), "Failed to get resets"); cdns_mode_init(pdev, data); ret = cdns_clk_rst_init(data); if (ret) return ret; ret = of_platform_populate(dev->of_node, NULL, NULL, dev); if (ret) { dev_err(dev, "Failed to create children\n"); cdns_clk_rst_deinit(data); return ret; } device_set_wakeup_capable(dev, true); pm_runtime_set_active(dev); pm_runtime_enable(dev); platform_set_drvdata(pdev, data); return 0; } static int cdns_starfive_remove_core(struct device *dev, void *c) { struct platform_device *pdev = to_platform_device(dev); platform_device_unregister(pdev); return 0; } static void cdns_starfive_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cdns_starfive *data = dev_get_drvdata(dev); pm_runtime_get_sync(dev); device_for_each_child(dev, NULL, cdns_starfive_remove_core); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); cdns_clk_rst_deinit(data); platform_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int cdns_starfive_runtime_resume(struct device *dev) { struct cdns_starfive *data = dev_get_drvdata(dev); return clk_bulk_prepare_enable(data->num_clks, data->clks); } static int cdns_starfive_runtime_suspend(struct device *dev) { struct cdns_starfive *data = dev_get_drvdata(dev); clk_bulk_disable_unprepare(data->num_clks, data->clks); return 0; } #ifdef CONFIG_PM_SLEEP static int cdns_starfive_resume(struct device *dev) { struct cdns_starfive *data = dev_get_drvdata(dev); return cdns_clk_rst_init(data); } static int cdns_starfive_suspend(struct device *dev) { struct cdns_starfive *data = dev_get_drvdata(dev); cdns_clk_rst_deinit(data); return 0; } #endif #endif static const struct dev_pm_ops cdns_starfive_pm_ops = { SET_RUNTIME_PM_OPS(cdns_starfive_runtime_suspend, cdns_starfive_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(cdns_starfive_suspend, cdns_starfive_resume) }; static const struct of_device_id cdns_starfive_of_match[] = { { .compatible = "starfive,jh7110-usb", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, cdns_starfive_of_match); static struct platform_driver cdns_starfive_driver = { .probe = cdns_starfive_probe, .remove_new = cdns_starfive_remove, .driver = { .name = "cdns3-starfive", .of_match_table = cdns_starfive_of_match, .pm = &cdns_starfive_pm_ops, }, }; module_platform_driver(cdns_starfive_driver); MODULE_ALIAS("platform:cdns3-starfive"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence USB3 StarFive Glue Layer");
linux-master
drivers/usb/cdns3/cdns3-starfive.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS DRD Driver. * * Copyright (C) 2018-2020 Cadence. * Copyright (C) 2017-2018 NXP * Copyright (C) 2019 Texas Instruments * * * Author: Peter Chen <[email protected]> * Pawel Laszczak <[email protected]> * Roger Quadros <[email protected]> */ #include <linux/module.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include "core.h" #include "gadget-export.h" #include "drd.h" static int set_phy_power_on(struct cdns *cdns) { int ret; ret = phy_power_on(cdns->usb2_phy); if (ret) return ret; ret = phy_power_on(cdns->usb3_phy); if (ret) phy_power_off(cdns->usb2_phy); return ret; } static void set_phy_power_off(struct cdns *cdns) { phy_power_off(cdns->usb3_phy); phy_power_off(cdns->usb2_phy); } /** * cdns3_plat_probe - probe for cdns3 core device * @pdev: Pointer to cdns3 core platform device * * Returns 0 on success otherwise negative errno */ static int cdns3_plat_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; struct cdns *cdns; void __iomem *regs; int ret; cdns = devm_kzalloc(dev, sizeof(*cdns), GFP_KERNEL); if (!cdns) return -ENOMEM; cdns->dev = dev; cdns->pdata = dev_get_platdata(dev); platform_set_drvdata(pdev, cdns); ret = platform_get_irq_byname(pdev, "host"); if (ret < 0) return ret; cdns->xhci_res[0].start = ret; cdns->xhci_res[0].end = ret; cdns->xhci_res[0].flags = IORESOURCE_IRQ | irq_get_trigger_type(ret); cdns->xhci_res[0].name = "host"; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "xhci"); if (!res) { dev_err(dev, "couldn't get xhci resource\n"); return -ENXIO; } cdns->xhci_res[1] = *res; cdns->dev_irq = platform_get_irq_byname(pdev, "peripheral"); if (cdns->dev_irq < 0) return cdns->dev_irq; regs = devm_platform_ioremap_resource_byname(pdev, "dev"); if (IS_ERR(regs)) return PTR_ERR(regs); cdns->dev_regs = regs; cdns->otg_irq = platform_get_irq_byname(pdev, "otg"); if (cdns->otg_irq < 0) return cdns->otg_irq; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "otg"); if (!res) { dev_err(dev, "couldn't get otg resource\n"); return -ENXIO; } cdns->phyrst_a_enable = device_property_read_bool(dev, "cdns,phyrst-a-enable"); cdns->otg_res = *res; cdns->wakeup_irq = platform_get_irq_byname_optional(pdev, "wakeup"); if (cdns->wakeup_irq == -EPROBE_DEFER) return cdns->wakeup_irq; if (cdns->wakeup_irq < 0) { dev_dbg(dev, "couldn't get wakeup irq\n"); cdns->wakeup_irq = 0x0; } cdns->usb2_phy = devm_phy_optional_get(dev, "cdns3,usb2-phy"); if (IS_ERR(cdns->usb2_phy)) return PTR_ERR(cdns->usb2_phy); ret = phy_init(cdns->usb2_phy); if (ret) return ret; cdns->usb3_phy = devm_phy_optional_get(dev, "cdns3,usb3-phy"); if (IS_ERR(cdns->usb3_phy)) return PTR_ERR(cdns->usb3_phy); ret = phy_init(cdns->usb3_phy); if (ret) goto err_phy3_init; ret = set_phy_power_on(cdns); if (ret) goto err_phy_power_on; cdns->gadget_init = cdns3_gadget_init; ret = cdns_init(cdns); if (ret) goto err_cdns_init; device_set_wakeup_capable(dev, true); pm_runtime_set_active(dev); pm_runtime_enable(dev); if (!(cdns->pdata && (cdns->pdata->quirks & CDNS3_DEFAULT_PM_RUNTIME_ALLOW))) pm_runtime_forbid(dev); /* * The controller needs less time between bus and controller suspend, * and we also needs a small delay to avoid frequently entering low * power mode. */ pm_runtime_set_autosuspend_delay(dev, 20); pm_runtime_mark_last_busy(dev); pm_runtime_use_autosuspend(dev); return 0; err_cdns_init: set_phy_power_off(cdns); err_phy_power_on: phy_exit(cdns->usb3_phy); err_phy3_init: phy_exit(cdns->usb2_phy); return ret; } /** * cdns3_plat_remove() - unbind drd driver and clean up * @pdev: Pointer to Linux platform device * * Returns 0 on success otherwise negative errno */ static void cdns3_plat_remove(struct platform_device *pdev) { struct cdns *cdns = platform_get_drvdata(pdev); struct device *dev = cdns->dev; pm_runtime_get_sync(dev); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); cdns_remove(cdns); set_phy_power_off(cdns); phy_exit(cdns->usb2_phy); phy_exit(cdns->usb3_phy); } #ifdef CONFIG_PM static int cdns3_set_platform_suspend(struct device *dev, bool suspend, bool wakeup) { struct cdns *cdns = dev_get_drvdata(dev); int ret = 0; if (cdns->pdata && cdns->pdata->platform_suspend) ret = cdns->pdata->platform_suspend(dev, suspend, wakeup); return ret; } static int cdns3_controller_suspend(struct device *dev, pm_message_t msg) { struct cdns *cdns = dev_get_drvdata(dev); bool wakeup; unsigned long flags; if (cdns->in_lpm) return 0; if (PMSG_IS_AUTO(msg)) wakeup = true; else wakeup = device_may_wakeup(dev); cdns3_set_platform_suspend(cdns->dev, true, wakeup); set_phy_power_off(cdns); spin_lock_irqsave(&cdns->lock, flags); cdns->in_lpm = true; spin_unlock_irqrestore(&cdns->lock, flags); dev_dbg(cdns->dev, "%s ends\n", __func__); return 0; } static int cdns3_controller_resume(struct device *dev, pm_message_t msg) { struct cdns *cdns = dev_get_drvdata(dev); int ret; unsigned long flags; if (!cdns->in_lpm) return 0; if (cdns_power_is_lost(cdns)) { phy_exit(cdns->usb2_phy); ret = phy_init(cdns->usb2_phy); if (ret) return ret; phy_exit(cdns->usb3_phy); ret = phy_init(cdns->usb3_phy); if (ret) return ret; } ret = set_phy_power_on(cdns); if (ret) return ret; cdns3_set_platform_suspend(cdns->dev, false, false); spin_lock_irqsave(&cdns->lock, flags); cdns_resume(cdns); cdns->in_lpm = false; spin_unlock_irqrestore(&cdns->lock, flags); cdns_set_active(cdns, !PMSG_IS_AUTO(msg)); if (cdns->wakeup_pending) { cdns->wakeup_pending = false; enable_irq(cdns->wakeup_irq); } dev_dbg(cdns->dev, "%s ends\n", __func__); return ret; } static int cdns3_plat_runtime_suspend(struct device *dev) { return cdns3_controller_suspend(dev, PMSG_AUTO_SUSPEND); } static int cdns3_plat_runtime_resume(struct device *dev) { return cdns3_controller_resume(dev, PMSG_AUTO_RESUME); } #ifdef CONFIG_PM_SLEEP static int cdns3_plat_suspend(struct device *dev) { struct cdns *cdns = dev_get_drvdata(dev); int ret; cdns_suspend(cdns); ret = cdns3_controller_suspend(dev, PMSG_SUSPEND); if (ret) return ret; if (device_may_wakeup(dev) && cdns->wakeup_irq) enable_irq_wake(cdns->wakeup_irq); return ret; } static int cdns3_plat_resume(struct device *dev) { return cdns3_controller_resume(dev, PMSG_RESUME); } #endif /* CONFIG_PM_SLEEP */ #endif /* CONFIG_PM */ static const struct dev_pm_ops cdns3_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(cdns3_plat_suspend, cdns3_plat_resume) SET_RUNTIME_PM_OPS(cdns3_plat_runtime_suspend, cdns3_plat_runtime_resume, NULL) }; #ifdef CONFIG_OF static const struct of_device_id of_cdns3_match[] = { { .compatible = "cdns,usb3" }, { }, }; MODULE_DEVICE_TABLE(of, of_cdns3_match); #endif static struct platform_driver cdns3_driver = { .probe = cdns3_plat_probe, .remove_new = cdns3_plat_remove, .driver = { .name = "cdns-usb3", .of_match_table = of_match_ptr(of_cdns3_match), .pm = &cdns3_pm_ops, }, }; module_platform_driver(cdns3_driver); MODULE_ALIAS("platform:cdns3"); MODULE_AUTHOR("Pawel Laszczak <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence USB3 DRD Controller Driver");
linux-master
drivers/usb/cdns3/cdns3-plat.c
// SPDX-License-Identifier: GPL-2.0 /* * USBSS device controller driver Trace Support * * Copyright (C) 2018-2019 Cadence. * * Author: Pawel Laszczak <[email protected]> */ #define CREATE_TRACE_POINTS #include "cdns3-trace.h"
linux-master
drivers/usb/cdns3/cdns3-trace.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS and USBSSP DRD Driver. * * Copyright (C) 2018-2019 Cadence. * Copyright (C) 2017-2018 NXP * Copyright (C) 2019 Texas Instruments * * Author: Peter Chen <[email protected]> * Pawel Laszczak <[email protected]> * Roger Quadros <[email protected]> */ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/pm_runtime.h> #include "core.h" #include "host-export.h" #include "drd.h" static int cdns_idle_init(struct cdns *cdns); static int cdns_role_start(struct cdns *cdns, enum usb_role role) { int ret; if (WARN_ON(role > USB_ROLE_DEVICE)) return 0; mutex_lock(&cdns->mutex); cdns->role = role; mutex_unlock(&cdns->mutex); if (!cdns->roles[role]) return -ENXIO; if (cdns->roles[role]->state == CDNS_ROLE_STATE_ACTIVE) return 0; mutex_lock(&cdns->mutex); ret = cdns->roles[role]->start(cdns); if (!ret) cdns->roles[role]->state = CDNS_ROLE_STATE_ACTIVE; mutex_unlock(&cdns->mutex); return ret; } static void cdns_role_stop(struct cdns *cdns) { enum usb_role role = cdns->role; if (WARN_ON(role > USB_ROLE_DEVICE)) return; if (cdns->roles[role]->state == CDNS_ROLE_STATE_INACTIVE) return; mutex_lock(&cdns->mutex); cdns->roles[role]->stop(cdns); cdns->roles[role]->state = CDNS_ROLE_STATE_INACTIVE; mutex_unlock(&cdns->mutex); } static void cdns_exit_roles(struct cdns *cdns) { cdns_role_stop(cdns); cdns_drd_exit(cdns); } /** * cdns_core_init_role - initialize role of operation * @cdns: Pointer to cdns structure * * Returns 0 on success otherwise negative errno */ static int cdns_core_init_role(struct cdns *cdns) { struct device *dev = cdns->dev; enum usb_dr_mode best_dr_mode; enum usb_dr_mode dr_mode; int ret; dr_mode = usb_get_dr_mode(dev); cdns->role = USB_ROLE_NONE; /* * If driver can't read mode by means of usb_get_dr_mode function then * chooses mode according with Kernel configuration. This setting * can be restricted later depending on strap pin configuration. */ if (dr_mode == USB_DR_MODE_UNKNOWN) { if (cdns->version == CDNSP_CONTROLLER_V2) { if (IS_ENABLED(CONFIG_USB_CDNSP_HOST) && IS_ENABLED(CONFIG_USB_CDNSP_GADGET)) dr_mode = USB_DR_MODE_OTG; else if (IS_ENABLED(CONFIG_USB_CDNSP_HOST)) dr_mode = USB_DR_MODE_HOST; else if (IS_ENABLED(CONFIG_USB_CDNSP_GADGET)) dr_mode = USB_DR_MODE_PERIPHERAL; } else { if (IS_ENABLED(CONFIG_USB_CDNS3_HOST) && IS_ENABLED(CONFIG_USB_CDNS3_GADGET)) dr_mode = USB_DR_MODE_OTG; else if (IS_ENABLED(CONFIG_USB_CDNS3_HOST)) dr_mode = USB_DR_MODE_HOST; else if (IS_ENABLED(CONFIG_USB_CDNS3_GADGET)) dr_mode = USB_DR_MODE_PERIPHERAL; } } /* * At this point cdns->dr_mode contains strap configuration. * Driver try update this setting considering kernel configuration */ best_dr_mode = cdns->dr_mode; ret = cdns_idle_init(cdns); if (ret) return ret; if (dr_mode == USB_DR_MODE_OTG) { best_dr_mode = cdns->dr_mode; } else if (cdns->dr_mode == USB_DR_MODE_OTG) { best_dr_mode = dr_mode; } else if (cdns->dr_mode != dr_mode) { dev_err(dev, "Incorrect DRD configuration\n"); return -EINVAL; } dr_mode = best_dr_mode; if (dr_mode == USB_DR_MODE_OTG || dr_mode == USB_DR_MODE_HOST) { if ((cdns->version == CDNSP_CONTROLLER_V2 && IS_ENABLED(CONFIG_USB_CDNSP_HOST)) || (cdns->version < CDNSP_CONTROLLER_V2 && IS_ENABLED(CONFIG_USB_CDNS3_HOST))) ret = cdns_host_init(cdns); else ret = -ENXIO; if (ret) { dev_err(dev, "Host initialization failed with %d\n", ret); goto err; } } if (dr_mode == USB_DR_MODE_OTG || dr_mode == USB_DR_MODE_PERIPHERAL) { if (cdns->gadget_init) ret = cdns->gadget_init(cdns); else ret = -ENXIO; if (ret) { dev_err(dev, "Device initialization failed with %d\n", ret); goto err; } } cdns->dr_mode = dr_mode; ret = cdns_drd_update_mode(cdns); if (ret) goto err; /* Initialize idle role to start with */ ret = cdns_role_start(cdns, USB_ROLE_NONE); if (ret) goto err; switch (cdns->dr_mode) { case USB_DR_MODE_OTG: ret = cdns_hw_role_switch(cdns); if (ret) goto err; break; case USB_DR_MODE_PERIPHERAL: ret = cdns_role_start(cdns, USB_ROLE_DEVICE); if (ret) goto err; break; case USB_DR_MODE_HOST: ret = cdns_role_start(cdns, USB_ROLE_HOST); if (ret) goto err; break; default: ret = -EINVAL; goto err; } return 0; err: cdns_exit_roles(cdns); return ret; } /** * cdns_hw_role_state_machine - role switch state machine based on hw events. * @cdns: Pointer to controller structure. * * Returns next role to be entered based on hw events. */ static enum usb_role cdns_hw_role_state_machine(struct cdns *cdns) { enum usb_role role = USB_ROLE_NONE; int id, vbus; if (cdns->dr_mode != USB_DR_MODE_OTG) { if (cdns_is_host(cdns)) role = USB_ROLE_HOST; if (cdns_is_device(cdns)) role = USB_ROLE_DEVICE; return role; } id = cdns_get_id(cdns); vbus = cdns_get_vbus(cdns); /* * Role change state machine * Inputs: ID, VBUS * Previous state: cdns->role * Next state: role */ role = cdns->role; switch (role) { case USB_ROLE_NONE: /* * Driver treats USB_ROLE_NONE synonymous to IDLE state from * controller specification. */ if (!id) role = USB_ROLE_HOST; else if (vbus) role = USB_ROLE_DEVICE; break; case USB_ROLE_HOST: /* from HOST, we can only change to NONE */ if (id) role = USB_ROLE_NONE; break; case USB_ROLE_DEVICE: /* from GADGET, we can only change to NONE*/ if (!vbus) role = USB_ROLE_NONE; break; } dev_dbg(cdns->dev, "role %d -> %d\n", cdns->role, role); return role; } static int cdns_idle_role_start(struct cdns *cdns) { return 0; } static void cdns_idle_role_stop(struct cdns *cdns) { /* Program Lane swap and bring PHY out of RESET */ phy_reset(cdns->usb3_phy); } static int cdns_idle_init(struct cdns *cdns) { struct cdns_role_driver *rdrv; rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); if (!rdrv) return -ENOMEM; rdrv->start = cdns_idle_role_start; rdrv->stop = cdns_idle_role_stop; rdrv->state = CDNS_ROLE_STATE_INACTIVE; rdrv->suspend = NULL; rdrv->resume = NULL; rdrv->name = "idle"; cdns->roles[USB_ROLE_NONE] = rdrv; return 0; } /** * cdns_hw_role_switch - switch roles based on HW state * @cdns: controller */ int cdns_hw_role_switch(struct cdns *cdns) { enum usb_role real_role, current_role; int ret = 0; /* Depends on role switch class */ if (cdns->role_sw) return 0; pm_runtime_get_sync(cdns->dev); current_role = cdns->role; real_role = cdns_hw_role_state_machine(cdns); /* Do nothing if nothing changed */ if (current_role == real_role) goto exit; cdns_role_stop(cdns); dev_dbg(cdns->dev, "Switching role %d -> %d", current_role, real_role); ret = cdns_role_start(cdns, real_role); if (ret) { /* Back to current role */ dev_err(cdns->dev, "set %d has failed, back to %d\n", real_role, current_role); ret = cdns_role_start(cdns, current_role); if (ret) dev_err(cdns->dev, "back to %d failed too\n", current_role); } exit: pm_runtime_put_sync(cdns->dev); return ret; } /** * cdns_role_get - get current role of controller. * * @sw: pointer to USB role switch structure * * Returns role */ static enum usb_role cdns_role_get(struct usb_role_switch *sw) { struct cdns *cdns = usb_role_switch_get_drvdata(sw); return cdns->role; } /** * cdns_role_set - set current role of controller. * * @sw: pointer to USB role switch structure * @role: the previous role * Handles below events: * - Role switch for dual-role devices * - USB_ROLE_GADGET <--> USB_ROLE_NONE for peripheral-only devices */ static int cdns_role_set(struct usb_role_switch *sw, enum usb_role role) { struct cdns *cdns = usb_role_switch_get_drvdata(sw); int ret = 0; pm_runtime_get_sync(cdns->dev); if (cdns->role == role) goto pm_put; if (cdns->dr_mode == USB_DR_MODE_HOST) { switch (role) { case USB_ROLE_NONE: case USB_ROLE_HOST: break; default: goto pm_put; } } if (cdns->dr_mode == USB_DR_MODE_PERIPHERAL) { switch (role) { case USB_ROLE_NONE: case USB_ROLE_DEVICE: break; default: goto pm_put; } } cdns_role_stop(cdns); ret = cdns_role_start(cdns, role); if (ret) dev_err(cdns->dev, "set role %d has failed\n", role); pm_put: pm_runtime_put_sync(cdns->dev); return ret; } /** * cdns_wakeup_irq - interrupt handler for wakeup events * @irq: irq number for cdns3/cdnsp core device * @data: structure of cdns * * Returns IRQ_HANDLED or IRQ_NONE */ static irqreturn_t cdns_wakeup_irq(int irq, void *data) { struct cdns *cdns = data; if (cdns->in_lpm) { disable_irq_nosync(irq); cdns->wakeup_pending = true; if ((cdns->role == USB_ROLE_HOST) && cdns->host_dev) pm_request_resume(&cdns->host_dev->dev); return IRQ_HANDLED; } return IRQ_NONE; } /** * cdns_init - probe for cdns3/cdnsp core device * @cdns: Pointer to cdns structure. * * Returns 0 on success otherwise negative errno */ int cdns_init(struct cdns *cdns) { struct device *dev = cdns->dev; int ret; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "error setting dma mask: %d\n", ret); return ret; } mutex_init(&cdns->mutex); if (device_property_read_bool(dev, "usb-role-switch")) { struct usb_role_switch_desc sw_desc = { }; sw_desc.set = cdns_role_set; sw_desc.get = cdns_role_get; sw_desc.allow_userspace_control = true; sw_desc.driver_data = cdns; sw_desc.fwnode = dev->fwnode; cdns->role_sw = usb_role_switch_register(dev, &sw_desc); if (IS_ERR(cdns->role_sw)) { dev_warn(dev, "Unable to register Role Switch\n"); return PTR_ERR(cdns->role_sw); } } if (cdns->wakeup_irq) { ret = devm_request_irq(cdns->dev, cdns->wakeup_irq, cdns_wakeup_irq, IRQF_SHARED, dev_name(cdns->dev), cdns); if (ret) { dev_err(cdns->dev, "couldn't register wakeup irq handler\n"); goto role_switch_unregister; } } ret = cdns_drd_init(cdns); if (ret) goto init_failed; ret = cdns_core_init_role(cdns); if (ret) goto init_failed; spin_lock_init(&cdns->lock); dev_dbg(dev, "Cadence USB3 core: probe succeed\n"); return 0; init_failed: cdns_drd_exit(cdns); role_switch_unregister: if (cdns->role_sw) usb_role_switch_unregister(cdns->role_sw); return ret; } EXPORT_SYMBOL_GPL(cdns_init); /** * cdns_remove - unbind drd driver and clean up * @cdns: Pointer to cdns structure. * * Returns 0 on success otherwise negative errno */ int cdns_remove(struct cdns *cdns) { cdns_exit_roles(cdns); usb_role_switch_unregister(cdns->role_sw); return 0; } EXPORT_SYMBOL_GPL(cdns_remove); #ifdef CONFIG_PM_SLEEP int cdns_suspend(struct cdns *cdns) { struct device *dev = cdns->dev; unsigned long flags; if (pm_runtime_status_suspended(dev)) pm_runtime_resume(dev); if (cdns->roles[cdns->role]->suspend) { spin_lock_irqsave(&cdns->lock, flags); cdns->roles[cdns->role]->suspend(cdns, false); spin_unlock_irqrestore(&cdns->lock, flags); } return 0; } EXPORT_SYMBOL_GPL(cdns_suspend); int cdns_resume(struct cdns *cdns) { enum usb_role real_role; bool role_changed = false; int ret = 0; if (cdns_power_is_lost(cdns)) { if (cdns->role_sw) { cdns->role = cdns_role_get(cdns->role_sw); } else { real_role = cdns_hw_role_state_machine(cdns); if (real_role != cdns->role) { ret = cdns_hw_role_switch(cdns); if (ret) return ret; role_changed = true; } } if (!role_changed) { if (cdns->role == USB_ROLE_HOST) ret = cdns_drd_host_on(cdns); else if (cdns->role == USB_ROLE_DEVICE) ret = cdns_drd_gadget_on(cdns); if (ret) return ret; } } if (cdns->roles[cdns->role]->resume) cdns->roles[cdns->role]->resume(cdns, cdns_power_is_lost(cdns)); return 0; } EXPORT_SYMBOL_GPL(cdns_resume); void cdns_set_active(struct cdns *cdns, u8 set_active) { struct device *dev = cdns->dev; if (set_active) { pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); } return; } EXPORT_SYMBOL_GPL(cdns_set_active); #endif /* CONFIG_PM_SLEEP */ MODULE_AUTHOR("Peter Chen <[email protected]>"); MODULE_AUTHOR("Pawel Laszczak <[email protected]>"); MODULE_AUTHOR("Roger Quadros <[email protected]>"); MODULE_DESCRIPTION("Cadence USBSS and USBSSP DRD Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/cdns3/core.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS DRD Driver - gadget side. * * Copyright (C) 2018 Cadence Design Systems. * Copyright (C) 2017-2018 NXP * * Authors: Pawel Jez <[email protected]>, * Pawel Laszczak <[email protected]> * Peter Chen <[email protected]> */ #include <linux/usb/composite.h> #include <linux/iopoll.h> #include "cdns3-gadget.h" #include "cdns3-trace.h" static struct usb_endpoint_descriptor cdns3_gadget_ep0_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, }; /** * cdns3_ep0_run_transfer - Do transfer on default endpoint hardware * @priv_dev: extended gadget object * @dma_addr: physical address where data is/will be stored * @length: data length * @erdy: set it to 1 when ERDY packet should be sent - * exit from flow control state * @zlp: add zero length packet */ static void cdns3_ep0_run_transfer(struct cdns3_device *priv_dev, dma_addr_t dma_addr, unsigned int length, int erdy, int zlp) { struct cdns3_usb_regs __iomem *regs = priv_dev->regs; struct cdns3_endpoint *priv_ep = priv_dev->eps[0]; priv_ep->trb_pool[0].buffer = cpu_to_le32(TRB_BUFFER(dma_addr)); priv_ep->trb_pool[0].length = cpu_to_le32(TRB_LEN(length)); if (zlp) { priv_ep->trb_pool[0].control = cpu_to_le32(TRB_CYCLE | TRB_TYPE(TRB_NORMAL)); priv_ep->trb_pool[1].buffer = cpu_to_le32(TRB_BUFFER(dma_addr)); priv_ep->trb_pool[1].length = cpu_to_le32(TRB_LEN(0)); priv_ep->trb_pool[1].control = cpu_to_le32(TRB_CYCLE | TRB_IOC | TRB_TYPE(TRB_NORMAL)); } else { priv_ep->trb_pool[0].control = cpu_to_le32(TRB_CYCLE | TRB_IOC | TRB_TYPE(TRB_NORMAL)); priv_ep->trb_pool[1].control = 0; } trace_cdns3_prepare_trb(priv_ep, priv_ep->trb_pool); cdns3_select_ep(priv_dev, priv_dev->ep0_data_dir); writel(EP_STS_TRBERR, &regs->ep_sts); writel(EP_TRADDR_TRADDR(priv_ep->trb_pool_dma), &regs->ep_traddr); trace_cdns3_doorbell_ep0(priv_dev->ep0_data_dir ? "ep0in" : "ep0out", readl(&regs->ep_traddr)); /* TRB should be prepared before starting transfer. */ writel(EP_CMD_DRDY, &regs->ep_cmd); /* Resume controller before arming transfer. */ __cdns3_gadget_wakeup(priv_dev); if (erdy) writel(EP_CMD_ERDY, &priv_dev->regs->ep_cmd); } /** * cdns3_ep0_delegate_req - Returns status of handling setup packet * Setup is handled by gadget driver * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns zero on success or negative value on failure */ static int cdns3_ep0_delegate_req(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { int ret; spin_unlock(&priv_dev->lock); priv_dev->setup_pending = 1; ret = priv_dev->gadget_driver->setup(&priv_dev->gadget, ctrl_req); priv_dev->setup_pending = 0; spin_lock(&priv_dev->lock); return ret; } static void cdns3_prepare_setup_packet(struct cdns3_device *priv_dev) { priv_dev->ep0_data_dir = 0; priv_dev->ep0_stage = CDNS3_SETUP_STAGE; cdns3_ep0_run_transfer(priv_dev, priv_dev->setup_dma, sizeof(struct usb_ctrlrequest), 0, 0); } static void cdns3_ep0_complete_setup(struct cdns3_device *priv_dev, u8 send_stall, u8 send_erdy) { struct cdns3_endpoint *priv_ep = priv_dev->eps[0]; struct usb_request *request; request = cdns3_next_request(&priv_ep->pending_req_list); if (request) list_del_init(&request->list); if (send_stall) { trace_cdns3_halt(priv_ep, send_stall, 0); /* set_stall on ep0 */ cdns3_select_ep(priv_dev, 0x00); writel(EP_CMD_SSTALL, &priv_dev->regs->ep_cmd); } else { cdns3_prepare_setup_packet(priv_dev); } priv_dev->ep0_stage = CDNS3_SETUP_STAGE; writel((send_erdy ? EP_CMD_ERDY : 0) | EP_CMD_REQ_CMPL, &priv_dev->regs->ep_cmd); } /** * cdns3_req_ep0_set_configuration - Handling of SET_CONFIG standard USB request * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns 0 if success, USB_GADGET_DELAYED_STATUS on deferred status stage, * error code on error */ static int cdns3_req_ep0_set_configuration(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { enum usb_device_state device_state = priv_dev->gadget.state; u32 config = le16_to_cpu(ctrl_req->wValue); int result = 0; switch (device_state) { case USB_STATE_ADDRESS: result = cdns3_ep0_delegate_req(priv_dev, ctrl_req); if (result || !config) goto reset_config; break; case USB_STATE_CONFIGURED: result = cdns3_ep0_delegate_req(priv_dev, ctrl_req); if (!config && !result) goto reset_config; break; default: return -EINVAL; } return 0; reset_config: if (result != USB_GADGET_DELAYED_STATUS) cdns3_hw_reset_eps_config(priv_dev); usb_gadget_set_state(&priv_dev->gadget, USB_STATE_ADDRESS); return result; } /** * cdns3_req_ep0_set_address - Handling of SET_ADDRESS standard USB request * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns 0 if success, error code on error */ static int cdns3_req_ep0_set_address(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { enum usb_device_state device_state = priv_dev->gadget.state; u32 reg; u32 addr; addr = le16_to_cpu(ctrl_req->wValue); if (addr > USB_DEVICE_MAX_ADDRESS) { dev_err(priv_dev->dev, "Device address (%d) cannot be greater than %d\n", addr, USB_DEVICE_MAX_ADDRESS); return -EINVAL; } if (device_state == USB_STATE_CONFIGURED) { dev_err(priv_dev->dev, "can't set_address from configured state\n"); return -EINVAL; } reg = readl(&priv_dev->regs->usb_cmd); writel(reg | USB_CMD_FADDR(addr) | USB_CMD_SET_ADDR, &priv_dev->regs->usb_cmd); usb_gadget_set_state(&priv_dev->gadget, (addr ? USB_STATE_ADDRESS : USB_STATE_DEFAULT)); return 0; } /** * cdns3_req_ep0_get_status - Handling of GET_STATUS standard USB request * @priv_dev: extended gadget object * @ctrl: pointer to received setup packet * * Returns 0 if success, error code on error */ static int cdns3_req_ep0_get_status(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl) { struct cdns3_endpoint *priv_ep; __le16 *response_pkt; u16 usb_status = 0; u32 recip; u8 index; recip = ctrl->bRequestType & USB_RECIP_MASK; switch (recip) { case USB_RECIP_DEVICE: /* self powered */ if (priv_dev->is_selfpowered) usb_status = BIT(USB_DEVICE_SELF_POWERED); if (priv_dev->wake_up_flag) usb_status |= BIT(USB_DEVICE_REMOTE_WAKEUP); if (priv_dev->gadget.speed != USB_SPEED_SUPER) break; if (priv_dev->u1_allowed) usb_status |= BIT(USB_DEV_STAT_U1_ENABLED); if (priv_dev->u2_allowed) usb_status |= BIT(USB_DEV_STAT_U2_ENABLED); break; case USB_RECIP_INTERFACE: return cdns3_ep0_delegate_req(priv_dev, ctrl); case USB_RECIP_ENDPOINT: index = cdns3_ep_addr_to_index(le16_to_cpu(ctrl->wIndex)); priv_ep = priv_dev->eps[index]; /* check if endpoint is stalled or stall is pending */ cdns3_select_ep(priv_dev, le16_to_cpu(ctrl->wIndex)); if (EP_STS_STALL(readl(&priv_dev->regs->ep_sts)) || (priv_ep->flags & EP_STALL_PENDING)) usb_status = BIT(USB_ENDPOINT_HALT); break; default: return -EINVAL; } response_pkt = (__le16 *)priv_dev->setup_buf; *response_pkt = cpu_to_le16(usb_status); cdns3_ep0_run_transfer(priv_dev, priv_dev->setup_dma, sizeof(*response_pkt), 1, 0); return 0; } static int cdns3_ep0_feature_handle_device(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl, int set) { enum usb_device_state state; enum usb_device_speed speed; int ret = 0; u32 wValue; u16 tmode; wValue = le16_to_cpu(ctrl->wValue); state = priv_dev->gadget.state; speed = priv_dev->gadget.speed; switch (wValue) { case USB_DEVICE_REMOTE_WAKEUP: priv_dev->wake_up_flag = !!set; break; case USB_DEVICE_U1_ENABLE: if (state != USB_STATE_CONFIGURED || speed != USB_SPEED_SUPER) return -EINVAL; priv_dev->u1_allowed = !!set; break; case USB_DEVICE_U2_ENABLE: if (state != USB_STATE_CONFIGURED || speed != USB_SPEED_SUPER) return -EINVAL; priv_dev->u2_allowed = !!set; break; case USB_DEVICE_LTM_ENABLE: ret = -EINVAL; break; case USB_DEVICE_TEST_MODE: if (state != USB_STATE_CONFIGURED || speed > USB_SPEED_HIGH) return -EINVAL; tmode = le16_to_cpu(ctrl->wIndex); if (!set || (tmode & 0xff) != 0) return -EINVAL; tmode >>= 8; switch (tmode) { case USB_TEST_J: case USB_TEST_K: case USB_TEST_SE0_NAK: case USB_TEST_PACKET: cdns3_set_register_bit(&priv_dev->regs->usb_cmd, USB_CMD_STMODE | USB_STS_TMODE_SEL(tmode - 1)); break; default: ret = -EINVAL; } break; default: ret = -EINVAL; } return ret; } static int cdns3_ep0_feature_handle_intf(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl, int set) { u32 wValue; int ret = 0; wValue = le16_to_cpu(ctrl->wValue); switch (wValue) { case USB_INTRF_FUNC_SUSPEND: break; default: ret = -EINVAL; } return ret; } static int cdns3_ep0_feature_handle_endpoint(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl, int set) { struct cdns3_endpoint *priv_ep; int ret = 0; u8 index; if (le16_to_cpu(ctrl->wValue) != USB_ENDPOINT_HALT) return -EINVAL; if (!(le16_to_cpu(ctrl->wIndex) & ~USB_DIR_IN)) return 0; index = cdns3_ep_addr_to_index(le16_to_cpu(ctrl->wIndex)); priv_ep = priv_dev->eps[index]; cdns3_select_ep(priv_dev, le16_to_cpu(ctrl->wIndex)); if (set) __cdns3_gadget_ep_set_halt(priv_ep); else if (!(priv_ep->flags & EP_WEDGE)) ret = __cdns3_gadget_ep_clear_halt(priv_ep); cdns3_select_ep(priv_dev, 0x00); return ret; } /** * cdns3_req_ep0_handle_feature - * Handling of GET/SET_FEATURE standard USB request * * @priv_dev: extended gadget object * @ctrl: pointer to received setup packet * @set: must be set to 1 for SET_FEATURE request * * Returns 0 if success, error code on error */ static int cdns3_req_ep0_handle_feature(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl, int set) { int ret = 0; u32 recip; recip = ctrl->bRequestType & USB_RECIP_MASK; switch (recip) { case USB_RECIP_DEVICE: ret = cdns3_ep0_feature_handle_device(priv_dev, ctrl, set); break; case USB_RECIP_INTERFACE: ret = cdns3_ep0_feature_handle_intf(priv_dev, ctrl, set); break; case USB_RECIP_ENDPOINT: ret = cdns3_ep0_feature_handle_endpoint(priv_dev, ctrl, set); break; default: return -EINVAL; } return ret; } /** * cdns3_req_ep0_set_sel - Handling of SET_SEL standard USB request * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns 0 if success, error code on error */ static int cdns3_req_ep0_set_sel(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { if (priv_dev->gadget.state < USB_STATE_ADDRESS) return -EINVAL; if (le16_to_cpu(ctrl_req->wLength) != 6) { dev_err(priv_dev->dev, "Set SEL should be 6 bytes, got %d\n", ctrl_req->wLength); return -EINVAL; } cdns3_ep0_run_transfer(priv_dev, priv_dev->setup_dma, 6, 1, 0); return 0; } /** * cdns3_req_ep0_set_isoch_delay - * Handling of GET_ISOCH_DELAY standard USB request * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns 0 if success, error code on error */ static int cdns3_req_ep0_set_isoch_delay(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { if (ctrl_req->wIndex || ctrl_req->wLength) return -EINVAL; priv_dev->isoch_delay = le16_to_cpu(ctrl_req->wValue); return 0; } /** * cdns3_ep0_standard_request - Handling standard USB requests * @priv_dev: extended gadget object * @ctrl_req: pointer to received setup packet * * Returns 0 if success, error code on error */ static int cdns3_ep0_standard_request(struct cdns3_device *priv_dev, struct usb_ctrlrequest *ctrl_req) { int ret; switch (ctrl_req->bRequest) { case USB_REQ_SET_ADDRESS: ret = cdns3_req_ep0_set_address(priv_dev, ctrl_req); break; case USB_REQ_SET_CONFIGURATION: ret = cdns3_req_ep0_set_configuration(priv_dev, ctrl_req); break; case USB_REQ_GET_STATUS: ret = cdns3_req_ep0_get_status(priv_dev, ctrl_req); break; case USB_REQ_CLEAR_FEATURE: ret = cdns3_req_ep0_handle_feature(priv_dev, ctrl_req, 0); break; case USB_REQ_SET_FEATURE: ret = cdns3_req_ep0_handle_feature(priv_dev, ctrl_req, 1); break; case USB_REQ_SET_SEL: ret = cdns3_req_ep0_set_sel(priv_dev, ctrl_req); break; case USB_REQ_SET_ISOCH_DELAY: ret = cdns3_req_ep0_set_isoch_delay(priv_dev, ctrl_req); break; default: ret = cdns3_ep0_delegate_req(priv_dev, ctrl_req); break; } return ret; } static void __pending_setup_status_handler(struct cdns3_device *priv_dev) { struct usb_request *request = priv_dev->pending_status_request; if (priv_dev->status_completion_no_call && request && request->complete) { request->complete(&priv_dev->eps[0]->endpoint, request); priv_dev->status_completion_no_call = 0; } } void cdns3_pending_setup_status_handler(struct work_struct *work) { struct cdns3_device *priv_dev = container_of(work, struct cdns3_device, pending_status_wq); unsigned long flags; spin_lock_irqsave(&priv_dev->lock, flags); __pending_setup_status_handler(priv_dev); spin_unlock_irqrestore(&priv_dev->lock, flags); } /** * cdns3_ep0_setup_phase - Handling setup USB requests * @priv_dev: extended gadget object */ static void cdns3_ep0_setup_phase(struct cdns3_device *priv_dev) { struct usb_ctrlrequest *ctrl = priv_dev->setup_buf; struct cdns3_endpoint *priv_ep = priv_dev->eps[0]; int result; priv_dev->ep0_data_dir = ctrl->bRequestType & USB_DIR_IN; trace_cdns3_ctrl_req(ctrl); if (!list_empty(&priv_ep->pending_req_list)) { struct usb_request *request; request = cdns3_next_request(&priv_ep->pending_req_list); priv_ep->dir = priv_dev->ep0_data_dir; cdns3_gadget_giveback(priv_ep, to_cdns3_request(request), -ECONNRESET); } if (le16_to_cpu(ctrl->wLength)) priv_dev->ep0_stage = CDNS3_DATA_STAGE; else priv_dev->ep0_stage = CDNS3_STATUS_STAGE; if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) result = cdns3_ep0_standard_request(priv_dev, ctrl); else result = cdns3_ep0_delegate_req(priv_dev, ctrl); if (result == USB_GADGET_DELAYED_STATUS) return; if (result < 0) cdns3_ep0_complete_setup(priv_dev, 1, 1); else if (priv_dev->ep0_stage == CDNS3_STATUS_STAGE) cdns3_ep0_complete_setup(priv_dev, 0, 1); } static void cdns3_transfer_completed(struct cdns3_device *priv_dev) { struct cdns3_endpoint *priv_ep = priv_dev->eps[0]; if (!list_empty(&priv_ep->pending_req_list)) { struct usb_request *request; trace_cdns3_complete_trb(priv_ep, priv_ep->trb_pool); request = cdns3_next_request(&priv_ep->pending_req_list); request->actual = TRB_LEN(le32_to_cpu(priv_ep->trb_pool->length)); priv_ep->dir = priv_dev->ep0_data_dir; cdns3_gadget_giveback(priv_ep, to_cdns3_request(request), 0); } cdns3_ep0_complete_setup(priv_dev, 0, 0); } /** * cdns3_check_new_setup - Check if controller receive new SETUP packet. * @priv_dev: extended gadget object * * The SETUP packet can be kept in on-chip memory or in system memory. */ static bool cdns3_check_new_setup(struct cdns3_device *priv_dev) { u32 ep_sts_reg; cdns3_select_ep(priv_dev, USB_DIR_OUT); ep_sts_reg = readl(&priv_dev->regs->ep_sts); return !!(ep_sts_reg & (EP_STS_SETUP | EP_STS_STPWAIT)); } /** * cdns3_check_ep0_interrupt_proceed - Processes interrupt related to endpoint 0 * @priv_dev: extended gadget object * @dir: USB_DIR_IN for IN direction, USB_DIR_OUT for OUT direction */ void cdns3_check_ep0_interrupt_proceed(struct cdns3_device *priv_dev, int dir) { u32 ep_sts_reg; cdns3_select_ep(priv_dev, dir); ep_sts_reg = readl(&priv_dev->regs->ep_sts); writel(ep_sts_reg, &priv_dev->regs->ep_sts); trace_cdns3_ep0_irq(priv_dev, ep_sts_reg); __pending_setup_status_handler(priv_dev); if (ep_sts_reg & EP_STS_SETUP) priv_dev->wait_for_setup = 1; if (priv_dev->wait_for_setup && ep_sts_reg & EP_STS_IOC) { priv_dev->wait_for_setup = 0; cdns3_ep0_setup_phase(priv_dev); } else if ((ep_sts_reg & EP_STS_IOC) || (ep_sts_reg & EP_STS_ISP)) { priv_dev->ep0_data_dir = dir; cdns3_transfer_completed(priv_dev); } if (ep_sts_reg & EP_STS_DESCMIS) { if (dir == 0 && !priv_dev->setup_pending) cdns3_prepare_setup_packet(priv_dev); } } /** * cdns3_gadget_ep0_enable * @ep: pointer to endpoint zero object * @desc: pointer to usb endpoint descriptor * * Function shouldn't be called by gadget driver, * endpoint 0 is allways active */ static int cdns3_gadget_ep0_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { return -EINVAL; } /** * cdns3_gadget_ep0_disable * @ep: pointer to endpoint zero object * * Function shouldn't be called by gadget driver, * endpoint 0 is allways active */ static int cdns3_gadget_ep0_disable(struct usb_ep *ep) { return -EINVAL; } /** * cdns3_gadget_ep0_set_halt * @ep: pointer to endpoint zero object * @value: 1 for set stall, 0 for clear stall * * Returns 0 */ static int cdns3_gadget_ep0_set_halt(struct usb_ep *ep, int value) { /* TODO */ return 0; } /** * cdns3_gadget_ep0_queue - Transfer data on endpoint zero * @ep: pointer to endpoint zero object * @request: pointer to request object * @gfp_flags: gfp flags * * Returns 0 on success, error code elsewhere */ static int cdns3_gadget_ep0_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_device *priv_dev = priv_ep->cdns3_dev; unsigned long flags; int ret = 0; u8 zlp = 0; int i; spin_lock_irqsave(&priv_dev->lock, flags); trace_cdns3_ep0_queue(priv_dev, request); /* cancel the request if controller receive new SETUP packet. */ if (cdns3_check_new_setup(priv_dev)) { spin_unlock_irqrestore(&priv_dev->lock, flags); return -ECONNRESET; } /* send STATUS stage. Should be called only for SET_CONFIGURATION */ if (priv_dev->ep0_stage == CDNS3_STATUS_STAGE) { u32 val; cdns3_select_ep(priv_dev, 0x00); /* * Configure all non-control EPs which are not enabled by class driver */ for (i = 0; i < CDNS3_ENDPOINTS_MAX_COUNT; i++) { priv_ep = priv_dev->eps[i]; if (priv_ep && priv_ep->flags & EP_CLAIMED && !(priv_ep->flags & EP_ENABLED)) cdns3_ep_config(priv_ep, 0); } cdns3_set_hw_configuration(priv_dev); cdns3_ep0_complete_setup(priv_dev, 0, 1); /* wait until configuration set */ ret = readl_poll_timeout_atomic(&priv_dev->regs->usb_sts, val, val & USB_STS_CFGSTS_MASK, 1, 100); if (ret == -ETIMEDOUT) dev_warn(priv_dev->dev, "timeout for waiting configuration set\n"); request->actual = 0; priv_dev->status_completion_no_call = true; priv_dev->pending_status_request = request; usb_gadget_set_state(&priv_dev->gadget, USB_STATE_CONFIGURED); spin_unlock_irqrestore(&priv_dev->lock, flags); /* * Since there is no completion interrupt for status stage, * it needs to call ->completion in software after * ep0_queue is back. */ queue_work(system_freezable_wq, &priv_dev->pending_status_wq); return ret; } if (!list_empty(&priv_ep->pending_req_list)) { dev_err(priv_dev->dev, "can't handle multiple requests for ep0\n"); spin_unlock_irqrestore(&priv_dev->lock, flags); return -EBUSY; } ret = usb_gadget_map_request_by_dev(priv_dev->sysdev, request, priv_dev->ep0_data_dir); if (ret) { spin_unlock_irqrestore(&priv_dev->lock, flags); dev_err(priv_dev->dev, "failed to map request\n"); return -EINVAL; } request->status = -EINPROGRESS; list_add_tail(&request->list, &priv_ep->pending_req_list); if (request->zero && request->length && (request->length % ep->maxpacket == 0)) zlp = 1; cdns3_ep0_run_transfer(priv_dev, request->dma, request->length, 1, zlp); spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * cdns3_gadget_ep_set_wedge - Set wedge on selected endpoint * @ep: endpoint object * * Returns 0 */ int cdns3_gadget_ep_set_wedge(struct usb_ep *ep) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_device *priv_dev = priv_ep->cdns3_dev; dev_dbg(priv_dev->dev, "Wedge for %s\n", ep->name); cdns3_gadget_ep_set_halt(ep, 1); priv_ep->flags |= EP_WEDGE; return 0; } static const struct usb_ep_ops cdns3_gadget_ep0_ops = { .enable = cdns3_gadget_ep0_enable, .disable = cdns3_gadget_ep0_disable, .alloc_request = cdns3_gadget_ep_alloc_request, .free_request = cdns3_gadget_ep_free_request, .queue = cdns3_gadget_ep0_queue, .dequeue = cdns3_gadget_ep_dequeue, .set_halt = cdns3_gadget_ep0_set_halt, .set_wedge = cdns3_gadget_ep_set_wedge, }; /** * cdns3_ep0_config - Configures default endpoint * @priv_dev: extended gadget object * * Functions sets parameters: maximal packet size and enables interrupts */ void cdns3_ep0_config(struct cdns3_device *priv_dev) { struct cdns3_usb_regs __iomem *regs; struct cdns3_endpoint *priv_ep; u32 max_packet_size = 64; u32 ep_cfg; regs = priv_dev->regs; if (priv_dev->gadget.speed == USB_SPEED_SUPER) max_packet_size = 512; priv_ep = priv_dev->eps[0]; if (!list_empty(&priv_ep->pending_req_list)) { struct usb_request *request; request = cdns3_next_request(&priv_ep->pending_req_list); list_del_init(&request->list); } priv_dev->u1_allowed = 0; priv_dev->u2_allowed = 0; priv_dev->gadget.ep0->maxpacket = max_packet_size; cdns3_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(max_packet_size); /* init ep out */ cdns3_select_ep(priv_dev, USB_DIR_OUT); if (priv_dev->dev_ver >= DEV_VER_V3) { cdns3_set_register_bit(&priv_dev->regs->dtrans, BIT(0) | BIT(16)); cdns3_set_register_bit(&priv_dev->regs->tdl_from_trb, BIT(0) | BIT(16)); } ep_cfg = EP_CFG_ENABLE | EP_CFG_MAXPKTSIZE(max_packet_size); if (!(priv_ep->flags & EP_CONFIGURED)) writel(ep_cfg, &regs->ep_cfg); writel(EP_STS_EN_SETUPEN | EP_STS_EN_DESCMISEN | EP_STS_EN_TRBERREN, &regs->ep_sts_en); /* init ep in */ cdns3_select_ep(priv_dev, USB_DIR_IN); if (!(priv_ep->flags & EP_CONFIGURED)) writel(ep_cfg, &regs->ep_cfg); priv_ep->flags |= EP_CONFIGURED; writel(EP_STS_EN_SETUPEN | EP_STS_EN_TRBERREN, &regs->ep_sts_en); cdns3_set_register_bit(&regs->usb_conf, USB_CONF_U1DS | USB_CONF_U2DS); } /** * cdns3_init_ep0 - Initializes software endpoint 0 of gadget * @priv_dev: extended gadget object * @priv_ep: extended endpoint object * * Returns 0 on success else error code. */ int cdns3_init_ep0(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { sprintf(priv_ep->name, "ep0"); /* fill linux fields */ priv_ep->endpoint.ops = &cdns3_gadget_ep0_ops; priv_ep->endpoint.maxburst = 1; usb_ep_set_maxpacket_limit(&priv_ep->endpoint, CDNS3_EP0_MAX_PACKET_LIMIT); priv_ep->endpoint.address = 0; priv_ep->endpoint.caps.type_control = 1; priv_ep->endpoint.caps.dir_in = 1; priv_ep->endpoint.caps.dir_out = 1; priv_ep->endpoint.name = priv_ep->name; priv_ep->endpoint.desc = &cdns3_gadget_ep0_desc; priv_dev->gadget.ep0 = &priv_ep->endpoint; priv_ep->type = USB_ENDPOINT_XFER_CONTROL; return cdns3_allocate_trb_pool(priv_ep); }
linux-master
drivers/usb/cdns3/cdns3-ep0.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS and USBSSP DRD Driver - host side * * Copyright (C) 2018-2019 Cadence Design Systems. * Copyright (C) 2017-2018 NXP * * Authors: Peter Chen <[email protected]> * Pawel Laszczak <[email protected]> */ #include <linux/platform_device.h> #include <linux/slab.h> #include "core.h" #include "drd.h" #include "host-export.h" #include <linux/usb/hcd.h> #include "../host/xhci.h" #include "../host/xhci-plat.h" #define XECP_PORT_CAP_REG 0x8000 #define XECP_AUX_CTRL_REG1 0x8120 #define CFG_RXDET_P3_EN BIT(15) #define LPM_2_STB_SWITCH_EN BIT(25) static void xhci_cdns3_plat_start(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); u32 value; /* set usbcmd.EU3S */ value = readl(&xhci->op_regs->command); value |= CMD_PM_INDEX; writel(value, &xhci->op_regs->command); if (hcd->regs) { value = readl(hcd->regs + XECP_AUX_CTRL_REG1); value |= CFG_RXDET_P3_EN; writel(value, hcd->regs + XECP_AUX_CTRL_REG1); value = readl(hcd->regs + XECP_PORT_CAP_REG); value |= LPM_2_STB_SWITCH_EN; writel(value, hcd->regs + XECP_PORT_CAP_REG); } } static int xhci_cdns3_resume_quirk(struct usb_hcd *hcd) { xhci_cdns3_plat_start(hcd); return 0; } static const struct xhci_plat_priv xhci_plat_cdns3_xhci = { .quirks = XHCI_SKIP_PHY_INIT | XHCI_AVOID_BEI, .plat_start = xhci_cdns3_plat_start, .resume_quirk = xhci_cdns3_resume_quirk, }; static int __cdns_host_init(struct cdns *cdns) { struct platform_device *xhci; int ret; struct usb_hcd *hcd; cdns_drd_host_on(cdns); xhci = platform_device_alloc("xhci-hcd", PLATFORM_DEVID_AUTO); if (!xhci) { dev_err(cdns->dev, "couldn't allocate xHCI device\n"); return -ENOMEM; } xhci->dev.parent = cdns->dev; cdns->host_dev = xhci; ret = platform_device_add_resources(xhci, cdns->xhci_res, CDNS_XHCI_RESOURCES_NUM); if (ret) { dev_err(cdns->dev, "couldn't add resources to xHCI device\n"); goto err1; } cdns->xhci_plat_data = kmemdup(&xhci_plat_cdns3_xhci, sizeof(struct xhci_plat_priv), GFP_KERNEL); if (!cdns->xhci_plat_data) { ret = -ENOMEM; goto err1; } if (cdns->pdata && (cdns->pdata->quirks & CDNS3_DEFAULT_PM_RUNTIME_ALLOW)) cdns->xhci_plat_data->quirks |= XHCI_DEFAULT_PM_RUNTIME_ALLOW; ret = platform_device_add_data(xhci, cdns->xhci_plat_data, sizeof(struct xhci_plat_priv)); if (ret) goto free_memory; ret = platform_device_add(xhci); if (ret) { dev_err(cdns->dev, "failed to register xHCI device\n"); goto free_memory; } /* Glue needs to access xHCI region register for Power management */ hcd = platform_get_drvdata(xhci); if (hcd) cdns->xhci_regs = hcd->regs; return 0; free_memory: kfree(cdns->xhci_plat_data); err1: platform_device_put(xhci); return ret; } static void cdns_host_exit(struct cdns *cdns) { kfree(cdns->xhci_plat_data); platform_device_unregister(cdns->host_dev); cdns->host_dev = NULL; cdns_drd_host_off(cdns); } int cdns_host_init(struct cdns *cdns) { struct cdns_role_driver *rdrv; rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); if (!rdrv) return -ENOMEM; rdrv->start = __cdns_host_init; rdrv->stop = cdns_host_exit; rdrv->state = CDNS_ROLE_STATE_INACTIVE; rdrv->name = "host"; cdns->roles[USB_ROLE_HOST] = rdrv; return 0; }
linux-master
drivers/usb/cdns3/host.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS PCI Glue driver * * Copyright (C) 2018-2019 Cadence. * * Author: Pawel Laszczak <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/slab.h> struct cdns3_wrap { struct platform_device *plat_dev; struct resource dev_res[6]; int devfn; }; #define RES_IRQ_HOST_ID 0 #define RES_IRQ_PERIPHERAL_ID 1 #define RES_IRQ_OTG_ID 2 #define RES_HOST_ID 3 #define RES_DEV_ID 4 #define RES_DRD_ID 5 #define PCI_BAR_HOST 0 #define PCI_BAR_DEV 2 #define PCI_BAR_OTG 0 #define PCI_DEV_FN_HOST_DEVICE 0 #define PCI_DEV_FN_OTG 1 #define PCI_DRIVER_NAME "cdns3-pci-usbss" #define PLAT_DRIVER_NAME "cdns-usb3" #define CDNS_VENDOR_ID 0x17cd #define CDNS_DEVICE_ID 0x0100 static struct pci_dev *cdns3_get_second_fun(struct pci_dev *pdev) { struct pci_dev *func; /* * Gets the second function. * It's little tricky, but this platform has two function. * The fist keeps resources for Host/Device while the second * keeps resources for DRD/OTG. */ func = pci_get_device(pdev->vendor, pdev->device, NULL); if (unlikely(!func)) return NULL; if (func->devfn == pdev->devfn) { func = pci_get_device(pdev->vendor, pdev->device, func); if (unlikely(!func)) return NULL; } if (func->devfn != PCI_DEV_FN_HOST_DEVICE && func->devfn != PCI_DEV_FN_OTG) { return NULL; } return func; } static int cdns3_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct platform_device_info plat_info; struct cdns3_wrap *wrap; struct resource *res; struct pci_dev *func; int err; /* * for GADGET/HOST PCI (devfn) function number is 0, * for OTG PCI (devfn) function number is 1 */ if (!id || (pdev->devfn != PCI_DEV_FN_HOST_DEVICE && pdev->devfn != PCI_DEV_FN_OTG)) return -EINVAL; func = cdns3_get_second_fun(pdev); if (unlikely(!func)) return -EINVAL; err = pcim_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Enabling PCI device has failed %d\n", err); return err; } pci_set_master(pdev); if (pci_is_enabled(func)) { wrap = pci_get_drvdata(func); } else { wrap = kzalloc(sizeof(*wrap), GFP_KERNEL); if (!wrap) { pci_disable_device(pdev); return -ENOMEM; } } res = wrap->dev_res; if (pdev->devfn == PCI_DEV_FN_HOST_DEVICE) { /* function 0: host(BAR_0) + device(BAR_1).*/ dev_dbg(&pdev->dev, "Initialize Device resources\n"); res[RES_DEV_ID].start = pci_resource_start(pdev, PCI_BAR_DEV); res[RES_DEV_ID].end = pci_resource_end(pdev, PCI_BAR_DEV); res[RES_DEV_ID].name = "dev"; res[RES_DEV_ID].flags = IORESOURCE_MEM; dev_dbg(&pdev->dev, "USBSS-DEV physical base addr: %pa\n", &res[RES_DEV_ID].start); res[RES_HOST_ID].start = pci_resource_start(pdev, PCI_BAR_HOST); res[RES_HOST_ID].end = pci_resource_end(pdev, PCI_BAR_HOST); res[RES_HOST_ID].name = "xhci"; res[RES_HOST_ID].flags = IORESOURCE_MEM; dev_dbg(&pdev->dev, "USBSS-XHCI physical base addr: %pa\n", &res[RES_HOST_ID].start); /* Interrupt for XHCI */ wrap->dev_res[RES_IRQ_HOST_ID].start = pdev->irq; wrap->dev_res[RES_IRQ_HOST_ID].name = "host"; wrap->dev_res[RES_IRQ_HOST_ID].flags = IORESOURCE_IRQ; /* Interrupt device. It's the same as for HOST. */ wrap->dev_res[RES_IRQ_PERIPHERAL_ID].start = pdev->irq; wrap->dev_res[RES_IRQ_PERIPHERAL_ID].name = "peripheral"; wrap->dev_res[RES_IRQ_PERIPHERAL_ID].flags = IORESOURCE_IRQ; } else { res[RES_DRD_ID].start = pci_resource_start(pdev, PCI_BAR_OTG); res[RES_DRD_ID].end = pci_resource_end(pdev, PCI_BAR_OTG); res[RES_DRD_ID].name = "otg"; res[RES_DRD_ID].flags = IORESOURCE_MEM; dev_dbg(&pdev->dev, "USBSS-DRD physical base addr: %pa\n", &res[RES_DRD_ID].start); /* Interrupt for OTG/DRD. */ wrap->dev_res[RES_IRQ_OTG_ID].start = pdev->irq; wrap->dev_res[RES_IRQ_OTG_ID].name = "otg"; wrap->dev_res[RES_IRQ_OTG_ID].flags = IORESOURCE_IRQ; } if (pci_is_enabled(func)) { /* set up platform device info */ memset(&plat_info, 0, sizeof(plat_info)); plat_info.parent = &pdev->dev; plat_info.fwnode = pdev->dev.fwnode; plat_info.name = PLAT_DRIVER_NAME; plat_info.id = pdev->devfn; wrap->devfn = pdev->devfn; plat_info.res = wrap->dev_res; plat_info.num_res = ARRAY_SIZE(wrap->dev_res); plat_info.dma_mask = pdev->dma_mask; /* register platform device */ wrap->plat_dev = platform_device_register_full(&plat_info); if (IS_ERR(wrap->plat_dev)) { pci_disable_device(pdev); err = PTR_ERR(wrap->plat_dev); kfree(wrap); return err; } } pci_set_drvdata(pdev, wrap); return err; } static void cdns3_pci_remove(struct pci_dev *pdev) { struct cdns3_wrap *wrap; struct pci_dev *func; func = cdns3_get_second_fun(pdev); wrap = (struct cdns3_wrap *)pci_get_drvdata(pdev); if (wrap->devfn == pdev->devfn) platform_device_unregister(wrap->plat_dev); if (!pci_is_enabled(func)) kfree(wrap); } static const struct pci_device_id cdns3_pci_ids[] = { { PCI_DEVICE(CDNS_VENDOR_ID, CDNS_DEVICE_ID), }, { 0, } }; static struct pci_driver cdns3_pci_driver = { .name = PCI_DRIVER_NAME, .id_table = cdns3_pci_ids, .probe = cdns3_pci_probe, .remove = cdns3_pci_remove, }; module_pci_driver(cdns3_pci_driver); MODULE_DEVICE_TABLE(pci, cdns3_pci_ids); MODULE_AUTHOR("Pawel Laszczak <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence USBSS PCI wrapper");
linux-master
drivers/usb/cdns3/cdns3-pci-wrap.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS and USBSSP DRD Driver. * * Copyright (C) 2018-2020 Cadence. * Copyright (C) 2019 Texas Instruments * * Author: Pawel Laszczak <[email protected]> * Roger Quadros <[email protected]> * */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/usb/otg.h> #include "drd.h" #include "core.h" /** * cdns_set_mode - change mode of OTG Core * @cdns: pointer to context structure * @mode: selected mode from cdns_role * * Returns 0 on success otherwise negative errno */ static int cdns_set_mode(struct cdns *cdns, enum usb_dr_mode mode) { void __iomem *override_reg; u32 reg; switch (mode) { case USB_DR_MODE_PERIPHERAL: break; case USB_DR_MODE_HOST: break; case USB_DR_MODE_OTG: dev_dbg(cdns->dev, "Set controller to OTG mode\n"); if (cdns->version == CDNSP_CONTROLLER_V2) override_reg = &cdns->otg_cdnsp_regs->override; else if (cdns->version == CDNS3_CONTROLLER_V1) override_reg = &cdns->otg_v1_regs->override; else override_reg = &cdns->otg_v0_regs->ctrl1; reg = readl(override_reg); if (cdns->version != CDNS3_CONTROLLER_V0) reg |= OVERRIDE_IDPULLUP; else reg |= OVERRIDE_IDPULLUP_V0; writel(reg, override_reg); if (cdns->version == CDNS3_CONTROLLER_V1) { /* * Enable work around feature built into the * controller to address issue with RX Sensitivity * est (EL_17) for USB2 PHY. The issue only occures * for 0x0002450D controller version. */ if (cdns->phyrst_a_enable) { reg = readl(&cdns->otg_v1_regs->phyrst_cfg); reg |= PHYRST_CFG_PHYRST_A_ENABLE; writel(reg, &cdns->otg_v1_regs->phyrst_cfg); } } /* * Hardware specification says: "ID_VALUE must be valid within * 50ms after idpullup is set to '1" so driver must wait * 50ms before reading this pin. */ usleep_range(50000, 60000); break; default: dev_err(cdns->dev, "Unsupported mode of operation %d\n", mode); return -EINVAL; } return 0; } int cdns_get_id(struct cdns *cdns) { int id; id = readl(&cdns->otg_regs->sts) & OTGSTS_ID_VALUE; dev_dbg(cdns->dev, "OTG ID: %d", id); return id; } int cdns_get_vbus(struct cdns *cdns) { int vbus; vbus = !!(readl(&cdns->otg_regs->sts) & OTGSTS_VBUS_VALID); dev_dbg(cdns->dev, "OTG VBUS: %d", vbus); return vbus; } void cdns_clear_vbus(struct cdns *cdns) { u32 reg; if (cdns->version != CDNSP_CONTROLLER_V2) return; reg = readl(&cdns->otg_cdnsp_regs->override); reg |= OVERRIDE_SESS_VLD_SEL; writel(reg, &cdns->otg_cdnsp_regs->override); } EXPORT_SYMBOL_GPL(cdns_clear_vbus); void cdns_set_vbus(struct cdns *cdns) { u32 reg; if (cdns->version != CDNSP_CONTROLLER_V2) return; reg = readl(&cdns->otg_cdnsp_regs->override); reg &= ~OVERRIDE_SESS_VLD_SEL; writel(reg, &cdns->otg_cdnsp_regs->override); } EXPORT_SYMBOL_GPL(cdns_set_vbus); bool cdns_is_host(struct cdns *cdns) { if (cdns->dr_mode == USB_DR_MODE_HOST) return true; else if (cdns_get_id(cdns) == CDNS3_ID_HOST) return true; return false; } bool cdns_is_device(struct cdns *cdns) { if (cdns->dr_mode == USB_DR_MODE_PERIPHERAL) return true; else if (cdns->dr_mode == USB_DR_MODE_OTG) if (cdns_get_id(cdns) == CDNS3_ID_PERIPHERAL) return true; return false; } /** * cdns_otg_disable_irq - Disable all OTG interrupts * @cdns: Pointer to controller context structure */ static void cdns_otg_disable_irq(struct cdns *cdns) { writel(0, &cdns->otg_irq_regs->ien); } /** * cdns_otg_enable_irq - enable id and sess_valid interrupts * @cdns: Pointer to controller context structure */ static void cdns_otg_enable_irq(struct cdns *cdns) { writel(OTGIEN_ID_CHANGE_INT | OTGIEN_VBUSVALID_RISE_INT | OTGIEN_VBUSVALID_FALL_INT, &cdns->otg_irq_regs->ien); } /** * cdns_drd_host_on - start host. * @cdns: Pointer to controller context structure. * * Returns 0 on success otherwise negative errno. */ int cdns_drd_host_on(struct cdns *cdns) { u32 val, ready_bit; int ret; /* Enable host mode. */ writel(OTGCMD_HOST_BUS_REQ | OTGCMD_OTG_DIS, &cdns->otg_regs->cmd); if (cdns->version == CDNSP_CONTROLLER_V2) ready_bit = OTGSTS_CDNSP_XHCI_READY; else ready_bit = OTGSTS_CDNS3_XHCI_READY; dev_dbg(cdns->dev, "Waiting till Host mode is turned on\n"); ret = readl_poll_timeout_atomic(&cdns->otg_regs->sts, val, val & ready_bit, 1, 100000); if (ret) dev_err(cdns->dev, "timeout waiting for xhci_ready\n"); phy_set_mode(cdns->usb2_phy, PHY_MODE_USB_HOST); phy_set_mode(cdns->usb3_phy, PHY_MODE_USB_HOST); return ret; } /** * cdns_drd_host_off - stop host. * @cdns: Pointer to controller context structure. */ void cdns_drd_host_off(struct cdns *cdns) { u32 val; writel(OTGCMD_HOST_BUS_DROP | OTGCMD_DEV_BUS_DROP | OTGCMD_DEV_POWER_OFF | OTGCMD_HOST_POWER_OFF, &cdns->otg_regs->cmd); /* Waiting till H_IDLE state.*/ readl_poll_timeout_atomic(&cdns->otg_regs->state, val, !(val & OTGSTATE_HOST_STATE_MASK), 1, 2000000); phy_set_mode(cdns->usb2_phy, PHY_MODE_INVALID); phy_set_mode(cdns->usb3_phy, PHY_MODE_INVALID); } /** * cdns_drd_gadget_on - start gadget. * @cdns: Pointer to controller context structure. * * Returns 0 on success otherwise negative errno */ int cdns_drd_gadget_on(struct cdns *cdns) { u32 reg = OTGCMD_OTG_DIS; u32 ready_bit; int ret, val; /* switch OTG core */ writel(OTGCMD_DEV_BUS_REQ | reg, &cdns->otg_regs->cmd); dev_dbg(cdns->dev, "Waiting till Device mode is turned on\n"); if (cdns->version == CDNSP_CONTROLLER_V2) ready_bit = OTGSTS_CDNSP_DEV_READY; else ready_bit = OTGSTS_CDNS3_DEV_READY; ret = readl_poll_timeout_atomic(&cdns->otg_regs->sts, val, val & ready_bit, 1, 100000); if (ret) { dev_err(cdns->dev, "timeout waiting for dev_ready\n"); return ret; } phy_set_mode(cdns->usb2_phy, PHY_MODE_USB_DEVICE); phy_set_mode(cdns->usb3_phy, PHY_MODE_USB_DEVICE); return 0; } EXPORT_SYMBOL_GPL(cdns_drd_gadget_on); /** * cdns_drd_gadget_off - stop gadget. * @cdns: Pointer to controller context structure. */ void cdns_drd_gadget_off(struct cdns *cdns) { u32 val; /* * Driver should wait at least 10us after disabling Device * before turning-off Device (DEV_BUS_DROP). */ usleep_range(20, 30); writel(OTGCMD_HOST_BUS_DROP | OTGCMD_DEV_BUS_DROP | OTGCMD_DEV_POWER_OFF | OTGCMD_HOST_POWER_OFF, &cdns->otg_regs->cmd); /* Waiting till DEV_IDLE state.*/ readl_poll_timeout_atomic(&cdns->otg_regs->state, val, !(val & OTGSTATE_DEV_STATE_MASK), 1, 2000000); phy_set_mode(cdns->usb2_phy, PHY_MODE_INVALID); phy_set_mode(cdns->usb3_phy, PHY_MODE_INVALID); } EXPORT_SYMBOL_GPL(cdns_drd_gadget_off); /** * cdns_init_otg_mode - initialize drd controller * @cdns: Pointer to controller context structure * * Returns 0 on success otherwise negative errno */ static int cdns_init_otg_mode(struct cdns *cdns) { int ret; cdns_otg_disable_irq(cdns); /* clear all interrupts */ writel(~0, &cdns->otg_irq_regs->ivect); ret = cdns_set_mode(cdns, USB_DR_MODE_OTG); if (ret) return ret; cdns_otg_enable_irq(cdns); return 0; } /** * cdns_drd_update_mode - initialize mode of operation * @cdns: Pointer to controller context structure * * Returns 0 on success otherwise negative errno */ int cdns_drd_update_mode(struct cdns *cdns) { int ret; switch (cdns->dr_mode) { case USB_DR_MODE_PERIPHERAL: ret = cdns_set_mode(cdns, USB_DR_MODE_PERIPHERAL); break; case USB_DR_MODE_HOST: ret = cdns_set_mode(cdns, USB_DR_MODE_HOST); break; case USB_DR_MODE_OTG: ret = cdns_init_otg_mode(cdns); break; default: dev_err(cdns->dev, "Unsupported mode of operation %d\n", cdns->dr_mode); return -EINVAL; } return ret; } static irqreturn_t cdns_drd_thread_irq(int irq, void *data) { struct cdns *cdns = data; cdns_hw_role_switch(cdns); return IRQ_HANDLED; } /** * cdns_drd_irq - interrupt handler for OTG events * * @irq: irq number for cdns core device * @data: structure of cdns * * Returns IRQ_HANDLED or IRQ_NONE */ static irqreturn_t cdns_drd_irq(int irq, void *data) { irqreturn_t ret = IRQ_NONE; struct cdns *cdns = data; u32 reg; if (cdns->dr_mode != USB_DR_MODE_OTG) return IRQ_NONE; if (cdns->in_lpm) return ret; reg = readl(&cdns->otg_irq_regs->ivect); if (!reg) return IRQ_NONE; if (reg & OTGIEN_ID_CHANGE_INT) { dev_dbg(cdns->dev, "OTG IRQ: new ID: %d\n", cdns_get_id(cdns)); ret = IRQ_WAKE_THREAD; } if (reg & (OTGIEN_VBUSVALID_RISE_INT | OTGIEN_VBUSVALID_FALL_INT)) { dev_dbg(cdns->dev, "OTG IRQ: new VBUS: %d\n", cdns_get_vbus(cdns)); ret = IRQ_WAKE_THREAD; } writel(~0, &cdns->otg_irq_regs->ivect); return ret; } int cdns_drd_init(struct cdns *cdns) { void __iomem *regs; u32 state; int ret; regs = devm_ioremap_resource(cdns->dev, &cdns->otg_res); if (IS_ERR(regs)) return PTR_ERR(regs); /* Detection of DRD version. Controller has been released * in three versions. All are very similar and are software compatible, * but they have same changes in register maps. * The first register in oldest version is command register and it's * read only. Driver should read 0 from it. On the other hand, in v1 * and v2 the first register contains device ID number which is not * set to 0. Driver uses this fact to detect the proper version of * controller. */ cdns->otg_v0_regs = regs; if (!readl(&cdns->otg_v0_regs->cmd)) { cdns->version = CDNS3_CONTROLLER_V0; cdns->otg_v1_regs = NULL; cdns->otg_cdnsp_regs = NULL; cdns->otg_regs = regs; cdns->otg_irq_regs = (struct cdns_otg_irq_regs __iomem *) &cdns->otg_v0_regs->ien; writel(1, &cdns->otg_v0_regs->simulate); dev_dbg(cdns->dev, "DRD version v0 (%08x)\n", readl(&cdns->otg_v0_regs->version)); } else { cdns->otg_v0_regs = NULL; cdns->otg_v1_regs = regs; cdns->otg_cdnsp_regs = regs; cdns->otg_regs = (void __iomem *)&cdns->otg_v1_regs->cmd; if (readl(&cdns->otg_cdnsp_regs->did) == OTG_CDNSP_DID) { cdns->otg_irq_regs = (struct cdns_otg_irq_regs __iomem *) &cdns->otg_cdnsp_regs->ien; cdns->version = CDNSP_CONTROLLER_V2; } else { cdns->otg_irq_regs = (struct cdns_otg_irq_regs __iomem *) &cdns->otg_v1_regs->ien; writel(1, &cdns->otg_v1_regs->simulate); cdns->version = CDNS3_CONTROLLER_V1; } dev_dbg(cdns->dev, "DRD version v1 (ID: %08x, rev: %08x)\n", readl(&cdns->otg_v1_regs->did), readl(&cdns->otg_v1_regs->rid)); } state = OTGSTS_STRAP(readl(&cdns->otg_regs->sts)); /* Update dr_mode according to STRAP configuration. */ cdns->dr_mode = USB_DR_MODE_OTG; if ((cdns->version == CDNSP_CONTROLLER_V2 && state == OTGSTS_CDNSP_STRAP_HOST) || (cdns->version != CDNSP_CONTROLLER_V2 && state == OTGSTS_STRAP_HOST)) { dev_dbg(cdns->dev, "Controller strapped to HOST\n"); cdns->dr_mode = USB_DR_MODE_HOST; } else if ((cdns->version == CDNSP_CONTROLLER_V2 && state == OTGSTS_CDNSP_STRAP_GADGET) || (cdns->version != CDNSP_CONTROLLER_V2 && state == OTGSTS_STRAP_GADGET)) { dev_dbg(cdns->dev, "Controller strapped to PERIPHERAL\n"); cdns->dr_mode = USB_DR_MODE_PERIPHERAL; } ret = devm_request_threaded_irq(cdns->dev, cdns->otg_irq, cdns_drd_irq, cdns_drd_thread_irq, IRQF_SHARED, dev_name(cdns->dev), cdns); if (ret) { dev_err(cdns->dev, "couldn't get otg_irq\n"); return ret; } state = readl(&cdns->otg_regs->sts); if (OTGSTS_OTG_NRDY(state)) { dev_err(cdns->dev, "Cadence USB3 OTG device not ready\n"); return -ENODEV; } return 0; } int cdns_drd_exit(struct cdns *cdns) { cdns_otg_disable_irq(cdns); return 0; } /* Indicate the cdns3 core was power lost before */ bool cdns_power_is_lost(struct cdns *cdns) { if (cdns->version == CDNS3_CONTROLLER_V0) { if (!(readl(&cdns->otg_v0_regs->simulate) & BIT(0))) return true; } else { if (!(readl(&cdns->otg_v1_regs->simulate) & BIT(0))) return true; } return false; } EXPORT_SYMBOL_GPL(cdns_power_is_lost);
linux-master
drivers/usb/cdns3/drd.c
// SPDX-License-Identifier: GPL-2.0 /* * cdns3-ti.c - TI specific Glue layer for Cadence USB Controller * * Copyright (C) 2019 Texas Instruments Incorporated - https://www.ti.com */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/of_platform.h> #include <linux/pm_runtime.h> #include <linux/property.h> /* USB Wrapper register offsets */ #define USBSS_PID 0x0 #define USBSS_W1 0x4 #define USBSS_STATIC_CONFIG 0x8 #define USBSS_PHY_TEST 0xc #define USBSS_DEBUG_CTRL 0x10 #define USBSS_DEBUG_INFO 0x14 #define USBSS_DEBUG_LINK_STATE 0x18 #define USBSS_DEVICE_CTRL 0x1c /* Wrapper 1 register bits */ #define USBSS_W1_PWRUP_RST BIT(0) #define USBSS_W1_OVERCURRENT_SEL BIT(8) #define USBSS_W1_MODESTRAP_SEL BIT(9) #define USBSS_W1_OVERCURRENT BIT(16) #define USBSS_W1_MODESTRAP_MASK GENMASK(18, 17) #define USBSS_W1_MODESTRAP_SHIFT 17 #define USBSS_W1_USB2_ONLY BIT(19) /* Static config register bits */ #define USBSS1_STATIC_PLL_REF_SEL_MASK GENMASK(8, 5) #define USBSS1_STATIC_PLL_REF_SEL_SHIFT 5 #define USBSS1_STATIC_LOOPBACK_MODE_MASK GENMASK(4, 3) #define USBSS1_STATIC_LOOPBACK_MODE_SHIFT 3 #define USBSS1_STATIC_VBUS_SEL_MASK GENMASK(2, 1) #define USBSS1_STATIC_VBUS_SEL_SHIFT 1 #define USBSS1_STATIC_LANE_REVERSE BIT(0) /* Modestrap modes */ enum modestrap_mode { USBSS_MODESTRAP_MODE_NONE, USBSS_MODESTRAP_MODE_HOST, USBSS_MODESTRAP_MODE_PERIPHERAL}; struct cdns_ti { struct device *dev; void __iomem *usbss; unsigned usb2_only:1; unsigned vbus_divider:1; struct clk *usb2_refclk; struct clk *lpm_clk; }; static const int cdns_ti_rate_table[] = { /* in KHZ */ 9600, 10000, 12000, 19200, 20000, 24000, 25000, 26000, 38400, 40000, 58000, 50000, 52000, }; static inline u32 cdns_ti_readl(struct cdns_ti *data, u32 offset) { return readl(data->usbss + offset); } static inline void cdns_ti_writel(struct cdns_ti *data, u32 offset, u32 value) { writel(value, data->usbss + offset); } static int cdns_ti_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = pdev->dev.of_node; struct cdns_ti *data; int error; u32 reg; int rate_code, i; unsigned long rate; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); data->dev = dev; data->usbss = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(data->usbss)) { dev_err(dev, "can't map IOMEM resource\n"); return PTR_ERR(data->usbss); } data->usb2_refclk = devm_clk_get(dev, "ref"); if (IS_ERR(data->usb2_refclk)) { dev_err(dev, "can't get usb2_refclk\n"); return PTR_ERR(data->usb2_refclk); } data->lpm_clk = devm_clk_get(dev, "lpm"); if (IS_ERR(data->lpm_clk)) { dev_err(dev, "can't get lpm_clk\n"); return PTR_ERR(data->lpm_clk); } rate = clk_get_rate(data->usb2_refclk); rate /= 1000; /* To KHz */ for (i = 0; i < ARRAY_SIZE(cdns_ti_rate_table); i++) { if (cdns_ti_rate_table[i] == rate) break; } if (i == ARRAY_SIZE(cdns_ti_rate_table)) { dev_err(dev, "unsupported usb2_refclk rate: %lu KHz\n", rate); return -EINVAL; } rate_code = i; pm_runtime_enable(dev); error = pm_runtime_get_sync(dev); if (error < 0) { dev_err(dev, "pm_runtime_get_sync failed: %d\n", error); goto err; } /* assert RESET */ reg = cdns_ti_readl(data, USBSS_W1); reg &= ~USBSS_W1_PWRUP_RST; cdns_ti_writel(data, USBSS_W1, reg); /* set static config */ reg = cdns_ti_readl(data, USBSS_STATIC_CONFIG); reg &= ~USBSS1_STATIC_PLL_REF_SEL_MASK; reg |= rate_code << USBSS1_STATIC_PLL_REF_SEL_SHIFT; reg &= ~USBSS1_STATIC_VBUS_SEL_MASK; data->vbus_divider = device_property_read_bool(dev, "ti,vbus-divider"); if (data->vbus_divider) reg |= 1 << USBSS1_STATIC_VBUS_SEL_SHIFT; cdns_ti_writel(data, USBSS_STATIC_CONFIG, reg); reg = cdns_ti_readl(data, USBSS_STATIC_CONFIG); /* set USB2_ONLY mode if requested */ reg = cdns_ti_readl(data, USBSS_W1); data->usb2_only = device_property_read_bool(dev, "ti,usb2-only"); if (data->usb2_only) reg |= USBSS_W1_USB2_ONLY; /* set default modestrap */ reg |= USBSS_W1_MODESTRAP_SEL; reg &= ~USBSS_W1_MODESTRAP_MASK; reg |= USBSS_MODESTRAP_MODE_NONE << USBSS_W1_MODESTRAP_SHIFT; cdns_ti_writel(data, USBSS_W1, reg); /* de-assert RESET */ reg |= USBSS_W1_PWRUP_RST; cdns_ti_writel(data, USBSS_W1, reg); error = of_platform_populate(node, NULL, NULL, dev); if (error) { dev_err(dev, "failed to create children: %d\n", error); goto err; } return 0; err: pm_runtime_put_sync(data->dev); pm_runtime_disable(data->dev); return error; } static int cdns_ti_remove_core(struct device *dev, void *c) { struct platform_device *pdev = to_platform_device(dev); platform_device_unregister(pdev); return 0; } static void cdns_ti_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; device_for_each_child(dev, NULL, cdns_ti_remove_core); pm_runtime_put_sync(dev); pm_runtime_disable(dev); platform_set_drvdata(pdev, NULL); } static const struct of_device_id cdns_ti_of_match[] = { { .compatible = "ti,j721e-usb", }, { .compatible = "ti,am64-usb", }, {}, }; MODULE_DEVICE_TABLE(of, cdns_ti_of_match); static struct platform_driver cdns_ti_driver = { .probe = cdns_ti_probe, .remove_new = cdns_ti_remove, .driver = { .name = "cdns3-ti", .of_match_table = cdns_ti_of_match, }, }; module_platform_driver(cdns_ti_driver); MODULE_ALIAS("platform:cdns3-ti"); MODULE_AUTHOR("Roger Quadros <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence USB3 TI Glue Layer");
linux-master
drivers/usb/cdns3/cdns3-ti.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak <[email protected]> * */ #define CREATE_TRACE_POINTS #include "cdnsp-trace.h"
linux-master
drivers/usb/cdns3/cdnsp-trace.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBSS DRD Driver - gadget side. * * Copyright (C) 2018-2019 Cadence Design Systems. * Copyright (C) 2017-2018 NXP * * Authors: Pawel Jez <[email protected]>, * Pawel Laszczak <[email protected]> * Peter Chen <[email protected]> */ /* * Work around 1: * At some situations, the controller may get stale data address in TRB * at below sequences: * 1. Controller read TRB includes data address * 2. Software updates TRBs includes data address and Cycle bit * 3. Controller read TRB which includes Cycle bit * 4. DMA run with stale data address * * To fix this problem, driver needs to make the first TRB in TD as invalid. * After preparing all TRBs driver needs to check the position of DMA and * if the DMA point to the first just added TRB and doorbell is 1, * then driver must defer making this TRB as valid. This TRB will be make * as valid during adding next TRB only if DMA is stopped or at TRBERR * interrupt. * * Issue has been fixed in DEV_VER_V3 version of controller. * * Work around 2: * Controller for OUT endpoints has shared on-chip buffers for all incoming * packets, including ep0out. It's FIFO buffer, so packets must be handle by DMA * in correct order. If the first packet in the buffer will not be handled, * then the following packets directed for other endpoints and functions * will be blocked. * Additionally the packets directed to one endpoint can block entire on-chip * buffers. In this case transfer to other endpoints also will blocked. * * To resolve this issue after raising the descriptor missing interrupt * driver prepares internal usb_request object and use it to arm DMA transfer. * * The problematic situation was observed in case when endpoint has been enabled * but no usb_request were queued. Driver try detects such endpoints and will * use this workaround only for these endpoint. * * Driver use limited number of buffer. This number can be set by macro * CDNS3_WA2_NUM_BUFFERS. * * Such blocking situation was observed on ACM gadget. For this function * host send OUT data packet but ACM function is not prepared for this packet. * It's cause that buffer placed in on chip memory block transfer to other * endpoints. * * Issue has been fixed in DEV_VER_V2 version of controller. * */ #include <linux/dma-mapping.h> #include <linux/usb/gadget.h> #include <linux/module.h> #include <linux/dmapool.h> #include <linux/iopoll.h> #include <linux/property.h> #include "core.h" #include "gadget-export.h" #include "cdns3-gadget.h" #include "cdns3-trace.h" #include "drd.h" static int __cdns3_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags); static int cdns3_ep_run_transfer(struct cdns3_endpoint *priv_ep, struct usb_request *request); static int cdns3_ep_run_stream_transfer(struct cdns3_endpoint *priv_ep, struct usb_request *request); /** * cdns3_clear_register_bit - clear bit in given register. * @ptr: address of device controller register to be read and changed * @mask: bits requested to clar */ static void cdns3_clear_register_bit(void __iomem *ptr, u32 mask) { mask = readl(ptr) & ~mask; writel(mask, ptr); } /** * cdns3_set_register_bit - set bit in given register. * @ptr: address of device controller register to be read and changed * @mask: bits requested to set */ void cdns3_set_register_bit(void __iomem *ptr, u32 mask) { mask = readl(ptr) | mask; writel(mask, ptr); } /** * cdns3_ep_addr_to_index - Macro converts endpoint address to * index of endpoint object in cdns3_device.eps[] container * @ep_addr: endpoint address for which endpoint object is required * */ u8 cdns3_ep_addr_to_index(u8 ep_addr) { return (((ep_addr & 0x7F)) + ((ep_addr & USB_DIR_IN) ? 16 : 0)); } static int cdns3_get_dma_pos(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { int dma_index; dma_index = readl(&priv_dev->regs->ep_traddr) - priv_ep->trb_pool_dma; return dma_index / TRB_SIZE; } /** * cdns3_next_request - returns next request from list * @list: list containing requests * * Returns request or NULL if no requests in list */ struct usb_request *cdns3_next_request(struct list_head *list) { return list_first_entry_or_null(list, struct usb_request, list); } /** * cdns3_next_align_buf - returns next buffer from list * @list: list containing buffers * * Returns buffer or NULL if no buffers in list */ static struct cdns3_aligned_buf *cdns3_next_align_buf(struct list_head *list) { return list_first_entry_or_null(list, struct cdns3_aligned_buf, list); } /** * cdns3_next_priv_request - returns next request from list * @list: list containing requests * * Returns request or NULL if no requests in list */ static struct cdns3_request *cdns3_next_priv_request(struct list_head *list) { return list_first_entry_or_null(list, struct cdns3_request, list); } /** * cdns3_select_ep - selects endpoint * @priv_dev: extended gadget object * @ep: endpoint address */ void cdns3_select_ep(struct cdns3_device *priv_dev, u32 ep) { if (priv_dev->selected_ep == ep) return; priv_dev->selected_ep = ep; writel(ep, &priv_dev->regs->ep_sel); } /** * cdns3_get_tdl - gets current tdl for selected endpoint. * @priv_dev: extended gadget object * * Before calling this function the appropriate endpoint must * be selected by means of cdns3_select_ep function. */ static int cdns3_get_tdl(struct cdns3_device *priv_dev) { if (priv_dev->dev_ver < DEV_VER_V3) return EP_CMD_TDL_GET(readl(&priv_dev->regs->ep_cmd)); else return readl(&priv_dev->regs->ep_tdl); } dma_addr_t cdns3_trb_virt_to_dma(struct cdns3_endpoint *priv_ep, struct cdns3_trb *trb) { u32 offset = (char *)trb - (char *)priv_ep->trb_pool; return priv_ep->trb_pool_dma + offset; } static void cdns3_free_trb_pool(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; if (priv_ep->trb_pool) { dma_pool_free(priv_dev->eps_dma_pool, priv_ep->trb_pool, priv_ep->trb_pool_dma); priv_ep->trb_pool = NULL; } } /** * cdns3_allocate_trb_pool - Allocates TRB's pool for selected endpoint * @priv_ep: endpoint object * * Function will return 0 on success or -ENOMEM on allocation error */ int cdns3_allocate_trb_pool(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; int ring_size = TRB_RING_SIZE; int num_trbs = ring_size / TRB_SIZE; struct cdns3_trb *link_trb; if (priv_ep->trb_pool && priv_ep->alloc_ring_size < ring_size) cdns3_free_trb_pool(priv_ep); if (!priv_ep->trb_pool) { priv_ep->trb_pool = dma_pool_alloc(priv_dev->eps_dma_pool, GFP_ATOMIC, &priv_ep->trb_pool_dma); if (!priv_ep->trb_pool) return -ENOMEM; priv_ep->alloc_ring_size = ring_size; } memset(priv_ep->trb_pool, 0, ring_size); priv_ep->num_trbs = num_trbs; if (!priv_ep->num) return 0; /* Initialize the last TRB as Link TRB */ link_trb = (priv_ep->trb_pool + (priv_ep->num_trbs - 1)); if (priv_ep->use_streams) { /* * For stream capable endpoints driver use single correct TRB. * The last trb has zeroed cycle bit */ link_trb->control = 0; } else { link_trb->buffer = cpu_to_le32(TRB_BUFFER(priv_ep->trb_pool_dma)); link_trb->control = cpu_to_le32(TRB_CYCLE | TRB_TYPE(TRB_LINK) | TRB_TOGGLE); } return 0; } /** * cdns3_ep_stall_flush - Stalls and flushes selected endpoint * @priv_ep: endpoint object * * Endpoint must be selected before call to this function */ static void cdns3_ep_stall_flush(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; int val; trace_cdns3_halt(priv_ep, 1, 1); writel(EP_CMD_DFLUSH | EP_CMD_ERDY | EP_CMD_SSTALL, &priv_dev->regs->ep_cmd); /* wait for DFLUSH cleared */ readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & EP_CMD_DFLUSH), 1, 1000); priv_ep->flags |= EP_STALLED; priv_ep->flags &= ~EP_STALL_PENDING; } /** * cdns3_hw_reset_eps_config - reset endpoints configuration kept by controller. * @priv_dev: extended gadget object */ void cdns3_hw_reset_eps_config(struct cdns3_device *priv_dev) { int i; writel(USB_CONF_CFGRST, &priv_dev->regs->usb_conf); cdns3_allow_enable_l1(priv_dev, 0); priv_dev->hw_configured_flag = 0; priv_dev->onchip_used_size = 0; priv_dev->out_mem_is_allocated = 0; priv_dev->wait_for_setup = 0; priv_dev->using_streams = 0; for (i = 0; i < CDNS3_ENDPOINTS_MAX_COUNT; i++) if (priv_dev->eps[i]) priv_dev->eps[i]->flags &= ~EP_CONFIGURED; } /** * cdns3_ep_inc_trb - increment a trb index. * @index: Pointer to the TRB index to increment. * @cs: Cycle state * @trb_in_seg: number of TRBs in segment * * The index should never point to the link TRB. After incrementing, * if it is point to the link TRB, wrap around to the beginning and revert * cycle state bit The * link TRB is always at the last TRB entry. */ static void cdns3_ep_inc_trb(int *index, u8 *cs, int trb_in_seg) { (*index)++; if (*index == (trb_in_seg - 1)) { *index = 0; *cs ^= 1; } } /** * cdns3_ep_inc_enq - increment endpoint's enqueue pointer * @priv_ep: The endpoint whose enqueue pointer we're incrementing */ static void cdns3_ep_inc_enq(struct cdns3_endpoint *priv_ep) { priv_ep->free_trbs--; cdns3_ep_inc_trb(&priv_ep->enqueue, &priv_ep->pcs, priv_ep->num_trbs); } /** * cdns3_ep_inc_deq - increment endpoint's dequeue pointer * @priv_ep: The endpoint whose dequeue pointer we're incrementing */ static void cdns3_ep_inc_deq(struct cdns3_endpoint *priv_ep) { priv_ep->free_trbs++; cdns3_ep_inc_trb(&priv_ep->dequeue, &priv_ep->ccs, priv_ep->num_trbs); } /** * cdns3_allow_enable_l1 - enable/disable permits to transition to L1. * @priv_dev: Extended gadget object * @enable: Enable/disable permit to transition to L1. * * If bit USB_CONF_L1EN is set and device receive Extended Token packet, * then controller answer with ACK handshake. * If bit USB_CONF_L1DS is set and device receive Extended Token packet, * then controller answer with NYET handshake. */ void cdns3_allow_enable_l1(struct cdns3_device *priv_dev, int enable) { if (enable) writel(USB_CONF_L1EN, &priv_dev->regs->usb_conf); else writel(USB_CONF_L1DS, &priv_dev->regs->usb_conf); } enum usb_device_speed cdns3_get_speed(struct cdns3_device *priv_dev) { u32 reg; reg = readl(&priv_dev->regs->usb_sts); if (DEV_SUPERSPEED(reg)) return USB_SPEED_SUPER; else if (DEV_HIGHSPEED(reg)) return USB_SPEED_HIGH; else if (DEV_FULLSPEED(reg)) return USB_SPEED_FULL; else if (DEV_LOWSPEED(reg)) return USB_SPEED_LOW; return USB_SPEED_UNKNOWN; } /** * cdns3_start_all_request - add to ring all request not started * @priv_dev: Extended gadget object * @priv_ep: The endpoint for whom request will be started. * * Returns return ENOMEM if transfer ring i not enough TRBs to start * all requests. */ static int cdns3_start_all_request(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { struct usb_request *request; int ret = 0; u8 pending_empty = list_empty(&priv_ep->pending_req_list); /* * If the last pending transfer is INTERNAL * OR streams are enabled for this endpoint * do NOT start new transfer till the last one is pending */ if (!pending_empty) { struct cdns3_request *priv_req; request = cdns3_next_request(&priv_ep->pending_req_list); priv_req = to_cdns3_request(request); if ((priv_req->flags & REQUEST_INTERNAL) || (priv_ep->flags & EP_TDLCHK_EN) || priv_ep->use_streams) { dev_dbg(priv_dev->dev, "Blocking external request\n"); return ret; } } while (!list_empty(&priv_ep->deferred_req_list)) { request = cdns3_next_request(&priv_ep->deferred_req_list); if (!priv_ep->use_streams) { ret = cdns3_ep_run_transfer(priv_ep, request); } else { priv_ep->stream_sg_idx = 0; ret = cdns3_ep_run_stream_transfer(priv_ep, request); } if (ret) return ret; list_move_tail(&request->list, &priv_ep->pending_req_list); if (request->stream_id != 0 || (priv_ep->flags & EP_TDLCHK_EN)) break; } priv_ep->flags &= ~EP_RING_FULL; return ret; } /* * WA2: Set flag for all not ISOC OUT endpoints. If this flag is set * driver try to detect whether endpoint need additional internal * buffer for unblocking on-chip FIFO buffer. This flag will be cleared * if before first DESCMISS interrupt the DMA will be armed. */ #define cdns3_wa2_enable_detection(priv_dev, priv_ep, reg) do { \ if (!priv_ep->dir && priv_ep->type != USB_ENDPOINT_XFER_ISOC) { \ priv_ep->flags |= EP_QUIRK_EXTRA_BUF_DET; \ (reg) |= EP_STS_EN_DESCMISEN; \ } } while (0) static void __cdns3_descmiss_copy_data(struct usb_request *request, struct usb_request *descmiss_req) { int length = request->actual + descmiss_req->actual; struct scatterlist *s = request->sg; if (!s) { if (length <= request->length) { memcpy(&((u8 *)request->buf)[request->actual], descmiss_req->buf, descmiss_req->actual); request->actual = length; } else { /* It should never occures */ request->status = -ENOMEM; } } else { if (length <= sg_dma_len(s)) { void *p = phys_to_virt(sg_dma_address(s)); memcpy(&((u8 *)p)[request->actual], descmiss_req->buf, descmiss_req->actual); request->actual = length; } else { request->status = -ENOMEM; } } } /** * cdns3_wa2_descmiss_copy_data - copy data from internal requests to * request queued by class driver. * @priv_ep: extended endpoint object * @request: request object */ static void cdns3_wa2_descmiss_copy_data(struct cdns3_endpoint *priv_ep, struct usb_request *request) { struct usb_request *descmiss_req; struct cdns3_request *descmiss_priv_req; while (!list_empty(&priv_ep->wa2_descmiss_req_list)) { int chunk_end; descmiss_priv_req = cdns3_next_priv_request(&priv_ep->wa2_descmiss_req_list); descmiss_req = &descmiss_priv_req->request; /* driver can't touch pending request */ if (descmiss_priv_req->flags & REQUEST_PENDING) break; chunk_end = descmiss_priv_req->flags & REQUEST_INTERNAL_CH; request->status = descmiss_req->status; __cdns3_descmiss_copy_data(request, descmiss_req); list_del_init(&descmiss_priv_req->list); kfree(descmiss_req->buf); cdns3_gadget_ep_free_request(&priv_ep->endpoint, descmiss_req); --priv_ep->wa2_counter; if (!chunk_end) break; } } static struct usb_request *cdns3_wa2_gadget_giveback(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep, struct cdns3_request *priv_req) { if (priv_ep->flags & EP_QUIRK_EXTRA_BUF_EN && priv_req->flags & REQUEST_INTERNAL) { struct usb_request *req; req = cdns3_next_request(&priv_ep->deferred_req_list); priv_ep->descmis_req = NULL; if (!req) return NULL; /* unmap the gadget request before copying data */ usb_gadget_unmap_request_by_dev(priv_dev->sysdev, req, priv_ep->dir); cdns3_wa2_descmiss_copy_data(priv_ep, req); if (!(priv_ep->flags & EP_QUIRK_END_TRANSFER) && req->length != req->actual) { /* wait for next part of transfer */ /* re-map the gadget request buffer*/ usb_gadget_map_request_by_dev(priv_dev->sysdev, req, usb_endpoint_dir_in(priv_ep->endpoint.desc)); return NULL; } if (req->status == -EINPROGRESS) req->status = 0; list_del_init(&req->list); cdns3_start_all_request(priv_dev, priv_ep); return req; } return &priv_req->request; } static int cdns3_wa2_gadget_ep_queue(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep, struct cdns3_request *priv_req) { int deferred = 0; /* * If transfer was queued before DESCMISS appear than we * can disable handling of DESCMISS interrupt. Driver assumes that it * can disable special treatment for this endpoint. */ if (priv_ep->flags & EP_QUIRK_EXTRA_BUF_DET) { u32 reg; cdns3_select_ep(priv_dev, priv_ep->num | priv_ep->dir); priv_ep->flags &= ~EP_QUIRK_EXTRA_BUF_DET; reg = readl(&priv_dev->regs->ep_sts_en); reg &= ~EP_STS_EN_DESCMISEN; trace_cdns3_wa2(priv_ep, "workaround disabled\n"); writel(reg, &priv_dev->regs->ep_sts_en); } if (priv_ep->flags & EP_QUIRK_EXTRA_BUF_EN) { u8 pending_empty = list_empty(&priv_ep->pending_req_list); u8 descmiss_empty = list_empty(&priv_ep->wa2_descmiss_req_list); /* * DESCMISS transfer has been finished, so data will be * directly copied from internal allocated usb_request * objects. */ if (pending_empty && !descmiss_empty && !(priv_req->flags & REQUEST_INTERNAL)) { cdns3_wa2_descmiss_copy_data(priv_ep, &priv_req->request); trace_cdns3_wa2(priv_ep, "get internal stored data"); list_add_tail(&priv_req->request.list, &priv_ep->pending_req_list); cdns3_gadget_giveback(priv_ep, priv_req, priv_req->request.status); /* * Intentionally driver returns positive value as * correct value. It informs that transfer has * been finished. */ return EINPROGRESS; } /* * Driver will wait for completion DESCMISS transfer, * before starts new, not DESCMISS transfer. */ if (!pending_empty && !descmiss_empty) { trace_cdns3_wa2(priv_ep, "wait for pending transfer\n"); deferred = 1; } if (priv_req->flags & REQUEST_INTERNAL) list_add_tail(&priv_req->list, &priv_ep->wa2_descmiss_req_list); } return deferred; } static void cdns3_wa2_remove_old_request(struct cdns3_endpoint *priv_ep) { struct cdns3_request *priv_req; while (!list_empty(&priv_ep->wa2_descmiss_req_list)) { u8 chain; priv_req = cdns3_next_priv_request(&priv_ep->wa2_descmiss_req_list); chain = !!(priv_req->flags & REQUEST_INTERNAL_CH); trace_cdns3_wa2(priv_ep, "removes eldest request"); kfree(priv_req->request.buf); list_del_init(&priv_req->list); cdns3_gadget_ep_free_request(&priv_ep->endpoint, &priv_req->request); --priv_ep->wa2_counter; if (!chain) break; } } /** * cdns3_wa2_descmissing_packet - handles descriptor missing event. * @priv_ep: extended gadget object * * This function is used only for WA2. For more information see Work around 2 * description. */ static void cdns3_wa2_descmissing_packet(struct cdns3_endpoint *priv_ep) { struct cdns3_request *priv_req; struct usb_request *request; u8 pending_empty = list_empty(&priv_ep->pending_req_list); /* check for pending transfer */ if (!pending_empty) { trace_cdns3_wa2(priv_ep, "Ignoring Descriptor missing IRQ\n"); return; } if (priv_ep->flags & EP_QUIRK_EXTRA_BUF_DET) { priv_ep->flags &= ~EP_QUIRK_EXTRA_BUF_DET; priv_ep->flags |= EP_QUIRK_EXTRA_BUF_EN; } trace_cdns3_wa2(priv_ep, "Description Missing detected\n"); if (priv_ep->wa2_counter >= CDNS3_WA2_NUM_BUFFERS) { trace_cdns3_wa2(priv_ep, "WA2 overflow\n"); cdns3_wa2_remove_old_request(priv_ep); } request = cdns3_gadget_ep_alloc_request(&priv_ep->endpoint, GFP_ATOMIC); if (!request) goto err; priv_req = to_cdns3_request(request); priv_req->flags |= REQUEST_INTERNAL; /* if this field is still assigned it indicate that transfer related * with this request has not been finished yet. Driver in this * case simply allocate next request and assign flag REQUEST_INTERNAL_CH * flag to previous one. It will indicate that current request is * part of the previous one. */ if (priv_ep->descmis_req) priv_ep->descmis_req->flags |= REQUEST_INTERNAL_CH; priv_req->request.buf = kzalloc(CDNS3_DESCMIS_BUF_SIZE, GFP_ATOMIC); priv_ep->wa2_counter++; if (!priv_req->request.buf) { cdns3_gadget_ep_free_request(&priv_ep->endpoint, request); goto err; } priv_req->request.length = CDNS3_DESCMIS_BUF_SIZE; priv_ep->descmis_req = priv_req; __cdns3_gadget_ep_queue(&priv_ep->endpoint, &priv_ep->descmis_req->request, GFP_ATOMIC); return; err: dev_err(priv_ep->cdns3_dev->dev, "Failed: No sufficient memory for DESCMIS\n"); } static void cdns3_wa2_reset_tdl(struct cdns3_device *priv_dev) { u16 tdl = EP_CMD_TDL_GET(readl(&priv_dev->regs->ep_cmd)); if (tdl) { u16 reset_val = EP_CMD_TDL_MAX + 1 - tdl; writel(EP_CMD_TDL_SET(reset_val) | EP_CMD_STDL, &priv_dev->regs->ep_cmd); } } static void cdns3_wa2_check_outq_status(struct cdns3_device *priv_dev) { u32 ep_sts_reg; /* select EP0-out */ cdns3_select_ep(priv_dev, 0); ep_sts_reg = readl(&priv_dev->regs->ep_sts); if (EP_STS_OUTQ_VAL(ep_sts_reg)) { u32 outq_ep_num = EP_STS_OUTQ_NO(ep_sts_reg); struct cdns3_endpoint *outq_ep = priv_dev->eps[outq_ep_num]; if ((outq_ep->flags & EP_ENABLED) && !(outq_ep->use_streams) && outq_ep->type != USB_ENDPOINT_XFER_ISOC && outq_ep_num) { u8 pending_empty = list_empty(&outq_ep->pending_req_list); if ((outq_ep->flags & EP_QUIRK_EXTRA_BUF_DET) || (outq_ep->flags & EP_QUIRK_EXTRA_BUF_EN) || !pending_empty) { } else { u32 ep_sts_en_reg; u32 ep_cmd_reg; cdns3_select_ep(priv_dev, outq_ep->num | outq_ep->dir); ep_sts_en_reg = readl(&priv_dev->regs->ep_sts_en); ep_cmd_reg = readl(&priv_dev->regs->ep_cmd); outq_ep->flags |= EP_TDLCHK_EN; cdns3_set_register_bit(&priv_dev->regs->ep_cfg, EP_CFG_TDL_CHK); cdns3_wa2_enable_detection(priv_dev, outq_ep, ep_sts_en_reg); writel(ep_sts_en_reg, &priv_dev->regs->ep_sts_en); /* reset tdl value to zero */ cdns3_wa2_reset_tdl(priv_dev); /* * Memory barrier - Reset tdl before ringing the * doorbell. */ wmb(); if (EP_CMD_DRDY & ep_cmd_reg) { trace_cdns3_wa2(outq_ep, "Enabling WA2 skipping doorbell\n"); } else { trace_cdns3_wa2(outq_ep, "Enabling WA2 ringing doorbell\n"); /* * ring doorbell to generate DESCMIS irq */ writel(EP_CMD_DRDY, &priv_dev->regs->ep_cmd); } } } } } /** * cdns3_gadget_giveback - call struct usb_request's ->complete callback * @priv_ep: The endpoint to whom the request belongs to * @priv_req: The request we're giving back * @status: completion code for the request * * Must be called with controller's lock held and interrupts disabled. This * function will unmap @req and call its ->complete() callback to notify upper * layers that it has completed. */ void cdns3_gadget_giveback(struct cdns3_endpoint *priv_ep, struct cdns3_request *priv_req, int status) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct usb_request *request = &priv_req->request; list_del_init(&request->list); if (request->status == -EINPROGRESS) request->status = status; if (likely(!(priv_req->flags & REQUEST_UNALIGNED))) usb_gadget_unmap_request_by_dev(priv_dev->sysdev, request, priv_ep->dir); if ((priv_req->flags & REQUEST_UNALIGNED) && priv_ep->dir == USB_DIR_OUT && !request->status) { /* Make DMA buffer CPU accessible */ dma_sync_single_for_cpu(priv_dev->sysdev, priv_req->aligned_buf->dma, request->actual, priv_req->aligned_buf->dir); memcpy(request->buf, priv_req->aligned_buf->buf, request->actual); } priv_req->flags &= ~(REQUEST_PENDING | REQUEST_UNALIGNED); /* All TRBs have finished, clear the counter */ priv_req->finished_trb = 0; trace_cdns3_gadget_giveback(priv_req); if (priv_dev->dev_ver < DEV_VER_V2) { request = cdns3_wa2_gadget_giveback(priv_dev, priv_ep, priv_req); if (!request) return; } if (request->complete) { spin_unlock(&priv_dev->lock); usb_gadget_giveback_request(&priv_ep->endpoint, request); spin_lock(&priv_dev->lock); } if (request->buf == priv_dev->zlp_buf) cdns3_gadget_ep_free_request(&priv_ep->endpoint, request); } static void cdns3_wa1_restore_cycle_bit(struct cdns3_endpoint *priv_ep) { /* Work around for stale data address in TRB*/ if (priv_ep->wa1_set) { trace_cdns3_wa1(priv_ep, "restore cycle bit"); priv_ep->wa1_set = 0; priv_ep->wa1_trb_index = 0xFFFF; if (priv_ep->wa1_cycle_bit) { priv_ep->wa1_trb->control = priv_ep->wa1_trb->control | cpu_to_le32(0x1); } else { priv_ep->wa1_trb->control = priv_ep->wa1_trb->control & cpu_to_le32(~0x1); } } } static void cdns3_free_aligned_request_buf(struct work_struct *work) { struct cdns3_device *priv_dev = container_of(work, struct cdns3_device, aligned_buf_wq); struct cdns3_aligned_buf *buf, *tmp; unsigned long flags; spin_lock_irqsave(&priv_dev->lock, flags); list_for_each_entry_safe(buf, tmp, &priv_dev->aligned_buf_list, list) { if (!buf->in_use) { list_del(&buf->list); /* * Re-enable interrupts to free DMA capable memory. * Driver can't free this memory with disabled * interrupts. */ spin_unlock_irqrestore(&priv_dev->lock, flags); dma_free_noncoherent(priv_dev->sysdev, buf->size, buf->buf, buf->dma, buf->dir); kfree(buf); spin_lock_irqsave(&priv_dev->lock, flags); } } spin_unlock_irqrestore(&priv_dev->lock, flags); } static int cdns3_prepare_aligned_request_buf(struct cdns3_request *priv_req) { struct cdns3_endpoint *priv_ep = priv_req->priv_ep; struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct cdns3_aligned_buf *buf; /* check if buffer is aligned to 8. */ if (!((uintptr_t)priv_req->request.buf & 0x7)) return 0; buf = priv_req->aligned_buf; if (!buf || priv_req->request.length > buf->size) { buf = kzalloc(sizeof(*buf), GFP_ATOMIC); if (!buf) return -ENOMEM; buf->size = priv_req->request.length; buf->dir = usb_endpoint_dir_in(priv_ep->endpoint.desc) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; buf->buf = dma_alloc_noncoherent(priv_dev->sysdev, buf->size, &buf->dma, buf->dir, GFP_ATOMIC); if (!buf->buf) { kfree(buf); return -ENOMEM; } if (priv_req->aligned_buf) { trace_cdns3_free_aligned_request(priv_req); priv_req->aligned_buf->in_use = 0; queue_work(system_freezable_wq, &priv_dev->aligned_buf_wq); } buf->in_use = 1; priv_req->aligned_buf = buf; list_add_tail(&buf->list, &priv_dev->aligned_buf_list); } if (priv_ep->dir == USB_DIR_IN) { /* Make DMA buffer CPU accessible */ dma_sync_single_for_cpu(priv_dev->sysdev, buf->dma, buf->size, buf->dir); memcpy(buf->buf, priv_req->request.buf, priv_req->request.length); } /* Transfer DMA buffer ownership back to device */ dma_sync_single_for_device(priv_dev->sysdev, buf->dma, buf->size, buf->dir); priv_req->flags |= REQUEST_UNALIGNED; trace_cdns3_prepare_aligned_request(priv_req); return 0; } static int cdns3_wa1_update_guard(struct cdns3_endpoint *priv_ep, struct cdns3_trb *trb) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; if (!priv_ep->wa1_set) { u32 doorbell; doorbell = !!(readl(&priv_dev->regs->ep_cmd) & EP_CMD_DRDY); if (doorbell) { priv_ep->wa1_cycle_bit = priv_ep->pcs ? TRB_CYCLE : 0; priv_ep->wa1_set = 1; priv_ep->wa1_trb = trb; priv_ep->wa1_trb_index = priv_ep->enqueue; trace_cdns3_wa1(priv_ep, "set guard"); return 0; } } return 1; } static void cdns3_wa1_tray_restore_cycle_bit(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { int dma_index; u32 doorbell; doorbell = !!(readl(&priv_dev->regs->ep_cmd) & EP_CMD_DRDY); dma_index = cdns3_get_dma_pos(priv_dev, priv_ep); if (!doorbell || dma_index != priv_ep->wa1_trb_index) cdns3_wa1_restore_cycle_bit(priv_ep); } static int cdns3_ep_run_stream_transfer(struct cdns3_endpoint *priv_ep, struct usb_request *request) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct cdns3_request *priv_req; struct cdns3_trb *trb; dma_addr_t trb_dma; int address; u32 control; u32 length; u32 tdl; unsigned int sg_idx = priv_ep->stream_sg_idx; priv_req = to_cdns3_request(request); address = priv_ep->endpoint.desc->bEndpointAddress; priv_ep->flags |= EP_PENDING_REQUEST; /* must allocate buffer aligned to 8 */ if (priv_req->flags & REQUEST_UNALIGNED) trb_dma = priv_req->aligned_buf->dma; else trb_dma = request->dma; /* For stream capable endpoints driver use only single TD. */ trb = priv_ep->trb_pool + priv_ep->enqueue; priv_req->start_trb = priv_ep->enqueue; priv_req->end_trb = priv_req->start_trb; priv_req->trb = trb; cdns3_select_ep(priv_ep->cdns3_dev, address); control = TRB_TYPE(TRB_NORMAL) | TRB_CYCLE | TRB_STREAM_ID(priv_req->request.stream_id) | TRB_ISP; if (!request->num_sgs) { trb->buffer = cpu_to_le32(TRB_BUFFER(trb_dma)); length = request->length; } else { trb->buffer = cpu_to_le32(TRB_BUFFER(request->sg[sg_idx].dma_address)); length = request->sg[sg_idx].length; } tdl = DIV_ROUND_UP(length, priv_ep->endpoint.maxpacket); trb->length = cpu_to_le32(TRB_BURST_LEN(16) | TRB_LEN(length)); /* * For DEV_VER_V2 controller version we have enabled * USB_CONF2_EN_TDL_TRB in DMULT configuration. * This enables TDL calculation based on TRB, hence setting TDL in TRB. */ if (priv_dev->dev_ver >= DEV_VER_V2) { if (priv_dev->gadget.speed == USB_SPEED_SUPER) trb->length |= cpu_to_le32(TRB_TDL_SS_SIZE(tdl)); } priv_req->flags |= REQUEST_PENDING; trb->control = cpu_to_le32(control); trace_cdns3_prepare_trb(priv_ep, priv_req->trb); /* * Memory barrier - Cycle Bit must be set before trb->length and * trb->buffer fields. */ wmb(); /* always first element */ writel(EP_TRADDR_TRADDR(priv_ep->trb_pool_dma), &priv_dev->regs->ep_traddr); if (!(priv_ep->flags & EP_STALLED)) { trace_cdns3_ring(priv_ep); /*clearing TRBERR and EP_STS_DESCMIS before seting DRDY*/ writel(EP_STS_TRBERR | EP_STS_DESCMIS, &priv_dev->regs->ep_sts); priv_ep->prime_flag = false; /* * Controller version DEV_VER_V2 tdl calculation * is based on TRB */ if (priv_dev->dev_ver < DEV_VER_V2) writel(EP_CMD_TDL_SET(tdl) | EP_CMD_STDL, &priv_dev->regs->ep_cmd); else if (priv_dev->dev_ver > DEV_VER_V2) writel(tdl, &priv_dev->regs->ep_tdl); priv_ep->last_stream_id = priv_req->request.stream_id; writel(EP_CMD_DRDY, &priv_dev->regs->ep_cmd); writel(EP_CMD_ERDY_SID(priv_req->request.stream_id) | EP_CMD_ERDY, &priv_dev->regs->ep_cmd); trace_cdns3_doorbell_epx(priv_ep->name, readl(&priv_dev->regs->ep_traddr)); } /* WORKAROUND for transition to L0 */ __cdns3_gadget_wakeup(priv_dev); return 0; } static void cdns3_rearm_drdy_if_needed(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; if (priv_dev->dev_ver < DEV_VER_V3) return; if (readl(&priv_dev->regs->ep_sts) & EP_STS_TRBERR) { writel(EP_STS_TRBERR, &priv_dev->regs->ep_sts); writel(EP_CMD_DRDY, &priv_dev->regs->ep_cmd); } } /** * cdns3_ep_run_transfer - start transfer on no-default endpoint hardware * @priv_ep: endpoint object * @request: request object * * Returns zero on success or negative value on failure */ static int cdns3_ep_run_transfer(struct cdns3_endpoint *priv_ep, struct usb_request *request) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct cdns3_request *priv_req; struct cdns3_trb *trb; struct cdns3_trb *link_trb = NULL; dma_addr_t trb_dma; u32 togle_pcs = 1; int sg_iter = 0; int num_trb; int address; u32 control; int pcs; u16 total_tdl = 0; struct scatterlist *s = NULL; bool sg_supported = !!(request->num_mapped_sgs); if (priv_ep->type == USB_ENDPOINT_XFER_ISOC) num_trb = priv_ep->interval; else num_trb = sg_supported ? request->num_mapped_sgs : 1; if (num_trb > priv_ep->free_trbs) { priv_ep->flags |= EP_RING_FULL; return -ENOBUFS; } priv_req = to_cdns3_request(request); address = priv_ep->endpoint.desc->bEndpointAddress; priv_ep->flags |= EP_PENDING_REQUEST; /* must allocate buffer aligned to 8 */ if (priv_req->flags & REQUEST_UNALIGNED) trb_dma = priv_req->aligned_buf->dma; else trb_dma = request->dma; trb = priv_ep->trb_pool + priv_ep->enqueue; priv_req->start_trb = priv_ep->enqueue; priv_req->trb = trb; cdns3_select_ep(priv_ep->cdns3_dev, address); /* prepare ring */ if ((priv_ep->enqueue + num_trb) >= (priv_ep->num_trbs - 1)) { int doorbell, dma_index; u32 ch_bit = 0; doorbell = !!(readl(&priv_dev->regs->ep_cmd) & EP_CMD_DRDY); dma_index = cdns3_get_dma_pos(priv_dev, priv_ep); /* Driver can't update LINK TRB if it is current processed. */ if (doorbell && dma_index == priv_ep->num_trbs - 1) { priv_ep->flags |= EP_DEFERRED_DRDY; return -ENOBUFS; } /*updating C bt in Link TRB before starting DMA*/ link_trb = priv_ep->trb_pool + (priv_ep->num_trbs - 1); /* * For TRs size equal 2 enabling TRB_CHAIN for epXin causes * that DMA stuck at the LINK TRB. * On the other hand, removing TRB_CHAIN for longer TRs for * epXout cause that DMA stuck after handling LINK TRB. * To eliminate this strange behavioral driver set TRB_CHAIN * bit only for TR size > 2. */ if (priv_ep->type == USB_ENDPOINT_XFER_ISOC || TRBS_PER_SEGMENT > 2) ch_bit = TRB_CHAIN; link_trb->control = cpu_to_le32(((priv_ep->pcs) ? TRB_CYCLE : 0) | TRB_TYPE(TRB_LINK) | TRB_TOGGLE | ch_bit); } if (priv_dev->dev_ver <= DEV_VER_V2) togle_pcs = cdns3_wa1_update_guard(priv_ep, trb); if (sg_supported) s = request->sg; /* set incorrect Cycle Bit for first trb*/ control = priv_ep->pcs ? 0 : TRB_CYCLE; trb->length = 0; if (priv_dev->dev_ver >= DEV_VER_V2) { u16 td_size; td_size = DIV_ROUND_UP(request->length, priv_ep->endpoint.maxpacket); if (priv_dev->gadget.speed == USB_SPEED_SUPER) trb->length = cpu_to_le32(TRB_TDL_SS_SIZE(td_size)); else control |= TRB_TDL_HS_SIZE(td_size); } do { u32 length; /* fill TRB */ control |= TRB_TYPE(TRB_NORMAL); if (sg_supported) { trb->buffer = cpu_to_le32(TRB_BUFFER(sg_dma_address(s))); length = sg_dma_len(s); } else { trb->buffer = cpu_to_le32(TRB_BUFFER(trb_dma)); length = request->length; } if (priv_ep->flags & EP_TDLCHK_EN) total_tdl += DIV_ROUND_UP(length, priv_ep->endpoint.maxpacket); trb->length |= cpu_to_le32(TRB_BURST_LEN(priv_ep->trb_burst_size) | TRB_LEN(length)); pcs = priv_ep->pcs ? TRB_CYCLE : 0; /* * first trb should be prepared as last to avoid processing * transfer to early */ if (sg_iter != 0) control |= pcs; if (priv_ep->type == USB_ENDPOINT_XFER_ISOC && !priv_ep->dir) { control |= TRB_IOC | TRB_ISP; } else { /* for last element in TD or in SG list */ if (sg_iter == (num_trb - 1) && sg_iter != 0) control |= pcs | TRB_IOC | TRB_ISP; } if (sg_iter) trb->control = cpu_to_le32(control); else priv_req->trb->control = cpu_to_le32(control); if (sg_supported) { trb->control |= cpu_to_le32(TRB_ISP); /* Don't set chain bit for last TRB */ if (sg_iter < num_trb - 1) trb->control |= cpu_to_le32(TRB_CHAIN); s = sg_next(s); } control = 0; ++sg_iter; priv_req->end_trb = priv_ep->enqueue; cdns3_ep_inc_enq(priv_ep); trb = priv_ep->trb_pool + priv_ep->enqueue; trb->length = 0; } while (sg_iter < num_trb); trb = priv_req->trb; priv_req->flags |= REQUEST_PENDING; priv_req->num_of_trb = num_trb; if (sg_iter == 1) trb->control |= cpu_to_le32(TRB_IOC | TRB_ISP); if (priv_dev->dev_ver < DEV_VER_V2 && (priv_ep->flags & EP_TDLCHK_EN)) { u16 tdl = total_tdl; u16 old_tdl = EP_CMD_TDL_GET(readl(&priv_dev->regs->ep_cmd)); if (tdl > EP_CMD_TDL_MAX) { tdl = EP_CMD_TDL_MAX; priv_ep->pending_tdl = total_tdl - EP_CMD_TDL_MAX; } if (old_tdl < tdl) { tdl -= old_tdl; writel(EP_CMD_TDL_SET(tdl) | EP_CMD_STDL, &priv_dev->regs->ep_cmd); } } /* * Memory barrier - cycle bit must be set before other filds in trb. */ wmb(); /* give the TD to the consumer*/ if (togle_pcs) trb->control = trb->control ^ cpu_to_le32(1); if (priv_dev->dev_ver <= DEV_VER_V2) cdns3_wa1_tray_restore_cycle_bit(priv_dev, priv_ep); if (num_trb > 1) { int i = 0; while (i < num_trb) { trace_cdns3_prepare_trb(priv_ep, trb + i); if (trb + i == link_trb) { trb = priv_ep->trb_pool; num_trb = num_trb - i; i = 0; } else { i++; } } } else { trace_cdns3_prepare_trb(priv_ep, priv_req->trb); } /* * Memory barrier - Cycle Bit must be set before trb->length and * trb->buffer fields. */ wmb(); /* * For DMULT mode we can set address to transfer ring only once after * enabling endpoint. */ if (priv_ep->flags & EP_UPDATE_EP_TRBADDR) { /* * Until SW is not ready to handle the OUT transfer the ISO OUT * Endpoint should be disabled (EP_CFG.ENABLE = 0). * EP_CFG_ENABLE must be set before updating ep_traddr. */ if (priv_ep->type == USB_ENDPOINT_XFER_ISOC && !priv_ep->dir && !(priv_ep->flags & EP_QUIRK_ISO_OUT_EN)) { priv_ep->flags |= EP_QUIRK_ISO_OUT_EN; cdns3_set_register_bit(&priv_dev->regs->ep_cfg, EP_CFG_ENABLE); } writel(EP_TRADDR_TRADDR(priv_ep->trb_pool_dma + priv_req->start_trb * TRB_SIZE), &priv_dev->regs->ep_traddr); priv_ep->flags &= ~EP_UPDATE_EP_TRBADDR; } if (!priv_ep->wa1_set && !(priv_ep->flags & EP_STALLED)) { trace_cdns3_ring(priv_ep); /*clearing TRBERR and EP_STS_DESCMIS before seting DRDY*/ writel(EP_STS_TRBERR | EP_STS_DESCMIS, &priv_dev->regs->ep_sts); writel(EP_CMD_DRDY, &priv_dev->regs->ep_cmd); cdns3_rearm_drdy_if_needed(priv_ep); trace_cdns3_doorbell_epx(priv_ep->name, readl(&priv_dev->regs->ep_traddr)); } /* WORKAROUND for transition to L0 */ __cdns3_gadget_wakeup(priv_dev); return 0; } void cdns3_set_hw_configuration(struct cdns3_device *priv_dev) { struct cdns3_endpoint *priv_ep; struct usb_ep *ep; if (priv_dev->hw_configured_flag) return; writel(USB_CONF_CFGSET, &priv_dev->regs->usb_conf); cdns3_set_register_bit(&priv_dev->regs->usb_conf, USB_CONF_U1EN | USB_CONF_U2EN); priv_dev->hw_configured_flag = 1; list_for_each_entry(ep, &priv_dev->gadget.ep_list, ep_list) { if (ep->enabled) { priv_ep = ep_to_cdns3_ep(ep); cdns3_start_all_request(priv_dev, priv_ep); } } cdns3_allow_enable_l1(priv_dev, 1); } /** * cdns3_trb_handled - check whether trb has been handled by DMA * * @priv_ep: extended endpoint object. * @priv_req: request object for checking * * Endpoint must be selected before invoking this function. * * Returns false if request has not been handled by DMA, else returns true. * * SR - start ring * ER - end ring * DQ = priv_ep->dequeue - dequeue position * EQ = priv_ep->enqueue - enqueue position * ST = priv_req->start_trb - index of first TRB in transfer ring * ET = priv_req->end_trb - index of last TRB in transfer ring * CI = current_index - index of processed TRB by DMA. * * As first step, we check if the TRB between the ST and ET. * Then, we check if cycle bit for index priv_ep->dequeue * is correct. * * some rules: * 1. priv_ep->dequeue never equals to current_index. * 2 priv_ep->enqueue never exceed priv_ep->dequeue * 3. exception: priv_ep->enqueue == priv_ep->dequeue * and priv_ep->free_trbs is zero. * This case indicate that TR is full. * * At below two cases, the request have been handled. * Case 1 - priv_ep->dequeue < current_index * SR ... EQ ... DQ ... CI ... ER * SR ... DQ ... CI ... EQ ... ER * * Case 2 - priv_ep->dequeue > current_index * This situation takes place when CI go through the LINK TRB at the end of * transfer ring. * SR ... CI ... EQ ... DQ ... ER */ static bool cdns3_trb_handled(struct cdns3_endpoint *priv_ep, struct cdns3_request *priv_req) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct cdns3_trb *trb; int current_index = 0; int handled = 0; int doorbell; current_index = cdns3_get_dma_pos(priv_dev, priv_ep); doorbell = !!(readl(&priv_dev->regs->ep_cmd) & EP_CMD_DRDY); /* current trb doesn't belong to this request */ if (priv_req->start_trb < priv_req->end_trb) { if (priv_ep->dequeue > priv_req->end_trb) goto finish; if (priv_ep->dequeue < priv_req->start_trb) goto finish; } if ((priv_req->start_trb > priv_req->end_trb) && (priv_ep->dequeue > priv_req->end_trb) && (priv_ep->dequeue < priv_req->start_trb)) goto finish; if ((priv_req->start_trb == priv_req->end_trb) && (priv_ep->dequeue != priv_req->end_trb)) goto finish; trb = &priv_ep->trb_pool[priv_ep->dequeue]; if ((le32_to_cpu(trb->control) & TRB_CYCLE) != priv_ep->ccs) goto finish; if (doorbell == 1 && current_index == priv_ep->dequeue) goto finish; /* The corner case for TRBS_PER_SEGMENT equal 2). */ if (TRBS_PER_SEGMENT == 2 && priv_ep->type != USB_ENDPOINT_XFER_ISOC) { handled = 1; goto finish; } if (priv_ep->enqueue == priv_ep->dequeue && priv_ep->free_trbs == 0) { handled = 1; } else if (priv_ep->dequeue < current_index) { if ((current_index == (priv_ep->num_trbs - 1)) && !priv_ep->dequeue) goto finish; handled = 1; } else if (priv_ep->dequeue > current_index) { handled = 1; } finish: trace_cdns3_request_handled(priv_req, current_index, handled); return handled; } static void cdns3_transfer_completed(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { struct cdns3_request *priv_req; struct usb_request *request; struct cdns3_trb *trb; bool request_handled = false; bool transfer_end = false; while (!list_empty(&priv_ep->pending_req_list)) { request = cdns3_next_request(&priv_ep->pending_req_list); priv_req = to_cdns3_request(request); trb = priv_ep->trb_pool + priv_ep->dequeue; /* The TRB was changed as link TRB, and the request was handled at ep_dequeue */ while (TRB_FIELD_TO_TYPE(le32_to_cpu(trb->control)) == TRB_LINK) { trace_cdns3_complete_trb(priv_ep, trb); cdns3_ep_inc_deq(priv_ep); trb = priv_ep->trb_pool + priv_ep->dequeue; } if (!request->stream_id) { /* Re-select endpoint. It could be changed by other CPU * during handling usb_gadget_giveback_request. */ cdns3_select_ep(priv_dev, priv_ep->endpoint.address); while (cdns3_trb_handled(priv_ep, priv_req)) { priv_req->finished_trb++; if (priv_req->finished_trb >= priv_req->num_of_trb) request_handled = true; trb = priv_ep->trb_pool + priv_ep->dequeue; trace_cdns3_complete_trb(priv_ep, trb); if (!transfer_end) request->actual += TRB_LEN(le32_to_cpu(trb->length)); if (priv_req->num_of_trb > 1 && le32_to_cpu(trb->control) & TRB_SMM && le32_to_cpu(trb->control) & TRB_CHAIN) transfer_end = true; cdns3_ep_inc_deq(priv_ep); } if (request_handled) { cdns3_gadget_giveback(priv_ep, priv_req, 0); request_handled = false; transfer_end = false; } else { goto prepare_next_td; } if (priv_ep->type != USB_ENDPOINT_XFER_ISOC && TRBS_PER_SEGMENT == 2) break; } else { /* Re-select endpoint. It could be changed by other CPU * during handling usb_gadget_giveback_request. */ cdns3_select_ep(priv_dev, priv_ep->endpoint.address); trb = priv_ep->trb_pool; trace_cdns3_complete_trb(priv_ep, trb); if (trb != priv_req->trb) dev_warn(priv_dev->dev, "request_trb=0x%p, queue_trb=0x%p\n", priv_req->trb, trb); request->actual += TRB_LEN(le32_to_cpu(trb->length)); if (!request->num_sgs || (request->num_sgs == (priv_ep->stream_sg_idx + 1))) { priv_ep->stream_sg_idx = 0; cdns3_gadget_giveback(priv_ep, priv_req, 0); } else { priv_ep->stream_sg_idx++; cdns3_ep_run_stream_transfer(priv_ep, request); } break; } } priv_ep->flags &= ~EP_PENDING_REQUEST; prepare_next_td: if (!(priv_ep->flags & EP_STALLED) && !(priv_ep->flags & EP_STALL_PENDING)) cdns3_start_all_request(priv_dev, priv_ep); } void cdns3_rearm_transfer(struct cdns3_endpoint *priv_ep, u8 rearm) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; cdns3_wa1_restore_cycle_bit(priv_ep); if (rearm) { trace_cdns3_ring(priv_ep); /* Cycle Bit must be updated before arming DMA. */ wmb(); writel(EP_CMD_DRDY, &priv_dev->regs->ep_cmd); __cdns3_gadget_wakeup(priv_dev); trace_cdns3_doorbell_epx(priv_ep->name, readl(&priv_dev->regs->ep_traddr)); } } static void cdns3_reprogram_tdl(struct cdns3_endpoint *priv_ep) { u16 tdl = priv_ep->pending_tdl; struct cdns3_device *priv_dev = priv_ep->cdns3_dev; if (tdl > EP_CMD_TDL_MAX) { tdl = EP_CMD_TDL_MAX; priv_ep->pending_tdl -= EP_CMD_TDL_MAX; } else { priv_ep->pending_tdl = 0; } writel(EP_CMD_TDL_SET(tdl) | EP_CMD_STDL, &priv_dev->regs->ep_cmd); } /** * cdns3_check_ep_interrupt_proceed - Processes interrupt related to endpoint * @priv_ep: endpoint object * * Returns 0 */ static int cdns3_check_ep_interrupt_proceed(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; u32 ep_sts_reg; struct usb_request *deferred_request; struct usb_request *pending_request; u32 tdl = 0; cdns3_select_ep(priv_dev, priv_ep->endpoint.address); trace_cdns3_epx_irq(priv_dev, priv_ep); ep_sts_reg = readl(&priv_dev->regs->ep_sts); writel(ep_sts_reg, &priv_dev->regs->ep_sts); if ((ep_sts_reg & EP_STS_PRIME) && priv_ep->use_streams) { bool dbusy = !!(ep_sts_reg & EP_STS_DBUSY); tdl = cdns3_get_tdl(priv_dev); /* * Continue the previous transfer: * There is some racing between ERDY and PRIME. The device send * ERDY and almost in the same time Host send PRIME. It cause * that host ignore the ERDY packet and driver has to send it * again. */ if (tdl && (dbusy || !EP_STS_BUFFEMPTY(ep_sts_reg) || EP_STS_HOSTPP(ep_sts_reg))) { writel(EP_CMD_ERDY | EP_CMD_ERDY_SID(priv_ep->last_stream_id), &priv_dev->regs->ep_cmd); ep_sts_reg &= ~(EP_STS_MD_EXIT | EP_STS_IOC); } else { priv_ep->prime_flag = true; pending_request = cdns3_next_request(&priv_ep->pending_req_list); deferred_request = cdns3_next_request(&priv_ep->deferred_req_list); if (deferred_request && !pending_request) { cdns3_start_all_request(priv_dev, priv_ep); } } } if (ep_sts_reg & EP_STS_TRBERR) { if (priv_ep->flags & EP_STALL_PENDING && !(ep_sts_reg & EP_STS_DESCMIS && priv_dev->dev_ver < DEV_VER_V2)) { cdns3_ep_stall_flush(priv_ep); } /* * For isochronous transfer driver completes request on * IOC or on TRBERR. IOC appears only when device receive * OUT data packet. If host disable stream or lost some packet * then the only way to finish all queued transfer is to do it * on TRBERR event. */ if (priv_ep->type == USB_ENDPOINT_XFER_ISOC && !priv_ep->wa1_set) { if (!priv_ep->dir) { u32 ep_cfg = readl(&priv_dev->regs->ep_cfg); ep_cfg &= ~EP_CFG_ENABLE; writel(ep_cfg, &priv_dev->regs->ep_cfg); priv_ep->flags &= ~EP_QUIRK_ISO_OUT_EN; priv_ep->flags |= EP_UPDATE_EP_TRBADDR; } cdns3_transfer_completed(priv_dev, priv_ep); } else if (!(priv_ep->flags & EP_STALLED) && !(priv_ep->flags & EP_STALL_PENDING)) { if (priv_ep->flags & EP_DEFERRED_DRDY) { priv_ep->flags &= ~EP_DEFERRED_DRDY; cdns3_start_all_request(priv_dev, priv_ep); } else { cdns3_rearm_transfer(priv_ep, priv_ep->wa1_set); } } } if ((ep_sts_reg & EP_STS_IOC) || (ep_sts_reg & EP_STS_ISP) || (ep_sts_reg & EP_STS_IOT)) { if (priv_ep->flags & EP_QUIRK_EXTRA_BUF_EN) { if (ep_sts_reg & EP_STS_ISP) priv_ep->flags |= EP_QUIRK_END_TRANSFER; else priv_ep->flags &= ~EP_QUIRK_END_TRANSFER; } if (!priv_ep->use_streams) { if ((ep_sts_reg & EP_STS_IOC) || (ep_sts_reg & EP_STS_ISP)) { cdns3_transfer_completed(priv_dev, priv_ep); } else if ((priv_ep->flags & EP_TDLCHK_EN) & priv_ep->pending_tdl) { /* handle IOT with pending tdl */ cdns3_reprogram_tdl(priv_ep); } } else if (priv_ep->dir == USB_DIR_OUT) { priv_ep->ep_sts_pending |= ep_sts_reg; } else if (ep_sts_reg & EP_STS_IOT) { cdns3_transfer_completed(priv_dev, priv_ep); } } /* * MD_EXIT interrupt sets when stream capable endpoint exits * from MOVE DATA state of Bulk IN/OUT stream protocol state machine */ if (priv_ep->dir == USB_DIR_OUT && (ep_sts_reg & EP_STS_MD_EXIT) && (priv_ep->ep_sts_pending & EP_STS_IOT) && priv_ep->use_streams) { priv_ep->ep_sts_pending = 0; cdns3_transfer_completed(priv_dev, priv_ep); } /* * WA2: this condition should only be meet when * priv_ep->flags & EP_QUIRK_EXTRA_BUF_DET or * priv_ep->flags & EP_QUIRK_EXTRA_BUF_EN. * In other cases this interrupt will be disabled. */ if (ep_sts_reg & EP_STS_DESCMIS && priv_dev->dev_ver < DEV_VER_V2 && !(priv_ep->flags & EP_STALLED)) cdns3_wa2_descmissing_packet(priv_ep); return 0; } static void cdns3_disconnect_gadget(struct cdns3_device *priv_dev) { if (priv_dev->gadget_driver && priv_dev->gadget_driver->disconnect) priv_dev->gadget_driver->disconnect(&priv_dev->gadget); } /** * cdns3_check_usb_interrupt_proceed - Processes interrupt related to device * @priv_dev: extended gadget object * @usb_ists: bitmap representation of device's reported interrupts * (usb_ists register value) */ static void cdns3_check_usb_interrupt_proceed(struct cdns3_device *priv_dev, u32 usb_ists) __must_hold(&priv_dev->lock) { int speed = 0; trace_cdns3_usb_irq(priv_dev, usb_ists); if (usb_ists & USB_ISTS_L1ENTI) { /* * WORKAROUND: CDNS3 controller has issue with hardware resuming * from L1. To fix it, if any DMA transfer is pending driver * must starts driving resume signal immediately. */ if (readl(&priv_dev->regs->drbl)) __cdns3_gadget_wakeup(priv_dev); } /* Connection detected */ if (usb_ists & (USB_ISTS_CON2I | USB_ISTS_CONI)) { speed = cdns3_get_speed(priv_dev); priv_dev->gadget.speed = speed; usb_gadget_set_state(&priv_dev->gadget, USB_STATE_POWERED); cdns3_ep0_config(priv_dev); } /* Disconnection detected */ if (usb_ists & (USB_ISTS_DIS2I | USB_ISTS_DISI)) { spin_unlock(&priv_dev->lock); cdns3_disconnect_gadget(priv_dev); spin_lock(&priv_dev->lock); priv_dev->gadget.speed = USB_SPEED_UNKNOWN; usb_gadget_set_state(&priv_dev->gadget, USB_STATE_NOTATTACHED); cdns3_hw_reset_eps_config(priv_dev); } if (usb_ists & (USB_ISTS_L2ENTI | USB_ISTS_U3ENTI)) { if (priv_dev->gadget_driver && priv_dev->gadget_driver->suspend) { spin_unlock(&priv_dev->lock); priv_dev->gadget_driver->suspend(&priv_dev->gadget); spin_lock(&priv_dev->lock); } } if (usb_ists & (USB_ISTS_L2EXTI | USB_ISTS_U3EXTI)) { if (priv_dev->gadget_driver && priv_dev->gadget_driver->resume) { spin_unlock(&priv_dev->lock); priv_dev->gadget_driver->resume(&priv_dev->gadget); spin_lock(&priv_dev->lock); } } /* reset*/ if (usb_ists & (USB_ISTS_UWRESI | USB_ISTS_UHRESI | USB_ISTS_U2RESI)) { if (priv_dev->gadget_driver) { spin_unlock(&priv_dev->lock); usb_gadget_udc_reset(&priv_dev->gadget, priv_dev->gadget_driver); spin_lock(&priv_dev->lock); /*read again to check the actual speed*/ speed = cdns3_get_speed(priv_dev); priv_dev->gadget.speed = speed; cdns3_hw_reset_eps_config(priv_dev); cdns3_ep0_config(priv_dev); } } } /** * cdns3_device_irq_handler - interrupt handler for device part of controller * * @irq: irq number for cdns3 core device * @data: structure of cdns3 * * Returns IRQ_HANDLED or IRQ_NONE */ static irqreturn_t cdns3_device_irq_handler(int irq, void *data) { struct cdns3_device *priv_dev = data; struct cdns *cdns = dev_get_drvdata(priv_dev->dev); irqreturn_t ret = IRQ_NONE; u32 reg; if (cdns->in_lpm) return ret; /* check USB device interrupt */ reg = readl(&priv_dev->regs->usb_ists); if (reg) { /* After masking interrupts the new interrupts won't be * reported in usb_ists/ep_ists. In order to not lose some * of them driver disables only detected interrupts. * They will be enabled ASAP after clearing source of * interrupt. This an unusual behavior only applies to * usb_ists register. */ reg = ~reg & readl(&priv_dev->regs->usb_ien); /* mask deferred interrupt. */ writel(reg, &priv_dev->regs->usb_ien); ret = IRQ_WAKE_THREAD; } /* check endpoint interrupt */ reg = readl(&priv_dev->regs->ep_ists); if (reg) { writel(0, &priv_dev->regs->ep_ien); ret = IRQ_WAKE_THREAD; } return ret; } /** * cdns3_device_thread_irq_handler - interrupt handler for device part * of controller * * @irq: irq number for cdns3 core device * @data: structure of cdns3 * * Returns IRQ_HANDLED or IRQ_NONE */ static irqreturn_t cdns3_device_thread_irq_handler(int irq, void *data) { struct cdns3_device *priv_dev = data; irqreturn_t ret = IRQ_NONE; unsigned long flags; unsigned int bit; unsigned long reg; spin_lock_irqsave(&priv_dev->lock, flags); reg = readl(&priv_dev->regs->usb_ists); if (reg) { writel(reg, &priv_dev->regs->usb_ists); writel(USB_IEN_INIT, &priv_dev->regs->usb_ien); cdns3_check_usb_interrupt_proceed(priv_dev, reg); ret = IRQ_HANDLED; } reg = readl(&priv_dev->regs->ep_ists); /* handle default endpoint OUT */ if (reg & EP_ISTS_EP_OUT0) { cdns3_check_ep0_interrupt_proceed(priv_dev, USB_DIR_OUT); ret = IRQ_HANDLED; } /* handle default endpoint IN */ if (reg & EP_ISTS_EP_IN0) { cdns3_check_ep0_interrupt_proceed(priv_dev, USB_DIR_IN); ret = IRQ_HANDLED; } /* check if interrupt from non default endpoint, if no exit */ reg &= ~(EP_ISTS_EP_OUT0 | EP_ISTS_EP_IN0); if (!reg) goto irqend; for_each_set_bit(bit, &reg, sizeof(u32) * BITS_PER_BYTE) { cdns3_check_ep_interrupt_proceed(priv_dev->eps[bit]); ret = IRQ_HANDLED; } if (priv_dev->dev_ver < DEV_VER_V2 && priv_dev->using_streams) cdns3_wa2_check_outq_status(priv_dev); irqend: writel(~0, &priv_dev->regs->ep_ien); spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * cdns3_ep_onchip_buffer_reserve - Try to reserve onchip buf for EP * * The real reservation will occur during write to EP_CFG register, * this function is used to check if the 'size' reservation is allowed. * * @priv_dev: extended gadget object * @size: the size (KB) for EP would like to allocate * @is_in: endpoint direction * * Return 0 if the required size can met or negative value on failure */ static int cdns3_ep_onchip_buffer_reserve(struct cdns3_device *priv_dev, int size, int is_in) { int remained; /* 2KB are reserved for EP0*/ remained = priv_dev->onchip_buffers - priv_dev->onchip_used_size - 2; if (is_in) { if (remained < size) return -EPERM; priv_dev->onchip_used_size += size; } else { int required; /** * ALL OUT EPs are shared the same chunk onchip memory, so * driver checks if it already has assigned enough buffers */ if (priv_dev->out_mem_is_allocated >= size) return 0; required = size - priv_dev->out_mem_is_allocated; if (required > remained) return -EPERM; priv_dev->out_mem_is_allocated += required; priv_dev->onchip_used_size += required; } return 0; } static void cdns3_configure_dmult(struct cdns3_device *priv_dev, struct cdns3_endpoint *priv_ep) { struct cdns3_usb_regs __iomem *regs = priv_dev->regs; /* For dev_ver > DEV_VER_V2 DMULT is configured per endpoint */ if (priv_dev->dev_ver <= DEV_VER_V2) writel(USB_CONF_DMULT, &regs->usb_conf); if (priv_dev->dev_ver == DEV_VER_V2) writel(USB_CONF2_EN_TDL_TRB, &regs->usb_conf2); if (priv_dev->dev_ver >= DEV_VER_V3 && priv_ep) { u32 mask; if (priv_ep->dir) mask = BIT(priv_ep->num + 16); else mask = BIT(priv_ep->num); if (priv_ep->type != USB_ENDPOINT_XFER_ISOC && !priv_ep->dir) { cdns3_set_register_bit(&regs->tdl_from_trb, mask); cdns3_set_register_bit(&regs->tdl_beh, mask); cdns3_set_register_bit(&regs->tdl_beh2, mask); cdns3_set_register_bit(&regs->dma_adv_td, mask); } if (priv_ep->type == USB_ENDPOINT_XFER_ISOC && !priv_ep->dir) cdns3_set_register_bit(&regs->tdl_from_trb, mask); cdns3_set_register_bit(&regs->dtrans, mask); } } /** * cdns3_ep_config - Configure hardware endpoint * @priv_ep: extended endpoint object * @enable: set EP_CFG_ENABLE bit in ep_cfg register. */ int cdns3_ep_config(struct cdns3_endpoint *priv_ep, bool enable) { bool is_iso_ep = (priv_ep->type == USB_ENDPOINT_XFER_ISOC); struct cdns3_device *priv_dev = priv_ep->cdns3_dev; u32 bEndpointAddress = priv_ep->num | priv_ep->dir; u32 max_packet_size = 0; u8 maxburst = 0; u32 ep_cfg = 0; u8 buffering; u8 mult = 0; int ret; buffering = priv_dev->ep_buf_size - 1; cdns3_configure_dmult(priv_dev, priv_ep); switch (priv_ep->type) { case USB_ENDPOINT_XFER_INT: ep_cfg = EP_CFG_EPTYPE(USB_ENDPOINT_XFER_INT); if (priv_dev->dev_ver >= DEV_VER_V2 && !priv_ep->dir) ep_cfg |= EP_CFG_TDL_CHK; break; case USB_ENDPOINT_XFER_BULK: ep_cfg = EP_CFG_EPTYPE(USB_ENDPOINT_XFER_BULK); if (priv_dev->dev_ver >= DEV_VER_V2 && !priv_ep->dir) ep_cfg |= EP_CFG_TDL_CHK; break; default: ep_cfg = EP_CFG_EPTYPE(USB_ENDPOINT_XFER_ISOC); mult = priv_dev->ep_iso_burst - 1; buffering = mult + 1; } switch (priv_dev->gadget.speed) { case USB_SPEED_FULL: max_packet_size = is_iso_ep ? 1023 : 64; break; case USB_SPEED_HIGH: max_packet_size = is_iso_ep ? 1024 : 512; break; case USB_SPEED_SUPER: /* It's limitation that driver assumes in driver. */ mult = 0; max_packet_size = 1024; if (priv_ep->type == USB_ENDPOINT_XFER_ISOC) { maxburst = priv_dev->ep_iso_burst - 1; buffering = (mult + 1) * (maxburst + 1); if (priv_ep->interval > 1) buffering++; } else { maxburst = priv_dev->ep_buf_size - 1; } break; default: /* all other speed are not supported */ return -EINVAL; } if (max_packet_size == 1024) priv_ep->trb_burst_size = 128; else if (max_packet_size >= 512) priv_ep->trb_burst_size = 64; else priv_ep->trb_burst_size = 16; /* * In versions preceding DEV_VER_V2, for example, iMX8QM, there exit the bugs * in the DMA. These bugs occur when the trb_burst_size exceeds 16 and the * address is not aligned to 128 Bytes (which is a product of the 64-bit AXI * and AXI maximum burst length of 16 or 0xF+1, dma_axi_ctrl0[3:0]). This * results in data corruption when it crosses the 4K border. The corruption * specifically occurs from the position (4K - (address & 0x7F)) to 4K. * * So force trb_burst_size to 16 at such platform. */ if (priv_dev->dev_ver < DEV_VER_V2) priv_ep->trb_burst_size = 16; mult = min_t(u8, mult, EP_CFG_MULT_MAX); buffering = min_t(u8, buffering, EP_CFG_BUFFERING_MAX); maxburst = min_t(u8, maxburst, EP_CFG_MAXBURST_MAX); /* onchip buffer is only allocated before configuration */ if (!priv_dev->hw_configured_flag) { ret = cdns3_ep_onchip_buffer_reserve(priv_dev, buffering + 1, !!priv_ep->dir); if (ret) { dev_err(priv_dev->dev, "onchip mem is full, ep is invalid\n"); return ret; } } if (enable) ep_cfg |= EP_CFG_ENABLE; if (priv_ep->use_streams && priv_dev->gadget.speed >= USB_SPEED_SUPER) { if (priv_dev->dev_ver >= DEV_VER_V3) { u32 mask = BIT(priv_ep->num + (priv_ep->dir ? 16 : 0)); /* * Stream capable endpoints are handled by using ep_tdl * register. Other endpoints use TDL from TRB feature. */ cdns3_clear_register_bit(&priv_dev->regs->tdl_from_trb, mask); } /* Enable Stream Bit TDL chk and SID chk */ ep_cfg |= EP_CFG_STREAM_EN | EP_CFG_TDL_CHK | EP_CFG_SID_CHK; } ep_cfg |= EP_CFG_MAXPKTSIZE(max_packet_size) | EP_CFG_MULT(mult) | EP_CFG_BUFFERING(buffering) | EP_CFG_MAXBURST(maxburst); cdns3_select_ep(priv_dev, bEndpointAddress); writel(ep_cfg, &priv_dev->regs->ep_cfg); priv_ep->flags |= EP_CONFIGURED; dev_dbg(priv_dev->dev, "Configure %s: with val %08x\n", priv_ep->name, ep_cfg); return 0; } /* Find correct direction for HW endpoint according to description */ static int cdns3_ep_dir_is_correct(struct usb_endpoint_descriptor *desc, struct cdns3_endpoint *priv_ep) { return (priv_ep->endpoint.caps.dir_in && usb_endpoint_dir_in(desc)) || (priv_ep->endpoint.caps.dir_out && usb_endpoint_dir_out(desc)); } static struct cdns3_endpoint *cdns3_find_available_ep(struct cdns3_device *priv_dev, struct usb_endpoint_descriptor *desc) { struct usb_ep *ep; struct cdns3_endpoint *priv_ep; list_for_each_entry(ep, &priv_dev->gadget.ep_list, ep_list) { unsigned long num; int ret; /* ep name pattern likes epXin or epXout */ char c[2] = {ep->name[2], '\0'}; ret = kstrtoul(c, 10, &num); if (ret) return ERR_PTR(ret); priv_ep = ep_to_cdns3_ep(ep); if (cdns3_ep_dir_is_correct(desc, priv_ep)) { if (!(priv_ep->flags & EP_CLAIMED)) { priv_ep->num = num; return priv_ep; } } } return ERR_PTR(-ENOENT); } /* * Cadence IP has one limitation that all endpoints must be configured * (Type & MaxPacketSize) before setting configuration through hardware * register, it means we can't change endpoints configuration after * set_configuration. * * This function set EP_CLAIMED flag which is added when the gadget driver * uses usb_ep_autoconfig to configure specific endpoint; * When the udc driver receives set_configurion request, * it goes through all claimed endpoints, and configure all endpoints * accordingly. * * At usb_ep_ops.enable/disable, we only enable and disable endpoint through * ep_cfg register which can be changed after set_configuration, and do * some software operation accordingly. */ static struct usb_ep *cdns3_gadget_match_ep(struct usb_gadget *gadget, struct usb_endpoint_descriptor *desc, struct usb_ss_ep_comp_descriptor *comp_desc) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); struct cdns3_endpoint *priv_ep; unsigned long flags; priv_ep = cdns3_find_available_ep(priv_dev, desc); if (IS_ERR(priv_ep)) { dev_err(priv_dev->dev, "no available ep\n"); return NULL; } dev_dbg(priv_dev->dev, "match endpoint: %s\n", priv_ep->name); spin_lock_irqsave(&priv_dev->lock, flags); priv_ep->endpoint.desc = desc; priv_ep->dir = usb_endpoint_dir_in(desc) ? USB_DIR_IN : USB_DIR_OUT; priv_ep->type = usb_endpoint_type(desc); priv_ep->flags |= EP_CLAIMED; priv_ep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; spin_unlock_irqrestore(&priv_dev->lock, flags); return &priv_ep->endpoint; } /** * cdns3_gadget_ep_alloc_request - Allocates request * @ep: endpoint object associated with request * @gfp_flags: gfp flags * * Returns allocated request address, NULL on allocation error */ struct usb_request *cdns3_gadget_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_request *priv_req; priv_req = kzalloc(sizeof(*priv_req), gfp_flags); if (!priv_req) return NULL; priv_req->priv_ep = priv_ep; trace_cdns3_alloc_request(priv_req); return &priv_req->request; } /** * cdns3_gadget_ep_free_request - Free memory occupied by request * @ep: endpoint object associated with request * @request: request to free memory */ void cdns3_gadget_ep_free_request(struct usb_ep *ep, struct usb_request *request) { struct cdns3_request *priv_req = to_cdns3_request(request); if (priv_req->aligned_buf) priv_req->aligned_buf->in_use = 0; trace_cdns3_free_request(priv_req); kfree(priv_req); } /** * cdns3_gadget_ep_enable - Enable endpoint * @ep: endpoint object * @desc: endpoint descriptor * * Returns 0 on success, error code elsewhere */ static int cdns3_gadget_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct cdns3_endpoint *priv_ep; struct cdns3_device *priv_dev; const struct usb_ss_ep_comp_descriptor *comp_desc; u32 reg = EP_STS_EN_TRBERREN; u32 bEndpointAddress; unsigned long flags; int enable = 1; int ret = 0; int val; if (!ep) { pr_debug("usbss: ep not configured?\n"); return -EINVAL; } priv_ep = ep_to_cdns3_ep(ep); priv_dev = priv_ep->cdns3_dev; comp_desc = priv_ep->endpoint.comp_desc; if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) { dev_dbg(priv_dev->dev, "usbss: invalid parameters\n"); return -EINVAL; } if (!desc->wMaxPacketSize) { dev_err(priv_dev->dev, "usbss: missing wMaxPacketSize\n"); return -EINVAL; } if (dev_WARN_ONCE(priv_dev->dev, priv_ep->flags & EP_ENABLED, "%s is already enabled\n", priv_ep->name)) return 0; spin_lock_irqsave(&priv_dev->lock, flags); priv_ep->endpoint.desc = desc; priv_ep->type = usb_endpoint_type(desc); priv_ep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; if (priv_ep->interval > ISO_MAX_INTERVAL && priv_ep->type == USB_ENDPOINT_XFER_ISOC) { dev_err(priv_dev->dev, "Driver is limited to %d period\n", ISO_MAX_INTERVAL); ret = -EINVAL; goto exit; } bEndpointAddress = priv_ep->num | priv_ep->dir; cdns3_select_ep(priv_dev, bEndpointAddress); /* * For some versions of controller at some point during ISO OUT traffic * DMA reads Transfer Ring for the EP which has never got doorbell. * This issue was detected only on simulation, but to avoid this issue * driver add protection against it. To fix it driver enable ISO OUT * endpoint before setting DRBL. This special treatment of ISO OUT * endpoints are recommended by controller specification. */ if (priv_ep->type == USB_ENDPOINT_XFER_ISOC && !priv_ep->dir) enable = 0; if (usb_ss_max_streams(comp_desc) && usb_endpoint_xfer_bulk(desc)) { /* * Enable stream support (SS mode) related interrupts * in EP_STS_EN Register */ if (priv_dev->gadget.speed >= USB_SPEED_SUPER) { reg |= EP_STS_EN_IOTEN | EP_STS_EN_PRIMEEEN | EP_STS_EN_SIDERREN | EP_STS_EN_MD_EXITEN | EP_STS_EN_STREAMREN; priv_ep->use_streams = true; ret = cdns3_ep_config(priv_ep, enable); priv_dev->using_streams |= true; } } else { ret = cdns3_ep_config(priv_ep, enable); } if (ret) goto exit; ret = cdns3_allocate_trb_pool(priv_ep); if (ret) goto exit; bEndpointAddress = priv_ep->num | priv_ep->dir; cdns3_select_ep(priv_dev, bEndpointAddress); trace_cdns3_gadget_ep_enable(priv_ep); writel(EP_CMD_EPRST, &priv_dev->regs->ep_cmd); ret = readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & (EP_CMD_CSTALL | EP_CMD_EPRST)), 1, 1000); if (unlikely(ret)) { cdns3_free_trb_pool(priv_ep); ret = -EINVAL; goto exit; } /* enable interrupt for selected endpoint */ cdns3_set_register_bit(&priv_dev->regs->ep_ien, BIT(cdns3_ep_addr_to_index(bEndpointAddress))); if (priv_dev->dev_ver < DEV_VER_V2) cdns3_wa2_enable_detection(priv_dev, priv_ep, reg); writel(reg, &priv_dev->regs->ep_sts_en); ep->desc = desc; priv_ep->flags &= ~(EP_PENDING_REQUEST | EP_STALLED | EP_STALL_PENDING | EP_QUIRK_ISO_OUT_EN | EP_QUIRK_EXTRA_BUF_EN); priv_ep->flags |= EP_ENABLED | EP_UPDATE_EP_TRBADDR; priv_ep->wa1_set = 0; priv_ep->enqueue = 0; priv_ep->dequeue = 0; reg = readl(&priv_dev->regs->ep_sts); priv_ep->pcs = !!EP_STS_CCS(reg); priv_ep->ccs = !!EP_STS_CCS(reg); /* one TRB is reserved for link TRB used in DMULT mode*/ priv_ep->free_trbs = priv_ep->num_trbs - 1; exit: spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * cdns3_gadget_ep_disable - Disable endpoint * @ep: endpoint object * * Returns 0 on success, error code elsewhere */ static int cdns3_gadget_ep_disable(struct usb_ep *ep) { struct cdns3_endpoint *priv_ep; struct cdns3_request *priv_req; struct cdns3_device *priv_dev; struct usb_request *request; unsigned long flags; int ret = 0; u32 ep_cfg; int val; if (!ep) { pr_err("usbss: invalid parameters\n"); return -EINVAL; } priv_ep = ep_to_cdns3_ep(ep); priv_dev = priv_ep->cdns3_dev; if (dev_WARN_ONCE(priv_dev->dev, !(priv_ep->flags & EP_ENABLED), "%s is already disabled\n", priv_ep->name)) return 0; spin_lock_irqsave(&priv_dev->lock, flags); trace_cdns3_gadget_ep_disable(priv_ep); cdns3_select_ep(priv_dev, ep->desc->bEndpointAddress); ep_cfg = readl(&priv_dev->regs->ep_cfg); ep_cfg &= ~EP_CFG_ENABLE; writel(ep_cfg, &priv_dev->regs->ep_cfg); /** * Driver needs some time before resetting endpoint. * It need waits for clearing DBUSY bit or for timeout expired. * 10us is enough time for controller to stop transfer. */ readl_poll_timeout_atomic(&priv_dev->regs->ep_sts, val, !(val & EP_STS_DBUSY), 1, 10); writel(EP_CMD_EPRST, &priv_dev->regs->ep_cmd); readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & (EP_CMD_CSTALL | EP_CMD_EPRST)), 1, 1000); if (unlikely(ret)) dev_err(priv_dev->dev, "Timeout: %s resetting failed.\n", priv_ep->name); while (!list_empty(&priv_ep->pending_req_list)) { request = cdns3_next_request(&priv_ep->pending_req_list); cdns3_gadget_giveback(priv_ep, to_cdns3_request(request), -ESHUTDOWN); } while (!list_empty(&priv_ep->wa2_descmiss_req_list)) { priv_req = cdns3_next_priv_request(&priv_ep->wa2_descmiss_req_list); kfree(priv_req->request.buf); cdns3_gadget_ep_free_request(&priv_ep->endpoint, &priv_req->request); list_del_init(&priv_req->list); --priv_ep->wa2_counter; } while (!list_empty(&priv_ep->deferred_req_list)) { request = cdns3_next_request(&priv_ep->deferred_req_list); cdns3_gadget_giveback(priv_ep, to_cdns3_request(request), -ESHUTDOWN); } priv_ep->descmis_req = NULL; ep->desc = NULL; priv_ep->flags &= ~EP_ENABLED; priv_ep->use_streams = false; spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * __cdns3_gadget_ep_queue - Transfer data on endpoint * @ep: endpoint object * @request: request object * @gfp_flags: gfp flags * * Returns 0 on success, error code elsewhere */ static int __cdns3_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct cdns3_request *priv_req; int ret = 0; request->actual = 0; request->status = -EINPROGRESS; priv_req = to_cdns3_request(request); trace_cdns3_ep_queue(priv_req); if (priv_dev->dev_ver < DEV_VER_V2) { ret = cdns3_wa2_gadget_ep_queue(priv_dev, priv_ep, priv_req); if (ret == EINPROGRESS) return 0; } ret = cdns3_prepare_aligned_request_buf(priv_req); if (ret < 0) return ret; if (likely(!(priv_req->flags & REQUEST_UNALIGNED))) { ret = usb_gadget_map_request_by_dev(priv_dev->sysdev, request, usb_endpoint_dir_in(ep->desc)); if (ret) return ret; } list_add_tail(&request->list, &priv_ep->deferred_req_list); /* * For stream capable endpoint if prime irq flag is set then only start * request. * If hardware endpoint configuration has not been set yet then * just queue request in deferred list. Transfer will be started in * cdns3_set_hw_configuration. */ if (!request->stream_id) { if (priv_dev->hw_configured_flag && !(priv_ep->flags & EP_STALLED) && !(priv_ep->flags & EP_STALL_PENDING)) cdns3_start_all_request(priv_dev, priv_ep); } else { if (priv_dev->hw_configured_flag && priv_ep->prime_flag) cdns3_start_all_request(priv_dev, priv_ep); } return 0; } static int cdns3_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags) { struct usb_request *zlp_request; struct cdns3_endpoint *priv_ep; struct cdns3_device *priv_dev; unsigned long flags; int ret; if (!request || !ep) return -EINVAL; priv_ep = ep_to_cdns3_ep(ep); priv_dev = priv_ep->cdns3_dev; spin_lock_irqsave(&priv_dev->lock, flags); ret = __cdns3_gadget_ep_queue(ep, request, gfp_flags); if (ret == 0 && request->zero && request->length && (request->length % ep->maxpacket == 0)) { struct cdns3_request *priv_req; zlp_request = cdns3_gadget_ep_alloc_request(ep, GFP_ATOMIC); zlp_request->buf = priv_dev->zlp_buf; zlp_request->length = 0; priv_req = to_cdns3_request(zlp_request); priv_req->flags |= REQUEST_ZLP; dev_dbg(priv_dev->dev, "Queuing ZLP for endpoint: %s\n", priv_ep->name); ret = __cdns3_gadget_ep_queue(ep, zlp_request, gfp_flags); } spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * cdns3_gadget_ep_dequeue - Remove request from transfer queue * @ep: endpoint object associated with request * @request: request object * * Returns 0 on success, error code elsewhere */ int cdns3_gadget_ep_dequeue(struct usb_ep *ep, struct usb_request *request) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_device *priv_dev; struct usb_request *req, *req_temp; struct cdns3_request *priv_req; struct cdns3_trb *link_trb; u8 req_on_hw_ring = 0; unsigned long flags; int ret = 0; int val; if (!ep || !request || !ep->desc) return -EINVAL; priv_dev = priv_ep->cdns3_dev; spin_lock_irqsave(&priv_dev->lock, flags); priv_req = to_cdns3_request(request); trace_cdns3_ep_dequeue(priv_req); cdns3_select_ep(priv_dev, ep->desc->bEndpointAddress); list_for_each_entry_safe(req, req_temp, &priv_ep->pending_req_list, list) { if (request == req) { req_on_hw_ring = 1; goto found; } } list_for_each_entry_safe(req, req_temp, &priv_ep->deferred_req_list, list) { if (request == req) goto found; } goto not_found; found: link_trb = priv_req->trb; /* Update ring only if removed request is on pending_req_list list */ if (req_on_hw_ring && link_trb) { /* Stop DMA */ writel(EP_CMD_DFLUSH, &priv_dev->regs->ep_cmd); /* wait for DFLUSH cleared */ readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & EP_CMD_DFLUSH), 1, 1000); link_trb->buffer = cpu_to_le32(TRB_BUFFER(priv_ep->trb_pool_dma + ((priv_req->end_trb + 1) * TRB_SIZE))); link_trb->control = cpu_to_le32((le32_to_cpu(link_trb->control) & TRB_CYCLE) | TRB_TYPE(TRB_LINK) | TRB_CHAIN); if (priv_ep->wa1_trb == priv_req->trb) cdns3_wa1_restore_cycle_bit(priv_ep); } cdns3_gadget_giveback(priv_ep, priv_req, -ECONNRESET); req = cdns3_next_request(&priv_ep->pending_req_list); if (req) cdns3_rearm_transfer(priv_ep, 1); not_found: spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } /** * __cdns3_gadget_ep_set_halt - Sets stall on selected endpoint * Should be called after acquiring spin_lock and selecting ep * @priv_ep: endpoint object to set stall on. */ void __cdns3_gadget_ep_set_halt(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; trace_cdns3_halt(priv_ep, 1, 0); if (!(priv_ep->flags & EP_STALLED)) { u32 ep_sts_reg = readl(&priv_dev->regs->ep_sts); if (!(ep_sts_reg & EP_STS_DBUSY)) cdns3_ep_stall_flush(priv_ep); else priv_ep->flags |= EP_STALL_PENDING; } } /** * __cdns3_gadget_ep_clear_halt - Clears stall on selected endpoint * Should be called after acquiring spin_lock and selecting ep * @priv_ep: endpoint object to clear stall on */ int __cdns3_gadget_ep_clear_halt(struct cdns3_endpoint *priv_ep) { struct cdns3_device *priv_dev = priv_ep->cdns3_dev; struct usb_request *request; struct cdns3_request *priv_req; struct cdns3_trb *trb = NULL; struct cdns3_trb trb_tmp; int ret; int val; trace_cdns3_halt(priv_ep, 0, 0); request = cdns3_next_request(&priv_ep->pending_req_list); if (request) { priv_req = to_cdns3_request(request); trb = priv_req->trb; if (trb) { trb_tmp = *trb; trb->control = trb->control ^ cpu_to_le32(TRB_CYCLE); } } writel(EP_CMD_CSTALL | EP_CMD_EPRST, &priv_dev->regs->ep_cmd); /* wait for EPRST cleared */ ret = readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & EP_CMD_EPRST), 1, 100); if (ret) return -EINVAL; priv_ep->flags &= ~(EP_STALLED | EP_STALL_PENDING); if (request) { if (trb) *trb = trb_tmp; cdns3_rearm_transfer(priv_ep, 1); } cdns3_start_all_request(priv_dev, priv_ep); return ret; } /** * cdns3_gadget_ep_set_halt - Sets/clears stall on selected endpoint * @ep: endpoint object to set/clear stall on * @value: 1 for set stall, 0 for clear stall * * Returns 0 on success, error code elsewhere */ int cdns3_gadget_ep_set_halt(struct usb_ep *ep, int value) { struct cdns3_endpoint *priv_ep = ep_to_cdns3_ep(ep); struct cdns3_device *priv_dev = priv_ep->cdns3_dev; unsigned long flags; int ret = 0; if (!(priv_ep->flags & EP_ENABLED)) return -EPERM; spin_lock_irqsave(&priv_dev->lock, flags); cdns3_select_ep(priv_dev, ep->desc->bEndpointAddress); if (!value) { priv_ep->flags &= ~EP_WEDGE; ret = __cdns3_gadget_ep_clear_halt(priv_ep); } else { __cdns3_gadget_ep_set_halt(priv_ep); } spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } extern const struct usb_ep_ops cdns3_gadget_ep0_ops; static const struct usb_ep_ops cdns3_gadget_ep_ops = { .enable = cdns3_gadget_ep_enable, .disable = cdns3_gadget_ep_disable, .alloc_request = cdns3_gadget_ep_alloc_request, .free_request = cdns3_gadget_ep_free_request, .queue = cdns3_gadget_ep_queue, .dequeue = cdns3_gadget_ep_dequeue, .set_halt = cdns3_gadget_ep_set_halt, .set_wedge = cdns3_gadget_ep_set_wedge, }; /** * cdns3_gadget_get_frame - Returns number of actual ITP frame * @gadget: gadget object * * Returns number of actual ITP frame */ static int cdns3_gadget_get_frame(struct usb_gadget *gadget) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); return readl(&priv_dev->regs->usb_itpn); } int __cdns3_gadget_wakeup(struct cdns3_device *priv_dev) { enum usb_device_speed speed; speed = cdns3_get_speed(priv_dev); if (speed >= USB_SPEED_SUPER) return 0; /* Start driving resume signaling to indicate remote wakeup. */ writel(USB_CONF_LGO_L0, &priv_dev->regs->usb_conf); return 0; } static int cdns3_gadget_wakeup(struct usb_gadget *gadget) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); unsigned long flags; int ret = 0; spin_lock_irqsave(&priv_dev->lock, flags); ret = __cdns3_gadget_wakeup(priv_dev); spin_unlock_irqrestore(&priv_dev->lock, flags); return ret; } static int cdns3_gadget_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); unsigned long flags; spin_lock_irqsave(&priv_dev->lock, flags); priv_dev->is_selfpowered = !!is_selfpowered; spin_unlock_irqrestore(&priv_dev->lock, flags); return 0; } static int cdns3_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); if (is_on) { writel(USB_CONF_DEVEN, &priv_dev->regs->usb_conf); } else { writel(~0, &priv_dev->regs->ep_ists); writel(~0, &priv_dev->regs->usb_ists); writel(USB_CONF_DEVDS, &priv_dev->regs->usb_conf); } return 0; } static void cdns3_gadget_config(struct cdns3_device *priv_dev) { struct cdns3_usb_regs __iomem *regs = priv_dev->regs; u32 reg; cdns3_ep0_config(priv_dev); /* enable interrupts for endpoint 0 (in and out) */ writel(EP_IEN_EP_OUT0 | EP_IEN_EP_IN0, &regs->ep_ien); /* * Driver needs to modify LFPS minimal U1 Exit time for DEV_VER_TI_V1 * revision of controller. */ if (priv_dev->dev_ver == DEV_VER_TI_V1) { reg = readl(&regs->dbg_link1); reg &= ~DBG_LINK1_LFPS_MIN_GEN_U1_EXIT_MASK; reg |= DBG_LINK1_LFPS_MIN_GEN_U1_EXIT(0x55) | DBG_LINK1_LFPS_MIN_GEN_U1_EXIT_SET; writel(reg, &regs->dbg_link1); } /* * By default some platforms has set protected access to memory. * This cause problem with cache, so driver restore non-secure * access to memory. */ reg = readl(&regs->dma_axi_ctrl); reg |= DMA_AXI_CTRL_MARPROT(DMA_AXI_CTRL_NON_SECURE) | DMA_AXI_CTRL_MAWPROT(DMA_AXI_CTRL_NON_SECURE); writel(reg, &regs->dma_axi_ctrl); /* enable generic interrupt*/ writel(USB_IEN_INIT, &regs->usb_ien); writel(USB_CONF_CLK2OFFDS | USB_CONF_L1DS, &regs->usb_conf); /* keep Fast Access bit */ writel(PUSB_PWR_FST_REG_ACCESS, &priv_dev->regs->usb_pwr); cdns3_configure_dmult(priv_dev, NULL); } /** * cdns3_gadget_udc_start - Gadget start * @gadget: gadget object * @driver: driver which operates on this gadget * * Returns 0 on success, error code elsewhere */ static int cdns3_gadget_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); unsigned long flags; enum usb_device_speed max_speed = driver->max_speed; spin_lock_irqsave(&priv_dev->lock, flags); priv_dev->gadget_driver = driver; /* limit speed if necessary */ max_speed = min(driver->max_speed, gadget->max_speed); switch (max_speed) { case USB_SPEED_FULL: writel(USB_CONF_SFORCE_FS, &priv_dev->regs->usb_conf); writel(USB_CONF_USB3DIS, &priv_dev->regs->usb_conf); break; case USB_SPEED_HIGH: writel(USB_CONF_USB3DIS, &priv_dev->regs->usb_conf); break; case USB_SPEED_SUPER: break; default: dev_err(priv_dev->dev, "invalid maximum_speed parameter %d\n", max_speed); fallthrough; case USB_SPEED_UNKNOWN: /* default to superspeed */ max_speed = USB_SPEED_SUPER; break; } cdns3_gadget_config(priv_dev); spin_unlock_irqrestore(&priv_dev->lock, flags); return 0; } /** * cdns3_gadget_udc_stop - Stops gadget * @gadget: gadget object * * Returns 0 */ static int cdns3_gadget_udc_stop(struct usb_gadget *gadget) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); struct cdns3_endpoint *priv_ep; u32 bEndpointAddress; struct usb_ep *ep; int val; priv_dev->gadget_driver = NULL; priv_dev->onchip_used_size = 0; priv_dev->out_mem_is_allocated = 0; priv_dev->gadget.speed = USB_SPEED_UNKNOWN; list_for_each_entry(ep, &priv_dev->gadget.ep_list, ep_list) { priv_ep = ep_to_cdns3_ep(ep); bEndpointAddress = priv_ep->num | priv_ep->dir; cdns3_select_ep(priv_dev, bEndpointAddress); writel(EP_CMD_EPRST, &priv_dev->regs->ep_cmd); readl_poll_timeout_atomic(&priv_dev->regs->ep_cmd, val, !(val & EP_CMD_EPRST), 1, 100); priv_ep->flags &= ~EP_CLAIMED; } /* disable interrupt for device */ writel(0, &priv_dev->regs->usb_ien); writel(0, &priv_dev->regs->usb_pwr); writel(USB_CONF_DEVDS, &priv_dev->regs->usb_conf); return 0; } /** * cdns3_gadget_check_config - ensure cdns3 can support the USB configuration * @gadget: pointer to the USB gadget * * Used to record the maximum number of endpoints being used in a USB composite * device. (across all configurations) This is to be used in the calculation * of the TXFIFO sizes when resizing internal memory for individual endpoints. * It will help ensured that the resizing logic reserves enough space for at * least one max packet. */ static int cdns3_gadget_check_config(struct usb_gadget *gadget) { struct cdns3_device *priv_dev = gadget_to_cdns3_device(gadget); struct cdns3_endpoint *priv_ep; struct usb_ep *ep; int n_in = 0; int total; list_for_each_entry(ep, &gadget->ep_list, ep_list) { priv_ep = ep_to_cdns3_ep(ep); if ((priv_ep->flags & EP_CLAIMED) && (ep->address & USB_DIR_IN)) n_in++; } /* 2KB are reserved for EP0, 1KB for out*/ total = 2 + n_in + 1; if (total > priv_dev->onchip_buffers) return -ENOMEM; priv_dev->ep_buf_size = priv_dev->ep_iso_burst = (priv_dev->onchip_buffers - 2) / (n_in + 1); return 0; } static const struct usb_gadget_ops cdns3_gadget_ops = { .get_frame = cdns3_gadget_get_frame, .wakeup = cdns3_gadget_wakeup, .set_selfpowered = cdns3_gadget_set_selfpowered, .pullup = cdns3_gadget_pullup, .udc_start = cdns3_gadget_udc_start, .udc_stop = cdns3_gadget_udc_stop, .match_ep = cdns3_gadget_match_ep, .check_config = cdns3_gadget_check_config, }; static void cdns3_free_all_eps(struct cdns3_device *priv_dev) { int i; /* ep0 OUT point to ep0 IN. */ priv_dev->eps[16] = NULL; for (i = 0; i < CDNS3_ENDPOINTS_MAX_COUNT; i++) if (priv_dev->eps[i]) { cdns3_free_trb_pool(priv_dev->eps[i]); devm_kfree(priv_dev->dev, priv_dev->eps[i]); } } /** * cdns3_init_eps - Initializes software endpoints of gadget * @priv_dev: extended gadget object * * Returns 0 on success, error code elsewhere */ static int cdns3_init_eps(struct cdns3_device *priv_dev) { u32 ep_enabled_reg, iso_ep_reg; struct cdns3_endpoint *priv_ep; int ep_dir, ep_number; u32 ep_mask; int ret = 0; int i; /* Read it from USB_CAP3 to USB_CAP5 */ ep_enabled_reg = readl(&priv_dev->regs->usb_cap3); iso_ep_reg = readl(&priv_dev->regs->usb_cap4); dev_dbg(priv_dev->dev, "Initializing non-zero endpoints\n"); for (i = 0; i < CDNS3_ENDPOINTS_MAX_COUNT; i++) { ep_dir = i >> 4; /* i div 16 */ ep_number = i & 0xF; /* i % 16 */ ep_mask = BIT(i); if (!(ep_enabled_reg & ep_mask)) continue; if (ep_dir && !ep_number) { priv_dev->eps[i] = priv_dev->eps[0]; continue; } priv_ep = devm_kzalloc(priv_dev->dev, sizeof(*priv_ep), GFP_KERNEL); if (!priv_ep) goto err; /* set parent of endpoint object */ priv_ep->cdns3_dev = priv_dev; priv_dev->eps[i] = priv_ep; priv_ep->num = ep_number; priv_ep->dir = ep_dir ? USB_DIR_IN : USB_DIR_OUT; if (!ep_number) { ret = cdns3_init_ep0(priv_dev, priv_ep); if (ret) { dev_err(priv_dev->dev, "Failed to init ep0\n"); goto err; } } else { snprintf(priv_ep->name, sizeof(priv_ep->name), "ep%d%s", ep_number, !!ep_dir ? "in" : "out"); priv_ep->endpoint.name = priv_ep->name; usb_ep_set_maxpacket_limit(&priv_ep->endpoint, CDNS3_EP_MAX_PACKET_LIMIT); priv_ep->endpoint.max_streams = CDNS3_EP_MAX_STREAMS; priv_ep->endpoint.ops = &cdns3_gadget_ep_ops; if (ep_dir) priv_ep->endpoint.caps.dir_in = 1; else priv_ep->endpoint.caps.dir_out = 1; if (iso_ep_reg & ep_mask) priv_ep->endpoint.caps.type_iso = 1; priv_ep->endpoint.caps.type_bulk = 1; priv_ep->endpoint.caps.type_int = 1; list_add_tail(&priv_ep->endpoint.ep_list, &priv_dev->gadget.ep_list); } priv_ep->flags = 0; dev_dbg(priv_dev->dev, "Initialized %s support: %s %s\n", priv_ep->name, priv_ep->endpoint.caps.type_bulk ? "BULK, INT" : "", priv_ep->endpoint.caps.type_iso ? "ISO" : ""); INIT_LIST_HEAD(&priv_ep->pending_req_list); INIT_LIST_HEAD(&priv_ep->deferred_req_list); INIT_LIST_HEAD(&priv_ep->wa2_descmiss_req_list); } return 0; err: cdns3_free_all_eps(priv_dev); return -ENOMEM; } static void cdns3_gadget_release(struct device *dev) { struct cdns3_device *priv_dev = container_of(dev, struct cdns3_device, gadget.dev); kfree(priv_dev); } static void cdns3_gadget_exit(struct cdns *cdns) { struct cdns3_device *priv_dev; priv_dev = cdns->gadget_dev; pm_runtime_mark_last_busy(cdns->dev); pm_runtime_put_autosuspend(cdns->dev); usb_del_gadget(&priv_dev->gadget); devm_free_irq(cdns->dev, cdns->dev_irq, priv_dev); cdns3_free_all_eps(priv_dev); while (!list_empty(&priv_dev->aligned_buf_list)) { struct cdns3_aligned_buf *buf; buf = cdns3_next_align_buf(&priv_dev->aligned_buf_list); dma_free_noncoherent(priv_dev->sysdev, buf->size, buf->buf, buf->dma, buf->dir); list_del(&buf->list); kfree(buf); } dma_free_coherent(priv_dev->sysdev, 8, priv_dev->setup_buf, priv_dev->setup_dma); dma_pool_destroy(priv_dev->eps_dma_pool); kfree(priv_dev->zlp_buf); usb_put_gadget(&priv_dev->gadget); cdns->gadget_dev = NULL; cdns_drd_gadget_off(cdns); } static int cdns3_gadget_start(struct cdns *cdns) { struct cdns3_device *priv_dev; u32 max_speed; int ret; priv_dev = kzalloc(sizeof(*priv_dev), GFP_KERNEL); if (!priv_dev) return -ENOMEM; usb_initialize_gadget(cdns->dev, &priv_dev->gadget, cdns3_gadget_release); cdns->gadget_dev = priv_dev; priv_dev->sysdev = cdns->dev; priv_dev->dev = cdns->dev; priv_dev->regs = cdns->dev_regs; device_property_read_u16(priv_dev->dev, "cdns,on-chip-buff-size", &priv_dev->onchip_buffers); if (priv_dev->onchip_buffers <= 0) { u32 reg = readl(&priv_dev->regs->usb_cap2); priv_dev->onchip_buffers = USB_CAP2_ACTUAL_MEM_SIZE(reg); } if (!priv_dev->onchip_buffers) priv_dev->onchip_buffers = 256; max_speed = usb_get_maximum_speed(cdns->dev); /* Check the maximum_speed parameter */ switch (max_speed) { case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_SUPER: break; default: dev_err(cdns->dev, "invalid maximum_speed parameter %d\n", max_speed); fallthrough; case USB_SPEED_UNKNOWN: /* default to superspeed */ max_speed = USB_SPEED_SUPER; break; } /* fill gadget fields */ priv_dev->gadget.max_speed = max_speed; priv_dev->gadget.speed = USB_SPEED_UNKNOWN; priv_dev->gadget.ops = &cdns3_gadget_ops; priv_dev->gadget.name = "usb-ss-gadget"; priv_dev->gadget.quirk_avoids_skb_reserve = 1; priv_dev->gadget.irq = cdns->dev_irq; spin_lock_init(&priv_dev->lock); INIT_WORK(&priv_dev->pending_status_wq, cdns3_pending_setup_status_handler); INIT_WORK(&priv_dev->aligned_buf_wq, cdns3_free_aligned_request_buf); /* initialize endpoint container */ INIT_LIST_HEAD(&priv_dev->gadget.ep_list); INIT_LIST_HEAD(&priv_dev->aligned_buf_list); priv_dev->eps_dma_pool = dma_pool_create("cdns3_eps_dma_pool", priv_dev->sysdev, TRB_RING_SIZE, 8, 0); if (!priv_dev->eps_dma_pool) { dev_err(priv_dev->dev, "Failed to create TRB dma pool\n"); ret = -ENOMEM; goto err1; } ret = cdns3_init_eps(priv_dev); if (ret) { dev_err(priv_dev->dev, "Failed to create endpoints\n"); goto err1; } /* allocate memory for setup packet buffer */ priv_dev->setup_buf = dma_alloc_coherent(priv_dev->sysdev, 8, &priv_dev->setup_dma, GFP_DMA); if (!priv_dev->setup_buf) { ret = -ENOMEM; goto err2; } priv_dev->dev_ver = readl(&priv_dev->regs->usb_cap6); dev_dbg(priv_dev->dev, "Device Controller version: %08x\n", readl(&priv_dev->regs->usb_cap6)); dev_dbg(priv_dev->dev, "USB Capabilities:: %08x\n", readl(&priv_dev->regs->usb_cap1)); dev_dbg(priv_dev->dev, "On-Chip memory configuration: %08x\n", readl(&priv_dev->regs->usb_cap2)); priv_dev->dev_ver = GET_DEV_BASE_VERSION(priv_dev->dev_ver); if (priv_dev->dev_ver >= DEV_VER_V2) priv_dev->gadget.sg_supported = 1; priv_dev->zlp_buf = kzalloc(CDNS3_EP_ZLP_BUF_SIZE, GFP_KERNEL); if (!priv_dev->zlp_buf) { ret = -ENOMEM; goto err3; } /* add USB gadget device */ ret = usb_add_gadget(&priv_dev->gadget); if (ret < 0) { dev_err(priv_dev->dev, "Failed to add gadget\n"); goto err4; } return 0; err4: kfree(priv_dev->zlp_buf); err3: dma_free_coherent(priv_dev->sysdev, 8, priv_dev->setup_buf, priv_dev->setup_dma); err2: cdns3_free_all_eps(priv_dev); err1: dma_pool_destroy(priv_dev->eps_dma_pool); usb_put_gadget(&priv_dev->gadget); cdns->gadget_dev = NULL; return ret; } static int __cdns3_gadget_init(struct cdns *cdns) { int ret = 0; /* Ensure 32-bit DMA Mask in case we switched back from Host mode */ ret = dma_set_mask_and_coherent(cdns->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(cdns->dev, "Failed to set dma mask: %d\n", ret); return ret; } cdns_drd_gadget_on(cdns); pm_runtime_get_sync(cdns->dev); ret = cdns3_gadget_start(cdns); if (ret) { pm_runtime_put_sync(cdns->dev); return ret; } /* * Because interrupt line can be shared with other components in * driver it can't use IRQF_ONESHOT flag here. */ ret = devm_request_threaded_irq(cdns->dev, cdns->dev_irq, cdns3_device_irq_handler, cdns3_device_thread_irq_handler, IRQF_SHARED, dev_name(cdns->dev), cdns->gadget_dev); if (ret) goto err0; return 0; err0: cdns3_gadget_exit(cdns); return ret; } static int cdns3_gadget_suspend(struct cdns *cdns, bool do_wakeup) __must_hold(&cdns->lock) { struct cdns3_device *priv_dev = cdns->gadget_dev; spin_unlock(&cdns->lock); cdns3_disconnect_gadget(priv_dev); spin_lock(&cdns->lock); priv_dev->gadget.speed = USB_SPEED_UNKNOWN; usb_gadget_set_state(&priv_dev->gadget, USB_STATE_NOTATTACHED); cdns3_hw_reset_eps_config(priv_dev); /* disable interrupt for device */ writel(0, &priv_dev->regs->usb_ien); return 0; } static int cdns3_gadget_resume(struct cdns *cdns, bool hibernated) { struct cdns3_device *priv_dev = cdns->gadget_dev; if (!priv_dev->gadget_driver) return 0; cdns3_gadget_config(priv_dev); if (hibernated) writel(USB_CONF_DEVEN, &priv_dev->regs->usb_conf); return 0; } /** * cdns3_gadget_init - initialize device structure * * @cdns: cdns instance * * This function initializes the gadget. */ int cdns3_gadget_init(struct cdns *cdns) { struct cdns_role_driver *rdrv; rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); if (!rdrv) return -ENOMEM; rdrv->start = __cdns3_gadget_init; rdrv->stop = cdns3_gadget_exit; rdrv->suspend = cdns3_gadget_suspend; rdrv->resume = cdns3_gadget_resume; rdrv->state = CDNS_ROLE_STATE_INACTIVE; rdrv->name = "gadget"; cdns->roles[USB_ROLE_DEVICE] = rdrv; return 0; }
linux-master
drivers/usb/cdns3/cdns3-gadget.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak <[email protected]> * * Code based on Linux XHCI driver. * Origin: Copyright (C) 2008 Intel Corp */ /* * Ring initialization rules: * 1. Each segment is initialized to zero, except for link TRBs. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or * Consumer Cycle State (CCS), depending on ring function. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. * * Ring behavior rules: * 1. A ring is empty if enqueue == dequeue. This means there will always be at * least one free TRB in the ring. This is useful if you want to turn that * into a link TRB and expand the ring. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a * link TRB, then load the pointer with the address in the link TRB. If the * link TRB had its toggle bit set, you may need to update the ring cycle * state (see cycle bit rules). You may have to do this multiple times * until you reach a non-link TRB. * 3. A ring is full if enqueue++ (for the definition of increment above) * equals the dequeue pointer. * * Cycle bit rules: * 1. When a consumer increments a dequeue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * 2. When a producer increments an enqueue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * * Producer rules: * 1. Check if ring is full before you enqueue. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. * Update enqueue pointer between each write (which may update the ring * cycle state). * 3. Notify consumer. If SW is producer, it rings the doorbell for command * and endpoint rings. If controller is the producer for the event ring, * and it generates an interrupt according to interrupt modulation rules. * * Consumer rules: * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, * the TRB is owned by the consumer. * 2. Update dequeue pointer (which may update the ring cycle state) and * continue processing TRBs until you reach a TRB which is not owned by you. * 3. Notify the producer. SW is the consumer for the event ring, and it * updates event ring dequeue pointer. Controller is the consumer for the * command and endpoint rings; it generates events on the event ring * for these. */ #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/irq.h> #include "cdnsp-trace.h" #include "cdnsp-gadget.h" /* * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA * address of the TRB. */ dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg, union cdnsp_trb *trb) { unsigned long segment_offset = trb - seg->trbs; if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT) return 0; return seg->dma + (segment_offset * sizeof(*trb)); } static bool cdnsp_trb_is_noop(union cdnsp_trb *trb) { return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); } static bool cdnsp_trb_is_link(union cdnsp_trb *trb) { return TRB_TYPE_LINK_LE32(trb->link.control); } bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb) { return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; } bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring, struct cdnsp_segment *seg, union cdnsp_trb *trb) { return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); } static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb) { return le32_to_cpu(trb->link.control) & LINK_TOGGLE; } static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type) { if (cdnsp_trb_is_link(trb)) { /* Unchain chained link TRBs. */ trb->link.control &= cpu_to_le32(~TRB_CHAIN); } else { trb->generic.field[0] = 0; trb->generic.field[1] = 0; trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB. */ trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); } } /* * Updates trb to point to the next TRB in the ring, and updates seg if the next * TRB is in a new segment. This does not skip over link TRBs, and it does not * effect the ring dequeue or enqueue pointers. */ static void cdnsp_next_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring, struct cdnsp_segment **seg, union cdnsp_trb **trb) { if (cdnsp_trb_is_link(*trb)) { *seg = (*seg)->next; *trb = ((*seg)->trbs); } else { (*trb)++; } } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. */ void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring) { /* event ring doesn't have link trbs, check for last trb. */ if (ring->type == TYPE_EVENT) { if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) { ring->dequeue++; goto out; } if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) ring->cycle_state ^= 1; ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; goto out; } /* All other rings have link trbs. */ if (!cdnsp_trb_is_link(ring->dequeue)) { ring->dequeue++; ring->num_trbs_free++; } while (cdnsp_trb_is_link(ring->dequeue)) { ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; } out: trace_cdnsp_inc_deq(ring); } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. * * If we've just enqueued a TRB that is in the middle of a TD (meaning the * chain bit is set), then set the chain bit in all the following link TRBs. * If we've enqueued the last TRB in a TD, make sure the following link TRBs * have their chain bit cleared (so that each Link TRB is a separate TD). * * @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell. */ static void cdnsp_inc_enq(struct cdnsp_device *pdev, struct cdnsp_ring *ring, bool more_trbs_coming) { union cdnsp_trb *next; u32 chain; chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; /* If this is not event ring, there is one less usable TRB. */ if (!cdnsp_trb_is_link(ring->enqueue)) ring->num_trbs_free--; next = ++(ring->enqueue); /* Update the dequeue pointer further if that was a link TRB */ while (cdnsp_trb_is_link(next)) { /* * If the caller doesn't plan on enqueuing more TDs before * ringing the doorbell, then we don't want to give the link TRB * to the hardware just yet. We'll give the link TRB back in * cdnsp_prepare_ring() just before we enqueue the TD at the * top of the ring. */ if (!chain && !more_trbs_coming) break; next->link.control &= cpu_to_le32(~TRB_CHAIN); next->link.control |= cpu_to_le32(chain); /* Give this link TRB to the hardware */ wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (cdnsp_link_trb_toggles_cycle(next)) ring->cycle_state ^= 1; ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } trace_cdnsp_inc_enq(ring); } /* * Check to see if there's room to enqueue num_trbs on the ring and make sure * enqueue pointer will not advance into dequeue segment. */ static bool cdnsp_room_on_ring(struct cdnsp_device *pdev, struct cdnsp_ring *ring, unsigned int num_trbs) { int num_trbs_in_deq_seg; if (ring->num_trbs_free < num_trbs) return false; if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) return false; } return true; } /* * Workaround for L1: controller has issue with resuming from L1 after * setting doorbell for endpoint during L1 state. This function forces * resume signal in such case. */ static void cdnsp_force_l0_go(struct cdnsp_device *pdev) { if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable) cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0); } /* Ring the doorbell after placing a command on the ring. */ void cdnsp_ring_cmd_db(struct cdnsp_device *pdev) { writel(DB_VALUE_CMD, &pdev->dba->cmd_db); } /* * Ring the doorbell after placing a transfer on the ring. * Returns true if doorbell was set, otherwise false. */ static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int stream_id) { __le32 __iomem *reg_addr = &pdev->dba->ep_db; unsigned int ep_state = pep->ep_state; unsigned int db_value; /* * Don't ring the doorbell for this endpoint if endpoint is halted or * disabled. */ if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED)) return false; /* For stream capable endpoints driver can ring doorbell only twice. */ if (pep->ep_state & EP_HAS_STREAMS) { if (pep->stream_info.drbls_count >= 2) return false; pep->stream_info.drbls_count++; } pep->ep_state &= ~EP_STOPPED; if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE && !pdev->ep0_expect_in) db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id); else db_value = DB_VALUE(pep->idx, stream_id); trace_cdnsp_tr_drbl(pep, stream_id); writel(db_value, reg_addr); cdnsp_force_l0_go(pdev); /* Doorbell was set. */ return true; } /* * Get the right ring for the given pep and stream_id. * If the endpoint supports streams, boundary check the USB request's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int stream_id) { if (!(pep->ep_state & EP_HAS_STREAMS)) return pep->ring; if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) { dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n", pep->name, stream_id); return NULL; } return pep->stream_info.stream_rings[stream_id]; } static struct cdnsp_ring * cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev, struct cdnsp_request *preq) { return cdnsp_get_transfer_ring(pdev, preq->pep, preq->request.stream_id); } /* Ring the doorbell for any rings with pending requests. */ void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { struct cdnsp_stream_info *stream_info; unsigned int stream_id; int ret; if (pep->ep_state & EP_DIS_IN_RROGRESS) return; /* A ring has pending Request if its TD list is not empty. */ if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) { if (pep->ring && !list_empty(&pep->ring->td_list)) cdnsp_ring_ep_doorbell(pdev, pep, 0); return; } stream_info = &pep->stream_info; for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) { struct cdnsp_td *td, *td_temp; struct cdnsp_ring *ep_ring; if (stream_info->drbls_count >= 2) return; ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); if (!ep_ring) continue; if (!ep_ring->stream_active || ep_ring->stream_rejected) continue; list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, td_list) { if (td->drbl) continue; ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id); if (ret) td->drbl = 1; } } } /* * Get the hw dequeue pointer controller stopped on, either directly from the * endpoint context, or if streams are in use from the stream context. * The returned hw_dequeue contains the lowest four bits with cycle state * and possible stream context type. */ static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev, unsigned int ep_index, unsigned int stream_id) { struct cdnsp_stream_ctx *st_ctx; struct cdnsp_ep *pep; pep = &pdev->eps[stream_id]; if (pep->ep_state & EP_HAS_STREAMS) { st_ctx = &pep->stream_info.stream_ctx_array[stream_id]; return le64_to_cpu(st_ctx->stream_ring); } return le64_to_cpu(pep->out_ctx->deq); } /* * Move the controller endpoint ring dequeue pointer past cur_td. * Record the new state of the controller endpoint ring dequeue segment, * dequeue pointer, and new consumer cycle state in state. * Update internal representation of the ring's dequeue pointer. * * We do this in three jumps: * - First we update our new ring state to be the same as when the * controller stopped. * - Then we traverse the ring to find the segment that contains * the last TRB in the TD. We toggle the controller new cycle state * when we pass any link TRBs with the toggle cycle bit set. * - Finally we move the dequeue state one TRB further, toggling the cycle bit * if we've moved it past a link TRB with the toggle cycle bit set. */ static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int stream_id, struct cdnsp_td *cur_td, struct cdnsp_dequeue_state *state) { bool td_last_trb_found = false; struct cdnsp_segment *new_seg; struct cdnsp_ring *ep_ring; union cdnsp_trb *new_deq; bool cycle_found = false; u64 hw_dequeue; ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); if (!ep_ring) return; /* * Dig out the cycle state saved by the controller during the * stop endpoint command. */ hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id); new_seg = ep_ring->deq_seg; new_deq = ep_ring->dequeue; state->new_cycle_state = hw_dequeue & 0x1; state->stream_id = stream_id; /* * We want to find the pointer, segment and cycle state of the new trb * (the one after current TD's last_trb). We know the cycle state at * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are * found. */ do { if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq) == (dma_addr_t)(hw_dequeue & ~0xf)) { cycle_found = true; if (td_last_trb_found) break; } if (new_deq == cur_td->last_trb) td_last_trb_found = true; if (cycle_found && cdnsp_trb_is_link(new_deq) && cdnsp_link_trb_toggles_cycle(new_deq)) state->new_cycle_state ^= 0x1; cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq); /* Search wrapped around, bail out. */ if (new_deq == pep->ring->dequeue) { dev_err(pdev->dev, "Error: Failed finding new dequeue state\n"); state->new_deq_seg = NULL; state->new_deq_ptr = NULL; return; } } while (!cycle_found || !td_last_trb_found); state->new_deq_seg = new_seg; state->new_deq_ptr = new_deq; trace_cdnsp_new_deq_state(state); } /* * flip_cycle means flip the cycle bit of all but the first and last TRB. * (The last TRB actually points to the ring enqueue pointer, which is not part * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. */ static void cdnsp_td_to_noop(struct cdnsp_device *pdev, struct cdnsp_ring *ep_ring, struct cdnsp_td *td, bool flip_cycle) { struct cdnsp_segment *seg = td->start_seg; union cdnsp_trb *trb = td->first_trb; while (1) { cdnsp_trb_to_noop(trb, TRB_TR_NOOP); /* flip cycle if asked to */ if (flip_cycle && trb != td->first_trb && trb != td->last_trb) trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); if (trb == td->last_trb) break; cdnsp_next_trb(pdev, ep_ring, &seg, &trb); } } /* * This TD is defined by the TRBs starting at start_trb in start_seg and ending * at end_trb, which may be in another segment. If the suspect DMA address is a * TRB in this TD, this function returns that TRB's segment. Otherwise it * returns 0. */ static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev, struct cdnsp_segment *start_seg, union cdnsp_trb *start_trb, union cdnsp_trb *end_trb, dma_addr_t suspect_dma) { struct cdnsp_segment *cur_seg; union cdnsp_trb *temp_trb; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; dma_addr_t start_dma; start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb); cur_seg = start_seg; do { if (start_dma == 0) return NULL; temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1]; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb); trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma, end_trb_dma, cur_seg->dma, end_seg_dma); if (end_trb_dma > 0) { /* * The end TRB is in this segment, so suspect should * be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) { return cur_seg; } } else { /* * Case for one segment with a * TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) { return cur_seg; } } return NULL; } /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; cur_seg = cur_seg->next; start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != start_seg); return NULL; } static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev, struct cdnsp_ring *ring, struct cdnsp_td *td) { struct cdnsp_segment *seg = td->bounce_seg; struct cdnsp_request *preq; size_t len; if (!seg) return; preq = td->preq; trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs, seg->bounce_dma, 0); if (!preq->direction) { dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len, DMA_TO_DEVICE); return; } dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len, DMA_FROM_DEVICE); /* For in transfers we need to copy the data from bounce to sg */ len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs, seg->bounce_buf, seg->bounce_len, seg->bounce_offs); if (len != seg->bounce_len) dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n", len, seg->bounce_len); seg->bounce_len = 0; seg->bounce_offs = 0; } static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev, struct cdnsp_ep *pep, struct cdnsp_dequeue_state *deq_state) { struct cdnsp_ring *ep_ring; int ret; if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) { cdnsp_ring_doorbell_for_active_rings(pdev, pep); return 0; } cdnsp_queue_new_dequeue_state(pdev, pep, deq_state); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx)); trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx); /* * Update the ring's dequeue segment and dequeue pointer * to reflect the new position. */ ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id); if (cdnsp_trb_is_link(ep_ring->dequeue)) { ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } while (ep_ring->dequeue != deq_state->new_deq_ptr) { ep_ring->num_trbs_free++; ep_ring->dequeue++; if (cdnsp_trb_is_link(ep_ring->dequeue)) { if (ep_ring->dequeue == deq_state->new_deq_ptr) break; ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } } /* * Probably there was TIMEOUT during handling Set Dequeue Pointer * command. It's critical error and controller will be stopped. */ if (ret) return -ESHUTDOWN; /* Restart any rings with pending requests */ cdnsp_ring_doorbell_for_active_rings(pdev, pep); return 0; } int cdnsp_remove_request(struct cdnsp_device *pdev, struct cdnsp_request *preq, struct cdnsp_ep *pep) { struct cdnsp_dequeue_state deq_state; struct cdnsp_td *cur_td = NULL; struct cdnsp_ring *ep_ring; struct cdnsp_segment *seg; int status = -ECONNRESET; int ret = 0; u64 hw_deq; memset(&deq_state, 0, sizeof(deq_state)); trace_cdnsp_remove_request(pep->out_ctx); trace_cdnsp_remove_request_td(preq); cur_td = &preq->td; ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); /* * If we stopped on the TD we need to cancel, then we have to * move the controller endpoint ring dequeue pointer past * this TD. */ hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id); hw_deq &= ~0xf; seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb, cur_td->last_trb, hw_deq); if (seg && (pep->ep_state & EP_ENABLED)) cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id, cur_td, &deq_state); else cdnsp_td_to_noop(pdev, ep_ring, cur_td, false); /* * The event handler won't see a completion for this TD anymore, * so remove it from the endpoint ring's TD list. */ list_del_init(&cur_td->td_list); ep_ring->num_tds--; pep->stream_info.td_count--; /* * During disconnecting all endpoint will be disabled so we don't * have to worry about updating dequeue pointer. */ if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) { status = -ESHUTDOWN; ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state); } cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td); cdnsp_gadget_giveback(pep, cur_td->preq, status); return ret; } static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id) { struct cdnsp_port *port = pdev->active_port; u8 old_port = 0; if (port && port->port_num == port_id) return 0; if (port) old_port = port->port_num; if (port_id == pdev->usb2_port.port_num) { port = &pdev->usb2_port; } else if (port_id == pdev->usb3_port.port_num) { port = &pdev->usb3_port; } else { dev_err(pdev->dev, "Port event with invalid port ID %d\n", port_id); return -EINVAL; } if (port_id != old_port) { cdnsp_disable_slot(pdev); pdev->active_port = port; cdnsp_enable_slot(pdev); } if (port_id == pdev->usb2_port.port_num) cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1); else writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1), &pdev->usb3_port.regs->portpmsc); return 0; } static void cdnsp_handle_port_status(struct cdnsp_device *pdev, union cdnsp_trb *event) { struct cdnsp_port_regs __iomem *port_regs; u32 portsc, cmd_regs; bool port2 = false; u32 link_state; u32 port_id; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) dev_err(pdev->dev, "ERR: incorrect PSC event\n"); port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); if (cdnsp_update_port_id(pdev, port_id)) goto cleanup; port_regs = pdev->active_port->regs; if (port_id == pdev->usb2_port.port_num) port2 = true; new_event: portsc = readl(&port_regs->portsc); writel(cdnsp_port_state_to_neutral(portsc) | (portsc & PORT_CHANGE_BITS), &port_regs->portsc); trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc); pdev->gadget.speed = cdnsp_port_speed(portsc); link_state = portsc & PORT_PLS_MASK; /* Port Link State change detected. */ if ((portsc & PORT_PLC)) { if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) && link_state == XDEV_RESUME) { cmd_regs = readl(&pdev->op_regs->command); if (!(cmd_regs & CMD_R_S)) goto cleanup; if (DEV_SUPERSPEED_ANY(portsc)) { cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); cdnsp_resume_gadget(pdev); } } if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) && link_state == XDEV_U0) { pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING; cdnsp_force_header_wakeup(pdev, 1); cdnsp_ring_cmd_db(pdev); cdnsp_wait_for_cmd_compl(pdev); } if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 && !DEV_SUPERSPEED_ANY(portsc)) cdnsp_resume_gadget(pdev); if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3) cdnsp_suspend_gadget(pdev); pdev->link_state = link_state; } if (portsc & PORT_CSC) { /* Detach device. */ if (pdev->gadget.connected && !(portsc & PORT_CONNECT)) cdnsp_disconnect_gadget(pdev); /* Attach device. */ if (portsc & PORT_CONNECT) { if (!port2) cdnsp_irq_reset(pdev); usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED); } } /* Port reset. */ if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) { cdnsp_irq_reset(pdev); pdev->u1_allowed = 0; pdev->u2_allowed = 0; pdev->may_wakeup = 0; } if (portsc & PORT_CEC) dev_err(pdev->dev, "Port Over Current detected\n"); if (portsc & PORT_CEC) dev_err(pdev->dev, "Port Configure Error detected\n"); if (readl(&port_regs->portsc) & PORT_CHANGE_BITS) goto new_event; cleanup: cdnsp_inc_deq(pdev, pdev->event_ring); } static void cdnsp_td_cleanup(struct cdnsp_device *pdev, struct cdnsp_td *td, struct cdnsp_ring *ep_ring, int *status) { struct cdnsp_request *preq = td->preq; /* if a bounce buffer was used to align this td then unmap it */ cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td); /* * If the controller said we transferred more data than the buffer * length, Play it safe and say we didn't transfer anything. */ if (preq->request.actual > preq->request.length) { preq->request.actual = 0; *status = 0; } list_del_init(&td->td_list); ep_ring->num_tds--; preq->pep->stream_info.td_count--; cdnsp_gadget_giveback(preq->pep, preq, *status); } static void cdnsp_finish_td(struct cdnsp_device *pdev, struct cdnsp_td *td, struct cdnsp_transfer_event *event, struct cdnsp_ep *ep, int *status) { struct cdnsp_ring *ep_ring; u32 trb_comp_code; ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_SHORT_PACKET) { /* * The Endpoint Stop Command completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ return; } /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) cdnsp_inc_deq(pdev, ep_ring); cdnsp_inc_deq(pdev, ep_ring); cdnsp_td_cleanup(pdev, td, ep_ring, status); } /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev, struct cdnsp_ring *ring, union cdnsp_trb *stop_trb) { struct cdnsp_segment *seg = ring->deq_seg; union cdnsp_trb *trb = ring->dequeue; u32 sum; for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) { if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb)) sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); } return sum; } static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int stream_id, int start_cycle, struct cdnsp_generic_trb *start_trb) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); if (start_cycle) start_trb->field[3] |= cpu_to_le32(start_cycle); else start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); if ((pep->ep_state & EP_HAS_STREAMS) && !pep->stream_info.first_prime_det) { trace_cdnsp_wait_for_prime(pep, stream_id); return 0; } return cdnsp_ring_ep_doorbell(pdev, pep, stream_id); } /* * Process control tds, update USB request status and actual_length. */ static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev, struct cdnsp_td *td, union cdnsp_trb *event_trb, struct cdnsp_transfer_event *event, struct cdnsp_ep *pep, int *status) { struct cdnsp_ring *ep_ring; u32 remaining; u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3])); ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); /* * if on data stage then update the actual_length of the USB * request and flag it as set, so it won't be overwritten in the event * for the last TRB. */ if (trb_type == TRB_DATA) { td->request_length_set = true; td->preq->request.actual = td->preq->request.length - remaining; } /* at status stage */ if (!td->request_length_set) td->preq->request.actual = td->preq->request.length; if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 && pdev->three_stage_setup) { td = list_entry(ep_ring->td_list.next, struct cdnsp_td, td_list); pdev->ep0_stage = CDNSP_STATUS_STAGE; cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state, &td->last_trb->generic); return; } *status = 0; cdnsp_finish_td(pdev, td, event, pep, status); } /* * Process isochronous tds, update usb request status and actual_length. */ static void cdnsp_process_isoc_td(struct cdnsp_device *pdev, struct cdnsp_td *td, union cdnsp_trb *ep_trb, struct cdnsp_transfer_event *event, struct cdnsp_ep *pep, int status) { struct cdnsp_request *preq = td->preq; u32 remaining, requested, ep_trb_len; bool sum_trbs_for_length = false; struct cdnsp_ring *ep_ring; u32 trb_comp_code; u32 td_length; ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); requested = preq->request.length; /* handle completion code */ switch (trb_comp_code) { case COMP_SUCCESS: preq->request.status = 0; break; case COMP_SHORT_PACKET: preq->request.status = 0; sum_trbs_for_length = true; break; case COMP_ISOCH_BUFFER_OVERRUN: case COMP_BABBLE_DETECTED_ERROR: preq->request.status = -EOVERFLOW; break; case COMP_STOPPED: sum_trbs_for_length = true; break; case COMP_STOPPED_SHORT_PACKET: /* field normally containing residue now contains transferred */ preq->request.status = 0; requested = remaining; break; case COMP_STOPPED_LENGTH_INVALID: requested = 0; remaining = 0; break; default: sum_trbs_for_length = true; preq->request.status = -1; break; } if (sum_trbs_for_length) { td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb); td_length += ep_trb_len - remaining; } else { td_length = requested; } td->preq->request.actual += td_length; cdnsp_finish_td(pdev, td, event, pep, &status); } static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev, struct cdnsp_td *td, struct cdnsp_transfer_event *event, struct cdnsp_ep *pep, int status) { struct cdnsp_ring *ep_ring; ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); td->preq->request.status = -EXDEV; td->preq->request.actual = 0; /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) cdnsp_inc_deq(pdev, ep_ring); cdnsp_inc_deq(pdev, ep_ring); cdnsp_td_cleanup(pdev, td, ep_ring, &status); } /* * Process bulk and interrupt tds, update usb request status and actual_length. */ static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev, struct cdnsp_td *td, union cdnsp_trb *ep_trb, struct cdnsp_transfer_event *event, struct cdnsp_ep *ep, int *status) { u32 remaining, requested, ep_trb_len; struct cdnsp_ring *ep_ring; u32 trb_comp_code; ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); requested = td->preq->request.length; switch (trb_comp_code) { case COMP_SUCCESS: case COMP_SHORT_PACKET: *status = 0; break; case COMP_STOPPED_SHORT_PACKET: td->preq->request.actual = remaining; goto finish_td; case COMP_STOPPED_LENGTH_INVALID: /* Stopped on ep trb with invalid length, exclude it. */ ep_trb_len = 0; remaining = 0; break; } if (ep_trb == td->last_trb) ep_trb_len = requested - remaining; else ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) + ep_trb_len - remaining; td->preq->request.actual = ep_trb_len; finish_td: ep->stream_info.drbls_count--; cdnsp_finish_td(pdev, td, event, ep, status); } static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev, struct cdnsp_transfer_event *event) { struct cdnsp_generic_trb *generic; struct cdnsp_ring *ep_ring; struct cdnsp_ep *pep; int cur_stream; int ep_index; int host_sid; int dev_sid; generic = (struct cdnsp_generic_trb *)event; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0])); host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2])); pep = &pdev->eps[ep_index]; if (!(pep->ep_state & EP_HAS_STREAMS)) return; if (host_sid == STREAM_PRIME_ACK) { pep->stream_info.first_prime_det = 1; for (cur_stream = 1; cur_stream < pep->stream_info.num_streams; cur_stream++) { ep_ring = pep->stream_info.stream_rings[cur_stream]; ep_ring->stream_active = 1; ep_ring->stream_rejected = 0; } } if (host_sid == STREAM_REJECTED) { struct cdnsp_td *td, *td_temp; pep->stream_info.drbls_count--; ep_ring = pep->stream_info.stream_rings[dev_sid]; ep_ring->stream_active = 0; ep_ring->stream_rejected = 1; list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, td_list) { td->drbl = 0; } } cdnsp_ring_doorbell_for_active_rings(pdev, pep); } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted TRB DMA address or endpoint is disabled. */ static int cdnsp_handle_tx_event(struct cdnsp_device *pdev, struct cdnsp_transfer_event *event) { const struct usb_endpoint_descriptor *desc; bool handling_skipped_tds = false; struct cdnsp_segment *ep_seg; struct cdnsp_ring *ep_ring; int status = -EINPROGRESS; union cdnsp_trb *ep_trb; dma_addr_t ep_trb_dma; struct cdnsp_ep *pep; struct cdnsp_td *td; u32 trb_comp_code; int invalidate; int ep_index; invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); ep_trb_dma = le64_to_cpu(event->buffer); pep = &pdev->eps[ep_index]; ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); /* * If device is disconnect then all requests will be dequeued * by upper layers as part of disconnect sequence. * We don't want handle such event to avoid racing. */ if (invalidate || !pdev->gadget.connected) goto cleanup; if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) { trace_cdnsp_ep_disabled(pep->out_ctx); goto err_out; } /* Some transfer events don't always point to a trb*/ if (!ep_ring) { switch (trb_comp_code) { case COMP_INVALID_STREAM_TYPE_ERROR: case COMP_INVALID_STREAM_ID_ERROR: case COMP_RING_UNDERRUN: case COMP_RING_OVERRUN: goto cleanup; default: dev_err(pdev->dev, "ERROR: %s event for unknown ring\n", pep->name); goto err_out; } } /* Look for some error cases that need special treatment. */ switch (trb_comp_code) { case COMP_BABBLE_DETECTED_ERROR: status = -EOVERFLOW; break; case COMP_RING_UNDERRUN: case COMP_RING_OVERRUN: /* * When the Isoch ring is empty, the controller will generate * a Ring Overrun Event for IN Isoch endpoint or Ring * Underrun Event for OUT Isoch endpoint. */ goto cleanup; case COMP_MISSED_SERVICE_ERROR: /* * When encounter missed service error, one or more isoc tds * may be missed by controller. * Set skip flag of the ep_ring; Complete the missed tds as * short transfer when process the ep_ring next time. */ pep->skip = true; break; } do { /* * This TRB should be in the TD at the head of this ring's TD * list. */ if (list_empty(&ep_ring->td_list)) { /* * Don't print warnings if it's due to a stopped * endpoint generating an extra completion event, or * a event for the last TRB of a short TD we already * got a short event for. * The short TD is already removed from the TD list. */ if (!(trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_LENGTH_INVALID || ep_ring->last_td_was_short)) trace_cdnsp_trb_without_td(ep_ring, (struct cdnsp_generic_trb *)event); if (pep->skip) { pep->skip = false; trace_cdnsp_ep_list_empty_with_skip(pep, 0); } goto cleanup; } td = list_entry(ep_ring->td_list.next, struct cdnsp_td, td_list); /* Is this a TRB in the currently executing TD? */ ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, ep_trb_dma); desc = td->preq->pep->endpoint.desc; if (ep_seg) { ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; trace_cdnsp_handle_transfer(ep_ring, (struct cdnsp_generic_trb *)ep_trb); if (pep->skip && usb_endpoint_xfer_isoc(desc) && td->last_trb != ep_trb) return -EAGAIN; } /* * Skip the Force Stopped Event. The event_trb(ep_trb_dma) * of FSE is not in the current TD pointed by ep_ring->dequeue * because that the hardware dequeue pointer still at the * previous TRB of the current TD. The previous TRB maybe a * Link TD or the last TRB of the previous TD. The command * completion handle will take care the rest. */ if (!ep_seg && (trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { pep->skip = false; goto cleanup; } if (!ep_seg) { if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) { /* Something is busted, give up! */ dev_err(pdev->dev, "ERROR Transfer event TRB DMA ptr not " "part of current TD ep_index %d " "comp_code %u\n", ep_index, trb_comp_code); return -EINVAL; } cdnsp_skip_isoc_td(pdev, td, event, pep, status); goto cleanup; } if (trb_comp_code == COMP_SHORT_PACKET) ep_ring->last_td_was_short = true; else ep_ring->last_td_was_short = false; if (pep->skip) { pep->skip = false; cdnsp_skip_isoc_td(pdev, td, event, pep, status); goto cleanup; } if (cdnsp_trb_is_noop(ep_trb)) goto cleanup; if (usb_endpoint_xfer_control(desc)) cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep, &status); else if (usb_endpoint_xfer_isoc(desc)) cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep, status); else cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep, &status); cleanup: handling_skipped_tds = pep->skip; /* * Do not update event ring dequeue pointer if we're in a loop * processing missed tds. */ if (!handling_skipped_tds) cdnsp_inc_deq(pdev, pdev->event_ring); /* * If ep->skip is set, it means there are missed tds on the * endpoint ring need to take care of. * Process them as short transfer until reach the td pointed by * the event. */ } while (handling_skipped_tds); return 0; err_out: dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n", (unsigned long long) cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, pdev->event_ring->dequeue), lower_32_bits(le64_to_cpu(event->buffer)), upper_32_bits(le64_to_cpu(event->buffer)), le32_to_cpu(event->transfer_len), le32_to_cpu(event->flags)); return -EINVAL; } /* * This function handles all events on the event ring. * Returns true for "possibly more events to process" (caller should call * again), otherwise false if done. */ static bool cdnsp_handle_event(struct cdnsp_device *pdev) { unsigned int comp_code; union cdnsp_trb *event; bool update_ptrs = true; u32 cycle_bit; int ret = 0; u32 flags; event = pdev->event_ring->dequeue; flags = le32_to_cpu(event->event_cmd.flags); cycle_bit = (flags & TRB_CYCLE); /* Does the controller or driver own the TRB? */ if (cycle_bit != pdev->event_ring->cycle_state) return false; trace_cdnsp_handle_event(pdev->event_ring, &event->generic); /* * Barrier between reading the TRB_CYCLE (valid) flag above and any * reads of the event's flags/data below. */ rmb(); switch (flags & TRB_TYPE_BITMASK) { case TRB_TYPE(TRB_COMPLETION): /* * Command can't be handled in interrupt context so just * increment command ring dequeue pointer. */ cdnsp_inc_deq(pdev, pdev->cmd_ring); break; case TRB_TYPE(TRB_PORT_STATUS): cdnsp_handle_port_status(pdev, event); update_ptrs = false; break; case TRB_TYPE(TRB_TRANSFER): ret = cdnsp_handle_tx_event(pdev, &event->trans_event); if (ret >= 0) update_ptrs = false; break; case TRB_TYPE(TRB_SETUP): pdev->ep0_stage = CDNSP_SETUP_STAGE; pdev->setup_id = TRB_SETUPID_TO_TYPE(flags); pdev->setup_speed = TRB_SETUP_SPEEDID(flags); pdev->setup = *((struct usb_ctrlrequest *) &event->trans_event.buffer); cdnsp_setup_analyze(pdev); break; case TRB_TYPE(TRB_ENDPOINT_NRDY): cdnsp_handle_tx_nrdy(pdev, &event->trans_event); break; case TRB_TYPE(TRB_HC_EVENT): { comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2])); switch (comp_code) { case COMP_EVENT_RING_FULL_ERROR: dev_err(pdev->dev, "Event Ring Full\n"); break; default: dev_err(pdev->dev, "Controller error code 0x%02x\n", comp_code); } break; } case TRB_TYPE(TRB_MFINDEX_WRAP): case TRB_TYPE(TRB_DRB_OVERFLOW): break; default: dev_warn(pdev->dev, "ERROR unknown event type %ld\n", TRB_FIELD_TO_TYPE(flags)); } if (update_ptrs) /* Update SW event ring dequeue pointer. */ cdnsp_inc_deq(pdev, pdev->event_ring); /* * Caller will call us again to check if there are more items * on the event ring. */ return true; } irqreturn_t cdnsp_thread_irq_handler(int irq, void *data) { struct cdnsp_device *pdev = (struct cdnsp_device *)data; union cdnsp_trb *event_ring_deq; unsigned long flags; int counter = 0; spin_lock_irqsave(&pdev->lock, flags); if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) { /* * While removing or stopping driver there may still be deferred * not handled interrupt which should not be treated as error. * Driver should simply ignore it. */ if (pdev->gadget_driver) cdnsp_died(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return IRQ_HANDLED; } event_ring_deq = pdev->event_ring->dequeue; while (cdnsp_handle_event(pdev)) { if (++counter >= TRBS_PER_EV_DEQ_UPDATE) { cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0); event_ring_deq = pdev->event_ring->dequeue; counter = 0; } } cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); spin_unlock_irqrestore(&pdev->lock, flags); return IRQ_HANDLED; } irqreturn_t cdnsp_irq_handler(int irq, void *priv) { struct cdnsp_device *pdev = (struct cdnsp_device *)priv; u32 irq_pending; u32 status; status = readl(&pdev->op_regs->status); if (status == ~(u32)0) { cdnsp_died(pdev); return IRQ_HANDLED; } if (!(status & STS_EINT)) return IRQ_NONE; writel(status | STS_EINT, &pdev->op_regs->status); irq_pending = readl(&pdev->ir_set->irq_pending); irq_pending |= IMAN_IP; writel(irq_pending, &pdev->ir_set->irq_pending); if (status & STS_FATAL) { cdnsp_died(pdev); return IRQ_HANDLED; } return IRQ_WAKE_THREAD; } /* * Generic function for queuing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. * * @more_trbs_coming: Will you enqueue more TRBs before setting doorbell? */ static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring, bool more_trbs_coming, u32 field1, u32 field2, u32 field3, u32 field4) { struct cdnsp_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); trb->field[3] = cpu_to_le32(field4); trace_cdnsp_queue_trb(ring, trb); cdnsp_inc_enq(pdev, ring, more_trbs_coming); } /* * Does various checks on the endpoint ring, and makes it ready to * queue num_trbs. */ static int cdnsp_prepare_ring(struct cdnsp_device *pdev, struct cdnsp_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { unsigned int num_trbs_needed; /* Make sure the endpoint has been added to controller schedule. */ switch (ep_state) { case EP_STATE_STOPPED: case EP_STATE_RUNNING: case EP_STATE_HALTED: break; default: dev_err(pdev->dev, "ERROR: incorrect endpoint state\n"); return -EINVAL; } while (1) { if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs)) break; trace_cdnsp_no_room_on_ring("try ring expansion"); num_trbs_needed = num_trbs - ep_ring->num_trbs_free; if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed, mem_flags)) { dev_err(pdev->dev, "Ring expansion failed\n"); return -ENOMEM; } } while (cdnsp_trb_is_link(ep_ring->enqueue)) { ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN); /* The cycle bit must be set as the last operation. */ wmb(); ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue)) ep_ring->cycle_state ^= 1; ep_ring->enq_seg = ep_ring->enq_seg->next; ep_ring->enqueue = ep_ring->enq_seg->trbs; } return 0; } static int cdnsp_prepare_transfer(struct cdnsp_device *pdev, struct cdnsp_request *preq, unsigned int num_trbs) { struct cdnsp_ring *ep_ring; int ret; ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep, preq->request.stream_id); if (!ep_ring) return -EINVAL; ret = cdnsp_prepare_ring(pdev, ep_ring, GET_EP_CTX_STATE(preq->pep->out_ctx), num_trbs, GFP_ATOMIC); if (ret) return ret; INIT_LIST_HEAD(&preq->td.td_list); preq->td.preq = preq; /* Add this TD to the tail of the endpoint ring's TD list. */ list_add_tail(&preq->td.td_list, &ep_ring->td_list); ep_ring->num_tds++; preq->pep->stream_info.td_count++; preq->td.start_seg = ep_ring->enq_seg; preq->td.first_trb = ep_ring->enqueue; return 0; } static unsigned int cdnsp_count_trbs(u64 addr, u64 len) { unsigned int num_trbs; num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), TRB_MAX_BUFF_SIZE); if (num_trbs == 0) num_trbs++; return num_trbs; } static unsigned int count_trbs_needed(struct cdnsp_request *preq) { return cdnsp_count_trbs(preq->request.dma, preq->request.length); } static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq) { unsigned int i, len, full_len, num_trbs = 0; struct scatterlist *sg; full_len = preq->request.length; for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) { len = sg_dma_len(sg); num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len); len = min(len, full_len); full_len -= len; if (full_len == 0) break; } return num_trbs; } static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total) { if (running_total != preq->request.length) dev_err(preq->pep->pdev->dev, "%s - Miscalculated tx length, " "queued %#x, asked for %#x (%d)\n", preq->pep->name, running_total, preq->request.length, preq->request.actual); } /* * TD size is the number of max packet sized packets remaining in the TD * (*not* including this TRB). * * Total TD packet count = total_packet_count = * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) * * Packets transferred up to and including this TRB = packets_transferred = * rounddown(total bytes transferred including this TRB / wMaxPacketSize) * * TD size = total_packet_count - packets_transferred * * It must fit in bits 21:17, so it can't be bigger than 31. * This is taken care of in the TRB_TD_SIZE() macro * * The last TRB in a TD must have the TD size set to zero. */ static u32 cdnsp_td_remainder(struct cdnsp_device *pdev, int transferred, int trb_buff_len, unsigned int td_total_len, struct cdnsp_request *preq, bool more_trbs_coming, bool zlp) { u32 maxp, total_packet_count; /* Before ZLP driver needs set TD_SIZE = 1. */ if (zlp) return 1; /* One TRB with a zero-length data packet. */ if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || trb_buff_len == td_total_len) return 0; maxp = usb_endpoint_maxp(preq->pep->endpoint.desc); total_packet_count = DIV_ROUND_UP(td_total_len, maxp); /* Queuing functions don't count the current TRB into transferred. */ return (total_packet_count - ((transferred + trb_buff_len) / maxp)); } static int cdnsp_align_td(struct cdnsp_device *pdev, struct cdnsp_request *preq, u32 enqd_len, u32 *trb_buff_len, struct cdnsp_segment *seg) { struct device *dev = pdev->dev; unsigned int unalign; unsigned int max_pkt; u32 new_buff_len; max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); unalign = (enqd_len + *trb_buff_len) % max_pkt; /* We got lucky, last normal TRB data on segment is packet aligned. */ if (unalign == 0) return 0; /* Is the last nornal TRB alignable by splitting it. */ if (*trb_buff_len > unalign) { *trb_buff_len -= unalign; trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len, enqd_len, 0, unalign); return 0; } /* * We want enqd_len + trb_buff_len to sum up to a number aligned to * number which is divisible by the endpoint's wMaxPacketSize. IOW: * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. */ new_buff_len = max_pkt - (enqd_len % max_pkt); if (new_buff_len > (preq->request.length - enqd_len)) new_buff_len = (preq->request.length - enqd_len); /* Create a max max_pkt sized bounce buffer pointed to by last trb. */ if (preq->direction) { sg_pcopy_to_buffer(preq->request.sg, preq->request.num_mapped_sgs, seg->bounce_buf, new_buff_len, enqd_len); seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_TO_DEVICE); } else { seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_FROM_DEVICE); } if (dma_mapping_error(dev, seg->bounce_dma)) { /* Try without aligning.*/ dev_warn(pdev->dev, "Failed mapping bounce buffer, not aligning\n"); return 0; } *trb_buff_len = new_buff_len; seg->bounce_len = new_buff_len; seg->bounce_offs = enqd_len; trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma, unalign); /* * Bounce buffer successful aligned and seg->bounce_dma will be used * in transfer TRB as new transfer buffer address. */ return 1; } int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) { unsigned int enqd_len, block_len, trb_buff_len, full_len; unsigned int start_cycle, num_sgs = 0; struct cdnsp_generic_trb *start_trb; u32 field, length_field, remainder; struct scatterlist *sg = NULL; bool more_trbs_coming = true; bool need_zero_pkt = false; bool zero_len_trb = false; struct cdnsp_ring *ring; bool first_trb = true; unsigned int num_trbs; struct cdnsp_ep *pep; u64 addr, send_addr; int sent_len, ret; ring = cdnsp_request_to_transfer_ring(pdev, preq); if (!ring) return -EINVAL; full_len = preq->request.length; if (preq->request.num_sgs) { num_sgs = preq->request.num_sgs; sg = preq->request.sg; addr = (u64)sg_dma_address(sg); block_len = sg_dma_len(sg); num_trbs = count_sg_trbs_needed(preq); } else { num_trbs = count_trbs_needed(preq); addr = (u64)preq->request.dma; block_len = full_len; } pep = preq->pep; /* Deal with request.zero - need one more td/trb. */ if (preq->request.zero && preq->request.length && IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) { need_zero_pkt = true; num_trbs++; } ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); if (ret) return ret; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ring->enqueue->generic; start_cycle = ring->cycle_state; send_addr = addr; /* Queue the TRBs, even if they are zero-length */ for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len; enqd_len += trb_buff_len) { field = TRB_TYPE(TRB_NORMAL); /* TRB buffer should not cross 64KB boundaries */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); trb_buff_len = min(trb_buff_len, block_len); if (enqd_len + trb_buff_len > full_len) trb_buff_len = full_len - enqd_len; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= TRB_CYCLE; } else { field |= ring->cycle_state; } /* * Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (enqd_len + trb_buff_len < full_len || need_zero_pkt) { field |= TRB_CHAIN; if (cdnsp_trb_is_link(ring->enqueue + 1)) { if (cdnsp_align_td(pdev, preq, enqd_len, &trb_buff_len, ring->enq_seg)) { send_addr = ring->enq_seg->bounce_dma; /* Assuming TD won't span 2 segs */ preq->td.bounce_seg = ring->enq_seg; } } } if (enqd_len + trb_buff_len >= full_len) { if (need_zero_pkt && !zero_len_trb) { zero_len_trb = true; } else { zero_len_trb = false; field &= ~TRB_CHAIN; field |= TRB_IOC; more_trbs_coming = false; need_zero_pkt = false; preq->td.last_trb = ring->enqueue; } } /* Only set interrupt on short packet for OUT endpoints. */ if (!preq->direction) field |= TRB_ISP; /* Set the TRB length, TD size, and interrupter fields. */ remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len, full_len, preq, more_trbs_coming, zero_len_trb); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); cdnsp_queue_trb(pdev, ring, more_trbs_coming, lower_32_bits(send_addr), upper_32_bits(send_addr), length_field, field); addr += trb_buff_len; sent_len = trb_buff_len; while (sg && sent_len >= block_len) { /* New sg entry */ --num_sgs; sent_len -= block_len; if (num_sgs != 0) { sg = sg_next(sg); block_len = sg_dma_len(sg); addr = (u64)sg_dma_address(sg); addr += sent_len; } } block_len -= sent_len; send_addr = addr; } cdnsp_check_trb_math(preq, enqd_len); ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id, start_cycle, start_trb); if (ret) preq->td.drbl = 1; return 0; } int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) { u32 field, length_field, zlp = 0; struct cdnsp_ep *pep = preq->pep; struct cdnsp_ring *ep_ring; int num_trbs; u32 maxp; int ret; ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); if (!ep_ring) return -EINVAL; /* 1 TRB for data, 1 for status */ num_trbs = (pdev->three_stage_setup) ? 2 : 1; maxp = usb_endpoint_maxp(pep->endpoint.desc); if (preq->request.zero && preq->request.length && (preq->request.length % maxp == 0)) { num_trbs++; zlp = 1; } ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); if (ret) return ret; /* If there's data, queue data TRBs */ if (preq->request.length > 0) { field = TRB_TYPE(TRB_DATA); if (zlp) field |= TRB_CHAIN; else field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP); if (pdev->ep0_expect_in) field |= TRB_DIR_IN; length_field = TRB_LEN(preq->request.length) | TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0); cdnsp_queue_trb(pdev, ep_ring, true, lower_32_bits(preq->request.dma), upper_32_bits(preq->request.dma), length_field, field | ep_ring->cycle_state | TRB_SETUPID(pdev->setup_id) | pdev->setup_speed); if (zlp) { field = TRB_TYPE(TRB_NORMAL) | TRB_IOC; if (!pdev->ep0_expect_in) field = TRB_ISP; cdnsp_queue_trb(pdev, ep_ring, true, lower_32_bits(preq->request.dma), upper_32_bits(preq->request.dma), 0, field | ep_ring->cycle_state | TRB_SETUPID(pdev->setup_id) | pdev->setup_speed); } pdev->ep0_stage = CDNSP_DATA_STAGE; } /* Save the DMA address of the last TRB in the TD. */ preq->td.last_trb = ep_ring->enqueue; /* Queue status TRB. */ if (preq->request.length == 0) field = ep_ring->cycle_state; else field = (ep_ring->cycle_state ^ 1); if (preq->request.length > 0 && pdev->ep0_expect_in) field |= TRB_DIR_IN; if (pep->ep_state & EP0_HALTED_STATUS) { pep->ep_state &= ~EP0_HALTED_STATUS; field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL); } else { field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK); } cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), field | TRB_IOC | TRB_SETUPID(pdev->setup_id) | TRB_TYPE(TRB_STATUS) | pdev->setup_speed); cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id); return 0; } int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx); int ret = 0; if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED || ep_state == EP_STATE_HALTED) { trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx); goto ep_stopped; } cdnsp_queue_stop_endpoint(pdev, pep->idx); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx); ep_stopped: pep->ep_state |= EP_STOPPED; return ret; } int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { int ret; cdnsp_queue_flush_endpoint(pdev, pep->idx); cdnsp_ring_cmd_db(pdev); ret = cdnsp_wait_for_cmd_compl(pdev); trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx); return ret; } /* * The transfer burst count field of the isochronous TRB defines the number of * bursts that are required to move all packets in this TD. Only SuperSpeed * devices can burst up to bMaxBurst number of packets per service interval. * This field is zero based, meaning a value of zero in the field means one * burst. Basically, for everything but SuperSpeed devices, this field will be * zero. */ static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev, struct cdnsp_request *preq, unsigned int total_packet_count) { unsigned int max_burst; if (pdev->gadget.speed < USB_SPEED_SUPER) return 0; max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; } /* * Returns the number of packets in the last "burst" of packets. This field is * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so * the last burst packet count is equal to the total number of packets in the * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst * must contain (bMaxBurst + 1) number of packets, but the last burst can * contain 1 to (bMaxBurst + 1) packets. */ static unsigned int cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev, struct cdnsp_request *preq, unsigned int total_packet_count) { unsigned int max_burst; unsigned int residue; if (pdev->gadget.speed >= USB_SPEED_SUPER) { /* bMaxBurst is zero based: 0 means 1 packet per burst. */ max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; residue = total_packet_count % (max_burst + 1); /* * If residue is zero, the last burst contains (max_burst + 1) * number of packets, but the TLBPC field is zero-based. */ if (residue == 0) return max_burst; return residue - 1; } if (total_packet_count == 0) return 0; return total_packet_count - 1; } /* Queue function isoc transfer */ int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) { unsigned int trb_buff_len, td_len, td_remain_len, block_len; unsigned int burst_count, last_burst_pkt; unsigned int total_pkt_count, max_pkt; struct cdnsp_generic_trb *start_trb; struct scatterlist *sg = NULL; bool more_trbs_coming = true; struct cdnsp_ring *ep_ring; unsigned int num_sgs = 0; int running_total = 0; u32 field, length_field; u64 addr, send_addr; int start_cycle; int trbs_per_td; int i, sent_len, ret; ep_ring = preq->pep->ring; td_len = preq->request.length; if (preq->request.num_sgs) { num_sgs = preq->request.num_sgs; sg = preq->request.sg; addr = (u64)sg_dma_address(sg); block_len = sg_dma_len(sg); trbs_per_td = count_sg_trbs_needed(preq); } else { addr = (u64)preq->request.dma; block_len = td_len; trbs_per_td = count_trbs_needed(preq); } ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td); if (ret) return ret; start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; td_remain_len = td_len; send_addr = addr; max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); /* A zero-length transfer still involves at least one packet. */ if (total_pkt_count == 0) total_pkt_count++; burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count); last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq, total_pkt_count); /* * Set isoc specific data for the first TRB in a TD. * Prevent HW from getting the TRBs by keeping the cycle state * inverted in the first TDs isoc TRB. */ field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) | TRB_SIA | TRB_TBC(burst_count); if (!start_cycle) field |= TRB_CYCLE; /* Fill the rest of the TRB fields, and remaining normal TRBs. */ for (i = 0; i < trbs_per_td; i++) { u32 remainder; /* Calculate TRB length. */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); trb_buff_len = min(trb_buff_len, block_len); if (trb_buff_len > td_remain_len) trb_buff_len = td_remain_len; /* Set the TRB length, TD size, & interrupter fields. */ remainder = cdnsp_td_remainder(pdev, running_total, trb_buff_len, td_len, preq, more_trbs_coming, 0); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); /* Only first TRB is isoc, overwrite otherwise. */ if (i) { field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state; length_field |= TRB_TD_SIZE(remainder); } else { length_field |= TRB_TD_SIZE_TBC(burst_count); } /* Only set interrupt on short packet for OUT EPs. */ if (usb_endpoint_dir_out(preq->pep->endpoint.desc)) field |= TRB_ISP; /* Set the chain bit for all except the last TRB. */ if (i < trbs_per_td - 1) { more_trbs_coming = true; field |= TRB_CHAIN; } else { more_trbs_coming = false; preq->td.last_trb = ep_ring->enqueue; field |= TRB_IOC; } cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming, lower_32_bits(send_addr), upper_32_bits(send_addr), length_field, field); running_total += trb_buff_len; addr += trb_buff_len; td_remain_len -= trb_buff_len; sent_len = trb_buff_len; while (sg && sent_len >= block_len) { /* New sg entry */ --num_sgs; sent_len -= block_len; if (num_sgs != 0) { sg = sg_next(sg); block_len = sg_dma_len(sg); addr = (u64)sg_dma_address(sg); addr += sent_len; } } block_len -= sent_len; send_addr = addr; } /* Check TD length */ if (running_total != td_len) { dev_err(pdev->dev, "ISOC TD length unmatch\n"); ret = -EINVAL; goto cleanup; } cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id, start_cycle, start_trb); return 0; cleanup: /* Clean up a partially enqueued isoc transfer. */ list_del_init(&preq->td.td_list); ep_ring->num_tds--; /* * Use the first TD as a temporary variable to turn the TDs we've * queued into No-ops with a software-owned cycle bit. * That way the hardware won't accidentally start executing bogus TDs * when we partially overwrite them. * td->first_trb and td->start_seg are already set. */ preq->td.last_trb = ep_ring->enqueue; /* Every TRB except the first & last will have its cycle bit flipped. */ cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true); /* Reset the ring enqueue back to the first TRB and its cycle bit. */ ep_ring->enqueue = preq->td.first_trb; ep_ring->enq_seg = preq->td.start_seg; ep_ring->cycle_state = start_cycle; return ret; } /**** Command Ring Operations ****/ /* * Generic function for queuing a command TRB on the command ring. * Driver queue only one command to ring in the moment. */ static void cdnsp_queue_command(struct cdnsp_device *pdev, u32 field1, u32 field2, u32 field3, u32 field4) { cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1, GFP_ATOMIC); pdev->cmd.command_trb = pdev->cmd_ring->enqueue; cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2, field3, field4 | pdev->cmd_ring->cycle_state); } /* Queue a slot enable or disable request on the command ring */ void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type) { cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(pdev->slot_id)); } /* Queue an address device command TRB */ void cdnsp_queue_address_device(struct cdnsp_device *pdev, dma_addr_t in_ctx_ptr, enum cdnsp_setup_dev setup) { cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(pdev->slot_id) | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0)); } /* Queue a reset device command TRB */ void cdnsp_queue_reset_device(struct cdnsp_device *pdev) { cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(pdev->slot_id)); } /* Queue a configure endpoint command TRB */ void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev, dma_addr_t in_ctx_ptr) { cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(pdev->slot_id)); } /* * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop * activity on an endpoint that is about to be suspended. */ void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) { cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) | EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING)); } /* Set Transfer Ring Dequeue Pointer command. */ void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev, struct cdnsp_ep *pep, struct cdnsp_dequeue_state *deq_state) { u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id); u32 type = TRB_TYPE(TRB_SET_DEQ); u32 trb_sct = 0; dma_addr_t addr; addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr); if (deq_state->stream_id) trb_sct = SCT_FOR_TRB(SCT_PRI_TR); cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, upper_32_bits(addr), trb_stream_id, trb_slot_id | EP_ID_FOR_TRB(pep->idx) | type); } void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index) { return cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) | EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_RESET_EP)); } /* * Queue a halt endpoint request on the command ring. */ void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) { cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) | SLOT_ID_FOR_TRB(pdev->slot_id) | EP_ID_FOR_TRB(ep_index)); } /* * Queue a flush endpoint request on the command ring. */ void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) { cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) | SLOT_ID_FOR_TRB(pdev->slot_id) | EP_ID_FOR_TRB(ep_index)); } void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num) { u32 lo, mid; lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) | TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address); mid = TRB_FH_TR_PACKET_DEV_NOT | TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) | TRB_FH_TO_INTERFACE(intf_num); cdnsp_queue_command(pdev, lo, mid, 0, TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2)); }
linux-master
drivers/usb/cdns3/cdnsp-ring.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak <[email protected]> * */ #include <linux/usb/composite.h> #include <linux/usb/gadget.h> #include <linux/list.h> #include "cdnsp-gadget.h" #include "cdnsp-trace.h" static void cdnsp_ep0_stall(struct cdnsp_device *pdev) { struct cdnsp_request *preq; struct cdnsp_ep *pep; pep = &pdev->eps[0]; preq = next_request(&pep->pending_list); if (pdev->three_stage_setup) { cdnsp_halt_endpoint(pdev, pep, true); if (preq) cdnsp_gadget_giveback(pep, preq, -ECONNRESET); } else { pep->ep_state |= EP0_HALTED_STATUS; if (preq) list_del(&preq->list); cdnsp_status_stage(pdev); } } static int cdnsp_ep0_delegate_req(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { int ret; spin_unlock(&pdev->lock); ret = pdev->gadget_driver->setup(&pdev->gadget, ctrl); spin_lock(&pdev->lock); return ret; } static int cdnsp_ep0_set_config(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { enum usb_device_state state = pdev->gadget.state; u32 cfg; int ret; cfg = le16_to_cpu(ctrl->wValue); switch (state) { case USB_STATE_ADDRESS: trace_cdnsp_ep0_set_config("from Address state"); break; case USB_STATE_CONFIGURED: trace_cdnsp_ep0_set_config("from Configured state"); break; default: dev_err(pdev->dev, "Set Configuration - bad device state\n"); return -EINVAL; } ret = cdnsp_ep0_delegate_req(pdev, ctrl); if (ret) return ret; if (!cfg) usb_gadget_set_state(&pdev->gadget, USB_STATE_ADDRESS); return 0; } static int cdnsp_ep0_set_address(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { enum usb_device_state state = pdev->gadget.state; struct cdnsp_slot_ctx *slot_ctx; unsigned int slot_state; int ret; u32 addr; addr = le16_to_cpu(ctrl->wValue); if (addr > 127) { dev_err(pdev->dev, "Invalid device address %d\n", addr); return -EINVAL; } slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); if (state == USB_STATE_CONFIGURED) { dev_err(pdev->dev, "Can't Set Address from Configured State\n"); return -EINVAL; } pdev->device_address = le16_to_cpu(ctrl->wValue); slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); if (slot_state == SLOT_STATE_ADDRESSED) cdnsp_reset_device(pdev); /*set device address*/ ret = cdnsp_setup_device(pdev, SETUP_CONTEXT_ADDRESS); if (ret) return ret; if (addr) usb_gadget_set_state(&pdev->gadget, USB_STATE_ADDRESS); else usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); return 0; } int cdnsp_status_stage(struct cdnsp_device *pdev) { pdev->ep0_stage = CDNSP_STATUS_STAGE; pdev->ep0_preq.request.length = 0; return cdnsp_ep_enqueue(pdev->ep0_preq.pep, &pdev->ep0_preq); } static int cdnsp_w_index_to_ep_index(u16 wIndex) { if (!(wIndex & USB_ENDPOINT_NUMBER_MASK)) return 0; return ((wIndex & USB_ENDPOINT_NUMBER_MASK) * 2) + (wIndex & USB_ENDPOINT_DIR_MASK ? 1 : 0) - 1; } static int cdnsp_ep0_handle_status(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { struct cdnsp_ep *pep; __le16 *response; int ep_sts = 0; u16 status = 0; u32 recipient; recipient = ctrl->bRequestType & USB_RECIP_MASK; switch (recipient) { case USB_RECIP_DEVICE: status = pdev->gadget.is_selfpowered; status |= pdev->may_wakeup << USB_DEVICE_REMOTE_WAKEUP; if (pdev->gadget.speed >= USB_SPEED_SUPER) { status |= pdev->u1_allowed << USB_DEV_STAT_U1_ENABLED; status |= pdev->u2_allowed << USB_DEV_STAT_U2_ENABLED; } break; case USB_RECIP_INTERFACE: /* * Function Remote Wake Capable D0 * Function Remote Wakeup D1 */ return cdnsp_ep0_delegate_req(pdev, ctrl); case USB_RECIP_ENDPOINT: ep_sts = cdnsp_w_index_to_ep_index(le16_to_cpu(ctrl->wIndex)); pep = &pdev->eps[ep_sts]; ep_sts = GET_EP_CTX_STATE(pep->out_ctx); /* check if endpoint is stalled */ if (ep_sts == EP_STATE_HALTED) status = BIT(USB_ENDPOINT_HALT); break; default: return -EINVAL; } response = (__le16 *)pdev->setup_buf; *response = cpu_to_le16(status); pdev->ep0_preq.request.length = sizeof(*response); pdev->ep0_preq.request.buf = pdev->setup_buf; return cdnsp_ep_enqueue(pdev->ep0_preq.pep, &pdev->ep0_preq); } static void cdnsp_enter_test_mode(struct cdnsp_device *pdev) { u32 temp; temp = readl(&pdev->active_port->regs->portpmsc) & ~GENMASK(31, 28); temp |= PORT_TEST_MODE(pdev->test_mode); writel(temp, &pdev->active_port->regs->portpmsc); } static int cdnsp_ep0_handle_feature_device(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl, int set) { enum usb_device_state state; enum usb_device_speed speed; u16 tmode; state = pdev->gadget.state; speed = pdev->gadget.speed; switch (le16_to_cpu(ctrl->wValue)) { case USB_DEVICE_REMOTE_WAKEUP: pdev->may_wakeup = !!set; trace_cdnsp_may_wakeup(set); break; case USB_DEVICE_U1_ENABLE: if (state != USB_STATE_CONFIGURED || speed < USB_SPEED_SUPER) return -EINVAL; pdev->u1_allowed = !!set; trace_cdnsp_u1(set); break; case USB_DEVICE_U2_ENABLE: if (state != USB_STATE_CONFIGURED || speed < USB_SPEED_SUPER) return -EINVAL; pdev->u2_allowed = !!set; trace_cdnsp_u2(set); break; case USB_DEVICE_LTM_ENABLE: return -EINVAL; case USB_DEVICE_TEST_MODE: if (state != USB_STATE_CONFIGURED || speed > USB_SPEED_HIGH) return -EINVAL; tmode = le16_to_cpu(ctrl->wIndex); if (!set || (tmode & 0xff) != 0) return -EINVAL; tmode = tmode >> 8; if (tmode > USB_TEST_FORCE_ENABLE || tmode < USB_TEST_J) return -EINVAL; pdev->test_mode = tmode; /* * Test mode must be set before Status Stage but controller * will start testing sequence after Status Stage. */ cdnsp_enter_test_mode(pdev); break; default: return -EINVAL; } return 0; } static int cdnsp_ep0_handle_feature_intf(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl, int set) { u16 wValue, wIndex; int ret; wValue = le16_to_cpu(ctrl->wValue); wIndex = le16_to_cpu(ctrl->wIndex); switch (wValue) { case USB_INTRF_FUNC_SUSPEND: ret = cdnsp_ep0_delegate_req(pdev, ctrl); if (ret) return ret; /* * Remote wakeup is enabled when any function within a device * is enabled for function remote wakeup. */ if (wIndex & USB_INTRF_FUNC_SUSPEND_RW) pdev->may_wakeup++; else if (pdev->may_wakeup > 0) pdev->may_wakeup--; return 0; default: return -EINVAL; } return 0; } static int cdnsp_ep0_handle_feature_endpoint(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl, int set) { struct cdnsp_ep *pep; u16 wValue; wValue = le16_to_cpu(ctrl->wValue); pep = &pdev->eps[cdnsp_w_index_to_ep_index(le16_to_cpu(ctrl->wIndex))]; switch (wValue) { case USB_ENDPOINT_HALT: if (!set && (pep->ep_state & EP_WEDGE)) { /* Resets Sequence Number */ cdnsp_halt_endpoint(pdev, pep, 0); cdnsp_halt_endpoint(pdev, pep, 1); break; } return cdnsp_halt_endpoint(pdev, pep, set); default: dev_warn(pdev->dev, "WARN Incorrect wValue %04x\n", wValue); return -EINVAL; } return 0; } static int cdnsp_ep0_handle_feature(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl, int set) { switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: return cdnsp_ep0_handle_feature_device(pdev, ctrl, set); case USB_RECIP_INTERFACE: return cdnsp_ep0_handle_feature_intf(pdev, ctrl, set); case USB_RECIP_ENDPOINT: return cdnsp_ep0_handle_feature_endpoint(pdev, ctrl, set); default: return -EINVAL; } } static int cdnsp_ep0_set_sel(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { enum usb_device_state state = pdev->gadget.state; u16 wLength; if (state == USB_STATE_DEFAULT) return -EINVAL; wLength = le16_to_cpu(ctrl->wLength); if (wLength != 6) { dev_err(pdev->dev, "Set SEL should be 6 bytes, got %d\n", wLength); return -EINVAL; } /* * To handle Set SEL we need to receive 6 bytes from Host. So let's * queue a usb_request for 6 bytes. */ pdev->ep0_preq.request.length = 6; pdev->ep0_preq.request.buf = pdev->setup_buf; return cdnsp_ep_enqueue(pdev->ep0_preq.pep, &pdev->ep0_preq); } static int cdnsp_ep0_set_isoch_delay(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { if (le16_to_cpu(ctrl->wIndex) || le16_to_cpu(ctrl->wLength)) return -EINVAL; pdev->gadget.isoch_delay = le16_to_cpu(ctrl->wValue); return 0; } static int cdnsp_ep0_std_request(struct cdnsp_device *pdev, struct usb_ctrlrequest *ctrl) { int ret; switch (ctrl->bRequest) { case USB_REQ_GET_STATUS: ret = cdnsp_ep0_handle_status(pdev, ctrl); break; case USB_REQ_CLEAR_FEATURE: ret = cdnsp_ep0_handle_feature(pdev, ctrl, 0); break; case USB_REQ_SET_FEATURE: ret = cdnsp_ep0_handle_feature(pdev, ctrl, 1); break; case USB_REQ_SET_ADDRESS: ret = cdnsp_ep0_set_address(pdev, ctrl); break; case USB_REQ_SET_CONFIGURATION: ret = cdnsp_ep0_set_config(pdev, ctrl); break; case USB_REQ_SET_SEL: ret = cdnsp_ep0_set_sel(pdev, ctrl); break; case USB_REQ_SET_ISOCH_DELAY: ret = cdnsp_ep0_set_isoch_delay(pdev, ctrl); break; default: ret = cdnsp_ep0_delegate_req(pdev, ctrl); break; } return ret; } void cdnsp_setup_analyze(struct cdnsp_device *pdev) { struct usb_ctrlrequest *ctrl = &pdev->setup; int ret = -EINVAL; u16 len; trace_cdnsp_ctrl_req(ctrl); if (!pdev->gadget_driver) goto out; if (pdev->gadget.state == USB_STATE_NOTATTACHED) { dev_err(pdev->dev, "ERR: Setup detected in unattached state\n"); goto out; } /* Restore the ep0 to Stopped/Running state. */ if (pdev->eps[0].ep_state & EP_HALTED) { trace_cdnsp_ep0_halted("Restore to normal state"); cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); } /* * Finishing previous SETUP transfer by removing request from * list and informing upper layer */ if (!list_empty(&pdev->eps[0].pending_list)) { struct cdnsp_request *req; trace_cdnsp_ep0_request("Remove previous"); req = next_request(&pdev->eps[0].pending_list); cdnsp_ep_dequeue(&pdev->eps[0], req); } len = le16_to_cpu(ctrl->wLength); if (!len) { pdev->three_stage_setup = false; pdev->ep0_expect_in = false; } else { pdev->three_stage_setup = true; pdev->ep0_expect_in = !!(ctrl->bRequestType & USB_DIR_IN); } if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) ret = cdnsp_ep0_std_request(pdev, ctrl); else ret = cdnsp_ep0_delegate_req(pdev, ctrl); if (ret == USB_GADGET_DELAYED_STATUS) { trace_cdnsp_ep0_status_stage("delayed"); return; } out: if (ret < 0) cdnsp_ep0_stall(pdev); else if (!len && pdev->ep0_stage != CDNSP_STATUS_STAGE) cdnsp_status_stage(pdev); }
linux-master
drivers/usb/cdns3/cdnsp-ep0.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence PCI Glue driver. * * Copyright (C) 2019 Cadence. * * Author: Pawel Laszczak <[email protected]> * */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci.h> #include "core.h" #include "gadget-export.h" #define PCI_BAR_HOST 0 #define PCI_BAR_OTG 0 #define PCI_BAR_DEV 2 #define PCI_DEV_FN_HOST_DEVICE 0 #define PCI_DEV_FN_OTG 1 #define PCI_DRIVER_NAME "cdns-pci-usbssp" #define PLAT_DRIVER_NAME "cdns-usbssp" #define CDNS_VENDOR_ID 0x17cd #define CDNS_DEVICE_ID 0x0200 #define CDNS_DRD_ID 0x0100 #define CDNS_DRD_IF (PCI_CLASS_SERIAL_USB << 8 | 0x80) static struct pci_dev *cdnsp_get_second_fun(struct pci_dev *pdev) { /* * Gets the second function. * Platform has two function. The fist keeps resources for * Host/Device while the secon keeps resources for DRD/OTG. */ if (pdev->device == CDNS_DEVICE_ID) return pci_get_device(pdev->vendor, CDNS_DRD_ID, NULL); else if (pdev->device == CDNS_DRD_ID) return pci_get_device(pdev->vendor, CDNS_DEVICE_ID, NULL); return NULL; } static int cdnsp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct pci_dev *func; struct resource *res; struct cdns *cdnsp; int ret; /* * For GADGET/HOST PCI (devfn) function number is 0, * for OTG PCI (devfn) function number is 1. */ if (!id || (pdev->devfn != PCI_DEV_FN_HOST_DEVICE && pdev->devfn != PCI_DEV_FN_OTG)) return -EINVAL; func = cdnsp_get_second_fun(pdev); if (!func) return -EINVAL; if (func->class == PCI_CLASS_SERIAL_USB_XHCI || pdev->class == PCI_CLASS_SERIAL_USB_XHCI) { ret = -EINVAL; goto put_pci; } ret = pcim_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "Enabling PCI device has failed %d\n", ret); goto put_pci; } pci_set_master(pdev); if (pci_is_enabled(func)) { cdnsp = pci_get_drvdata(func); } else { cdnsp = kzalloc(sizeof(*cdnsp), GFP_KERNEL); if (!cdnsp) { ret = -ENOMEM; goto disable_pci; } } /* For GADGET device function number is 0. */ if (pdev->devfn == 0) { resource_size_t rsrc_start, rsrc_len; /* Function 0: host(BAR_0) + device(BAR_1).*/ dev_dbg(dev, "Initialize resources\n"); rsrc_start = pci_resource_start(pdev, PCI_BAR_DEV); rsrc_len = pci_resource_len(pdev, PCI_BAR_DEV); res = devm_request_mem_region(dev, rsrc_start, rsrc_len, "dev"); if (!res) { dev_dbg(dev, "controller already in use\n"); ret = -EBUSY; goto free_cdnsp; } cdnsp->dev_regs = devm_ioremap(dev, rsrc_start, rsrc_len); if (!cdnsp->dev_regs) { dev_dbg(dev, "error mapping memory\n"); ret = -EFAULT; goto free_cdnsp; } cdnsp->dev_irq = pdev->irq; dev_dbg(dev, "USBSS-DEV physical base addr: %pa\n", &rsrc_start); res = &cdnsp->xhci_res[0]; res->start = pci_resource_start(pdev, PCI_BAR_HOST); res->end = pci_resource_end(pdev, PCI_BAR_HOST); res->name = "xhci"; res->flags = IORESOURCE_MEM; dev_dbg(dev, "USBSS-XHCI physical base addr: %pa\n", &res->start); /* Interrupt for XHCI, */ res = &cdnsp->xhci_res[1]; res->start = pdev->irq; res->name = "host"; res->flags = IORESOURCE_IRQ; } else { res = &cdnsp->otg_res; res->start = pci_resource_start(pdev, PCI_BAR_OTG); res->end = pci_resource_end(pdev, PCI_BAR_OTG); res->name = "otg"; res->flags = IORESOURCE_MEM; dev_dbg(dev, "CDNSP-DRD physical base addr: %pa\n", &res->start); /* Interrupt for OTG/DRD. */ cdnsp->otg_irq = pdev->irq; } if (pci_is_enabled(func)) { cdnsp->dev = dev; cdnsp->gadget_init = cdnsp_gadget_init; ret = cdns_init(cdnsp); if (ret) goto free_cdnsp; } pci_set_drvdata(pdev, cdnsp); device_wakeup_enable(&pdev->dev); if (pci_dev_run_wake(pdev)) pm_runtime_put_noidle(&pdev->dev); return 0; free_cdnsp: if (!pci_is_enabled(func)) kfree(cdnsp); disable_pci: pci_disable_device(pdev); put_pci: pci_dev_put(func); return ret; } static void cdnsp_pci_remove(struct pci_dev *pdev) { struct cdns *cdnsp; struct pci_dev *func; func = cdnsp_get_second_fun(pdev); cdnsp = (struct cdns *)pci_get_drvdata(pdev); if (pci_dev_run_wake(pdev)) pm_runtime_get_noresume(&pdev->dev); if (pci_is_enabled(func)) { cdns_remove(cdnsp); } else { kfree(cdnsp); } pci_dev_put(func); } static int __maybe_unused cdnsp_pci_suspend(struct device *dev) { struct cdns *cdns = dev_get_drvdata(dev); return cdns_suspend(cdns); } static int __maybe_unused cdnsp_pci_resume(struct device *dev) { struct cdns *cdns = dev_get_drvdata(dev); unsigned long flags; int ret; spin_lock_irqsave(&cdns->lock, flags); ret = cdns_resume(cdns); spin_unlock_irqrestore(&cdns->lock, flags); cdns_set_active(cdns, 1); return ret; } static const struct dev_pm_ops cdnsp_pci_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(cdnsp_pci_suspend, cdnsp_pci_resume) }; static const struct pci_device_id cdnsp_pci_ids[] = { { PCI_VENDOR_ID_CDNS, CDNS_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_SERIAL_USB_DEVICE, PCI_ANY_ID }, { PCI_VENDOR_ID_CDNS, CDNS_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, CDNS_DRD_IF, PCI_ANY_ID }, { PCI_VENDOR_ID_CDNS, CDNS_DRD_ID, PCI_ANY_ID, PCI_ANY_ID, CDNS_DRD_IF, PCI_ANY_ID }, { 0, } }; static struct pci_driver cdnsp_pci_driver = { .name = "cdnsp-pci", .id_table = &cdnsp_pci_ids[0], .probe = cdnsp_pci_probe, .remove = cdnsp_pci_remove, .driver = { .pm = &cdnsp_pci_pm_ops, } }; module_pci_driver(cdnsp_pci_driver); MODULE_DEVICE_TABLE(pci, cdnsp_pci_ids); MODULE_ALIAS("pci:cdnsp"); MODULE_AUTHOR("Pawel Laszczak <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Cadence CDNSP PCI driver");
linux-master
drivers/usb/cdns3/cdnsp-pci.c
// SPDX-License-Identifier: GPL-2.0 /* * Cadence CDNSP DRD Driver. * * Copyright (C) 2020 Cadence. * * Author: Pawel Laszczak <[email protected]> * * Code based on Linux XHCI driver. * Origin: Copyright (C) 2008 Intel Corp. */ #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/slab.h> #include <linux/usb.h> #include "cdnsp-gadget.h" #include "cdnsp-trace.h" static void cdnsp_free_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep); /* * Allocates a generic ring segment from the ring pool, sets the dma address, * initializes the segment to zero, and sets the private next pointer to NULL. * * "All components of all Command and Transfer TRBs shall be initialized to '0'" */ static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev, unsigned int cycle_state, unsigned int max_packet, gfp_t flags) { struct cdnsp_segment *seg; dma_addr_t dma; int i; seg = kzalloc(sizeof(*seg), flags); if (!seg) return NULL; seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma); if (!seg->trbs) { kfree(seg); return NULL; } if (max_packet) { seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); if (!seg->bounce_buf) goto free_dma; } /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */ if (cycle_state == 0) { for (i = 0; i < TRBS_PER_SEGMENT; i++) seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); } seg->dma = dma; seg->next = NULL; return seg; free_dma: dma_pool_free(pdev->segment_pool, seg->trbs, dma); kfree(seg); return NULL; } static void cdnsp_segment_free(struct cdnsp_device *pdev, struct cdnsp_segment *seg) { if (seg->trbs) dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma); kfree(seg->bounce_buf); kfree(seg); } static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev, struct cdnsp_segment *first) { struct cdnsp_segment *seg; seg = first->next; while (seg != first) { struct cdnsp_segment *next = seg->next; cdnsp_segment_free(pdev, seg); seg = next; } cdnsp_segment_free(pdev, first); } /* * Make the prev segment point to the next segment. * * Change the last TRB in the prev segment to be a Link TRB which points to the * DMA address of the next segment. The caller needs to set any Link TRB * related flags, such as End TRB, Toggle Cycle, and no snoop. */ static void cdnsp_link_segments(struct cdnsp_device *pdev, struct cdnsp_segment *prev, struct cdnsp_segment *next, enum cdnsp_ring_type type) { struct cdnsp_link_trb *link; u32 val; if (!prev || !next) return; prev->next = next; if (type != TYPE_EVENT) { link = &prev->trbs[TRBS_PER_SEGMENT - 1].link; link->segment_ptr = cpu_to_le64(next->dma); /* * Set the last TRB in the segment to have a TRB type ID * of Link TRB */ val = le32_to_cpu(link->control); val &= ~TRB_TYPE_BITMASK; val |= TRB_TYPE(TRB_LINK); link->control = cpu_to_le32(val); } } /* * Link the ring to the new segments. * Set Toggle Cycle for the new ring if needed. */ static void cdnsp_link_rings(struct cdnsp_device *pdev, struct cdnsp_ring *ring, struct cdnsp_segment *first, struct cdnsp_segment *last, unsigned int num_segs) { struct cdnsp_segment *next; if (!ring || !first || !last) return; next = ring->enq_seg->next; cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type); cdnsp_link_segments(pdev, last, next, ring->type); ring->num_segs += num_segs; ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= ~cpu_to_le32(LINK_TOGGLE); last->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); ring->last_seg = last; } } /* * We need a radix tree for mapping physical addresses of TRBs to which stream * ID they belong to. We need to do this because the device controller won't * tell us which stream ring the TRB came from. We could store the stream ID * in an event data TRB, but that doesn't help us for the cancellation case, * since the endpoint may stop before it reaches that event data TRB. * * The radix tree maps the upper portion of the TRB DMA address to a ring * segment that has the same upper portion of DMA addresses. For example, * say I have segments of size 1KB, that are always 1KB aligned. A segment may * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the * key to the stream ID is 0x43244. I can use the DMA address of the TRB to * pass the radix tree a key to get the right stream ID: * * 0x10c90fff >> 10 = 0x43243 * 0x10c912c0 >> 10 = 0x43244 * 0x10c91400 >> 10 = 0x43245 * * Obviously, only those TRBs with DMA addresses that are within the segment * will make the radix tree return the stream ID for that ring. * * Caveats for the radix tree: * * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit * extended systems (where the DMA address can be bigger than 32-bits), * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. */ static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_ring *ring, struct cdnsp_segment *seg, gfp_t mem_flags) { unsigned long key; int ret; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); /* Skip any segments that were already added. */ if (radix_tree_lookup(trb_address_map, key)) return 0; ret = radix_tree_maybe_preload(mem_flags); if (ret) return ret; ret = radix_tree_insert(trb_address_map, key, ring); radix_tree_preload_end(); return ret; } static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_segment *seg) { unsigned long key; key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); if (radix_tree_lookup(trb_address_map, key)) radix_tree_delete(trb_address_map, key); } static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map, struct cdnsp_ring *ring, struct cdnsp_segment *first_seg, struct cdnsp_segment *last_seg, gfp_t mem_flags) { struct cdnsp_segment *failed_seg; struct cdnsp_segment *seg; int ret; seg = first_seg; do { ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg, mem_flags); if (ret) goto remove_streams; if (seg == last_seg) return 0; seg = seg->next; } while (seg != first_seg); return 0; remove_streams: failed_seg = seg; seg = first_seg; do { cdnsp_remove_segment_mapping(trb_address_map, seg); if (seg == failed_seg) return ret; seg = seg->next; } while (seg != first_seg); return ret; } static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring) { struct cdnsp_segment *seg; seg = ring->first_seg; do { cdnsp_remove_segment_mapping(ring->trb_address_map, seg); seg = seg->next; } while (seg != ring->first_seg); } static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring) { return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring, ring->first_seg, ring->last_seg, GFP_ATOMIC); } static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring) { if (!ring) return; trace_cdnsp_ring_free(ring); if (ring->first_seg) { if (ring->type == TYPE_STREAM) cdnsp_remove_stream_mapping(ring); cdnsp_free_segments_for_ring(pdev, ring->first_seg); } kfree(ring); } void cdnsp_initialize_ring_info(struct cdnsp_ring *ring) { ring->enqueue = ring->first_seg->trbs; ring->enq_seg = ring->first_seg; ring->dequeue = ring->enqueue; ring->deq_seg = ring->first_seg; /* * The ring is initialized to 0. The producer must write 1 to the cycle * bit to handover ownership of the TRB, so PCS = 1. The consumer must * compare CCS to the cycle bit to check ownership, so CCS = 1. * * New rings are initialized with cycle state equal to 1; if we are * handling ring expansion, set the cycle state equal to the old ring. */ ring->cycle_state = 1; /* * Each segment has a link TRB, and leave an extra TRB for SW * accounting purpose */ ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; } /* Allocate segments and link them for a ring. */ static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev, struct cdnsp_segment **first, struct cdnsp_segment **last, unsigned int num_segs, unsigned int cycle_state, enum cdnsp_ring_type type, unsigned int max_packet, gfp_t flags) { struct cdnsp_segment *prev; /* Allocate first segment. */ prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags); if (!prev) return -ENOMEM; num_segs--; *first = prev; /* Allocate all other segments. */ while (num_segs > 0) { struct cdnsp_segment *next; next = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags); if (!next) { cdnsp_free_segments_for_ring(pdev, *first); return -ENOMEM; } cdnsp_link_segments(pdev, prev, next, type); prev = next; num_segs--; } cdnsp_link_segments(pdev, prev, *first, type); *last = prev; return 0; } /* * Create a new ring with zero or more segments. * * Link each segment together into a ring. * Set the end flag and the cycle toggle bit on the last segment. */ static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev, unsigned int num_segs, enum cdnsp_ring_type type, unsigned int max_packet, gfp_t flags) { struct cdnsp_ring *ring; int ret; ring = kzalloc(sizeof *(ring), flags); if (!ring) return NULL; ring->num_segs = num_segs; ring->bounce_buf_len = max_packet; INIT_LIST_HEAD(&ring->td_list); ring->type = type; if (num_segs == 0) return ring; ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg, &ring->last_seg, num_segs, 1, type, max_packet, flags); if (ret) goto fail; /* Only event ring does not use link TRB. */ if (type != TYPE_EVENT) ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); cdnsp_initialize_ring_info(ring); trace_cdnsp_ring_alloc(ring); return ring; fail: kfree(ring); return NULL; } void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { cdnsp_ring_free(pdev, pep->ring); pep->ring = NULL; cdnsp_free_stream_info(pdev, pep); } /* * Expand an existing ring. * Allocate a new ring which has same segment numbers and link the two rings. */ int cdnsp_ring_expansion(struct cdnsp_device *pdev, struct cdnsp_ring *ring, unsigned int num_trbs, gfp_t flags) { unsigned int num_segs_needed; struct cdnsp_segment *first; struct cdnsp_segment *last; unsigned int num_segs; int ret; num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / (TRBS_PER_SEGMENT - 1); /* Allocate number of segments we needed, or double the ring size. */ num_segs = max(ring->num_segs, num_segs_needed); ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs, ring->cycle_state, ring->type, ring->bounce_buf_len, flags); if (ret) return -ENOMEM; if (ring->type == TYPE_STREAM) ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring, first, last, flags); if (ret) { cdnsp_free_segments_for_ring(pdev, first); return ret; } cdnsp_link_rings(pdev, ring, first, last, num_segs); trace_cdnsp_ring_expansion(ring); return 0; } static int cdnsp_init_device_ctx(struct cdnsp_device *pdev) { int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024; pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE; pdev->out_ctx.size = size; pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params); pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, &pdev->out_ctx.dma); if (!pdev->out_ctx.bytes) return -ENOMEM; pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT; pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size; pdev->in_ctx.size = size + pdev->out_ctx.ctx_size; pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC, &pdev->in_ctx.dma); if (!pdev->in_ctx.bytes) { dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); return -ENOMEM; } return 0; } struct cdnsp_input_control_ctx *cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx) { if (ctx->type != CDNSP_CTX_TYPE_INPUT) return NULL; return (struct cdnsp_input_control_ctx *)ctx->bytes; } struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx) { if (ctx->type == CDNSP_CTX_TYPE_DEVICE) return (struct cdnsp_slot_ctx *)ctx->bytes; return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size); } struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx, unsigned int ep_index) { /* Increment ep index by offset of start of ep ctx array. */ ep_index++; if (ctx->type == CDNSP_CTX_TYPE_INPUT) ep_index++; return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size)); } static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array, pep->stream_info.ctx_array_dma); } /* The stream context array must be a power of 2. */ static struct cdnsp_stream_ctx *cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { size_t size = sizeof(struct cdnsp_stream_ctx) * pep->stream_info.num_stream_ctxs; if (size > CDNSP_CTX_SIZE) return NULL; /** * Driver uses intentionally the device_pool to allocated stream * context array. Device Pool has 2048 bytes of size what gives us * 128 entries. */ return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC, &pep->stream_info.ctx_array_dma); } struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address) { if (pep->ep_state & EP_HAS_STREAMS) return radix_tree_lookup(&pep->stream_info.trb_address_map, address >> TRB_SEGMENT_SHIFT); return pep->ring; } /* * Change an endpoint's internal structure so it supports stream IDs. * The number of requested streams includes stream 0, which cannot be used by * driver. * * The number of stream contexts in the stream context array may be bigger than * the number of streams the driver wants to use. This is because the number of * stream context array entries must be a power of two. */ int cdnsp_alloc_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep, unsigned int num_stream_ctxs, unsigned int num_streams) { struct cdnsp_stream_info *stream_info; struct cdnsp_ring *cur_ring; u32 cur_stream; u64 addr; int ret; int mps; stream_info = &pep->stream_info; stream_info->num_streams = num_streams; stream_info->num_stream_ctxs = num_stream_ctxs; /* Initialize the array of virtual pointers to stream rings. */ stream_info->stream_rings = kcalloc(num_streams, sizeof(struct cdnsp_ring *), GFP_ATOMIC); if (!stream_info->stream_rings) return -ENOMEM; /* Initialize the array of DMA addresses for stream rings for the HW. */ stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep); if (!stream_info->stream_ctx_array) goto cleanup_stream_rings; memset(stream_info->stream_ctx_array, 0, sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs); INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); mps = usb_endpoint_maxp(pep->endpoint.desc); /* * Allocate rings for all the streams that the driver will use, * and add their segment DMA addresses to the radix tree. * Stream 0 is reserved. */ for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps, GFP_ATOMIC); stream_info->stream_rings[cur_stream] = cur_ring; if (!cur_ring) goto cleanup_rings; cur_ring->stream_id = cur_stream; cur_ring->trb_address_map = &stream_info->trb_address_map; /* Set deq ptr, cycle bit, and stream context type. */ addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | cur_ring->cycle_state; stream_info->stream_ctx_array[cur_stream].stream_ring = cpu_to_le64(addr); trace_cdnsp_set_stream_ring(cur_ring); ret = cdnsp_update_stream_mapping(cur_ring); if (ret) goto cleanup_rings; } return 0; cleanup_rings: for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { cdnsp_ring_free(pdev, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } cleanup_stream_rings: kfree(pep->stream_info.stream_rings); return -ENOMEM; } /* Frees all stream contexts associated with the endpoint. */ static void cdnsp_free_stream_info(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { struct cdnsp_stream_info *stream_info = &pep->stream_info; struct cdnsp_ring *cur_ring; int cur_stream; if (!(pep->ep_state & EP_HAS_STREAMS)) return; for (cur_stream = 1; cur_stream < stream_info->num_streams; cur_stream++) { cur_ring = stream_info->stream_rings[cur_stream]; if (cur_ring) { cdnsp_ring_free(pdev, cur_ring); stream_info->stream_rings[cur_stream] = NULL; } } if (stream_info->stream_ctx_array) cdnsp_free_stream_ctx(pdev, pep); kfree(stream_info->stream_rings); pep->ep_state &= ~EP_HAS_STREAMS; } /* All the cdnsp_tds in the ring's TD list should be freed at this point.*/ static void cdnsp_free_priv_device(struct cdnsp_device *pdev) { pdev->dcbaa->dev_context_ptrs[1] = 0; cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]); if (pdev->in_ctx.bytes) dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, pdev->in_ctx.dma); if (pdev->out_ctx.bytes) dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); pdev->in_ctx.bytes = NULL; pdev->out_ctx.bytes = NULL; } static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev) { int ret; ret = cdnsp_init_device_ctx(pdev); if (ret) return ret; /* Allocate endpoint 0 ring. */ pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC); if (!pdev->eps[0].ring) goto fail; /* Point to output device context in dcbaa. */ pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma); pdev->cmd.in_ctx = &pdev->in_ctx; trace_cdnsp_alloc_priv_device(pdev); return 0; fail: dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes, pdev->out_ctx.dma); dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes, pdev->in_ctx.dma); return ret; } void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev) { struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx; struct cdnsp_ring *ep_ring = pdev->eps[0].ring; dma_addr_t dma; dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state); } /* Setup an controller private device for a Set Address command. */ int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev) { struct cdnsp_slot_ctx *slot_ctx; struct cdnsp_ep_ctx *ep0_ctx; u32 max_packets, port; ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0); slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); /* Only the control endpoint is valid - one endpoint context. */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); switch (pdev->gadget.speed) { case USB_SPEED_SUPER_PLUS: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); max_packets = MAX_PACKET(512); break; case USB_SPEED_SUPER: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); max_packets = MAX_PACKET(512); break; case USB_SPEED_HIGH: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); max_packets = MAX_PACKET(64); break; case USB_SPEED_FULL: slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); max_packets = MAX_PACKET(64); break; default: /* Speed was not set , this shouldn't happen. */ return -EINVAL; } port = DEV_PORT(pdev->active_port->port_num); slot_ctx->dev_port |= cpu_to_le32(port); slot_ctx->dev_state = cpu_to_le32((pdev->device_address & DEV_ADDR_MASK)); ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8)); ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | max_packets); ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma | pdev->eps[0].ring->cycle_state); trace_cdnsp_setup_addressable_priv_device(pdev); return 0; } /* * Convert interval expressed as 2^(bInterval - 1) == interval into * straight exponent value 2^n == interval. */ static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g, struct cdnsp_ep *pep) { unsigned int interval; interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1; if (interval != pep->endpoint.desc->bInterval - 1) dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n", pep->name, 1 << interval, g->speed == USB_SPEED_FULL ? "" : "micro"); /* * Full speed isoc endpoints specify interval in frames, * not microframes. We are using microframes everywhere, * so adjust accordingly. */ if (g->speed == USB_SPEED_FULL) interval += 3; /* 1 frame = 2^3 uframes */ /* Controller handles only up to 512ms (2^12). */ if (interval > 12) interval = 12; return interval; } /* * Convert bInterval expressed in microframes (in 1-255 range) to exponent of * microframes, rounded down to nearest power of 2. */ static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g, struct cdnsp_ep *pep, unsigned int desc_interval, unsigned int min_exponent, unsigned int max_exponent) { unsigned int interval; interval = fls(desc_interval) - 1; return clamp_val(interval, min_exponent, max_exponent); } /* * Return the polling interval. * * The polling interval is expressed in "microframes". If controllers's Interval * field is set to N, it will service the endpoint every 2^(Interval)*125us. */ static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g, struct cdnsp_ep *pep) { unsigned int interval = 0; switch (g->speed) { case USB_SPEED_HIGH: case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: if (usb_endpoint_xfer_int(pep->endpoint.desc) || usb_endpoint_xfer_isoc(pep->endpoint.desc)) interval = cdnsp_parse_exponent_interval(g, pep); break; case USB_SPEED_FULL: if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) { interval = cdnsp_parse_exponent_interval(g, pep); } else if (usb_endpoint_xfer_int(pep->endpoint.desc)) { interval = pep->endpoint.desc->bInterval << 3; interval = cdnsp_microframes_to_exponent(g, pep, interval, 3, 10); } break; default: WARN_ON(1); } return interval; } /* * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. * High speed endpoint descriptors can define "the number of additional * transaction opportunities per microframe", but that goes in the Max Burst * endpoint context field. */ static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep) { if (g->speed < USB_SPEED_SUPER || !usb_endpoint_xfer_isoc(pep->endpoint.desc)) return 0; return pep->endpoint.comp_desc->bmAttributes; } static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g, struct cdnsp_ep *pep) { /* Super speed and Plus have max burst in ep companion desc */ if (g->speed >= USB_SPEED_SUPER) return pep->endpoint.comp_desc->bMaxBurst; if (g->speed == USB_SPEED_HIGH && (usb_endpoint_xfer_isoc(pep->endpoint.desc) || usb_endpoint_xfer_int(pep->endpoint.desc))) return usb_endpoint_maxp_mult(pep->endpoint.desc) - 1; return 0; } static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc) { int in; in = usb_endpoint_dir_in(desc); switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: return CTRL_EP; case USB_ENDPOINT_XFER_BULK: return in ? BULK_IN_EP : BULK_OUT_EP; case USB_ENDPOINT_XFER_ISOC: return in ? ISOC_IN_EP : ISOC_OUT_EP; case USB_ENDPOINT_XFER_INT: return in ? INT_IN_EP : INT_OUT_EP; } return 0; } /* * Return the maximum endpoint service interval time (ESIT) payload. * Basically, this is the maxpacket size, multiplied by the burst size * and mult size. */ static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g, struct cdnsp_ep *pep) { int max_packet; int max_burst; /* Only applies for interrupt or isochronous endpoints*/ if (usb_endpoint_xfer_control(pep->endpoint.desc) || usb_endpoint_xfer_bulk(pep->endpoint.desc)) return 0; /* SuperSpeedPlus Isoc ep sending over 48k per EIST. */ if (g->speed >= USB_SPEED_SUPER_PLUS && USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes)) return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ else if (g->speed >= USB_SPEED_SUPER) return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval); max_packet = usb_endpoint_maxp(pep->endpoint.desc); max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc); /* A 0 in max burst means 1 transfer per ESIT */ return max_packet * max_burst; } int cdnsp_endpoint_init(struct cdnsp_device *pdev, struct cdnsp_ep *pep, gfp_t mem_flags) { enum cdnsp_ring_type ring_type; struct cdnsp_ep_ctx *ep_ctx; unsigned int err_count = 0; unsigned int avg_trb_len; unsigned int max_packet; unsigned int max_burst; unsigned int interval; u32 max_esit_payload; unsigned int mult; u32 endpoint_type; int ret; ep_ctx = pep->in_ctx; endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc); if (!endpoint_type) return -EINVAL; ring_type = usb_endpoint_type(pep->endpoint.desc); /* * Get values to fill the endpoint context, mostly from ep descriptor. * The average TRB buffer length for bulk endpoints is unclear as we * have no clue on scatter gather list entry size. For Isoc and Int, * set it to max available. */ max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep); interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep); mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep); max_packet = usb_endpoint_maxp(pep->endpoint.desc); max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep); avg_trb_len = max_esit_payload; /* Allow 3 retries for everything but isoc, set CErr = 3. */ if (!usb_endpoint_xfer_isoc(pep->endpoint.desc)) err_count = 3; if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && pdev->gadget.speed == USB_SPEED_HIGH) max_packet = 512; /* Controller spec indicates that ctrl ep avg TRB Length should be 8. */ if (usb_endpoint_xfer_control(pep->endpoint.desc)) avg_trb_len = 8; /* Set up the endpoint ring. */ pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags); if (!pep->ring) return -ENOMEM; pep->skip = false; /* Fill the endpoint context */ ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | EP_INTERVAL(interval) | EP_MULT(mult)); ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | MAX_PACKET(max_packet) | MAX_BURST(max_burst) | ERROR_COUNT(err_count)); ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma | pep->ring->cycle_state); ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | EP_AVG_TRB_LENGTH(avg_trb_len)); if (usb_endpoint_xfer_bulk(pep->endpoint.desc) && pdev->gadget.speed > USB_SPEED_HIGH) { ret = cdnsp_alloc_streams(pdev, pep); if (ret < 0) return ret; } return 0; } void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep) { pep->in_ctx->ep_info = 0; pep->in_ctx->ep_info2 = 0; pep->in_ctx->deq = 0; pep->in_ctx->tx_info = 0; } static int cdnsp_alloc_erst(struct cdnsp_device *pdev, struct cdnsp_ring *evt_ring, struct cdnsp_erst *erst) { struct cdnsp_erst_entry *entry; struct cdnsp_segment *seg; unsigned int val; size_t size; size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs; erst->entries = dma_alloc_coherent(pdev->dev, size, &erst->erst_dma_addr, GFP_KERNEL); if (!erst->entries) return -ENOMEM; erst->num_entries = evt_ring->num_segs; seg = evt_ring->first_seg; for (val = 0; val < evt_ring->num_segs; val++) { entry = &erst->entries[val]; entry->seg_addr = cpu_to_le64(seg->dma); entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); entry->rsvd = 0; seg = seg->next; } return 0; } static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst) { size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries); struct device *dev = pdev->dev; if (erst->entries) dma_free_coherent(dev, size, erst->entries, erst->erst_dma_addr); erst->entries = NULL; } void cdnsp_mem_cleanup(struct cdnsp_device *pdev) { struct device *dev = pdev->dev; cdnsp_free_priv_device(pdev); cdnsp_free_erst(pdev, &pdev->erst); if (pdev->event_ring) cdnsp_ring_free(pdev, pdev->event_ring); pdev->event_ring = NULL; if (pdev->cmd_ring) cdnsp_ring_free(pdev, pdev->cmd_ring); pdev->cmd_ring = NULL; dma_pool_destroy(pdev->segment_pool); pdev->segment_pool = NULL; dma_pool_destroy(pdev->device_pool); pdev->device_pool = NULL; dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa, pdev->dcbaa->dma); pdev->dcbaa = NULL; pdev->usb2_port.exist = 0; pdev->usb3_port.exist = 0; pdev->usb2_port.port_num = 0; pdev->usb3_port.port_num = 0; pdev->active_port = NULL; } static void cdnsp_set_event_deq(struct cdnsp_device *pdev) { dma_addr_t deq; u64 temp; deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, pdev->event_ring->dequeue); /* Update controller event ring dequeue pointer */ temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue); temp &= ERST_PTR_MASK; /* * Don't clear the EHB bit (which is RW1C) because * there might be more events to service. */ temp &= ~ERST_EHB; cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp, &pdev->ir_set->erst_dequeue); } static void cdnsp_add_in_port(struct cdnsp_device *pdev, struct cdnsp_port *port, __le32 __iomem *addr) { u32 temp, port_offset, port_count; temp = readl(addr); port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp); port->min_rev = CDNSP_EXT_PORT_MINOR(temp); /* Port offset and count in the third dword.*/ temp = readl(addr + 2); port_offset = CDNSP_EXT_PORT_OFF(temp); port_count = CDNSP_EXT_PORT_COUNT(temp); trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev); port->port_num = port_offset; port->exist = 1; } /* * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that * specify what speeds each port is supposed to be. */ static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev) { void __iomem *base; u32 offset; int i; base = &pdev->cap_regs->hc_capbase; offset = cdnsp_find_next_ext_cap(base, 0, EXT_CAP_CFG_DEV_20PORT_CAP_ID); pdev->port20_regs = base + offset; offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP); pdev->port3x_regs = base + offset; offset = 0; base = &pdev->cap_regs->hc_capbase; /* Driver expects max 2 extended protocol capability. */ for (i = 0; i < 2; i++) { u32 temp; offset = cdnsp_find_next_ext_cap(base, offset, EXT_CAPS_PROTOCOL); temp = readl(base + offset); if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 && !pdev->usb3_port.port_num) cdnsp_add_in_port(pdev, &pdev->usb3_port, base + offset); if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 && !pdev->usb2_port.port_num) cdnsp_add_in_port(pdev, &pdev->usb2_port, base + offset); } if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) { dev_err(pdev->dev, "Error: Only one port detected\n"); return -ENODEV; } trace_cdnsp_init("Found USB 2.0 ports and USB 3.0 ports."); pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *) (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * (pdev->usb2_port.port_num - 1)); pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *) (&pdev->op_regs->port_reg_base + NUM_PORT_REGS * (pdev->usb3_port.port_num - 1)); return 0; } /* * Initialize memory for CDNSP (one-time init). * * Program the PAGESIZE register, initialize the device context array, create * device contexts, set up a command ring segment, create event * ring (one for now). */ int cdnsp_mem_init(struct cdnsp_device *pdev) { struct device *dev = pdev->dev; int ret = -ENOMEM; unsigned int val; dma_addr_t dma; u32 page_size; u64 val_64; /* * Use 4K pages, since that's common and the minimum the * controller supports */ page_size = 1 << 12; val = readl(&pdev->op_regs->config_reg); val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E; writel(val, &pdev->op_regs->config_reg); /* * Doorbell array must be physically contiguous * and 64-byte (cache line) aligned. */ pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa), &dma, GFP_KERNEL); if (!pdev->dcbaa) return -ENOMEM; pdev->dcbaa->dma = dma; cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr); /* * Initialize the ring segment pool. The ring must be a contiguous * structure comprised of TRBs. The TRBs must be 16 byte aligned, * however, the command ring segment needs 64-byte aligned segments * and our use of dma addresses in the trb_address_map radix tree needs * TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment * need. */ pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev, TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, page_size); if (!pdev->segment_pool) goto release_dcbaa; pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev, CDNSP_CTX_SIZE, 64, page_size); if (!pdev->device_pool) goto destroy_segment_pool; /* Set up the command ring to have one segments for now. */ pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL); if (!pdev->cmd_ring) goto destroy_device_pool; /* Set the address in the Command Ring Control register */ val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | pdev->cmd_ring->cycle_state; cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); val = readl(&pdev->cap_regs->db_off); val &= DBOFF_MASK; pdev->dba = (void __iomem *)pdev->cap_regs + val; /* Set ir_set to interrupt register set 0 */ pdev->ir_set = &pdev->run_regs->ir_set[0]; /* * Event ring setup: Allocate a normal ring, but also setup * the event ring segment table (ERST). */ pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT, 0, GFP_KERNEL); if (!pdev->event_ring) goto free_cmd_ring; ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst); if (ret) goto free_event_ring; /* Set ERST count with the number of entries in the segment table. */ val = readl(&pdev->ir_set->erst_size); val &= ERST_SIZE_MASK; val |= ERST_NUM_SEGS; writel(val, &pdev->ir_set->erst_size); /* Set the segment table base address. */ val_64 = cdnsp_read_64(&pdev->ir_set->erst_base); val_64 &= ERST_PTR_MASK; val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK); cdnsp_write_64(val_64, &pdev->ir_set->erst_base); /* Set the event ring dequeue address. */ cdnsp_set_event_deq(pdev); ret = cdnsp_setup_port_arrays(pdev); if (ret) goto free_erst; ret = cdnsp_alloc_priv_device(pdev); if (ret) { dev_err(pdev->dev, "Could not allocate cdnsp_device data structures\n"); goto free_erst; } return 0; free_erst: cdnsp_free_erst(pdev, &pdev->erst); free_event_ring: cdnsp_ring_free(pdev, pdev->event_ring); free_cmd_ring: cdnsp_ring_free(pdev, pdev->cmd_ring); destroy_device_pool: dma_pool_destroy(pdev->device_pool); destroy_segment_pool: dma_pool_destroy(pdev->segment_pool); release_dcbaa: dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa, pdev->dcbaa->dma); cdnsp_reset(pdev); return ret; }
linux-master
drivers/usb/cdns3/cdnsp-mem.c
// SPDX-License-Identifier: GPL-2.0 /* * USB Role Switch Support * * Copyright (C) 2018 Intel Corporation * Author: Heikki Krogerus <[email protected]> * Hans de Goede <[email protected]> */ #include <linux/usb/role.h> #include <linux/property.h> #include <linux/device.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> static const struct class role_class = { .name = "usb_role", }; struct usb_role_switch { struct device dev; struct mutex lock; /* device lock*/ enum usb_role role; /* From descriptor */ struct device *usb2_port; struct device *usb3_port; struct device *udc; usb_role_switch_set_t set; usb_role_switch_get_t get; bool allow_userspace_control; }; #define to_role_switch(d) container_of(d, struct usb_role_switch, dev) /** * usb_role_switch_set_role - Set USB role for a switch * @sw: USB role switch * @role: USB role to be switched to * * Set USB role @role for @sw. */ int usb_role_switch_set_role(struct usb_role_switch *sw, enum usb_role role) { int ret; if (IS_ERR_OR_NULL(sw)) return 0; mutex_lock(&sw->lock); ret = sw->set(sw, role); if (!ret) { sw->role = role; kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); } mutex_unlock(&sw->lock); return ret; } EXPORT_SYMBOL_GPL(usb_role_switch_set_role); /** * usb_role_switch_get_role - Get the USB role for a switch * @sw: USB role switch * * Depending on the role-switch-driver this function returns either a cached * value of the last set role, or reads back the actual value from the hardware. */ enum usb_role usb_role_switch_get_role(struct usb_role_switch *sw) { enum usb_role role; if (IS_ERR_OR_NULL(sw)) return USB_ROLE_NONE; mutex_lock(&sw->lock); if (sw->get) role = sw->get(sw); else role = sw->role; mutex_unlock(&sw->lock); return role; } EXPORT_SYMBOL_GPL(usb_role_switch_get_role); static void *usb_role_switch_match(const struct fwnode_handle *fwnode, const char *id, void *data) { struct device *dev; if (id && !fwnode_property_present(fwnode, id)) return NULL; dev = class_find_device_by_fwnode(&role_class, fwnode); return dev ? to_role_switch(dev) : ERR_PTR(-EPROBE_DEFER); } static struct usb_role_switch * usb_role_switch_is_parent(struct fwnode_handle *fwnode) { struct fwnode_handle *parent = fwnode_get_parent(fwnode); struct device *dev; if (!fwnode_property_present(parent, "usb-role-switch")) { fwnode_handle_put(parent); return NULL; } dev = class_find_device_by_fwnode(&role_class, parent); fwnode_handle_put(parent); return dev ? to_role_switch(dev) : ERR_PTR(-EPROBE_DEFER); } /** * usb_role_switch_get - Find USB role switch linked with the caller * @dev: The caller device * * Finds and returns role switch linked with @dev. The reference count for the * found switch is incremented. */ struct usb_role_switch *usb_role_switch_get(struct device *dev) { struct usb_role_switch *sw; sw = usb_role_switch_is_parent(dev_fwnode(dev)); if (!sw) sw = device_connection_find_match(dev, "usb-role-switch", NULL, usb_role_switch_match); if (!IS_ERR_OR_NULL(sw)) WARN_ON(!try_module_get(sw->dev.parent->driver->owner)); return sw; } EXPORT_SYMBOL_GPL(usb_role_switch_get); /** * fwnode_usb_role_switch_get - Find USB role switch linked with the caller * @fwnode: The caller device node * * This is similar to the usb_role_switch_get() function above, but it searches * the switch using fwnode instead of device entry. */ struct usb_role_switch *fwnode_usb_role_switch_get(struct fwnode_handle *fwnode) { struct usb_role_switch *sw; sw = usb_role_switch_is_parent(fwnode); if (!sw) sw = fwnode_connection_find_match(fwnode, "usb-role-switch", NULL, usb_role_switch_match); if (!IS_ERR_OR_NULL(sw)) WARN_ON(!try_module_get(sw->dev.parent->driver->owner)); return sw; } EXPORT_SYMBOL_GPL(fwnode_usb_role_switch_get); /** * usb_role_switch_put - Release handle to a switch * @sw: USB Role Switch * * Decrement reference count for @sw. */ void usb_role_switch_put(struct usb_role_switch *sw) { if (!IS_ERR_OR_NULL(sw)) { module_put(sw->dev.parent->driver->owner); put_device(&sw->dev); } } EXPORT_SYMBOL_GPL(usb_role_switch_put); /** * usb_role_switch_find_by_fwnode - Find USB role switch with its fwnode * @fwnode: fwnode of the USB Role Switch * * Finds and returns role switch with @fwnode. The reference count for the * found switch is incremented. */ struct usb_role_switch * usb_role_switch_find_by_fwnode(const struct fwnode_handle *fwnode) { struct device *dev; if (!fwnode) return NULL; dev = class_find_device_by_fwnode(&role_class, fwnode); if (dev) WARN_ON(!try_module_get(dev->parent->driver->owner)); return dev ? to_role_switch(dev) : NULL; } EXPORT_SYMBOL_GPL(usb_role_switch_find_by_fwnode); static umode_t usb_role_switch_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_role_switch *sw = to_role_switch(dev); if (sw->allow_userspace_control) return attr->mode; return 0; } static const char * const usb_roles[] = { [USB_ROLE_NONE] = "none", [USB_ROLE_HOST] = "host", [USB_ROLE_DEVICE] = "device", }; const char *usb_role_string(enum usb_role role) { if (role < 0 || role >= ARRAY_SIZE(usb_roles)) return "unknown"; return usb_roles[role]; } EXPORT_SYMBOL_GPL(usb_role_string); static ssize_t role_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_role_switch *sw = to_role_switch(dev); enum usb_role role = usb_role_switch_get_role(sw); return sprintf(buf, "%s\n", usb_roles[role]); } static ssize_t role_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct usb_role_switch *sw = to_role_switch(dev); int ret; ret = sysfs_match_string(usb_roles, buf); if (ret < 0) { bool res; /* Extra check if the user wants to disable the switch */ ret = kstrtobool(buf, &res); if (ret || res) return -EINVAL; } ret = usb_role_switch_set_role(sw, ret); if (ret) return ret; return size; } static DEVICE_ATTR_RW(role); static struct attribute *usb_role_switch_attrs[] = { &dev_attr_role.attr, NULL, }; static const struct attribute_group usb_role_switch_group = { .is_visible = usb_role_switch_is_visible, .attrs = usb_role_switch_attrs, }; static const struct attribute_group *usb_role_switch_groups[] = { &usb_role_switch_group, NULL, }; static int usb_role_switch_uevent(const struct device *dev, struct kobj_uevent_env *env) { int ret; ret = add_uevent_var(env, "USB_ROLE_SWITCH=%s", dev_name(dev)); if (ret) dev_err(dev, "failed to add uevent USB_ROLE_SWITCH\n"); return ret; } static void usb_role_switch_release(struct device *dev) { struct usb_role_switch *sw = to_role_switch(dev); kfree(sw); } static const struct device_type usb_role_dev_type = { .name = "usb_role_switch", .groups = usb_role_switch_groups, .uevent = usb_role_switch_uevent, .release = usb_role_switch_release, }; /** * usb_role_switch_register - Register USB Role Switch * @parent: Parent device for the switch * @desc: Description of the switch * * USB Role Switch is a device capable or choosing the role for USB connector. * On platforms where the USB controller is dual-role capable, the controller * driver will need to register the switch. On platforms where the USB host and * USB device controllers behind the connector are separate, there will be a * mux, and the driver for that mux will need to register the switch. * * Returns handle to a new role switch or ERR_PTR. The content of @desc is * copied. */ struct usb_role_switch * usb_role_switch_register(struct device *parent, const struct usb_role_switch_desc *desc) { struct usb_role_switch *sw; int ret; if (!desc || !desc->set) return ERR_PTR(-EINVAL); sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return ERR_PTR(-ENOMEM); mutex_init(&sw->lock); sw->allow_userspace_control = desc->allow_userspace_control; sw->usb2_port = desc->usb2_port; sw->usb3_port = desc->usb3_port; sw->udc = desc->udc; sw->set = desc->set; sw->get = desc->get; sw->dev.parent = parent; sw->dev.fwnode = desc->fwnode; sw->dev.class = &role_class; sw->dev.type = &usb_role_dev_type; dev_set_drvdata(&sw->dev, desc->driver_data); dev_set_name(&sw->dev, "%s-role-switch", desc->name ? desc->name : dev_name(parent)); ret = device_register(&sw->dev); if (ret) { put_device(&sw->dev); return ERR_PTR(ret); } /* TODO: Symlinks for the host port and the device controller. */ return sw; } EXPORT_SYMBOL_GPL(usb_role_switch_register); /** * usb_role_switch_unregister - Unregsiter USB Role Switch * @sw: USB Role Switch * * Unregister switch that was registered with usb_role_switch_register(). */ void usb_role_switch_unregister(struct usb_role_switch *sw) { if (!IS_ERR_OR_NULL(sw)) device_unregister(&sw->dev); } EXPORT_SYMBOL_GPL(usb_role_switch_unregister); /** * usb_role_switch_set_drvdata - Assign private data pointer to a switch * @sw: USB Role Switch * @data: Private data pointer */ void usb_role_switch_set_drvdata(struct usb_role_switch *sw, void *data) { dev_set_drvdata(&sw->dev, data); } EXPORT_SYMBOL_GPL(usb_role_switch_set_drvdata); /** * usb_role_switch_get_drvdata - Get the private data pointer of a switch * @sw: USB Role Switch */ void *usb_role_switch_get_drvdata(struct usb_role_switch *sw) { return dev_get_drvdata(&sw->dev); } EXPORT_SYMBOL_GPL(usb_role_switch_get_drvdata); static int __init usb_roles_init(void) { return class_register(&role_class); } subsys_initcall(usb_roles_init); static void __exit usb_roles_exit(void) { class_unregister(&role_class); } module_exit(usb_roles_exit); MODULE_AUTHOR("Heikki Krogerus <[email protected]>"); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("USB Role Class");
linux-master
drivers/usb/roles/class.c
// SPDX-License-Identifier: GPL-2.0+ /* * Intel XHCI (Cherry Trail, Broxton and others) USB OTG role switch driver * * Copyright (c) 2016-2017 Hans de Goede <[email protected]> * * Loosely based on android x86 kernel code which is: * * Copyright (C) 2014 Intel Corp. * * Author: Wu, Hao */ #include <linux/acpi.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/usb/role.h> /* register definition */ #define DUAL_ROLE_CFG0 0x68 #define SW_VBUS_VALID BIT(24) #define SW_IDPIN_EN BIT(21) #define SW_IDPIN BIT(20) #define SW_SWITCH_EN BIT(16) #define DRD_CONFIG_DYNAMIC 0 #define DRD_CONFIG_STATIC_HOST 1 #define DRD_CONFIG_STATIC_DEVICE 2 #define DRD_CONFIG_MASK 3 #define DUAL_ROLE_CFG1 0x6c #define HOST_MODE BIT(29) #define DUAL_ROLE_CFG1_POLL_TIMEOUT 1000 #define DRV_NAME "intel_xhci_usb_sw" struct intel_xhci_usb_data { struct device *dev; struct usb_role_switch *role_sw; void __iomem *base; bool enable_sw_switch; }; static const struct software_node intel_xhci_usb_node = { "intel-xhci-usb-sw", }; static int intel_xhci_usb_set_role(struct usb_role_switch *sw, enum usb_role role) { struct intel_xhci_usb_data *data = usb_role_switch_get_drvdata(sw); unsigned long timeout; acpi_status status; u32 glk, val; u32 drd_config = DRD_CONFIG_DYNAMIC; /* * On many CHT devices ACPI event (_AEI) handlers read / modify / * write the cfg0 register, just like we do. Take the ACPI lock * to avoid us racing with the AML code. */ status = acpi_acquire_global_lock(ACPI_WAIT_FOREVER, &glk); if (ACPI_FAILURE(status) && status != AE_NOT_CONFIGURED) { dev_err(data->dev, "Error could not acquire lock\n"); return -EIO; } pm_runtime_get_sync(data->dev); /* * Set idpin value as requested. * Since some devices rely on firmware setting DRD_CONFIG and * SW_SWITCH_EN bits to be zero for role switch, * do not set these bits for those devices. */ val = readl(data->base + DUAL_ROLE_CFG0); switch (role) { case USB_ROLE_NONE: val |= SW_IDPIN; val &= ~SW_VBUS_VALID; drd_config = DRD_CONFIG_DYNAMIC; break; case USB_ROLE_HOST: val &= ~SW_IDPIN; val &= ~SW_VBUS_VALID; drd_config = DRD_CONFIG_STATIC_HOST; break; case USB_ROLE_DEVICE: val |= SW_IDPIN; val |= SW_VBUS_VALID; drd_config = DRD_CONFIG_STATIC_DEVICE; break; } val |= SW_IDPIN_EN; if (data->enable_sw_switch) { val &= ~DRD_CONFIG_MASK; val |= SW_SWITCH_EN | drd_config; } writel(val, data->base + DUAL_ROLE_CFG0); acpi_release_global_lock(glk); /* In most case it takes about 600ms to finish mode switching */ timeout = jiffies + msecs_to_jiffies(DUAL_ROLE_CFG1_POLL_TIMEOUT); /* Polling on CFG1 register to confirm mode switch.*/ do { val = readl(data->base + DUAL_ROLE_CFG1); if (!!(val & HOST_MODE) == (role == USB_ROLE_HOST)) { pm_runtime_put(data->dev); return 0; } /* Interval for polling is set to about 5 - 10 ms */ usleep_range(5000, 10000); } while (time_before(jiffies, timeout)); pm_runtime_put(data->dev); dev_warn(data->dev, "Timeout waiting for role-switch\n"); return -ETIMEDOUT; } static enum usb_role intel_xhci_usb_get_role(struct usb_role_switch *sw) { struct intel_xhci_usb_data *data = usb_role_switch_get_drvdata(sw); enum usb_role role; u32 val; pm_runtime_get_sync(data->dev); val = readl(data->base + DUAL_ROLE_CFG0); pm_runtime_put(data->dev); if (!(val & SW_IDPIN)) role = USB_ROLE_HOST; else if (val & SW_VBUS_VALID) role = USB_ROLE_DEVICE; else role = USB_ROLE_NONE; return role; } static int intel_xhci_usb_probe(struct platform_device *pdev) { struct usb_role_switch_desc sw_desc = { }; struct device *dev = &pdev->dev; struct intel_xhci_usb_data *data; struct resource *res; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; data->base = devm_ioremap(dev, res->start, resource_size(res)); if (!data->base) return -ENOMEM; platform_set_drvdata(pdev, data); ret = software_node_register(&intel_xhci_usb_node); if (ret) return ret; sw_desc.set = intel_xhci_usb_set_role, sw_desc.get = intel_xhci_usb_get_role, sw_desc.allow_userspace_control = true, sw_desc.fwnode = software_node_fwnode(&intel_xhci_usb_node); sw_desc.driver_data = data; data->dev = dev; data->enable_sw_switch = !device_property_read_bool(dev, "sw_switch_disable"); data->role_sw = usb_role_switch_register(dev, &sw_desc); if (IS_ERR(data->role_sw)) { fwnode_handle_put(sw_desc.fwnode); return PTR_ERR(data->role_sw); } pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } static void intel_xhci_usb_remove(struct platform_device *pdev) { struct intel_xhci_usb_data *data = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); usb_role_switch_unregister(data->role_sw); fwnode_handle_put(software_node_fwnode(&intel_xhci_usb_node)); } static const struct platform_device_id intel_xhci_usb_table[] = { { .name = DRV_NAME }, {} }; MODULE_DEVICE_TABLE(platform, intel_xhci_usb_table); static struct platform_driver intel_xhci_usb_driver = { .driver = { .name = DRV_NAME, }, .id_table = intel_xhci_usb_table, .probe = intel_xhci_usb_probe, .remove_new = intel_xhci_usb_remove, }; module_platform_driver(intel_xhci_usb_driver); MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("Intel XHCI USB role switch driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/roles/intel-xhci-usb-role-switch.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Copyright (C) 2019 Renesas Electronics Corporation * Kuninori Morimoto <[email protected]> */ #include <linux/clk.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/sysfs.h> #include "common.h" #include "rcar2.h" #include "rcar3.h" #include "rza.h" /* * image of renesas_usbhs * * ex) gadget case * mod.c * mod_gadget.c * mod_host.c pipe.c fifo.c * * +-------+ +-----------+ * | pipe0 |------>| fifo pio | * +------------+ +-------+ +-----------+ * | mod_gadget |=====> | pipe1 |--+ * +------------+ +-------+ | +-----------+ * | pipe2 | | +-| fifo dma0 | * +------------+ +-------+ | | +-----------+ * | mod_host | | pipe3 |<-|--+ * +------------+ +-------+ | +-----------+ * | .... | +--->| fifo dma1 | * | .... | +-----------+ */ /* * platform call back * * renesas usb support platform callback function. * Below macro call it. * if platform doesn't have callback, it return 0 (no error) */ #define usbhs_platform_call(priv, func, args...)\ (!(priv) ? -ENODEV : \ !((priv)->pfunc->func) ? 0 : \ (priv)->pfunc->func(args)) /* * common functions */ u16 usbhs_read(struct usbhs_priv *priv, u32 reg) { return ioread16(priv->base + reg); } void usbhs_write(struct usbhs_priv *priv, u32 reg, u16 data) { iowrite16(data, priv->base + reg); } void usbhs_bset(struct usbhs_priv *priv, u32 reg, u16 mask, u16 data) { u16 val = usbhs_read(priv, reg); val &= ~mask; val |= data & mask; usbhs_write(priv, reg, val); } struct usbhs_priv *usbhs_pdev_to_priv(struct platform_device *pdev) { return dev_get_drvdata(&pdev->dev); } int usbhs_get_id_as_gadget(struct platform_device *pdev) { return USBHS_GADGET; } /* * syscfg functions */ static void usbhs_sys_clock_ctrl(struct usbhs_priv *priv, int enable) { usbhs_bset(priv, SYSCFG, SCKE, enable ? SCKE : 0); } void usbhs_sys_host_ctrl(struct usbhs_priv *priv, int enable) { u16 mask = DCFM | DRPD | DPRPU | HSE | USBE; u16 val = DCFM | DRPD | HSE | USBE; /* * if enable * * - select Host mode * - D+ Line/D- Line Pull-down */ usbhs_bset(priv, SYSCFG, mask, enable ? val : 0); } void usbhs_sys_function_ctrl(struct usbhs_priv *priv, int enable) { u16 mask = DCFM | DRPD | DPRPU | HSE | USBE; u16 val = HSE | USBE; /* CNEN bit is required for function operation */ if (usbhs_get_dparam(priv, has_cnen)) { mask |= CNEN; val |= CNEN; } /* * if enable * * - select Function mode * - D+ Line Pull-up is disabled * When D+ Line Pull-up is enabled, * calling usbhs_sys_function_pullup(,1) */ usbhs_bset(priv, SYSCFG, mask, enable ? val : 0); } void usbhs_sys_function_pullup(struct usbhs_priv *priv, int enable) { usbhs_bset(priv, SYSCFG, DPRPU, enable ? DPRPU : 0); } void usbhs_sys_set_test_mode(struct usbhs_priv *priv, u16 mode) { usbhs_write(priv, TESTMODE, mode); } /* * frame functions */ int usbhs_frame_get_num(struct usbhs_priv *priv) { return usbhs_read(priv, FRMNUM) & FRNM_MASK; } /* * usb request functions */ void usbhs_usbreq_get_val(struct usbhs_priv *priv, struct usb_ctrlrequest *req) { u16 val; val = usbhs_read(priv, USBREQ); req->bRequest = (val >> 8) & 0xFF; req->bRequestType = (val >> 0) & 0xFF; req->wValue = cpu_to_le16(usbhs_read(priv, USBVAL)); req->wIndex = cpu_to_le16(usbhs_read(priv, USBINDX)); req->wLength = cpu_to_le16(usbhs_read(priv, USBLENG)); } void usbhs_usbreq_set_val(struct usbhs_priv *priv, struct usb_ctrlrequest *req) { usbhs_write(priv, USBREQ, (req->bRequest << 8) | req->bRequestType); usbhs_write(priv, USBVAL, le16_to_cpu(req->wValue)); usbhs_write(priv, USBINDX, le16_to_cpu(req->wIndex)); usbhs_write(priv, USBLENG, le16_to_cpu(req->wLength)); usbhs_bset(priv, DCPCTR, SUREQ, SUREQ); } /* * bus/vbus functions */ void usbhs_bus_send_sof_enable(struct usbhs_priv *priv) { u16 status = usbhs_read(priv, DVSTCTR) & (USBRST | UACT); if (status != USBRST) { struct device *dev = usbhs_priv_to_dev(priv); dev_err(dev, "usbhs should be reset\n"); } usbhs_bset(priv, DVSTCTR, (USBRST | UACT), UACT); } void usbhs_bus_send_reset(struct usbhs_priv *priv) { usbhs_bset(priv, DVSTCTR, (USBRST | UACT), USBRST); } int usbhs_bus_get_speed(struct usbhs_priv *priv) { u16 dvstctr = usbhs_read(priv, DVSTCTR); switch (RHST & dvstctr) { case RHST_LOW_SPEED: return USB_SPEED_LOW; case RHST_FULL_SPEED: return USB_SPEED_FULL; case RHST_HIGH_SPEED: return USB_SPEED_HIGH; } return USB_SPEED_UNKNOWN; } int usbhs_vbus_ctrl(struct usbhs_priv *priv, int enable) { struct platform_device *pdev = usbhs_priv_to_pdev(priv); return usbhs_platform_call(priv, set_vbus, pdev, enable); } static void usbhsc_bus_init(struct usbhs_priv *priv) { usbhs_write(priv, DVSTCTR, 0); usbhs_vbus_ctrl(priv, 0); } /* * device configuration */ int usbhs_set_device_config(struct usbhs_priv *priv, int devnum, u16 upphub, u16 hubport, u16 speed) { struct device *dev = usbhs_priv_to_dev(priv); u16 usbspd = 0; u32 reg = DEVADD0 + (2 * devnum); if (devnum > 10) { dev_err(dev, "cannot set speed to unknown device %d\n", devnum); return -EIO; } if (upphub > 0xA) { dev_err(dev, "unsupported hub number %d\n", upphub); return -EIO; } switch (speed) { case USB_SPEED_LOW: usbspd = USBSPD_SPEED_LOW; break; case USB_SPEED_FULL: usbspd = USBSPD_SPEED_FULL; break; case USB_SPEED_HIGH: usbspd = USBSPD_SPEED_HIGH; break; default: dev_err(dev, "unsupported speed %d\n", speed); return -EIO; } usbhs_write(priv, reg, UPPHUB(upphub) | HUBPORT(hubport)| USBSPD(usbspd)); return 0; } /* * interrupt functions */ void usbhs_xxxsts_clear(struct usbhs_priv *priv, u16 sts_reg, u16 bit) { u16 pipe_mask = (u16)GENMASK(usbhs_get_dparam(priv, pipe_size), 0); usbhs_write(priv, sts_reg, ~(1 << bit) & pipe_mask); } /* * local functions */ static void usbhsc_set_buswait(struct usbhs_priv *priv) { int wait = usbhs_get_dparam(priv, buswait_bwait); /* set bus wait if platform have */ if (wait) usbhs_bset(priv, BUSWAIT, 0x000F, wait); } static bool usbhsc_is_multi_clks(struct usbhs_priv *priv) { return priv->dparam.multi_clks; } static int usbhsc_clk_get(struct device *dev, struct usbhs_priv *priv) { if (!usbhsc_is_multi_clks(priv)) return 0; /* The first clock should exist */ priv->clks[0] = of_clk_get(dev_of_node(dev), 0); if (IS_ERR(priv->clks[0])) return PTR_ERR(priv->clks[0]); /* * To backward compatibility with old DT, this driver checks the return * value if it's -ENOENT or not. */ priv->clks[1] = of_clk_get(dev_of_node(dev), 1); if (PTR_ERR(priv->clks[1]) == -ENOENT) priv->clks[1] = NULL; else if (IS_ERR(priv->clks[1])) return PTR_ERR(priv->clks[1]); return 0; } static void usbhsc_clk_put(struct usbhs_priv *priv) { int i; if (!usbhsc_is_multi_clks(priv)) return; for (i = 0; i < ARRAY_SIZE(priv->clks); i++) clk_put(priv->clks[i]); } static int usbhsc_clk_prepare_enable(struct usbhs_priv *priv) { int i, ret; if (!usbhsc_is_multi_clks(priv)) return 0; for (i = 0; i < ARRAY_SIZE(priv->clks); i++) { ret = clk_prepare_enable(priv->clks[i]); if (ret) { while (--i >= 0) clk_disable_unprepare(priv->clks[i]); return ret; } } return ret; } static void usbhsc_clk_disable_unprepare(struct usbhs_priv *priv) { int i; if (!usbhsc_is_multi_clks(priv)) return; for (i = 0; i < ARRAY_SIZE(priv->clks); i++) clk_disable_unprepare(priv->clks[i]); } /* * platform default param */ /* commonly used on old SH-Mobile SoCs */ static struct renesas_usbhs_driver_pipe_config usbhsc_default_pipe[] = { RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_CONTROL, 64, 0x00, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_ISOC, 1024, 0x08, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_ISOC, 1024, 0x18, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x28, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x38, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x48, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x04, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x05, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x06, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x07, false), }; /* commonly used on newer SH-Mobile and R-Car SoCs */ static struct renesas_usbhs_driver_pipe_config usbhsc_new_pipe[] = { RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_CONTROL, 64, 0x00, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_ISOC, 1024, 0x08, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_ISOC, 1024, 0x28, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x48, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x58, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x68, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x04, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x05, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_INT, 64, 0x06, false), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x78, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x88, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0x98, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0xa8, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0xb8, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0xc8, true), RENESAS_USBHS_PIPE(USB_ENDPOINT_XFER_BULK, 512, 0xd8, true), }; /* * power control */ static void usbhsc_power_ctrl(struct usbhs_priv *priv, int enable) { struct platform_device *pdev = usbhs_priv_to_pdev(priv); struct device *dev = usbhs_priv_to_dev(priv); if (enable) { /* enable PM */ pm_runtime_get_sync(dev); /* enable clks */ if (usbhsc_clk_prepare_enable(priv)) return; /* enable platform power */ usbhs_platform_call(priv, power_ctrl, pdev, priv->base, enable); /* USB on */ usbhs_sys_clock_ctrl(priv, enable); } else { /* USB off */ usbhs_sys_clock_ctrl(priv, enable); /* disable platform power */ usbhs_platform_call(priv, power_ctrl, pdev, priv->base, enable); /* disable clks */ usbhsc_clk_disable_unprepare(priv); /* disable PM */ pm_runtime_put_sync(dev); } } /* * hotplug */ static void usbhsc_hotplug(struct usbhs_priv *priv) { struct platform_device *pdev = usbhs_priv_to_pdev(priv); struct usbhs_mod *mod = usbhs_mod_get_current(priv); int id; int enable; int cable; int ret; /* * get vbus status from platform */ enable = usbhs_mod_info_call(priv, get_vbus, pdev); /* * get id from platform */ id = usbhs_platform_call(priv, get_id, pdev); if (enable && !mod) { if (priv->edev) { cable = extcon_get_state(priv->edev, EXTCON_USB_HOST); if ((cable > 0 && id != USBHS_HOST) || (!cable && id != USBHS_GADGET)) { dev_info(&pdev->dev, "USB cable plugged in doesn't match the selected role!\n"); return; } } ret = usbhs_mod_change(priv, id); if (ret < 0) return; dev_dbg(&pdev->dev, "%s enable\n", __func__); /* power on */ if (usbhs_get_dparam(priv, runtime_pwctrl)) usbhsc_power_ctrl(priv, enable); /* bus init */ usbhsc_set_buswait(priv); usbhsc_bus_init(priv); /* module start */ usbhs_mod_call(priv, start, priv); } else if (!enable && mod) { dev_dbg(&pdev->dev, "%s disable\n", __func__); /* module stop */ usbhs_mod_call(priv, stop, priv); /* bus init */ usbhsc_bus_init(priv); /* power off */ if (usbhs_get_dparam(priv, runtime_pwctrl)) usbhsc_power_ctrl(priv, enable); usbhs_mod_change(priv, -1); /* reset phy for next connection */ usbhs_platform_call(priv, phy_reset, pdev); } } /* * notify hotplug */ static void usbhsc_notify_hotplug(struct work_struct *work) { struct usbhs_priv *priv = container_of(work, struct usbhs_priv, notify_hotplug_work.work); usbhsc_hotplug(priv); } int usbhsc_schedule_notify_hotplug(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); int delay = usbhs_get_dparam(priv, detection_delay); /* * This functions will be called in interrupt. * To make sure safety context, * use workqueue for usbhs_notify_hotplug */ schedule_delayed_work(&priv->notify_hotplug_work, msecs_to_jiffies(delay)); return 0; } /* * platform functions */ static const struct of_device_id usbhs_of_match[] = { { .compatible = "renesas,usbhs-r8a774c0", .data = &usbhs_rcar_gen3_with_pll_plat_info, }, { .compatible = "renesas,usbhs-r8a7790", .data = &usbhs_rcar_gen2_plat_info, }, { .compatible = "renesas,usbhs-r8a7791", .data = &usbhs_rcar_gen2_plat_info, }, { .compatible = "renesas,usbhs-r8a7794", .data = &usbhs_rcar_gen2_plat_info, }, { .compatible = "renesas,usbhs-r8a7795", .data = &usbhs_rcar_gen3_plat_info, }, { .compatible = "renesas,usbhs-r8a7796", .data = &usbhs_rcar_gen3_plat_info, }, { .compatible = "renesas,usbhs-r8a77990", .data = &usbhs_rcar_gen3_with_pll_plat_info, }, { .compatible = "renesas,usbhs-r8a77995", .data = &usbhs_rcar_gen3_with_pll_plat_info, }, { .compatible = "renesas,rcar-gen2-usbhs", .data = &usbhs_rcar_gen2_plat_info, }, { .compatible = "renesas,rcar-gen3-usbhs", .data = &usbhs_rcar_gen3_plat_info, }, { .compatible = "renesas,rza1-usbhs", .data = &usbhs_rza1_plat_info, }, { .compatible = "renesas,rza2-usbhs", .data = &usbhs_rza2_plat_info, }, { }, }; MODULE_DEVICE_TABLE(of, usbhs_of_match); static int usbhs_probe(struct platform_device *pdev) { const struct renesas_usbhs_platform_info *info; struct usbhs_priv *priv; struct device *dev = &pdev->dev; struct gpio_desc *gpiod; int ret; u32 tmp; int irq; /* check device node */ if (dev_of_node(dev)) info = of_device_get_match_data(dev); else info = renesas_usbhs_get_info(pdev); /* check platform information */ if (!info) { dev_err(dev, "no platform information\n"); return -EINVAL; } /* platform data */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* usb private data */ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); if (of_property_read_bool(dev_of_node(dev), "extcon")) { priv->edev = extcon_get_edev_by_phandle(dev, 0); if (IS_ERR(priv->edev)) return PTR_ERR(priv->edev); } priv->rsts = devm_reset_control_array_get_optional_shared(dev); if (IS_ERR(priv->rsts)) return PTR_ERR(priv->rsts); /* * care platform info */ priv->dparam = info->driver_param; if (!info->platform_callback.get_id) { dev_err(dev, "no platform callbacks\n"); return -EINVAL; } priv->pfunc = &info->platform_callback; /* set default param if platform doesn't have */ if (usbhs_get_dparam(priv, has_new_pipe_configs)) { priv->dparam.pipe_configs = usbhsc_new_pipe; priv->dparam.pipe_size = ARRAY_SIZE(usbhsc_new_pipe); } else if (!priv->dparam.pipe_configs) { priv->dparam.pipe_configs = usbhsc_default_pipe; priv->dparam.pipe_size = ARRAY_SIZE(usbhsc_default_pipe); } if (!priv->dparam.pio_dma_border) priv->dparam.pio_dma_border = 64; /* 64byte */ if (!of_property_read_u32(dev_of_node(dev), "renesas,buswait", &tmp)) priv->dparam.buswait_bwait = tmp; gpiod = devm_gpiod_get_optional(dev, "renesas,enable", GPIOD_IN); if (IS_ERR(gpiod)) return PTR_ERR(gpiod); /* FIXME */ /* runtime power control ? */ if (priv->pfunc->get_vbus) usbhs_get_dparam(priv, runtime_pwctrl) = 1; /* * priv settings */ priv->irq = irq; priv->pdev = pdev; INIT_DELAYED_WORK(&priv->notify_hotplug_work, usbhsc_notify_hotplug); spin_lock_init(usbhs_priv_to_lock(priv)); /* call pipe and module init */ ret = usbhs_pipe_probe(priv); if (ret < 0) return ret; ret = usbhs_fifo_probe(priv); if (ret < 0) goto probe_end_pipe_exit; ret = usbhs_mod_probe(priv); if (ret < 0) goto probe_end_fifo_exit; /* dev_set_drvdata should be called after usbhs_mod_init */ platform_set_drvdata(pdev, priv); ret = reset_control_deassert(priv->rsts); if (ret) goto probe_fail_rst; ret = usbhsc_clk_get(dev, priv); if (ret) goto probe_fail_clks; /* * deviece reset here because * USB device might be used in boot loader. */ usbhs_sys_clock_ctrl(priv, 0); /* check GPIO determining if USB function should be enabled */ if (gpiod) { ret = !gpiod_get_value(gpiod); if (ret) { dev_warn(dev, "USB function not selected (GPIO)\n"); ret = -ENOTSUPP; goto probe_end_mod_exit; } } /* * platform call * * USB phy setup might depend on CPU/Board. * If platform has its callback functions, * call it here. */ ret = usbhs_platform_call(priv, hardware_init, pdev); if (ret < 0) { dev_err(dev, "platform init failed.\n"); goto probe_end_mod_exit; } /* reset phy for connection */ usbhs_platform_call(priv, phy_reset, pdev); /* power control */ pm_runtime_enable(dev); if (!usbhs_get_dparam(priv, runtime_pwctrl)) { usbhsc_power_ctrl(priv, 1); usbhs_mod_autonomy_mode(priv); } else { usbhs_mod_non_autonomy_mode(priv); } /* * manual call notify_hotplug for cold plug */ usbhsc_schedule_notify_hotplug(pdev); dev_info(dev, "probed\n"); return ret; probe_end_mod_exit: usbhsc_clk_put(priv); probe_fail_clks: reset_control_assert(priv->rsts); probe_fail_rst: usbhs_mod_remove(priv); probe_end_fifo_exit: usbhs_fifo_remove(priv); probe_end_pipe_exit: usbhs_pipe_remove(priv); dev_info(dev, "probe failed (%d)\n", ret); return ret; } static void usbhs_remove(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); dev_dbg(&pdev->dev, "usb remove\n"); /* power off */ if (!usbhs_get_dparam(priv, runtime_pwctrl)) usbhsc_power_ctrl(priv, 0); pm_runtime_disable(&pdev->dev); usbhs_platform_call(priv, hardware_exit, pdev); usbhsc_clk_put(priv); reset_control_assert(priv->rsts); usbhs_mod_remove(priv); usbhs_fifo_remove(priv); usbhs_pipe_remove(priv); } static __maybe_unused int usbhsc_suspend(struct device *dev) { struct usbhs_priv *priv = dev_get_drvdata(dev); struct usbhs_mod *mod = usbhs_mod_get_current(priv); if (mod) { usbhs_mod_call(priv, stop, priv); usbhs_mod_change(priv, -1); } if (mod || !usbhs_get_dparam(priv, runtime_pwctrl)) usbhsc_power_ctrl(priv, 0); return 0; } static __maybe_unused int usbhsc_resume(struct device *dev) { struct usbhs_priv *priv = dev_get_drvdata(dev); struct platform_device *pdev = usbhs_priv_to_pdev(priv); if (!usbhs_get_dparam(priv, runtime_pwctrl)) { usbhsc_power_ctrl(priv, 1); usbhs_mod_autonomy_mode(priv); } usbhs_platform_call(priv, phy_reset, pdev); usbhsc_schedule_notify_hotplug(pdev); return 0; } static SIMPLE_DEV_PM_OPS(usbhsc_pm_ops, usbhsc_suspend, usbhsc_resume); static struct platform_driver renesas_usbhs_driver = { .driver = { .name = "renesas_usbhs", .pm = &usbhsc_pm_ops, .of_match_table = usbhs_of_match, }, .probe = usbhs_probe, .remove_new = usbhs_remove, }; module_platform_driver(renesas_usbhs_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Renesas USB driver"); MODULE_AUTHOR("Kuninori Morimoto <[email protected]>");
linux-master
drivers/usb/renesas_usbhs/common.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas USB driver RZ/A2 initialization and power control * * Copyright (C) 2019 Chris Brandt * Copyright (C) 2019 Renesas Electronics Corporation */ #include <linux/delay.h> #include <linux/io.h> #include <linux/phy/phy.h> #include "common.h" #include "rza.h" static int usbhs_rza2_hardware_init(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); struct phy *phy = phy_get(&pdev->dev, "usb"); if (IS_ERR(phy)) return PTR_ERR(phy); priv->phy = phy; return 0; } static int usbhs_rza2_hardware_exit(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); phy_put(&pdev->dev, priv->phy); priv->phy = NULL; return 0; } static int usbhs_rza2_power_ctrl(struct platform_device *pdev, void __iomem *base, int enable) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); int retval = 0; if (!priv->phy) return -ENODEV; if (enable) { retval = phy_init(priv->phy); usbhs_bset(priv, SUSPMODE, SUSPM, SUSPM); udelay(100); /* Wait for PLL to become stable */ if (!retval) retval = phy_power_on(priv->phy); } else { usbhs_bset(priv, SUSPMODE, SUSPM, 0); phy_power_off(priv->phy); phy_exit(priv->phy); } return retval; } const struct renesas_usbhs_platform_info usbhs_rza2_plat_info = { .platform_callback = { .hardware_init = usbhs_rza2_hardware_init, .hardware_exit = usbhs_rza2_hardware_exit, .power_ctrl = usbhs_rza2_power_ctrl, .get_id = usbhs_get_id_as_gadget, }, .driver_param = { .has_cnen = 1, .cfifo_byte_addr = 1, .has_new_pipe_configs = 1, }, };
linux-master
drivers/usb/renesas_usbhs/rza2.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Kuninori Morimoto <[email protected]> */ #include <linux/delay.h> #include <linux/slab.h> #include "common.h" #include "pipe.h" /* * macros */ #define usbhsp_addr_offset(p) ((usbhs_pipe_number(p) - 1) * 2) #define usbhsp_flags_set(p, f) ((p)->flags |= USBHS_PIPE_FLAGS_##f) #define usbhsp_flags_clr(p, f) ((p)->flags &= ~USBHS_PIPE_FLAGS_##f) #define usbhsp_flags_has(p, f) ((p)->flags & USBHS_PIPE_FLAGS_##f) #define usbhsp_flags_init(p) do {(p)->flags = 0; } while (0) /* * for debug */ static char *usbhsp_pipe_name[] = { [USB_ENDPOINT_XFER_CONTROL] = "DCP", [USB_ENDPOINT_XFER_BULK] = "BULK", [USB_ENDPOINT_XFER_INT] = "INT", [USB_ENDPOINT_XFER_ISOC] = "ISO", }; char *usbhs_pipe_name(struct usbhs_pipe *pipe) { return usbhsp_pipe_name[usbhs_pipe_type(pipe)]; } static struct renesas_usbhs_driver_pipe_config *usbhsp_get_pipe_config(struct usbhs_priv *priv, int pipe_num) { struct renesas_usbhs_driver_pipe_config *pipe_configs = usbhs_get_dparam(priv, pipe_configs); return &pipe_configs[pipe_num]; } /* * DCPCTR/PIPEnCTR functions */ static void usbhsp_pipectrl_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); int offset = usbhsp_addr_offset(pipe); if (usbhs_pipe_is_dcp(pipe)) usbhs_bset(priv, DCPCTR, mask, val); else usbhs_bset(priv, PIPEnCTR + offset, mask, val); } static u16 usbhsp_pipectrl_get(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); int offset = usbhsp_addr_offset(pipe); if (usbhs_pipe_is_dcp(pipe)) return usbhs_read(priv, DCPCTR); else return usbhs_read(priv, PIPEnCTR + offset); } /* * DCP/PIPE functions */ static void __usbhsp_pipe_xxx_set(struct usbhs_pipe *pipe, u16 dcp_reg, u16 pipe_reg, u16 mask, u16 val) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); if (usbhs_pipe_is_dcp(pipe)) usbhs_bset(priv, dcp_reg, mask, val); else usbhs_bset(priv, pipe_reg, mask, val); } static u16 __usbhsp_pipe_xxx_get(struct usbhs_pipe *pipe, u16 dcp_reg, u16 pipe_reg) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); if (usbhs_pipe_is_dcp(pipe)) return usbhs_read(priv, dcp_reg); else return usbhs_read(priv, pipe_reg); } /* * DCPCFG/PIPECFG functions */ static void usbhsp_pipe_cfg_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { __usbhsp_pipe_xxx_set(pipe, DCPCFG, PIPECFG, mask, val); } static u16 usbhsp_pipe_cfg_get(struct usbhs_pipe *pipe) { return __usbhsp_pipe_xxx_get(pipe, DCPCFG, PIPECFG); } /* * PIPEnTRN/PIPEnTRE functions */ static void usbhsp_pipe_trn_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); int num = usbhs_pipe_number(pipe); u16 reg; /* * It is impossible to calculate address, * since PIPEnTRN addresses were mapped randomly. */ #define CASE_PIPExTRN(a) \ case 0x ## a: \ reg = PIPE ## a ## TRN; \ break; switch (num) { CASE_PIPExTRN(1); CASE_PIPExTRN(2); CASE_PIPExTRN(3); CASE_PIPExTRN(4); CASE_PIPExTRN(5); CASE_PIPExTRN(B); CASE_PIPExTRN(C); CASE_PIPExTRN(D); CASE_PIPExTRN(E); CASE_PIPExTRN(F); CASE_PIPExTRN(9); CASE_PIPExTRN(A); default: dev_err(dev, "unknown pipe (%d)\n", num); return; } __usbhsp_pipe_xxx_set(pipe, 0, reg, mask, val); } static void usbhsp_pipe_tre_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); int num = usbhs_pipe_number(pipe); u16 reg; /* * It is impossible to calculate address, * since PIPEnTRE addresses were mapped randomly. */ #define CASE_PIPExTRE(a) \ case 0x ## a: \ reg = PIPE ## a ## TRE; \ break; switch (num) { CASE_PIPExTRE(1); CASE_PIPExTRE(2); CASE_PIPExTRE(3); CASE_PIPExTRE(4); CASE_PIPExTRE(5); CASE_PIPExTRE(B); CASE_PIPExTRE(C); CASE_PIPExTRE(D); CASE_PIPExTRE(E); CASE_PIPExTRE(F); CASE_PIPExTRE(9); CASE_PIPExTRE(A); default: dev_err(dev, "unknown pipe (%d)\n", num); return; } __usbhsp_pipe_xxx_set(pipe, 0, reg, mask, val); } /* * PIPEBUF */ static void usbhsp_pipe_buf_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { if (usbhs_pipe_is_dcp(pipe)) return; __usbhsp_pipe_xxx_set(pipe, 0, PIPEBUF, mask, val); } /* * DCPMAXP/PIPEMAXP */ static void usbhsp_pipe_maxp_set(struct usbhs_pipe *pipe, u16 mask, u16 val) { __usbhsp_pipe_xxx_set(pipe, DCPMAXP, PIPEMAXP, mask, val); } /* * pipe control functions */ static void usbhsp_pipe_select(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); /* * On pipe, this is necessary before * accesses to below registers. * * PIPESEL : usbhsp_pipe_select * PIPECFG : usbhsp_pipe_cfg_xxx * PIPEBUF : usbhsp_pipe_buf_xxx * PIPEMAXP : usbhsp_pipe_maxp_xxx * PIPEPERI */ /* * if pipe is dcp, no pipe is selected. * it is no problem, because dcp have its register */ usbhs_write(priv, PIPESEL, 0xF & usbhs_pipe_number(pipe)); } static int usbhsp_pipe_barrier(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); int timeout = 1024; u16 mask = usbhs_mod_is_host(priv) ? (CSSTS | PID_MASK) : PID_MASK; /* * make sure.... * * Modify these bits when CSSTS = 0, PID = NAK, and no pipe number is * specified by the CURPIPE bits. * When changing the setting of this bit after changing * the PID bits for the selected pipe from BUF to NAK, * check that CSSTS = 0 and PBUSY = 0. */ /* * CURPIPE bit = 0 * * see also * "Operation" * - "Pipe Control" * - "Pipe Control Registers Switching Procedure" */ usbhs_write(priv, CFIFOSEL, 0); usbhs_pipe_disable(pipe); do { if (!(usbhsp_pipectrl_get(pipe) & mask)) return 0; udelay(10); } while (timeout--); return -EBUSY; } int usbhs_pipe_is_accessible(struct usbhs_pipe *pipe) { u16 val; val = usbhsp_pipectrl_get(pipe); if (val & BSTS) return 0; return -EBUSY; } bool usbhs_pipe_contains_transmittable_data(struct usbhs_pipe *pipe) { u16 val; /* Do not support for DCP pipe */ if (usbhs_pipe_is_dcp(pipe)) return false; val = usbhsp_pipectrl_get(pipe); if (val & INBUFM) return true; return false; } /* * PID ctrl */ static void __usbhsp_pid_try_nak_if_stall(struct usbhs_pipe *pipe) { u16 pid = usbhsp_pipectrl_get(pipe); pid &= PID_MASK; /* * see * "Pipe n Control Register" - "PID" */ switch (pid) { case PID_STALL11: usbhsp_pipectrl_set(pipe, PID_MASK, PID_STALL10); fallthrough; case PID_STALL10: usbhsp_pipectrl_set(pipe, PID_MASK, PID_NAK); } } void usbhs_pipe_disable(struct usbhs_pipe *pipe) { int timeout = 1024; u16 val; /* see "Pipe n Control Register" - "PID" */ __usbhsp_pid_try_nak_if_stall(pipe); usbhsp_pipectrl_set(pipe, PID_MASK, PID_NAK); do { val = usbhsp_pipectrl_get(pipe); val &= PBUSY; if (!val) break; udelay(10); } while (timeout--); } void usbhs_pipe_enable(struct usbhs_pipe *pipe) { /* see "Pipe n Control Register" - "PID" */ __usbhsp_pid_try_nak_if_stall(pipe); usbhsp_pipectrl_set(pipe, PID_MASK, PID_BUF); } void usbhs_pipe_stall(struct usbhs_pipe *pipe) { u16 pid = usbhsp_pipectrl_get(pipe); pid &= PID_MASK; /* * see * "Pipe n Control Register" - "PID" */ switch (pid) { case PID_NAK: usbhsp_pipectrl_set(pipe, PID_MASK, PID_STALL10); break; case PID_BUF: usbhsp_pipectrl_set(pipe, PID_MASK, PID_STALL11); break; } } int usbhs_pipe_is_stall(struct usbhs_pipe *pipe) { u16 pid = usbhsp_pipectrl_get(pipe) & PID_MASK; return (int)(pid == PID_STALL10 || pid == PID_STALL11); } void usbhs_pipe_set_trans_count_if_bulk(struct usbhs_pipe *pipe, int len) { if (!usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_BULK)) return; /* * clear and disable transfer counter for IN/OUT pipe */ usbhsp_pipe_tre_set(pipe, TRCLR | TRENB, TRCLR); /* * Only IN direction bulk pipe can use transfer count. * Without using this function, * received data will break if it was large data size. * see PIPEnTRN/PIPEnTRE for detail */ if (usbhs_pipe_is_dir_in(pipe)) { int maxp = usbhs_pipe_get_maxpacket(pipe); usbhsp_pipe_trn_set(pipe, 0xffff, DIV_ROUND_UP(len, maxp)); usbhsp_pipe_tre_set(pipe, TRENB, TRENB); /* enable */ } } /* * pipe setup */ static int usbhsp_setup_pipecfg(struct usbhs_pipe *pipe, int is_host, int dir_in, u16 *pipecfg) { u16 type = 0; u16 bfre = 0; u16 dblb = 0; u16 cntmd = 0; u16 dir = 0; u16 epnum = 0; u16 shtnak = 0; static const u16 type_array[] = { [USB_ENDPOINT_XFER_BULK] = TYPE_BULK, [USB_ENDPOINT_XFER_INT] = TYPE_INT, [USB_ENDPOINT_XFER_ISOC] = TYPE_ISO, }; if (usbhs_pipe_is_dcp(pipe)) return -EINVAL; /* * PIPECFG * * see * - "Register Descriptions" - "PIPECFG" register * - "Features" - "Pipe configuration" * - "Operation" - "Pipe Control" */ /* TYPE */ type = type_array[usbhs_pipe_type(pipe)]; /* BFRE */ if (usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_ISOC) || usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_BULK)) bfre = 0; /* FIXME */ /* DBLB: see usbhs_pipe_config_update() */ /* CNTMD */ if (usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_BULK)) cntmd = 0; /* FIXME */ /* DIR */ if (dir_in) usbhsp_flags_set(pipe, IS_DIR_HOST); if (!!is_host ^ !!dir_in) dir |= DIR_OUT; if (!dir) usbhsp_flags_set(pipe, IS_DIR_IN); /* SHTNAK */ if (usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_BULK) && !dir) shtnak = SHTNAK; /* EPNUM */ epnum = 0; /* see usbhs_pipe_config_update() */ *pipecfg = type | bfre | dblb | cntmd | dir | shtnak | epnum; return 0; } static u16 usbhsp_setup_pipebuff(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); int pipe_num = usbhs_pipe_number(pipe); u16 buff_size; u16 bufnmb; u16 bufnmb_cnt; struct renesas_usbhs_driver_pipe_config *pipe_config = usbhsp_get_pipe_config(priv, pipe_num); /* * PIPEBUF * * see * - "Register Descriptions" - "PIPEBUF" register * - "Features" - "Pipe configuration" * - "Operation" - "FIFO Buffer Memory" * - "Operation" - "Pipe Control" */ buff_size = pipe_config->bufsize; bufnmb = pipe_config->bufnum; /* change buff_size to register value */ bufnmb_cnt = (buff_size / 64) - 1; dev_dbg(dev, "pipe : %d : buff_size 0x%x: bufnmb 0x%x\n", pipe_num, buff_size, bufnmb); return (0x1f & bufnmb_cnt) << 10 | (0xff & bufnmb) << 0; } void usbhs_pipe_config_update(struct usbhs_pipe *pipe, u16 devsel, u16 epnum, u16 maxp) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); int pipe_num = usbhs_pipe_number(pipe); struct renesas_usbhs_driver_pipe_config *pipe_config = usbhsp_get_pipe_config(priv, pipe_num); u16 dblb = pipe_config->double_buf ? DBLB : 0; if (devsel > 0xA) { struct device *dev = usbhs_priv_to_dev(priv); dev_err(dev, "devsel error %d\n", devsel); devsel = 0; } usbhsp_pipe_barrier(pipe); pipe->maxp = maxp; usbhsp_pipe_select(pipe); usbhsp_pipe_maxp_set(pipe, 0xFFFF, (devsel << 12) | maxp); if (!usbhs_pipe_is_dcp(pipe)) usbhsp_pipe_cfg_set(pipe, 0x000F | DBLB, epnum | dblb); } /* * pipe control */ int usbhs_pipe_get_maxpacket(struct usbhs_pipe *pipe) { /* * see * usbhs_pipe_config_update() * usbhs_dcp_malloc() */ return pipe->maxp; } int usbhs_pipe_is_dir_in(struct usbhs_pipe *pipe) { return usbhsp_flags_has(pipe, IS_DIR_IN); } int usbhs_pipe_is_dir_host(struct usbhs_pipe *pipe) { return usbhsp_flags_has(pipe, IS_DIR_HOST); } int usbhs_pipe_is_running(struct usbhs_pipe *pipe) { return usbhsp_flags_has(pipe, IS_RUNNING); } void usbhs_pipe_running(struct usbhs_pipe *pipe, int running) { if (running) usbhsp_flags_set(pipe, IS_RUNNING); else usbhsp_flags_clr(pipe, IS_RUNNING); } void usbhs_pipe_data_sequence(struct usbhs_pipe *pipe, int sequence) { u16 mask = (SQCLR | SQSET); u16 val; /* * sequence * 0 : data0 * 1 : data1 * -1 : no change */ switch (sequence) { case 0: val = SQCLR; break; case 1: val = SQSET; break; default: return; } usbhsp_pipectrl_set(pipe, mask, val); } static int usbhs_pipe_get_data_sequence(struct usbhs_pipe *pipe) { return !!(usbhsp_pipectrl_get(pipe) & SQMON); } void usbhs_pipe_clear(struct usbhs_pipe *pipe) { if (usbhs_pipe_is_dcp(pipe)) { usbhs_fifo_clear_dcp(pipe); } else { usbhsp_pipectrl_set(pipe, ACLRM, ACLRM); usbhsp_pipectrl_set(pipe, ACLRM, 0); } } /* Should call usbhsp_pipe_select() before */ void usbhs_pipe_clear_without_sequence(struct usbhs_pipe *pipe, int needs_bfre, int bfre_enable) { int sequence; usbhsp_pipe_select(pipe); sequence = usbhs_pipe_get_data_sequence(pipe); if (needs_bfre) usbhsp_pipe_cfg_set(pipe, BFRE, bfre_enable ? BFRE : 0); usbhs_pipe_clear(pipe); usbhs_pipe_data_sequence(pipe, sequence); } void usbhs_pipe_config_change_bfre(struct usbhs_pipe *pipe, int enable) { if (usbhs_pipe_is_dcp(pipe)) return; usbhsp_pipe_select(pipe); /* check if the driver needs to change the BFRE value */ if (!(enable ^ !!(usbhsp_pipe_cfg_get(pipe) & BFRE))) return; usbhs_pipe_clear_without_sequence(pipe, 1, enable); } static struct usbhs_pipe *usbhsp_get_pipe(struct usbhs_priv *priv, u32 type) { struct usbhs_pipe *pos, *pipe; int i; /* * find target pipe */ pipe = NULL; usbhs_for_each_pipe_with_dcp(pos, priv, i) { if (!usbhs_pipe_type_is(pos, type)) continue; if (usbhsp_flags_has(pos, IS_USED)) continue; pipe = pos; break; } if (!pipe) return NULL; /* * initialize pipe flags */ usbhsp_flags_init(pipe); usbhsp_flags_set(pipe, IS_USED); return pipe; } static void usbhsp_put_pipe(struct usbhs_pipe *pipe) { usbhsp_flags_init(pipe); } void usbhs_pipe_init(struct usbhs_priv *priv, int (*dma_map_ctrl)(struct device *dma_dev, struct usbhs_pkt *pkt, int map)) { struct usbhs_pipe_info *info = usbhs_priv_to_pipeinfo(priv); struct usbhs_pipe *pipe; int i; usbhs_for_each_pipe_with_dcp(pipe, priv, i) { usbhsp_flags_init(pipe); pipe->fifo = NULL; pipe->mod_private = NULL; INIT_LIST_HEAD(&pipe->list); /* pipe force init */ usbhs_pipe_clear(pipe); } info->dma_map_ctrl = dma_map_ctrl; } struct usbhs_pipe *usbhs_pipe_malloc(struct usbhs_priv *priv, int endpoint_type, int dir_in) { struct device *dev = usbhs_priv_to_dev(priv); struct usbhs_pipe *pipe; int is_host = usbhs_mod_is_host(priv); int ret; u16 pipecfg, pipebuf; pipe = usbhsp_get_pipe(priv, endpoint_type); if (!pipe) { dev_err(dev, "can't get pipe (%s)\n", usbhsp_pipe_name[endpoint_type]); return NULL; } INIT_LIST_HEAD(&pipe->list); usbhs_pipe_disable(pipe); /* make sure pipe is not busy */ ret = usbhsp_pipe_barrier(pipe); if (ret < 0) { dev_err(dev, "pipe setup failed %d\n", usbhs_pipe_number(pipe)); return NULL; } if (usbhsp_setup_pipecfg(pipe, is_host, dir_in, &pipecfg)) { dev_err(dev, "can't setup pipe\n"); return NULL; } pipebuf = usbhsp_setup_pipebuff(pipe); usbhsp_pipe_select(pipe); usbhsp_pipe_cfg_set(pipe, 0xFFFF, pipecfg); usbhsp_pipe_buf_set(pipe, 0xFFFF, pipebuf); usbhs_pipe_clear(pipe); usbhs_pipe_sequence_data0(pipe); dev_dbg(dev, "enable pipe %d : %s (%s)\n", usbhs_pipe_number(pipe), usbhs_pipe_name(pipe), usbhs_pipe_is_dir_in(pipe) ? "in" : "out"); /* * epnum / maxp are still not set to this pipe. * call usbhs_pipe_config_update() after this function !! */ return pipe; } void usbhs_pipe_free(struct usbhs_pipe *pipe) { usbhsp_pipe_select(pipe); usbhsp_pipe_cfg_set(pipe, 0xFFFF, 0); usbhsp_put_pipe(pipe); } void usbhs_pipe_select_fifo(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo) { if (pipe->fifo) pipe->fifo->pipe = NULL; pipe->fifo = fifo; if (fifo) fifo->pipe = pipe; } /* * dcp control */ struct usbhs_pipe *usbhs_dcp_malloc(struct usbhs_priv *priv) { struct usbhs_pipe *pipe; pipe = usbhsp_get_pipe(priv, USB_ENDPOINT_XFER_CONTROL); if (!pipe) return NULL; INIT_LIST_HEAD(&pipe->list); /* * call usbhs_pipe_config_update() after this function !! */ return pipe; } void usbhs_dcp_control_transfer_done(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); WARN_ON(!usbhs_pipe_is_dcp(pipe)); usbhs_pipe_enable(pipe); if (!usbhs_mod_is_host(priv)) /* funconly */ usbhsp_pipectrl_set(pipe, CCPL, CCPL); } void usbhs_dcp_dir_for_host(struct usbhs_pipe *pipe, int dir_out) { usbhsp_pipe_cfg_set(pipe, DIR_OUT, dir_out ? DIR_OUT : 0); } /* * pipe module function */ int usbhs_pipe_probe(struct usbhs_priv *priv) { struct usbhs_pipe_info *info = usbhs_priv_to_pipeinfo(priv); struct usbhs_pipe *pipe; struct device *dev = usbhs_priv_to_dev(priv); struct renesas_usbhs_driver_pipe_config *pipe_configs = usbhs_get_dparam(priv, pipe_configs); int pipe_size = usbhs_get_dparam(priv, pipe_size); int i; /* This driver expects 1st pipe is DCP */ if (pipe_configs[0].type != USB_ENDPOINT_XFER_CONTROL) { dev_err(dev, "1st PIPE is not DCP\n"); return -EINVAL; } info->pipe = kcalloc(pipe_size, sizeof(struct usbhs_pipe), GFP_KERNEL); if (!info->pipe) return -ENOMEM; info->size = pipe_size; /* * init pipe */ usbhs_for_each_pipe_with_dcp(pipe, priv, i) { pipe->priv = priv; usbhs_pipe_type(pipe) = pipe_configs[i].type & USB_ENDPOINT_XFERTYPE_MASK; dev_dbg(dev, "pipe %x\t: %s\n", i, usbhsp_pipe_name[pipe_configs[i].type]); } return 0; } void usbhs_pipe_remove(struct usbhs_priv *priv) { struct usbhs_pipe_info *info = usbhs_priv_to_pipeinfo(priv); kfree(info->pipe); }
linux-master
drivers/usb/renesas_usbhs/pipe.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Copyright (C) 2019 Renesas Electronics Corporation * Kuninori Morimoto <[email protected]> */ #include <linux/interrupt.h> #include "common.h" #include "mod.h" /* * autonomy * * these functions are used if platform doesn't have external phy. * -> there is no "notify_hotplug" callback from platform * -> call "notify_hotplug" by itself * -> use own interrupt to connect/disconnect * -> it mean module clock is always ON * ~~~~~~~~~~~~~~~~~~~~~~~~~ */ static int usbhsm_autonomy_get_vbus(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); return VBSTS & usbhs_read(priv, INTSTS0); } static int usbhsm_autonomy_irq_vbus(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct platform_device *pdev = usbhs_priv_to_pdev(priv); usbhsc_schedule_notify_hotplug(pdev); return 0; } void usbhs_mod_autonomy_mode(struct usbhs_priv *priv) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); info->irq_vbus = usbhsm_autonomy_irq_vbus; info->get_vbus = usbhsm_autonomy_get_vbus; usbhs_irq_callback_update(priv, NULL); } void usbhs_mod_non_autonomy_mode(struct usbhs_priv *priv) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); info->get_vbus = priv->pfunc->get_vbus; } /* * host / gadget functions * * renesas_usbhs host/gadget can register itself by below functions. * these functions are called when probe * */ void usbhs_mod_register(struct usbhs_priv *priv, struct usbhs_mod *mod, int id) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); info->mod[id] = mod; mod->priv = priv; } struct usbhs_mod *usbhs_mod_get(struct usbhs_priv *priv, int id) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); struct usbhs_mod *ret = NULL; switch (id) { case USBHS_HOST: case USBHS_GADGET: ret = info->mod[id]; break; } return ret; } int usbhs_mod_is_host(struct usbhs_priv *priv) { struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); if (!mod) return -EINVAL; return info->mod[USBHS_HOST] == mod; } struct usbhs_mod *usbhs_mod_get_current(struct usbhs_priv *priv) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); return info->curt; } int usbhs_mod_change(struct usbhs_priv *priv, int id) { struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); struct usbhs_mod *mod = NULL; int ret = 0; /* id < 0 mean no current */ switch (id) { case USBHS_HOST: case USBHS_GADGET: mod = info->mod[id]; break; default: ret = -EINVAL; } info->curt = mod; return ret; } static irqreturn_t usbhs_interrupt(int irq, void *data); int usbhs_mod_probe(struct usbhs_priv *priv) { struct device *dev = usbhs_priv_to_dev(priv); int ret; /* * install host/gadget driver */ ret = usbhs_mod_host_probe(priv); if (ret < 0) return ret; ret = usbhs_mod_gadget_probe(priv); if (ret < 0) goto mod_init_host_err; /* irq settings */ ret = devm_request_irq(dev, priv->irq, usbhs_interrupt, 0, dev_name(dev), priv); if (ret) { dev_err(dev, "irq request err\n"); goto mod_init_gadget_err; } return ret; mod_init_gadget_err: usbhs_mod_gadget_remove(priv); mod_init_host_err: usbhs_mod_host_remove(priv); return ret; } void usbhs_mod_remove(struct usbhs_priv *priv) { usbhs_mod_host_remove(priv); usbhs_mod_gadget_remove(priv); } /* * status functions */ int usbhs_status_get_device_state(struct usbhs_irq_state *irq_state) { return (int)irq_state->intsts0 & DVSQ_MASK; } int usbhs_status_get_ctrl_stage(struct usbhs_irq_state *irq_state) { /* * return value * * IDLE_SETUP_STAGE * READ_DATA_STAGE * READ_STATUS_STAGE * WRITE_DATA_STAGE * WRITE_STATUS_STAGE * NODATA_STATUS_STAGE * SEQUENCE_ERROR */ return (int)irq_state->intsts0 & CTSQ_MASK; } static int usbhs_status_get_each_irq(struct usbhs_priv *priv, struct usbhs_irq_state *state) { struct usbhs_mod *mod = usbhs_mod_get_current(priv); u16 intenb0, intenb1; unsigned long flags; /******************** spin lock ********************/ usbhs_lock(priv, flags); state->intsts0 = usbhs_read(priv, INTSTS0); intenb0 = usbhs_read(priv, INTENB0); if (usbhs_mod_is_host(priv)) { state->intsts1 = usbhs_read(priv, INTSTS1); intenb1 = usbhs_read(priv, INTENB1); } else { state->intsts1 = intenb1 = 0; } /* mask */ if (mod) { state->brdysts = usbhs_read(priv, BRDYSTS); state->nrdysts = usbhs_read(priv, NRDYSTS); state->bempsts = usbhs_read(priv, BEMPSTS); state->bempsts &= mod->irq_bempsts; state->brdysts &= mod->irq_brdysts; } usbhs_unlock(priv, flags); /******************** spin unlock ******************/ return 0; } /* * interrupt */ #define INTSTS0_MAGIC 0xF800 /* acknowledge magical interrupt sources */ #define INTSTS1_MAGIC 0xA870 /* acknowledge magical interrupt sources */ static irqreturn_t usbhs_interrupt(int irq, void *data) { struct usbhs_priv *priv = data; struct usbhs_irq_state irq_state; if (usbhs_status_get_each_irq(priv, &irq_state) < 0) return IRQ_NONE; /* * clear interrupt * * The hardware is _very_ picky to clear interrupt bit. * Especially INTSTS0_MAGIC, INTSTS1_MAGIC value. * * see * "Operation" * - "Control Transfer (DCP)" * - Function :: VALID bit should 0 */ usbhs_write(priv, INTSTS0, ~irq_state.intsts0 & INTSTS0_MAGIC); if (usbhs_mod_is_host(priv)) usbhs_write(priv, INTSTS1, ~irq_state.intsts1 & INTSTS1_MAGIC); /* * The driver should not clear the xxxSTS after the line of * "call irq callback functions" because each "if" statement is * possible to call the callback function for avoiding any side effects. */ if (irq_state.intsts0 & BRDY) usbhs_write(priv, BRDYSTS, ~irq_state.brdysts); usbhs_write(priv, NRDYSTS, ~irq_state.nrdysts); if (irq_state.intsts0 & BEMP) usbhs_write(priv, BEMPSTS, ~irq_state.bempsts); /* * call irq callback functions * see also * usbhs_irq_setting_update */ /* INTSTS0 */ if (irq_state.intsts0 & VBINT) usbhs_mod_info_call(priv, irq_vbus, priv, &irq_state); if (irq_state.intsts0 & DVST) usbhs_mod_call(priv, irq_dev_state, priv, &irq_state); if (irq_state.intsts0 & CTRT) usbhs_mod_call(priv, irq_ctrl_stage, priv, &irq_state); if (irq_state.intsts0 & BEMP) usbhs_mod_call(priv, irq_empty, priv, &irq_state); if (irq_state.intsts0 & BRDY) usbhs_mod_call(priv, irq_ready, priv, &irq_state); if (usbhs_mod_is_host(priv)) { /* INTSTS1 */ if (irq_state.intsts1 & ATTCH) usbhs_mod_call(priv, irq_attch, priv, &irq_state); if (irq_state.intsts1 & DTCH) usbhs_mod_call(priv, irq_dtch, priv, &irq_state); if (irq_state.intsts1 & SIGN) usbhs_mod_call(priv, irq_sign, priv, &irq_state); if (irq_state.intsts1 & SACK) usbhs_mod_call(priv, irq_sack, priv, &irq_state); } return IRQ_HANDLED; } void usbhs_irq_callback_update(struct usbhs_priv *priv, struct usbhs_mod *mod) { u16 intenb0 = 0; u16 intenb1 = 0; struct usbhs_mod_info *info = usbhs_priv_to_modinfo(priv); /* * BEMPENB/BRDYENB are picky. * below method is required * * - clear INTSTS0 * - update BEMPENB/BRDYENB * - update INTSTS0 */ usbhs_write(priv, INTENB0, 0); if (usbhs_mod_is_host(priv)) usbhs_write(priv, INTENB1, 0); usbhs_write(priv, BEMPENB, 0); usbhs_write(priv, BRDYENB, 0); /* * see also * usbhs_interrupt */ if (info->irq_vbus) intenb0 |= VBSE; if (mod) { /* * INTSTS0 */ if (mod->irq_ctrl_stage) intenb0 |= CTRE; if (mod->irq_dev_state) intenb0 |= DVSE; if (mod->irq_empty && mod->irq_bempsts) { usbhs_write(priv, BEMPENB, mod->irq_bempsts); intenb0 |= BEMPE; } if (mod->irq_ready && mod->irq_brdysts) { usbhs_write(priv, BRDYENB, mod->irq_brdysts); intenb0 |= BRDYE; } if (usbhs_mod_is_host(priv)) { /* * INTSTS1 */ if (mod->irq_attch) intenb1 |= ATTCHE; if (mod->irq_dtch) intenb1 |= DTCHE; if (mod->irq_sign) intenb1 |= SIGNE; if (mod->irq_sack) intenb1 |= SACKE; } } if (intenb0) usbhs_write(priv, INTENB0, intenb0); if (usbhs_mod_is_host(priv) && intenb1) usbhs_write(priv, INTENB1, intenb1); }
linux-master
drivers/usb/renesas_usbhs/mod.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver R-Car Gen. 2 initialization and power control * * Copyright (C) 2014 Ulrich Hecht * Copyright (C) 2019 Renesas Electronics Corporation */ #include <linux/phy/phy.h> #include "common.h" #include "rcar2.h" static int usbhs_rcar2_hardware_init(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); if (IS_ENABLED(CONFIG_GENERIC_PHY)) { struct phy *phy = phy_get(&pdev->dev, "usb"); if (IS_ERR(phy)) return PTR_ERR(phy); priv->phy = phy; return 0; } return -ENXIO; } static int usbhs_rcar2_hardware_exit(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); if (priv->phy) { phy_put(&pdev->dev, priv->phy); priv->phy = NULL; } return 0; } static int usbhs_rcar2_power_ctrl(struct platform_device *pdev, void __iomem *base, int enable) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); int retval = -ENODEV; if (priv->phy) { if (enable) { retval = phy_init(priv->phy); if (!retval) retval = phy_power_on(priv->phy); } else { phy_power_off(priv->phy); phy_exit(priv->phy); retval = 0; } } return retval; } const struct renesas_usbhs_platform_info usbhs_rcar_gen2_plat_info = { .platform_callback = { .hardware_init = usbhs_rcar2_hardware_init, .hardware_exit = usbhs_rcar2_hardware_exit, .power_ctrl = usbhs_rcar2_power_ctrl, .get_id = usbhs_get_id_as_gadget, }, .driver_param = { .has_usb_dmac = 1, .has_new_pipe_configs = 1, }, };
linux-master
drivers/usb/renesas_usbhs/rcar2.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Copyright (C) 2019 Renesas Electronics Corporation * Kuninori Morimoto <[email protected]> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/scatterlist.h> #include "common.h" #include "pipe.h" #define usbhsf_get_cfifo(p) (&((p)->fifo_info.cfifo)) #define usbhsf_fifo_is_busy(f) ((f)->pipe) /* see usbhs_pipe_select_fifo */ /* * packet initialize */ void usbhs_pkt_init(struct usbhs_pkt *pkt) { INIT_LIST_HEAD(&pkt->node); } /* * packet control function */ static int usbhsf_null_handle(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pkt->pipe); struct device *dev = usbhs_priv_to_dev(priv); dev_err(dev, "null handler\n"); return -EINVAL; } static const struct usbhs_pkt_handle usbhsf_null_handler = { .prepare = usbhsf_null_handle, .try_run = usbhsf_null_handle, }; void usbhs_pkt_push(struct usbhs_pipe *pipe, struct usbhs_pkt *pkt, void (*done)(struct usbhs_priv *priv, struct usbhs_pkt *pkt), void *buf, int len, int zero, int sequence) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); unsigned long flags; if (!done) { dev_err(dev, "no done function\n"); return; } /******************** spin lock ********************/ usbhs_lock(priv, flags); if (!pipe->handler) { dev_err(dev, "no handler function\n"); pipe->handler = &usbhsf_null_handler; } list_move_tail(&pkt->node, &pipe->list); /* * each pkt must hold own handler. * because handler might be changed by its situation. * dma handler -> pio handler. */ pkt->pipe = pipe; pkt->buf = buf; pkt->handler = pipe->handler; pkt->length = len; pkt->zero = zero; pkt->actual = 0; pkt->done = done; pkt->sequence = sequence; usbhs_unlock(priv, flags); /******************** spin unlock ******************/ } static void __usbhsf_pkt_del(struct usbhs_pkt *pkt) { list_del_init(&pkt->node); } struct usbhs_pkt *__usbhsf_pkt_get(struct usbhs_pipe *pipe) { return list_first_entry_or_null(&pipe->list, struct usbhs_pkt, node); } static void usbhsf_fifo_unselect(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo); static struct dma_chan *usbhsf_dma_chan_get(struct usbhs_fifo *fifo, struct usbhs_pkt *pkt); #define usbhsf_dma_map(p) __usbhsf_dma_map_ctrl(p, 1) #define usbhsf_dma_unmap(p) __usbhsf_dma_map_ctrl(p, 0) static int __usbhsf_dma_map_ctrl(struct usbhs_pkt *pkt, int map); static void usbhsf_tx_irq_ctrl(struct usbhs_pipe *pipe, int enable); static void usbhsf_rx_irq_ctrl(struct usbhs_pipe *pipe, int enable); struct usbhs_pkt *usbhs_pkt_pop(struct usbhs_pipe *pipe, struct usbhs_pkt *pkt) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhs_pipe_to_fifo(pipe); unsigned long flags; /******************** spin lock ********************/ usbhs_lock(priv, flags); usbhs_pipe_disable(pipe); if (!pkt) pkt = __usbhsf_pkt_get(pipe); if (pkt) { struct dma_chan *chan = NULL; if (fifo) chan = usbhsf_dma_chan_get(fifo, pkt); if (chan) { dmaengine_terminate_all(chan); usbhsf_dma_unmap(pkt); } else { if (usbhs_pipe_is_dir_in(pipe)) usbhsf_rx_irq_ctrl(pipe, 0); else usbhsf_tx_irq_ctrl(pipe, 0); } usbhs_pipe_clear_without_sequence(pipe, 0, 0); usbhs_pipe_running(pipe, 0); __usbhsf_pkt_del(pkt); } if (fifo) usbhsf_fifo_unselect(pipe, fifo); usbhs_unlock(priv, flags); /******************** spin unlock ******************/ return pkt; } enum { USBHSF_PKT_PREPARE, USBHSF_PKT_TRY_RUN, USBHSF_PKT_DMA_DONE, }; static int usbhsf_pkt_handler(struct usbhs_pipe *pipe, int type) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_pkt *pkt; struct device *dev = usbhs_priv_to_dev(priv); int (*func)(struct usbhs_pkt *pkt, int *is_done); unsigned long flags; int ret = 0; int is_done = 0; /******************** spin lock ********************/ usbhs_lock(priv, flags); pkt = __usbhsf_pkt_get(pipe); if (!pkt) { ret = -EINVAL; goto __usbhs_pkt_handler_end; } switch (type) { case USBHSF_PKT_PREPARE: func = pkt->handler->prepare; break; case USBHSF_PKT_TRY_RUN: func = pkt->handler->try_run; break; case USBHSF_PKT_DMA_DONE: func = pkt->handler->dma_done; break; default: dev_err(dev, "unknown pkt handler\n"); goto __usbhs_pkt_handler_end; } if (likely(func)) ret = func(pkt, &is_done); if (is_done) __usbhsf_pkt_del(pkt); __usbhs_pkt_handler_end: usbhs_unlock(priv, flags); /******************** spin unlock ******************/ if (is_done) { pkt->done(priv, pkt); usbhs_pkt_start(pipe); } return ret; } void usbhs_pkt_start(struct usbhs_pipe *pipe) { usbhsf_pkt_handler(pipe, USBHSF_PKT_PREPARE); } /* * irq enable/disable function */ #define usbhsf_irq_empty_ctrl(p, e) usbhsf_irq_callback_ctrl(p, irq_bempsts, e) #define usbhsf_irq_ready_ctrl(p, e) usbhsf_irq_callback_ctrl(p, irq_brdysts, e) #define usbhsf_irq_callback_ctrl(pipe, status, enable) \ ({ \ struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); \ struct usbhs_mod *mod = usbhs_mod_get_current(priv); \ u16 status = (1 << usbhs_pipe_number(pipe)); \ if (!mod) \ return; \ if (enable) \ mod->status |= status; \ else \ mod->status &= ~status; \ usbhs_irq_callback_update(priv, mod); \ }) static void usbhsf_tx_irq_ctrl(struct usbhs_pipe *pipe, int enable) { /* * And DCP pipe can NOT use "ready interrupt" for "send" * it should use "empty" interrupt. * see * "Operation" - "Interrupt Function" - "BRDY Interrupt" * * on the other hand, normal pipe can use "ready interrupt" for "send" * even though it is single/double buffer */ if (usbhs_pipe_is_dcp(pipe)) usbhsf_irq_empty_ctrl(pipe, enable); else usbhsf_irq_ready_ctrl(pipe, enable); } static void usbhsf_rx_irq_ctrl(struct usbhs_pipe *pipe, int enable) { usbhsf_irq_ready_ctrl(pipe, enable); } /* * FIFO ctrl */ static void usbhsf_send_terminator(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); usbhs_bset(priv, fifo->ctr, BVAL, BVAL); } static int usbhsf_fifo_barrier(struct usbhs_priv *priv, struct usbhs_fifo *fifo) { /* The FIFO port is accessible */ if (usbhs_read(priv, fifo->ctr) & FRDY) return 0; return -EBUSY; } static void usbhsf_fifo_clear(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); int ret = 0; if (!usbhs_pipe_is_dcp(pipe)) { /* * This driver checks the pipe condition first to avoid -EBUSY * from usbhsf_fifo_barrier() if the pipe is RX direction and * empty. */ if (usbhs_pipe_is_dir_in(pipe)) ret = usbhs_pipe_is_accessible(pipe); if (!ret) ret = usbhsf_fifo_barrier(priv, fifo); } /* * if non-DCP pipe, this driver should set BCLR when * usbhsf_fifo_barrier() returns 0. */ if (!ret) usbhs_write(priv, fifo->ctr, BCLR); } static int usbhsf_fifo_rcv_len(struct usbhs_priv *priv, struct usbhs_fifo *fifo) { return usbhs_read(priv, fifo->ctr) & DTLN_MASK; } static void usbhsf_fifo_unselect(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); usbhs_pipe_select_fifo(pipe, NULL); usbhs_write(priv, fifo->sel, 0); } static int usbhsf_fifo_select(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo, int write) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); int timeout = 1024; u16 mask = ((1 << 5) | 0xF); /* mask of ISEL | CURPIPE */ u16 base = usbhs_pipe_number(pipe); /* CURPIPE */ if (usbhs_pipe_is_busy(pipe) || usbhsf_fifo_is_busy(fifo)) return -EBUSY; if (usbhs_pipe_is_dcp(pipe)) { base |= (1 == write) << 5; /* ISEL */ if (usbhs_mod_is_host(priv)) usbhs_dcp_dir_for_host(pipe, write); } /* "base" will be used below */ usbhs_write(priv, fifo->sel, base | MBW_32); /* check ISEL and CURPIPE value */ while (timeout--) { if (base == (mask & usbhs_read(priv, fifo->sel))) { usbhs_pipe_select_fifo(pipe, fifo); return 0; } udelay(10); } dev_err(dev, "fifo select error\n"); return -EIO; } /* * DCP status stage */ static int usbhs_dcp_dir_switch_to_write(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); /* CFIFO */ struct device *dev = usbhs_priv_to_dev(priv); int ret; usbhs_pipe_disable(pipe); ret = usbhsf_fifo_select(pipe, fifo, 1); if (ret < 0) { dev_err(dev, "%s() failed\n", __func__); return ret; } usbhs_pipe_sequence_data1(pipe); /* DATA1 */ usbhsf_fifo_clear(pipe, fifo); usbhsf_send_terminator(pipe, fifo); usbhsf_fifo_unselect(pipe, fifo); usbhsf_tx_irq_ctrl(pipe, 1); usbhs_pipe_enable(pipe); return ret; } static int usbhs_dcp_dir_switch_to_read(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); /* CFIFO */ struct device *dev = usbhs_priv_to_dev(priv); int ret; usbhs_pipe_disable(pipe); ret = usbhsf_fifo_select(pipe, fifo, 0); if (ret < 0) { dev_err(dev, "%s() fail\n", __func__); return ret; } usbhs_pipe_sequence_data1(pipe); /* DATA1 */ usbhsf_fifo_clear(pipe, fifo); usbhsf_fifo_unselect(pipe, fifo); usbhsf_rx_irq_ctrl(pipe, 1); usbhs_pipe_enable(pipe); return ret; } static int usbhs_dcp_dir_switch_done(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; if (pkt->handler == &usbhs_dcp_status_stage_in_handler) usbhsf_tx_irq_ctrl(pipe, 0); else usbhsf_rx_irq_ctrl(pipe, 0); pkt->actual = pkt->length; *is_done = 1; return 0; } const struct usbhs_pkt_handle usbhs_dcp_status_stage_in_handler = { .prepare = usbhs_dcp_dir_switch_to_write, .try_run = usbhs_dcp_dir_switch_done, }; const struct usbhs_pkt_handle usbhs_dcp_status_stage_out_handler = { .prepare = usbhs_dcp_dir_switch_to_read, .try_run = usbhs_dcp_dir_switch_done, }; /* * DCP data stage (push) */ static int usbhsf_dcp_data_stage_try_push(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; usbhs_pipe_sequence_data1(pipe); /* DATA1 */ /* * change handler to PIO push */ pkt->handler = &usbhs_fifo_pio_push_handler; return pkt->handler->prepare(pkt, is_done); } const struct usbhs_pkt_handle usbhs_dcp_data_stage_out_handler = { .prepare = usbhsf_dcp_data_stage_try_push, }; /* * DCP data stage (pop) */ static int usbhsf_dcp_data_stage_prepare_pop(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); if (usbhs_pipe_is_busy(pipe)) return 0; /* * prepare pop for DCP should * - change DCP direction, * - clear fifo * - DATA1 */ usbhs_pipe_disable(pipe); usbhs_pipe_sequence_data1(pipe); /* DATA1 */ usbhsf_fifo_select(pipe, fifo, 0); usbhsf_fifo_clear(pipe, fifo); usbhsf_fifo_unselect(pipe, fifo); /* * change handler to PIO pop */ pkt->handler = &usbhs_fifo_pio_pop_handler; return pkt->handler->prepare(pkt, is_done); } const struct usbhs_pkt_handle usbhs_dcp_data_stage_in_handler = { .prepare = usbhsf_dcp_data_stage_prepare_pop, }; /* * PIO push handler */ static int usbhsf_pio_try_push(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); /* CFIFO */ void __iomem *addr = priv->base + fifo->port; u8 *buf; int maxp = usbhs_pipe_get_maxpacket(pipe); int total_len; int i, ret, len; int is_short; usbhs_pipe_data_sequence(pipe, pkt->sequence); pkt->sequence = -1; /* -1 sequence will be ignored */ usbhs_pipe_set_trans_count_if_bulk(pipe, pkt->length); ret = usbhsf_fifo_select(pipe, fifo, 1); if (ret < 0) return 0; ret = usbhs_pipe_is_accessible(pipe); if (ret < 0) { /* inaccessible pipe is not an error */ ret = 0; goto usbhs_fifo_write_busy; } ret = usbhsf_fifo_barrier(priv, fifo); if (ret < 0) goto usbhs_fifo_write_busy; buf = pkt->buf + pkt->actual; len = pkt->length - pkt->actual; len = min(len, maxp); total_len = len; is_short = total_len < maxp; /* * FIXME * * 32-bit access only */ if (len >= 4 && !((unsigned long)buf & 0x03)) { iowrite32_rep(addr, buf, len / 4); len %= 4; buf += total_len - len; } /* the rest operation */ if (usbhs_get_dparam(priv, cfifo_byte_addr)) { for (i = 0; i < len; i++) iowrite8(buf[i], addr + (i & 0x03)); } else { for (i = 0; i < len; i++) iowrite8(buf[i], addr + (0x03 - (i & 0x03))); } /* * variable update */ pkt->actual += total_len; if (pkt->actual < pkt->length) *is_done = 0; /* there are remainder data */ else if (is_short) *is_done = 1; /* short packet */ else *is_done = !pkt->zero; /* send zero packet ? */ /* * pipe/irq handling */ if (is_short) usbhsf_send_terminator(pipe, fifo); usbhsf_tx_irq_ctrl(pipe, !*is_done); usbhs_pipe_running(pipe, !*is_done); usbhs_pipe_enable(pipe); dev_dbg(dev, " send %d (%d/ %d/ %d/ %d)\n", usbhs_pipe_number(pipe), pkt->length, pkt->actual, *is_done, pkt->zero); usbhsf_fifo_unselect(pipe, fifo); return 0; usbhs_fifo_write_busy: usbhsf_fifo_unselect(pipe, fifo); /* * pipe is busy. * retry in interrupt */ usbhsf_tx_irq_ctrl(pipe, 1); usbhs_pipe_running(pipe, 1); return ret; } static int usbhsf_pio_prepare_push(struct usbhs_pkt *pkt, int *is_done) { if (usbhs_pipe_is_running(pkt->pipe)) return 0; return usbhsf_pio_try_push(pkt, is_done); } const struct usbhs_pkt_handle usbhs_fifo_pio_push_handler = { .prepare = usbhsf_pio_prepare_push, .try_run = usbhsf_pio_try_push, }; /* * PIO pop handler */ static int usbhsf_prepare_pop(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); if (usbhs_pipe_is_busy(pipe)) return 0; if (usbhs_pipe_is_running(pipe)) return 0; /* * pipe enable to prepare packet receive */ usbhs_pipe_data_sequence(pipe, pkt->sequence); pkt->sequence = -1; /* -1 sequence will be ignored */ if (usbhs_pipe_is_dcp(pipe)) usbhsf_fifo_clear(pipe, fifo); usbhs_pipe_set_trans_count_if_bulk(pipe, pkt->length); usbhs_pipe_enable(pipe); usbhs_pipe_running(pipe, 1); usbhsf_rx_irq_ctrl(pipe, 1); return 0; } static int usbhsf_pio_try_pop(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); /* CFIFO */ void __iomem *addr = priv->base + fifo->port; u8 *buf; u32 data = 0; int maxp = usbhs_pipe_get_maxpacket(pipe); int rcv_len, len; int i, ret; int total_len = 0; ret = usbhsf_fifo_select(pipe, fifo, 0); if (ret < 0) return 0; ret = usbhsf_fifo_barrier(priv, fifo); if (ret < 0) goto usbhs_fifo_read_busy; rcv_len = usbhsf_fifo_rcv_len(priv, fifo); buf = pkt->buf + pkt->actual; len = pkt->length - pkt->actual; len = min(len, rcv_len); total_len = len; /* * update actual length first here to decide disable pipe. * if this pipe keeps BUF status and all data were popped, * then, next interrupt/token will be issued again */ pkt->actual += total_len; if ((pkt->actual == pkt->length) || /* receive all data */ (total_len < maxp)) { /* short packet */ *is_done = 1; usbhsf_rx_irq_ctrl(pipe, 0); usbhs_pipe_running(pipe, 0); /* * If function mode, since this controller is possible to enter * Control Write status stage at this timing, this driver * should not disable the pipe. If such a case happens, this * controller is not able to complete the status stage. */ if (!usbhs_mod_is_host(priv) && !usbhs_pipe_is_dcp(pipe)) usbhs_pipe_disable(pipe); /* disable pipe first */ } /* * Buffer clear if Zero-Length packet * * see * "Operation" - "FIFO Buffer Memory" - "FIFO Port Function" */ if (0 == rcv_len) { pkt->zero = 1; usbhsf_fifo_clear(pipe, fifo); goto usbhs_fifo_read_end; } /* * FIXME * * 32-bit access only */ if (len >= 4 && !((unsigned long)buf & 0x03)) { ioread32_rep(addr, buf, len / 4); len %= 4; buf += total_len - len; } /* the rest operation */ for (i = 0; i < len; i++) { if (!(i & 0x03)) data = ioread32(addr); buf[i] = (data >> ((i & 0x03) * 8)) & 0xff; } usbhs_fifo_read_end: dev_dbg(dev, " recv %d (%d/ %d/ %d/ %d)\n", usbhs_pipe_number(pipe), pkt->length, pkt->actual, *is_done, pkt->zero); usbhs_fifo_read_busy: usbhsf_fifo_unselect(pipe, fifo); return ret; } const struct usbhs_pkt_handle usbhs_fifo_pio_pop_handler = { .prepare = usbhsf_prepare_pop, .try_run = usbhsf_pio_try_pop, }; /* * DCP ctrol statge handler */ static int usbhsf_ctrl_stage_end(struct usbhs_pkt *pkt, int *is_done) { usbhs_dcp_control_transfer_done(pkt->pipe); *is_done = 1; return 0; } const struct usbhs_pkt_handle usbhs_ctrl_stage_end_handler = { .prepare = usbhsf_ctrl_stage_end, .try_run = usbhsf_ctrl_stage_end, }; /* * DMA fifo functions */ static struct dma_chan *usbhsf_dma_chan_get(struct usbhs_fifo *fifo, struct usbhs_pkt *pkt) { if (&usbhs_fifo_dma_push_handler == pkt->handler) return fifo->tx_chan; if (&usbhs_fifo_dma_pop_handler == pkt->handler) return fifo->rx_chan; return NULL; } static struct usbhs_fifo *usbhsf_get_dma_fifo(struct usbhs_priv *priv, struct usbhs_pkt *pkt) { struct usbhs_fifo *fifo; int i; usbhs_for_each_dfifo(priv, fifo, i) { if (usbhsf_dma_chan_get(fifo, pkt) && !usbhsf_fifo_is_busy(fifo)) return fifo; } return NULL; } #define usbhsf_dma_start(p, f) __usbhsf_dma_ctrl(p, f, DREQE) #define usbhsf_dma_stop(p, f) __usbhsf_dma_ctrl(p, f, 0) static void __usbhsf_dma_ctrl(struct usbhs_pipe *pipe, struct usbhs_fifo *fifo, u16 dreqe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); usbhs_bset(priv, fifo->sel, DREQE, dreqe); } static int __usbhsf_dma_map_ctrl(struct usbhs_pkt *pkt, int map) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_pipe_info *info = usbhs_priv_to_pipeinfo(priv); struct usbhs_fifo *fifo = usbhs_pipe_to_fifo(pipe); struct dma_chan *chan = usbhsf_dma_chan_get(fifo, pkt); return info->dma_map_ctrl(chan->device->dev, pkt, map); } static void usbhsf_dma_complete(void *arg, const struct dmaengine_result *result); static void usbhsf_dma_xfer_preparing(struct usbhs_pkt *pkt) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_fifo *fifo; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct dma_async_tx_descriptor *desc; struct dma_chan *chan; struct device *dev = usbhs_priv_to_dev(priv); enum dma_transfer_direction dir; dma_cookie_t cookie; fifo = usbhs_pipe_to_fifo(pipe); if (!fifo) return; chan = usbhsf_dma_chan_get(fifo, pkt); dir = usbhs_pipe_is_dir_in(pipe) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; desc = dmaengine_prep_slave_single(chan, pkt->dma + pkt->actual, pkt->trans, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return; desc->callback_result = usbhsf_dma_complete; desc->callback_param = pkt; cookie = dmaengine_submit(desc); if (cookie < 0) { dev_err(dev, "Failed to submit dma descriptor\n"); return; } dev_dbg(dev, " %s %d (%d/ %d)\n", fifo->name, usbhs_pipe_number(pipe), pkt->length, pkt->zero); usbhs_pipe_running(pipe, 1); usbhs_pipe_set_trans_count_if_bulk(pipe, pkt->trans); dma_async_issue_pending(chan); usbhsf_dma_start(pipe, fifo); usbhs_pipe_enable(pipe); } static void xfer_work(struct work_struct *work) { struct usbhs_pkt *pkt = container_of(work, struct usbhs_pkt, work); struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); unsigned long flags; usbhs_lock(priv, flags); usbhsf_dma_xfer_preparing(pkt); usbhs_unlock(priv, flags); } /* * DMA push handler */ static int usbhsf_dma_prepare_push(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo; int len = pkt->length - pkt->actual; int ret; uintptr_t align_mask; if (usbhs_pipe_is_busy(pipe)) return 0; /* use PIO if packet is less than pio_dma_border or pipe is DCP */ if ((len < usbhs_get_dparam(priv, pio_dma_border)) || usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_ISOC)) goto usbhsf_pio_prepare_push; /* check data length if this driver don't use USB-DMAC */ if (!usbhs_get_dparam(priv, has_usb_dmac) && len & 0x7) goto usbhsf_pio_prepare_push; /* check buffer alignment */ align_mask = usbhs_get_dparam(priv, has_usb_dmac) ? USBHS_USB_DMAC_XFER_SIZE - 1 : 0x7; if ((uintptr_t)(pkt->buf + pkt->actual) & align_mask) goto usbhsf_pio_prepare_push; /* return at this time if the pipe is running */ if (usbhs_pipe_is_running(pipe)) return 0; /* get enable DMA fifo */ fifo = usbhsf_get_dma_fifo(priv, pkt); if (!fifo) goto usbhsf_pio_prepare_push; ret = usbhsf_fifo_select(pipe, fifo, 0); if (ret < 0) goto usbhsf_pio_prepare_push; if (usbhsf_dma_map(pkt) < 0) goto usbhsf_pio_prepare_push_unselect; pkt->trans = len; usbhsf_tx_irq_ctrl(pipe, 0); /* FIXME: Workaound for usb dmac that driver can be used in atomic */ if (usbhs_get_dparam(priv, has_usb_dmac)) { usbhsf_dma_xfer_preparing(pkt); } else { INIT_WORK(&pkt->work, xfer_work); schedule_work(&pkt->work); } return 0; usbhsf_pio_prepare_push_unselect: usbhsf_fifo_unselect(pipe, fifo); usbhsf_pio_prepare_push: /* * change handler to PIO */ pkt->handler = &usbhs_fifo_pio_push_handler; return pkt->handler->prepare(pkt, is_done); } static int usbhsf_dma_push_done(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; int is_short = pkt->trans % usbhs_pipe_get_maxpacket(pipe); pkt->actual += pkt->trans; if (pkt->actual < pkt->length) *is_done = 0; /* there are remainder data */ else if (is_short) *is_done = 1; /* short packet */ else *is_done = !pkt->zero; /* send zero packet? */ usbhs_pipe_running(pipe, !*is_done); usbhsf_dma_stop(pipe, pipe->fifo); usbhsf_dma_unmap(pkt); usbhsf_fifo_unselect(pipe, pipe->fifo); if (!*is_done) { /* change handler to PIO */ pkt->handler = &usbhs_fifo_pio_push_handler; return pkt->handler->try_run(pkt, is_done); } return 0; } const struct usbhs_pkt_handle usbhs_fifo_dma_push_handler = { .prepare = usbhsf_dma_prepare_push, .dma_done = usbhsf_dma_push_done, }; /* * DMA pop handler */ static int usbhsf_dma_prepare_pop_with_rx_irq(struct usbhs_pkt *pkt, int *is_done) { return usbhsf_prepare_pop(pkt, is_done); } static int usbhsf_dma_prepare_pop_with_usb_dmac(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo; int ret; if (usbhs_pipe_is_busy(pipe)) return 0; /* use PIO if packet is less than pio_dma_border or pipe is DCP */ if ((pkt->length < usbhs_get_dparam(priv, pio_dma_border)) || usbhs_pipe_type_is(pipe, USB_ENDPOINT_XFER_ISOC)) goto usbhsf_pio_prepare_pop; fifo = usbhsf_get_dma_fifo(priv, pkt); if (!fifo) goto usbhsf_pio_prepare_pop; if ((uintptr_t)pkt->buf & (USBHS_USB_DMAC_XFER_SIZE - 1)) goto usbhsf_pio_prepare_pop; /* return at this time if the pipe is running */ if (usbhs_pipe_is_running(pipe)) return 0; usbhs_pipe_config_change_bfre(pipe, 1); ret = usbhsf_fifo_select(pipe, fifo, 0); if (ret < 0) goto usbhsf_pio_prepare_pop; if (usbhsf_dma_map(pkt) < 0) goto usbhsf_pio_prepare_pop_unselect; /* DMA */ /* * usbhs_fifo_dma_pop_handler :: prepare * enabled irq to come here. * but it is no longer needed for DMA. disable it. */ usbhsf_rx_irq_ctrl(pipe, 0); pkt->trans = pkt->length; usbhsf_dma_xfer_preparing(pkt); return 0; usbhsf_pio_prepare_pop_unselect: usbhsf_fifo_unselect(pipe, fifo); usbhsf_pio_prepare_pop: /* * change handler to PIO */ pkt->handler = &usbhs_fifo_pio_pop_handler; usbhs_pipe_config_change_bfre(pipe, 0); return pkt->handler->prepare(pkt, is_done); } static int usbhsf_dma_prepare_pop(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pkt->pipe); if (usbhs_get_dparam(priv, has_usb_dmac)) return usbhsf_dma_prepare_pop_with_usb_dmac(pkt, is_done); else return usbhsf_dma_prepare_pop_with_rx_irq(pkt, is_done); } static int usbhsf_dma_try_pop_with_rx_irq(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo; int len, ret; if (usbhs_pipe_is_busy(pipe)) return 0; if (usbhs_pipe_is_dcp(pipe)) goto usbhsf_pio_prepare_pop; /* get enable DMA fifo */ fifo = usbhsf_get_dma_fifo(priv, pkt); if (!fifo) goto usbhsf_pio_prepare_pop; if ((uintptr_t)(pkt->buf + pkt->actual) & 0x7) /* 8byte alignment */ goto usbhsf_pio_prepare_pop; ret = usbhsf_fifo_select(pipe, fifo, 0); if (ret < 0) goto usbhsf_pio_prepare_pop; /* use PIO if packet is less than pio_dma_border */ len = usbhsf_fifo_rcv_len(priv, fifo); len = min(pkt->length - pkt->actual, len); if (len & 0x7) /* 8byte alignment */ goto usbhsf_pio_prepare_pop_unselect; if (len < usbhs_get_dparam(priv, pio_dma_border)) goto usbhsf_pio_prepare_pop_unselect; ret = usbhsf_fifo_barrier(priv, fifo); if (ret < 0) goto usbhsf_pio_prepare_pop_unselect; if (usbhsf_dma_map(pkt) < 0) goto usbhsf_pio_prepare_pop_unselect; /* DMA */ /* * usbhs_fifo_dma_pop_handler :: prepare * enabled irq to come here. * but it is no longer needed for DMA. disable it. */ usbhsf_rx_irq_ctrl(pipe, 0); pkt->trans = len; INIT_WORK(&pkt->work, xfer_work); schedule_work(&pkt->work); return 0; usbhsf_pio_prepare_pop_unselect: usbhsf_fifo_unselect(pipe, fifo); usbhsf_pio_prepare_pop: /* * change handler to PIO */ pkt->handler = &usbhs_fifo_pio_pop_handler; return pkt->handler->try_run(pkt, is_done); } static int usbhsf_dma_try_pop(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pkt->pipe); BUG_ON(usbhs_get_dparam(priv, has_usb_dmac)); return usbhsf_dma_try_pop_with_rx_irq(pkt, is_done); } static int usbhsf_dma_pop_done_with_rx_irq(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; int maxp = usbhs_pipe_get_maxpacket(pipe); usbhsf_dma_stop(pipe, pipe->fifo); usbhsf_dma_unmap(pkt); usbhsf_fifo_unselect(pipe, pipe->fifo); pkt->actual += pkt->trans; if ((pkt->actual == pkt->length) || /* receive all data */ (pkt->trans < maxp)) { /* short packet */ *is_done = 1; usbhs_pipe_running(pipe, 0); } else { /* re-enable */ usbhs_pipe_running(pipe, 0); usbhsf_prepare_pop(pkt, is_done); } return 0; } static size_t usbhs_dma_calc_received_size(struct usbhs_pkt *pkt, struct dma_chan *chan, int dtln) { struct usbhs_pipe *pipe = pkt->pipe; size_t received_size; int maxp = usbhs_pipe_get_maxpacket(pipe); received_size = pkt->length - pkt->dma_result->residue; if (dtln) { received_size -= USBHS_USB_DMAC_XFER_SIZE; received_size &= ~(maxp - 1); received_size += dtln; } return received_size; } static int usbhsf_dma_pop_done_with_usb_dmac(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhs_pipe_to_fifo(pipe); struct dma_chan *chan = usbhsf_dma_chan_get(fifo, pkt); int rcv_len; /* * Since the driver disables rx_irq in DMA mode, the interrupt handler * cannot the BRDYSTS. So, the function clears it here because the * driver may use PIO mode next time. */ usbhs_xxxsts_clear(priv, BRDYSTS, usbhs_pipe_number(pipe)); rcv_len = usbhsf_fifo_rcv_len(priv, fifo); usbhsf_fifo_clear(pipe, fifo); pkt->actual = usbhs_dma_calc_received_size(pkt, chan, rcv_len); usbhs_pipe_running(pipe, 0); usbhsf_dma_stop(pipe, fifo); usbhsf_dma_unmap(pkt); usbhsf_fifo_unselect(pipe, pipe->fifo); /* The driver can assume the rx transaction is always "done" */ *is_done = 1; return 0; } static int usbhsf_dma_pop_done(struct usbhs_pkt *pkt, int *is_done) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pkt->pipe); if (usbhs_get_dparam(priv, has_usb_dmac)) return usbhsf_dma_pop_done_with_usb_dmac(pkt, is_done); else return usbhsf_dma_pop_done_with_rx_irq(pkt, is_done); } const struct usbhs_pkt_handle usbhs_fifo_dma_pop_handler = { .prepare = usbhsf_dma_prepare_pop, .try_run = usbhsf_dma_try_pop, .dma_done = usbhsf_dma_pop_done }; /* * DMA setting */ static bool usbhsf_dma_filter(struct dma_chan *chan, void *param) { struct sh_dmae_slave *slave = param; /* * FIXME * * usbhs doesn't recognize id = 0 as valid DMA */ if (0 == slave->shdma_slave.slave_id) return false; chan->private = slave; return true; } static void usbhsf_dma_quit(struct usbhs_priv *priv, struct usbhs_fifo *fifo) { if (fifo->tx_chan) dma_release_channel(fifo->tx_chan); if (fifo->rx_chan) dma_release_channel(fifo->rx_chan); fifo->tx_chan = NULL; fifo->rx_chan = NULL; } static void usbhsf_dma_init_pdev(struct usbhs_fifo *fifo) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); fifo->tx_chan = dma_request_channel(mask, usbhsf_dma_filter, &fifo->tx_slave); dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); fifo->rx_chan = dma_request_channel(mask, usbhsf_dma_filter, &fifo->rx_slave); } static void usbhsf_dma_init_dt(struct device *dev, struct usbhs_fifo *fifo, int channel) { char name[16]; /* * To avoid complex handing for DnFIFOs, the driver uses each * DnFIFO as TX or RX direction (not bi-direction). * So, the driver uses odd channels for TX, even channels for RX. */ snprintf(name, sizeof(name), "ch%d", channel); if (channel & 1) { fifo->tx_chan = dma_request_chan(dev, name); if (IS_ERR(fifo->tx_chan)) fifo->tx_chan = NULL; } else { fifo->rx_chan = dma_request_chan(dev, name); if (IS_ERR(fifo->rx_chan)) fifo->rx_chan = NULL; } } static void usbhsf_dma_init(struct usbhs_priv *priv, struct usbhs_fifo *fifo, int channel) { struct device *dev = usbhs_priv_to_dev(priv); if (dev_of_node(dev)) usbhsf_dma_init_dt(dev, fifo, channel); else usbhsf_dma_init_pdev(fifo); if (fifo->tx_chan || fifo->rx_chan) dev_dbg(dev, "enable DMAEngine (%s%s%s)\n", fifo->name, fifo->tx_chan ? "[TX]" : " ", fifo->rx_chan ? "[RX]" : " "); } /* * irq functions */ static int usbhsf_irq_empty(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhs_pipe *pipe; struct device *dev = usbhs_priv_to_dev(priv); int i, ret; if (!irq_state->bempsts) { dev_err(dev, "debug %s !!\n", __func__); return -EIO; } dev_dbg(dev, "irq empty [0x%04x]\n", irq_state->bempsts); /* * search interrupted "pipe" * not "uep". */ usbhs_for_each_pipe_with_dcp(pipe, priv, i) { if (!(irq_state->bempsts & (1 << i))) continue; ret = usbhsf_pkt_handler(pipe, USBHSF_PKT_TRY_RUN); if (ret < 0) dev_err(dev, "irq_empty run_error %d : %d\n", i, ret); } return 0; } static int usbhsf_irq_ready(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhs_pipe *pipe; struct device *dev = usbhs_priv_to_dev(priv); int i, ret; if (!irq_state->brdysts) { dev_err(dev, "debug %s !!\n", __func__); return -EIO; } dev_dbg(dev, "irq ready [0x%04x]\n", irq_state->brdysts); /* * search interrupted "pipe" * not "uep". */ usbhs_for_each_pipe_with_dcp(pipe, priv, i) { if (!(irq_state->brdysts & (1 << i))) continue; ret = usbhsf_pkt_handler(pipe, USBHSF_PKT_TRY_RUN); if (ret < 0) dev_err(dev, "irq_ready run_error %d : %d\n", i, ret); } return 0; } static void usbhsf_dma_complete(void *arg, const struct dmaengine_result *result) { struct usbhs_pkt *pkt = arg; struct usbhs_pipe *pipe = pkt->pipe; struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct device *dev = usbhs_priv_to_dev(priv); int ret; pkt->dma_result = result; ret = usbhsf_pkt_handler(pipe, USBHSF_PKT_DMA_DONE); if (ret < 0) dev_err(dev, "dma_complete run_error %d : %d\n", usbhs_pipe_number(pipe), ret); } void usbhs_fifo_clear_dcp(struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhs_pipe_to_priv(pipe); struct usbhs_fifo *fifo = usbhsf_get_cfifo(priv); /* CFIFO */ /* clear DCP FIFO of transmission */ if (usbhsf_fifo_select(pipe, fifo, 1) < 0) return; usbhsf_fifo_clear(pipe, fifo); usbhsf_fifo_unselect(pipe, fifo); /* clear DCP FIFO of reception */ if (usbhsf_fifo_select(pipe, fifo, 0) < 0) return; usbhsf_fifo_clear(pipe, fifo); usbhsf_fifo_unselect(pipe, fifo); } /* * fifo init */ void usbhs_fifo_init(struct usbhs_priv *priv) { struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct usbhs_fifo *cfifo = usbhsf_get_cfifo(priv); struct usbhs_fifo *dfifo; int i; mod->irq_empty = usbhsf_irq_empty; mod->irq_ready = usbhsf_irq_ready; mod->irq_bempsts = 0; mod->irq_brdysts = 0; cfifo->pipe = NULL; usbhs_for_each_dfifo(priv, dfifo, i) dfifo->pipe = NULL; } void usbhs_fifo_quit(struct usbhs_priv *priv) { struct usbhs_mod *mod = usbhs_mod_get_current(priv); mod->irq_empty = NULL; mod->irq_ready = NULL; mod->irq_bempsts = 0; mod->irq_brdysts = 0; } #define __USBHS_DFIFO_INIT(priv, fifo, channel, fifo_port) \ do { \ fifo = usbhsf_get_dnfifo(priv, channel); \ fifo->name = "D"#channel"FIFO"; \ fifo->port = fifo_port; \ fifo->sel = D##channel##FIFOSEL; \ fifo->ctr = D##channel##FIFOCTR; \ fifo->tx_slave.shdma_slave.slave_id = \ usbhs_get_dparam(priv, d##channel##_tx_id); \ fifo->rx_slave.shdma_slave.slave_id = \ usbhs_get_dparam(priv, d##channel##_rx_id); \ usbhsf_dma_init(priv, fifo, channel); \ } while (0) #define USBHS_DFIFO_INIT(priv, fifo, channel) \ __USBHS_DFIFO_INIT(priv, fifo, channel, D##channel##FIFO) #define USBHS_DFIFO_INIT_NO_PORT(priv, fifo, channel) \ __USBHS_DFIFO_INIT(priv, fifo, channel, 0) int usbhs_fifo_probe(struct usbhs_priv *priv) { struct usbhs_fifo *fifo; /* CFIFO */ fifo = usbhsf_get_cfifo(priv); fifo->name = "CFIFO"; fifo->port = CFIFO; fifo->sel = CFIFOSEL; fifo->ctr = CFIFOCTR; /* DFIFO */ USBHS_DFIFO_INIT(priv, fifo, 0); USBHS_DFIFO_INIT(priv, fifo, 1); USBHS_DFIFO_INIT_NO_PORT(priv, fifo, 2); USBHS_DFIFO_INIT_NO_PORT(priv, fifo, 3); return 0; } void usbhs_fifo_remove(struct usbhs_priv *priv) { struct usbhs_fifo *fifo; int i; usbhs_for_each_dfifo(priv, fifo, i) usbhsf_dma_quit(priv, fifo); }
linux-master
drivers/usb/renesas_usbhs/fifo.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas USB driver R-Car Gen. 3 initialization and power control * * Copyright (C) 2016-2019 Renesas Electronics Corporation */ #include <linux/delay.h> #include <linux/io.h> #include "common.h" #include "rcar3.h" #define LPSTS 0x102 #define UGCTRL 0x180 /* 32-bit register */ #define UGCTRL2 0x184 /* 32-bit register */ #define UGSTS 0x188 /* 32-bit register */ /* Low Power Status register (LPSTS) */ #define LPSTS_SUSPM 0x4000 /* R-Car D3 only: USB General control register (UGCTRL) */ #define UGCTRL_PLLRESET 0x00000001 #define UGCTRL_CONNECT 0x00000004 /* * USB General control register 2 (UGCTRL2) * Remarks: bit[31:11] and bit[9:6] should be 0 */ #define UGCTRL2_RESERVED_3 0x00000001 /* bit[3:0] should be B'0001 */ #define UGCTRL2_USB0SEL_HSUSB 0x00000020 #define UGCTRL2_USB0SEL_OTG 0x00000030 #define UGCTRL2_VBUSSEL 0x00000400 /* R-Car D3 only: USB General status register (UGSTS) */ #define UGSTS_LOCK 0x00000100 static void usbhs_write32(struct usbhs_priv *priv, u32 reg, u32 data) { iowrite32(data, priv->base + reg); } static u32 usbhs_read32(struct usbhs_priv *priv, u32 reg) { return ioread32(priv->base + reg); } static void usbhs_rcar3_set_ugctrl2(struct usbhs_priv *priv, u32 val) { usbhs_write32(priv, UGCTRL2, val | UGCTRL2_RESERVED_3); } static int usbhs_rcar3_power_ctrl(struct platform_device *pdev, void __iomem *base, int enable) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); usbhs_rcar3_set_ugctrl2(priv, UGCTRL2_USB0SEL_OTG | UGCTRL2_VBUSSEL); if (enable) { usbhs_bset(priv, LPSTS, LPSTS_SUSPM, LPSTS_SUSPM); /* The controller on R-Car Gen3 needs to wait up to 45 usec */ usleep_range(45, 90); } else { usbhs_bset(priv, LPSTS, LPSTS_SUSPM, 0); } return 0; } /* R-Car D3 needs to release UGCTRL.PLLRESET */ static int usbhs_rcar3_power_and_pll_ctrl(struct platform_device *pdev, void __iomem *base, int enable) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); u32 val; int timeout = 1000; if (enable) { usbhs_write32(priv, UGCTRL, 0); /* release PLLRESET */ usbhs_rcar3_set_ugctrl2(priv, UGCTRL2_USB0SEL_OTG | UGCTRL2_VBUSSEL); usbhs_bset(priv, LPSTS, LPSTS_SUSPM, LPSTS_SUSPM); do { val = usbhs_read32(priv, UGSTS); udelay(1); } while (!(val & UGSTS_LOCK) && timeout--); usbhs_write32(priv, UGCTRL, UGCTRL_CONNECT); } else { usbhs_write32(priv, UGCTRL, 0); usbhs_bset(priv, LPSTS, LPSTS_SUSPM, 0); usbhs_write32(priv, UGCTRL, UGCTRL_PLLRESET); } return 0; } const struct renesas_usbhs_platform_info usbhs_rcar_gen3_plat_info = { .platform_callback = { .power_ctrl = usbhs_rcar3_power_ctrl, .get_id = usbhs_get_id_as_gadget, }, .driver_param = { .has_usb_dmac = 1, .multi_clks = 1, .has_new_pipe_configs = 1, }, }; const struct renesas_usbhs_platform_info usbhs_rcar_gen3_with_pll_plat_info = { .platform_callback = { .power_ctrl = usbhs_rcar3_power_and_pll_ctrl, .get_id = usbhs_get_id_as_gadget, }, .driver_param = { .has_usb_dmac = 1, .multi_clks = 1, .has_new_pipe_configs = 1, }, };
linux-master
drivers/usb/renesas_usbhs/rcar3.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Kuninori Morimoto <[email protected]> */ #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include "common.h" /* *** HARDWARE LIMITATION *** * * 1) renesas_usbhs has a limited number of controllable devices. * it can control only 9 devices in generally. * see DEVADDn / DCPMAXP / PIPEMAXP. * * 2) renesas_usbhs pipe number is limited. * the pipe will be re-used for each devices. * so, software should control DATA0/1 sequence of each devices. */ /* * image of mod_host * * +--------+ * | udev 0 | --> it is used when set address * +--------+ * * +--------+ pipes are reused for each uep. * | udev 1 |-+- [uep 0 (dcp) ] --+ pipe will be switched when * +--------+ | | other device requested * +- [uep 1 (bulk)] --|---+ +--------------+ * | +--------------> | pipe0 (dcp) | * +- [uep 2 (bulk)] -@ | +--------------+ * | | pipe1 (isoc) | * +--------+ | +--------------+ * | udev 2 |-+- [uep 0 (dcp) ] -@ +----------> | pipe2 (bulk) | * +--------+ | +--------------+ * +- [uep 1 (int) ] ----+ +------> | pipe3 (bulk) | * | | +--------------+ * +--------+ +-----|------> | pipe4 (int) | * | udev 3 |-+- [uep 0 (dcp) ] -@ | +--------------+ * +--------+ | | | .... | * +- [uep 1 (bulk)] -@ | | .... | * | | * +- [uep 2 (bulk)]-----------+ * * @ : uep requested free pipe, but all have been used. * now it is waiting for free pipe */ /* * struct */ struct usbhsh_request { struct urb *urb; struct usbhs_pkt pkt; }; struct usbhsh_device { struct usb_device *usbv; struct list_head ep_list_head; /* list of usbhsh_ep */ }; struct usbhsh_ep { struct usbhs_pipe *pipe; /* attached pipe */ struct usbhsh_device *udev; /* attached udev */ struct usb_host_endpoint *ep; struct list_head ep_list; /* list to usbhsh_device */ unsigned int counter; /* pipe attach counter */ }; #define USBHSH_DEVICE_MAX 10 /* see DEVADDn / DCPMAXP / PIPEMAXP */ #define USBHSH_PORT_MAX 7 /* see DEVADDn :: HUBPORT */ struct usbhsh_hpriv { struct usbhs_mod mod; struct usbhs_pipe *dcp; struct usbhsh_device udev[USBHSH_DEVICE_MAX]; u32 port_stat; /* USB_PORT_STAT_xxx */ struct completion setup_ack_done; }; static const char usbhsh_hcd_name[] = "renesas_usbhs host"; /* * macro */ #define usbhsh_priv_to_hpriv(priv) \ container_of(usbhs_mod_get(priv, USBHS_HOST), struct usbhsh_hpriv, mod) #define __usbhsh_for_each_udev(start, pos, h, i) \ for ((i) = start; \ ((i) < USBHSH_DEVICE_MAX) && ((pos) = (h)->udev + (i)); \ (i)++) #define usbhsh_for_each_udev(pos, hpriv, i) \ __usbhsh_for_each_udev(1, pos, hpriv, i) #define usbhsh_for_each_udev_with_dev0(pos, hpriv, i) \ __usbhsh_for_each_udev(0, pos, hpriv, i) #define usbhsh_hcd_to_hpriv(h) (struct usbhsh_hpriv *)((h)->hcd_priv) #define usbhsh_hcd_to_dev(h) ((h)->self.controller) #define usbhsh_hpriv_to_priv(h) ((h)->mod.priv) #define usbhsh_hpriv_to_dcp(h) ((h)->dcp) #define usbhsh_hpriv_to_hcd(h) \ container_of((void *)h, struct usb_hcd, hcd_priv) #define usbhsh_ep_to_uep(u) ((u)->hcpriv) #define usbhsh_uep_to_pipe(u) ((u)->pipe) #define usbhsh_uep_to_udev(u) ((u)->udev) #define usbhsh_uep_to_ep(u) ((u)->ep) #define usbhsh_urb_to_ureq(u) ((u)->hcpriv) #define usbhsh_urb_to_usbv(u) ((u)->dev) #define usbhsh_usbv_to_udev(d) dev_get_drvdata(&(d)->dev) #define usbhsh_udev_to_usbv(h) ((h)->usbv) #define usbhsh_udev_is_used(h) usbhsh_udev_to_usbv(h) #define usbhsh_pipe_to_uep(p) ((p)->mod_private) #define usbhsh_device_parent(d) (usbhsh_usbv_to_udev((d)->usbv->parent)) #define usbhsh_device_hubport(d) ((d)->usbv->portnum) #define usbhsh_device_number(h, d) ((int)((d) - (h)->udev)) #define usbhsh_device_nth(h, d) ((h)->udev + d) #define usbhsh_device0(h) usbhsh_device_nth(h, 0) #define usbhsh_port_stat_init(h) ((h)->port_stat = 0) #define usbhsh_port_stat_set(h, s) ((h)->port_stat |= (s)) #define usbhsh_port_stat_clear(h, s) ((h)->port_stat &= ~(s)) #define usbhsh_port_stat_get(h) ((h)->port_stat) #define usbhsh_pkt_to_ureq(p) \ container_of((void *)p, struct usbhsh_request, pkt) /* * req alloc/free */ static struct usbhsh_request *usbhsh_ureq_alloc(struct usbhsh_hpriv *hpriv, struct urb *urb, gfp_t mem_flags) { struct usbhsh_request *ureq; ureq = kzalloc(sizeof(struct usbhsh_request), mem_flags); if (!ureq) return NULL; usbhs_pkt_init(&ureq->pkt); ureq->urb = urb; usbhsh_urb_to_ureq(urb) = ureq; return ureq; } static void usbhsh_ureq_free(struct usbhsh_hpriv *hpriv, struct usbhsh_request *ureq) { usbhsh_urb_to_ureq(ureq->urb) = NULL; ureq->urb = NULL; kfree(ureq); } /* * status */ static int usbhsh_is_running(struct usbhsh_hpriv *hpriv) { /* * we can decide some device is attached or not * by checking mod.irq_attch * see * usbhsh_irq_attch() * usbhsh_irq_dtch() */ return (hpriv->mod.irq_attch == NULL); } /* * pipe control */ static void usbhsh_endpoint_sequence_save(struct usbhsh_hpriv *hpriv, struct urb *urb, struct usbhs_pkt *pkt) { int len = urb->actual_length; int maxp = usb_endpoint_maxp(&urb->ep->desc); int t = 0; /* DCP is out of sequence control */ if (usb_pipecontrol(urb->pipe)) return; /* * renesas_usbhs pipe has a limitation in a number. * So, driver should re-use the limited pipe for each device/endpoint. * DATA0/1 sequence should be saved for it. * see [image of mod_host] * [HARDWARE LIMITATION] */ /* * next sequence depends on actual_length * * ex) actual_length = 1147, maxp = 512 * data0 : 512 * data1 : 512 * data0 : 123 * data1 is the next sequence */ t = len / maxp; if (len % maxp) t++; if (pkt->zero) t++; t %= 2; if (t) usb_dotoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); } static struct usbhsh_device *usbhsh_device_get(struct usbhsh_hpriv *hpriv, struct urb *urb); static int usbhsh_pipe_attach(struct usbhsh_hpriv *hpriv, struct urb *urb) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usbhsh_ep *uep = usbhsh_ep_to_uep(urb->ep); struct usbhsh_device *udev = usbhsh_device_get(hpriv, urb); struct usbhs_pipe *pipe; struct usb_endpoint_descriptor *desc = &urb->ep->desc; struct device *dev = usbhs_priv_to_dev(priv); unsigned long flags; int dir_in_req = !!usb_pipein(urb->pipe); int is_dcp = usb_endpoint_xfer_control(desc); int i, dir_in; int ret = -EBUSY; /******************** spin lock ********************/ usbhs_lock(priv, flags); /* * if uep has been attached to pipe, * reuse it */ if (usbhsh_uep_to_pipe(uep)) { ret = 0; goto usbhsh_pipe_attach_done; } usbhs_for_each_pipe_with_dcp(pipe, priv, i) { /* check pipe type */ if (!usbhs_pipe_type_is(pipe, usb_endpoint_type(desc))) continue; /* check pipe direction if normal pipe */ if (!is_dcp) { dir_in = !!usbhs_pipe_is_dir_in(pipe); if (0 != (dir_in - dir_in_req)) continue; } /* check pipe is free */ if (usbhsh_pipe_to_uep(pipe)) continue; /* * attach pipe to uep * * usbhs_pipe_config_update() should be called after * usbhs_set_device_config() * see * DCPMAXP/PIPEMAXP */ usbhsh_uep_to_pipe(uep) = pipe; usbhsh_pipe_to_uep(pipe) = uep; usbhs_pipe_config_update(pipe, usbhsh_device_number(hpriv, udev), usb_endpoint_num(desc), usb_endpoint_maxp(desc)); dev_dbg(dev, "%s [%d-%d(%s:%s)]\n", __func__, usbhsh_device_number(hpriv, udev), usb_endpoint_num(desc), usbhs_pipe_name(pipe), dir_in_req ? "in" : "out"); ret = 0; break; } usbhsh_pipe_attach_done: if (0 == ret) uep->counter++; usbhs_unlock(priv, flags); /******************** spin unlock ******************/ return ret; } static void usbhsh_pipe_detach(struct usbhsh_hpriv *hpriv, struct usbhsh_ep *uep) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usbhs_pipe *pipe; struct device *dev = usbhs_priv_to_dev(priv); unsigned long flags; if (unlikely(!uep)) { dev_err(dev, "no uep\n"); return; } /******************** spin lock ********************/ usbhs_lock(priv, flags); pipe = usbhsh_uep_to_pipe(uep); if (unlikely(!pipe)) { dev_err(dev, "uep doesn't have pipe\n"); } else if (1 == uep->counter--) { /* last user */ struct usb_host_endpoint *ep = usbhsh_uep_to_ep(uep); struct usbhsh_device *udev = usbhsh_uep_to_udev(uep); /* detach pipe from uep */ usbhsh_uep_to_pipe(uep) = NULL; usbhsh_pipe_to_uep(pipe) = NULL; dev_dbg(dev, "%s [%d-%d(%s)]\n", __func__, usbhsh_device_number(hpriv, udev), usb_endpoint_num(&ep->desc), usbhs_pipe_name(pipe)); } usbhs_unlock(priv, flags); /******************** spin unlock ******************/ } /* * endpoint control */ static int usbhsh_endpoint_attach(struct usbhsh_hpriv *hpriv, struct urb *urb, gfp_t mem_flags) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usbhsh_device *udev = usbhsh_device_get(hpriv, urb); struct usb_host_endpoint *ep = urb->ep; struct usbhsh_ep *uep; struct device *dev = usbhs_priv_to_dev(priv); struct usb_endpoint_descriptor *desc = &ep->desc; unsigned long flags; uep = kzalloc(sizeof(struct usbhsh_ep), mem_flags); if (!uep) return -ENOMEM; /******************** spin lock ********************/ usbhs_lock(priv, flags); /* * init endpoint */ uep->counter = 0; INIT_LIST_HEAD(&uep->ep_list); list_add_tail(&uep->ep_list, &udev->ep_list_head); usbhsh_uep_to_udev(uep) = udev; usbhsh_uep_to_ep(uep) = ep; usbhsh_ep_to_uep(ep) = uep; usbhs_unlock(priv, flags); /******************** spin unlock ******************/ dev_dbg(dev, "%s [%d-%d]\n", __func__, usbhsh_device_number(hpriv, udev), usb_endpoint_num(desc)); return 0; } static void usbhsh_endpoint_detach(struct usbhsh_hpriv *hpriv, struct usb_host_endpoint *ep) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhs_priv_to_dev(priv); struct usbhsh_ep *uep = usbhsh_ep_to_uep(ep); unsigned long flags; if (!uep) return; dev_dbg(dev, "%s [%d-%d]\n", __func__, usbhsh_device_number(hpriv, usbhsh_uep_to_udev(uep)), usb_endpoint_num(&ep->desc)); if (usbhsh_uep_to_pipe(uep)) usbhsh_pipe_detach(hpriv, uep); /******************** spin lock ********************/ usbhs_lock(priv, flags); /* remove this endpoint from udev */ list_del_init(&uep->ep_list); usbhsh_uep_to_udev(uep) = NULL; usbhsh_uep_to_ep(uep) = NULL; usbhsh_ep_to_uep(ep) = NULL; usbhs_unlock(priv, flags); /******************** spin unlock ******************/ kfree(uep); } static void usbhsh_endpoint_detach_all(struct usbhsh_hpriv *hpriv, struct usbhsh_device *udev) { struct usbhsh_ep *uep, *next; list_for_each_entry_safe(uep, next, &udev->ep_list_head, ep_list) usbhsh_endpoint_detach(hpriv, usbhsh_uep_to_ep(uep)); } /* * device control */ static int usbhsh_connected_to_rhdev(struct usb_hcd *hcd, struct usbhsh_device *udev) { struct usb_device *usbv = usbhsh_udev_to_usbv(udev); return hcd->self.root_hub == usbv->parent; } static int usbhsh_device_has_endpoint(struct usbhsh_device *udev) { return !list_empty(&udev->ep_list_head); } static struct usbhsh_device *usbhsh_device_get(struct usbhsh_hpriv *hpriv, struct urb *urb) { struct usb_device *usbv = usbhsh_urb_to_usbv(urb); struct usbhsh_device *udev = usbhsh_usbv_to_udev(usbv); /* usbhsh_device_attach() is still not called */ if (!udev) return NULL; /* if it is device0, return it */ if (0 == usb_pipedevice(urb->pipe)) return usbhsh_device0(hpriv); /* return attached device */ return udev; } static struct usbhsh_device *usbhsh_device_attach(struct usbhsh_hpriv *hpriv, struct urb *urb) { struct usbhsh_device *udev = NULL; struct usbhsh_device *udev0 = usbhsh_device0(hpriv); struct usbhsh_device *pos; struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); struct device *dev = usbhsh_hcd_to_dev(hcd); struct usb_device *usbv = usbhsh_urb_to_usbv(urb); struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); unsigned long flags; u16 upphub, hubport; int i; /* * This function should be called only while urb is pointing to device0. * It will attach unused usbhsh_device to urb (usbv), * and initialize device0. * You can use usbhsh_device_get() to get "current" udev, * and usbhsh_usbv_to_udev() is for "attached" udev. */ if (0 != usb_pipedevice(urb->pipe)) { dev_err(dev, "%s fail: urb isn't pointing device0\n", __func__); return NULL; } /******************** spin lock ********************/ usbhs_lock(priv, flags); /* * find unused device */ usbhsh_for_each_udev(pos, hpriv, i) { if (usbhsh_udev_is_used(pos)) continue; udev = pos; break; } if (udev) { /* * usbhsh_usbv_to_udev() * usbhsh_udev_to_usbv() * will be enable */ dev_set_drvdata(&usbv->dev, udev); udev->usbv = usbv; } usbhs_unlock(priv, flags); /******************** spin unlock ******************/ if (!udev) { dev_err(dev, "no free usbhsh_device\n"); return NULL; } if (usbhsh_device_has_endpoint(udev)) { dev_warn(dev, "udev have old endpoint\n"); usbhsh_endpoint_detach_all(hpriv, udev); } if (usbhsh_device_has_endpoint(udev0)) { dev_warn(dev, "udev0 have old endpoint\n"); usbhsh_endpoint_detach_all(hpriv, udev0); } /* uep will be attached */ INIT_LIST_HEAD(&udev0->ep_list_head); INIT_LIST_HEAD(&udev->ep_list_head); /* * set device0 config */ usbhs_set_device_config(priv, 0, 0, 0, usbv->speed); /* * set new device config */ upphub = 0; hubport = 0; if (!usbhsh_connected_to_rhdev(hcd, udev)) { /* if udev is not connected to rhdev, it means parent is Hub */ struct usbhsh_device *parent = usbhsh_device_parent(udev); upphub = usbhsh_device_number(hpriv, parent); hubport = usbhsh_device_hubport(udev); dev_dbg(dev, "%s connected to Hub [%d:%d](%p)\n", __func__, upphub, hubport, parent); } usbhs_set_device_config(priv, usbhsh_device_number(hpriv, udev), upphub, hubport, usbv->speed); dev_dbg(dev, "%s [%d](%p)\n", __func__, usbhsh_device_number(hpriv, udev), udev); return udev; } static void usbhsh_device_detach(struct usbhsh_hpriv *hpriv, struct usbhsh_device *udev) { struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhsh_hcd_to_dev(hcd); struct usb_device *usbv = usbhsh_udev_to_usbv(udev); unsigned long flags; dev_dbg(dev, "%s [%d](%p)\n", __func__, usbhsh_device_number(hpriv, udev), udev); if (usbhsh_device_has_endpoint(udev)) { dev_warn(dev, "udev still have endpoint\n"); usbhsh_endpoint_detach_all(hpriv, udev); } /* * There is nothing to do if it is device0. * see * usbhsh_device_attach() * usbhsh_device_get() */ if (0 == usbhsh_device_number(hpriv, udev)) return; /******************** spin lock ********************/ usbhs_lock(priv, flags); /* * usbhsh_usbv_to_udev() * usbhsh_udev_to_usbv() * will be disable */ dev_set_drvdata(&usbv->dev, NULL); udev->usbv = NULL; usbhs_unlock(priv, flags); /******************** spin unlock ******************/ } /* * queue push/pop */ static void usbhsh_queue_done(struct usbhs_priv *priv, struct usbhs_pkt *pkt) { struct usbhsh_request *ureq = usbhsh_pkt_to_ureq(pkt); struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); struct urb *urb = ureq->urb; struct device *dev = usbhs_priv_to_dev(priv); int status = 0; dev_dbg(dev, "%s\n", __func__); if (!urb) { dev_warn(dev, "pkt doesn't have urb\n"); return; } if (!usbhsh_is_running(hpriv)) status = -ESHUTDOWN; urb->actual_length = pkt->actual; usbhsh_endpoint_sequence_save(hpriv, urb, pkt); usbhsh_ureq_free(hpriv, ureq); usbhsh_pipe_detach(hpriv, usbhsh_ep_to_uep(urb->ep)); usb_hcd_unlink_urb_from_ep(hcd, urb); usb_hcd_giveback_urb(hcd, urb, status); } static int usbhsh_queue_push(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); struct usbhsh_ep *uep = usbhsh_ep_to_uep(urb->ep); struct usbhs_pipe *pipe = usbhsh_uep_to_pipe(uep); struct device *dev = usbhsh_hcd_to_dev(hcd); struct usbhsh_request *ureq; void *buf; int len, sequence; if (usb_pipeisoc(urb->pipe)) { dev_err(dev, "pipe iso is not supported now\n"); return -EIO; } /* this ureq will be freed on usbhsh_queue_done() */ ureq = usbhsh_ureq_alloc(hpriv, urb, mem_flags); if (unlikely(!ureq)) { dev_err(dev, "ureq alloc fail\n"); return -ENOMEM; } if (usb_pipein(urb->pipe)) pipe->handler = &usbhs_fifo_dma_pop_handler; else pipe->handler = &usbhs_fifo_dma_push_handler; buf = (void *)(urb->transfer_buffer + urb->actual_length); len = urb->transfer_buffer_length - urb->actual_length; sequence = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); dev_dbg(dev, "%s\n", __func__); usbhs_pkt_push(pipe, &ureq->pkt, usbhsh_queue_done, buf, len, (urb->transfer_flags & URB_ZERO_PACKET), sequence); usbhs_pkt_start(pipe); return 0; } static void usbhsh_queue_force_pop(struct usbhs_priv *priv, struct usbhs_pipe *pipe) { struct usbhs_pkt *pkt; while (1) { pkt = usbhs_pkt_pop(pipe, NULL); if (!pkt) break; /* * if all packet are gone, usbhsh_endpoint_disable() * will be called. * then, attached device/endpoint/pipe will be detached */ usbhsh_queue_done(priv, pkt); } } static void usbhsh_queue_force_pop_all(struct usbhs_priv *priv) { struct usbhs_pipe *pos; int i; usbhs_for_each_pipe_with_dcp(pos, priv, i) usbhsh_queue_force_pop(priv, pos); } /* * DCP setup stage */ static int usbhsh_is_request_address(struct urb *urb) { struct usb_ctrlrequest *req; req = (struct usb_ctrlrequest *)urb->setup_packet; if ((DeviceOutRequest == req->bRequestType << 8) && (USB_REQ_SET_ADDRESS == req->bRequest)) return 1; else return 0; } static void usbhsh_setup_stage_packet_push(struct usbhsh_hpriv *hpriv, struct urb *urb, struct usbhs_pipe *pipe) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usb_ctrlrequest req; struct device *dev = usbhs_priv_to_dev(priv); /* * wait setup packet ACK * see * usbhsh_irq_setup_ack() * usbhsh_irq_setup_err() */ init_completion(&hpriv->setup_ack_done); /* copy original request */ memcpy(&req, urb->setup_packet, sizeof(struct usb_ctrlrequest)); /* * renesas_usbhs can not use original usb address. * see HARDWARE LIMITATION. * modify usb address here to use attached device. * see usbhsh_device_attach() */ if (usbhsh_is_request_address(urb)) { struct usb_device *usbv = usbhsh_urb_to_usbv(urb); struct usbhsh_device *udev = usbhsh_usbv_to_udev(usbv); /* udev is a attached device */ req.wValue = usbhsh_device_number(hpriv, udev); dev_dbg(dev, "create new address - %d\n", req.wValue); } /* set request */ usbhs_usbreq_set_val(priv, &req); /* * wait setup packet ACK */ wait_for_completion(&hpriv->setup_ack_done); dev_dbg(dev, "%s done\n", __func__); } /* * DCP data stage */ static void usbhsh_data_stage_packet_done(struct usbhs_priv *priv, struct usbhs_pkt *pkt) { struct usbhsh_request *ureq = usbhsh_pkt_to_ureq(pkt); struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); /* this ureq was connected to urb when usbhsh_urb_enqueue() */ usbhsh_ureq_free(hpriv, ureq); } static int usbhsh_data_stage_packet_push(struct usbhsh_hpriv *hpriv, struct urb *urb, struct usbhs_pipe *pipe, gfp_t mem_flags) { struct usbhsh_request *ureq; /* this ureq will be freed on usbhsh_data_stage_packet_done() */ ureq = usbhsh_ureq_alloc(hpriv, urb, mem_flags); if (unlikely(!ureq)) return -ENOMEM; if (usb_pipein(urb->pipe)) pipe->handler = &usbhs_dcp_data_stage_in_handler; else pipe->handler = &usbhs_dcp_data_stage_out_handler; usbhs_pkt_push(pipe, &ureq->pkt, usbhsh_data_stage_packet_done, urb->transfer_buffer, urb->transfer_buffer_length, (urb->transfer_flags & URB_ZERO_PACKET), -1); return 0; } /* * DCP status stage */ static int usbhsh_status_stage_packet_push(struct usbhsh_hpriv *hpriv, struct urb *urb, struct usbhs_pipe *pipe, gfp_t mem_flags) { struct usbhsh_request *ureq; /* This ureq will be freed on usbhsh_queue_done() */ ureq = usbhsh_ureq_alloc(hpriv, urb, mem_flags); if (unlikely(!ureq)) return -ENOMEM; if (usb_pipein(urb->pipe)) pipe->handler = &usbhs_dcp_status_stage_in_handler; else pipe->handler = &usbhs_dcp_status_stage_out_handler; usbhs_pkt_push(pipe, &ureq->pkt, usbhsh_queue_done, NULL, urb->transfer_buffer_length, 0, -1); return 0; } static int usbhsh_dcp_queue_push(struct usb_hcd *hcd, struct urb *urb, gfp_t mflags) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); struct usbhsh_ep *uep = usbhsh_ep_to_uep(urb->ep); struct usbhs_pipe *pipe = usbhsh_uep_to_pipe(uep); struct device *dev = usbhsh_hcd_to_dev(hcd); int ret; dev_dbg(dev, "%s\n", __func__); /* * setup stage * * usbhsh_send_setup_stage_packet() wait SACK/SIGN */ usbhsh_setup_stage_packet_push(hpriv, urb, pipe); /* * data stage * * It is pushed only when urb has buffer. */ if (urb->transfer_buffer_length) { ret = usbhsh_data_stage_packet_push(hpriv, urb, pipe, mflags); if (ret < 0) { dev_err(dev, "data stage failed\n"); return ret; } } /* * status stage */ ret = usbhsh_status_stage_packet_push(hpriv, urb, pipe, mflags); if (ret < 0) { dev_err(dev, "status stage failed\n"); return ret; } /* * start pushed packets */ usbhs_pkt_start(pipe); return 0; } /* * dma map functions */ static int usbhsh_dma_map_ctrl(struct device *dma_dev, struct usbhs_pkt *pkt, int map) { if (map) { struct usbhsh_request *ureq = usbhsh_pkt_to_ureq(pkt); struct urb *urb = ureq->urb; /* it can not use scatter/gather */ if (urb->num_sgs) return -EINVAL; pkt->dma = urb->transfer_dma; if (!pkt->dma) return -EINVAL; } return 0; } /* * for hc_driver */ static int usbhsh_host_start(struct usb_hcd *hcd) { return 0; } static void usbhsh_host_stop(struct usb_hcd *hcd) { } static int usbhsh_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhs_priv_to_dev(priv); struct usb_host_endpoint *ep = urb->ep; struct usbhsh_device *new_udev = NULL; int is_dir_in = usb_pipein(urb->pipe); int ret; dev_dbg(dev, "%s (%s)\n", __func__, is_dir_in ? "in" : "out"); if (!usbhsh_is_running(hpriv)) { ret = -EIO; dev_err(dev, "host is not running\n"); goto usbhsh_urb_enqueue_error_not_linked; } ret = usb_hcd_link_urb_to_ep(hcd, urb); if (ret) { dev_err(dev, "urb link failed\n"); goto usbhsh_urb_enqueue_error_not_linked; } /* * attach udev if needed * see [image of mod_host] */ if (!usbhsh_device_get(hpriv, urb)) { new_udev = usbhsh_device_attach(hpriv, urb); if (!new_udev) { ret = -EIO; dev_err(dev, "device attach failed\n"); goto usbhsh_urb_enqueue_error_not_linked; } } /* * attach endpoint if needed * see [image of mod_host] */ if (!usbhsh_ep_to_uep(ep)) { ret = usbhsh_endpoint_attach(hpriv, urb, mem_flags); if (ret < 0) { dev_err(dev, "endpoint attach failed\n"); goto usbhsh_urb_enqueue_error_free_device; } } /* * attach pipe to endpoint * see [image of mod_host] */ ret = usbhsh_pipe_attach(hpriv, urb); if (ret < 0) { dev_err(dev, "pipe attach failed\n"); goto usbhsh_urb_enqueue_error_free_endpoint; } /* * push packet */ if (usb_pipecontrol(urb->pipe)) ret = usbhsh_dcp_queue_push(hcd, urb, mem_flags); else ret = usbhsh_queue_push(hcd, urb, mem_flags); return ret; usbhsh_urb_enqueue_error_free_endpoint: usbhsh_endpoint_detach(hpriv, ep); usbhsh_urb_enqueue_error_free_device: if (new_udev) usbhsh_device_detach(hpriv, new_udev); usbhsh_urb_enqueue_error_not_linked: dev_dbg(dev, "%s error\n", __func__); return ret; } static int usbhsh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); struct usbhsh_request *ureq = usbhsh_urb_to_ureq(urb); if (ureq) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usbhs_pkt *pkt = &ureq->pkt; usbhs_pkt_pop(pkt->pipe, pkt); usbhsh_queue_done(priv, pkt); } return 0; } static void usbhsh_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct usbhsh_ep *uep = usbhsh_ep_to_uep(ep); struct usbhsh_device *udev; struct usbhsh_hpriv *hpriv; /* * this function might be called manytimes by same hcd/ep * in-endpoint == out-endpoint if ep == dcp. */ if (!uep) return; udev = usbhsh_uep_to_udev(uep); hpriv = usbhsh_hcd_to_hpriv(hcd); usbhsh_endpoint_detach(hpriv, ep); /* * if there is no endpoint, * free device */ if (!usbhsh_device_has_endpoint(udev)) usbhsh_device_detach(hpriv, udev); } static int usbhsh_hub_status_data(struct usb_hcd *hcd, char *buf) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); int roothub_id = 1; /* only 1 root hub */ /* * does port stat was changed ? * check USB_PORT_STAT_C_xxx << 16 */ if (usbhsh_port_stat_get(hpriv) & 0xFFFF0000) *buf = (1 << roothub_id); else *buf = 0; return !!(*buf); } static int __usbhsh_hub_hub_feature(struct usbhsh_hpriv *hpriv, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhs_priv_to_dev(priv); switch (wValue) { case C_HUB_OVER_CURRENT: case C_HUB_LOCAL_POWER: dev_dbg(dev, "%s :: C_HUB_xx\n", __func__); return 0; } return -EPIPE; } static int __usbhsh_hub_port_feature(struct usbhsh_hpriv *hpriv, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhs_priv_to_dev(priv); int enable = (typeReq == SetPortFeature); int speed, i, timeout = 128; int roothub_id = 1; /* only 1 root hub */ /* common error */ if (wIndex > roothub_id || wLength != 0) return -EPIPE; /* check wValue */ switch (wValue) { case USB_PORT_FEAT_POWER: usbhs_vbus_ctrl(priv, enable); dev_dbg(dev, "%s :: USB_PORT_FEAT_POWER\n", __func__); break; case USB_PORT_FEAT_ENABLE: case USB_PORT_FEAT_SUSPEND: case USB_PORT_FEAT_C_ENABLE: case USB_PORT_FEAT_C_SUSPEND: case USB_PORT_FEAT_C_CONNECTION: case USB_PORT_FEAT_C_OVER_CURRENT: case USB_PORT_FEAT_C_RESET: dev_dbg(dev, "%s :: USB_PORT_FEAT_xxx\n", __func__); break; case USB_PORT_FEAT_RESET: if (!enable) break; usbhsh_port_stat_clear(hpriv, USB_PORT_STAT_HIGH_SPEED | USB_PORT_STAT_LOW_SPEED); usbhsh_queue_force_pop_all(priv); usbhs_bus_send_reset(priv); msleep(20); usbhs_bus_send_sof_enable(priv); for (i = 0; i < timeout ; i++) { switch (usbhs_bus_get_speed(priv)) { case USB_SPEED_LOW: speed = USB_PORT_STAT_LOW_SPEED; goto got_usb_bus_speed; case USB_SPEED_HIGH: speed = USB_PORT_STAT_HIGH_SPEED; goto got_usb_bus_speed; case USB_SPEED_FULL: speed = 0; goto got_usb_bus_speed; } msleep(20); } return -EPIPE; got_usb_bus_speed: usbhsh_port_stat_set(hpriv, speed); usbhsh_port_stat_set(hpriv, USB_PORT_STAT_ENABLE); dev_dbg(dev, "%s :: USB_PORT_FEAT_RESET (speed = %d)\n", __func__, speed); /* status change is not needed */ return 0; default: return -EPIPE; } /* set/clear status */ if (enable) usbhsh_port_stat_set(hpriv, (1 << wValue)); else usbhsh_port_stat_clear(hpriv, (1 << wValue)); return 0; } static int __usbhsh_hub_get_status(struct usbhsh_hpriv *hpriv, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct usb_hub_descriptor *desc = (struct usb_hub_descriptor *)buf; struct device *dev = usbhs_priv_to_dev(priv); int roothub_id = 1; /* only 1 root hub */ switch (typeReq) { case GetHubStatus: dev_dbg(dev, "%s :: GetHubStatus\n", __func__); *buf = 0x00; break; case GetPortStatus: if (wIndex != roothub_id) return -EPIPE; dev_dbg(dev, "%s :: GetPortStatus\n", __func__); *(__le32 *)buf = cpu_to_le32(usbhsh_port_stat_get(hpriv)); break; case GetHubDescriptor: desc->bDescriptorType = USB_DT_HUB; desc->bHubContrCurrent = 0; desc->bNbrPorts = roothub_id; desc->bDescLength = 9; desc->bPwrOn2PwrGood = 0; desc->wHubCharacteristics = cpu_to_le16(HUB_CHAR_INDV_PORT_LPSM | HUB_CHAR_NO_OCPM); desc->u.hs.DeviceRemovable[0] = (roothub_id << 1); desc->u.hs.DeviceRemovable[1] = ~0; dev_dbg(dev, "%s :: GetHubDescriptor\n", __func__); break; } return 0; } static int usbhsh_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct usbhsh_hpriv *hpriv = usbhsh_hcd_to_hpriv(hcd); struct usbhs_priv *priv = usbhsh_hpriv_to_priv(hpriv); struct device *dev = usbhs_priv_to_dev(priv); int ret = -EPIPE; switch (typeReq) { /* Hub Feature */ case ClearHubFeature: case SetHubFeature: ret = __usbhsh_hub_hub_feature(hpriv, typeReq, wValue, wIndex, buf, wLength); break; /* Port Feature */ case SetPortFeature: case ClearPortFeature: ret = __usbhsh_hub_port_feature(hpriv, typeReq, wValue, wIndex, buf, wLength); break; /* Get status */ case GetHubStatus: case GetPortStatus: case GetHubDescriptor: ret = __usbhsh_hub_get_status(hpriv, typeReq, wValue, wIndex, buf, wLength); break; } dev_dbg(dev, "typeReq = %x, ret = %d, port_stat = %x\n", typeReq, ret, usbhsh_port_stat_get(hpriv)); return ret; } static int usbhsh_bus_nop(struct usb_hcd *hcd) { /* nothing to do */ return 0; } static const struct hc_driver usbhsh_driver = { .description = usbhsh_hcd_name, .hcd_priv_size = sizeof(struct usbhsh_hpriv), /* * generic hardware linkage */ .flags = HCD_DMA | HCD_USB2, .start = usbhsh_host_start, .stop = usbhsh_host_stop, /* * managing i/o requests and associated device resources */ .urb_enqueue = usbhsh_urb_enqueue, .urb_dequeue = usbhsh_urb_dequeue, .endpoint_disable = usbhsh_endpoint_disable, /* * root hub */ .hub_status_data = usbhsh_hub_status_data, .hub_control = usbhsh_hub_control, .bus_suspend = usbhsh_bus_nop, .bus_resume = usbhsh_bus_nop, }; /* * interrupt functions */ static int usbhsh_irq_attch(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct device *dev = usbhs_priv_to_dev(priv); dev_dbg(dev, "device attached\n"); usbhsh_port_stat_set(hpriv, USB_PORT_STAT_CONNECTION); usbhsh_port_stat_set(hpriv, USB_PORT_STAT_C_CONNECTION << 16); /* * attch interrupt might happen infinitely on some device * (on self power USB hub ?) * disable it here. * * usbhsh_is_running() becomes effective * according to this process. * see * usbhsh_is_running() * usbhsh_urb_enqueue() */ hpriv->mod.irq_attch = NULL; usbhs_irq_callback_update(priv, &hpriv->mod); return 0; } static int usbhsh_irq_dtch(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct device *dev = usbhs_priv_to_dev(priv); dev_dbg(dev, "device detached\n"); usbhsh_port_stat_clear(hpriv, USB_PORT_STAT_CONNECTION); usbhsh_port_stat_set(hpriv, USB_PORT_STAT_C_CONNECTION << 16); /* * enable attch interrupt again * * usbhsh_is_running() becomes invalid * according to this process. * see * usbhsh_is_running() * usbhsh_urb_enqueue() */ hpriv->mod.irq_attch = usbhsh_irq_attch; usbhs_irq_callback_update(priv, &hpriv->mod); /* * usbhsh_queue_force_pop_all() should be called * after usbhsh_is_running() becomes invalid. */ usbhsh_queue_force_pop_all(priv); return 0; } static int usbhsh_irq_setup_ack(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct device *dev = usbhs_priv_to_dev(priv); dev_dbg(dev, "setup packet OK\n"); complete(&hpriv->setup_ack_done); /* see usbhsh_urb_enqueue() */ return 0; } static int usbhsh_irq_setup_err(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct device *dev = usbhs_priv_to_dev(priv); dev_dbg(dev, "setup packet Err\n"); complete(&hpriv->setup_ack_done); /* see usbhsh_urb_enqueue() */ return 0; } /* * module start/stop */ static void usbhsh_pipe_init_for_host(struct usbhs_priv *priv) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct usbhs_pipe *pipe; struct renesas_usbhs_driver_pipe_config *pipe_configs = usbhs_get_dparam(priv, pipe_configs); int pipe_size = usbhs_get_dparam(priv, pipe_size); int old_type, dir_in, i; /* init all pipe */ old_type = USB_ENDPOINT_XFER_CONTROL; for (i = 0; i < pipe_size; i++) { /* * data "output" will be finished as soon as possible, * but there is no guaranty at data "input" case. * * "input" needs "standby" pipe. * So, "input" direction pipe > "output" direction pipe * is good idea. * * 1st USB_ENDPOINT_XFER_xxx will be output direction, * and the other will be input direction here. * * ex) * ... * USB_ENDPOINT_XFER_ISOC -> dir out * USB_ENDPOINT_XFER_ISOC -> dir in * USB_ENDPOINT_XFER_BULK -> dir out * USB_ENDPOINT_XFER_BULK -> dir in * USB_ENDPOINT_XFER_BULK -> dir in * ... */ dir_in = (pipe_configs[i].type == old_type); old_type = pipe_configs[i].type; if (USB_ENDPOINT_XFER_CONTROL == pipe_configs[i].type) { pipe = usbhs_dcp_malloc(priv); usbhsh_hpriv_to_dcp(hpriv) = pipe; } else { pipe = usbhs_pipe_malloc(priv, pipe_configs[i].type, dir_in); } pipe->mod_private = NULL; } } static int usbhsh_start(struct usbhs_priv *priv) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct device *dev = usbhs_priv_to_dev(priv); int ret; /* add hcd */ ret = usb_add_hcd(hcd, 0, 0); if (ret < 0) return 0; device_wakeup_enable(hcd->self.controller); /* * pipe initialize and enable DCP */ usbhs_fifo_init(priv); usbhs_pipe_init(priv, usbhsh_dma_map_ctrl); usbhsh_pipe_init_for_host(priv); /* * system config enble * - HI speed * - host * - usb module */ usbhs_sys_host_ctrl(priv, 1); /* * enable irq callback */ mod->irq_attch = usbhsh_irq_attch; mod->irq_dtch = usbhsh_irq_dtch; mod->irq_sack = usbhsh_irq_setup_ack; mod->irq_sign = usbhsh_irq_setup_err; usbhs_irq_callback_update(priv, mod); dev_dbg(dev, "start host\n"); return ret; } static int usbhsh_stop(struct usbhs_priv *priv) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct device *dev = usbhs_priv_to_dev(priv); /* * disable irq callback */ mod->irq_attch = NULL; mod->irq_dtch = NULL; mod->irq_sack = NULL; mod->irq_sign = NULL; usbhs_irq_callback_update(priv, mod); usb_remove_hcd(hcd); /* disable sys */ usbhs_sys_host_ctrl(priv, 0); dev_dbg(dev, "quit host\n"); return 0; } int usbhs_mod_host_probe(struct usbhs_priv *priv) { struct usbhsh_hpriv *hpriv; struct usb_hcd *hcd; struct usbhsh_device *udev; struct device *dev = usbhs_priv_to_dev(priv); int i; /* initialize hcd */ hcd = usb_create_hcd(&usbhsh_driver, dev, usbhsh_hcd_name); if (!hcd) { dev_err(dev, "Failed to create hcd\n"); return -ENOMEM; } hcd->has_tt = 1; /* for low/full speed */ /* * CAUTION * * There is no guarantee that it is possible to access usb module here. * Don't accesses to it. * The accesse will be enable after "usbhsh_start" */ hpriv = usbhsh_hcd_to_hpriv(hcd); /* * register itself */ usbhs_mod_register(priv, &hpriv->mod, USBHS_HOST); /* init hpriv */ hpriv->mod.name = "host"; hpriv->mod.start = usbhsh_start; hpriv->mod.stop = usbhsh_stop; usbhsh_port_stat_init(hpriv); /* init all device */ usbhsh_for_each_udev_with_dev0(udev, hpriv, i) { udev->usbv = NULL; INIT_LIST_HEAD(&udev->ep_list_head); } dev_info(dev, "host probed\n"); return 0; } int usbhs_mod_host_remove(struct usbhs_priv *priv) { struct usbhsh_hpriv *hpriv = usbhsh_priv_to_hpriv(priv); struct usb_hcd *hcd = usbhsh_hpriv_to_hcd(hpriv); usb_put_hcd(hcd); return 0; }
linux-master
drivers/usb/renesas_usbhs/mod_host.c
// SPDX-License-Identifier: GPL-1.0+ /* * Renesas USB driver * * Copyright (C) 2011 Renesas Solutions Corp. * Copyright (C) 2019 Renesas Electronics Corporation * Kuninori Morimoto <[email protected]> */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/usb/otg.h> #include "common.h" /* * struct */ struct usbhsg_request { struct usb_request req; struct usbhs_pkt pkt; }; #define EP_NAME_SIZE 8 struct usbhsg_gpriv; struct usbhsg_uep { struct usb_ep ep; struct usbhs_pipe *pipe; spinlock_t lock; /* protect the pipe */ char ep_name[EP_NAME_SIZE]; struct usbhsg_gpriv *gpriv; }; struct usbhsg_gpriv { struct usb_gadget gadget; struct usbhs_mod mod; struct usbhsg_uep *uep; int uep_size; struct usb_gadget_driver *driver; struct usb_phy *transceiver; bool vbus_active; u32 status; #define USBHSG_STATUS_STARTED (1 << 0) #define USBHSG_STATUS_REGISTERD (1 << 1) #define USBHSG_STATUS_WEDGE (1 << 2) #define USBHSG_STATUS_SELF_POWERED (1 << 3) #define USBHSG_STATUS_SOFT_CONNECT (1 << 4) }; struct usbhsg_recip_handle { char *name; int (*device)(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl); int (*interface)(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl); int (*endpoint)(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl); }; /* * macro */ #define usbhsg_priv_to_gpriv(priv) \ container_of( \ usbhs_mod_get(priv, USBHS_GADGET), \ struct usbhsg_gpriv, mod) #define __usbhsg_for_each_uep(start, pos, g, i) \ for ((i) = start; \ ((i) < (g)->uep_size) && ((pos) = (g)->uep + (i)); \ (i)++) #define usbhsg_for_each_uep(pos, gpriv, i) \ __usbhsg_for_each_uep(1, pos, gpriv, i) #define usbhsg_for_each_uep_with_dcp(pos, gpriv, i) \ __usbhsg_for_each_uep(0, pos, gpriv, i) #define usbhsg_gadget_to_gpriv(g)\ container_of(g, struct usbhsg_gpriv, gadget) #define usbhsg_req_to_ureq(r)\ container_of(r, struct usbhsg_request, req) #define usbhsg_ep_to_uep(e) container_of(e, struct usbhsg_uep, ep) #define usbhsg_gpriv_to_dev(gp) usbhs_priv_to_dev((gp)->mod.priv) #define usbhsg_gpriv_to_priv(gp) ((gp)->mod.priv) #define usbhsg_gpriv_to_dcp(gp) ((gp)->uep) #define usbhsg_gpriv_to_nth_uep(gp, i) ((gp)->uep + i) #define usbhsg_uep_to_gpriv(u) ((u)->gpriv) #define usbhsg_uep_to_pipe(u) ((u)->pipe) #define usbhsg_pipe_to_uep(p) ((p)->mod_private) #define usbhsg_is_dcp(u) ((u) == usbhsg_gpriv_to_dcp((u)->gpriv)) #define usbhsg_ureq_to_pkt(u) (&(u)->pkt) #define usbhsg_pkt_to_ureq(i) \ container_of(i, struct usbhsg_request, pkt) #define usbhsg_is_not_connected(gp) ((gp)->gadget.speed == USB_SPEED_UNKNOWN) /* status */ #define usbhsg_status_init(gp) do {(gp)->status = 0; } while (0) #define usbhsg_status_set(gp, b) (gp->status |= b) #define usbhsg_status_clr(gp, b) (gp->status &= ~b) #define usbhsg_status_has(gp, b) (gp->status & b) /* * queue push/pop */ static void __usbhsg_queue_pop(struct usbhsg_uep *uep, struct usbhsg_request *ureq, int status) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); struct device *dev = usbhsg_gpriv_to_dev(gpriv); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); if (pipe) dev_dbg(dev, "pipe %d : queue pop\n", usbhs_pipe_number(pipe)); ureq->req.status = status; spin_unlock(usbhs_priv_to_lock(priv)); usb_gadget_giveback_request(&uep->ep, &ureq->req); spin_lock(usbhs_priv_to_lock(priv)); } static void usbhsg_queue_pop(struct usbhsg_uep *uep, struct usbhsg_request *ureq, int status) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); unsigned long flags; usbhs_lock(priv, flags); __usbhsg_queue_pop(uep, ureq, status); usbhs_unlock(priv, flags); } static void usbhsg_queue_done(struct usbhs_priv *priv, struct usbhs_pkt *pkt) { struct usbhs_pipe *pipe = pkt->pipe; struct usbhsg_uep *uep = usbhsg_pipe_to_uep(pipe); struct usbhsg_request *ureq = usbhsg_pkt_to_ureq(pkt); unsigned long flags; ureq->req.actual = pkt->actual; usbhs_lock(priv, flags); if (uep) __usbhsg_queue_pop(uep, ureq, 0); usbhs_unlock(priv, flags); } static void usbhsg_queue_push(struct usbhsg_uep *uep, struct usbhsg_request *ureq) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct device *dev = usbhsg_gpriv_to_dev(gpriv); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); struct usbhs_pkt *pkt = usbhsg_ureq_to_pkt(ureq); struct usb_request *req = &ureq->req; req->actual = 0; req->status = -EINPROGRESS; usbhs_pkt_push(pipe, pkt, usbhsg_queue_done, req->buf, req->length, req->zero, -1); usbhs_pkt_start(pipe); dev_dbg(dev, "pipe %d : queue push (%d)\n", usbhs_pipe_number(pipe), req->length); } /* * dma map/unmap */ static int usbhsg_dma_map_ctrl(struct device *dma_dev, struct usbhs_pkt *pkt, int map) { struct usbhsg_request *ureq = usbhsg_pkt_to_ureq(pkt); struct usb_request *req = &ureq->req; struct usbhs_pipe *pipe = pkt->pipe; enum dma_data_direction dir; int ret = 0; dir = usbhs_pipe_is_dir_host(pipe); if (map) { /* it can not use scatter/gather */ WARN_ON(req->num_sgs); ret = usb_gadget_map_request_by_dev(dma_dev, req, dir); if (ret < 0) return ret; pkt->dma = req->dma; } else { usb_gadget_unmap_request_by_dev(dma_dev, req, dir); } return ret; } /* * USB_TYPE_STANDARD / clear feature functions */ static int usbhsg_recip_handler_std_control_done(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct usbhsg_uep *dcp = usbhsg_gpriv_to_dcp(gpriv); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(dcp); usbhs_dcp_control_transfer_done(pipe); return 0; } static int usbhsg_recip_handler_std_clear_endpoint(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); if (!usbhsg_status_has(gpriv, USBHSG_STATUS_WEDGE)) { usbhs_pipe_disable(pipe); usbhs_pipe_sequence_data0(pipe); usbhs_pipe_enable(pipe); } usbhsg_recip_handler_std_control_done(priv, uep, ctrl); usbhs_pkt_start(pipe); return 0; } static struct usbhsg_recip_handle req_clear_feature = { .name = "clear feature", .device = usbhsg_recip_handler_std_control_done, .interface = usbhsg_recip_handler_std_control_done, .endpoint = usbhsg_recip_handler_std_clear_endpoint, }; /* * USB_TYPE_STANDARD / set feature functions */ static int usbhsg_recip_handler_std_set_device(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { switch (le16_to_cpu(ctrl->wValue)) { case USB_DEVICE_TEST_MODE: usbhsg_recip_handler_std_control_done(priv, uep, ctrl); udelay(100); usbhs_sys_set_test_mode(priv, le16_to_cpu(ctrl->wIndex) >> 8); break; default: usbhsg_recip_handler_std_control_done(priv, uep, ctrl); break; } return 0; } static int usbhsg_recip_handler_std_set_endpoint(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); usbhs_pipe_stall(pipe); usbhsg_recip_handler_std_control_done(priv, uep, ctrl); return 0; } static struct usbhsg_recip_handle req_set_feature = { .name = "set feature", .device = usbhsg_recip_handler_std_set_device, .interface = usbhsg_recip_handler_std_control_done, .endpoint = usbhsg_recip_handler_std_set_endpoint, }; /* * USB_TYPE_STANDARD / get status functions */ static void __usbhsg_recip_send_complete(struct usb_ep *ep, struct usb_request *req) { struct usbhsg_request *ureq = usbhsg_req_to_ureq(req); /* free allocated recip-buffer/usb_request */ kfree(ureq->pkt.buf); usb_ep_free_request(ep, req); } static void __usbhsg_recip_send_status(struct usbhsg_gpriv *gpriv, unsigned short status) { struct usbhsg_uep *dcp = usbhsg_gpriv_to_dcp(gpriv); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(dcp); struct device *dev = usbhsg_gpriv_to_dev(gpriv); struct usb_request *req; __le16 *buf; /* alloc new usb_request for recip */ req = usb_ep_alloc_request(&dcp->ep, GFP_ATOMIC); if (!req) { dev_err(dev, "recip request allocation fail\n"); return; } /* alloc recip data buffer */ buf = kmalloc(sizeof(*buf), GFP_ATOMIC); if (!buf) { usb_ep_free_request(&dcp->ep, req); return; } /* recip data is status */ *buf = cpu_to_le16(status); /* allocated usb_request/buffer will be freed */ req->complete = __usbhsg_recip_send_complete; req->buf = buf; req->length = sizeof(*buf); req->zero = 0; /* push packet */ pipe->handler = &usbhs_fifo_pio_push_handler; usbhsg_queue_push(dcp, usbhsg_req_to_ureq(req)); } static int usbhsg_recip_handler_std_get_device(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); unsigned short status = 0; if (usbhsg_status_has(gpriv, USBHSG_STATUS_SELF_POWERED)) status = 1 << USB_DEVICE_SELF_POWERED; __usbhsg_recip_send_status(gpriv, status); return 0; } static int usbhsg_recip_handler_std_get_interface(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); unsigned short status = 0; __usbhsg_recip_send_status(gpriv, status); return 0; } static int usbhsg_recip_handler_std_get_endpoint(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); unsigned short status = 0; if (usbhs_pipe_is_stall(pipe)) status = 1 << USB_ENDPOINT_HALT; __usbhsg_recip_send_status(gpriv, status); return 0; } static struct usbhsg_recip_handle req_get_status = { .name = "get status", .device = usbhsg_recip_handler_std_get_device, .interface = usbhsg_recip_handler_std_get_interface, .endpoint = usbhsg_recip_handler_std_get_endpoint, }; /* * USB_TYPE handler */ static int usbhsg_recip_run_handle(struct usbhs_priv *priv, struct usbhsg_recip_handle *handler, struct usb_ctrlrequest *ctrl) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct device *dev = usbhsg_gpriv_to_dev(gpriv); struct usbhsg_uep *uep; struct usbhs_pipe *pipe; int recip = ctrl->bRequestType & USB_RECIP_MASK; int nth = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK; int ret = 0; int (*func)(struct usbhs_priv *priv, struct usbhsg_uep *uep, struct usb_ctrlrequest *ctrl); char *msg; uep = usbhsg_gpriv_to_nth_uep(gpriv, nth); pipe = usbhsg_uep_to_pipe(uep); if (!pipe) { dev_err(dev, "wrong recip request\n"); return -EINVAL; } switch (recip) { case USB_RECIP_DEVICE: msg = "DEVICE"; func = handler->device; break; case USB_RECIP_INTERFACE: msg = "INTERFACE"; func = handler->interface; break; case USB_RECIP_ENDPOINT: msg = "ENDPOINT"; func = handler->endpoint; break; default: dev_warn(dev, "unsupported RECIP(%d)\n", recip); func = NULL; ret = -EINVAL; } if (func) { dev_dbg(dev, "%s (pipe %d :%s)\n", handler->name, nth, msg); ret = func(priv, uep, ctrl); } return ret; } /* * irq functions * * it will be called from usbhs_interrupt */ static int usbhsg_irq_dev_state(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct device *dev = usbhsg_gpriv_to_dev(gpriv); int state = usbhs_status_get_device_state(irq_state); gpriv->gadget.speed = usbhs_bus_get_speed(priv); dev_dbg(dev, "state = %x : speed : %d\n", state, gpriv->gadget.speed); if (gpriv->gadget.speed != USB_SPEED_UNKNOWN && (state & SUSPENDED_STATE)) { if (gpriv->driver && gpriv->driver->suspend) gpriv->driver->suspend(&gpriv->gadget); usb_gadget_set_state(&gpriv->gadget, USB_STATE_SUSPENDED); } return 0; } static int usbhsg_irq_ctrl_stage(struct usbhs_priv *priv, struct usbhs_irq_state *irq_state) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct usbhsg_uep *dcp = usbhsg_gpriv_to_dcp(gpriv); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(dcp); struct device *dev = usbhsg_gpriv_to_dev(gpriv); struct usb_ctrlrequest ctrl; struct usbhsg_recip_handle *recip_handler = NULL; int stage = usbhs_status_get_ctrl_stage(irq_state); int ret = 0; dev_dbg(dev, "stage = %d\n", stage); /* * see Manual * * "Operation" * - "Interrupt Function" * - "Control Transfer Stage Transition Interrupt" * - Fig. "Control Transfer Stage Transitions" */ switch (stage) { case READ_DATA_STAGE: pipe->handler = &usbhs_fifo_pio_push_handler; break; case WRITE_DATA_STAGE: pipe->handler = &usbhs_fifo_pio_pop_handler; break; case NODATA_STATUS_STAGE: pipe->handler = &usbhs_ctrl_stage_end_handler; break; case READ_STATUS_STAGE: case WRITE_STATUS_STAGE: usbhs_dcp_control_transfer_done(pipe); fallthrough; default: return ret; } /* * get usb request */ usbhs_usbreq_get_val(priv, &ctrl); switch (ctrl.bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl.bRequest) { case USB_REQ_CLEAR_FEATURE: recip_handler = &req_clear_feature; break; case USB_REQ_SET_FEATURE: recip_handler = &req_set_feature; break; case USB_REQ_GET_STATUS: recip_handler = &req_get_status; break; } } /* * setup stage / run recip */ if (recip_handler) ret = usbhsg_recip_run_handle(priv, recip_handler, &ctrl); else ret = gpriv->driver->setup(&gpriv->gadget, &ctrl); if (ret < 0) usbhs_pipe_stall(pipe); return ret; } /* * * usb_dcp_ops * */ static int usbhsg_pipe_disable(struct usbhsg_uep *uep) { struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); struct usbhs_pkt *pkt; while (1) { pkt = usbhs_pkt_pop(pipe, NULL); if (!pkt) break; usbhsg_queue_pop(uep, usbhsg_pkt_to_ureq(pkt), -ESHUTDOWN); } usbhs_pipe_disable(pipe); return 0; } /* * * usb_ep_ops * */ static int usbhsg_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct usbhsg_uep *uep = usbhsg_ep_to_uep(ep); struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); struct usbhs_pipe *pipe; int ret = -EIO; unsigned long flags; usbhs_lock(priv, flags); /* * if it already have pipe, * nothing to do */ if (uep->pipe) { usbhs_pipe_clear(uep->pipe); usbhs_pipe_sequence_data0(uep->pipe); ret = 0; goto usbhsg_ep_enable_end; } pipe = usbhs_pipe_malloc(priv, usb_endpoint_type(desc), usb_endpoint_dir_in(desc)); if (pipe) { uep->pipe = pipe; pipe->mod_private = uep; /* set epnum / maxp */ usbhs_pipe_config_update(pipe, 0, usb_endpoint_num(desc), usb_endpoint_maxp(desc)); /* * usbhs_fifo_dma_push/pop_handler try to * use dmaengine if possible. * It will use pio handler if impossible. */ if (usb_endpoint_dir_in(desc)) { pipe->handler = &usbhs_fifo_dma_push_handler; } else { pipe->handler = &usbhs_fifo_dma_pop_handler; usbhs_xxxsts_clear(priv, BRDYSTS, usbhs_pipe_number(pipe)); } ret = 0; } usbhsg_ep_enable_end: usbhs_unlock(priv, flags); return ret; } static int usbhsg_ep_disable(struct usb_ep *ep) { struct usbhsg_uep *uep = usbhsg_ep_to_uep(ep); struct usbhs_pipe *pipe; unsigned long flags; spin_lock_irqsave(&uep->lock, flags); pipe = usbhsg_uep_to_pipe(uep); if (!pipe) goto out; usbhsg_pipe_disable(uep); usbhs_pipe_free(pipe); uep->pipe->mod_private = NULL; uep->pipe = NULL; out: spin_unlock_irqrestore(&uep->lock, flags); return 0; } static struct usb_request *usbhsg_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct usbhsg_request *ureq; ureq = kzalloc(sizeof *ureq, gfp_flags); if (!ureq) return NULL; usbhs_pkt_init(usbhsg_ureq_to_pkt(ureq)); return &ureq->req; } static void usbhsg_ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct usbhsg_request *ureq = usbhsg_req_to_ureq(req); WARN_ON(!list_empty(&ureq->pkt.node)); kfree(ureq); } static int usbhsg_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags) { struct usbhsg_uep *uep = usbhsg_ep_to_uep(ep); struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhsg_request *ureq = usbhsg_req_to_ureq(req); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); /* param check */ if (usbhsg_is_not_connected(gpriv) || unlikely(!gpriv->driver) || unlikely(!pipe)) return -ESHUTDOWN; usbhsg_queue_push(uep, ureq); return 0; } static int usbhsg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct usbhsg_uep *uep = usbhsg_ep_to_uep(ep); struct usbhsg_request *ureq = usbhsg_req_to_ureq(req); struct usbhs_pipe *pipe; unsigned long flags; spin_lock_irqsave(&uep->lock, flags); pipe = usbhsg_uep_to_pipe(uep); if (pipe) usbhs_pkt_pop(pipe, usbhsg_ureq_to_pkt(ureq)); /* * To dequeue a request, this driver should call the usbhsg_queue_pop() * even if the pipe is NULL. */ usbhsg_queue_pop(uep, ureq, -ECONNRESET); spin_unlock_irqrestore(&uep->lock, flags); return 0; } static int __usbhsg_ep_set_halt_wedge(struct usb_ep *ep, int halt, int wedge) { struct usbhsg_uep *uep = usbhsg_ep_to_uep(ep); struct usbhs_pipe *pipe = usbhsg_uep_to_pipe(uep); struct usbhsg_gpriv *gpriv = usbhsg_uep_to_gpriv(uep); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); struct device *dev = usbhsg_gpriv_to_dev(gpriv); unsigned long flags; int ret = 0; dev_dbg(dev, "set halt %d (pipe %d)\n", halt, usbhs_pipe_number(pipe)); /******************** spin lock ********************/ usbhs_lock(priv, flags); /* * According to usb_ep_set_halt()'s description, this function should * return -EAGAIN if the IN endpoint has any queue or data. Note * that the usbhs_pipe_is_dir_in() returns false if the pipe is an * IN endpoint in the gadget mode. */ if (!usbhs_pipe_is_dir_in(pipe) && (__usbhsf_pkt_get(pipe) || usbhs_pipe_contains_transmittable_data(pipe))) { ret = -EAGAIN; goto out; } if (halt) usbhs_pipe_stall(pipe); else usbhs_pipe_disable(pipe); if (halt && wedge) usbhsg_status_set(gpriv, USBHSG_STATUS_WEDGE); else usbhsg_status_clr(gpriv, USBHSG_STATUS_WEDGE); out: usbhs_unlock(priv, flags); /******************** spin unlock ******************/ return ret; } static int usbhsg_ep_set_halt(struct usb_ep *ep, int value) { return __usbhsg_ep_set_halt_wedge(ep, value, 0); } static int usbhsg_ep_set_wedge(struct usb_ep *ep) { return __usbhsg_ep_set_halt_wedge(ep, 1, 1); } static const struct usb_ep_ops usbhsg_ep_ops = { .enable = usbhsg_ep_enable, .disable = usbhsg_ep_disable, .alloc_request = usbhsg_ep_alloc_request, .free_request = usbhsg_ep_free_request, .queue = usbhsg_ep_queue, .dequeue = usbhsg_ep_dequeue, .set_halt = usbhsg_ep_set_halt, .set_wedge = usbhsg_ep_set_wedge, }; /* * pullup control */ static int usbhsg_can_pullup(struct usbhs_priv *priv) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); return gpriv->driver && usbhsg_status_has(gpriv, USBHSG_STATUS_SOFT_CONNECT); } static void usbhsg_update_pullup(struct usbhs_priv *priv) { if (usbhsg_can_pullup(priv)) usbhs_sys_function_pullup(priv, 1); else usbhs_sys_function_pullup(priv, 0); } /* * usb module start/end */ static int usbhsg_try_start(struct usbhs_priv *priv, u32 status) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct usbhsg_uep *dcp = usbhsg_gpriv_to_dcp(gpriv); struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct device *dev = usbhs_priv_to_dev(priv); unsigned long flags; int ret = 0; /******************** spin lock ********************/ usbhs_lock(priv, flags); usbhsg_status_set(gpriv, status); if (!(usbhsg_status_has(gpriv, USBHSG_STATUS_STARTED) && usbhsg_status_has(gpriv, USBHSG_STATUS_REGISTERD))) ret = -1; /* not ready */ usbhs_unlock(priv, flags); /******************** spin unlock ********************/ if (ret < 0) return 0; /* not ready is not error */ /* * enable interrupt and systems if ready */ dev_dbg(dev, "start gadget\n"); /* * pipe initialize and enable DCP */ usbhs_fifo_init(priv); usbhs_pipe_init(priv, usbhsg_dma_map_ctrl); /* dcp init instead of usbhsg_ep_enable() */ dcp->pipe = usbhs_dcp_malloc(priv); dcp->pipe->mod_private = dcp; usbhs_pipe_config_update(dcp->pipe, 0, 0, 64); /* * system config enble * - HI speed * - function * - usb module */ usbhs_sys_function_ctrl(priv, 1); usbhsg_update_pullup(priv); /* * enable irq callback */ mod->irq_dev_state = usbhsg_irq_dev_state; mod->irq_ctrl_stage = usbhsg_irq_ctrl_stage; usbhs_irq_callback_update(priv, mod); return 0; } static int usbhsg_try_stop(struct usbhs_priv *priv, u32 status) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); struct usbhs_mod *mod = usbhs_mod_get_current(priv); struct usbhsg_uep *uep; struct device *dev = usbhs_priv_to_dev(priv); unsigned long flags; int ret = 0, i; /******************** spin lock ********************/ usbhs_lock(priv, flags); usbhsg_status_clr(gpriv, status); if (!usbhsg_status_has(gpriv, USBHSG_STATUS_STARTED) && !usbhsg_status_has(gpriv, USBHSG_STATUS_REGISTERD)) ret = -1; /* already done */ usbhs_unlock(priv, flags); /******************** spin unlock ********************/ if (ret < 0) return 0; /* already done is not error */ /* * disable interrupt and systems if 1st try */ usbhs_fifo_quit(priv); /* disable all irq */ mod->irq_dev_state = NULL; mod->irq_ctrl_stage = NULL; usbhs_irq_callback_update(priv, mod); gpriv->gadget.speed = USB_SPEED_UNKNOWN; /* disable sys */ usbhs_sys_set_test_mode(priv, 0); usbhs_sys_function_ctrl(priv, 0); /* disable all eps */ usbhsg_for_each_uep_with_dcp(uep, gpriv, i) usbhsg_ep_disable(&uep->ep); dev_dbg(dev, "stop gadget\n"); return 0; } /* * VBUS provided by the PHY */ static int usbhsm_phy_get_vbus(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); return gpriv->vbus_active; } static void usbhs_mod_phy_mode(struct usbhs_priv *priv) { struct usbhs_mod_info *info = &priv->mod_info; info->irq_vbus = NULL; info->get_vbus = usbhsm_phy_get_vbus; usbhs_irq_callback_update(priv, NULL); } /* * * linux usb function * */ static int usbhsg_gadget_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); struct device *dev = usbhs_priv_to_dev(priv); int ret; if (!driver || !driver->setup || driver->max_speed < USB_SPEED_FULL) return -EINVAL; /* connect to bus through transceiver */ if (!IS_ERR_OR_NULL(gpriv->transceiver)) { ret = otg_set_peripheral(gpriv->transceiver->otg, &gpriv->gadget); if (ret) { dev_err(dev, "%s: can't bind to transceiver\n", gpriv->gadget.name); return ret; } /* get vbus using phy versions */ usbhs_mod_phy_mode(priv); } /* first hook up the driver ... */ gpriv->driver = driver; return usbhsg_try_start(priv, USBHSG_STATUS_REGISTERD); } static int usbhsg_gadget_stop(struct usb_gadget *gadget) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); usbhsg_try_stop(priv, USBHSG_STATUS_REGISTERD); if (!IS_ERR_OR_NULL(gpriv->transceiver)) otg_set_peripheral(gpriv->transceiver->otg, NULL); gpriv->driver = NULL; return 0; } /* * usb gadget ops */ static int usbhsg_get_frame(struct usb_gadget *gadget) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); return usbhs_frame_get_num(priv); } static int usbhsg_pullup(struct usb_gadget *gadget, int is_on) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); unsigned long flags; usbhs_lock(priv, flags); if (is_on) usbhsg_status_set(gpriv, USBHSG_STATUS_SOFT_CONNECT); else usbhsg_status_clr(gpriv, USBHSG_STATUS_SOFT_CONNECT); usbhsg_update_pullup(priv); usbhs_unlock(priv, flags); return 0; } static int usbhsg_set_selfpowered(struct usb_gadget *gadget, int is_self) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); if (is_self) usbhsg_status_set(gpriv, USBHSG_STATUS_SELF_POWERED); else usbhsg_status_clr(gpriv, USBHSG_STATUS_SELF_POWERED); gadget->is_selfpowered = (is_self != 0); return 0; } static int usbhsg_vbus_session(struct usb_gadget *gadget, int is_active) { struct usbhsg_gpriv *gpriv = usbhsg_gadget_to_gpriv(gadget); struct usbhs_priv *priv = usbhsg_gpriv_to_priv(gpriv); struct platform_device *pdev = usbhs_priv_to_pdev(priv); gpriv->vbus_active = !!is_active; usbhsc_schedule_notify_hotplug(pdev); return 0; } static const struct usb_gadget_ops usbhsg_gadget_ops = { .get_frame = usbhsg_get_frame, .set_selfpowered = usbhsg_set_selfpowered, .udc_start = usbhsg_gadget_start, .udc_stop = usbhsg_gadget_stop, .pullup = usbhsg_pullup, .vbus_session = usbhsg_vbus_session, }; static int usbhsg_start(struct usbhs_priv *priv) { return usbhsg_try_start(priv, USBHSG_STATUS_STARTED); } static int usbhsg_stop(struct usbhs_priv *priv) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); /* cable disconnect */ if (gpriv->driver && gpriv->driver->disconnect) gpriv->driver->disconnect(&gpriv->gadget); return usbhsg_try_stop(priv, USBHSG_STATUS_STARTED); } int usbhs_mod_gadget_probe(struct usbhs_priv *priv) { struct usbhsg_gpriv *gpriv; struct usbhsg_uep *uep; struct device *dev = usbhs_priv_to_dev(priv); struct renesas_usbhs_driver_pipe_config *pipe_configs = usbhs_get_dparam(priv, pipe_configs); int pipe_size = usbhs_get_dparam(priv, pipe_size); int i; int ret; gpriv = kzalloc(sizeof(struct usbhsg_gpriv), GFP_KERNEL); if (!gpriv) return -ENOMEM; uep = kcalloc(pipe_size, sizeof(struct usbhsg_uep), GFP_KERNEL); if (!uep) { ret = -ENOMEM; goto usbhs_mod_gadget_probe_err_gpriv; } gpriv->transceiver = usb_get_phy(USB_PHY_TYPE_UNDEFINED); dev_info(dev, "%stransceiver found\n", !IS_ERR(gpriv->transceiver) ? "" : "no "); /* * CAUTION * * There is no guarantee that it is possible to access usb module here. * Don't accesses to it. * The accesse will be enable after "usbhsg_start" */ /* * register itself */ usbhs_mod_register(priv, &gpriv->mod, USBHS_GADGET); /* init gpriv */ gpriv->mod.name = "gadget"; gpriv->mod.start = usbhsg_start; gpriv->mod.stop = usbhsg_stop; gpriv->uep = uep; gpriv->uep_size = pipe_size; usbhsg_status_init(gpriv); /* * init gadget */ gpriv->gadget.dev.parent = dev; gpriv->gadget.name = "renesas_usbhs_udc"; gpriv->gadget.ops = &usbhsg_gadget_ops; gpriv->gadget.max_speed = USB_SPEED_HIGH; gpriv->gadget.quirk_avoids_skb_reserve = usbhs_get_dparam(priv, has_usb_dmac); INIT_LIST_HEAD(&gpriv->gadget.ep_list); /* * init usb_ep */ usbhsg_for_each_uep_with_dcp(uep, gpriv, i) { uep->gpriv = gpriv; uep->pipe = NULL; snprintf(uep->ep_name, EP_NAME_SIZE, "ep%d", i); uep->ep.name = uep->ep_name; uep->ep.ops = &usbhsg_ep_ops; INIT_LIST_HEAD(&uep->ep.ep_list); spin_lock_init(&uep->lock); /* init DCP */ if (usbhsg_is_dcp(uep)) { gpriv->gadget.ep0 = &uep->ep; usb_ep_set_maxpacket_limit(&uep->ep, 64); uep->ep.caps.type_control = true; } else { /* init normal pipe */ if (pipe_configs[i].type == USB_ENDPOINT_XFER_ISOC) uep->ep.caps.type_iso = true; if (pipe_configs[i].type == USB_ENDPOINT_XFER_BULK) uep->ep.caps.type_bulk = true; if (pipe_configs[i].type == USB_ENDPOINT_XFER_INT) uep->ep.caps.type_int = true; usb_ep_set_maxpacket_limit(&uep->ep, pipe_configs[i].bufsize); list_add_tail(&uep->ep.ep_list, &gpriv->gadget.ep_list); } uep->ep.caps.dir_in = true; uep->ep.caps.dir_out = true; } ret = usb_add_gadget_udc(dev, &gpriv->gadget); if (ret) goto err_add_udc; dev_info(dev, "gadget probed\n"); return 0; err_add_udc: kfree(gpriv->uep); usbhs_mod_gadget_probe_err_gpriv: kfree(gpriv); return ret; } void usbhs_mod_gadget_remove(struct usbhs_priv *priv) { struct usbhsg_gpriv *gpriv = usbhsg_priv_to_gpriv(priv); usb_del_gadget_udc(&gpriv->gadget); kfree(gpriv->uep); kfree(gpriv); }
linux-master
drivers/usb/renesas_usbhs/mod_gadget.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas USB driver RZ/A initialization and power control * * Copyright (C) 2018 Chris Brandt * Copyright (C) 2018-2019 Renesas Electronics Corporation */ #include <linux/delay.h> #include <linux/io.h> #include <linux/of.h> #include "common.h" #include "rza.h" static int usbhs_rza1_hardware_init(struct platform_device *pdev) { struct usbhs_priv *priv = usbhs_pdev_to_priv(pdev); struct device_node *usb_x1_clk, *extal_clk; u32 freq_usb = 0, freq_extal = 0; /* Input Clock Selection (NOTE: ch0 controls both ch0 and ch1) */ usb_x1_clk = of_find_node_by_name(NULL, "usb_x1"); extal_clk = of_find_node_by_name(NULL, "extal"); of_property_read_u32(usb_x1_clk, "clock-frequency", &freq_usb); of_property_read_u32(extal_clk, "clock-frequency", &freq_extal); of_node_put(usb_x1_clk); of_node_put(extal_clk); if (freq_usb == 0) { if (freq_extal == 12000000) { /* Select 12MHz XTAL */ usbhs_bset(priv, SYSCFG, UCKSEL, UCKSEL); } else { dev_err(usbhs_priv_to_dev(priv), "A 48MHz USB clock or 12MHz main clock is required.\n"); return -EIO; } } /* Enable USB PLL (NOTE: ch0 controls both ch0 and ch1) */ usbhs_bset(priv, SYSCFG, UPLLE, UPLLE); usleep_range(1000, 2000); usbhs_bset(priv, SUSPMODE, SUSPM, SUSPM); return 0; } const struct renesas_usbhs_platform_info usbhs_rza1_plat_info = { .platform_callback = { .hardware_init = usbhs_rza1_hardware_init, .get_id = usbhs_get_id_as_gadget, }, .driver_param = { .has_new_pipe_configs = 1, }, };
linux-master
drivers/usb/renesas_usbhs/rza.c
// SPDX-License-Identifier: GPL-2.0 /* * The USB Monitor, inspired by Dave Harding's USBMon. * * This is a text format reader. */ #include <linux/kernel.h> #include <linux/list.h> #include <linux/usb.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/time.h> #include <linux/ktime.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/debugfs.h> #include <linux/scatterlist.h> #include <linux/uaccess.h> #include "usb_mon.h" /* * No, we do not want arbitrarily long data strings. * Use the binary interface if you want to capture bulk data! */ #define DATA_MAX 32 /* * Defined by USB 2.0 clause 9.3, table 9.2. */ #define SETUP_MAX 8 /* * This limit exists to prevent OOMs when the user process stops reading. * If usbmon were available to unprivileged processes, it might be open * to a local DoS. But we have to keep to root in order to prevent * password sniffing from HID devices. */ #define EVENT_MAX (4*PAGE_SIZE / sizeof(struct mon_event_text)) /* * Potentially unlimited number; we limit it for similar allocations. * The usbfs limits this to 128, but we're not quite as generous. */ #define ISODESC_MAX 5 #define PRINTF_DFL 250 /* with 5 ISOs segs */ struct mon_iso_desc { int status; unsigned int offset; unsigned int length; /* Unsigned here, signed in URB. Historic. */ }; struct mon_event_text { struct list_head e_link; int type; /* submit, complete, etc. */ unsigned long id; /* From pointer, most of the time */ unsigned int tstamp; int busnum; char devnum; char epnum; char is_in; char xfertype; int length; /* Depends on type: xfer length or act length */ int status; int interval; int start_frame; int error_count; char setup_flag; char data_flag; int numdesc; /* Full number */ struct mon_iso_desc isodesc[ISODESC_MAX]; unsigned char setup[SETUP_MAX]; unsigned char data[DATA_MAX]; }; #define SLAB_NAME_SZ 30 struct mon_reader_text { struct kmem_cache *e_slab; int nevents; struct list_head e_list; struct mon_reader r; /* In C, parent class can be placed anywhere */ wait_queue_head_t wait; int printf_size; size_t printf_offset; size_t printf_togo; char *printf_buf; struct mutex printf_lock; char slab_name[SLAB_NAME_SZ]; }; static struct dentry *mon_dir; /* Usually /sys/kernel/debug/usbmon */ static void mon_text_ctor(void *); struct mon_text_ptr { int cnt, limit; char *pbuf; }; static struct mon_event_text * mon_text_read_wait(struct mon_reader_text *rp, struct file *file); static void mon_text_read_head_t(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_head_u(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_statset(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_intstat(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_isostat(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_isodesc(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); static void mon_text_read_data(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep); /* * mon_text_submit * mon_text_complete * * May be called from an interrupt. * * This is called with the whole mon_bus locked, so no additional lock. */ static inline char mon_text_get_setup(struct mon_event_text *ep, struct urb *urb, char ev_type, struct mon_bus *mbus) { if (ep->xfertype != USB_ENDPOINT_XFER_CONTROL || ev_type != 'S') return '-'; if (urb->setup_packet == NULL) return 'Z'; /* '0' would be not as pretty. */ memcpy(ep->setup, urb->setup_packet, SETUP_MAX); return 0; } static inline char mon_text_get_data(struct mon_event_text *ep, struct urb *urb, int len, char ev_type, struct mon_bus *mbus) { void *src; if (len <= 0) return 'L'; if (len >= DATA_MAX) len = DATA_MAX; if (ep->is_in) { if (ev_type != 'C') return '<'; } else { if (ev_type != 'S') return '>'; } if (urb->num_sgs == 0) { src = urb->transfer_buffer; if (src == NULL) return 'Z'; /* '0' would be not as pretty. */ } else { struct scatterlist *sg = urb->sg; if (PageHighMem(sg_page(sg))) return 'D'; /* For the text interface we copy only the first sg buffer */ len = min_t(int, sg->length, len); src = sg_virt(sg); } memcpy(ep->data, src, len); return 0; } static inline unsigned int mon_get_timestamp(void) { struct timespec64 now; unsigned int stamp; ktime_get_ts64(&now); stamp = now.tv_sec & 0xFFF; /* 2^32 = 4294967296. Limit to 4096s. */ stamp = stamp * USEC_PER_SEC + now.tv_nsec / NSEC_PER_USEC; return stamp; } static void mon_text_event(struct mon_reader_text *rp, struct urb *urb, char ev_type, int status) { struct mon_event_text *ep; unsigned int stamp; struct usb_iso_packet_descriptor *fp; struct mon_iso_desc *dp; int i, ndesc; stamp = mon_get_timestamp(); if (rp->nevents >= EVENT_MAX || (ep = kmem_cache_alloc(rp->e_slab, GFP_ATOMIC)) == NULL) { rp->r.m_bus->cnt_text_lost++; return; } ep->type = ev_type; ep->id = (unsigned long) urb; ep->busnum = urb->dev->bus->busnum; ep->devnum = urb->dev->devnum; ep->epnum = usb_endpoint_num(&urb->ep->desc); ep->xfertype = usb_endpoint_type(&urb->ep->desc); ep->is_in = usb_urb_dir_in(urb); ep->tstamp = stamp; ep->length = (ev_type == 'S') ? urb->transfer_buffer_length : urb->actual_length; /* Collecting status makes debugging sense for submits, too */ ep->status = status; if (ep->xfertype == USB_ENDPOINT_XFER_INT) { ep->interval = urb->interval; } else if (ep->xfertype == USB_ENDPOINT_XFER_ISOC) { ep->interval = urb->interval; ep->start_frame = urb->start_frame; ep->error_count = urb->error_count; } ep->numdesc = urb->number_of_packets; if (ep->xfertype == USB_ENDPOINT_XFER_ISOC && urb->number_of_packets > 0) { if ((ndesc = urb->number_of_packets) > ISODESC_MAX) ndesc = ISODESC_MAX; fp = urb->iso_frame_desc; dp = ep->isodesc; for (i = 0; i < ndesc; i++) { dp->status = fp->status; dp->offset = fp->offset; dp->length = (ev_type == 'S') ? fp->length : fp->actual_length; fp++; dp++; } /* Wasteful, but simple to understand: ISO 'C' is sparse. */ if (ev_type == 'C') ep->length = urb->transfer_buffer_length; } ep->setup_flag = mon_text_get_setup(ep, urb, ev_type, rp->r.m_bus); ep->data_flag = mon_text_get_data(ep, urb, ep->length, ev_type, rp->r.m_bus); rp->nevents++; list_add_tail(&ep->e_link, &rp->e_list); wake_up(&rp->wait); } static void mon_text_submit(void *data, struct urb *urb) { struct mon_reader_text *rp = data; mon_text_event(rp, urb, 'S', -EINPROGRESS); } static void mon_text_complete(void *data, struct urb *urb, int status) { struct mon_reader_text *rp = data; mon_text_event(rp, urb, 'C', status); } static void mon_text_error(void *data, struct urb *urb, int error) { struct mon_reader_text *rp = data; struct mon_event_text *ep; if (rp->nevents >= EVENT_MAX || (ep = kmem_cache_alloc(rp->e_slab, GFP_ATOMIC)) == NULL) { rp->r.m_bus->cnt_text_lost++; return; } ep->type = 'E'; ep->id = (unsigned long) urb; ep->busnum = urb->dev->bus->busnum; ep->devnum = urb->dev->devnum; ep->epnum = usb_endpoint_num(&urb->ep->desc); ep->xfertype = usb_endpoint_type(&urb->ep->desc); ep->is_in = usb_urb_dir_in(urb); ep->tstamp = mon_get_timestamp(); ep->length = 0; ep->status = error; ep->setup_flag = '-'; ep->data_flag = 'E'; rp->nevents++; list_add_tail(&ep->e_link, &rp->e_list); wake_up(&rp->wait); } /* * Fetch next event from the circular buffer. */ static struct mon_event_text *mon_text_fetch(struct mon_reader_text *rp, struct mon_bus *mbus) { struct list_head *p; unsigned long flags; spin_lock_irqsave(&mbus->lock, flags); if (list_empty(&rp->e_list)) { spin_unlock_irqrestore(&mbus->lock, flags); return NULL; } p = rp->e_list.next; list_del(p); --rp->nevents; spin_unlock_irqrestore(&mbus->lock, flags); return list_entry(p, struct mon_event_text, e_link); } /* */ static int mon_text_open(struct inode *inode, struct file *file) { struct mon_bus *mbus; struct mon_reader_text *rp; int rc; mutex_lock(&mon_lock); mbus = inode->i_private; rp = kzalloc(sizeof(struct mon_reader_text), GFP_KERNEL); if (rp == NULL) { rc = -ENOMEM; goto err_alloc; } INIT_LIST_HEAD(&rp->e_list); init_waitqueue_head(&rp->wait); mutex_init(&rp->printf_lock); rp->printf_size = PRINTF_DFL; rp->printf_buf = kmalloc(rp->printf_size, GFP_KERNEL); if (rp->printf_buf == NULL) { rc = -ENOMEM; goto err_alloc_pr; } rp->r.m_bus = mbus; rp->r.r_data = rp; rp->r.rnf_submit = mon_text_submit; rp->r.rnf_error = mon_text_error; rp->r.rnf_complete = mon_text_complete; snprintf(rp->slab_name, SLAB_NAME_SZ, "mon_text_%p", rp); rp->e_slab = kmem_cache_create(rp->slab_name, sizeof(struct mon_event_text), sizeof(long), 0, mon_text_ctor); if (rp->e_slab == NULL) { rc = -ENOMEM; goto err_slab; } mon_reader_add(mbus, &rp->r); file->private_data = rp; mutex_unlock(&mon_lock); return 0; // err_busy: // kmem_cache_destroy(rp->e_slab); err_slab: kfree(rp->printf_buf); err_alloc_pr: kfree(rp); err_alloc: mutex_unlock(&mon_lock); return rc; } static ssize_t mon_text_copy_to_user(struct mon_reader_text *rp, char __user * const buf, const size_t nbytes) { const size_t togo = min(nbytes, rp->printf_togo); if (copy_to_user(buf, &rp->printf_buf[rp->printf_offset], togo)) return -EFAULT; rp->printf_togo -= togo; rp->printf_offset += togo; return togo; } /* ppos is not advanced since the llseek operation is not permitted. */ static ssize_t mon_text_read_t(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct mon_reader_text *rp = file->private_data; struct mon_event_text *ep; struct mon_text_ptr ptr; ssize_t ret; mutex_lock(&rp->printf_lock); if (rp->printf_togo == 0) { ep = mon_text_read_wait(rp, file); if (IS_ERR(ep)) { mutex_unlock(&rp->printf_lock); return PTR_ERR(ep); } ptr.cnt = 0; ptr.pbuf = rp->printf_buf; ptr.limit = rp->printf_size; mon_text_read_head_t(rp, &ptr, ep); mon_text_read_statset(rp, &ptr, ep); ptr.cnt += scnprintf(ptr.pbuf + ptr.cnt, ptr.limit - ptr.cnt, " %d", ep->length); mon_text_read_data(rp, &ptr, ep); rp->printf_togo = ptr.cnt; rp->printf_offset = 0; kmem_cache_free(rp->e_slab, ep); } ret = mon_text_copy_to_user(rp, buf, nbytes); mutex_unlock(&rp->printf_lock); return ret; } /* ppos is not advanced since the llseek operation is not permitted. */ static ssize_t mon_text_read_u(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct mon_reader_text *rp = file->private_data; struct mon_event_text *ep; struct mon_text_ptr ptr; ssize_t ret; mutex_lock(&rp->printf_lock); if (rp->printf_togo == 0) { ep = mon_text_read_wait(rp, file); if (IS_ERR(ep)) { mutex_unlock(&rp->printf_lock); return PTR_ERR(ep); } ptr.cnt = 0; ptr.pbuf = rp->printf_buf; ptr.limit = rp->printf_size; mon_text_read_head_u(rp, &ptr, ep); if (ep->type == 'E') { mon_text_read_statset(rp, &ptr, ep); } else if (ep->xfertype == USB_ENDPOINT_XFER_ISOC) { mon_text_read_isostat(rp, &ptr, ep); mon_text_read_isodesc(rp, &ptr, ep); } else if (ep->xfertype == USB_ENDPOINT_XFER_INT) { mon_text_read_intstat(rp, &ptr, ep); } else { mon_text_read_statset(rp, &ptr, ep); } ptr.cnt += scnprintf(ptr.pbuf + ptr.cnt, ptr.limit - ptr.cnt, " %d", ep->length); mon_text_read_data(rp, &ptr, ep); rp->printf_togo = ptr.cnt; rp->printf_offset = 0; kmem_cache_free(rp->e_slab, ep); } ret = mon_text_copy_to_user(rp, buf, nbytes); mutex_unlock(&rp->printf_lock); return ret; } static struct mon_event_text *mon_text_read_wait(struct mon_reader_text *rp, struct file *file) { struct mon_bus *mbus = rp->r.m_bus; DECLARE_WAITQUEUE(waita, current); struct mon_event_text *ep; add_wait_queue(&rp->wait, &waita); set_current_state(TASK_INTERRUPTIBLE); while ((ep = mon_text_fetch(rp, mbus)) == NULL) { if (file->f_flags & O_NONBLOCK) { set_current_state(TASK_RUNNING); remove_wait_queue(&rp->wait, &waita); return ERR_PTR(-EWOULDBLOCK); } /* * We do not count nwaiters, because ->release is supposed * to be called when all openers are gone only. */ schedule(); if (signal_pending(current)) { remove_wait_queue(&rp->wait, &waita); return ERR_PTR(-EINTR); } set_current_state(TASK_INTERRUPTIBLE); } set_current_state(TASK_RUNNING); remove_wait_queue(&rp->wait, &waita); return ep; } static void mon_text_read_head_t(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { char udir, utype; udir = (ep->is_in ? 'i' : 'o'); switch (ep->xfertype) { case USB_ENDPOINT_XFER_ISOC: utype = 'Z'; break; case USB_ENDPOINT_XFER_INT: utype = 'I'; break; case USB_ENDPOINT_XFER_CONTROL: utype = 'C'; break; default: /* PIPE_BULK */ utype = 'B'; } p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, "%lx %u %c %c%c:%03u:%02u", ep->id, ep->tstamp, ep->type, utype, udir, ep->devnum, ep->epnum); } static void mon_text_read_head_u(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { char udir, utype; udir = (ep->is_in ? 'i' : 'o'); switch (ep->xfertype) { case USB_ENDPOINT_XFER_ISOC: utype = 'Z'; break; case USB_ENDPOINT_XFER_INT: utype = 'I'; break; case USB_ENDPOINT_XFER_CONTROL: utype = 'C'; break; default: /* PIPE_BULK */ utype = 'B'; } p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, "%lx %u %c %c%c:%d:%03u:%u", ep->id, ep->tstamp, ep->type, utype, udir, ep->busnum, ep->devnum, ep->epnum); } static void mon_text_read_statset(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { if (ep->setup_flag == 0) { /* Setup packet is present and captured */ p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " s %02x %02x %04x %04x %04x", ep->setup[0], ep->setup[1], (ep->setup[3] << 8) | ep->setup[2], (ep->setup[5] << 8) | ep->setup[4], (ep->setup[7] << 8) | ep->setup[6]); } else if (ep->setup_flag != '-') { /* Unable to capture setup packet */ p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %c __ __ ____ ____ ____", ep->setup_flag); } else { /* No setup for this kind of URB */ p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d", ep->status); } } static void mon_text_read_intstat(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d:%d", ep->status, ep->interval); } static void mon_text_read_isostat(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { if (ep->type == 'S') { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d:%d:%d", ep->status, ep->interval, ep->start_frame); } else { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d:%d:%d:%d", ep->status, ep->interval, ep->start_frame, ep->error_count); } } static void mon_text_read_isodesc(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { int ndesc; /* Display this many */ int i; const struct mon_iso_desc *dp; p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d", ep->numdesc); ndesc = ep->numdesc; if (ndesc > ISODESC_MAX) ndesc = ISODESC_MAX; if (ndesc < 0) ndesc = 0; dp = ep->isodesc; for (i = 0; i < ndesc; i++) { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %d:%u:%u", dp->status, dp->offset, dp->length); dp++; } } static void mon_text_read_data(struct mon_reader_text *rp, struct mon_text_ptr *p, const struct mon_event_text *ep) { int data_len, i; if ((data_len = ep->length) > 0) { if (ep->data_flag == 0) { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " ="); if (data_len >= DATA_MAX) data_len = DATA_MAX; for (i = 0; i < data_len; i++) { if (i % 4 == 0) { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " "); } p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, "%02x", ep->data[i]); } p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, "\n"); } else { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, " %c\n", ep->data_flag); } } else { p->cnt += scnprintf(p->pbuf + p->cnt, p->limit - p->cnt, "\n"); } } static int mon_text_release(struct inode *inode, struct file *file) { struct mon_reader_text *rp = file->private_data; struct mon_bus *mbus; /* unsigned long flags; */ struct list_head *p; struct mon_event_text *ep; mutex_lock(&mon_lock); mbus = inode->i_private; if (mbus->nreaders <= 0) { printk(KERN_ERR TAG ": consistency error on close\n"); mutex_unlock(&mon_lock); return 0; } mon_reader_del(mbus, &rp->r); /* * In theory, e_list is protected by mbus->lock. However, * after mon_reader_del has finished, the following is the case: * - we are not on reader list anymore, so new events won't be added; * - whole mbus may be dropped if it was orphaned. * So, we better not touch mbus. */ /* spin_lock_irqsave(&mbus->lock, flags); */ while (!list_empty(&rp->e_list)) { p = rp->e_list.next; ep = list_entry(p, struct mon_event_text, e_link); list_del(p); --rp->nevents; kmem_cache_free(rp->e_slab, ep); } /* spin_unlock_irqrestore(&mbus->lock, flags); */ kmem_cache_destroy(rp->e_slab); kfree(rp->printf_buf); kfree(rp); mutex_unlock(&mon_lock); return 0; } static const struct file_operations mon_fops_text_t = { .owner = THIS_MODULE, .open = mon_text_open, .llseek = no_llseek, .read = mon_text_read_t, .release = mon_text_release, }; static const struct file_operations mon_fops_text_u = { .owner = THIS_MODULE, .open = mon_text_open, .llseek = no_llseek, .read = mon_text_read_u, .release = mon_text_release, }; int mon_text_add(struct mon_bus *mbus, const struct usb_bus *ubus) { enum { NAMESZ = 10 }; char name[NAMESZ]; int busnum = ubus? ubus->busnum: 0; int rc; if (mon_dir == NULL) return 0; if (ubus != NULL) { rc = snprintf(name, NAMESZ, "%dt", busnum); if (rc <= 0 || rc >= NAMESZ) goto err_print_t; mbus->dent_t = debugfs_create_file(name, 0600, mon_dir, mbus, &mon_fops_text_t); } rc = snprintf(name, NAMESZ, "%du", busnum); if (rc <= 0 || rc >= NAMESZ) goto err_print_u; mbus->dent_u = debugfs_create_file(name, 0600, mon_dir, mbus, &mon_fops_text_u); rc = snprintf(name, NAMESZ, "%ds", busnum); if (rc <= 0 || rc >= NAMESZ) goto err_print_s; mbus->dent_s = debugfs_create_file(name, 0600, mon_dir, mbus, &mon_fops_stat); return 1; err_print_s: debugfs_remove(mbus->dent_u); mbus->dent_u = NULL; err_print_u: if (ubus != NULL) { debugfs_remove(mbus->dent_t); mbus->dent_t = NULL; } err_print_t: return 0; } void mon_text_del(struct mon_bus *mbus) { debugfs_remove(mbus->dent_u); debugfs_remove(mbus->dent_t); debugfs_remove(mbus->dent_s); } /* * Slab interface: constructor. */ static void mon_text_ctor(void *mem) { /* * Nothing to initialize. No, really! * So, we fill it with garbage to emulate a reused object. */ memset(mem, 0xe5, sizeof(struct mon_event_text)); } int __init mon_text_init(void) { mon_dir = debugfs_create_dir("usbmon", usb_debug_root); return 0; } void mon_text_exit(void) { debugfs_remove(mon_dir); }
linux-master
drivers/usb/mon/mon_text.c
// SPDX-License-Identifier: GPL-2.0 /* * The USB Monitor, inspired by Dave Harding's USBMon. * * mon_main.c: Main file, module initiation and exit, registrations, etc. * * Copyright (C) 2005 Pete Zaitcev ([email protected]) */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/slab.h> #include <linux/notifier.h> #include <linux/mutex.h> #include "usb_mon.h" static void mon_stop(struct mon_bus *mbus); static void mon_dissolve(struct mon_bus *mbus, struct usb_bus *ubus); static void mon_bus_drop(struct kref *r); static void mon_bus_init(struct usb_bus *ubus); DEFINE_MUTEX(mon_lock); struct mon_bus mon_bus0; /* Pseudo bus meaning "all buses" */ static LIST_HEAD(mon_buses); /* All buses we know: struct mon_bus */ /* * Link a reader into the bus. * * This must be called with mon_lock taken because of mbus->ref. */ void mon_reader_add(struct mon_bus *mbus, struct mon_reader *r) { unsigned long flags; struct list_head *p; spin_lock_irqsave(&mbus->lock, flags); if (mbus->nreaders == 0) { if (mbus == &mon_bus0) { list_for_each (p, &mon_buses) { struct mon_bus *m1; m1 = list_entry(p, struct mon_bus, bus_link); m1->u_bus->monitored = 1; } } else { mbus->u_bus->monitored = 1; } } mbus->nreaders++; list_add_tail(&r->r_link, &mbus->r_list); spin_unlock_irqrestore(&mbus->lock, flags); kref_get(&mbus->ref); } /* * Unlink reader from the bus. * * This is called with mon_lock taken, so we can decrement mbus->ref. */ void mon_reader_del(struct mon_bus *mbus, struct mon_reader *r) { unsigned long flags; spin_lock_irqsave(&mbus->lock, flags); list_del(&r->r_link); --mbus->nreaders; if (mbus->nreaders == 0) mon_stop(mbus); spin_unlock_irqrestore(&mbus->lock, flags); kref_put(&mbus->ref, mon_bus_drop); } /* */ static void mon_bus_submit(struct mon_bus *mbus, struct urb *urb) { unsigned long flags; struct list_head *pos; struct mon_reader *r; spin_lock_irqsave(&mbus->lock, flags); mbus->cnt_events++; list_for_each (pos, &mbus->r_list) { r = list_entry(pos, struct mon_reader, r_link); r->rnf_submit(r->r_data, urb); } spin_unlock_irqrestore(&mbus->lock, flags); } static void mon_submit(struct usb_bus *ubus, struct urb *urb) { struct mon_bus *mbus; mbus = ubus->mon_bus; if (mbus != NULL) mon_bus_submit(mbus, urb); mon_bus_submit(&mon_bus0, urb); } /* */ static void mon_bus_submit_error(struct mon_bus *mbus, struct urb *urb, int error) { unsigned long flags; struct list_head *pos; struct mon_reader *r; spin_lock_irqsave(&mbus->lock, flags); mbus->cnt_events++; list_for_each (pos, &mbus->r_list) { r = list_entry(pos, struct mon_reader, r_link); r->rnf_error(r->r_data, urb, error); } spin_unlock_irqrestore(&mbus->lock, flags); } static void mon_submit_error(struct usb_bus *ubus, struct urb *urb, int error) { struct mon_bus *mbus; mbus = ubus->mon_bus; if (mbus != NULL) mon_bus_submit_error(mbus, urb, error); mon_bus_submit_error(&mon_bus0, urb, error); } /* */ static void mon_bus_complete(struct mon_bus *mbus, struct urb *urb, int status) { unsigned long flags; struct list_head *pos; struct mon_reader *r; spin_lock_irqsave(&mbus->lock, flags); mbus->cnt_events++; list_for_each (pos, &mbus->r_list) { r = list_entry(pos, struct mon_reader, r_link); r->rnf_complete(r->r_data, urb, status); } spin_unlock_irqrestore(&mbus->lock, flags); } static void mon_complete(struct usb_bus *ubus, struct urb *urb, int status) { struct mon_bus *mbus; mbus = ubus->mon_bus; if (mbus != NULL) mon_bus_complete(mbus, urb, status); mon_bus_complete(&mon_bus0, urb, status); } /* int (*unlink_urb) (struct urb *urb, int status); */ /* * Stop monitoring. */ static void mon_stop(struct mon_bus *mbus) { struct usb_bus *ubus; struct list_head *p; if (mbus == &mon_bus0) { list_for_each (p, &mon_buses) { mbus = list_entry(p, struct mon_bus, bus_link); /* * We do not change nreaders here, so rely on mon_lock. */ if (mbus->nreaders == 0 && (ubus = mbus->u_bus) != NULL) ubus->monitored = 0; } } else { /* * A stop can be called for a dissolved mon_bus in case of * a reader staying across an rmmod foo_hcd, so test ->u_bus. */ if (mon_bus0.nreaders == 0 && (ubus = mbus->u_bus) != NULL) { ubus->monitored = 0; mb(); } } } /* * Add a USB bus (usually by a modprobe foo-hcd) * * This does not return an error code because the core cannot care less * if monitoring is not established. */ static void mon_bus_add(struct usb_bus *ubus) { mon_bus_init(ubus); mutex_lock(&mon_lock); if (mon_bus0.nreaders != 0) ubus->monitored = 1; mutex_unlock(&mon_lock); } /* * Remove a USB bus (either from rmmod foo-hcd or from a hot-remove event). */ static void mon_bus_remove(struct usb_bus *ubus) { struct mon_bus *mbus = ubus->mon_bus; mutex_lock(&mon_lock); list_del(&mbus->bus_link); if (mbus->text_inited) mon_text_del(mbus); if (mbus->bin_inited) mon_bin_del(mbus); mon_dissolve(mbus, ubus); kref_put(&mbus->ref, mon_bus_drop); mutex_unlock(&mon_lock); } static int mon_notify(struct notifier_block *self, unsigned long action, void *dev) { switch (action) { case USB_BUS_ADD: mon_bus_add(dev); break; case USB_BUS_REMOVE: mon_bus_remove(dev); } return NOTIFY_OK; } static struct notifier_block mon_nb = { .notifier_call = mon_notify, }; /* * Ops */ static const struct usb_mon_operations mon_ops_0 = { .urb_submit = mon_submit, .urb_submit_error = mon_submit_error, .urb_complete = mon_complete, }; /* * Tear usb_bus and mon_bus apart. */ static void mon_dissolve(struct mon_bus *mbus, struct usb_bus *ubus) { if (ubus->monitored) { ubus->monitored = 0; mb(); } ubus->mon_bus = NULL; mbus->u_bus = NULL; mb(); /* We want synchronize_irq() here, but that needs an argument. */ } /* */ static void mon_bus_drop(struct kref *r) { struct mon_bus *mbus = container_of(r, struct mon_bus, ref); kfree(mbus); } /* * Initialize a bus for us: * - allocate mon_bus * - refcount USB bus struct * - link */ static void mon_bus_init(struct usb_bus *ubus) { struct mon_bus *mbus; mbus = kzalloc(sizeof(struct mon_bus), GFP_KERNEL); if (mbus == NULL) goto err_alloc; kref_init(&mbus->ref); spin_lock_init(&mbus->lock); INIT_LIST_HEAD(&mbus->r_list); /* * We don't need to take a reference to ubus, because we receive * a notification if the bus is about to be removed. */ mbus->u_bus = ubus; ubus->mon_bus = mbus; mbus->text_inited = mon_text_add(mbus, ubus); mbus->bin_inited = mon_bin_add(mbus, ubus); mutex_lock(&mon_lock); list_add_tail(&mbus->bus_link, &mon_buses); mutex_unlock(&mon_lock); return; err_alloc: return; } static void mon_bus0_init(void) { struct mon_bus *mbus = &mon_bus0; kref_init(&mbus->ref); spin_lock_init(&mbus->lock); INIT_LIST_HEAD(&mbus->r_list); mbus->text_inited = mon_text_add(mbus, NULL); mbus->bin_inited = mon_bin_add(mbus, NULL); } /* * Search a USB bus by number. Notice that USB bus numbers start from one, * which we may later use to identify "all" with zero. * * This function must be called with mon_lock held. * * This is obviously inefficient and may be revised in the future. */ struct mon_bus *mon_bus_lookup(unsigned int num) { struct list_head *p; struct mon_bus *mbus; if (num == 0) { return &mon_bus0; } list_for_each (p, &mon_buses) { mbus = list_entry(p, struct mon_bus, bus_link); if (mbus->u_bus->busnum == num) { return mbus; } } return NULL; } static int __init mon_init(void) { struct usb_bus *ubus; int rc, id; if ((rc = mon_text_init()) != 0) goto err_text; if ((rc = mon_bin_init()) != 0) goto err_bin; mon_bus0_init(); if (usb_mon_register(&mon_ops_0) != 0) { printk(KERN_NOTICE TAG ": unable to register with the core\n"); rc = -ENODEV; goto err_reg; } // MOD_INC_USE_COUNT(which_module?); mutex_lock(&usb_bus_idr_lock); idr_for_each_entry(&usb_bus_idr, ubus, id) mon_bus_init(ubus); usb_register_notify(&mon_nb); mutex_unlock(&usb_bus_idr_lock); return 0; err_reg: mon_bin_exit(); err_bin: mon_text_exit(); err_text: return rc; } static void __exit mon_exit(void) { struct mon_bus *mbus; struct list_head *p; usb_unregister_notify(&mon_nb); usb_mon_deregister(); mutex_lock(&mon_lock); while (!list_empty(&mon_buses)) { p = mon_buses.next; mbus = list_entry(p, struct mon_bus, bus_link); list_del(p); if (mbus->text_inited) mon_text_del(mbus); if (mbus->bin_inited) mon_bin_del(mbus); /* * This never happens, because the open/close paths in * file level maintain module use counters and so rmmod fails * before reaching here. However, better be safe... */ if (mbus->nreaders) { printk(KERN_ERR TAG ": Outstanding opens (%d) on usb%d, leaking...\n", mbus->nreaders, mbus->u_bus->busnum); kref_get(&mbus->ref); /* Force leak */ } mon_dissolve(mbus, mbus->u_bus); kref_put(&mbus->ref, mon_bus_drop); } mbus = &mon_bus0; if (mbus->text_inited) mon_text_del(mbus); if (mbus->bin_inited) mon_bin_del(mbus); mutex_unlock(&mon_lock); mon_text_exit(); mon_bin_exit(); } module_init(mon_init); module_exit(mon_exit); MODULE_LICENSE("GPL");
linux-master
drivers/usb/mon/mon_main.c
// SPDX-License-Identifier: GPL-2.0 /* * The USB Monitor, inspired by Dave Harding's USBMon. * * This is the 's' or 'stat' reader which debugs usbmon itself. * Note that this code blows through locks, so make sure that * /dbg/usbmon/0s is well protected from non-root users. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/usb.h> #include <linux/fs.h> #include <linux/uaccess.h> #include "usb_mon.h" #define STAT_BUF_SIZE 80 struct snap { int slen; char str[STAT_BUF_SIZE]; }; static int mon_stat_open(struct inode *inode, struct file *file) { struct mon_bus *mbus; struct snap *sp; sp = kmalloc(sizeof(struct snap), GFP_KERNEL); if (sp == NULL) return -ENOMEM; mbus = inode->i_private; sp->slen = snprintf(sp->str, STAT_BUF_SIZE, "nreaders %d events %u text_lost %u\n", mbus->nreaders, mbus->cnt_events, mbus->cnt_text_lost); file->private_data = sp; return 0; } static ssize_t mon_stat_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct snap *sp = file->private_data; return simple_read_from_buffer(buf, nbytes, ppos, sp->str, sp->slen); } static int mon_stat_release(struct inode *inode, struct file *file) { struct snap *sp = file->private_data; file->private_data = NULL; kfree(sp); return 0; } const struct file_operations mon_fops_stat = { .owner = THIS_MODULE, .open = mon_stat_open, .llseek = no_llseek, .read = mon_stat_read, /* .write = mon_stat_write, */ /* .poll = mon_stat_poll, */ /* .unlocked_ioctl = mon_stat_ioctl, */ .release = mon_stat_release, };
linux-master
drivers/usb/mon/mon_stat.c
// SPDX-License-Identifier: GPL-2.0 /* * The USB Monitor, inspired by Dave Harding's USBMon. * * This is a binary format reader. * * Copyright (C) 2006 Paolo Abeni ([email protected]) * Copyright (C) 2006,2007 Pete Zaitcev ([email protected]) */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/export.h> #include <linux/usb.h> #include <linux/poll.h> #include <linux/compat.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/time64.h> #include <linux/uaccess.h> #include "usb_mon.h" /* * Defined by USB 2.0 clause 9.3, table 9.2. */ #define SETUP_LEN 8 /* ioctl macros */ #define MON_IOC_MAGIC 0x92 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) /* #9 was MON_IOCT_SETAPI */ #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) #ifdef CONFIG_COMPAT #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) #endif /* * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). * But it's all right. Just use a simple way to make sure the chunk is never * smaller than a page. * * N.B. An application does not know our chunk size. * * Woops, get_zeroed_page() returns a single page. I guess we're stuck with * page-sized chunks for the time being. */ #define CHUNK_SIZE PAGE_SIZE #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) /* * The magic limit was calculated so that it allows the monitoring * application to pick data once in two ticks. This way, another application, * which presumably drives the bus, gets to hog CPU, yet we collect our data. * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an * enormous overhead built into the bus protocol, so we need about 1000 KB. * * This is still too much for most cases, where we just snoop a few * descriptor fetches for enumeration. So, the default is a "reasonable" * amount for systems with HZ=250 and incomplete bus saturation. * * XXX What about multi-megabyte URBs which take minutes to transfer? */ #define BUFF_MAX CHUNK_ALIGN(1200*1024) #define BUFF_DFL CHUNK_ALIGN(300*1024) #define BUFF_MIN CHUNK_ALIGN(8*1024) /* * The per-event API header (2 per URB). * * This structure is seen in userland as defined by the documentation. */ struct mon_bin_hdr { u64 id; /* URB ID - from submission to callback */ unsigned char type; /* Same as in text API; extensible. */ unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ unsigned char epnum; /* Endpoint number and transfer direction */ unsigned char devnum; /* Device address */ unsigned short busnum; /* Bus number */ char flag_setup; char flag_data; s64 ts_sec; /* ktime_get_real_ts64 */ s32 ts_usec; /* ktime_get_real_ts64 */ int status; unsigned int len_urb; /* Length of data (submitted or actual) */ unsigned int len_cap; /* Delivered length */ union { unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ struct iso_rec { int error_count; int numdesc; } iso; } s; int interval; int start_frame; unsigned int xfer_flags; unsigned int ndesc; /* Actual number of ISO descriptors */ }; /* * ISO vector, packed into the head of data stream. * This has to take 16 bytes to make sure that the end of buffer * wrap is not happening in the middle of a descriptor. */ struct mon_bin_isodesc { int iso_status; unsigned int iso_off; unsigned int iso_len; u32 _pad; }; /* per file statistic */ struct mon_bin_stats { u32 queued; u32 dropped; }; struct mon_bin_get { struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ void __user *data; size_t alloc; /* Length of data (can be zero) */ }; struct mon_bin_mfetch { u32 __user *offvec; /* Vector of events fetched */ u32 nfetch; /* Number of events to fetch (out: fetched) */ u32 nflush; /* Number of events to flush */ }; #ifdef CONFIG_COMPAT struct mon_bin_get32 { u32 hdr32; u32 data32; u32 alloc32; }; struct mon_bin_mfetch32 { u32 offvec32; u32 nfetch32; u32 nflush32; }; #endif /* Having these two values same prevents wrapping of the mon_bin_hdr */ #define PKT_ALIGN 64 #define PKT_SIZE 64 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ #define PKT_SZ_API1 64 /* API 1 size: extra fields */ #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ /* max number of USB bus supported */ #define MON_BIN_MAX_MINOR 128 /* * The buffer: map of used pages. */ struct mon_pgmap { struct page *pg; unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ }; /* * This gets associated with an open file struct. */ struct mon_reader_bin { /* The buffer: one per open. */ spinlock_t b_lock; /* Protect b_cnt, b_in */ unsigned int b_size; /* Current size of the buffer - bytes */ unsigned int b_cnt; /* Bytes used */ unsigned int b_in, b_out; /* Offsets into buffer - bytes */ unsigned int b_read; /* Amount of read data in curr. pkt. */ struct mon_pgmap *b_vec; /* The map array */ wait_queue_head_t b_wait; /* Wait for data here */ struct mutex fetch_lock; /* Protect b_read, b_out */ int mmap_active; /* A list of these is needed for "bus 0". Some time later. */ struct mon_reader r; /* Stats */ unsigned int cnt_lost; }; static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, unsigned int offset) { return (struct mon_bin_hdr *) (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); } #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) static unsigned char xfer_to_pipe[4] = { PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT }; static const struct class mon_bin_class = { .name = "usbmon", }; static dev_t mon_bin_dev0; static struct cdev mon_bin_cdev; static void mon_buff_area_fill(const struct mon_reader_bin *rp, unsigned int offset, unsigned int size); static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); static int mon_alloc_buff(struct mon_pgmap *map, int npages); static void mon_free_buff(struct mon_pgmap *map, int npages); /* * This is a "chunked memcpy". It does not manipulate any counters. */ static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, unsigned int off, const unsigned char *from, unsigned int length) { unsigned int step_len; unsigned char *buf; unsigned int in_page; while (length) { /* * Determine step_len. */ step_len = length; in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); if (in_page < step_len) step_len = in_page; /* * Copy data and advance pointers. */ buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; memcpy(buf, from, step_len); if ((off += step_len) >= this->b_size) off = 0; from += step_len; length -= step_len; } return off; } /* * This is a little worse than the above because it's "chunked copy_to_user". * The return value is an error code, not an offset. */ static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, char __user *to, int length) { unsigned int step_len; unsigned char *buf; unsigned int in_page; while (length) { /* * Determine step_len. */ step_len = length; in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); if (in_page < step_len) step_len = in_page; /* * Copy data and advance pointers. */ buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; if (copy_to_user(to, buf, step_len)) return -EINVAL; if ((off += step_len) >= this->b_size) off = 0; to += step_len; length -= step_len; } return 0; } /* * Allocate an (aligned) area in the buffer. * This is called under b_lock. * Returns ~0 on failure. */ static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, unsigned int size) { unsigned int offset; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if (rp->b_cnt + size > rp->b_size) return ~0; offset = rp->b_in; rp->b_cnt += size; if ((rp->b_in += size) >= rp->b_size) rp->b_in -= rp->b_size; return offset; } /* * This is the same thing as mon_buff_area_alloc, only it does not allow * buffers to wrap. This is needed by applications which pass references * into mmap-ed buffers up their stacks (libpcap can do that). * * Currently, we always have the header stuck with the data, although * it is not strictly speaking necessary. * * When a buffer would wrap, we place a filler packet to mark the space. */ static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, unsigned int size) { unsigned int offset; unsigned int fill_size; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if (rp->b_cnt + size > rp->b_size) return ~0; if (rp->b_in + size > rp->b_size) { /* * This would wrap. Find if we still have space after * skipping to the end of the buffer. If we do, place * a filler packet and allocate a new packet. */ fill_size = rp->b_size - rp->b_in; if (rp->b_cnt + size + fill_size > rp->b_size) return ~0; mon_buff_area_fill(rp, rp->b_in, fill_size); offset = 0; rp->b_in = size; rp->b_cnt += size + fill_size; } else if (rp->b_in + size == rp->b_size) { offset = rp->b_in; rp->b_in = 0; rp->b_cnt += size; } else { offset = rp->b_in; rp->b_in += size; rp->b_cnt += size; } return offset; } /* * Return a few (kilo-)bytes to the head of the buffer. * This is used if a data fetch fails. */ static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) { /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ rp->b_cnt -= size; if (rp->b_in < size) rp->b_in += rp->b_size; rp->b_in -= size; } /* * This has to be called under both b_lock and fetch_lock, because * it accesses both b_cnt and b_out. */ static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) { size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); rp->b_cnt -= size; if ((rp->b_out += size) >= rp->b_size) rp->b_out -= rp->b_size; } static void mon_buff_area_fill(const struct mon_reader_bin *rp, unsigned int offset, unsigned int size) { struct mon_bin_hdr *ep; ep = MON_OFF2HDR(rp, offset); memset(ep, 0, PKT_SIZE); ep->type = '@'; ep->len_cap = size - PKT_SIZE; } static inline char mon_bin_get_setup(unsigned char *setupb, const struct urb *urb, char ev_type) { if (urb->setup_packet == NULL) return 'Z'; memcpy(setupb, urb->setup_packet, SETUP_LEN); return 0; } static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, unsigned int offset, struct urb *urb, unsigned int length, char *flag) { int i; struct scatterlist *sg; unsigned int this_len; *flag = 0; if (urb->num_sgs == 0) { if (urb->transfer_buffer == NULL) { *flag = 'Z'; return length; } mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); length = 0; } else { /* If IOMMU coalescing occurred, we cannot trust sg_page */ if (urb->transfer_flags & URB_DMA_SG_COMBINED) { *flag = 'D'; return length; } /* Copy up to the first non-addressable segment */ for_each_sg(urb->sg, sg, urb->num_sgs, i) { if (length == 0 || PageHighMem(sg_page(sg))) break; this_len = min_t(unsigned int, sg->length, length); offset = mon_copy_to_buff(rp, offset, sg_virt(sg), this_len); length -= this_len; } if (i == 0) *flag = 'D'; } return length; } /* * This is the look-ahead pass in case of 'C Zi', when actual_length cannot * be used to determine the length of the whole contiguous buffer. */ static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, struct urb *urb, unsigned int ndesc) { struct usb_iso_packet_descriptor *fp; unsigned int length; length = 0; fp = urb->iso_frame_desc; while (ndesc-- != 0) { if (fp->actual_length != 0) { if (fp->offset + fp->actual_length > length) length = fp->offset + fp->actual_length; } fp++; } return length; } static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) { struct mon_bin_isodesc *dp; struct usb_iso_packet_descriptor *fp; fp = urb->iso_frame_desc; while (ndesc-- != 0) { dp = (struct mon_bin_isodesc *) (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); dp->iso_status = fp->status; dp->iso_off = fp->offset; dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; dp->_pad = 0; if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) offset = 0; fp++; } } static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, char ev_type, int status) { const struct usb_endpoint_descriptor *epd = &urb->ep->desc; struct timespec64 ts; unsigned long flags; unsigned int urb_length; unsigned int offset; unsigned int length; unsigned int delta; unsigned int ndesc, lendesc; unsigned char dir; struct mon_bin_hdr *ep; char data_tag = 0; ktime_get_real_ts64(&ts); spin_lock_irqsave(&rp->b_lock, flags); /* * Find the maximum allowable length, then allocate space. */ urb_length = (ev_type == 'S') ? urb->transfer_buffer_length : urb->actual_length; length = urb_length; if (usb_endpoint_xfer_isoc(epd)) { if (urb->number_of_packets < 0) { ndesc = 0; } else if (urb->number_of_packets >= ISODESC_MAX) { ndesc = ISODESC_MAX; } else { ndesc = urb->number_of_packets; } if (ev_type == 'C' && usb_urb_dir_in(urb)) length = mon_bin_collate_isodesc(rp, urb, ndesc); } else { ndesc = 0; } lendesc = ndesc*sizeof(struct mon_bin_isodesc); /* not an issue unless there's a subtle bug in a HCD somewhere */ if (length >= urb->transfer_buffer_length) length = urb->transfer_buffer_length; if (length >= rp->b_size/5) length = rp->b_size/5; if (usb_urb_dir_in(urb)) { if (ev_type == 'S') { length = 0; data_tag = '<'; } /* Cannot rely on endpoint number in case of control ep.0 */ dir = USB_DIR_IN; } else { if (ev_type == 'C') { length = 0; data_tag = '>'; } dir = 0; } if (rp->mmap_active) { offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE + lendesc); } else { offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); } if (offset == ~0) { rp->cnt_lost++; spin_unlock_irqrestore(&rp->b_lock, flags); return; } ep = MON_OFF2HDR(rp, offset); if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; /* * Fill the allocated area. */ memset(ep, 0, PKT_SIZE); ep->type = ev_type; ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; ep->epnum = dir | usb_endpoint_num(epd); ep->devnum = urb->dev->devnum; ep->busnum = urb->dev->bus->busnum; ep->id = (unsigned long) urb; ep->ts_sec = ts.tv_sec; ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; ep->status = status; ep->len_urb = urb_length; ep->len_cap = length + lendesc; ep->xfer_flags = urb->transfer_flags; if (usb_endpoint_xfer_int(epd)) { ep->interval = urb->interval; } else if (usb_endpoint_xfer_isoc(epd)) { ep->interval = urb->interval; ep->start_frame = urb->start_frame; ep->s.iso.error_count = urb->error_count; ep->s.iso.numdesc = urb->number_of_packets; } if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); } else { ep->flag_setup = '-'; } if (ndesc != 0) { ep->ndesc = ndesc; mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); if ((offset += lendesc) >= rp->b_size) offset -= rp->b_size; } if (length != 0) { length = mon_bin_get_data(rp, offset, urb, length, &ep->flag_data); if (length > 0) { delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); ep->len_cap -= length; delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); mon_buff_area_shrink(rp, delta); } } else { ep->flag_data = data_tag; } spin_unlock_irqrestore(&rp->b_lock, flags); wake_up(&rp->b_wait); } static void mon_bin_submit(void *data, struct urb *urb) { struct mon_reader_bin *rp = data; mon_bin_event(rp, urb, 'S', -EINPROGRESS); } static void mon_bin_complete(void *data, struct urb *urb, int status) { struct mon_reader_bin *rp = data; mon_bin_event(rp, urb, 'C', status); } static void mon_bin_error(void *data, struct urb *urb, int error) { struct mon_reader_bin *rp = data; struct timespec64 ts; unsigned long flags; unsigned int offset; struct mon_bin_hdr *ep; ktime_get_real_ts64(&ts); spin_lock_irqsave(&rp->b_lock, flags); offset = mon_buff_area_alloc(rp, PKT_SIZE); if (offset == ~0) { /* Not incrementing cnt_lost. Just because. */ spin_unlock_irqrestore(&rp->b_lock, flags); return; } ep = MON_OFF2HDR(rp, offset); memset(ep, 0, PKT_SIZE); ep->type = 'E'; ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; ep->epnum |= usb_endpoint_num(&urb->ep->desc); ep->devnum = urb->dev->devnum; ep->busnum = urb->dev->bus->busnum; ep->id = (unsigned long) urb; ep->ts_sec = ts.tv_sec; ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; ep->status = error; ep->flag_setup = '-'; ep->flag_data = 'E'; spin_unlock_irqrestore(&rp->b_lock, flags); wake_up(&rp->b_wait); } static int mon_bin_open(struct inode *inode, struct file *file) { struct mon_bus *mbus; struct mon_reader_bin *rp; size_t size; int rc; mutex_lock(&mon_lock); mbus = mon_bus_lookup(iminor(inode)); if (mbus == NULL) { mutex_unlock(&mon_lock); return -ENODEV; } if (mbus != &mon_bus0 && mbus->u_bus == NULL) { printk(KERN_ERR TAG ": consistency error on open\n"); mutex_unlock(&mon_lock); return -ENODEV; } rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); if (rp == NULL) { rc = -ENOMEM; goto err_alloc; } spin_lock_init(&rp->b_lock); init_waitqueue_head(&rp->b_wait); mutex_init(&rp->fetch_lock); rp->b_size = BUFF_DFL; size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { rc = -ENOMEM; goto err_allocvec; } if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) goto err_allocbuff; rp->r.m_bus = mbus; rp->r.r_data = rp; rp->r.rnf_submit = mon_bin_submit; rp->r.rnf_error = mon_bin_error; rp->r.rnf_complete = mon_bin_complete; mon_reader_add(mbus, &rp->r); file->private_data = rp; mutex_unlock(&mon_lock); return 0; err_allocbuff: kfree(rp->b_vec); err_allocvec: kfree(rp); err_alloc: mutex_unlock(&mon_lock); return rc; } /* * Extract an event from buffer and copy it to user space. * Wait if there is no event ready. * Returns zero or error. */ static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, void __user *data, unsigned int nbytes) { unsigned long flags; struct mon_bin_hdr *ep; size_t step_len; unsigned int offset; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } ep = MON_OFF2HDR(rp, rp->b_out); if (copy_to_user(hdr, ep, hdrbytes)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } step_len = min(ep->len_cap, nbytes); if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; if (copy_from_buf(rp, offset, data, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } spin_lock_irqsave(&rp->b_lock, flags); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; mutex_unlock(&rp->fetch_lock); return 0; } static int mon_bin_release(struct inode *inode, struct file *file) { struct mon_reader_bin *rp = file->private_data; struct mon_bus* mbus = rp->r.m_bus; mutex_lock(&mon_lock); if (mbus->nreaders <= 0) { printk(KERN_ERR TAG ": consistency error on close\n"); mutex_unlock(&mon_lock); return 0; } mon_reader_del(mbus, &rp->r); mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); kfree(rp->b_vec); kfree(rp); mutex_unlock(&mon_lock); return 0; } static ssize_t mon_bin_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct mon_reader_bin *rp = file->private_data; unsigned int hdrbytes = PKT_SZ_API0; unsigned long flags; struct mon_bin_hdr *ep; unsigned int offset; size_t step_len; char *ptr; ssize_t done = 0; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } ep = MON_OFF2HDR(rp, rp->b_out); if (rp->b_read < hdrbytes) { step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); ptr = ((char *)ep) + rp->b_read; if (step_len && copy_to_user(buf, ptr, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nbytes -= step_len; buf += step_len; rp->b_read += step_len; done += step_len; } if (rp->b_read >= hdrbytes) { step_len = ep->len_cap; step_len -= rp->b_read - hdrbytes; if (step_len > nbytes) step_len = nbytes; offset = rp->b_out + PKT_SIZE; offset += rp->b_read - hdrbytes; if (offset >= rp->b_size) offset -= rp->b_size; if (copy_from_buf(rp, offset, buf, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nbytes -= step_len; buf += step_len; rp->b_read += step_len; done += step_len; } /* * Check if whole packet was read, and if so, jump to the next one. */ if (rp->b_read >= hdrbytes + ep->len_cap) { spin_lock_irqsave(&rp->b_lock, flags); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; } mutex_unlock(&rp->fetch_lock); return done; } /* * Remove at most nevents from chunked buffer. * Returns the number of removed events. */ static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) { unsigned long flags; struct mon_bin_hdr *ep; int i; mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); for (i = 0; i < nevents; ++i) { if (MON_RING_EMPTY(rp)) break; ep = MON_OFF2HDR(rp, rp->b_out); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); } spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; mutex_unlock(&rp->fetch_lock); return i; } /* * Fetch at most max event offsets into the buffer and put them into vec. * The events are usually freed later with mon_bin_flush. * Return the effective number of events fetched. */ static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, u32 __user *vec, unsigned int max) { unsigned int cur_out; unsigned int bytes, avail; unsigned int size; unsigned int nevents; struct mon_bin_hdr *ep; unsigned long flags; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } spin_lock_irqsave(&rp->b_lock, flags); avail = rp->b_cnt; spin_unlock_irqrestore(&rp->b_lock, flags); cur_out = rp->b_out; nevents = 0; bytes = 0; while (bytes < avail) { if (nevents >= max) break; ep = MON_OFF2HDR(rp, cur_out); if (put_user(cur_out, &vec[nevents])) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nevents++; size = ep->len_cap + PKT_SIZE; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if ((cur_out += size) >= rp->b_size) cur_out -= rp->b_size; bytes += size; } mutex_unlock(&rp->fetch_lock); return nevents; } /* * Count events. This is almost the same as the above mon_bin_fetch, * only we do not store offsets into user vector, and we have no limit. */ static int mon_bin_queued(struct mon_reader_bin *rp) { unsigned int cur_out; unsigned int bytes, avail; unsigned int size; unsigned int nevents; struct mon_bin_hdr *ep; unsigned long flags; mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); avail = rp->b_cnt; spin_unlock_irqrestore(&rp->b_lock, flags); cur_out = rp->b_out; nevents = 0; bytes = 0; while (bytes < avail) { ep = MON_OFF2HDR(rp, cur_out); nevents++; size = ep->len_cap + PKT_SIZE; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if ((cur_out += size) >= rp->b_size) cur_out -= rp->b_size; bytes += size; } mutex_unlock(&rp->fetch_lock); return nevents; } /* */ static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mon_reader_bin *rp = file->private_data; // struct mon_bus* mbus = rp->r.m_bus; int ret = 0; struct mon_bin_hdr *ep; unsigned long flags; switch (cmd) { case MON_IOCQ_URB_LEN: /* * N.B. This only returns the size of data, without the header. */ spin_lock_irqsave(&rp->b_lock, flags); if (!MON_RING_EMPTY(rp)) { ep = MON_OFF2HDR(rp, rp->b_out); ret = ep->len_cap; } spin_unlock_irqrestore(&rp->b_lock, flags); break; case MON_IOCQ_RING_SIZE: mutex_lock(&rp->fetch_lock); ret = rp->b_size; mutex_unlock(&rp->fetch_lock); break; case MON_IOCT_RING_SIZE: /* * Changing the buffer size will flush it's contents; the new * buffer is allocated before releasing the old one to be sure * the device will stay functional also in case of memory * pressure. */ { int size; struct mon_pgmap *vec; if (arg < BUFF_MIN || arg > BUFF_MAX) return -EINVAL; size = CHUNK_ALIGN(arg); vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap), GFP_KERNEL); if (vec == NULL) { ret = -ENOMEM; break; } ret = mon_alloc_buff(vec, size/CHUNK_SIZE); if (ret < 0) { kfree(vec); break; } mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); if (rp->mmap_active) { mon_free_buff(vec, size/CHUNK_SIZE); kfree(vec); ret = -EBUSY; } else { mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); kfree(rp->b_vec); rp->b_vec = vec; rp->b_size = size; rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; rp->cnt_lost = 0; } spin_unlock_irqrestore(&rp->b_lock, flags); mutex_unlock(&rp->fetch_lock); } break; case MON_IOCH_MFLUSH: ret = mon_bin_flush(rp, arg); break; case MON_IOCX_GET: case MON_IOCX_GETX: { struct mon_bin_get getb; if (copy_from_user(&getb, (void __user *)arg, sizeof(struct mon_bin_get))) return -EFAULT; if (getb.alloc > 0x10000000) /* Want to cast to u32 */ return -EINVAL; ret = mon_bin_get_event(file, rp, getb.hdr, (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, getb.data, (unsigned int)getb.alloc); } break; case MON_IOCX_MFETCH: { struct mon_bin_mfetch mfetch; struct mon_bin_mfetch __user *uptr; uptr = (struct mon_bin_mfetch __user *)arg; if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) return -EFAULT; if (mfetch.nflush) { ret = mon_bin_flush(rp, mfetch.nflush); if (ret < 0) return ret; if (put_user(ret, &uptr->nflush)) return -EFAULT; } ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); if (ret < 0) return ret; if (put_user(ret, &uptr->nfetch)) return -EFAULT; ret = 0; } break; case MON_IOCG_STATS: { struct mon_bin_stats __user *sp; unsigned int nevents; unsigned int ndropped; spin_lock_irqsave(&rp->b_lock, flags); ndropped = rp->cnt_lost; rp->cnt_lost = 0; spin_unlock_irqrestore(&rp->b_lock, flags); nevents = mon_bin_queued(rp); sp = (struct mon_bin_stats __user *)arg; if (put_user(ndropped, &sp->dropped)) return -EFAULT; if (put_user(nevents, &sp->queued)) return -EFAULT; } break; default: return -ENOTTY; } return ret; } #ifdef CONFIG_COMPAT static long mon_bin_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mon_reader_bin *rp = file->private_data; int ret; switch (cmd) { case MON_IOCX_GET32: case MON_IOCX_GETX32: { struct mon_bin_get32 getb; if (copy_from_user(&getb, (void __user *)arg, sizeof(struct mon_bin_get32))) return -EFAULT; ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, compat_ptr(getb.data32), getb.alloc32); if (ret < 0) return ret; } return 0; case MON_IOCX_MFETCH32: { struct mon_bin_mfetch32 mfetch; struct mon_bin_mfetch32 __user *uptr; uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) return -EFAULT; if (mfetch.nflush32) { ret = mon_bin_flush(rp, mfetch.nflush32); if (ret < 0) return ret; if (put_user(ret, &uptr->nflush32)) return -EFAULT; } ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), mfetch.nfetch32); if (ret < 0) return ret; if (put_user(ret, &uptr->nfetch32)) return -EFAULT; } return 0; case MON_IOCG_STATS: return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); case MON_IOCQ_URB_LEN: case MON_IOCQ_RING_SIZE: case MON_IOCT_RING_SIZE: case MON_IOCH_MFLUSH: return mon_bin_ioctl(file, cmd, arg); default: ; } return -ENOTTY; } #endif /* CONFIG_COMPAT */ static __poll_t mon_bin_poll(struct file *file, struct poll_table_struct *wait) { struct mon_reader_bin *rp = file->private_data; __poll_t mask = 0; unsigned long flags; if (file->f_mode & FMODE_READ) poll_wait(file, &rp->b_wait, wait); spin_lock_irqsave(&rp->b_lock, flags); if (!MON_RING_EMPTY(rp)) mask |= EPOLLIN | EPOLLRDNORM; /* readable */ spin_unlock_irqrestore(&rp->b_lock, flags); return mask; } /* * open and close: just keep track of how many times the device is * mapped, to use the proper memory allocation function. */ static void mon_bin_vma_open(struct vm_area_struct *vma) { struct mon_reader_bin *rp = vma->vm_private_data; unsigned long flags; spin_lock_irqsave(&rp->b_lock, flags); rp->mmap_active++; spin_unlock_irqrestore(&rp->b_lock, flags); } static void mon_bin_vma_close(struct vm_area_struct *vma) { unsigned long flags; struct mon_reader_bin *rp = vma->vm_private_data; spin_lock_irqsave(&rp->b_lock, flags); rp->mmap_active--; spin_unlock_irqrestore(&rp->b_lock, flags); } /* * Map ring pages to user space. */ static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf) { struct mon_reader_bin *rp = vmf->vma->vm_private_data; unsigned long offset, chunk_idx; struct page *pageptr; offset = vmf->pgoff << PAGE_SHIFT; if (offset >= rp->b_size) return VM_FAULT_SIGBUS; chunk_idx = offset / CHUNK_SIZE; pageptr = rp->b_vec[chunk_idx].pg; get_page(pageptr); vmf->page = pageptr; return 0; } static const struct vm_operations_struct mon_bin_vm_ops = { .open = mon_bin_vma_open, .close = mon_bin_vma_close, .fault = mon_bin_vma_fault, }; static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) { /* don't do anything here: "fault" will set up page table entries */ vma->vm_ops = &mon_bin_vm_ops; if (vma->vm_flags & VM_WRITE) return -EPERM; vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE); vma->vm_private_data = filp->private_data; mon_bin_vma_open(vma); return 0; } static const struct file_operations mon_fops_binary = { .owner = THIS_MODULE, .open = mon_bin_open, .llseek = no_llseek, .read = mon_bin_read, /* .write = mon_text_write, */ .poll = mon_bin_poll, .unlocked_ioctl = mon_bin_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mon_bin_compat_ioctl, #endif .release = mon_bin_release, .mmap = mon_bin_mmap, }; static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) { DECLARE_WAITQUEUE(waita, current); unsigned long flags; add_wait_queue(&rp->b_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&rp->b_lock, flags); while (MON_RING_EMPTY(rp)) { spin_unlock_irqrestore(&rp->b_lock, flags); if (file->f_flags & O_NONBLOCK) { set_current_state(TASK_RUNNING); remove_wait_queue(&rp->b_wait, &waita); return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ } schedule(); if (signal_pending(current)) { remove_wait_queue(&rp->b_wait, &waita); return -EINTR; } set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&rp->b_lock, flags); } spin_unlock_irqrestore(&rp->b_lock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&rp->b_wait, &waita); return 0; } static int mon_alloc_buff(struct mon_pgmap *map, int npages) { int n; unsigned long vaddr; for (n = 0; n < npages; n++) { vaddr = get_zeroed_page(GFP_KERNEL); if (vaddr == 0) { while (n-- != 0) free_page((unsigned long) map[n].ptr); return -ENOMEM; } map[n].ptr = (unsigned char *) vaddr; map[n].pg = virt_to_page((void *) vaddr); } return 0; } static void mon_free_buff(struct mon_pgmap *map, int npages) { int n; for (n = 0; n < npages; n++) free_page((unsigned long) map[n].ptr); } int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) { struct device *dev; unsigned minor = ubus? ubus->busnum: 0; if (minor >= MON_BIN_MAX_MINOR) return 0; dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL, MKDEV(MAJOR(mon_bin_dev0), minor), NULL, "usbmon%d", minor); if (IS_ERR(dev)) return 0; mbus->classdev = dev; return 1; } void mon_bin_del(struct mon_bus *mbus) { device_destroy(&mon_bin_class, mbus->classdev->devt); } int __init mon_bin_init(void) { int rc; rc = class_register(&mon_bin_class); if (rc) goto err_class; rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); if (rc < 0) goto err_dev; cdev_init(&mon_bin_cdev, &mon_fops_binary); mon_bin_cdev.owner = THIS_MODULE; rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); if (rc < 0) goto err_add; return 0; err_add: unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); err_dev: class_unregister(&mon_bin_class); err_class: return rc; } void mon_bin_exit(void) { cdev_del(&mon_bin_cdev); unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); class_unregister(&mon_bin_class); }
linux-master
drivers/usb/mon/mon_bin.c
// SPDX-License-Identifier: GPL-2.0 /* Driver for Microtek Scanmaker X6 USB scanner, and possibly others. * * (C) Copyright 2000 John Fremlin <[email protected]> * (C) Copyright 2000 Oliver Neukum <[email protected]> * * Parts shamelessly stolen from usb-storage and copyright by their * authors. Thanks to Matt Dharm for giving us permission! * * This driver implements a SCSI host controller driver and a USB * device driver. To avoid confusion, all the USB related stuff is * prefixed by mts_usb_ and all the SCSI stuff by mts_scsi_. * * Microtek (www.microtek.com) did not release the specifications for * their USB protocol to us, so we had to reverse engineer them. We * don't know for which models they are valid. * * The X6 USB has three bulk endpoints, one output (0x1) down which * commands and outgoing data are sent, and two input: 0x82 from which * normal data is read from the scanner (in packets of maximum 32 * bytes) and from which the status byte is read, and 0x83 from which * the results of a scan (or preview) are read in up to 64 * 1024 byte * chunks by the Windows driver. We don't know how much it is possible * to read at a time from 0x83. * * It seems possible to read (with URB transfers) everything from 0x82 * in one go, without bothering to read in 32 byte chunks. * * There seems to be an optimisation of a further READ implicit if * you simply read from 0x83. * * Guessed protocol: * * Send raw SCSI command to EP 0x1 * * If there is data to receive: * If the command was READ datatype=image: * Read a lot of data from EP 0x83 * Else: * Read data from EP 0x82 * Else: * If there is data to transmit: * Write it to EP 0x1 * * Read status byte from EP 0x82 * * References: * * The SCSI command set for the scanner is available from * ftp://ftp.microtek.com/microtek/devpack/ * * Microtek NV sent us a more up to date version of the document. If * you want it, just send mail. * * Status: * * Untested with multiple scanners. * Untested on SMP. * Untested on a bigendian machine. * * History: * * 20000417 starting history * 20000417 fixed load oops * 20000417 fixed unload oops * 20000419 fixed READ IMAGE detection * 20000424 started conversion to use URBs * 20000502 handled short transfers as errors * 20000513 rename and organisation of functions (john) * 20000513 added IDs for all products supported by Windows driver (john) * 20000514 Rewrote mts_scsi_queuecommand to use URBs (john) * 20000514 Version 0.0.8j * 20000514 Fix reporting of non-existent devices to SCSI layer (john) * 20000514 Added MTS_DEBUG_INT (john) * 20000514 Changed "usb-microtek" to "microtek" for consistency (john) * 20000514 Stupid bug fixes (john) * 20000514 Version 0.0.9j * 20000515 Put transfer context and URB in mts_desc (john) * 20000515 Added prelim turn off debugging support (john) * 20000515 Version 0.0.10j * 20000515 Fixed up URB allocation (clear URB on alloc) (john) * 20000515 Version 0.0.11j * 20000516 Removed unnecessary spinlock in mts_transfer_context (john) * 20000516 Removed unnecessary up on instance lock in mts_remove_nolock (john) * 20000516 Implemented (badly) scsi_abort (john) * 20000516 Version 0.0.12j * 20000517 Hopefully removed mts_remove_nolock quasideadlock (john) * 20000517 Added mts_debug_dump to print ll USB info (john) * 20000518 Tweaks and documentation updates (john) * 20000518 Version 0.0.13j * 20000518 Cleaned up abort handling (john) * 20000523 Removed scsi_command and various scsi_..._resets (john) * 20000523 Added unlink URB on scsi_abort, now OHCI supports it (john) * 20000523 Fixed last tiresome compile warning (john) * 20000523 Version 0.0.14j (though version 0.1 has come out?) * 20000602 Added primitive reset * 20000602 Version 0.2.0 * 20000603 various cosmetic changes * 20000603 Version 0.2.1 * 20000620 minor cosmetic changes * 20000620 Version 0.2.2 * 20000822 Hopefully fixed deadlock in mts_remove_nolock() * 20000822 Fixed minor race in mts_transfer_cleanup() * 20000822 Fixed deadlock on submission error in queuecommand * 20000822 Version 0.2.3 * 20000913 Reduced module size if debugging is off * 20000913 Version 0.2.4 * 20010210 New abort logic * 20010210 Version 0.3.0 * 20010217 Merged scatter/gather * 20010218 Version 0.4.0 * 20010218 Cosmetic fixes * 20010218 Version 0.4.1 * 20010306 Abort while using scatter/gather * 20010306 Version 0.4.2 * 20010311 Remove all timeouts and tidy up generally (john) * 20010320 check return value of scsi_register() * 20010320 Version 0.4.3 * 20010408 Identify version on module load. * 20011003 Fix multiple requests */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/signal.h> #include <linux/errno.h> #include <linux/random.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/usb.h> #include <linux/proc_fs.h> #include <linux/atomic.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include "microtek.h" #define DRIVER_AUTHOR "John Fremlin <[email protected]>, Oliver Neukum <[email protected]>" #define DRIVER_DESC "Microtek Scanmaker X6 USB scanner driver" /* Should we do debugging? */ //#define MTS_DO_DEBUG /* USB layer driver interface */ static int mts_usb_probe(struct usb_interface *intf, const struct usb_device_id *id); static void mts_usb_disconnect(struct usb_interface *intf); static const struct usb_device_id mts_usb_ids[]; static struct usb_driver mts_usb_driver = { .name = "microtekX6", .probe = mts_usb_probe, .disconnect = mts_usb_disconnect, .id_table = mts_usb_ids, }; /* Internal driver stuff */ #define MTS_VERSION "0.4.3" #define MTS_NAME "microtek usb (rev " MTS_VERSION "): " #define MTS_WARNING(x...) \ printk( KERN_WARNING MTS_NAME x ) #define MTS_ERROR(x...) \ printk( KERN_ERR MTS_NAME x ) #define MTS_INT_ERROR(x...) \ MTS_ERROR(x) #define MTS_MESSAGE(x...) \ printk( KERN_INFO MTS_NAME x ) #if defined MTS_DO_DEBUG #define MTS_DEBUG(x...) \ printk( KERN_DEBUG MTS_NAME x ) #define MTS_DEBUG_GOT_HERE() \ MTS_DEBUG("got to %s:%d (%s)\n", __FILE__, (int)__LINE__, __func__ ) #define MTS_DEBUG_INT() \ do { MTS_DEBUG_GOT_HERE(); \ MTS_DEBUG("transfer = 0x%x context = 0x%x\n",(int)transfer,(int)context ); \ MTS_DEBUG("status = 0x%x data-length = 0x%x sent = 0x%x\n",transfer->status,(int)context->data_length, (int)transfer->actual_length ); \ mts_debug_dump(context->instance);\ } while(0) #else #define MTS_NUL_STATEMENT do { } while(0) #define MTS_DEBUG(x...) MTS_NUL_STATEMENT #define MTS_DEBUG_GOT_HERE() MTS_NUL_STATEMENT #define MTS_DEBUG_INT() MTS_NUL_STATEMENT #endif #define MTS_INT_INIT()\ struct mts_transfer_context* context = (struct mts_transfer_context*)transfer->context; \ MTS_DEBUG_INT();\ #ifdef MTS_DO_DEBUG static inline void mts_debug_dump(struct mts_desc* desc) { MTS_DEBUG("desc at 0x%x: toggle = %02x%02x\n", (int)desc, (int)desc->usb_dev->toggle[1],(int)desc->usb_dev->toggle[0] ); MTS_DEBUG("ep_out=%x ep_response=%x ep_image=%x\n", usb_sndbulkpipe(desc->usb_dev,desc->ep_out), usb_rcvbulkpipe(desc->usb_dev,desc->ep_response), usb_rcvbulkpipe(desc->usb_dev,desc->ep_image) ); } static inline void mts_show_command(struct scsi_cmnd *srb) { char *what = NULL; switch (srb->cmnd[0]) { case TEST_UNIT_READY: what = "TEST_UNIT_READY"; break; case REZERO_UNIT: what = "REZERO_UNIT"; break; case REQUEST_SENSE: what = "REQUEST_SENSE"; break; case FORMAT_UNIT: what = "FORMAT_UNIT"; break; case READ_BLOCK_LIMITS: what = "READ_BLOCK_LIMITS"; break; case REASSIGN_BLOCKS: what = "REASSIGN_BLOCKS"; break; case READ_6: what = "READ_6"; break; case WRITE_6: what = "WRITE_6"; break; case SEEK_6: what = "SEEK_6"; break; case READ_REVERSE: what = "READ_REVERSE"; break; case WRITE_FILEMARKS: what = "WRITE_FILEMARKS"; break; case SPACE: what = "SPACE"; break; case INQUIRY: what = "INQUIRY"; break; case RECOVER_BUFFERED_DATA: what = "RECOVER_BUFFERED_DATA"; break; case MODE_SELECT: what = "MODE_SELECT"; break; case RESERVE: what = "RESERVE"; break; case RELEASE: what = "RELEASE"; break; case COPY: what = "COPY"; break; case ERASE: what = "ERASE"; break; case MODE_SENSE: what = "MODE_SENSE"; break; case START_STOP: what = "START_STOP"; break; case RECEIVE_DIAGNOSTIC: what = "RECEIVE_DIAGNOSTIC"; break; case SEND_DIAGNOSTIC: what = "SEND_DIAGNOSTIC"; break; case ALLOW_MEDIUM_REMOVAL: what = "ALLOW_MEDIUM_REMOVAL"; break; case SET_WINDOW: what = "SET_WINDOW"; break; case READ_CAPACITY: what = "READ_CAPACITY"; break; case READ_10: what = "READ_10"; break; case WRITE_10: what = "WRITE_10"; break; case SEEK_10: what = "SEEK_10"; break; case WRITE_VERIFY: what = "WRITE_VERIFY"; break; case VERIFY: what = "VERIFY"; break; case SEARCH_HIGH: what = "SEARCH_HIGH"; break; case SEARCH_EQUAL: what = "SEARCH_EQUAL"; break; case SEARCH_LOW: what = "SEARCH_LOW"; break; case SET_LIMITS: what = "SET_LIMITS"; break; case READ_POSITION: what = "READ_POSITION"; break; case SYNCHRONIZE_CACHE: what = "SYNCHRONIZE_CACHE"; break; case LOCK_UNLOCK_CACHE: what = "LOCK_UNLOCK_CACHE"; break; case READ_DEFECT_DATA: what = "READ_DEFECT_DATA"; break; case MEDIUM_SCAN: what = "MEDIUM_SCAN"; break; case COMPARE: what = "COMPARE"; break; case COPY_VERIFY: what = "COPY_VERIFY"; break; case WRITE_BUFFER: what = "WRITE_BUFFER"; break; case READ_BUFFER: what = "READ_BUFFER"; break; case UPDATE_BLOCK: what = "UPDATE_BLOCK"; break; case READ_LONG: what = "READ_LONG"; break; case WRITE_LONG: what = "WRITE_LONG"; break; case CHANGE_DEFINITION: what = "CHANGE_DEFINITION"; break; case WRITE_SAME: what = "WRITE_SAME"; break; case READ_TOC: what = "READ_TOC"; break; case LOG_SELECT: what = "LOG_SELECT"; break; case LOG_SENSE: what = "LOG_SENSE"; break; case MODE_SELECT_10: what = "MODE_SELECT_10"; break; case MODE_SENSE_10: what = "MODE_SENSE_10"; break; case MOVE_MEDIUM: what = "MOVE_MEDIUM"; break; case READ_12: what = "READ_12"; break; case WRITE_12: what = "WRITE_12"; break; case WRITE_VERIFY_12: what = "WRITE_VERIFY_12"; break; case SEARCH_HIGH_12: what = "SEARCH_HIGH_12"; break; case SEARCH_EQUAL_12: what = "SEARCH_EQUAL_12"; break; case SEARCH_LOW_12: what = "SEARCH_LOW_12"; break; case READ_ELEMENT_STATUS: what = "READ_ELEMENT_STATUS"; break; case SEND_VOLUME_TAG: what = "SEND_VOLUME_TAG"; break; case WRITE_LONG_2: what = "WRITE_LONG_2"; break; default: MTS_DEBUG("can't decode command\n"); goto out; break; } MTS_DEBUG( "Command %s (%d bytes)\n", what, srb->cmd_len); out: MTS_DEBUG( " %10ph\n", srb->cmnd); } #else static inline void mts_show_command(struct scsi_cmnd * dummy) { } static inline void mts_debug_dump(struct mts_desc* dummy) { } #endif static inline void mts_urb_abort(struct mts_desc* desc) { MTS_DEBUG_GOT_HERE(); mts_debug_dump(desc); usb_kill_urb( desc->urb ); } static int mts_slave_alloc (struct scsi_device *s) { s->inquiry_len = 0x24; return 0; } static int mts_slave_configure (struct scsi_device *s) { blk_queue_dma_alignment(s->request_queue, (512 - 1)); return 0; } static int mts_scsi_abort(struct scsi_cmnd *srb) { struct mts_desc* desc = (struct mts_desc*)(srb->device->host->hostdata[0]); MTS_DEBUG_GOT_HERE(); mts_urb_abort(desc); return FAILED; } static int mts_scsi_host_reset(struct scsi_cmnd *srb) { struct mts_desc* desc = (struct mts_desc*)(srb->device->host->hostdata[0]); int result; MTS_DEBUG_GOT_HERE(); mts_debug_dump(desc); result = usb_lock_device_for_reset(desc->usb_dev, desc->usb_intf); if (result == 0) { result = usb_reset_device(desc->usb_dev); usb_unlock_device(desc->usb_dev); } return result ? FAILED : SUCCESS; } static int mts_scsi_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *srb); static void mts_transfer_cleanup( struct urb *transfer ); static void mts_do_sg(struct urb * transfer); static inline void mts_int_submit_urb (struct urb* transfer, int pipe, void* data, unsigned length, usb_complete_t callback ) /* Interrupt context! */ /* Holding transfer->context->lock! */ { int res; MTS_INT_INIT(); usb_fill_bulk_urb(transfer, context->instance->usb_dev, pipe, data, length, callback, context ); res = usb_submit_urb( transfer, GFP_ATOMIC ); if ( unlikely(res) ) { MTS_INT_ERROR( "could not submit URB! Error was %d\n",(int)res ); set_host_byte(context->srb, DID_ERROR); mts_transfer_cleanup(transfer); } } static void mts_transfer_cleanup( struct urb *transfer ) /* Interrupt context! */ { MTS_INT_INIT(); if ( likely(context->final_callback != NULL) ) context->final_callback(context->srb); } static void mts_transfer_done( struct urb *transfer ) { MTS_INT_INIT(); context->srb->result &= MTS_SCSI_ERR_MASK; context->srb->result |= (unsigned)(*context->scsi_status)<<1; mts_transfer_cleanup(transfer); } static void mts_get_status( struct urb *transfer ) /* Interrupt context! */ { MTS_INT_INIT(); mts_int_submit_urb(transfer, usb_rcvbulkpipe(context->instance->usb_dev, context->instance->ep_response), context->scsi_status, 1, mts_transfer_done ); } static void mts_data_done( struct urb* transfer ) /* Interrupt context! */ { int status = transfer->status; MTS_INT_INIT(); if ( context->data_length != transfer->actual_length ) { scsi_set_resid(context->srb, context->data_length - transfer->actual_length); } else if ( unlikely(status) ) { set_host_byte(context->srb, (status == -ENOENT ? DID_ABORT : DID_ERROR)); } mts_get_status(transfer); } static void mts_command_done( struct urb *transfer ) /* Interrupt context! */ { int status = transfer->status; MTS_INT_INIT(); if ( unlikely(status) ) { if (status == -ENOENT) { /* We are being killed */ MTS_DEBUG_GOT_HERE(); set_host_byte(context->srb, DID_ABORT); } else { /* A genuine error has occurred */ MTS_DEBUG_GOT_HERE(); set_host_byte(context->srb, DID_ERROR); } mts_transfer_cleanup(transfer); return; } if (context->srb->cmnd[0] == REQUEST_SENSE) { mts_int_submit_urb(transfer, context->data_pipe, context->srb->sense_buffer, context->data_length, mts_data_done); } else { if ( context->data ) { mts_int_submit_urb(transfer, context->data_pipe, context->data, context->data_length, scsi_sg_count(context->srb) > 1 ? mts_do_sg : mts_data_done); } else { mts_get_status(transfer); } } } static void mts_do_sg (struct urb* transfer) { int status = transfer->status; MTS_INT_INIT(); MTS_DEBUG("Processing fragment %d of %d\n", context->fragment, scsi_sg_count(context->srb)); if (unlikely(status)) { set_host_byte(context->srb, (status == -ENOENT ? DID_ABORT : DID_ERROR)); mts_transfer_cleanup(transfer); } context->curr_sg = sg_next(context->curr_sg); mts_int_submit_urb(transfer, context->data_pipe, sg_virt(context->curr_sg), context->curr_sg->length, sg_is_last(context->curr_sg) ? mts_data_done : mts_do_sg); } static const u8 mts_read_image_sig[] = { 0x28, 00, 00, 00 }; static const u8 mts_read_image_sig_len = 4; static const unsigned char mts_direction[256/8] = { 0x28, 0x81, 0x14, 0x14, 0x20, 0x01, 0x90, 0x77, 0x0C, 0x20, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; #define MTS_DIRECTION_IS_IN(x) ((mts_direction[x>>3] >> (x & 7)) & 1) static void mts_build_transfer_context(struct scsi_cmnd *srb, struct mts_desc* desc) { int pipe; MTS_DEBUG_GOT_HERE(); desc->context.instance = desc; desc->context.srb = srb; if (!scsi_bufflen(srb)) { desc->context.data = NULL; desc->context.data_length = 0; return; } else { desc->context.curr_sg = scsi_sglist(srb); desc->context.data = sg_virt(desc->context.curr_sg); desc->context.data_length = desc->context.curr_sg->length; } /* can't rely on srb->sc_data_direction */ /* Brutally ripped from usb-storage */ if ( !memcmp( srb->cmnd, mts_read_image_sig, mts_read_image_sig_len ) ) { pipe = usb_rcvbulkpipe(desc->usb_dev,desc->ep_image); MTS_DEBUG( "transferring from desc->ep_image == %d\n", (int)desc->ep_image ); } else if ( MTS_DIRECTION_IS_IN(srb->cmnd[0]) ) { pipe = usb_rcvbulkpipe(desc->usb_dev,desc->ep_response); MTS_DEBUG( "transferring from desc->ep_response == %d\n", (int)desc->ep_response); } else { MTS_DEBUG("transferring to desc->ep_out == %d\n", (int)desc->ep_out); pipe = usb_sndbulkpipe(desc->usb_dev,desc->ep_out); } desc->context.data_pipe = pipe; } static int mts_scsi_queuecommand_lck(struct scsi_cmnd *srb) { mts_scsi_cmnd_callback callback = scsi_done; struct mts_desc* desc = (struct mts_desc*)(srb->device->host->hostdata[0]); int res; MTS_DEBUG_GOT_HERE(); mts_show_command(srb); mts_debug_dump(desc); if ( srb->device->lun || srb->device->id || srb->device->channel ) { MTS_DEBUG("Command to LUN=%d ID=%d CHANNEL=%d from SCSI layer\n",(int)srb->device->lun,(int)srb->device->id, (int)srb->device->channel ); MTS_DEBUG("this device doesn't exist\n"); set_host_byte(srb, DID_BAD_TARGET); if(likely(callback != NULL)) callback(srb); goto out; } usb_fill_bulk_urb(desc->urb, desc->usb_dev, usb_sndbulkpipe(desc->usb_dev,desc->ep_out), srb->cmnd, srb->cmd_len, mts_command_done, &desc->context ); mts_build_transfer_context( srb, desc ); desc->context.final_callback = callback; /* here we need ATOMIC as we are called with the iolock */ res=usb_submit_urb(desc->urb, GFP_ATOMIC); if(unlikely(res)){ MTS_ERROR("error %d submitting URB\n",(int)res); set_host_byte(srb, DID_ERROR); if(likely(callback != NULL)) callback(srb); } out: return 0; } static DEF_SCSI_QCMD(mts_scsi_queuecommand) static const struct scsi_host_template mts_scsi_host_template = { .module = THIS_MODULE, .name = "microtekX6", .proc_name = "microtekX6", .queuecommand = mts_scsi_queuecommand, .eh_abort_handler = mts_scsi_abort, .eh_host_reset_handler = mts_scsi_host_reset, .sg_tablesize = SG_ALL, .can_queue = 1, .this_id = -1, .emulated = 1, .slave_alloc = mts_slave_alloc, .slave_configure = mts_slave_configure, .max_sectors= 256, /* 128 K */ }; /* The entries of microtek_table must correspond, line-by-line to the entries of mts_supported_products[]. */ static const struct usb_device_id mts_usb_ids[] = { { USB_DEVICE(0x4ce, 0x0300) }, { USB_DEVICE(0x5da, 0x0094) }, { USB_DEVICE(0x5da, 0x0099) }, { USB_DEVICE(0x5da, 0x009a) }, { USB_DEVICE(0x5da, 0x00a0) }, { USB_DEVICE(0x5da, 0x00a3) }, { USB_DEVICE(0x5da, 0x80a3) }, { USB_DEVICE(0x5da, 0x80ac) }, { USB_DEVICE(0x5da, 0x00b6) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, mts_usb_ids); static int mts_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { int i; int ep_out = -1; int ep_in_set[3]; /* this will break if we have more than three endpoints which is why we check */ int *ep_in_current = ep_in_set; int err_retval = -ENOMEM; struct mts_desc * new_desc; struct usb_device *dev = interface_to_usbdev (intf); /* the current altsetting on the interface we're probing */ struct usb_host_interface *altsetting; MTS_DEBUG_GOT_HERE(); MTS_DEBUG( "usb-device descriptor at %x\n", (int)dev ); MTS_DEBUG( "product id = 0x%x, vendor id = 0x%x\n", le16_to_cpu(dev->descriptor.idProduct), le16_to_cpu(dev->descriptor.idVendor) ); MTS_DEBUG_GOT_HERE(); /* the current altsetting on the interface we're probing */ altsetting = intf->cur_altsetting; /* Check if the config is sane */ if ( altsetting->desc.bNumEndpoints != MTS_EP_TOTAL ) { MTS_WARNING( "expecting %d got %d endpoints! Bailing out.\n", (int)MTS_EP_TOTAL, (int)altsetting->desc.bNumEndpoints ); return -ENODEV; } for( i = 0; i < altsetting->desc.bNumEndpoints; i++ ) { if ((altsetting->endpoint[i].desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) { MTS_WARNING( "can only deal with bulk endpoints; endpoint %d is not bulk.\n", (int)altsetting->endpoint[i].desc.bEndpointAddress ); } else { if (altsetting->endpoint[i].desc.bEndpointAddress & USB_DIR_IN) *ep_in_current++ = altsetting->endpoint[i].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; else { if ( ep_out != -1 ) { MTS_WARNING( "can only deal with one output endpoints. Bailing out." ); return -ENODEV; } ep_out = altsetting->endpoint[i].desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } } } if (ep_in_current != &ep_in_set[2]) { MTS_WARNING("couldn't find two input bulk endpoints. Bailing out.\n"); return -ENODEV; } if ( ep_out == -1 ) { MTS_WARNING( "couldn't find an output bulk endpoint. Bailing out.\n" ); return -ENODEV; } new_desc = kzalloc(sizeof(struct mts_desc), GFP_KERNEL); if (!new_desc) goto out; new_desc->urb = usb_alloc_urb(0, GFP_KERNEL); if (!new_desc->urb) goto out_kfree; new_desc->context.scsi_status = kmalloc(1, GFP_KERNEL); if (!new_desc->context.scsi_status) goto out_free_urb; new_desc->usb_dev = dev; new_desc->usb_intf = intf; /* endpoints */ new_desc->ep_out = ep_out; new_desc->ep_response = ep_in_set[0]; new_desc->ep_image = ep_in_set[1]; if ( new_desc->ep_out != MTS_EP_OUT ) MTS_WARNING( "will this work? Command EP is not usually %d\n", (int)new_desc->ep_out ); if ( new_desc->ep_response != MTS_EP_RESPONSE ) MTS_WARNING( "will this work? Response EP is not usually %d\n", (int)new_desc->ep_response ); if ( new_desc->ep_image != MTS_EP_IMAGE ) MTS_WARNING( "will this work? Image data EP is not usually %d\n", (int)new_desc->ep_image ); new_desc->host = scsi_host_alloc(&mts_scsi_host_template, sizeof(new_desc)); if (!new_desc->host) goto out_kfree2; new_desc->host->hostdata[0] = (unsigned long)new_desc; if (scsi_add_host(new_desc->host, &dev->dev)) { err_retval = -EIO; goto out_host_put; } scsi_scan_host(new_desc->host); usb_set_intfdata(intf, new_desc); return 0; out_host_put: scsi_host_put(new_desc->host); out_kfree2: kfree(new_desc->context.scsi_status); out_free_urb: usb_free_urb(new_desc->urb); out_kfree: kfree(new_desc); out: return err_retval; } static void mts_usb_disconnect (struct usb_interface *intf) { struct mts_desc *desc = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); usb_kill_urb(desc->urb); scsi_remove_host(desc->host); scsi_host_put(desc->host); usb_free_urb(desc->urb); kfree(desc->context.scsi_status); kfree(desc); } module_usb_driver(mts_usb_driver); MODULE_AUTHOR( DRIVER_AUTHOR ); MODULE_DESCRIPTION( DRIVER_DESC ); MODULE_LICENSE("GPL");
linux-master
drivers/usb/image/microtek.c
// SPDX-License-Identifier: GPL-2.0+ /* * copyright (C) 1999/2000 by Henning Zabel <[email protected]> */ /* * USB-Kernel Driver for the Mustek MDC800 Digital Camera * (c) 1999/2000 Henning Zabel <[email protected]> * * * The driver brings the USB functions of the MDC800 to Linux. * To use the Camera you must support the USB Protocol of the camera * to the Kernel Node. * The Driver uses a misc device Node. Create it with : * mknod /dev/mustek c 180 32 * * The driver supports only one camera. * * Fix: mdc800 used sleep_on and slept with io_lock held. * Converted sleep_on to waitqueues with schedule_timeout and made io_lock * a semaphore from a spinlock. * by Oliver Neukum <[email protected]> * (02/12/2001) * * Identify version on module load. * (08/04/2001) gb * * version 0.7.5 * Fixed potential SMP races with Spinlocks. * Thanks to Oliver Neukum <[email protected]> who * noticed the race conditions. * (30/10/2000) * * Fixed: Setting urb->dev before submitting urb. * by Greg KH <[email protected]> * (13/10/2000) * * version 0.7.3 * bugfix : The mdc800->state field gets set to READY after the * disconnect function sets it to NOT_CONNECTED. This makes the * driver running like the camera is connected and causes some * hang ups. * * version 0.7.1 * MOD_INC and MOD_DEC are changed in usb_probe to prevent load/unload * problems when compiled as Module. * (04/04/2000) * * The mdc800 driver gets assigned the USB Minor 32-47. The Registration * was updated to use these values. * (26/03/2000) * * The Init und Exit Module Function are updated. * (01/03/2000) * * version 0.7.0 * Rewrite of the driver : The driver now uses URB's. The old stuff * has been removed. * * version 0.6.0 * Rewrite of this driver: The Emulation of the rs232 protocoll * has been removed from the driver. A special executeCommand function * for this driver is included to gphoto. * The driver supports two kind of communication to bulk endpoints. * Either with the dev->bus->ops->bulk... or with callback function. * (09/11/1999) * * version 0.5.0: * first Version that gets a version number. Most of the needed * functions work. * (20/10/1999) */ #include <linux/sched/signal.h> #include <linux/signal.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/random.h> #include <linux/poll.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/wait.h> #include <linux/mutex.h> #include <linux/usb.h> #include <linux/fs.h> /* * Version Information */ #define DRIVER_VERSION "v0.7.5 (30/10/2000)" #define DRIVER_AUTHOR "Henning Zabel <[email protected]>" #define DRIVER_DESC "USB Driver for Mustek MDC800 Digital Camera" /* Vendor and Product Information */ #define MDC800_VENDOR_ID 0x055f #define MDC800_PRODUCT_ID 0xa800 /* Timeouts (msec) */ #define TO_DOWNLOAD_GET_READY 1500 #define TO_DOWNLOAD_GET_BUSY 1500 #define TO_WRITE_GET_READY 1000 #define TO_DEFAULT_COMMAND 5000 #define TO_READ_FROM_IRQ TO_DEFAULT_COMMAND #define TO_GET_READY TO_DEFAULT_COMMAND /* Minor Number of the device (create with mknod /dev/mustek c 180 32) */ #define MDC800_DEVICE_MINOR_BASE 32 /************************************************************************** Data and structs ***************************************************************************/ typedef enum { NOT_CONNECTED, READY, WORKING, DOWNLOAD } mdc800_state; /* Data for the driver */ struct mdc800_data { struct usb_device * dev; // Device Data mdc800_state state; unsigned int endpoint [4]; struct urb * irq_urb; wait_queue_head_t irq_wait; int irq_woken; char* irq_urb_buffer; int camera_busy; // is camera busy ? int camera_request_ready; // Status to synchronize with irq char camera_response [8]; // last Bytes send after busy struct urb * write_urb; char* write_urb_buffer; wait_queue_head_t write_wait; int written; struct urb * download_urb; char* download_urb_buffer; wait_queue_head_t download_wait; int downloaded; int download_left; // Bytes left to download ? /* Device Data */ char out [64]; // Answer Buffer int out_ptr; // Index to the first not readen byte int out_count; // Bytes in the buffer int open; // Camera device open ? struct mutex io_lock; // IO -lock char in [8]; // Command Input Buffer int in_count; int pic_index; // Cache for the Imagesize (-1 for nothing cached ) int pic_len; int minor; }; /* Specification of the Endpoints */ static struct usb_endpoint_descriptor mdc800_ed [4] = { { .bLength = 0, .bDescriptorType = 0, .bEndpointAddress = 0x01, .bmAttributes = 0x02, .wMaxPacketSize = cpu_to_le16(8), .bInterval = 0, .bRefresh = 0, .bSynchAddress = 0, }, { .bLength = 0, .bDescriptorType = 0, .bEndpointAddress = 0x82, .bmAttributes = 0x03, .wMaxPacketSize = cpu_to_le16(8), .bInterval = 0, .bRefresh = 0, .bSynchAddress = 0, }, { .bLength = 0, .bDescriptorType = 0, .bEndpointAddress = 0x03, .bmAttributes = 0x02, .wMaxPacketSize = cpu_to_le16(64), .bInterval = 0, .bRefresh = 0, .bSynchAddress = 0, }, { .bLength = 0, .bDescriptorType = 0, .bEndpointAddress = 0x84, .bmAttributes = 0x02, .wMaxPacketSize = cpu_to_le16(64), .bInterval = 0, .bRefresh = 0, .bSynchAddress = 0, }, }; /* The Variable used by the driver */ static struct mdc800_data* mdc800; /*************************************************************************** The USB Part of the driver ****************************************************************************/ static int mdc800_endpoint_equals (struct usb_endpoint_descriptor *a,struct usb_endpoint_descriptor *b) { return ( ( a->bEndpointAddress == b->bEndpointAddress ) && ( a->bmAttributes == b->bmAttributes ) && ( a->wMaxPacketSize == b->wMaxPacketSize ) ); } /* * Checks whether the camera responds busy */ static int mdc800_isBusy (char* ch) { int i=0; while (i<8) { if (ch [i] != (char)0x99) return 0; i++; } return 1; } /* * Checks whether the Camera is ready */ static int mdc800_isReady (char *ch) { int i=0; while (i<8) { if (ch [i] != (char)0xbb) return 0; i++; } return 1; } /* * USB IRQ Handler for InputLine */ static void mdc800_usb_irq (struct urb *urb) { int data_received=0, wake_up; unsigned char* b=urb->transfer_buffer; struct mdc800_data* mdc800=urb->context; struct device *dev = &mdc800->dev->dev; int status = urb->status; if (status >= 0) { if (mdc800_isBusy (b)) { if (!mdc800->camera_busy) { mdc800->camera_busy=1; dev_dbg(dev, "gets busy\n"); } } else { if (mdc800->camera_busy && mdc800_isReady (b)) { mdc800->camera_busy=0; dev_dbg(dev, "gets ready\n"); } } if (!(mdc800_isBusy (b) || mdc800_isReady (b))) { /* Store Data in camera_answer field */ dev_dbg(dev, "%i %i %i %i %i %i %i %i \n",b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7]); memcpy (mdc800->camera_response,b,8); data_received=1; } } wake_up= ( mdc800->camera_request_ready > 0 ) && ( ((mdc800->camera_request_ready == 1) && (!mdc800->camera_busy)) || ((mdc800->camera_request_ready == 2) && data_received) || ((mdc800->camera_request_ready == 3) && (mdc800->camera_busy)) || (status < 0) ); if (wake_up) { mdc800->camera_request_ready=0; mdc800->irq_woken=1; wake_up (&mdc800->irq_wait); } } /* * Waits a while until the irq responds that camera is ready * * mode : 0: Wait for camera gets ready * 1: Wait for receiving data * 2: Wait for camera gets busy * * msec: Time to wait */ static int mdc800_usb_waitForIRQ (int mode, int msec) { mdc800->camera_request_ready=1+mode; wait_event_timeout(mdc800->irq_wait, mdc800->irq_woken, msecs_to_jiffies(msec)); mdc800->irq_woken = 0; if (mdc800->camera_request_ready>0) { mdc800->camera_request_ready=0; dev_err(&mdc800->dev->dev, "timeout waiting for camera.\n"); return -1; } if (mdc800->state == NOT_CONNECTED) { printk(KERN_WARNING "mdc800: Camera gets disconnected " "during waiting for irq.\n"); mdc800->camera_request_ready=0; return -2; } return 0; } /* * The write_urb callback function */ static void mdc800_usb_write_notify (struct urb *urb) { struct mdc800_data* mdc800=urb->context; int status = urb->status; if (status != 0) dev_err(&mdc800->dev->dev, "writing command fails (status=%i)\n", status); else mdc800->state=READY; mdc800->written = 1; wake_up (&mdc800->write_wait); } /* * The download_urb callback function */ static void mdc800_usb_download_notify (struct urb *urb) { struct mdc800_data* mdc800=urb->context; int status = urb->status; if (status == 0) { /* Fill output buffer with these data */ memcpy (mdc800->out, urb->transfer_buffer, 64); mdc800->out_count=64; mdc800->out_ptr=0; mdc800->download_left-=64; if (mdc800->download_left == 0) { mdc800->state=READY; } } else { dev_err(&mdc800->dev->dev, "request bytes fails (status:%i)\n", status); } mdc800->downloaded = 1; wake_up (&mdc800->download_wait); } /*************************************************************************** Probing for the Camera ***************************************************************************/ static struct usb_driver mdc800_usb_driver; static const struct file_operations mdc800_device_ops; static struct usb_class_driver mdc800_class = { .name = "mdc800%d", .fops = &mdc800_device_ops, .minor_base = MDC800_DEVICE_MINOR_BASE, }; /* * Callback to search the Mustek MDC800 on the USB Bus */ static int mdc800_usb_probe (struct usb_interface *intf, const struct usb_device_id *id) { int i,j; struct usb_host_interface *intf_desc; struct usb_device *dev = interface_to_usbdev (intf); int irq_interval=0; int retval; dev_dbg(&intf->dev, "(%s) called.\n", __func__); if (mdc800->dev != NULL) { dev_warn(&intf->dev, "only one Mustek MDC800 is supported.\n"); return -ENODEV; } if (dev->descriptor.bNumConfigurations != 1) { dev_err(&intf->dev, "probe fails -> wrong Number of Configuration\n"); return -ENODEV; } intf_desc = intf->cur_altsetting; if ( ( intf_desc->desc.bInterfaceClass != 0xff ) || ( intf_desc->desc.bInterfaceSubClass != 0 ) || ( intf_desc->desc.bInterfaceProtocol != 0 ) || ( intf_desc->desc.bNumEndpoints != 4) ) { dev_err(&intf->dev, "probe fails -> wrong Interface\n"); return -ENODEV; } /* Check the Endpoints */ for (i=0; i<4; i++) { mdc800->endpoint[i]=-1; for (j=0; j<4; j++) { if (mdc800_endpoint_equals (&intf_desc->endpoint [j].desc,&mdc800_ed [i])) { mdc800->endpoint[i]=intf_desc->endpoint [j].desc.bEndpointAddress ; if (i==1) { irq_interval=intf_desc->endpoint [j].desc.bInterval; } } } if (mdc800->endpoint[i] == -1) { dev_err(&intf->dev, "probe fails -> Wrong Endpoints.\n"); return -ENODEV; } } dev_info(&intf->dev, "Found Mustek MDC800 on USB.\n"); mutex_lock(&mdc800->io_lock); retval = usb_register_dev(intf, &mdc800_class); if (retval) { dev_err(&intf->dev, "Not able to get a minor for this device.\n"); mutex_unlock(&mdc800->io_lock); return -ENODEV; } mdc800->dev=dev; mdc800->open=0; /* Setup URB Structs */ usb_fill_int_urb ( mdc800->irq_urb, mdc800->dev, usb_rcvintpipe (mdc800->dev,mdc800->endpoint [1]), mdc800->irq_urb_buffer, 8, mdc800_usb_irq, mdc800, irq_interval ); usb_fill_bulk_urb ( mdc800->write_urb, mdc800->dev, usb_sndbulkpipe (mdc800->dev, mdc800->endpoint[0]), mdc800->write_urb_buffer, 8, mdc800_usb_write_notify, mdc800 ); usb_fill_bulk_urb ( mdc800->download_urb, mdc800->dev, usb_rcvbulkpipe (mdc800->dev, mdc800->endpoint [3]), mdc800->download_urb_buffer, 64, mdc800_usb_download_notify, mdc800 ); mdc800->state=READY; mutex_unlock(&mdc800->io_lock); usb_set_intfdata(intf, mdc800); return 0; } /* * Disconnect USB device (maybe the MDC800) */ static void mdc800_usb_disconnect (struct usb_interface *intf) { struct mdc800_data* mdc800 = usb_get_intfdata(intf); dev_dbg(&intf->dev, "(%s) called\n", __func__); if (mdc800) { if (mdc800->state == NOT_CONNECTED) return; usb_deregister_dev(intf, &mdc800_class); /* must be under lock to make sure no URB is submitted after usb_kill_urb() */ mutex_lock(&mdc800->io_lock); mdc800->state=NOT_CONNECTED; usb_kill_urb(mdc800->irq_urb); usb_kill_urb(mdc800->write_urb); usb_kill_urb(mdc800->download_urb); mutex_unlock(&mdc800->io_lock); mdc800->dev = NULL; usb_set_intfdata(intf, NULL); } dev_info(&intf->dev, "Mustek MDC800 disconnected from USB.\n"); } /*************************************************************************** The Misc device Part (file_operations) ****************************************************************************/ /* * This Function calc the Answersize for a command. */ static int mdc800_getAnswerSize (char command) { switch ((unsigned char) command) { case 0x2a: case 0x49: case 0x51: case 0x0d: case 0x20: case 0x07: case 0x01: case 0x25: case 0x00: return 8; case 0x05: case 0x3e: return mdc800->pic_len; case 0x09: return 4096; default: return 0; } } /* * Init the device: (1) alloc mem (2) Increase MOD Count .. */ static int mdc800_device_open (struct inode* inode, struct file *file) { int retval=0; int errn=0; mutex_lock(&mdc800->io_lock); if (mdc800->state == NOT_CONNECTED) { errn=-EBUSY; goto error_out; } if (mdc800->open) { errn=-EBUSY; goto error_out; } mdc800->in_count=0; mdc800->out_count=0; mdc800->out_ptr=0; mdc800->pic_index=0; mdc800->pic_len=-1; mdc800->download_left=0; mdc800->camera_busy=0; mdc800->camera_request_ready=0; retval=0; mdc800->irq_urb->dev = mdc800->dev; retval = usb_submit_urb (mdc800->irq_urb, GFP_KERNEL); if (retval) { dev_err(&mdc800->dev->dev, "request USB irq fails (submit_retval=%i).\n", retval); errn = -EIO; goto error_out; } mdc800->open=1; dev_dbg(&mdc800->dev->dev, "Mustek MDC800 device opened.\n"); error_out: mutex_unlock(&mdc800->io_lock); return errn; } /* * Close the Camera and release Memory */ static int mdc800_device_release (struct inode* inode, struct file *file) { int retval=0; mutex_lock(&mdc800->io_lock); if (mdc800->open && (mdc800->state != NOT_CONNECTED)) { usb_kill_urb(mdc800->irq_urb); usb_kill_urb(mdc800->write_urb); usb_kill_urb(mdc800->download_urb); mdc800->open=0; } else { retval=-EIO; } mutex_unlock(&mdc800->io_lock); return retval; } /* * The Device read callback Function */ static ssize_t mdc800_device_read (struct file *file, char __user *buf, size_t len, loff_t *pos) { size_t left=len, sts=len; /* single transfer size */ char __user *ptr = buf; int retval; mutex_lock(&mdc800->io_lock); if (mdc800->state == NOT_CONNECTED) { mutex_unlock(&mdc800->io_lock); return -EBUSY; } if (mdc800->state == WORKING) { printk(KERN_WARNING "mdc800: Illegal State \"working\"" "reached during read ?!\n"); mutex_unlock(&mdc800->io_lock); return -EBUSY; } if (!mdc800->open) { mutex_unlock(&mdc800->io_lock); return -EBUSY; } while (left) { if (signal_pending (current)) { mutex_unlock(&mdc800->io_lock); return -EINTR; } sts=left > (mdc800->out_count-mdc800->out_ptr)?mdc800->out_count-mdc800->out_ptr:left; if (sts <= 0) { /* Too less Data in buffer */ if (mdc800->state == DOWNLOAD) { mdc800->out_count=0; mdc800->out_ptr=0; /* Download -> Request new bytes */ mdc800->download_urb->dev = mdc800->dev; retval = usb_submit_urb (mdc800->download_urb, GFP_KERNEL); if (retval) { dev_err(&mdc800->dev->dev, "Can't submit download urb " "(retval=%i)\n", retval); mutex_unlock(&mdc800->io_lock); return len-left; } wait_event_timeout(mdc800->download_wait, mdc800->downloaded, msecs_to_jiffies(TO_DOWNLOAD_GET_READY)); mdc800->downloaded = 0; if (mdc800->download_urb->status != 0) { dev_err(&mdc800->dev->dev, "request download-bytes fails " "(status=%i)\n", mdc800->download_urb->status); mutex_unlock(&mdc800->io_lock); return len-left; } } else { /* No more bytes -> that's an error*/ mutex_unlock(&mdc800->io_lock); return -EIO; } } else { /* Copy Bytes */ if (copy_to_user(ptr, &mdc800->out [mdc800->out_ptr], sts)) { mutex_unlock(&mdc800->io_lock); return -EFAULT; } ptr+=sts; left-=sts; mdc800->out_ptr+=sts; } } mutex_unlock(&mdc800->io_lock); return len-left; } /* * The Device write callback Function * If a 8Byte Command is received, it will be send to the camera. * After this the driver initiates the request for the answer or * just waits until the camera becomes ready. */ static ssize_t mdc800_device_write (struct file *file, const char __user *buf, size_t len, loff_t *pos) { size_t i=0; int retval; mutex_lock(&mdc800->io_lock); if (mdc800->state != READY) { mutex_unlock(&mdc800->io_lock); return -EBUSY; } if (!mdc800->open ) { mutex_unlock(&mdc800->io_lock); return -EBUSY; } while (i<len) { unsigned char c; if (signal_pending (current)) { mutex_unlock(&mdc800->io_lock); return -EINTR; } if(get_user(c, buf+i)) { mutex_unlock(&mdc800->io_lock); return -EFAULT; } /* check for command start */ if (c == 0x55) { mdc800->in_count=0; mdc800->out_count=0; mdc800->out_ptr=0; mdc800->download_left=0; } /* save command byte */ if (mdc800->in_count < 8) { mdc800->in[mdc800->in_count] = c; mdc800->in_count++; } else { mutex_unlock(&mdc800->io_lock); return -EIO; } /* Command Buffer full ? -> send it to camera */ if (mdc800->in_count == 8) { int answersize; if (mdc800_usb_waitForIRQ (0,TO_GET_READY)) { dev_err(&mdc800->dev->dev, "Camera didn't get ready.\n"); mutex_unlock(&mdc800->io_lock); return -EIO; } answersize=mdc800_getAnswerSize (mdc800->in[1]); mdc800->state=WORKING; memcpy (mdc800->write_urb->transfer_buffer, mdc800->in,8); mdc800->write_urb->dev = mdc800->dev; retval = usb_submit_urb (mdc800->write_urb, GFP_KERNEL); if (retval) { dev_err(&mdc800->dev->dev, "submitting write urb fails " "(retval=%i)\n", retval); mutex_unlock(&mdc800->io_lock); return -EIO; } wait_event_timeout(mdc800->write_wait, mdc800->written, msecs_to_jiffies(TO_WRITE_GET_READY)); mdc800->written = 0; if (mdc800->state == WORKING) { usb_kill_urb(mdc800->write_urb); mutex_unlock(&mdc800->io_lock); return -EIO; } switch ((unsigned char) mdc800->in[1]) { case 0x05: /* Download Image */ case 0x3e: /* Take shot in Fine Mode (WCam Mode) */ if (mdc800->pic_len < 0) { dev_err(&mdc800->dev->dev, "call 0x07 before " "0x05,0x3e\n"); mdc800->state=READY; mutex_unlock(&mdc800->io_lock); return -EIO; } mdc800->pic_len=-1; fallthrough; case 0x09: /* Download Thumbnail */ mdc800->download_left=answersize+64; mdc800->state=DOWNLOAD; mdc800_usb_waitForIRQ (0,TO_DOWNLOAD_GET_BUSY); break; default: if (answersize) { if (mdc800_usb_waitForIRQ (1,TO_READ_FROM_IRQ)) { dev_err(&mdc800->dev->dev, "requesting answer from irq fails\n"); mutex_unlock(&mdc800->io_lock); return -EIO; } /* Write dummy data, (this is ugly but part of the USB Protocol */ /* if you use endpoint 1 as bulk and not as irq) */ memcpy (mdc800->out, mdc800->camera_response,8); /* This is the interpreted answer */ memcpy (&mdc800->out[8], mdc800->camera_response,8); mdc800->out_ptr=0; mdc800->out_count=16; /* Cache the Imagesize, if command was getImageSize */ if (mdc800->in [1] == (char) 0x07) { mdc800->pic_len=(int) 65536*(unsigned char) mdc800->camera_response[0]+256*(unsigned char) mdc800->camera_response[1]+(unsigned char) mdc800->camera_response[2]; dev_dbg(&mdc800->dev->dev, "cached imagesize = %i\n", mdc800->pic_len); } } else { if (mdc800_usb_waitForIRQ (0,TO_DEFAULT_COMMAND)) { dev_err(&mdc800->dev->dev, "Command Timeout.\n"); mutex_unlock(&mdc800->io_lock); return -EIO; } } mdc800->state=READY; break; } } i++; } mutex_unlock(&mdc800->io_lock); return i; } /*************************************************************************** Init and Cleanup this driver (Structs and types) ****************************************************************************/ /* File Operations of this drivers */ static const struct file_operations mdc800_device_ops = { .owner = THIS_MODULE, .read = mdc800_device_read, .write = mdc800_device_write, .open = mdc800_device_open, .release = mdc800_device_release, .llseek = noop_llseek, }; static const struct usb_device_id mdc800_table[] = { { USB_DEVICE(MDC800_VENDOR_ID, MDC800_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, mdc800_table); /* * USB Driver Struct for this device */ static struct usb_driver mdc800_usb_driver = { .name = "mdc800", .probe = mdc800_usb_probe, .disconnect = mdc800_usb_disconnect, .id_table = mdc800_table }; /************************************************************************ Init and Cleanup this driver (Main Functions) *************************************************************************/ static int __init usb_mdc800_init (void) { int retval = -ENODEV; /* Allocate Memory */ mdc800=kzalloc (sizeof (struct mdc800_data), GFP_KERNEL); if (!mdc800) goto cleanup_on_fail; mdc800->dev = NULL; mdc800->state=NOT_CONNECTED; mutex_init (&mdc800->io_lock); init_waitqueue_head (&mdc800->irq_wait); init_waitqueue_head (&mdc800->write_wait); init_waitqueue_head (&mdc800->download_wait); mdc800->irq_woken = 0; mdc800->downloaded = 0; mdc800->written = 0; mdc800->irq_urb_buffer=kmalloc (8, GFP_KERNEL); if (!mdc800->irq_urb_buffer) goto cleanup_on_fail; mdc800->write_urb_buffer=kmalloc (8, GFP_KERNEL); if (!mdc800->write_urb_buffer) goto cleanup_on_fail; mdc800->download_urb_buffer=kmalloc (64, GFP_KERNEL); if (!mdc800->download_urb_buffer) goto cleanup_on_fail; mdc800->irq_urb=usb_alloc_urb (0, GFP_KERNEL); if (!mdc800->irq_urb) goto cleanup_on_fail; mdc800->download_urb=usb_alloc_urb (0, GFP_KERNEL); if (!mdc800->download_urb) goto cleanup_on_fail; mdc800->write_urb=usb_alloc_urb (0, GFP_KERNEL); if (!mdc800->write_urb) goto cleanup_on_fail; /* Register the driver */ retval = usb_register(&mdc800_usb_driver); if (retval) goto cleanup_on_fail; printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_VERSION ":" DRIVER_DESC "\n"); return 0; /* Clean driver up, when something fails */ cleanup_on_fail: if (mdc800 != NULL) { printk(KERN_ERR "mdc800: can't alloc memory!\n"); kfree(mdc800->download_urb_buffer); kfree(mdc800->write_urb_buffer); kfree(mdc800->irq_urb_buffer); usb_free_urb(mdc800->write_urb); usb_free_urb(mdc800->download_urb); usb_free_urb(mdc800->irq_urb); kfree (mdc800); } mdc800 = NULL; return retval; } static void __exit usb_mdc800_cleanup (void) { usb_deregister (&mdc800_usb_driver); usb_free_urb (mdc800->irq_urb); usb_free_urb (mdc800->download_urb); usb_free_urb (mdc800->write_urb); kfree (mdc800->irq_urb_buffer); kfree (mdc800->write_urb_buffer); kfree (mdc800->download_urb_buffer); kfree (mdc800); mdc800 = NULL; } module_init (usb_mdc800_init); module_exit (usb_mdc800_cleanup); MODULE_AUTHOR( DRIVER_AUTHOR ); MODULE_DESCRIPTION( DRIVER_DESC ); MODULE_LICENSE("GPL");
linux-master
drivers/usb/image/mdc800.c
// SPDX-License-Identifier: GPL-2.0+ /* * Generic ULPI USB transceiver support * * Copyright (C) 2009 Daniel Mack <[email protected]> * * Based on sources from * * Sascha Hauer <[email protected]> * Freescale Semiconductors */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/usb.h> #include <linux/usb/otg.h> #include <linux/usb/ulpi.h> struct ulpi_info { unsigned int id; char *name; }; #define ULPI_ID(vendor, product) (((vendor) << 16) | (product)) #define ULPI_INFO(_id, _name) \ { \ .id = (_id), \ .name = (_name), \ } /* ULPI hardcoded IDs, used for probing */ static struct ulpi_info ulpi_ids[] = { ULPI_INFO(ULPI_ID(0x04cc, 0x1504), "NXP ISP1504"), ULPI_INFO(ULPI_ID(0x0424, 0x0006), "SMSC USB331x"), ULPI_INFO(ULPI_ID(0x0424, 0x0007), "SMSC USB3320"), ULPI_INFO(ULPI_ID(0x0424, 0x0009), "SMSC USB334x"), ULPI_INFO(ULPI_ID(0x0451, 0x1507), "TI TUSB1210"), }; static int ulpi_set_otg_flags(struct usb_phy *phy) { unsigned int flags = ULPI_OTG_CTRL_DP_PULLDOWN | ULPI_OTG_CTRL_DM_PULLDOWN; if (phy->flags & ULPI_OTG_ID_PULLUP) flags |= ULPI_OTG_CTRL_ID_PULLUP; /* * ULPI Specification rev.1.1 default * for Dp/DmPulldown is enabled. */ if (phy->flags & ULPI_OTG_DP_PULLDOWN_DIS) flags &= ~ULPI_OTG_CTRL_DP_PULLDOWN; if (phy->flags & ULPI_OTG_DM_PULLDOWN_DIS) flags &= ~ULPI_OTG_CTRL_DM_PULLDOWN; if (phy->flags & ULPI_OTG_EXTVBUSIND) flags |= ULPI_OTG_CTRL_EXTVBUSIND; return usb_phy_io_write(phy, flags, ULPI_OTG_CTRL); } static int ulpi_set_fc_flags(struct usb_phy *phy) { unsigned int flags = 0; /* * ULPI Specification rev.1.1 default * for XcvrSelect is Full Speed. */ if (phy->flags & ULPI_FC_HS) flags |= ULPI_FUNC_CTRL_HIGH_SPEED; else if (phy->flags & ULPI_FC_LS) flags |= ULPI_FUNC_CTRL_LOW_SPEED; else if (phy->flags & ULPI_FC_FS4LS) flags |= ULPI_FUNC_CTRL_FS4LS; else flags |= ULPI_FUNC_CTRL_FULL_SPEED; if (phy->flags & ULPI_FC_TERMSEL) flags |= ULPI_FUNC_CTRL_TERMSELECT; /* * ULPI Specification rev.1.1 default * for OpMode is Normal Operation. */ if (phy->flags & ULPI_FC_OP_NODRV) flags |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING; else if (phy->flags & ULPI_FC_OP_DIS_NRZI) flags |= ULPI_FUNC_CTRL_OPMODE_DISABLE_NRZI; else if (phy->flags & ULPI_FC_OP_NSYNC_NEOP) flags |= ULPI_FUNC_CTRL_OPMODE_NOSYNC_NOEOP; else flags |= ULPI_FUNC_CTRL_OPMODE_NORMAL; /* * ULPI Specification rev.1.1 default * for SuspendM is Powered. */ flags |= ULPI_FUNC_CTRL_SUSPENDM; return usb_phy_io_write(phy, flags, ULPI_FUNC_CTRL); } static int ulpi_set_ic_flags(struct usb_phy *phy) { unsigned int flags = 0; if (phy->flags & ULPI_IC_AUTORESUME) flags |= ULPI_IFC_CTRL_AUTORESUME; if (phy->flags & ULPI_IC_EXTVBUS_INDINV) flags |= ULPI_IFC_CTRL_EXTERNAL_VBUS; if (phy->flags & ULPI_IC_IND_PASSTHRU) flags |= ULPI_IFC_CTRL_PASSTHRU; if (phy->flags & ULPI_IC_PROTECT_DIS) flags |= ULPI_IFC_CTRL_PROTECT_IFC_DISABLE; return usb_phy_io_write(phy, flags, ULPI_IFC_CTRL); } static int ulpi_set_flags(struct usb_phy *phy) { int ret; ret = ulpi_set_otg_flags(phy); if (ret) return ret; ret = ulpi_set_ic_flags(phy); if (ret) return ret; return ulpi_set_fc_flags(phy); } static int ulpi_check_integrity(struct usb_phy *phy) { int ret, i; unsigned int val = 0x55; for (i = 0; i < 2; i++) { ret = usb_phy_io_write(phy, val, ULPI_SCRATCH); if (ret < 0) return ret; ret = usb_phy_io_read(phy, ULPI_SCRATCH); if (ret < 0) return ret; if (ret != val) { pr_err("ULPI integrity check: failed!"); return -ENODEV; } val = val << 1; } pr_info("ULPI integrity check: passed.\n"); return 0; } static int ulpi_init(struct usb_phy *phy) { int i, vid, pid, ret; u32 ulpi_id = 0; for (i = 0; i < 4; i++) { ret = usb_phy_io_read(phy, ULPI_PRODUCT_ID_HIGH - i); if (ret < 0) return ret; ulpi_id = (ulpi_id << 8) | ret; } vid = ulpi_id & 0xffff; pid = ulpi_id >> 16; pr_info("ULPI transceiver vendor/product ID 0x%04x/0x%04x\n", vid, pid); for (i = 0; i < ARRAY_SIZE(ulpi_ids); i++) { if (ulpi_ids[i].id == ULPI_ID(vid, pid)) { pr_info("Found %s ULPI transceiver.\n", ulpi_ids[i].name); break; } } ret = ulpi_check_integrity(phy); if (ret) return ret; return ulpi_set_flags(phy); } static int ulpi_set_host(struct usb_otg *otg, struct usb_bus *host) { struct usb_phy *phy = otg->usb_phy; unsigned int flags = usb_phy_io_read(phy, ULPI_IFC_CTRL); if (!host) { otg->host = NULL; return 0; } otg->host = host; flags &= ~(ULPI_IFC_CTRL_6_PIN_SERIAL_MODE | ULPI_IFC_CTRL_3_PIN_SERIAL_MODE | ULPI_IFC_CTRL_CARKITMODE); if (phy->flags & ULPI_IC_6PIN_SERIAL) flags |= ULPI_IFC_CTRL_6_PIN_SERIAL_MODE; else if (phy->flags & ULPI_IC_3PIN_SERIAL) flags |= ULPI_IFC_CTRL_3_PIN_SERIAL_MODE; else if (phy->flags & ULPI_IC_CARKIT) flags |= ULPI_IFC_CTRL_CARKITMODE; return usb_phy_io_write(phy, flags, ULPI_IFC_CTRL); } static int ulpi_set_vbus(struct usb_otg *otg, bool on) { struct usb_phy *phy = otg->usb_phy; unsigned int flags = usb_phy_io_read(phy, ULPI_OTG_CTRL); flags &= ~(ULPI_OTG_CTRL_DRVVBUS | ULPI_OTG_CTRL_DRVVBUS_EXT); if (on) { if (phy->flags & ULPI_OTG_DRVVBUS) flags |= ULPI_OTG_CTRL_DRVVBUS; if (phy->flags & ULPI_OTG_DRVVBUS_EXT) flags |= ULPI_OTG_CTRL_DRVVBUS_EXT; } return usb_phy_io_write(phy, flags, ULPI_OTG_CTRL); } static void otg_ulpi_init(struct usb_phy *phy, struct usb_otg *otg, struct usb_phy_io_ops *ops, unsigned int flags) { phy->label = "ULPI"; phy->flags = flags; phy->io_ops = ops; phy->otg = otg; phy->init = ulpi_init; otg->usb_phy = phy; otg->set_host = ulpi_set_host; otg->set_vbus = ulpi_set_vbus; } struct usb_phy * otg_ulpi_create(struct usb_phy_io_ops *ops, unsigned int flags) { struct usb_phy *phy; struct usb_otg *otg; phy = kzalloc(sizeof(*phy), GFP_KERNEL); if (!phy) return NULL; otg = kzalloc(sizeof(*otg), GFP_KERNEL); if (!otg) { kfree(phy); return NULL; } otg_ulpi_init(phy, otg, ops, flags); return phy; } EXPORT_SYMBOL_GPL(otg_ulpi_create); struct usb_phy * devm_otg_ulpi_create(struct device *dev, struct usb_phy_io_ops *ops, unsigned int flags) { struct usb_phy *phy; struct usb_otg *otg; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return NULL; otg = devm_kzalloc(dev, sizeof(*otg), GFP_KERNEL); if (!otg) { devm_kfree(dev, phy); return NULL; } otg_ulpi_init(phy, otg, ops, flags); return phy; } EXPORT_SYMBOL_GPL(devm_otg_ulpi_create);
linux-master
drivers/usb/phy/phy-ulpi.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2012-2014 Freescale Semiconductor, Inc. * Copyright (C) 2012 Marek Vasut <[email protected]> * on behalf of DENX Software Engineering GmbH */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/usb/otg.h> #include <linux/stmp_device.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/iopoll.h> #define DRIVER_NAME "mxs_phy" /* Register Macro */ #define HW_USBPHY_PWD 0x00 #define HW_USBPHY_TX 0x10 #define HW_USBPHY_CTRL 0x30 #define HW_USBPHY_CTRL_SET 0x34 #define HW_USBPHY_CTRL_CLR 0x38 #define HW_USBPHY_DEBUG_SET 0x54 #define HW_USBPHY_DEBUG_CLR 0x58 #define HW_USBPHY_IP 0x90 #define HW_USBPHY_IP_SET 0x94 #define HW_USBPHY_IP_CLR 0x98 #define GM_USBPHY_TX_TXCAL45DP(x) (((x) & 0xf) << 16) #define GM_USBPHY_TX_TXCAL45DN(x) (((x) & 0xf) << 8) #define GM_USBPHY_TX_D_CAL(x) (((x) & 0xf) << 0) /* imx7ulp */ #define HW_USBPHY_PLL_SIC 0xa0 #define HW_USBPHY_PLL_SIC_SET 0xa4 #define HW_USBPHY_PLL_SIC_CLR 0xa8 #define BM_USBPHY_CTRL_SFTRST BIT(31) #define BM_USBPHY_CTRL_CLKGATE BIT(30) #define BM_USBPHY_CTRL_OTG_ID_VALUE BIT(27) #define BM_USBPHY_CTRL_ENAUTOSET_USBCLKS BIT(26) #define BM_USBPHY_CTRL_ENAUTOCLR_USBCLKGATE BIT(25) #define BM_USBPHY_CTRL_ENVBUSCHG_WKUP BIT(23) #define BM_USBPHY_CTRL_ENIDCHG_WKUP BIT(22) #define BM_USBPHY_CTRL_ENDPDMCHG_WKUP BIT(21) #define BM_USBPHY_CTRL_ENAUTOCLR_PHY_PWD BIT(20) #define BM_USBPHY_CTRL_ENAUTOCLR_CLKGATE BIT(19) #define BM_USBPHY_CTRL_ENAUTO_PWRON_PLL BIT(18) #define BM_USBPHY_CTRL_ENUTMILEVEL3 BIT(15) #define BM_USBPHY_CTRL_ENUTMILEVEL2 BIT(14) #define BM_USBPHY_CTRL_ENHOSTDISCONDETECT BIT(1) #define BM_USBPHY_IP_FIX (BIT(17) | BIT(18)) #define BM_USBPHY_DEBUG_CLKGATE BIT(30) /* imx7ulp */ #define BM_USBPHY_PLL_LOCK BIT(31) #define BM_USBPHY_PLL_REG_ENABLE BIT(21) #define BM_USBPHY_PLL_BYPASS BIT(16) #define BM_USBPHY_PLL_POWER BIT(12) #define BM_USBPHY_PLL_EN_USB_CLKS BIT(6) /* Anatop Registers */ #define ANADIG_ANA_MISC0 0x150 #define ANADIG_ANA_MISC0_SET 0x154 #define ANADIG_ANA_MISC0_CLR 0x158 #define ANADIG_USB1_CHRG_DETECT_SET 0x1b4 #define ANADIG_USB1_CHRG_DETECT_CLR 0x1b8 #define ANADIG_USB2_CHRG_DETECT_SET 0x214 #define ANADIG_USB1_CHRG_DETECT_EN_B BIT(20) #define ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B BIT(19) #define ANADIG_USB1_CHRG_DETECT_CHK_CONTACT BIT(18) #define ANADIG_USB1_VBUS_DET_STAT 0x1c0 #define ANADIG_USB1_VBUS_DET_STAT_VBUS_VALID BIT(3) #define ANADIG_USB1_CHRG_DET_STAT 0x1d0 #define ANADIG_USB1_CHRG_DET_STAT_DM_STATE BIT(2) #define ANADIG_USB1_CHRG_DET_STAT_CHRG_DETECTED BIT(1) #define ANADIG_USB1_CHRG_DET_STAT_PLUG_CONTACT BIT(0) #define ANADIG_USB2_VBUS_DET_STAT 0x220 #define ANADIG_USB1_LOOPBACK_SET 0x1e4 #define ANADIG_USB1_LOOPBACK_CLR 0x1e8 #define ANADIG_USB1_LOOPBACK_UTMI_TESTSTART BIT(0) #define ANADIG_USB2_LOOPBACK_SET 0x244 #define ANADIG_USB2_LOOPBACK_CLR 0x248 #define ANADIG_USB1_MISC 0x1f0 #define ANADIG_USB2_MISC 0x250 #define BM_ANADIG_ANA_MISC0_STOP_MODE_CONFIG BIT(12) #define BM_ANADIG_ANA_MISC0_STOP_MODE_CONFIG_SL BIT(11) #define BM_ANADIG_USB1_VBUS_DET_STAT_VBUS_VALID BIT(3) #define BM_ANADIG_USB2_VBUS_DET_STAT_VBUS_VALID BIT(3) #define BM_ANADIG_USB1_LOOPBACK_UTMI_DIG_TST1 BIT(2) #define BM_ANADIG_USB1_LOOPBACK_TSTI_TX_EN BIT(5) #define BM_ANADIG_USB2_LOOPBACK_UTMI_DIG_TST1 BIT(2) #define BM_ANADIG_USB2_LOOPBACK_TSTI_TX_EN BIT(5) #define BM_ANADIG_USB1_MISC_RX_VPIN_FS BIT(29) #define BM_ANADIG_USB1_MISC_RX_VMIN_FS BIT(28) #define BM_ANADIG_USB2_MISC_RX_VPIN_FS BIT(29) #define BM_ANADIG_USB2_MISC_RX_VMIN_FS BIT(28) #define to_mxs_phy(p) container_of((p), struct mxs_phy, phy) /* Do disconnection between PHY and controller without vbus */ #define MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS BIT(0) /* * The PHY will be in messy if there is a wakeup after putting * bus to suspend (set portsc.suspendM) but before setting PHY to low * power mode (set portsc.phcd). */ #define MXS_PHY_ABNORMAL_IN_SUSPEND BIT(1) /* * The SOF sends too fast after resuming, it will cause disconnection * between host and high speed device. */ #define MXS_PHY_SENDING_SOF_TOO_FAST BIT(2) /* * IC has bug fixes logic, they include * MXS_PHY_ABNORMAL_IN_SUSPEND and MXS_PHY_SENDING_SOF_TOO_FAST * which are described at above flags, the RTL will handle it * according to different versions. */ #define MXS_PHY_NEED_IP_FIX BIT(3) /* Minimum and maximum values for device tree entries */ #define MXS_PHY_TX_CAL45_MIN 35 #define MXS_PHY_TX_CAL45_MAX 54 #define MXS_PHY_TX_D_CAL_MIN 79 #define MXS_PHY_TX_D_CAL_MAX 119 struct mxs_phy_data { unsigned int flags; }; static const struct mxs_phy_data imx23_phy_data = { .flags = MXS_PHY_ABNORMAL_IN_SUSPEND | MXS_PHY_SENDING_SOF_TOO_FAST, }; static const struct mxs_phy_data imx6q_phy_data = { .flags = MXS_PHY_SENDING_SOF_TOO_FAST | MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS | MXS_PHY_NEED_IP_FIX, }; static const struct mxs_phy_data imx6sl_phy_data = { .flags = MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS | MXS_PHY_NEED_IP_FIX, }; static const struct mxs_phy_data vf610_phy_data = { .flags = MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS | MXS_PHY_NEED_IP_FIX, }; static const struct mxs_phy_data imx6sx_phy_data = { .flags = MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS, }; static const struct mxs_phy_data imx6ul_phy_data = { .flags = MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS, }; static const struct mxs_phy_data imx7ulp_phy_data = { }; static const struct of_device_id mxs_phy_dt_ids[] = { { .compatible = "fsl,imx6sx-usbphy", .data = &imx6sx_phy_data, }, { .compatible = "fsl,imx6sl-usbphy", .data = &imx6sl_phy_data, }, { .compatible = "fsl,imx6q-usbphy", .data = &imx6q_phy_data, }, { .compatible = "fsl,imx23-usbphy", .data = &imx23_phy_data, }, { .compatible = "fsl,vf610-usbphy", .data = &vf610_phy_data, }, { .compatible = "fsl,imx6ul-usbphy", .data = &imx6ul_phy_data, }, { .compatible = "fsl,imx7ulp-usbphy", .data = &imx7ulp_phy_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_phy_dt_ids); struct mxs_phy { struct usb_phy phy; struct clk *clk; const struct mxs_phy_data *data; struct regmap *regmap_anatop; int port_id; u32 tx_reg_set; u32 tx_reg_mask; }; static inline bool is_imx6q_phy(struct mxs_phy *mxs_phy) { return mxs_phy->data == &imx6q_phy_data; } static inline bool is_imx6sl_phy(struct mxs_phy *mxs_phy) { return mxs_phy->data == &imx6sl_phy_data; } static inline bool is_imx7ulp_phy(struct mxs_phy *mxs_phy) { return mxs_phy->data == &imx7ulp_phy_data; } /* * PHY needs some 32K cycles to switch from 32K clock to * bus (such as AHB/AXI, etc) clock. */ static void mxs_phy_clock_switch_delay(void) { usleep_range(300, 400); } static void mxs_phy_tx_init(struct mxs_phy *mxs_phy) { void __iomem *base = mxs_phy->phy.io_priv; u32 phytx; /* Update TX register if there is anything to write */ if (mxs_phy->tx_reg_mask) { phytx = readl(base + HW_USBPHY_TX); phytx &= ~mxs_phy->tx_reg_mask; phytx |= mxs_phy->tx_reg_set; writel(phytx, base + HW_USBPHY_TX); } } static int mxs_phy_pll_enable(void __iomem *base, bool enable) { int ret = 0; if (enable) { u32 value; writel(BM_USBPHY_PLL_REG_ENABLE, base + HW_USBPHY_PLL_SIC_SET); writel(BM_USBPHY_PLL_BYPASS, base + HW_USBPHY_PLL_SIC_CLR); writel(BM_USBPHY_PLL_POWER, base + HW_USBPHY_PLL_SIC_SET); ret = readl_poll_timeout(base + HW_USBPHY_PLL_SIC, value, (value & BM_USBPHY_PLL_LOCK) != 0, 100, 10000); if (ret) return ret; writel(BM_USBPHY_PLL_EN_USB_CLKS, base + HW_USBPHY_PLL_SIC_SET); } else { writel(BM_USBPHY_PLL_EN_USB_CLKS, base + HW_USBPHY_PLL_SIC_CLR); writel(BM_USBPHY_PLL_POWER, base + HW_USBPHY_PLL_SIC_CLR); writel(BM_USBPHY_PLL_BYPASS, base + HW_USBPHY_PLL_SIC_SET); writel(BM_USBPHY_PLL_REG_ENABLE, base + HW_USBPHY_PLL_SIC_CLR); } return ret; } static int mxs_phy_hw_init(struct mxs_phy *mxs_phy) { int ret; void __iomem *base = mxs_phy->phy.io_priv; if (is_imx7ulp_phy(mxs_phy)) { ret = mxs_phy_pll_enable(base, true); if (ret) return ret; } ret = stmp_reset_block(base + HW_USBPHY_CTRL); if (ret) goto disable_pll; /* Power up the PHY */ writel(0, base + HW_USBPHY_PWD); /* * USB PHY Ctrl Setting * - Auto clock/power on * - Enable full/low speed support */ writel(BM_USBPHY_CTRL_ENAUTOSET_USBCLKS | BM_USBPHY_CTRL_ENAUTOCLR_USBCLKGATE | BM_USBPHY_CTRL_ENAUTOCLR_PHY_PWD | BM_USBPHY_CTRL_ENAUTOCLR_CLKGATE | BM_USBPHY_CTRL_ENAUTO_PWRON_PLL | BM_USBPHY_CTRL_ENUTMILEVEL2 | BM_USBPHY_CTRL_ENUTMILEVEL3, base + HW_USBPHY_CTRL_SET); if (mxs_phy->data->flags & MXS_PHY_NEED_IP_FIX) writel(BM_USBPHY_IP_FIX, base + HW_USBPHY_IP_SET); if (mxs_phy->regmap_anatop) { unsigned int reg = mxs_phy->port_id ? ANADIG_USB1_CHRG_DETECT_SET : ANADIG_USB2_CHRG_DETECT_SET; /* * The external charger detector needs to be disabled, * or the signal at DP will be poor */ regmap_write(mxs_phy->regmap_anatop, reg, ANADIG_USB1_CHRG_DETECT_EN_B | ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B); } mxs_phy_tx_init(mxs_phy); return 0; disable_pll: if (is_imx7ulp_phy(mxs_phy)) mxs_phy_pll_enable(base, false); return ret; } /* Return true if the vbus is there */ static bool mxs_phy_get_vbus_status(struct mxs_phy *mxs_phy) { unsigned int vbus_value = 0; if (!mxs_phy->regmap_anatop) return false; if (mxs_phy->port_id == 0) regmap_read(mxs_phy->regmap_anatop, ANADIG_USB1_VBUS_DET_STAT, &vbus_value); else if (mxs_phy->port_id == 1) regmap_read(mxs_phy->regmap_anatop, ANADIG_USB2_VBUS_DET_STAT, &vbus_value); if (vbus_value & BM_ANADIG_USB1_VBUS_DET_STAT_VBUS_VALID) return true; else return false; } static void __mxs_phy_disconnect_line(struct mxs_phy *mxs_phy, bool disconnect) { void __iomem *base = mxs_phy->phy.io_priv; u32 reg; if (disconnect) writel_relaxed(BM_USBPHY_DEBUG_CLKGATE, base + HW_USBPHY_DEBUG_CLR); if (mxs_phy->port_id == 0) { reg = disconnect ? ANADIG_USB1_LOOPBACK_SET : ANADIG_USB1_LOOPBACK_CLR; regmap_write(mxs_phy->regmap_anatop, reg, BM_ANADIG_USB1_LOOPBACK_UTMI_DIG_TST1 | BM_ANADIG_USB1_LOOPBACK_TSTI_TX_EN); } else if (mxs_phy->port_id == 1) { reg = disconnect ? ANADIG_USB2_LOOPBACK_SET : ANADIG_USB2_LOOPBACK_CLR; regmap_write(mxs_phy->regmap_anatop, reg, BM_ANADIG_USB2_LOOPBACK_UTMI_DIG_TST1 | BM_ANADIG_USB2_LOOPBACK_TSTI_TX_EN); } if (!disconnect) writel_relaxed(BM_USBPHY_DEBUG_CLKGATE, base + HW_USBPHY_DEBUG_SET); /* Delay some time, and let Linestate be SE0 for controller */ if (disconnect) usleep_range(500, 1000); } static bool mxs_phy_is_otg_host(struct mxs_phy *mxs_phy) { return IS_ENABLED(CONFIG_USB_OTG) && mxs_phy->phy.last_event == USB_EVENT_ID; } static void mxs_phy_disconnect_line(struct mxs_phy *mxs_phy, bool on) { bool vbus_is_on = false; enum usb_phy_events last_event = mxs_phy->phy.last_event; /* If the SoCs don't need to disconnect line without vbus, quit */ if (!(mxs_phy->data->flags & MXS_PHY_DISCONNECT_LINE_WITHOUT_VBUS)) return; /* If the SoCs don't have anatop, quit */ if (!mxs_phy->regmap_anatop) return; vbus_is_on = mxs_phy_get_vbus_status(mxs_phy); if (on && ((!vbus_is_on && !mxs_phy_is_otg_host(mxs_phy)) || (last_event == USB_EVENT_VBUS))) __mxs_phy_disconnect_line(mxs_phy, true); else __mxs_phy_disconnect_line(mxs_phy, false); } static int mxs_phy_init(struct usb_phy *phy) { int ret; struct mxs_phy *mxs_phy = to_mxs_phy(phy); mxs_phy_clock_switch_delay(); ret = clk_prepare_enable(mxs_phy->clk); if (ret) return ret; return mxs_phy_hw_init(mxs_phy); } static void mxs_phy_shutdown(struct usb_phy *phy) { struct mxs_phy *mxs_phy = to_mxs_phy(phy); u32 value = BM_USBPHY_CTRL_ENVBUSCHG_WKUP | BM_USBPHY_CTRL_ENDPDMCHG_WKUP | BM_USBPHY_CTRL_ENIDCHG_WKUP | BM_USBPHY_CTRL_ENAUTOSET_USBCLKS | BM_USBPHY_CTRL_ENAUTOCLR_USBCLKGATE | BM_USBPHY_CTRL_ENAUTOCLR_PHY_PWD | BM_USBPHY_CTRL_ENAUTOCLR_CLKGATE | BM_USBPHY_CTRL_ENAUTO_PWRON_PLL; writel(value, phy->io_priv + HW_USBPHY_CTRL_CLR); writel(0xffffffff, phy->io_priv + HW_USBPHY_PWD); writel(BM_USBPHY_CTRL_CLKGATE, phy->io_priv + HW_USBPHY_CTRL_SET); if (is_imx7ulp_phy(mxs_phy)) mxs_phy_pll_enable(phy->io_priv, false); clk_disable_unprepare(mxs_phy->clk); } static bool mxs_phy_is_low_speed_connection(struct mxs_phy *mxs_phy) { unsigned int line_state; /* bit definition is the same for all controllers */ unsigned int dp_bit = BM_ANADIG_USB1_MISC_RX_VPIN_FS, dm_bit = BM_ANADIG_USB1_MISC_RX_VMIN_FS; unsigned int reg = ANADIG_USB1_MISC; /* If the SoCs don't have anatop, quit */ if (!mxs_phy->regmap_anatop) return false; if (mxs_phy->port_id == 0) reg = ANADIG_USB1_MISC; else if (mxs_phy->port_id == 1) reg = ANADIG_USB2_MISC; regmap_read(mxs_phy->regmap_anatop, reg, &line_state); if ((line_state & (dp_bit | dm_bit)) == dm_bit) return true; else return false; } static int mxs_phy_suspend(struct usb_phy *x, int suspend) { int ret; struct mxs_phy *mxs_phy = to_mxs_phy(x); bool low_speed_connection, vbus_is_on; low_speed_connection = mxs_phy_is_low_speed_connection(mxs_phy); vbus_is_on = mxs_phy_get_vbus_status(mxs_phy); if (suspend) { /* * FIXME: Do not power down RXPWD1PT1 bit for low speed * connect. The low speed connection will have problem at * very rare cases during usb suspend and resume process. */ if (low_speed_connection & vbus_is_on) { /* * If value to be set as pwd value is not 0xffffffff, * several 32Khz cycles are needed. */ mxs_phy_clock_switch_delay(); writel(0xffbfffff, x->io_priv + HW_USBPHY_PWD); } else { writel(0xffffffff, x->io_priv + HW_USBPHY_PWD); } writel(BM_USBPHY_CTRL_CLKGATE, x->io_priv + HW_USBPHY_CTRL_SET); clk_disable_unprepare(mxs_phy->clk); } else { mxs_phy_clock_switch_delay(); ret = clk_prepare_enable(mxs_phy->clk); if (ret) return ret; writel(BM_USBPHY_CTRL_CLKGATE, x->io_priv + HW_USBPHY_CTRL_CLR); writel(0, x->io_priv + HW_USBPHY_PWD); } return 0; } static int mxs_phy_set_wakeup(struct usb_phy *x, bool enabled) { struct mxs_phy *mxs_phy = to_mxs_phy(x); u32 value = BM_USBPHY_CTRL_ENVBUSCHG_WKUP | BM_USBPHY_CTRL_ENDPDMCHG_WKUP | BM_USBPHY_CTRL_ENIDCHG_WKUP; if (enabled) { mxs_phy_disconnect_line(mxs_phy, true); writel_relaxed(value, x->io_priv + HW_USBPHY_CTRL_SET); } else { writel_relaxed(value, x->io_priv + HW_USBPHY_CTRL_CLR); mxs_phy_disconnect_line(mxs_phy, false); } return 0; } static int mxs_phy_on_connect(struct usb_phy *phy, enum usb_device_speed speed) { dev_dbg(phy->dev, "%s device has connected\n", (speed == USB_SPEED_HIGH) ? "HS" : "FS/LS"); if (speed == USB_SPEED_HIGH) writel(BM_USBPHY_CTRL_ENHOSTDISCONDETECT, phy->io_priv + HW_USBPHY_CTRL_SET); return 0; } static int mxs_phy_on_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { dev_dbg(phy->dev, "%s device has disconnected\n", (speed == USB_SPEED_HIGH) ? "HS" : "FS/LS"); /* Sometimes, the speed is not high speed when the error occurs */ if (readl(phy->io_priv + HW_USBPHY_CTRL) & BM_USBPHY_CTRL_ENHOSTDISCONDETECT) writel(BM_USBPHY_CTRL_ENHOSTDISCONDETECT, phy->io_priv + HW_USBPHY_CTRL_CLR); return 0; } #define MXS_USB_CHARGER_DATA_CONTACT_TIMEOUT 100 static int mxs_charger_data_contact_detect(struct mxs_phy *x) { struct regmap *regmap = x->regmap_anatop; int i, stable_contact_count = 0; u32 val; /* Check if vbus is valid */ regmap_read(regmap, ANADIG_USB1_VBUS_DET_STAT, &val); if (!(val & ANADIG_USB1_VBUS_DET_STAT_VBUS_VALID)) { dev_err(x->phy.dev, "vbus is not valid\n"); return -EINVAL; } /* Enable charger detector */ regmap_write(regmap, ANADIG_USB1_CHRG_DETECT_CLR, ANADIG_USB1_CHRG_DETECT_EN_B); /* * - Do not check whether a charger is connected to the USB port * - Check whether the USB plug has been in contact with each other */ regmap_write(regmap, ANADIG_USB1_CHRG_DETECT_SET, ANADIG_USB1_CHRG_DETECT_CHK_CONTACT | ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B); /* Check if plug is connected */ for (i = 0; i < MXS_USB_CHARGER_DATA_CONTACT_TIMEOUT; i++) { regmap_read(regmap, ANADIG_USB1_CHRG_DET_STAT, &val); if (val & ANADIG_USB1_CHRG_DET_STAT_PLUG_CONTACT) { stable_contact_count++; if (stable_contact_count > 5) /* Data pin makes contact */ break; else usleep_range(5000, 10000); } else { stable_contact_count = 0; usleep_range(5000, 6000); } } if (i == MXS_USB_CHARGER_DATA_CONTACT_TIMEOUT) { dev_err(x->phy.dev, "Data pin can't make good contact.\n"); /* Disable charger detector */ regmap_write(regmap, ANADIG_USB1_CHRG_DETECT_SET, ANADIG_USB1_CHRG_DETECT_EN_B | ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B); return -ENXIO; } return 0; } static enum usb_charger_type mxs_charger_primary_detection(struct mxs_phy *x) { struct regmap *regmap = x->regmap_anatop; enum usb_charger_type chgr_type = UNKNOWN_TYPE; u32 val; /* * - Do check whether a charger is connected to the USB port * - Do not Check whether the USB plug has been in contact with * each other */ regmap_write(regmap, ANADIG_USB1_CHRG_DETECT_CLR, ANADIG_USB1_CHRG_DETECT_CHK_CONTACT | ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B); msleep(100); /* Check if it is a charger */ regmap_read(regmap, ANADIG_USB1_CHRG_DET_STAT, &val); if (!(val & ANADIG_USB1_CHRG_DET_STAT_CHRG_DETECTED)) { chgr_type = SDP_TYPE; dev_dbg(x->phy.dev, "It is a standard downstream port\n"); } /* Disable charger detector */ regmap_write(regmap, ANADIG_USB1_CHRG_DETECT_SET, ANADIG_USB1_CHRG_DETECT_EN_B | ANADIG_USB1_CHRG_DETECT_CHK_CHRG_B); return chgr_type; } /* * It must be called after DP is pulled up, which is used to * differentiate DCP and CDP. */ static enum usb_charger_type mxs_charger_secondary_detection(struct mxs_phy *x) { struct regmap *regmap = x->regmap_anatop; int val; msleep(80); regmap_read(regmap, ANADIG_USB1_CHRG_DET_STAT, &val); if (val & ANADIG_USB1_CHRG_DET_STAT_DM_STATE) { dev_dbg(x->phy.dev, "It is a dedicate charging port\n"); return DCP_TYPE; } else { dev_dbg(x->phy.dev, "It is a charging downstream port\n"); return CDP_TYPE; } } static enum usb_charger_type mxs_phy_charger_detect(struct usb_phy *phy) { struct mxs_phy *mxs_phy = to_mxs_phy(phy); struct regmap *regmap = mxs_phy->regmap_anatop; void __iomem *base = phy->io_priv; enum usb_charger_type chgr_type = UNKNOWN_TYPE; if (!regmap) return UNKNOWN_TYPE; if (mxs_charger_data_contact_detect(mxs_phy)) return chgr_type; chgr_type = mxs_charger_primary_detection(mxs_phy); if (chgr_type != SDP_TYPE) { /* Pull up DP via test */ writel_relaxed(BM_USBPHY_DEBUG_CLKGATE, base + HW_USBPHY_DEBUG_CLR); regmap_write(regmap, ANADIG_USB1_LOOPBACK_SET, ANADIG_USB1_LOOPBACK_UTMI_TESTSTART); chgr_type = mxs_charger_secondary_detection(mxs_phy); /* Stop the test */ regmap_write(regmap, ANADIG_USB1_LOOPBACK_CLR, ANADIG_USB1_LOOPBACK_UTMI_TESTSTART); writel_relaxed(BM_USBPHY_DEBUG_CLKGATE, base + HW_USBPHY_DEBUG_SET); } return chgr_type; } static int mxs_phy_probe(struct platform_device *pdev) { void __iomem *base; struct clk *clk; struct mxs_phy *mxs_phy; int ret; struct device_node *np = pdev->dev.of_node; u32 val; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "can't get the clock, err=%ld", PTR_ERR(clk)); return PTR_ERR(clk); } mxs_phy = devm_kzalloc(&pdev->dev, sizeof(*mxs_phy), GFP_KERNEL); if (!mxs_phy) return -ENOMEM; /* Some SoCs don't have anatop registers */ if (of_property_present(np, "fsl,anatop")) { mxs_phy->regmap_anatop = syscon_regmap_lookup_by_phandle (np, "fsl,anatop"); if (IS_ERR(mxs_phy->regmap_anatop)) { dev_dbg(&pdev->dev, "failed to find regmap for anatop\n"); return PTR_ERR(mxs_phy->regmap_anatop); } } /* Precompute which bits of the TX register are to be updated, if any */ if (!of_property_read_u32(np, "fsl,tx-cal-45-dn-ohms", &val) && val >= MXS_PHY_TX_CAL45_MIN && val <= MXS_PHY_TX_CAL45_MAX) { /* Scale to a 4-bit value */ val = (MXS_PHY_TX_CAL45_MAX - val) * 0xF / (MXS_PHY_TX_CAL45_MAX - MXS_PHY_TX_CAL45_MIN); mxs_phy->tx_reg_mask |= GM_USBPHY_TX_TXCAL45DN(~0); mxs_phy->tx_reg_set |= GM_USBPHY_TX_TXCAL45DN(val); } if (!of_property_read_u32(np, "fsl,tx-cal-45-dp-ohms", &val) && val >= MXS_PHY_TX_CAL45_MIN && val <= MXS_PHY_TX_CAL45_MAX) { /* Scale to a 4-bit value. */ val = (MXS_PHY_TX_CAL45_MAX - val) * 0xF / (MXS_PHY_TX_CAL45_MAX - MXS_PHY_TX_CAL45_MIN); mxs_phy->tx_reg_mask |= GM_USBPHY_TX_TXCAL45DP(~0); mxs_phy->tx_reg_set |= GM_USBPHY_TX_TXCAL45DP(val); } if (!of_property_read_u32(np, "fsl,tx-d-cal", &val) && val >= MXS_PHY_TX_D_CAL_MIN && val <= MXS_PHY_TX_D_CAL_MAX) { /* Scale to a 4-bit value. Round up the values and heavily * weight the rounding by adding 2/3 of the denominator. */ val = ((MXS_PHY_TX_D_CAL_MAX - val) * 0xF + (MXS_PHY_TX_D_CAL_MAX - MXS_PHY_TX_D_CAL_MIN) * 2/3) / (MXS_PHY_TX_D_CAL_MAX - MXS_PHY_TX_D_CAL_MIN); mxs_phy->tx_reg_mask |= GM_USBPHY_TX_D_CAL(~0); mxs_phy->tx_reg_set |= GM_USBPHY_TX_D_CAL(val); } ret = of_alias_get_id(np, "usbphy"); if (ret < 0) dev_dbg(&pdev->dev, "failed to get alias id, errno %d\n", ret); mxs_phy->port_id = ret; mxs_phy->phy.io_priv = base; mxs_phy->phy.dev = &pdev->dev; mxs_phy->phy.label = DRIVER_NAME; mxs_phy->phy.init = mxs_phy_init; mxs_phy->phy.shutdown = mxs_phy_shutdown; mxs_phy->phy.set_suspend = mxs_phy_suspend; mxs_phy->phy.notify_connect = mxs_phy_on_connect; mxs_phy->phy.notify_disconnect = mxs_phy_on_disconnect; mxs_phy->phy.type = USB_PHY_TYPE_USB2; mxs_phy->phy.set_wakeup = mxs_phy_set_wakeup; mxs_phy->phy.charger_detect = mxs_phy_charger_detect; mxs_phy->clk = clk; mxs_phy->data = of_device_get_match_data(&pdev->dev); platform_set_drvdata(pdev, mxs_phy); device_set_wakeup_capable(&pdev->dev, true); return usb_add_phy_dev(&mxs_phy->phy); } static void mxs_phy_remove(struct platform_device *pdev) { struct mxs_phy *mxs_phy = platform_get_drvdata(pdev); usb_remove_phy(&mxs_phy->phy); } #ifdef CONFIG_PM_SLEEP static void mxs_phy_enable_ldo_in_suspend(struct mxs_phy *mxs_phy, bool on) { unsigned int reg = on ? ANADIG_ANA_MISC0_SET : ANADIG_ANA_MISC0_CLR; /* If the SoCs don't have anatop, quit */ if (!mxs_phy->regmap_anatop) return; if (is_imx6q_phy(mxs_phy)) regmap_write(mxs_phy->regmap_anatop, reg, BM_ANADIG_ANA_MISC0_STOP_MODE_CONFIG); else if (is_imx6sl_phy(mxs_phy)) regmap_write(mxs_phy->regmap_anatop, reg, BM_ANADIG_ANA_MISC0_STOP_MODE_CONFIG_SL); } static int mxs_phy_system_suspend(struct device *dev) { struct mxs_phy *mxs_phy = dev_get_drvdata(dev); if (device_may_wakeup(dev)) mxs_phy_enable_ldo_in_suspend(mxs_phy, true); return 0; } static int mxs_phy_system_resume(struct device *dev) { struct mxs_phy *mxs_phy = dev_get_drvdata(dev); if (device_may_wakeup(dev)) mxs_phy_enable_ldo_in_suspend(mxs_phy, false); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(mxs_phy_pm, mxs_phy_system_suspend, mxs_phy_system_resume); static struct platform_driver mxs_phy_driver = { .probe = mxs_phy_probe, .remove_new = mxs_phy_remove, .driver = { .name = DRIVER_NAME, .of_match_table = mxs_phy_dt_ids, .pm = &mxs_phy_pm, }, }; static int __init mxs_phy_module_init(void) { return platform_driver_register(&mxs_phy_driver); } postcore_initcall(mxs_phy_module_init); static void __exit mxs_phy_module_exit(void) { platform_driver_unregister(&mxs_phy_driver); } module_exit(mxs_phy_module_exit); MODULE_ALIAS("platform:mxs-usb-phy"); MODULE_AUTHOR("Marek Vasut <[email protected]>"); MODULE_AUTHOR("Richard Zhao <[email protected]>"); MODULE_DESCRIPTION("Freescale MXS USB PHY driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-mxs-usb.c
// SPDX-License-Identifier: GPL-2.0+ /* * USB transceiver driver for AB8500 family chips * * Copyright (C) 2010-2013 ST-Ericsson AB * Mian Yousaf Kaukab <[email protected]> * Avinash Kumar <[email protected]> * Thirupathi Chippakurthy <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/usb/otg.h> #include <linux/slab.h> #include <linux/notifier.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/usb/musb-ux500.h> #include <linux/regulator/consumer.h> #include <linux/pinctrl/consumer.h> /* Bank AB8500_SYS_CTRL2_BLOCK */ #define AB8500_MAIN_WD_CTRL_REG 0x01 /* Bank AB8500_USB */ #define AB8500_USB_LINE_STAT_REG 0x80 #define AB8505_USB_LINE_STAT_REG 0x94 #define AB8500_USB_PHY_CTRL_REG 0x8A /* Bank AB8500_DEVELOPMENT */ #define AB8500_BANK12_ACCESS 0x00 /* Bank AB8500_DEBUG */ #define AB8500_USB_PHY_TUNE1 0x05 #define AB8500_USB_PHY_TUNE2 0x06 #define AB8500_USB_PHY_TUNE3 0x07 /* Bank AB8500_INTERRUPT */ #define AB8500_IT_SOURCE2_REG 0x01 #define AB8500_BIT_OTG_STAT_ID (1 << 0) #define AB8500_BIT_PHY_CTRL_HOST_EN (1 << 0) #define AB8500_BIT_PHY_CTRL_DEVICE_EN (1 << 1) #define AB8500_BIT_WD_CTRL_ENABLE (1 << 0) #define AB8500_BIT_WD_CTRL_KICK (1 << 1) #define AB8500_BIT_SOURCE2_VBUSDET (1 << 7) #define AB8500_WD_KICK_DELAY_US 100 /* usec */ #define AB8500_WD_V11_DISABLE_DELAY_US 100 /* usec */ #define AB8500_V20_31952_DISABLE_DELAY_US 100 /* usec */ /* Usb line status register */ enum ab8500_usb_link_status { USB_LINK_NOT_CONFIGURED_8500 = 0, USB_LINK_STD_HOST_NC_8500, USB_LINK_STD_HOST_C_NS_8500, USB_LINK_STD_HOST_C_S_8500, USB_LINK_HOST_CHG_NM_8500, USB_LINK_HOST_CHG_HS_8500, USB_LINK_HOST_CHG_HS_CHIRP_8500, USB_LINK_DEDICATED_CHG_8500, USB_LINK_ACA_RID_A_8500, USB_LINK_ACA_RID_B_8500, USB_LINK_ACA_RID_C_NM_8500, USB_LINK_ACA_RID_C_HS_8500, USB_LINK_ACA_RID_C_HS_CHIRP_8500, USB_LINK_HM_IDGND_8500, USB_LINK_RESERVED_8500, USB_LINK_NOT_VALID_LINK_8500, }; enum ab8505_usb_link_status { USB_LINK_NOT_CONFIGURED_8505 = 0, USB_LINK_STD_HOST_NC_8505, USB_LINK_STD_HOST_C_NS_8505, USB_LINK_STD_HOST_C_S_8505, USB_LINK_CDP_8505, USB_LINK_RESERVED0_8505, USB_LINK_RESERVED1_8505, USB_LINK_DEDICATED_CHG_8505, USB_LINK_ACA_RID_A_8505, USB_LINK_ACA_RID_B_8505, USB_LINK_ACA_RID_C_NM_8505, USB_LINK_RESERVED2_8505, USB_LINK_RESERVED3_8505, USB_LINK_HM_IDGND_8505, USB_LINK_CHARGERPORT_NOT_OK_8505, USB_LINK_CHARGER_DM_HIGH_8505, USB_LINK_PHYEN_NO_VBUS_NO_IDGND_8505, USB_LINK_STD_UPSTREAM_NO_IDGNG_NO_VBUS_8505, USB_LINK_STD_UPSTREAM_8505, USB_LINK_CHARGER_SE1_8505, USB_LINK_CARKIT_CHGR_1_8505, USB_LINK_CARKIT_CHGR_2_8505, USB_LINK_ACA_DOCK_CHGR_8505, USB_LINK_SAMSUNG_BOOT_CBL_PHY_EN_8505, USB_LINK_SAMSUNG_BOOT_CBL_PHY_DISB_8505, USB_LINK_SAMSUNG_UART_CBL_PHY_EN_8505, USB_LINK_SAMSUNG_UART_CBL_PHY_DISB_8505, USB_LINK_MOTOROLA_FACTORY_CBL_PHY_EN_8505, }; enum ab8500_usb_mode { USB_IDLE = 0, USB_PERIPHERAL, USB_HOST, USB_DEDICATED_CHG, USB_UART }; /* Register USB_LINK_STATUS interrupt */ #define AB8500_USB_FLAG_USE_LINK_STATUS_IRQ (1 << 0) /* Register ID_WAKEUP_F interrupt */ #define AB8500_USB_FLAG_USE_ID_WAKEUP_IRQ (1 << 1) /* Register VBUS_DET_F interrupt */ #define AB8500_USB_FLAG_USE_VBUS_DET_IRQ (1 << 2) /* Driver is using the ab-iddet driver*/ #define AB8500_USB_FLAG_USE_AB_IDDET (1 << 3) /* Enable setting regulators voltage */ #define AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE (1 << 4) struct ab8500_usb { struct usb_phy phy; struct device *dev; struct ab8500 *ab8500; unsigned vbus_draw; struct work_struct phy_dis_work; enum ab8500_usb_mode mode; struct clk *sysclk; struct regulator *v_ape; struct regulator *v_musb; struct regulator *v_ulpi; int saved_v_ulpi; int previous_link_status_state; struct pinctrl *pinctrl; struct pinctrl_state *pins_sleep; bool enabled_charging_detection; unsigned int flags; }; static inline struct ab8500_usb *phy_to_ab(struct usb_phy *x) { return container_of(x, struct ab8500_usb, phy); } static void ab8500_usb_wd_workaround(struct ab8500_usb *ab) { abx500_set_register_interruptible(ab->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_MAIN_WD_CTRL_REG, AB8500_BIT_WD_CTRL_ENABLE); udelay(AB8500_WD_KICK_DELAY_US); abx500_set_register_interruptible(ab->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_MAIN_WD_CTRL_REG, (AB8500_BIT_WD_CTRL_ENABLE | AB8500_BIT_WD_CTRL_KICK)); udelay(AB8500_WD_V11_DISABLE_DELAY_US); abx500_set_register_interruptible(ab->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_MAIN_WD_CTRL_REG, 0); } static void ab8500_usb_regulator_enable(struct ab8500_usb *ab) { int ret, volt; ret = regulator_enable(ab->v_ape); if (ret) dev_err(ab->dev, "Failed to enable v-ape\n"); if (ab->flags & AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE) { ab->saved_v_ulpi = regulator_get_voltage(ab->v_ulpi); if (ab->saved_v_ulpi < 0) dev_err(ab->dev, "Failed to get v_ulpi voltage\n"); ret = regulator_set_voltage(ab->v_ulpi, 1300000, 1350000); if (ret < 0) dev_err(ab->dev, "Failed to set the Vintcore to 1.3V, ret=%d\n", ret); ret = regulator_set_load(ab->v_ulpi, 28000); if (ret < 0) dev_err(ab->dev, "Failed to set optimum mode (ret=%d)\n", ret); } ret = regulator_enable(ab->v_ulpi); if (ret) dev_err(ab->dev, "Failed to enable vddulpivio18\n"); if (ab->flags & AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE) { volt = regulator_get_voltage(ab->v_ulpi); if ((volt != 1300000) && (volt != 1350000)) dev_err(ab->dev, "Vintcore is not set to 1.3V volt=%d\n", volt); } ret = regulator_enable(ab->v_musb); if (ret) dev_err(ab->dev, "Failed to enable musb_1v8\n"); } static void ab8500_usb_regulator_disable(struct ab8500_usb *ab) { int ret; regulator_disable(ab->v_musb); regulator_disable(ab->v_ulpi); /* USB is not the only consumer of Vintcore, restore old settings */ if (ab->flags & AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE) { if (ab->saved_v_ulpi > 0) { ret = regulator_set_voltage(ab->v_ulpi, ab->saved_v_ulpi, ab->saved_v_ulpi); if (ret < 0) dev_err(ab->dev, "Failed to set the Vintcore to %duV, ret=%d\n", ab->saved_v_ulpi, ret); } ret = regulator_set_load(ab->v_ulpi, 0); if (ret < 0) dev_err(ab->dev, "Failed to set optimum mode (ret=%d)\n", ret); } regulator_disable(ab->v_ape); } static void ab8500_usb_wd_linkstatus(struct ab8500_usb *ab, u8 bit) { /* Workaround for v2.0 bug # 31952 */ if (is_ab8500_2p0(ab->ab8500)) { abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, bit, bit); udelay(AB8500_V20_31952_DISABLE_DELAY_US); } } static void ab8500_usb_phy_enable(struct ab8500_usb *ab, bool sel_host) { u8 bit; bit = sel_host ? AB8500_BIT_PHY_CTRL_HOST_EN : AB8500_BIT_PHY_CTRL_DEVICE_EN; /* mux and configure USB pins to DEFAULT state */ ab->pinctrl = pinctrl_get_select(ab->dev, PINCTRL_STATE_DEFAULT); if (IS_ERR(ab->pinctrl)) dev_err(ab->dev, "could not get/set default pinstate\n"); if (clk_prepare_enable(ab->sysclk)) dev_err(ab->dev, "can't prepare/enable clock\n"); ab8500_usb_regulator_enable(ab); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, bit, bit); } static void ab8500_usb_phy_disable(struct ab8500_usb *ab, bool sel_host) { u8 bit; bit = sel_host ? AB8500_BIT_PHY_CTRL_HOST_EN : AB8500_BIT_PHY_CTRL_DEVICE_EN; ab8500_usb_wd_linkstatus(ab, bit); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, bit, 0); /* Needed to disable the phy.*/ ab8500_usb_wd_workaround(ab); clk_disable_unprepare(ab->sysclk); ab8500_usb_regulator_disable(ab); if (!IS_ERR(ab->pinctrl)) { /* configure USB pins to SLEEP state */ ab->pins_sleep = pinctrl_lookup_state(ab->pinctrl, PINCTRL_STATE_SLEEP); if (IS_ERR(ab->pins_sleep)) dev_dbg(ab->dev, "could not get sleep pinstate\n"); else if (pinctrl_select_state(ab->pinctrl, ab->pins_sleep)) dev_err(ab->dev, "could not set pins to sleep state\n"); /* * as USB pins are shared with iddet, release them to allow * iddet to request them */ pinctrl_put(ab->pinctrl); } } #define ab8500_usb_host_phy_en(ab) ab8500_usb_phy_enable(ab, true) #define ab8500_usb_host_phy_dis(ab) ab8500_usb_phy_disable(ab, true) #define ab8500_usb_peri_phy_en(ab) ab8500_usb_phy_enable(ab, false) #define ab8500_usb_peri_phy_dis(ab) ab8500_usb_phy_disable(ab, false) static int ab8505_usb_link_status_update(struct ab8500_usb *ab, enum ab8505_usb_link_status lsts) { enum ux500_musb_vbus_id_status event = 0; dev_dbg(ab->dev, "ab8505_usb_link_status_update %d\n", lsts); /* * Spurious link_status interrupts are seen at the time of * disconnection of a device in RIDA state */ if (ab->previous_link_status_state == USB_LINK_ACA_RID_A_8505 && (lsts == USB_LINK_STD_HOST_NC_8505)) return 0; ab->previous_link_status_state = lsts; switch (lsts) { case USB_LINK_ACA_RID_B_8505: event = UX500_MUSB_RIDB; fallthrough; case USB_LINK_NOT_CONFIGURED_8505: case USB_LINK_RESERVED0_8505: case USB_LINK_RESERVED1_8505: case USB_LINK_RESERVED2_8505: case USB_LINK_RESERVED3_8505: ab->mode = USB_IDLE; ab->phy.otg->default_a = false; ab->vbus_draw = 0; if (event != UX500_MUSB_RIDB) event = UX500_MUSB_NONE; /* * Fallback to default B_IDLE as nothing * is connected */ ab->phy.otg->state = OTG_STATE_B_IDLE; usb_phy_set_event(&ab->phy, USB_EVENT_NONE); break; case USB_LINK_ACA_RID_C_NM_8505: event = UX500_MUSB_RIDC; fallthrough; case USB_LINK_STD_HOST_NC_8505: case USB_LINK_STD_HOST_C_NS_8505: case USB_LINK_STD_HOST_C_S_8505: case USB_LINK_CDP_8505: if (ab->mode == USB_IDLE) { ab->mode = USB_PERIPHERAL; ab8500_usb_peri_phy_en(ab); atomic_notifier_call_chain(&ab->phy.notifier, UX500_MUSB_PREPARE, &ab->vbus_draw); usb_phy_set_event(&ab->phy, USB_EVENT_ENUMERATED); } if (event != UX500_MUSB_RIDC) event = UX500_MUSB_VBUS; break; case USB_LINK_ACA_RID_A_8505: case USB_LINK_ACA_DOCK_CHGR_8505: event = UX500_MUSB_RIDA; fallthrough; case USB_LINK_HM_IDGND_8505: if (ab->mode == USB_IDLE) { ab->mode = USB_HOST; ab8500_usb_host_phy_en(ab); atomic_notifier_call_chain(&ab->phy.notifier, UX500_MUSB_PREPARE, &ab->vbus_draw); } ab->phy.otg->default_a = true; if (event != UX500_MUSB_RIDA) event = UX500_MUSB_ID; atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); break; case USB_LINK_DEDICATED_CHG_8505: ab->mode = USB_DEDICATED_CHG; event = UX500_MUSB_CHARGER; atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); usb_phy_set_event(&ab->phy, USB_EVENT_CHARGER); break; /* * FIXME: For now we rely on the boot firmware to set up the necessary * PHY/pin configuration for UART mode. * * AB8505 does not seem to report any status change for UART cables, * possibly because it cannot detect them autonomously. * We may need to measure the ID resistance manually to reliably * detect UART cables after bootup. */ case USB_LINK_SAMSUNG_UART_CBL_PHY_EN_8505: case USB_LINK_SAMSUNG_UART_CBL_PHY_DISB_8505: if (ab->mode == USB_IDLE) { ab->mode = USB_UART; ab8500_usb_peri_phy_en(ab); } break; default: break; } return 0; } static int ab8500_usb_link_status_update(struct ab8500_usb *ab, enum ab8500_usb_link_status lsts) { enum ux500_musb_vbus_id_status event = 0; dev_dbg(ab->dev, "ab8500_usb_link_status_update %d\n", lsts); /* * Spurious link_status interrupts are seen in case of a * disconnection of a device in IDGND and RIDA stage */ if (ab->previous_link_status_state == USB_LINK_HM_IDGND_8500 && (lsts == USB_LINK_STD_HOST_C_NS_8500 || lsts == USB_LINK_STD_HOST_NC_8500)) return 0; if (ab->previous_link_status_state == USB_LINK_ACA_RID_A_8500 && lsts == USB_LINK_STD_HOST_NC_8500) return 0; ab->previous_link_status_state = lsts; switch (lsts) { case USB_LINK_ACA_RID_B_8500: event = UX500_MUSB_RIDB; fallthrough; case USB_LINK_NOT_CONFIGURED_8500: case USB_LINK_NOT_VALID_LINK_8500: ab->mode = USB_IDLE; ab->phy.otg->default_a = false; ab->vbus_draw = 0; if (event != UX500_MUSB_RIDB) event = UX500_MUSB_NONE; /* Fallback to default B_IDLE as nothing is connected */ ab->phy.otg->state = OTG_STATE_B_IDLE; usb_phy_set_event(&ab->phy, USB_EVENT_NONE); break; case USB_LINK_ACA_RID_C_NM_8500: case USB_LINK_ACA_RID_C_HS_8500: case USB_LINK_ACA_RID_C_HS_CHIRP_8500: event = UX500_MUSB_RIDC; fallthrough; case USB_LINK_STD_HOST_NC_8500: case USB_LINK_STD_HOST_C_NS_8500: case USB_LINK_STD_HOST_C_S_8500: case USB_LINK_HOST_CHG_NM_8500: case USB_LINK_HOST_CHG_HS_8500: case USB_LINK_HOST_CHG_HS_CHIRP_8500: if (ab->mode == USB_IDLE) { ab->mode = USB_PERIPHERAL; ab8500_usb_peri_phy_en(ab); atomic_notifier_call_chain(&ab->phy.notifier, UX500_MUSB_PREPARE, &ab->vbus_draw); usb_phy_set_event(&ab->phy, USB_EVENT_ENUMERATED); } if (event != UX500_MUSB_RIDC) event = UX500_MUSB_VBUS; break; case USB_LINK_ACA_RID_A_8500: event = UX500_MUSB_RIDA; fallthrough; case USB_LINK_HM_IDGND_8500: if (ab->mode == USB_IDLE) { ab->mode = USB_HOST; ab8500_usb_host_phy_en(ab); atomic_notifier_call_chain(&ab->phy.notifier, UX500_MUSB_PREPARE, &ab->vbus_draw); } ab->phy.otg->default_a = true; if (event != UX500_MUSB_RIDA) event = UX500_MUSB_ID; atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); break; case USB_LINK_DEDICATED_CHG_8500: ab->mode = USB_DEDICATED_CHG; event = UX500_MUSB_CHARGER; atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); usb_phy_set_event(&ab->phy, USB_EVENT_CHARGER); break; case USB_LINK_RESERVED_8500: break; } return 0; } /* * Connection Sequence: * 1. Link Status Interrupt * 2. Enable AB clock * 3. Enable AB regulators * 4. Enable USB phy * 5. Reset the musb controller * 6. Switch the ULPI GPIO pins to function mode * 7. Enable the musb Peripheral5 clock * 8. Restore MUSB context */ static int abx500_usb_link_status_update(struct ab8500_usb *ab) { u8 reg; int ret = 0; if (is_ab8500(ab->ab8500)) { enum ab8500_usb_link_status lsts; ret = abx500_get_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_LINE_STAT_REG, &reg); if (ret < 0) return ret; lsts = (reg >> 3) & 0x0F; ret = ab8500_usb_link_status_update(ab, lsts); } else if (is_ab8505(ab->ab8500)) { enum ab8505_usb_link_status lsts; ret = abx500_get_register_interruptible(ab->dev, AB8500_USB, AB8505_USB_LINE_STAT_REG, &reg); if (ret < 0) return ret; lsts = (reg >> 3) & 0x1F; ret = ab8505_usb_link_status_update(ab, lsts); } return ret; } /* * Disconnection Sequence: * 1. Disconnect Interrupt * 2. Disable regulators * 3. Disable AB clock * 4. Disable the Phy * 5. Link Status Interrupt * 6. Disable Musb Clock */ static irqreturn_t ab8500_usb_disconnect_irq(int irq, void *data) { struct ab8500_usb *ab = (struct ab8500_usb *) data; enum usb_phy_events event = USB_EVENT_NONE; /* Link status will not be updated till phy is disabled. */ if (ab->mode == USB_HOST) { ab->phy.otg->default_a = false; ab->vbus_draw = 0; atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); ab8500_usb_host_phy_dis(ab); ab->mode = USB_IDLE; } if (ab->mode == USB_PERIPHERAL) { atomic_notifier_call_chain(&ab->phy.notifier, event, &ab->vbus_draw); ab8500_usb_peri_phy_dis(ab); atomic_notifier_call_chain(&ab->phy.notifier, UX500_MUSB_CLEAN, &ab->vbus_draw); ab->mode = USB_IDLE; ab->phy.otg->default_a = false; ab->vbus_draw = 0; } if (ab->mode == USB_UART) { ab8500_usb_peri_phy_dis(ab); ab->mode = USB_IDLE; } if (is_ab8500_2p0(ab->ab8500)) { if (ab->mode == USB_DEDICATED_CHG) { ab8500_usb_wd_linkstatus(ab, AB8500_BIT_PHY_CTRL_DEVICE_EN); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, AB8500_BIT_PHY_CTRL_DEVICE_EN, 0); } } return IRQ_HANDLED; } static irqreturn_t ab8500_usb_link_status_irq(int irq, void *data) { struct ab8500_usb *ab = (struct ab8500_usb *)data; abx500_usb_link_status_update(ab); return IRQ_HANDLED; } static void ab8500_usb_phy_disable_work(struct work_struct *work) { struct ab8500_usb *ab = container_of(work, struct ab8500_usb, phy_dis_work); if (!ab->phy.otg->host) ab8500_usb_host_phy_dis(ab); if (!ab->phy.otg->gadget) ab8500_usb_peri_phy_dis(ab); } static int ab8500_usb_set_suspend(struct usb_phy *x, int suspend) { /* TODO */ return 0; } static int ab8500_usb_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { struct ab8500_usb *ab; if (!otg) return -ENODEV; ab = phy_to_ab(otg->usb_phy); ab->phy.otg->gadget = gadget; /* Some drivers call this function in atomic context. * Do not update ab8500 registers directly till this * is fixed. */ if ((ab->mode != USB_IDLE) && !gadget) { ab->mode = USB_IDLE; schedule_work(&ab->phy_dis_work); } return 0; } static int ab8500_usb_set_host(struct usb_otg *otg, struct usb_bus *host) { struct ab8500_usb *ab; if (!otg) return -ENODEV; ab = phy_to_ab(otg->usb_phy); ab->phy.otg->host = host; /* Some drivers call this function in atomic context. * Do not update ab8500 registers directly till this * is fixed. */ if ((ab->mode != USB_IDLE) && !host) { ab->mode = USB_IDLE; schedule_work(&ab->phy_dis_work); } return 0; } static void ab8500_usb_restart_phy(struct ab8500_usb *ab) { abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, AB8500_BIT_PHY_CTRL_DEVICE_EN, AB8500_BIT_PHY_CTRL_DEVICE_EN); udelay(100); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, AB8500_BIT_PHY_CTRL_DEVICE_EN, 0); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, AB8500_BIT_PHY_CTRL_HOST_EN, AB8500_BIT_PHY_CTRL_HOST_EN); udelay(100); abx500_mask_and_set_register_interruptible(ab->dev, AB8500_USB, AB8500_USB_PHY_CTRL_REG, AB8500_BIT_PHY_CTRL_HOST_EN, 0); } static int ab8500_usb_regulator_get(struct ab8500_usb *ab) { int err; ab->v_ape = devm_regulator_get(ab->dev, "v-ape"); if (IS_ERR(ab->v_ape)) { dev_err(ab->dev, "Could not get v-ape supply\n"); err = PTR_ERR(ab->v_ape); return err; } ab->v_ulpi = devm_regulator_get(ab->dev, "vddulpivio18"); if (IS_ERR(ab->v_ulpi)) { dev_err(ab->dev, "Could not get vddulpivio18 supply\n"); err = PTR_ERR(ab->v_ulpi); return err; } ab->v_musb = devm_regulator_get(ab->dev, "musb_1v8"); if (IS_ERR(ab->v_musb)) { dev_err(ab->dev, "Could not get musb_1v8 supply\n"); err = PTR_ERR(ab->v_musb); return err; } return 0; } static int ab8500_usb_irq_setup(struct platform_device *pdev, struct ab8500_usb *ab) { int err; int irq; if (ab->flags & AB8500_USB_FLAG_USE_LINK_STATUS_IRQ) { irq = platform_get_irq_byname(pdev, "USB_LINK_STATUS"); if (irq < 0) return irq; err = devm_request_threaded_irq(&pdev->dev, irq, NULL, ab8500_usb_link_status_irq, IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT, "usb-link-status", ab); if (err < 0) { dev_err(ab->dev, "request_irq failed for link status irq\n"); return err; } } if (ab->flags & AB8500_USB_FLAG_USE_ID_WAKEUP_IRQ) { irq = platform_get_irq_byname(pdev, "ID_WAKEUP_F"); if (irq < 0) return irq; err = devm_request_threaded_irq(&pdev->dev, irq, NULL, ab8500_usb_disconnect_irq, IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT, "usb-id-fall", ab); if (err < 0) { dev_err(ab->dev, "request_irq failed for ID fall irq\n"); return err; } } if (ab->flags & AB8500_USB_FLAG_USE_VBUS_DET_IRQ) { irq = platform_get_irq_byname(pdev, "VBUS_DET_F"); if (irq < 0) return irq; err = devm_request_threaded_irq(&pdev->dev, irq, NULL, ab8500_usb_disconnect_irq, IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT, "usb-vbus-fall", ab); if (err < 0) { dev_err(ab->dev, "request_irq failed for Vbus fall irq\n"); return err; } } return 0; } static void ab8500_usb_set_ab8500_tuning_values(struct ab8500_usb *ab) { int err; /* Enable the PBT/Bank 0x12 access */ err = abx500_set_register_interruptible(ab->dev, AB8500_DEVELOPMENT, AB8500_BANK12_ACCESS, 0x01); if (err < 0) dev_err(ab->dev, "Failed to enable bank12 access err=%d\n", err); err = abx500_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE1, 0xC8); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE1 register err=%d\n", err); err = abx500_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE2, 0x00); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE2 register err=%d\n", err); err = abx500_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE3, 0x78); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE3 register err=%d\n", err); /* Switch to normal mode/disable Bank 0x12 access */ err = abx500_set_register_interruptible(ab->dev, AB8500_DEVELOPMENT, AB8500_BANK12_ACCESS, 0x00); if (err < 0) dev_err(ab->dev, "Failed to switch bank12 access err=%d\n", err); } static void ab8500_usb_set_ab8505_tuning_values(struct ab8500_usb *ab) { int err; /* Enable the PBT/Bank 0x12 access */ err = abx500_mask_and_set_register_interruptible(ab->dev, AB8500_DEVELOPMENT, AB8500_BANK12_ACCESS, 0x01, 0x01); if (err < 0) dev_err(ab->dev, "Failed to enable bank12 access err=%d\n", err); err = abx500_mask_and_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE1, 0xC8, 0xC8); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE1 register err=%d\n", err); err = abx500_mask_and_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE2, 0x60, 0x60); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE2 register err=%d\n", err); err = abx500_mask_and_set_register_interruptible(ab->dev, AB8500_DEBUG, AB8500_USB_PHY_TUNE3, 0xFC, 0x80); if (err < 0) dev_err(ab->dev, "Failed to set PHY_TUNE3 register err=%d\n", err); /* Switch to normal mode/disable Bank 0x12 access */ err = abx500_mask_and_set_register_interruptible(ab->dev, AB8500_DEVELOPMENT, AB8500_BANK12_ACCESS, 0x00, 0x00); if (err < 0) dev_err(ab->dev, "Failed to switch bank12 access err=%d\n", err); } static int ab8500_usb_probe(struct platform_device *pdev) { struct ab8500_usb *ab; struct ab8500 *ab8500; struct usb_otg *otg; int err; int rev; ab8500 = dev_get_drvdata(pdev->dev.parent); rev = abx500_get_chip_id(&pdev->dev); if (is_ab8500_1p1_or_earlier(ab8500)) { dev_err(&pdev->dev, "Unsupported AB8500 chip rev=%d\n", rev); return -ENODEV; } ab = devm_kzalloc(&pdev->dev, sizeof(*ab), GFP_KERNEL); if (!ab) return -ENOMEM; otg = devm_kzalloc(&pdev->dev, sizeof(*otg), GFP_KERNEL); if (!otg) return -ENOMEM; ab->dev = &pdev->dev; ab->ab8500 = ab8500; ab->phy.dev = ab->dev; ab->phy.otg = otg; ab->phy.label = "ab8500"; ab->phy.set_suspend = ab8500_usb_set_suspend; ab->phy.otg->state = OTG_STATE_UNDEFINED; otg->usb_phy = &ab->phy; otg->set_host = ab8500_usb_set_host; otg->set_peripheral = ab8500_usb_set_peripheral; if (is_ab8500(ab->ab8500)) { ab->flags |= AB8500_USB_FLAG_USE_LINK_STATUS_IRQ | AB8500_USB_FLAG_USE_ID_WAKEUP_IRQ | AB8500_USB_FLAG_USE_VBUS_DET_IRQ | AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE; } else if (is_ab8505(ab->ab8500)) { ab->flags |= AB8500_USB_FLAG_USE_LINK_STATUS_IRQ | AB8500_USB_FLAG_USE_ID_WAKEUP_IRQ | AB8500_USB_FLAG_USE_VBUS_DET_IRQ | AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE; } /* Disable regulator voltage setting for AB8500 <= v2.0 */ if (is_ab8500_2p0_or_earlier(ab->ab8500)) ab->flags &= ~AB8500_USB_FLAG_REGULATOR_SET_VOLTAGE; platform_set_drvdata(pdev, ab); /* all: Disable phy when called from set_host and set_peripheral */ INIT_WORK(&ab->phy_dis_work, ab8500_usb_phy_disable_work); err = ab8500_usb_regulator_get(ab); if (err) return err; ab->sysclk = devm_clk_get(ab->dev, "sysclk"); if (IS_ERR(ab->sysclk)) { dev_err(ab->dev, "Could not get sysclk.\n"); return PTR_ERR(ab->sysclk); } err = ab8500_usb_irq_setup(pdev, ab); if (err < 0) return err; err = usb_add_phy(&ab->phy, USB_PHY_TYPE_USB2); if (err) { dev_err(&pdev->dev, "Can't register transceiver\n"); return err; } if (is_ab8500(ab->ab8500) && !is_ab8500_2p0_or_earlier(ab->ab8500)) /* Phy tuning values for AB8500 > v2.0 */ ab8500_usb_set_ab8500_tuning_values(ab); else if (is_ab8505(ab->ab8500)) /* Phy tuning values for AB8505 */ ab8500_usb_set_ab8505_tuning_values(ab); /* Needed to enable ID detection. */ ab8500_usb_wd_workaround(ab); /* * This is required for usb-link-status to work properly when a * cable is connected at boot time. */ ab8500_usb_restart_phy(ab); abx500_usb_link_status_update(ab); dev_info(&pdev->dev, "revision 0x%2x driver initialized\n", rev); return 0; } static void ab8500_usb_remove(struct platform_device *pdev) { struct ab8500_usb *ab = platform_get_drvdata(pdev); cancel_work_sync(&ab->phy_dis_work); usb_remove_phy(&ab->phy); if (ab->mode == USB_HOST) ab8500_usb_host_phy_dis(ab); else if (ab->mode == USB_PERIPHERAL) ab8500_usb_peri_phy_dis(ab); } static const struct platform_device_id ab8500_usb_devtype[] = { { .name = "ab8500-usb", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, ab8500_usb_devtype); static struct platform_driver ab8500_usb_driver = { .probe = ab8500_usb_probe, .remove_new = ab8500_usb_remove, .id_table = ab8500_usb_devtype, .driver = { .name = "abx5x0-usb", }, }; static int __init ab8500_usb_init(void) { return platform_driver_register(&ab8500_usb_driver); } subsys_initcall(ab8500_usb_init); static void __exit ab8500_usb_exit(void) { platform_driver_unregister(&ab8500_usb_driver); } module_exit(ab8500_usb_exit); MODULE_AUTHOR("ST-Ericsson AB"); MODULE_DESCRIPTION("AB8500 family usb transceiver driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-ab8500-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Google, Inc. * Copyright (C) 2013 NVIDIA Corporation * * Author: * Erik Gilling <[email protected]> * Benoit Goby <[email protected]> * Venu Byravarasu <[email protected]> */ #include <linux/delay.h> #include <linux/err.h> #include <linux/export.h> #include <linux/gpio/consumer.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/resource.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/regulator/consumer.h> #include <linux/usb/ehci_def.h> #include <linux/usb/of.h> #include <linux/usb/tegra_usb_phy.h> #include <linux/usb/ulpi.h> #define ULPI_VIEWPORT 0x170 /* PORTSC PTS/PHCD bits, Tegra20 only */ #define TEGRA_USB_PORTSC1 0x184 #define TEGRA_USB_PORTSC1_PTS(x) (((x) & 0x3) << 30) #define TEGRA_USB_PORTSC1_PHCD BIT(23) /* HOSTPC1 PTS/PHCD bits, Tegra30 and above */ #define TEGRA_USB_HOSTPC1_DEVLC 0x1b4 #define TEGRA_USB_HOSTPC1_DEVLC_PTS(x) (((x) & 0x7) << 29) #define TEGRA_USB_HOSTPC1_DEVLC_PHCD BIT(22) /* Bits of PORTSC1, which will get cleared by writing 1 into them */ #define TEGRA_PORTSC1_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) #define USB_SUSP_CTRL 0x400 #define USB_WAKE_ON_RESUME_EN BIT(2) #define USB_WAKE_ON_CNNT_EN_DEV BIT(3) #define USB_WAKE_ON_DISCON_EN_DEV BIT(4) #define USB_SUSP_CLR BIT(5) #define USB_PHY_CLK_VALID BIT(7) #define UTMIP_RESET BIT(11) #define UHSIC_RESET BIT(11) #define UTMIP_PHY_ENABLE BIT(12) #define ULPI_PHY_ENABLE BIT(13) #define USB_SUSP_SET BIT(14) #define USB_WAKEUP_DEBOUNCE_COUNT(x) (((x) & 0x7) << 16) #define USB_PHY_VBUS_SENSORS 0x404 #define B_SESS_VLD_WAKEUP_EN BIT(14) #define A_SESS_VLD_WAKEUP_EN BIT(22) #define A_VBUS_VLD_WAKEUP_EN BIT(30) #define USB_PHY_VBUS_WAKEUP_ID 0x408 #define ID_INT_EN BIT(0) #define ID_CHG_DET BIT(1) #define VBUS_WAKEUP_INT_EN BIT(8) #define VBUS_WAKEUP_CHG_DET BIT(9) #define VBUS_WAKEUP_STS BIT(10) #define VBUS_WAKEUP_WAKEUP_EN BIT(30) #define USB1_LEGACY_CTRL 0x410 #define USB1_NO_LEGACY_MODE BIT(0) #define USB1_VBUS_SENSE_CTL_MASK (3 << 1) #define USB1_VBUS_SENSE_CTL_VBUS_WAKEUP (0 << 1) #define USB1_VBUS_SENSE_CTL_AB_SESS_VLD_OR_VBUS_WAKEUP \ (1 << 1) #define USB1_VBUS_SENSE_CTL_AB_SESS_VLD (2 << 1) #define USB1_VBUS_SENSE_CTL_A_SESS_VLD (3 << 1) #define ULPI_TIMING_CTRL_0 0x424 #define ULPI_OUTPUT_PINMUX_BYP BIT(10) #define ULPI_CLKOUT_PINMUX_BYP BIT(11) #define ULPI_TIMING_CTRL_1 0x428 #define ULPI_DATA_TRIMMER_LOAD BIT(0) #define ULPI_DATA_TRIMMER_SEL(x) (((x) & 0x7) << 1) #define ULPI_STPDIRNXT_TRIMMER_LOAD BIT(16) #define ULPI_STPDIRNXT_TRIMMER_SEL(x) (((x) & 0x7) << 17) #define ULPI_DIR_TRIMMER_LOAD BIT(24) #define ULPI_DIR_TRIMMER_SEL(x) (((x) & 0x7) << 25) #define UTMIP_PLL_CFG1 0x804 #define UTMIP_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0) #define UTMIP_PLLU_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27) #define UTMIP_XCVR_CFG0 0x808 #define UTMIP_XCVR_SETUP(x) (((x) & 0xf) << 0) #define UTMIP_XCVR_SETUP_MSB(x) ((((x) & 0x70) >> 4) << 22) #define UTMIP_XCVR_LSRSLEW(x) (((x) & 0x3) << 8) #define UTMIP_XCVR_LSFSLEW(x) (((x) & 0x3) << 10) #define UTMIP_FORCE_PD_POWERDOWN BIT(14) #define UTMIP_FORCE_PD2_POWERDOWN BIT(16) #define UTMIP_FORCE_PDZI_POWERDOWN BIT(18) #define UTMIP_XCVR_LSBIAS_SEL BIT(21) #define UTMIP_XCVR_HSSLEW(x) (((x) & 0x3) << 4) #define UTMIP_XCVR_HSSLEW_MSB(x) ((((x) & 0x1fc) >> 2) << 25) #define UTMIP_BIAS_CFG0 0x80c #define UTMIP_OTGPD BIT(11) #define UTMIP_BIASPD BIT(10) #define UTMIP_HSSQUELCH_LEVEL(x) (((x) & 0x3) << 0) #define UTMIP_HSDISCON_LEVEL(x) (((x) & 0x3) << 2) #define UTMIP_HSDISCON_LEVEL_MSB(x) ((((x) & 0x4) >> 2) << 24) #define UTMIP_HSRX_CFG0 0x810 #define UTMIP_ELASTIC_LIMIT(x) (((x) & 0x1f) << 10) #define UTMIP_IDLE_WAIT(x) (((x) & 0x1f) << 15) #define UTMIP_HSRX_CFG1 0x814 #define UTMIP_HS_SYNC_START_DLY(x) (((x) & 0x1f) << 1) #define UTMIP_TX_CFG0 0x820 #define UTMIP_FS_PREABMLE_J BIT(19) #define UTMIP_HS_DISCON_DISABLE BIT(8) #define UTMIP_MISC_CFG0 0x824 #define UTMIP_DPDM_OBSERVE BIT(26) #define UTMIP_DPDM_OBSERVE_SEL(x) (((x) & 0xf) << 27) #define UTMIP_DPDM_OBSERVE_SEL_FS_J UTMIP_DPDM_OBSERVE_SEL(0xf) #define UTMIP_DPDM_OBSERVE_SEL_FS_K UTMIP_DPDM_OBSERVE_SEL(0xe) #define UTMIP_DPDM_OBSERVE_SEL_FS_SE1 UTMIP_DPDM_OBSERVE_SEL(0xd) #define UTMIP_DPDM_OBSERVE_SEL_FS_SE0 UTMIP_DPDM_OBSERVE_SEL(0xc) #define UTMIP_SUSPEND_EXIT_ON_EDGE BIT(22) #define UTMIP_MISC_CFG1 0x828 #define UTMIP_PLL_ACTIVE_DLY_COUNT(x) (((x) & 0x1f) << 18) #define UTMIP_PLLU_STABLE_COUNT(x) (((x) & 0xfff) << 6) #define UTMIP_DEBOUNCE_CFG0 0x82c #define UTMIP_BIAS_DEBOUNCE_A(x) (((x) & 0xffff) << 0) #define UTMIP_BAT_CHRG_CFG0 0x830 #define UTMIP_PD_CHRG BIT(0) #define UTMIP_SPARE_CFG0 0x834 #define FUSE_SETUP_SEL BIT(3) #define UTMIP_XCVR_CFG1 0x838 #define UTMIP_FORCE_PDDISC_POWERDOWN BIT(0) #define UTMIP_FORCE_PDCHRP_POWERDOWN BIT(2) #define UTMIP_FORCE_PDDR_POWERDOWN BIT(4) #define UTMIP_XCVR_TERM_RANGE_ADJ(x) (((x) & 0xf) << 18) #define UTMIP_BIAS_CFG1 0x83c #define UTMIP_BIAS_PDTRK_COUNT(x) (((x) & 0x1f) << 3) /* For Tegra30 and above only, the address is different in Tegra20 */ #define USB_USBMODE 0x1f8 #define USB_USBMODE_MASK (3 << 0) #define USB_USBMODE_HOST (3 << 0) #define USB_USBMODE_DEVICE (2 << 0) #define PMC_USB_AO 0xf0 #define VBUS_WAKEUP_PD_P0 BIT(2) #define ID_PD_P0 BIT(3) static DEFINE_SPINLOCK(utmip_pad_lock); static unsigned int utmip_pad_count; struct tegra_xtal_freq { unsigned int freq; u8 enable_delay; u8 stable_count; u8 active_delay; u8 xtal_freq_count; u16 debounce; }; static const struct tegra_xtal_freq tegra_freq_table[] = { { .freq = 12000000, .enable_delay = 0x02, .stable_count = 0x2F, .active_delay = 0x04, .xtal_freq_count = 0x76, .debounce = 0x7530, }, { .freq = 13000000, .enable_delay = 0x02, .stable_count = 0x33, .active_delay = 0x05, .xtal_freq_count = 0x7F, .debounce = 0x7EF4, }, { .freq = 19200000, .enable_delay = 0x03, .stable_count = 0x4B, .active_delay = 0x06, .xtal_freq_count = 0xBB, .debounce = 0xBB80, }, { .freq = 26000000, .enable_delay = 0x04, .stable_count = 0x66, .active_delay = 0x09, .xtal_freq_count = 0xFE, .debounce = 0xFDE8, }, }; static inline struct tegra_usb_phy *to_tegra_usb_phy(struct usb_phy *u_phy) { return container_of(u_phy, struct tegra_usb_phy, u_phy); } static void set_pts(struct tegra_usb_phy *phy, u8 pts_val) { void __iomem *base = phy->regs; u32 val; if (phy->soc_config->has_hostpc) { val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC); val &= ~TEGRA_USB_HOSTPC1_DEVLC_PTS(~0); val |= TEGRA_USB_HOSTPC1_DEVLC_PTS(pts_val); writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC); } else { val = readl_relaxed(base + TEGRA_USB_PORTSC1); val &= ~TEGRA_PORTSC1_RWC_BITS; val &= ~TEGRA_USB_PORTSC1_PTS(~0); val |= TEGRA_USB_PORTSC1_PTS(pts_val); writel_relaxed(val, base + TEGRA_USB_PORTSC1); } } static void set_phcd(struct tegra_usb_phy *phy, bool enable) { void __iomem *base = phy->regs; u32 val; if (phy->soc_config->has_hostpc) { val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC); if (enable) val |= TEGRA_USB_HOSTPC1_DEVLC_PHCD; else val &= ~TEGRA_USB_HOSTPC1_DEVLC_PHCD; writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC); } else { val = readl_relaxed(base + TEGRA_USB_PORTSC1) & ~PORT_RWC_BITS; if (enable) val |= TEGRA_USB_PORTSC1_PHCD; else val &= ~TEGRA_USB_PORTSC1_PHCD; writel_relaxed(val, base + TEGRA_USB_PORTSC1); } } static int utmip_pad_open(struct tegra_usb_phy *phy) { int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) { dev_err(phy->u_phy.dev, "Failed to enable UTMI-pads clock: %d\n", ret); return ret; } spin_lock(&utmip_pad_lock); ret = reset_control_deassert(phy->pad_rst); if (ret) { dev_err(phy->u_phy.dev, "Failed to initialize UTMI-pads reset: %d\n", ret); goto unlock; } ret = reset_control_assert(phy->pad_rst); if (ret) { dev_err(phy->u_phy.dev, "Failed to assert UTMI-pads reset: %d\n", ret); goto unlock; } udelay(1); ret = reset_control_deassert(phy->pad_rst); if (ret) dev_err(phy->u_phy.dev, "Failed to deassert UTMI-pads reset: %d\n", ret); unlock: spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmip_pad_close(struct tegra_usb_phy *phy) { int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) { dev_err(phy->u_phy.dev, "Failed to enable UTMI-pads clock: %d\n", ret); return ret; } ret = reset_control_assert(phy->pad_rst); if (ret) dev_err(phy->u_phy.dev, "Failed to assert UTMI-pads reset: %d\n", ret); udelay(1); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmip_pad_power_on(struct tegra_usb_phy *phy) { struct tegra_utmip_config *config = phy->config; void __iomem *base = phy->pad_regs; u32 val; int err; err = clk_prepare_enable(phy->pad_clk); if (err) return err; spin_lock(&utmip_pad_lock); if (utmip_pad_count++ == 0) { val = readl_relaxed(base + UTMIP_BIAS_CFG0); val &= ~(UTMIP_OTGPD | UTMIP_BIASPD); if (phy->soc_config->requires_extra_tuning_parameters) { val &= ~(UTMIP_HSSQUELCH_LEVEL(~0) | UTMIP_HSDISCON_LEVEL(~0) | UTMIP_HSDISCON_LEVEL_MSB(~0)); val |= UTMIP_HSSQUELCH_LEVEL(config->hssquelch_level); val |= UTMIP_HSDISCON_LEVEL(config->hsdiscon_level); val |= UTMIP_HSDISCON_LEVEL_MSB(config->hsdiscon_level); } writel_relaxed(val, base + UTMIP_BIAS_CFG0); } if (phy->pad_wakeup) { phy->pad_wakeup = false; utmip_pad_count--; } spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return 0; } static int utmip_pad_power_off(struct tegra_usb_phy *phy) { void __iomem *base = phy->pad_regs; u32 val; int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) return ret; spin_lock(&utmip_pad_lock); if (!utmip_pad_count) { dev_err(phy->u_phy.dev, "UTMIP pad already powered off\n"); ret = -EINVAL; goto ulock; } /* * In accordance to TRM, OTG and Bias pad circuits could be turned off * to save power if wake is enabled, but the VBUS-change detection * method is board-specific and these circuits may need to be enabled * to generate wakeup event, hence we will just keep them both enabled. */ if (phy->wakeup_enabled) { phy->pad_wakeup = true; utmip_pad_count++; } if (--utmip_pad_count == 0) { val = readl_relaxed(base + UTMIP_BIAS_CFG0); val |= UTMIP_OTGPD | UTMIP_BIASPD; writel_relaxed(val, base + UTMIP_BIAS_CFG0); } ulock: spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmi_wait_register(void __iomem *reg, u32 mask, u32 result) { u32 tmp; return readl_relaxed_poll_timeout(reg, tmp, (tmp & mask) == result, 2000, 6000); } static void utmi_phy_clk_disable(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * The USB driver may have already initiated the phy clock * disable so wait to see if the clock turns off and if not * then proceed with gating the clock. */ if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0) == 0) return; if (phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(10, 100); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); } else { set_phcd(phy, true); } if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0)) dev_err(phy->u_phy.dev, "Timeout waiting for PHY to stabilize on disable\n"); } static void utmi_phy_clk_enable(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * The USB driver may have already initiated the phy clock * enable so wait to see if the clock turns on and if not * then proceed with ungating the clock. */ if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, USB_PHY_CLK_VALID) == 0) return; if (phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(10, 100); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); } else { set_phcd(phy, false); } if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, USB_PHY_CLK_VALID)) dev_err(phy->u_phy.dev, "Timeout waiting for PHY to stabilize on enable\n"); } static int utmi_phy_power_on(struct tegra_usb_phy *phy) { struct tegra_utmip_config *config = phy->config; void __iomem *base = phy->regs; u32 val; int err; val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->is_legacy_phy) { val = readl_relaxed(base + USB1_LEGACY_CTRL); val |= USB1_NO_LEGACY_MODE; writel_relaxed(val, base + USB1_LEGACY_CTRL); } val = readl_relaxed(base + UTMIP_TX_CFG0); val |= UTMIP_FS_PREABMLE_J; writel_relaxed(val, base + UTMIP_TX_CFG0); val = readl_relaxed(base + UTMIP_HSRX_CFG0); val &= ~(UTMIP_IDLE_WAIT(~0) | UTMIP_ELASTIC_LIMIT(~0)); val |= UTMIP_IDLE_WAIT(config->idle_wait_delay); val |= UTMIP_ELASTIC_LIMIT(config->elastic_limit); writel_relaxed(val, base + UTMIP_HSRX_CFG0); val = readl_relaxed(base + UTMIP_HSRX_CFG1); val &= ~UTMIP_HS_SYNC_START_DLY(~0); val |= UTMIP_HS_SYNC_START_DLY(config->hssync_start_delay); writel_relaxed(val, base + UTMIP_HSRX_CFG1); val = readl_relaxed(base + UTMIP_DEBOUNCE_CFG0); val &= ~UTMIP_BIAS_DEBOUNCE_A(~0); val |= UTMIP_BIAS_DEBOUNCE_A(phy->freq->debounce); writel_relaxed(val, base + UTMIP_DEBOUNCE_CFG0); val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_SUSPEND_EXIT_ON_EDGE; writel_relaxed(val, base + UTMIP_MISC_CFG0); if (!phy->soc_config->utmi_pll_config_in_car_module) { val = readl_relaxed(base + UTMIP_MISC_CFG1); val &= ~(UTMIP_PLL_ACTIVE_DLY_COUNT(~0) | UTMIP_PLLU_STABLE_COUNT(~0)); val |= UTMIP_PLL_ACTIVE_DLY_COUNT(phy->freq->active_delay) | UTMIP_PLLU_STABLE_COUNT(phy->freq->stable_count); writel_relaxed(val, base + UTMIP_MISC_CFG1); val = readl_relaxed(base + UTMIP_PLL_CFG1); val &= ~(UTMIP_XTAL_FREQ_COUNT(~0) | UTMIP_PLLU_ENABLE_DLY_COUNT(~0)); val |= UTMIP_XTAL_FREQ_COUNT(phy->freq->xtal_freq_count) | UTMIP_PLLU_ENABLE_DLY_COUNT(phy->freq->enable_delay); writel_relaxed(val, base + UTMIP_PLL_CFG1); } val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_WAKE_ON_RESUME_EN; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->mode != USB_DR_MODE_HOST) { val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~(USB_WAKE_ON_CNNT_EN_DEV | USB_WAKE_ON_DISCON_EN_DEV); writel_relaxed(val, base + USB_SUSP_CTRL); val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val &= ~VBUS_WAKEUP_WAKEUP_EN; val &= ~(ID_CHG_DET | VBUS_WAKEUP_CHG_DET); writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); val = readl_relaxed(base + USB_PHY_VBUS_SENSORS); val &= ~(A_VBUS_VLD_WAKEUP_EN | A_SESS_VLD_WAKEUP_EN); val &= ~(B_SESS_VLD_WAKEUP_EN); writel_relaxed(val, base + USB_PHY_VBUS_SENSORS); val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val &= ~UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); } else { val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val |= UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); } err = utmip_pad_power_on(phy); if (err) return err; val = readl_relaxed(base + UTMIP_XCVR_CFG0); val &= ~(UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN | UTMIP_FORCE_PDZI_POWERDOWN | UTMIP_XCVR_LSBIAS_SEL | UTMIP_XCVR_SETUP(~0) | UTMIP_XCVR_SETUP_MSB(~0) | UTMIP_XCVR_LSFSLEW(~0) | UTMIP_XCVR_LSRSLEW(~0)); if (!config->xcvr_setup_use_fuses) { val |= UTMIP_XCVR_SETUP(config->xcvr_setup); val |= UTMIP_XCVR_SETUP_MSB(config->xcvr_setup); } val |= UTMIP_XCVR_LSFSLEW(config->xcvr_lsfslew); val |= UTMIP_XCVR_LSRSLEW(config->xcvr_lsrslew); if (phy->soc_config->requires_extra_tuning_parameters) { val &= ~(UTMIP_XCVR_HSSLEW(~0) | UTMIP_XCVR_HSSLEW_MSB(~0)); val |= UTMIP_XCVR_HSSLEW(config->xcvr_hsslew); val |= UTMIP_XCVR_HSSLEW_MSB(config->xcvr_hsslew); } writel_relaxed(val, base + UTMIP_XCVR_CFG0); val = readl_relaxed(base + UTMIP_XCVR_CFG1); val &= ~(UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN | UTMIP_FORCE_PDDR_POWERDOWN | UTMIP_XCVR_TERM_RANGE_ADJ(~0)); val |= UTMIP_XCVR_TERM_RANGE_ADJ(config->term_range_adj); writel_relaxed(val, base + UTMIP_XCVR_CFG1); val = readl_relaxed(base + UTMIP_BIAS_CFG1); val &= ~UTMIP_BIAS_PDTRK_COUNT(~0); val |= UTMIP_BIAS_PDTRK_COUNT(0x5); writel_relaxed(val, base + UTMIP_BIAS_CFG1); val = readl_relaxed(base + UTMIP_SPARE_CFG0); if (config->xcvr_setup_use_fuses) val |= FUSE_SETUP_SEL; else val &= ~FUSE_SETUP_SEL; writel_relaxed(val, base + UTMIP_SPARE_CFG0); if (!phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_PHY_ENABLE; writel_relaxed(val, base + USB_SUSP_CTRL); } val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->is_legacy_phy) { val = readl_relaxed(base + USB1_LEGACY_CTRL); val &= ~USB1_VBUS_SENSE_CTL_MASK; val |= USB1_VBUS_SENSE_CTL_A_SESS_VLD; writel_relaxed(val, base + USB1_LEGACY_CTRL); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); } utmi_phy_clk_enable(phy); if (phy->soc_config->requires_usbmode_setup) { val = readl_relaxed(base + USB_USBMODE); val &= ~USB_USBMODE_MASK; if (phy->mode == USB_DR_MODE_HOST) val |= USB_USBMODE_HOST; else val |= USB_USBMODE_DEVICE; writel_relaxed(val, base + USB_USBMODE); } if (!phy->is_legacy_phy) set_pts(phy, 0); return 0; } static int utmi_phy_power_off(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * Give hardware time to settle down after VBUS disconnection, * otherwise PHY will immediately wake up from suspend. */ if (phy->wakeup_enabled && phy->mode != USB_DR_MODE_HOST) readl_relaxed_poll_timeout(base + USB_PHY_VBUS_WAKEUP_ID, val, !(val & VBUS_WAKEUP_STS), 5000, 100000); utmi_phy_clk_disable(phy); /* PHY won't resume if reset is asserted */ if (!phy->wakeup_enabled) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); } val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val |= UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); if (!phy->wakeup_enabled) { val = readl_relaxed(base + UTMIP_XCVR_CFG0); val |= UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN | UTMIP_FORCE_PDZI_POWERDOWN; writel_relaxed(val, base + UTMIP_XCVR_CFG0); } val = readl_relaxed(base + UTMIP_XCVR_CFG1); val |= UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN | UTMIP_FORCE_PDDR_POWERDOWN; writel_relaxed(val, base + UTMIP_XCVR_CFG1); if (phy->wakeup_enabled) { val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_WAKEUP_DEBOUNCE_COUNT(~0); val |= USB_WAKEUP_DEBOUNCE_COUNT(5); val |= USB_WAKE_ON_RESUME_EN; writel_relaxed(val, base + USB_SUSP_CTRL); /* * Ask VBUS sensor to generate wake event once cable is * connected. */ if (phy->mode != USB_DR_MODE_HOST) { val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val |= VBUS_WAKEUP_WAKEUP_EN; val &= ~(ID_CHG_DET | VBUS_WAKEUP_CHG_DET); writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); val = readl_relaxed(base + USB_PHY_VBUS_SENSORS); val |= A_VBUS_VLD_WAKEUP_EN; writel_relaxed(val, base + USB_PHY_VBUS_SENSORS); } } return utmip_pad_power_off(phy); } static void utmi_phy_preresume(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_TX_CFG0); val |= UTMIP_HS_DISCON_DISABLE; writel_relaxed(val, base + UTMIP_TX_CFG0); } static void utmi_phy_postresume(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_TX_CFG0); val &= ~UTMIP_HS_DISCON_DISABLE; writel_relaxed(val, base + UTMIP_TX_CFG0); } static void utmi_phy_restore_start(struct tegra_usb_phy *phy, enum tegra_usb_phy_port_speed port_speed) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_DPDM_OBSERVE_SEL(~0); if (port_speed == TEGRA_USB_PHY_PORT_SPEED_LOW) val |= UTMIP_DPDM_OBSERVE_SEL_FS_K; else val |= UTMIP_DPDM_OBSERVE_SEL_FS_J; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(1, 10); val = readl_relaxed(base + UTMIP_MISC_CFG0); val |= UTMIP_DPDM_OBSERVE; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(10, 100); } static void utmi_phy_restore_end(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_DPDM_OBSERVE; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(10, 100); } static int ulpi_phy_power_on(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; int err; gpiod_set_value_cansleep(phy->reset_gpio, 1); err = clk_prepare_enable(phy->clk); if (err) return err; usleep_range(5000, 6000); gpiod_set_value_cansleep(phy->reset_gpio, 0); usleep_range(1000, 2000); val = readl_relaxed(base + USB_SUSP_CTRL); val |= UHSIC_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); val = readl_relaxed(base + ULPI_TIMING_CTRL_0); val |= ULPI_OUTPUT_PINMUX_BYP | ULPI_CLKOUT_PINMUX_BYP; writel_relaxed(val, base + ULPI_TIMING_CTRL_0); val = readl_relaxed(base + USB_SUSP_CTRL); val |= ULPI_PHY_ENABLE; writel_relaxed(val, base + USB_SUSP_CTRL); val = 0; writel_relaxed(val, base + ULPI_TIMING_CTRL_1); val |= ULPI_DATA_TRIMMER_SEL(4); val |= ULPI_STPDIRNXT_TRIMMER_SEL(4); val |= ULPI_DIR_TRIMMER_SEL(4); writel_relaxed(val, base + ULPI_TIMING_CTRL_1); usleep_range(10, 100); val |= ULPI_DATA_TRIMMER_LOAD; val |= ULPI_STPDIRNXT_TRIMMER_LOAD; val |= ULPI_DIR_TRIMMER_LOAD; writel_relaxed(val, base + ULPI_TIMING_CTRL_1); /* Fix VbusInvalid due to floating VBUS */ err = usb_phy_io_write(phy->ulpi, 0x40, 0x08); if (err) { dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err); goto disable_clk; } err = usb_phy_io_write(phy->ulpi, 0x80, 0x0B); if (err) { dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err); goto disable_clk; } val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(100, 1000); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); return 0; disable_clk: clk_disable_unprepare(phy->clk); return err; } static int ulpi_phy_power_off(struct tegra_usb_phy *phy) { gpiod_set_value_cansleep(phy->reset_gpio, 1); usleep_range(5000, 6000); clk_disable_unprepare(phy->clk); /* * Wakeup currently unimplemented for ULPI, thus PHY needs to be * force-resumed. */ if (WARN_ON_ONCE(phy->wakeup_enabled)) { ulpi_phy_power_on(phy); return -EOPNOTSUPP; } return 0; } static int tegra_usb_phy_power_on(struct tegra_usb_phy *phy) { int err; if (phy->powered_on) return 0; if (phy->is_ulpi_phy) err = ulpi_phy_power_on(phy); else err = utmi_phy_power_on(phy); if (err) return err; phy->powered_on = true; /* Let PHY settle down */ usleep_range(2000, 2500); return 0; } static int tegra_usb_phy_power_off(struct tegra_usb_phy *phy) { int err; if (!phy->powered_on) return 0; if (phy->is_ulpi_phy) err = ulpi_phy_power_off(phy); else err = utmi_phy_power_off(phy); if (err) return err; phy->powered_on = false; return 0; } static void tegra_usb_phy_shutdown(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (WARN_ON(!phy->freq)) return; usb_phy_set_wakeup(u_phy, false); tegra_usb_phy_power_off(phy); if (!phy->is_ulpi_phy) utmip_pad_close(phy); regulator_disable(phy->vbus); clk_disable_unprepare(phy->pll_u); phy->freq = NULL; } static irqreturn_t tegra_usb_phy_isr(int irq, void *data) { u32 val, int_mask = ID_CHG_DET | VBUS_WAKEUP_CHG_DET; struct tegra_usb_phy *phy = data; void __iomem *base = phy->regs; /* * The PHY interrupt also wakes the USB controller driver since * interrupt is shared. We don't do anything in the PHY driver, * so just clear the interrupt. */ val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); return val & int_mask ? IRQ_HANDLED : IRQ_NONE; } static int tegra_usb_phy_set_wakeup(struct usb_phy *u_phy, bool enable) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); void __iomem *base = phy->regs; int ret = 0; u32 val; if (phy->wakeup_enabled && phy->mode != USB_DR_MODE_HOST && phy->irq > 0) { disable_irq(phy->irq); val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val &= ~(ID_INT_EN | VBUS_WAKEUP_INT_EN); writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); enable_irq(phy->irq); free_irq(phy->irq, phy); phy->wakeup_enabled = false; } if (enable && phy->mode != USB_DR_MODE_HOST && phy->irq > 0) { ret = request_irq(phy->irq, tegra_usb_phy_isr, IRQF_SHARED, dev_name(phy->u_phy.dev), phy); if (!ret) { disable_irq(phy->irq); /* * USB clock will be resumed once wake event will be * generated. The ID-change event requires to have * interrupts enabled, otherwise it won't be generated. */ val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val |= ID_INT_EN | VBUS_WAKEUP_INT_EN; writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); enable_irq(phy->irq); } else { dev_err(phy->u_phy.dev, "Failed to request interrupt: %d", ret); enable = false; } } phy->wakeup_enabled = enable; return ret; } static int tegra_usb_phy_set_suspend(struct usb_phy *u_phy, int suspend) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); int ret; if (WARN_ON(!phy->freq)) return -EINVAL; /* * PHY is sharing IRQ with the CI driver, hence here we either * disable interrupt for both PHY and CI or for CI only. The * interrupt needs to be disabled while hardware is reprogrammed * because interrupt touches the programmed registers, and thus, * there could be a race condition. */ if (phy->irq > 0) disable_irq(phy->irq); if (suspend) ret = tegra_usb_phy_power_off(phy); else ret = tegra_usb_phy_power_on(phy); if (phy->irq > 0) enable_irq(phy->irq); return ret; } static int tegra_usb_phy_configure_pmc(struct tegra_usb_phy *phy) { int err, val = 0; /* older device-trees don't have PMC regmap */ if (!phy->pmc_regmap) return 0; /* * Tegra20 has a different layout of PMC USB register bits and AO is * enabled by default after system reset on Tegra20, so assume nothing * to do on Tegra20. */ if (!phy->soc_config->requires_pmc_ao_power_up) return 0; /* enable VBUS wake-up detector */ if (phy->mode != USB_DR_MODE_HOST) val |= VBUS_WAKEUP_PD_P0 << phy->instance * 4; /* enable ID-pin ACC detector for OTG mode switching */ if (phy->mode == USB_DR_MODE_OTG) val |= ID_PD_P0 << phy->instance * 4; /* disable detectors to reset them */ err = regmap_set_bits(phy->pmc_regmap, PMC_USB_AO, val); if (err) { dev_err(phy->u_phy.dev, "Failed to disable PMC AO: %d\n", err); return err; } usleep_range(10, 100); /* enable detectors */ err = regmap_clear_bits(phy->pmc_regmap, PMC_USB_AO, val); if (err) { dev_err(phy->u_phy.dev, "Failed to enable PMC AO: %d\n", err); return err; } /* detectors starts to work after 10ms */ usleep_range(10000, 15000); return 0; } static int tegra_usb_phy_init(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); unsigned long parent_rate; unsigned int i; int err; if (WARN_ON(phy->freq)) return 0; err = clk_prepare_enable(phy->pll_u); if (err) return err; parent_rate = clk_get_rate(clk_get_parent(phy->pll_u)); for (i = 0; i < ARRAY_SIZE(tegra_freq_table); i++) { if (tegra_freq_table[i].freq == parent_rate) { phy->freq = &tegra_freq_table[i]; break; } } if (!phy->freq) { dev_err(phy->u_phy.dev, "Invalid pll_u parent rate %ld\n", parent_rate); err = -EINVAL; goto disable_clk; } err = regulator_enable(phy->vbus); if (err) { dev_err(phy->u_phy.dev, "Failed to enable USB VBUS regulator: %d\n", err); goto disable_clk; } if (!phy->is_ulpi_phy) { err = utmip_pad_open(phy); if (err) goto disable_vbus; } err = tegra_usb_phy_configure_pmc(phy); if (err) goto close_phy; err = tegra_usb_phy_power_on(phy); if (err) goto close_phy; return 0; close_phy: if (!phy->is_ulpi_phy) utmip_pad_close(phy); disable_vbus: regulator_disable(phy->vbus); disable_clk: clk_disable_unprepare(phy->pll_u); phy->freq = NULL; return err; } void tegra_usb_phy_preresume(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_preresume(phy); } EXPORT_SYMBOL_GPL(tegra_usb_phy_preresume); void tegra_usb_phy_postresume(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_postresume(phy); } EXPORT_SYMBOL_GPL(tegra_usb_phy_postresume); void tegra_ehci_phy_restore_start(struct usb_phy *u_phy, enum tegra_usb_phy_port_speed port_speed) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_restore_start(phy, port_speed); } EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_start); void tegra_ehci_phy_restore_end(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_restore_end(phy); } EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_end); static int read_utmi_param(struct platform_device *pdev, const char *param, u8 *dest) { u32 value; int err; err = of_property_read_u32(pdev->dev.of_node, param, &value); if (err) dev_err(&pdev->dev, "Failed to read USB UTMI parameter %s: %d\n", param, err); else *dest = value; return err; } static int utmi_phy_probe(struct tegra_usb_phy *tegra_phy, struct platform_device *pdev) { struct tegra_utmip_config *config; struct resource *res; int err; tegra_phy->is_ulpi_phy = false; res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) { dev_err(&pdev->dev, "Failed to get UTMI pad regs\n"); return -ENXIO; } /* * Note that UTMI pad registers are shared by all PHYs, therefore * devm_platform_ioremap_resource() can't be used here. */ tegra_phy->pad_regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!tegra_phy->pad_regs) { dev_err(&pdev->dev, "Failed to remap UTMI pad regs\n"); return -ENOMEM; } tegra_phy->config = devm_kzalloc(&pdev->dev, sizeof(*config), GFP_KERNEL); if (!tegra_phy->config) return -ENOMEM; config = tegra_phy->config; err = read_utmi_param(pdev, "nvidia,hssync-start-delay", &config->hssync_start_delay); if (err) return err; err = read_utmi_param(pdev, "nvidia,elastic-limit", &config->elastic_limit); if (err) return err; err = read_utmi_param(pdev, "nvidia,idle-wait-delay", &config->idle_wait_delay); if (err) return err; err = read_utmi_param(pdev, "nvidia,term-range-adj", &config->term_range_adj); if (err) return err; err = read_utmi_param(pdev, "nvidia,xcvr-lsfslew", &config->xcvr_lsfslew); if (err) return err; err = read_utmi_param(pdev, "nvidia,xcvr-lsrslew", &config->xcvr_lsrslew); if (err) return err; if (tegra_phy->soc_config->requires_extra_tuning_parameters) { err = read_utmi_param(pdev, "nvidia,xcvr-hsslew", &config->xcvr_hsslew); if (err) return err; err = read_utmi_param(pdev, "nvidia,hssquelch-level", &config->hssquelch_level); if (err) return err; err = read_utmi_param(pdev, "nvidia,hsdiscon-level", &config->hsdiscon_level); if (err) return err; } config->xcvr_setup_use_fuses = of_property_read_bool( pdev->dev.of_node, "nvidia,xcvr-setup-use-fuses"); if (!config->xcvr_setup_use_fuses) { err = read_utmi_param(pdev, "nvidia,xcvr-setup", &config->xcvr_setup); if (err) return err; } return 0; } static void tegra_usb_phy_put_pmc_device(void *dev) { put_device(dev); } static int tegra_usb_phy_parse_pmc(struct device *dev, struct tegra_usb_phy *phy) { struct platform_device *pmc_pdev; struct of_phandle_args args; int err; err = of_parse_phandle_with_fixed_args(dev->of_node, "nvidia,pmc", 1, 0, &args); if (err) { if (err != -ENOENT) return err; dev_warn_once(dev, "nvidia,pmc is missing, please update your device-tree\n"); return 0; } pmc_pdev = of_find_device_by_node(args.np); of_node_put(args.np); if (!pmc_pdev) return -ENODEV; err = devm_add_action_or_reset(dev, tegra_usb_phy_put_pmc_device, &pmc_pdev->dev); if (err) return err; if (!platform_get_drvdata(pmc_pdev)) return -EPROBE_DEFER; phy->pmc_regmap = dev_get_regmap(&pmc_pdev->dev, "usb_sleepwalk"); if (!phy->pmc_regmap) return -EINVAL; phy->instance = args.args[0]; return 0; } static const struct tegra_phy_soc_config tegra20_soc_config = { .utmi_pll_config_in_car_module = false, .has_hostpc = false, .requires_usbmode_setup = false, .requires_extra_tuning_parameters = false, .requires_pmc_ao_power_up = false, }; static const struct tegra_phy_soc_config tegra30_soc_config = { .utmi_pll_config_in_car_module = true, .has_hostpc = true, .requires_usbmode_setup = true, .requires_extra_tuning_parameters = true, .requires_pmc_ao_power_up = true, }; static const struct of_device_id tegra_usb_phy_id_table[] = { { .compatible = "nvidia,tegra30-usb-phy", .data = &tegra30_soc_config }, { .compatible = "nvidia,tegra20-usb-phy", .data = &tegra20_soc_config }, { }, }; MODULE_DEVICE_TABLE(of, tegra_usb_phy_id_table); static int tegra_usb_phy_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct tegra_usb_phy *tegra_phy; enum usb_phy_interface phy_type; struct reset_control *reset; struct gpio_desc *gpiod; struct resource *res; struct usb_phy *phy; int err; tegra_phy = devm_kzalloc(&pdev->dev, sizeof(*tegra_phy), GFP_KERNEL); if (!tegra_phy) return -ENOMEM; tegra_phy->soc_config = of_device_get_match_data(&pdev->dev); tegra_phy->irq = platform_get_irq_optional(pdev, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Failed to get I/O memory\n"); return -ENXIO; } /* * Note that PHY and USB controller are using shared registers, * therefore devm_platform_ioremap_resource() can't be used here. */ tegra_phy->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!tegra_phy->regs) { dev_err(&pdev->dev, "Failed to remap I/O memory\n"); return -ENOMEM; } tegra_phy->is_legacy_phy = of_property_read_bool(np, "nvidia,has-legacy-mode"); if (of_property_present(np, "dr_mode")) tegra_phy->mode = usb_get_dr_mode(&pdev->dev); else tegra_phy->mode = USB_DR_MODE_HOST; if (tegra_phy->mode == USB_DR_MODE_UNKNOWN) { dev_err(&pdev->dev, "dr_mode is invalid\n"); return -EINVAL; } /* On some boards, the VBUS regulator doesn't need to be controlled */ tegra_phy->vbus = devm_regulator_get(&pdev->dev, "vbus"); if (IS_ERR(tegra_phy->vbus)) return PTR_ERR(tegra_phy->vbus); tegra_phy->pll_u = devm_clk_get(&pdev->dev, "pll_u"); err = PTR_ERR_OR_ZERO(tegra_phy->pll_u); if (err) { dev_err(&pdev->dev, "Failed to get pll_u clock: %d\n", err); return err; } err = tegra_usb_phy_parse_pmc(&pdev->dev, tegra_phy); if (err) { dev_err_probe(&pdev->dev, err, "Failed to get PMC regmap\n"); return err; } phy_type = of_usb_get_phy_mode(np); switch (phy_type) { case USBPHY_INTERFACE_MODE_UTMI: err = utmi_phy_probe(tegra_phy, pdev); if (err) return err; tegra_phy->pad_clk = devm_clk_get(&pdev->dev, "utmi-pads"); err = PTR_ERR_OR_ZERO(tegra_phy->pad_clk); if (err) { dev_err(&pdev->dev, "Failed to get UTMIP pad clock: %d\n", err); return err; } reset = devm_reset_control_get_optional_shared(&pdev->dev, "utmi-pads"); err = PTR_ERR_OR_ZERO(reset); if (err) { dev_err(&pdev->dev, "Failed to get UTMI-pads reset: %d\n", err); return err; } tegra_phy->pad_rst = reset; break; case USBPHY_INTERFACE_MODE_ULPI: tegra_phy->is_ulpi_phy = true; tegra_phy->clk = devm_clk_get(&pdev->dev, "ulpi-link"); err = PTR_ERR_OR_ZERO(tegra_phy->clk); if (err) { dev_err(&pdev->dev, "Failed to get ULPI clock: %d\n", err); return err; } gpiod = devm_gpiod_get(&pdev->dev, "nvidia,phy-reset", GPIOD_OUT_HIGH); err = PTR_ERR_OR_ZERO(gpiod); if (err) { dev_err(&pdev->dev, "Request failed for reset GPIO: %d\n", err); return err; } err = gpiod_set_consumer_name(gpiod, "ulpi_phy_reset_b"); if (err) { dev_err(&pdev->dev, "Failed to set up reset GPIO name: %d\n", err); return err; } tegra_phy->reset_gpio = gpiod; phy = devm_otg_ulpi_create(&pdev->dev, &ulpi_viewport_access_ops, 0); if (!phy) { dev_err(&pdev->dev, "Failed to create ULPI OTG\n"); return -ENOMEM; } tegra_phy->ulpi = phy; tegra_phy->ulpi->io_priv = tegra_phy->regs + ULPI_VIEWPORT; break; default: dev_err(&pdev->dev, "phy_type %u is invalid or unsupported\n", phy_type); return -EINVAL; } tegra_phy->u_phy.dev = &pdev->dev; tegra_phy->u_phy.init = tegra_usb_phy_init; tegra_phy->u_phy.shutdown = tegra_usb_phy_shutdown; tegra_phy->u_phy.set_wakeup = tegra_usb_phy_set_wakeup; tegra_phy->u_phy.set_suspend = tegra_usb_phy_set_suspend; platform_set_drvdata(pdev, tegra_phy); return usb_add_phy_dev(&tegra_phy->u_phy); } static void tegra_usb_phy_remove(struct platform_device *pdev) { struct tegra_usb_phy *tegra_phy = platform_get_drvdata(pdev); usb_remove_phy(&tegra_phy->u_phy); } static struct platform_driver tegra_usb_phy_driver = { .probe = tegra_usb_phy_probe, .remove_new = tegra_usb_phy_remove, .driver = { .name = "tegra-phy", .of_match_table = tegra_usb_phy_id_table, }, }; module_platform_driver(tegra_usb_phy_driver); MODULE_DESCRIPTION("Tegra USB PHY driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/phy/phy-tegra-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * NXP ISP1301 USB transceiver driver * * Copyright (C) 2012 Roland Stigge * * Author: Roland Stigge <[email protected]> */ #include <linux/module.h> #include <linux/mutex.h> #include <linux/i2c.h> #include <linux/usb/phy.h> #include <linux/usb/isp1301.h> #define DRV_NAME "isp1301" struct isp1301 { struct usb_phy phy; struct mutex mutex; struct i2c_client *client; }; #define phy_to_isp(p) (container_of((p), struct isp1301, phy)) static const struct i2c_device_id isp1301_id[] = { { "isp1301", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, isp1301_id); static const struct of_device_id isp1301_of_match[] = { {.compatible = "nxp,isp1301" }, { }, }; MODULE_DEVICE_TABLE(of, isp1301_of_match); static struct i2c_client *isp1301_i2c_client; static int __isp1301_write(struct isp1301 *isp, u8 reg, u8 value, u8 clear) { return i2c_smbus_write_byte_data(isp->client, reg | clear, value); } static int isp1301_write(struct isp1301 *isp, u8 reg, u8 value) { return __isp1301_write(isp, reg, value, 0); } static int isp1301_clear(struct isp1301 *isp, u8 reg, u8 value) { return __isp1301_write(isp, reg, value, ISP1301_I2C_REG_CLEAR_ADDR); } static int isp1301_phy_init(struct usb_phy *phy) { struct isp1301 *isp = phy_to_isp(phy); /* Disable transparent UART mode first */ isp1301_clear(isp, ISP1301_I2C_MODE_CONTROL_1, MC1_UART_EN); isp1301_clear(isp, ISP1301_I2C_MODE_CONTROL_1, ~MC1_SPEED_REG); isp1301_write(isp, ISP1301_I2C_MODE_CONTROL_1, MC1_SPEED_REG); isp1301_clear(isp, ISP1301_I2C_MODE_CONTROL_2, ~0); isp1301_write(isp, ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_PSW_EN | MC2_SPD_SUSP_CTRL)); isp1301_clear(isp, ISP1301_I2C_OTG_CONTROL_1, ~0); isp1301_write(isp, ISP1301_I2C_MODE_CONTROL_1, MC1_DAT_SE0); isp1301_write(isp, ISP1301_I2C_OTG_CONTROL_1, (OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN)); isp1301_clear(isp, ISP1301_I2C_OTG_CONTROL_1, (OTG1_DM_PULLUP | OTG1_DP_PULLUP)); /* mask all interrupts */ isp1301_clear(isp, ISP1301_I2C_INTERRUPT_LATCH, ~0); isp1301_clear(isp, ISP1301_I2C_INTERRUPT_FALLING, ~0); isp1301_clear(isp, ISP1301_I2C_INTERRUPT_RISING, ~0); return 0; } static int isp1301_phy_set_vbus(struct usb_phy *phy, int on) { struct isp1301 *isp = phy_to_isp(phy); if (on) isp1301_write(isp, ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV); else isp1301_clear(isp, ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV); return 0; } static int isp1301_probe(struct i2c_client *client) { struct isp1301 *isp; struct usb_phy *phy; isp = devm_kzalloc(&client->dev, sizeof(*isp), GFP_KERNEL); if (!isp) return -ENOMEM; isp->client = client; mutex_init(&isp->mutex); phy = &isp->phy; phy->dev = &client->dev; phy->label = DRV_NAME; phy->init = isp1301_phy_init; phy->set_vbus = isp1301_phy_set_vbus; phy->type = USB_PHY_TYPE_USB2; i2c_set_clientdata(client, isp); usb_add_phy_dev(phy); isp1301_i2c_client = client; return 0; } static void isp1301_remove(struct i2c_client *client) { struct isp1301 *isp = i2c_get_clientdata(client); usb_remove_phy(&isp->phy); isp1301_i2c_client = NULL; } static struct i2c_driver isp1301_driver = { .driver = { .name = DRV_NAME, .of_match_table = isp1301_of_match, }, .probe = isp1301_probe, .remove = isp1301_remove, .id_table = isp1301_id, }; module_i2c_driver(isp1301_driver); struct i2c_client *isp1301_get_client(struct device_node *node) { struct i2c_client *client; /* reference of ISP1301 I2C node via DT */ client = of_find_i2c_device_by_node(node); if (client) return client; /* non-DT: only one ISP1301 chip supported */ return isp1301_i2c_client; } EXPORT_SYMBOL_GPL(isp1301_get_client); MODULE_AUTHOR("Roland Stigge <[email protected]>"); MODULE_DESCRIPTION("NXP ISP1301 USB transceiver driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-isp1301.c
// SPDX-License-Identifier: GPL-2.0+ /* * twl6030_usb - TWL6030 USB transceiver, talking to OMAP OTG driver. * * Copyright (C) 2010 Texas Instruments Incorporated - https://www.ti.com * * Author: Hema HK <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/usb/musb.h> #include <linux/usb/phy_companion.h> #include <linux/phy/omap_usb.h> #include <linux/mfd/twl.h> #include <linux/regulator/consumer.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/of.h> /* usb register definitions */ #define USB_VENDOR_ID_LSB 0x00 #define USB_VENDOR_ID_MSB 0x01 #define USB_PRODUCT_ID_LSB 0x02 #define USB_PRODUCT_ID_MSB 0x03 #define USB_VBUS_CTRL_SET 0x04 #define USB_VBUS_CTRL_CLR 0x05 #define USB_ID_CTRL_SET 0x06 #define USB_ID_CTRL_CLR 0x07 #define USB_VBUS_INT_SRC 0x08 #define USB_VBUS_INT_LATCH_SET 0x09 #define USB_VBUS_INT_LATCH_CLR 0x0A #define USB_VBUS_INT_EN_LO_SET 0x0B #define USB_VBUS_INT_EN_LO_CLR 0x0C #define USB_VBUS_INT_EN_HI_SET 0x0D #define USB_VBUS_INT_EN_HI_CLR 0x0E #define USB_ID_INT_SRC 0x0F #define USB_ID_INT_LATCH_SET 0x10 #define USB_ID_INT_LATCH_CLR 0x11 #define USB_ID_INT_EN_LO_SET 0x12 #define USB_ID_INT_EN_LO_CLR 0x13 #define USB_ID_INT_EN_HI_SET 0x14 #define USB_ID_INT_EN_HI_CLR 0x15 #define USB_OTG_ADP_CTRL 0x16 #define USB_OTG_ADP_HIGH 0x17 #define USB_OTG_ADP_LOW 0x18 #define USB_OTG_ADP_RISE 0x19 #define USB_OTG_REVISION 0x1A /* to be moved to LDO */ #define TWL6030_MISC2 0xE5 #define TWL6030_CFG_LDO_PD2 0xF5 #define TWL6030_BACKUP_REG 0xFA #define STS_HW_CONDITIONS 0x21 /* In module TWL6030_MODULE_PM_MASTER */ #define STS_HW_CONDITIONS 0x21 #define STS_USB_ID BIT(2) /* In module TWL6030_MODULE_PM_RECEIVER */ #define VUSB_CFG_TRANS 0x71 #define VUSB_CFG_STATE 0x72 #define VUSB_CFG_VOLTAGE 0x73 /* in module TWL6030_MODULE_MAIN_CHARGE */ #define CHARGERUSB_CTRL1 0x8 #define CONTROLLER_STAT1 0x03 #define VBUS_DET BIT(2) struct twl6030_usb { struct phy_companion comparator; struct device *dev; /* for vbus reporting with irqs disabled */ spinlock_t lock; struct regulator *usb3v3; /* used to check initial cable status after probe */ struct delayed_work get_status_work; /* used to set vbus, in atomic path */ struct work_struct set_vbus_work; int irq1; int irq2; enum musb_vbus_id_status linkstat; u8 asleep; bool vbus_enable; }; #define comparator_to_twl(x) container_of((x), struct twl6030_usb, comparator) /*-------------------------------------------------------------------------*/ static inline int twl6030_writeb(struct twl6030_usb *twl, u8 module, u8 data, u8 address) { int ret = 0; ret = twl_i2c_write_u8(module, data, address); if (ret < 0) dev_err(twl->dev, "Write[0x%x] Error %d\n", address, ret); return ret; } static inline u8 twl6030_readb(struct twl6030_usb *twl, u8 module, u8 address) { u8 data; int ret; ret = twl_i2c_read_u8(module, &data, address); if (ret >= 0) ret = data; else dev_err(twl->dev, "readb[0x%x,0x%x] Error %d\n", module, address, ret); return ret; } static int twl6030_start_srp(struct phy_companion *comparator) { struct twl6030_usb *twl = comparator_to_twl(comparator); twl6030_writeb(twl, TWL_MODULE_USB, 0x24, USB_VBUS_CTRL_SET); twl6030_writeb(twl, TWL_MODULE_USB, 0x84, USB_VBUS_CTRL_SET); mdelay(100); twl6030_writeb(twl, TWL_MODULE_USB, 0xa0, USB_VBUS_CTRL_CLR); return 0; } static int twl6030_usb_ldo_init(struct twl6030_usb *twl) { /* Set to OTG_REV 1.3 and turn on the ID_WAKEUP_COMP */ twl6030_writeb(twl, TWL6030_MODULE_ID0, 0x1, TWL6030_BACKUP_REG); /* Program CFG_LDO_PD2 register and set VUSB bit */ twl6030_writeb(twl, TWL6030_MODULE_ID0, 0x1, TWL6030_CFG_LDO_PD2); /* Program MISC2 register and set bit VUSB_IN_VBAT */ twl6030_writeb(twl, TWL6030_MODULE_ID0, 0x10, TWL6030_MISC2); twl->usb3v3 = regulator_get(twl->dev, "usb"); if (IS_ERR(twl->usb3v3)) return -ENODEV; /* Program the USB_VBUS_CTRL_SET and set VBUS_ACT_COMP bit */ twl6030_writeb(twl, TWL_MODULE_USB, 0x4, USB_VBUS_CTRL_SET); /* * Program the USB_ID_CTRL_SET register to enable GND drive * and the ID comparators */ twl6030_writeb(twl, TWL_MODULE_USB, 0x14, USB_ID_CTRL_SET); return 0; } static ssize_t vbus_show(struct device *dev, struct device_attribute *attr, char *buf) { struct twl6030_usb *twl = dev_get_drvdata(dev); unsigned long flags; int ret = -EINVAL; spin_lock_irqsave(&twl->lock, flags); switch (twl->linkstat) { case MUSB_VBUS_VALID: ret = snprintf(buf, PAGE_SIZE, "vbus\n"); break; case MUSB_ID_GROUND: ret = snprintf(buf, PAGE_SIZE, "id\n"); break; case MUSB_VBUS_OFF: ret = snprintf(buf, PAGE_SIZE, "none\n"); break; default: ret = snprintf(buf, PAGE_SIZE, "UNKNOWN\n"); } spin_unlock_irqrestore(&twl->lock, flags); return ret; } static DEVICE_ATTR_RO(vbus); static struct attribute *twl6030_attrs[] = { &dev_attr_vbus.attr, NULL, }; ATTRIBUTE_GROUPS(twl6030); static irqreturn_t twl6030_usb_irq(int irq, void *_twl) { struct twl6030_usb *twl = _twl; enum musb_vbus_id_status status = MUSB_UNKNOWN; u8 vbus_state, hw_state; int ret; hw_state = twl6030_readb(twl, TWL6030_MODULE_ID0, STS_HW_CONDITIONS); vbus_state = twl6030_readb(twl, TWL_MODULE_MAIN_CHARGE, CONTROLLER_STAT1); if (!(hw_state & STS_USB_ID)) { if (vbus_state & VBUS_DET) { ret = regulator_enable(twl->usb3v3); if (ret) dev_err(twl->dev, "Failed to enable usb3v3\n"); twl->asleep = 1; status = MUSB_VBUS_VALID; twl->linkstat = status; ret = musb_mailbox(status); if (ret) twl->linkstat = MUSB_UNKNOWN; } else { if (twl->linkstat != MUSB_UNKNOWN) { status = MUSB_VBUS_OFF; twl->linkstat = status; ret = musb_mailbox(status); if (ret) twl->linkstat = MUSB_UNKNOWN; if (twl->asleep) { regulator_disable(twl->usb3v3); twl->asleep = 0; } } } } sysfs_notify(&twl->dev->kobj, NULL, "vbus"); return IRQ_HANDLED; } static irqreturn_t twl6030_usbotg_irq(int irq, void *_twl) { struct twl6030_usb *twl = _twl; enum musb_vbus_id_status status = MUSB_UNKNOWN; u8 hw_state; int ret; hw_state = twl6030_readb(twl, TWL6030_MODULE_ID0, STS_HW_CONDITIONS); if (hw_state & STS_USB_ID) { ret = regulator_enable(twl->usb3v3); if (ret) dev_err(twl->dev, "Failed to enable usb3v3\n"); twl->asleep = 1; twl6030_writeb(twl, TWL_MODULE_USB, 0x1, USB_ID_INT_EN_HI_CLR); twl6030_writeb(twl, TWL_MODULE_USB, 0x10, USB_ID_INT_EN_HI_SET); status = MUSB_ID_GROUND; twl->linkstat = status; ret = musb_mailbox(status); if (ret) twl->linkstat = MUSB_UNKNOWN; } else { twl6030_writeb(twl, TWL_MODULE_USB, 0x10, USB_ID_INT_EN_HI_CLR); twl6030_writeb(twl, TWL_MODULE_USB, 0x1, USB_ID_INT_EN_HI_SET); } twl6030_writeb(twl, TWL_MODULE_USB, status, USB_ID_INT_LATCH_CLR); return IRQ_HANDLED; } static void twl6030_status_work(struct work_struct *work) { struct twl6030_usb *twl = container_of(work, struct twl6030_usb, get_status_work.work); twl6030_usb_irq(twl->irq2, twl); twl6030_usbotg_irq(twl->irq1, twl); } static int twl6030_enable_irq(struct twl6030_usb *twl) { twl6030_writeb(twl, TWL_MODULE_USB, 0x1, USB_ID_INT_EN_HI_SET); twl6030_interrupt_unmask(0x05, REG_INT_MSK_LINE_C); twl6030_interrupt_unmask(0x05, REG_INT_MSK_STS_C); twl6030_interrupt_unmask(TWL6030_CHARGER_CTRL_INT_MASK, REG_INT_MSK_LINE_C); twl6030_interrupt_unmask(TWL6030_CHARGER_CTRL_INT_MASK, REG_INT_MSK_STS_C); return 0; } static void otg_set_vbus_work(struct work_struct *data) { struct twl6030_usb *twl = container_of(data, struct twl6030_usb, set_vbus_work); /* * Start driving VBUS. Set OPA_MODE bit in CHARGERUSB_CTRL1 * register. This enables boost mode. */ if (twl->vbus_enable) twl6030_writeb(twl, TWL_MODULE_MAIN_CHARGE, 0x40, CHARGERUSB_CTRL1); else twl6030_writeb(twl, TWL_MODULE_MAIN_CHARGE, 0x00, CHARGERUSB_CTRL1); } static int twl6030_set_vbus(struct phy_companion *comparator, bool enabled) { struct twl6030_usb *twl = comparator_to_twl(comparator); twl->vbus_enable = enabled; schedule_work(&twl->set_vbus_work); return 0; } static int twl6030_usb_probe(struct platform_device *pdev) { u32 ret; struct twl6030_usb *twl; int status, err; struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; if (!np) { dev_err(dev, "no DT info\n"); return -EINVAL; } twl = devm_kzalloc(dev, sizeof(*twl), GFP_KERNEL); if (!twl) return -ENOMEM; twl->dev = &pdev->dev; twl->irq1 = platform_get_irq(pdev, 0); twl->irq2 = platform_get_irq(pdev, 1); twl->linkstat = MUSB_UNKNOWN; if (twl->irq1 < 0) return twl->irq1; if (twl->irq2 < 0) return twl->irq2; twl->comparator.set_vbus = twl6030_set_vbus; twl->comparator.start_srp = twl6030_start_srp; ret = omap_usb2_set_comparator(&twl->comparator); if (ret == -ENODEV) { dev_info(&pdev->dev, "phy not ready, deferring probe"); return -EPROBE_DEFER; } /* init spinlock for workqueue */ spin_lock_init(&twl->lock); err = twl6030_usb_ldo_init(twl); if (err) { dev_err(&pdev->dev, "ldo init failed\n"); return err; } platform_set_drvdata(pdev, twl); INIT_WORK(&twl->set_vbus_work, otg_set_vbus_work); INIT_DELAYED_WORK(&twl->get_status_work, twl6030_status_work); status = request_threaded_irq(twl->irq1, NULL, twl6030_usbotg_irq, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "twl6030_usb", twl); if (status < 0) { dev_err(&pdev->dev, "can't get IRQ %d, err %d\n", twl->irq1, status); goto err_put_regulator; } status = request_threaded_irq(twl->irq2, NULL, twl6030_usb_irq, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "twl6030_usb", twl); if (status < 0) { dev_err(&pdev->dev, "can't get IRQ %d, err %d\n", twl->irq2, status); goto err_free_irq1; } twl->asleep = 0; twl6030_enable_irq(twl); schedule_delayed_work(&twl->get_status_work, HZ); dev_info(&pdev->dev, "Initialized TWL6030 USB module\n"); return 0; err_free_irq1: free_irq(twl->irq1, twl); err_put_regulator: regulator_put(twl->usb3v3); return status; } static void twl6030_usb_remove(struct platform_device *pdev) { struct twl6030_usb *twl = platform_get_drvdata(pdev); cancel_delayed_work_sync(&twl->get_status_work); twl6030_interrupt_mask(TWL6030_USBOTG_INT_MASK, REG_INT_MSK_LINE_C); twl6030_interrupt_mask(TWL6030_USBOTG_INT_MASK, REG_INT_MSK_STS_C); free_irq(twl->irq1, twl); free_irq(twl->irq2, twl); regulator_put(twl->usb3v3); cancel_work_sync(&twl->set_vbus_work); } static const struct of_device_id twl6030_usb_id_table[] = { { .compatible = "ti,twl6030-usb" }, {} }; MODULE_DEVICE_TABLE(of, twl6030_usb_id_table); static struct platform_driver twl6030_usb_driver = { .probe = twl6030_usb_probe, .remove_new = twl6030_usb_remove, .driver = { .name = "twl6030_usb", .of_match_table = of_match_ptr(twl6030_usb_id_table), .dev_groups = twl6030_groups, }, }; static int __init twl6030_usb_init(void) { return platform_driver_register(&twl6030_usb_driver); } subsys_initcall(twl6030_usb_init); static void __exit twl6030_usb_exit(void) { platform_driver_unregister(&twl6030_usb_driver); } module_exit(twl6030_usb_exit); MODULE_ALIAS("platform:twl6030_usb"); MODULE_AUTHOR("Hema HK <[email protected]>"); MODULE_DESCRIPTION("TWL6030 USB transceiver driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-twl6030-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * gpio-vbus.c - simple GPIO VBUS sensing driver for B peripheral devices * * Copyright (c) 2008 Philipp Zabel <[email protected]> */ #include <linux/kernel.h> #include <linux/platform_device.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/usb.h> #include <linux/workqueue.h> #include <linux/regulator/consumer.h> #include <linux/usb/gadget.h> #include <linux/usb/otg.h> /* * A simple GPIO VBUS sensing driver for B peripheral only devices * with internal transceivers. It can control a D+ pullup GPIO and * a regulator to limit the current drawn from VBUS. * * Needs to be loaded before the UDC driver that will use it. */ struct gpio_vbus_data { struct gpio_desc *vbus_gpiod; struct gpio_desc *pullup_gpiod; struct usb_phy phy; struct device *dev; struct regulator *vbus_draw; int vbus_draw_enabled; unsigned mA; struct delayed_work work; int vbus; int irq; }; /* * This driver relies on "both edges" triggering. VBUS has 100 msec to * stabilize, so the peripheral controller driver may need to cope with * some bouncing due to current surges (e.g. charging local capacitance) * and contact chatter. * * REVISIT in desperate straits, toggling between rising and falling * edges might be workable. */ #define VBUS_IRQ_FLAGS \ (IRQF_SHARED | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING) /* interface to regulator framework */ static void set_vbus_draw(struct gpio_vbus_data *gpio_vbus, unsigned mA) { struct regulator *vbus_draw = gpio_vbus->vbus_draw; int enabled; int ret; if (!vbus_draw) return; enabled = gpio_vbus->vbus_draw_enabled; if (mA) { regulator_set_current_limit(vbus_draw, 0, 1000 * mA); if (!enabled) { ret = regulator_enable(vbus_draw); if (ret < 0) return; gpio_vbus->vbus_draw_enabled = 1; } } else { if (enabled) { ret = regulator_disable(vbus_draw); if (ret < 0) return; gpio_vbus->vbus_draw_enabled = 0; } } gpio_vbus->mA = mA; } static int is_vbus_powered(struct gpio_vbus_data *gpio_vbus) { return gpiod_get_value(gpio_vbus->vbus_gpiod); } static void gpio_vbus_work(struct work_struct *work) { struct gpio_vbus_data *gpio_vbus = container_of(work, struct gpio_vbus_data, work.work); int status, vbus; if (!gpio_vbus->phy.otg->gadget) return; vbus = is_vbus_powered(gpio_vbus); if ((vbus ^ gpio_vbus->vbus) == 0) return; gpio_vbus->vbus = vbus; /* Peripheral controllers which manage the pullup themselves won't have * a pullup GPIO configured here. If it's configured here, we'll do * what isp1301_omap::b_peripheral() does and enable the pullup here... * although that may complicate usb_gadget_{,dis}connect() support. */ if (vbus) { status = USB_EVENT_VBUS; gpio_vbus->phy.otg->state = OTG_STATE_B_PERIPHERAL; gpio_vbus->phy.last_event = status; usb_gadget_vbus_connect(gpio_vbus->phy.otg->gadget); /* drawing a "unit load" is *always* OK, except for OTG */ set_vbus_draw(gpio_vbus, 100); /* optionally enable D+ pullup */ if (gpio_vbus->pullup_gpiod) gpiod_set_value(gpio_vbus->pullup_gpiod, 1); atomic_notifier_call_chain(&gpio_vbus->phy.notifier, status, gpio_vbus->phy.otg->gadget); usb_phy_set_event(&gpio_vbus->phy, USB_EVENT_ENUMERATED); } else { /* optionally disable D+ pullup */ if (gpio_vbus->pullup_gpiod) gpiod_set_value(gpio_vbus->pullup_gpiod, 0); set_vbus_draw(gpio_vbus, 0); usb_gadget_vbus_disconnect(gpio_vbus->phy.otg->gadget); status = USB_EVENT_NONE; gpio_vbus->phy.otg->state = OTG_STATE_B_IDLE; gpio_vbus->phy.last_event = status; atomic_notifier_call_chain(&gpio_vbus->phy.notifier, status, gpio_vbus->phy.otg->gadget); usb_phy_set_event(&gpio_vbus->phy, USB_EVENT_NONE); } } /* VBUS change IRQ handler */ static irqreturn_t gpio_vbus_irq(int irq, void *data) { struct platform_device *pdev = data; struct gpio_vbus_data *gpio_vbus = platform_get_drvdata(pdev); struct usb_otg *otg = gpio_vbus->phy.otg; dev_dbg(&pdev->dev, "VBUS %s (gadget: %s)\n", is_vbus_powered(gpio_vbus) ? "supplied" : "inactive", otg->gadget ? otg->gadget->name : "none"); if (otg->gadget) schedule_delayed_work(&gpio_vbus->work, msecs_to_jiffies(100)); return IRQ_HANDLED; } /* OTG transceiver interface */ /* bind/unbind the peripheral controller */ static int gpio_vbus_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { struct gpio_vbus_data *gpio_vbus; struct platform_device *pdev; gpio_vbus = container_of(otg->usb_phy, struct gpio_vbus_data, phy); pdev = to_platform_device(gpio_vbus->dev); if (!gadget) { dev_dbg(&pdev->dev, "unregistering gadget '%s'\n", otg->gadget->name); /* optionally disable D+ pullup */ if (gpio_vbus->pullup_gpiod) gpiod_set_value(gpio_vbus->pullup_gpiod, 0); set_vbus_draw(gpio_vbus, 0); usb_gadget_vbus_disconnect(otg->gadget); otg->state = OTG_STATE_UNDEFINED; otg->gadget = NULL; return 0; } otg->gadget = gadget; dev_dbg(&pdev->dev, "registered gadget '%s'\n", gadget->name); /* initialize connection state */ gpio_vbus->vbus = 0; /* start with disconnected */ gpio_vbus_irq(gpio_vbus->irq, pdev); return 0; } /* effective for B devices, ignored for A-peripheral */ static int gpio_vbus_set_power(struct usb_phy *phy, unsigned mA) { struct gpio_vbus_data *gpio_vbus; gpio_vbus = container_of(phy, struct gpio_vbus_data, phy); if (phy->otg->state == OTG_STATE_B_PERIPHERAL) set_vbus_draw(gpio_vbus, mA); return 0; } /* for non-OTG B devices: set/clear transceiver suspend mode */ static int gpio_vbus_set_suspend(struct usb_phy *phy, int suspend) { struct gpio_vbus_data *gpio_vbus; gpio_vbus = container_of(phy, struct gpio_vbus_data, phy); /* draw max 0 mA from vbus in suspend mode; or the previously * recorded amount of current if not suspended * * NOTE: high powered configs (mA > 100) may draw up to 2.5 mA * if they're wake-enabled ... we don't handle that yet. */ return gpio_vbus_set_power(phy, suspend ? 0 : gpio_vbus->mA); } /* platform driver interface */ static int gpio_vbus_probe(struct platform_device *pdev) { struct gpio_vbus_data *gpio_vbus; struct resource *res; struct device *dev = &pdev->dev; int err, irq; unsigned long irqflags; gpio_vbus = devm_kzalloc(&pdev->dev, sizeof(struct gpio_vbus_data), GFP_KERNEL); if (!gpio_vbus) return -ENOMEM; gpio_vbus->phy.otg = devm_kzalloc(&pdev->dev, sizeof(struct usb_otg), GFP_KERNEL); if (!gpio_vbus->phy.otg) return -ENOMEM; platform_set_drvdata(pdev, gpio_vbus); gpio_vbus->dev = &pdev->dev; gpio_vbus->phy.label = "gpio-vbus"; gpio_vbus->phy.dev = gpio_vbus->dev; gpio_vbus->phy.set_power = gpio_vbus_set_power; gpio_vbus->phy.set_suspend = gpio_vbus_set_suspend; gpio_vbus->phy.otg->state = OTG_STATE_UNDEFINED; gpio_vbus->phy.otg->usb_phy = &gpio_vbus->phy; gpio_vbus->phy.otg->set_peripheral = gpio_vbus_set_peripheral; /* Look up the VBUS sensing GPIO */ gpio_vbus->vbus_gpiod = devm_gpiod_get(dev, "vbus", GPIOD_IN); if (IS_ERR(gpio_vbus->vbus_gpiod)) { err = PTR_ERR(gpio_vbus->vbus_gpiod); dev_err(&pdev->dev, "can't request vbus gpio, err: %d\n", err); return err; } gpiod_set_consumer_name(gpio_vbus->vbus_gpiod, "vbus_detect"); res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res) { irq = res->start; irqflags = (res->flags & IRQF_TRIGGER_MASK) | IRQF_SHARED; } else { irq = gpiod_to_irq(gpio_vbus->vbus_gpiod); irqflags = VBUS_IRQ_FLAGS; } gpio_vbus->irq = irq; /* * The VBUS sensing GPIO should have a pulldown, which will normally be * part of a resistor ladder turning a 4.0V-5.25V level on VBUS into a * value the GPIO detects as active. Some systems will use comparators. * Get the optional D+ or D- pullup GPIO. If the data line pullup is * in use, initialize it to "not pulling up" */ gpio_vbus->pullup_gpiod = devm_gpiod_get_optional(dev, "pullup", GPIOD_OUT_LOW); if (IS_ERR(gpio_vbus->pullup_gpiod)) { err = PTR_ERR(gpio_vbus->pullup_gpiod); dev_err(&pdev->dev, "can't request pullup gpio, err: %d\n", err); return err; } if (gpio_vbus->pullup_gpiod) gpiod_set_consumer_name(gpio_vbus->pullup_gpiod, "udc_pullup"); err = devm_request_irq(&pdev->dev, irq, gpio_vbus_irq, irqflags, "vbus_detect", pdev); if (err) { dev_err(&pdev->dev, "can't request irq %i, err: %d\n", irq, err); return err; } INIT_DELAYED_WORK(&gpio_vbus->work, gpio_vbus_work); gpio_vbus->vbus_draw = devm_regulator_get(&pdev->dev, "vbus_draw"); if (IS_ERR(gpio_vbus->vbus_draw)) { dev_dbg(&pdev->dev, "can't get vbus_draw regulator, err: %ld\n", PTR_ERR(gpio_vbus->vbus_draw)); gpio_vbus->vbus_draw = NULL; } /* only active when a gadget is registered */ err = usb_add_phy(&gpio_vbus->phy, USB_PHY_TYPE_USB2); if (err) { dev_err(&pdev->dev, "can't register transceiver, err: %d\n", err); return err; } /* TODO: wakeup could be enabled here with device_init_wakeup(dev, 1) */ return 0; } static void gpio_vbus_remove(struct platform_device *pdev) { struct gpio_vbus_data *gpio_vbus = platform_get_drvdata(pdev); device_init_wakeup(&pdev->dev, 0); cancel_delayed_work_sync(&gpio_vbus->work); usb_remove_phy(&gpio_vbus->phy); } #ifdef CONFIG_PM static int gpio_vbus_pm_suspend(struct device *dev) { struct gpio_vbus_data *gpio_vbus = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(gpio_vbus->irq); return 0; } static int gpio_vbus_pm_resume(struct device *dev) { struct gpio_vbus_data *gpio_vbus = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(gpio_vbus->irq); return 0; } static const struct dev_pm_ops gpio_vbus_dev_pm_ops = { .suspend = gpio_vbus_pm_suspend, .resume = gpio_vbus_pm_resume, }; #endif MODULE_ALIAS("platform:gpio-vbus"); /* * NOTE: this driver matches against "gpio-usb-b-connector" for * devices that do NOT support role switch. */ static const struct of_device_id gpio_vbus_of_match[] = { { .compatible = "gpio-usb-b-connector", }, {}, }; static struct platform_driver gpio_vbus_driver = { .driver = { .name = "gpio-vbus", #ifdef CONFIG_PM .pm = &gpio_vbus_dev_pm_ops, #endif .of_match_table = gpio_vbus_of_match, }, .probe = gpio_vbus_probe, .remove_new = gpio_vbus_remove, }; module_platform_driver(gpio_vbus_driver); MODULE_DESCRIPTION("simple GPIO controlled OTG transceiver driver"); MODULE_AUTHOR("Philipp Zabel"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-gpio-vbus-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * OMAP OTG controller driver * * Based on code from tahvo-usb.c and isp1301_omap.c drivers. * * Copyright (C) 2005-2006 Nokia Corporation * Copyright (C) 2004 Texas Instruments * Copyright (C) 2004 David Brownell */ #include <linux/io.h> #include <linux/err.h> #include <linux/extcon.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/platform_data/usb-omap1.h> struct otg_device { void __iomem *base; bool id; bool vbus; struct extcon_dev *extcon; struct notifier_block vbus_nb; struct notifier_block id_nb; }; #define OMAP_OTG_CTRL 0x0c #define OMAP_OTG_ASESSVLD (1 << 20) #define OMAP_OTG_BSESSEND (1 << 19) #define OMAP_OTG_BSESSVLD (1 << 18) #define OMAP_OTG_VBUSVLD (1 << 17) #define OMAP_OTG_ID (1 << 16) #define OMAP_OTG_XCEIV_OUTPUTS \ (OMAP_OTG_ASESSVLD | OMAP_OTG_BSESSEND | OMAP_OTG_BSESSVLD | \ OMAP_OTG_VBUSVLD | OMAP_OTG_ID) static void omap_otg_ctrl(struct otg_device *otg_dev, u32 outputs) { u32 l; l = readl(otg_dev->base + OMAP_OTG_CTRL); l &= ~OMAP_OTG_XCEIV_OUTPUTS; l |= outputs; writel(l, otg_dev->base + OMAP_OTG_CTRL); } static void omap_otg_set_mode(struct otg_device *otg_dev) { if (!otg_dev->id && otg_dev->vbus) /* Set B-session valid. */ omap_otg_ctrl(otg_dev, OMAP_OTG_ID | OMAP_OTG_BSESSVLD); else if (otg_dev->vbus) /* Set A-session valid. */ omap_otg_ctrl(otg_dev, OMAP_OTG_ASESSVLD); else if (!otg_dev->id) /* Set B-session end to indicate no VBUS. */ omap_otg_ctrl(otg_dev, OMAP_OTG_ID | OMAP_OTG_BSESSEND); } static int omap_otg_id_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct otg_device *otg_dev = container_of(nb, struct otg_device, id_nb); otg_dev->id = event; omap_otg_set_mode(otg_dev); return NOTIFY_DONE; } static int omap_otg_vbus_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct otg_device *otg_dev = container_of(nb, struct otg_device, vbus_nb); otg_dev->vbus = event; omap_otg_set_mode(otg_dev); return NOTIFY_DONE; } static int omap_otg_probe(struct platform_device *pdev) { const struct omap_usb_config *config = pdev->dev.platform_data; struct otg_device *otg_dev; struct extcon_dev *extcon; int ret; u32 rev; if (!config || !config->extcon) return -ENODEV; extcon = extcon_get_extcon_dev(config->extcon); if (IS_ERR(extcon)) return PTR_ERR(extcon); otg_dev = devm_kzalloc(&pdev->dev, sizeof(*otg_dev), GFP_KERNEL); if (!otg_dev) return -ENOMEM; otg_dev->base = devm_ioremap_resource(&pdev->dev, &pdev->resource[0]); if (IS_ERR(otg_dev->base)) return PTR_ERR(otg_dev->base); otg_dev->extcon = extcon; otg_dev->id_nb.notifier_call = omap_otg_id_notifier; otg_dev->vbus_nb.notifier_call = omap_otg_vbus_notifier; ret = devm_extcon_register_notifier(&pdev->dev, extcon, EXTCON_USB_HOST, &otg_dev->id_nb); if (ret) return ret; ret = devm_extcon_register_notifier(&pdev->dev, extcon, EXTCON_USB, &otg_dev->vbus_nb); if (ret) { return ret; } otg_dev->id = extcon_get_state(extcon, EXTCON_USB_HOST); otg_dev->vbus = extcon_get_state(extcon, EXTCON_USB); omap_otg_set_mode(otg_dev); rev = readl(otg_dev->base); dev_info(&pdev->dev, "OMAP USB OTG controller rev %d.%d (%s, id=%d, vbus=%d)\n", (rev >> 4) & 0xf, rev & 0xf, config->extcon, otg_dev->id, otg_dev->vbus); platform_set_drvdata(pdev, otg_dev); return 0; } static struct platform_driver omap_otg_driver = { .probe = omap_otg_probe, .driver = { .name = "omap_otg", }, }; module_platform_driver(omap_otg_driver); MODULE_DESCRIPTION("OMAP USB OTG controller driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Aaro Koskinen <[email protected]>");
linux-master
drivers/usb/phy/phy-omap-otg.c
// SPDX-License-Identifier: GPL-2.0+ /* * phy.c -- USB phy handling * * Copyright (C) 2004-2013 Texas Instruments */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/err.h> #include <linux/device.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/usb/phy.h> /* Default current range by charger type. */ #define DEFAULT_SDP_CUR_MIN 2 #define DEFAULT_SDP_CUR_MAX 500 #define DEFAULT_SDP_CUR_MIN_SS 150 #define DEFAULT_SDP_CUR_MAX_SS 900 #define DEFAULT_DCP_CUR_MIN 500 #define DEFAULT_DCP_CUR_MAX 5000 #define DEFAULT_CDP_CUR_MIN 1500 #define DEFAULT_CDP_CUR_MAX 5000 #define DEFAULT_ACA_CUR_MIN 1500 #define DEFAULT_ACA_CUR_MAX 5000 static LIST_HEAD(phy_list); static DEFINE_SPINLOCK(phy_lock); struct phy_devm { struct usb_phy *phy; struct notifier_block *nb; }; static const char *const usb_chger_type[] = { [UNKNOWN_TYPE] = "USB_CHARGER_UNKNOWN_TYPE", [SDP_TYPE] = "USB_CHARGER_SDP_TYPE", [CDP_TYPE] = "USB_CHARGER_CDP_TYPE", [DCP_TYPE] = "USB_CHARGER_DCP_TYPE", [ACA_TYPE] = "USB_CHARGER_ACA_TYPE", }; static const char *const usb_chger_state[] = { [USB_CHARGER_DEFAULT] = "USB_CHARGER_DEFAULT", [USB_CHARGER_PRESENT] = "USB_CHARGER_PRESENT", [USB_CHARGER_ABSENT] = "USB_CHARGER_ABSENT", }; static struct usb_phy *__usb_find_phy(struct list_head *list, enum usb_phy_type type) { struct usb_phy *phy = NULL; list_for_each_entry(phy, list, head) { if (phy->type != type) continue; return phy; } return ERR_PTR(-ENODEV); } static struct usb_phy *__of_usb_find_phy(struct device_node *node) { struct usb_phy *phy; if (!of_device_is_available(node)) return ERR_PTR(-ENODEV); list_for_each_entry(phy, &phy_list, head) { if (node != phy->dev->of_node) continue; return phy; } return ERR_PTR(-EPROBE_DEFER); } static struct usb_phy *__device_to_usb_phy(const struct device *dev) { struct usb_phy *usb_phy; list_for_each_entry(usb_phy, &phy_list, head) { if (usb_phy->dev == dev) return usb_phy; } return NULL; } static void usb_phy_set_default_current(struct usb_phy *usb_phy) { usb_phy->chg_cur.sdp_min = DEFAULT_SDP_CUR_MIN; usb_phy->chg_cur.sdp_max = DEFAULT_SDP_CUR_MAX; usb_phy->chg_cur.dcp_min = DEFAULT_DCP_CUR_MIN; usb_phy->chg_cur.dcp_max = DEFAULT_DCP_CUR_MAX; usb_phy->chg_cur.cdp_min = DEFAULT_CDP_CUR_MIN; usb_phy->chg_cur.cdp_max = DEFAULT_CDP_CUR_MAX; usb_phy->chg_cur.aca_min = DEFAULT_ACA_CUR_MIN; usb_phy->chg_cur.aca_max = DEFAULT_ACA_CUR_MAX; } /** * usb_phy_notify_charger_work - notify the USB charger state * @work: the charger work to notify the USB charger state * * This work can be issued when USB charger state has been changed or * USB charger current has been changed, then we can notify the current * what can be drawn to power user and the charger state to userspace. * * If we get the charger type from extcon subsystem, we can notify the * charger state to power user automatically by usb_phy_get_charger_type() * issuing from extcon subsystem. * * If we get the charger type from ->charger_detect() instead of extcon * subsystem, the usb phy driver should issue usb_phy_set_charger_state() * to set charger state when the charger state has been changed. */ static void usb_phy_notify_charger_work(struct work_struct *work) { struct usb_phy *usb_phy = container_of(work, struct usb_phy, chg_work); unsigned int min, max; switch (usb_phy->chg_state) { case USB_CHARGER_PRESENT: usb_phy_get_charger_current(usb_phy, &min, &max); atomic_notifier_call_chain(&usb_phy->notifier, max, usb_phy); break; case USB_CHARGER_ABSENT: usb_phy_set_default_current(usb_phy); atomic_notifier_call_chain(&usb_phy->notifier, 0, usb_phy); break; default: dev_warn(usb_phy->dev, "Unknown USB charger state: %d\n", usb_phy->chg_state); return; } kobject_uevent(&usb_phy->dev->kobj, KOBJ_CHANGE); } static int usb_phy_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct usb_phy *usb_phy; char uchger_state[50] = { 0 }; char uchger_type[50] = { 0 }; unsigned long flags; spin_lock_irqsave(&phy_lock, flags); usb_phy = __device_to_usb_phy(dev); spin_unlock_irqrestore(&phy_lock, flags); if (!usb_phy) return -ENODEV; snprintf(uchger_state, ARRAY_SIZE(uchger_state), "USB_CHARGER_STATE=%s", usb_chger_state[usb_phy->chg_state]); snprintf(uchger_type, ARRAY_SIZE(uchger_type), "USB_CHARGER_TYPE=%s", usb_chger_type[usb_phy->chg_type]); if (add_uevent_var(env, uchger_state)) return -ENOMEM; if (add_uevent_var(env, uchger_type)) return -ENOMEM; return 0; } static void __usb_phy_get_charger_type(struct usb_phy *usb_phy) { if (extcon_get_state(usb_phy->edev, EXTCON_CHG_USB_SDP) > 0) { usb_phy->chg_type = SDP_TYPE; usb_phy->chg_state = USB_CHARGER_PRESENT; } else if (extcon_get_state(usb_phy->edev, EXTCON_CHG_USB_CDP) > 0) { usb_phy->chg_type = CDP_TYPE; usb_phy->chg_state = USB_CHARGER_PRESENT; } else if (extcon_get_state(usb_phy->edev, EXTCON_CHG_USB_DCP) > 0) { usb_phy->chg_type = DCP_TYPE; usb_phy->chg_state = USB_CHARGER_PRESENT; } else if (extcon_get_state(usb_phy->edev, EXTCON_CHG_USB_ACA) > 0) { usb_phy->chg_type = ACA_TYPE; usb_phy->chg_state = USB_CHARGER_PRESENT; } else { usb_phy->chg_type = UNKNOWN_TYPE; usb_phy->chg_state = USB_CHARGER_ABSENT; } schedule_work(&usb_phy->chg_work); } /** * usb_phy_get_charger_type - get charger type from extcon subsystem * @nb: the notifier block to determine charger type * @state: the cable state * @data: private data * * Determin the charger type from extcon subsystem which also means the * charger state has been chaned, then we should notify this event. */ static int usb_phy_get_charger_type(struct notifier_block *nb, unsigned long state, void *data) { struct usb_phy *usb_phy = container_of(nb, struct usb_phy, type_nb); __usb_phy_get_charger_type(usb_phy); return NOTIFY_OK; } /** * usb_phy_set_charger_current - set the USB charger current * @usb_phy: the USB phy to be used * @mA: the current need to be set * * Usually we only change the charger default current when USB finished the * enumeration as one SDP charger. As one SDP charger, usb_phy_set_power() * will issue this function to change charger current when after setting USB * configuration, or suspend/resume USB. For other type charger, we should * use the default charger current and we do not suggest to issue this function * to change the charger current. * * When USB charger current has been changed, we need to notify the power users. */ void usb_phy_set_charger_current(struct usb_phy *usb_phy, unsigned int mA) { switch (usb_phy->chg_type) { case SDP_TYPE: if (usb_phy->chg_cur.sdp_max == mA) return; usb_phy->chg_cur.sdp_max = (mA > DEFAULT_SDP_CUR_MAX_SS) ? DEFAULT_SDP_CUR_MAX_SS : mA; break; case DCP_TYPE: if (usb_phy->chg_cur.dcp_max == mA) return; usb_phy->chg_cur.dcp_max = (mA > DEFAULT_DCP_CUR_MAX) ? DEFAULT_DCP_CUR_MAX : mA; break; case CDP_TYPE: if (usb_phy->chg_cur.cdp_max == mA) return; usb_phy->chg_cur.cdp_max = (mA > DEFAULT_CDP_CUR_MAX) ? DEFAULT_CDP_CUR_MAX : mA; break; case ACA_TYPE: if (usb_phy->chg_cur.aca_max == mA) return; usb_phy->chg_cur.aca_max = (mA > DEFAULT_ACA_CUR_MAX) ? DEFAULT_ACA_CUR_MAX : mA; break; default: return; } schedule_work(&usb_phy->chg_work); } EXPORT_SYMBOL_GPL(usb_phy_set_charger_current); /** * usb_phy_get_charger_current - get the USB charger current * @usb_phy: the USB phy to be used * @min: the minimum current * @max: the maximum current * * Usually we will notify the maximum current to power user, but for some * special case, power user also need the minimum current value. Then the * power user can issue this function to get the suitable current. */ void usb_phy_get_charger_current(struct usb_phy *usb_phy, unsigned int *min, unsigned int *max) { switch (usb_phy->chg_type) { case SDP_TYPE: *min = usb_phy->chg_cur.sdp_min; *max = usb_phy->chg_cur.sdp_max; break; case DCP_TYPE: *min = usb_phy->chg_cur.dcp_min; *max = usb_phy->chg_cur.dcp_max; break; case CDP_TYPE: *min = usb_phy->chg_cur.cdp_min; *max = usb_phy->chg_cur.cdp_max; break; case ACA_TYPE: *min = usb_phy->chg_cur.aca_min; *max = usb_phy->chg_cur.aca_max; break; default: *min = 0; *max = 0; break; } } EXPORT_SYMBOL_GPL(usb_phy_get_charger_current); /** * usb_phy_set_charger_state - set the USB charger state * @usb_phy: the USB phy to be used * @state: the new state need to be set for charger * * The usb phy driver can issue this function when the usb phy driver * detected the charger state has been changed, in this case the charger * type should be get from ->charger_detect(). */ void usb_phy_set_charger_state(struct usb_phy *usb_phy, enum usb_charger_state state) { if (usb_phy->chg_state == state || !usb_phy->charger_detect) return; usb_phy->chg_state = state; if (usb_phy->chg_state == USB_CHARGER_PRESENT) usb_phy->chg_type = usb_phy->charger_detect(usb_phy); else usb_phy->chg_type = UNKNOWN_TYPE; schedule_work(&usb_phy->chg_work); } EXPORT_SYMBOL_GPL(usb_phy_set_charger_state); static void devm_usb_phy_release(struct device *dev, void *res) { struct usb_phy *phy = *(struct usb_phy **)res; usb_put_phy(phy); } static void devm_usb_phy_release2(struct device *dev, void *_res) { struct phy_devm *res = _res; if (res->nb) usb_unregister_notifier(res->phy, res->nb); usb_put_phy(res->phy); } static int devm_usb_phy_match(struct device *dev, void *res, void *match_data) { struct usb_phy **phy = res; return *phy == match_data; } static void usb_charger_init(struct usb_phy *usb_phy) { usb_phy->chg_type = UNKNOWN_TYPE; usb_phy->chg_state = USB_CHARGER_DEFAULT; usb_phy_set_default_current(usb_phy); INIT_WORK(&usb_phy->chg_work, usb_phy_notify_charger_work); } static int usb_add_extcon(struct usb_phy *x) { int ret; if (of_property_read_bool(x->dev->of_node, "extcon")) { x->edev = extcon_get_edev_by_phandle(x->dev, 0); if (IS_ERR(x->edev)) return PTR_ERR(x->edev); x->id_edev = extcon_get_edev_by_phandle(x->dev, 1); if (IS_ERR(x->id_edev)) { x->id_edev = NULL; dev_info(x->dev, "No separate ID extcon device\n"); } if (x->vbus_nb.notifier_call) { ret = devm_extcon_register_notifier(x->dev, x->edev, EXTCON_USB, &x->vbus_nb); if (ret < 0) { dev_err(x->dev, "register VBUS notifier failed\n"); return ret; } } else { x->type_nb.notifier_call = usb_phy_get_charger_type; ret = devm_extcon_register_notifier(x->dev, x->edev, EXTCON_CHG_USB_SDP, &x->type_nb); if (ret) { dev_err(x->dev, "register extcon USB SDP failed.\n"); return ret; } ret = devm_extcon_register_notifier(x->dev, x->edev, EXTCON_CHG_USB_CDP, &x->type_nb); if (ret) { dev_err(x->dev, "register extcon USB CDP failed.\n"); return ret; } ret = devm_extcon_register_notifier(x->dev, x->edev, EXTCON_CHG_USB_DCP, &x->type_nb); if (ret) { dev_err(x->dev, "register extcon USB DCP failed.\n"); return ret; } ret = devm_extcon_register_notifier(x->dev, x->edev, EXTCON_CHG_USB_ACA, &x->type_nb); if (ret) { dev_err(x->dev, "register extcon USB ACA failed.\n"); return ret; } } if (x->id_nb.notifier_call) { struct extcon_dev *id_ext; if (x->id_edev) id_ext = x->id_edev; else id_ext = x->edev; ret = devm_extcon_register_notifier(x->dev, id_ext, EXTCON_USB_HOST, &x->id_nb); if (ret < 0) { dev_err(x->dev, "register ID notifier failed\n"); return ret; } } } if (x->type_nb.notifier_call) __usb_phy_get_charger_type(x); return 0; } /** * devm_usb_get_phy - find the USB PHY * @dev: device that requests this phy * @type: the type of the phy the controller requires * * Gets the phy using usb_get_phy(), and associates a device with it using * devres. On driver detach, release function is invoked on the devres data, * then, devres data is freed. * * For use by USB host and peripheral drivers. */ struct usb_phy *devm_usb_get_phy(struct device *dev, enum usb_phy_type type) { struct usb_phy **ptr, *phy; ptr = devres_alloc(devm_usb_phy_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); phy = usb_get_phy(type); if (!IS_ERR(phy)) { *ptr = phy; devres_add(dev, ptr); } else devres_free(ptr); return phy; } EXPORT_SYMBOL_GPL(devm_usb_get_phy); /** * usb_get_phy - find the USB PHY * @type: the type of the phy the controller requires * * Returns the phy driver, after getting a refcount to it; or * -ENODEV if there is no such phy. The caller is responsible for * calling usb_put_phy() to release that count. * * For use by USB host and peripheral drivers. */ struct usb_phy *usb_get_phy(enum usb_phy_type type) { struct usb_phy *phy = NULL; unsigned long flags; spin_lock_irqsave(&phy_lock, flags); phy = __usb_find_phy(&phy_list, type); if (IS_ERR(phy) || !try_module_get(phy->dev->driver->owner)) { pr_debug("PHY: unable to find transceiver of type %s\n", usb_phy_type_string(type)); if (!IS_ERR(phy)) phy = ERR_PTR(-ENODEV); goto err0; } get_device(phy->dev); err0: spin_unlock_irqrestore(&phy_lock, flags); return phy; } EXPORT_SYMBOL_GPL(usb_get_phy); /** * devm_usb_get_phy_by_node - find the USB PHY by device_node * @dev: device that requests this phy * @node: the device_node for the phy device. * @nb: a notifier_block to register with the phy. * * Returns the phy driver associated with the given device_node, * after getting a refcount to it, -ENODEV if there is no such phy or * -EPROBE_DEFER if the device is not yet loaded. While at that, it * also associates the device with * the phy using devres. On driver detach, release function is invoked * on the devres data, then, devres data is freed. * * For use by peripheral drivers for devices related to a phy, * such as a charger. */ struct usb_phy *devm_usb_get_phy_by_node(struct device *dev, struct device_node *node, struct notifier_block *nb) { struct usb_phy *phy = ERR_PTR(-ENOMEM); struct phy_devm *ptr; unsigned long flags; ptr = devres_alloc(devm_usb_phy_release2, sizeof(*ptr), GFP_KERNEL); if (!ptr) { dev_dbg(dev, "failed to allocate memory for devres\n"); goto err0; } spin_lock_irqsave(&phy_lock, flags); phy = __of_usb_find_phy(node); if (IS_ERR(phy)) { devres_free(ptr); goto err1; } if (!try_module_get(phy->dev->driver->owner)) { phy = ERR_PTR(-ENODEV); devres_free(ptr); goto err1; } if (nb) usb_register_notifier(phy, nb); ptr->phy = phy; ptr->nb = nb; devres_add(dev, ptr); get_device(phy->dev); err1: spin_unlock_irqrestore(&phy_lock, flags); err0: return phy; } EXPORT_SYMBOL_GPL(devm_usb_get_phy_by_node); /** * devm_usb_get_phy_by_phandle - find the USB PHY by phandle * @dev: device that requests this phy * @phandle: name of the property holding the phy phandle value * @index: the index of the phy * * Returns the phy driver associated with the given phandle value, * after getting a refcount to it, -ENODEV if there is no such phy or * -EPROBE_DEFER if there is a phandle to the phy, but the device is * not yet loaded. While at that, it also associates the device with * the phy using devres. On driver detach, release function is invoked * on the devres data, then, devres data is freed. * * For use by USB host and peripheral drivers. */ struct usb_phy *devm_usb_get_phy_by_phandle(struct device *dev, const char *phandle, u8 index) { struct device_node *node; struct usb_phy *phy; if (!dev->of_node) { dev_dbg(dev, "device does not have a device node entry\n"); return ERR_PTR(-EINVAL); } node = of_parse_phandle(dev->of_node, phandle, index); if (!node) { dev_dbg(dev, "failed to get %s phandle in %pOF node\n", phandle, dev->of_node); return ERR_PTR(-ENODEV); } phy = devm_usb_get_phy_by_node(dev, node, NULL); of_node_put(node); return phy; } EXPORT_SYMBOL_GPL(devm_usb_get_phy_by_phandle); /** * devm_usb_put_phy - release the USB PHY * @dev: device that wants to release this phy * @phy: the phy returned by devm_usb_get_phy() * * destroys the devres associated with this phy and invokes usb_put_phy * to release the phy. * * For use by USB host and peripheral drivers. */ void devm_usb_put_phy(struct device *dev, struct usb_phy *phy) { int r; r = devres_destroy(dev, devm_usb_phy_release, devm_usb_phy_match, phy); dev_WARN_ONCE(dev, r, "couldn't find PHY resource\n"); } EXPORT_SYMBOL_GPL(devm_usb_put_phy); /** * usb_put_phy - release the USB PHY * @x: the phy returned by usb_get_phy() * * Releases a refcount the caller received from usb_get_phy(). * * For use by USB host and peripheral drivers. */ void usb_put_phy(struct usb_phy *x) { if (x) { struct module *owner = x->dev->driver->owner; put_device(x->dev); module_put(owner); } } EXPORT_SYMBOL_GPL(usb_put_phy); /** * usb_add_phy: declare the USB PHY * @x: the USB phy to be used; or NULL * @type: the type of this PHY * * This call is exclusively for use by phy drivers, which * coordinate the activities of drivers for host and peripheral * controllers, and in some cases for VBUS current regulation. */ int usb_add_phy(struct usb_phy *x, enum usb_phy_type type) { int ret = 0; unsigned long flags; struct usb_phy *phy; if (x->type != USB_PHY_TYPE_UNDEFINED) { dev_err(x->dev, "not accepting initialized PHY %s\n", x->label); return -EINVAL; } usb_charger_init(x); ret = usb_add_extcon(x); if (ret) return ret; ATOMIC_INIT_NOTIFIER_HEAD(&x->notifier); spin_lock_irqsave(&phy_lock, flags); list_for_each_entry(phy, &phy_list, head) { if (phy->type == type) { ret = -EBUSY; dev_err(x->dev, "transceiver type %s already exists\n", usb_phy_type_string(type)); goto out; } } x->type = type; list_add_tail(&x->head, &phy_list); out: spin_unlock_irqrestore(&phy_lock, flags); return ret; } EXPORT_SYMBOL_GPL(usb_add_phy); static struct device_type usb_phy_dev_type = { .name = "usb_phy", .uevent = usb_phy_uevent, }; /** * usb_add_phy_dev - declare the USB PHY * @x: the USB phy to be used; or NULL * * This call is exclusively for use by phy drivers, which * coordinate the activities of drivers for host and peripheral * controllers, and in some cases for VBUS current regulation. */ int usb_add_phy_dev(struct usb_phy *x) { unsigned long flags; int ret; if (!x->dev) { dev_err(x->dev, "no device provided for PHY\n"); return -EINVAL; } usb_charger_init(x); ret = usb_add_extcon(x); if (ret) return ret; x->dev->type = &usb_phy_dev_type; ATOMIC_INIT_NOTIFIER_HEAD(&x->notifier); spin_lock_irqsave(&phy_lock, flags); list_add_tail(&x->head, &phy_list); spin_unlock_irqrestore(&phy_lock, flags); return 0; } EXPORT_SYMBOL_GPL(usb_add_phy_dev); /** * usb_remove_phy - remove the OTG PHY * @x: the USB OTG PHY to be removed; * * This reverts the effects of usb_add_phy */ void usb_remove_phy(struct usb_phy *x) { unsigned long flags; spin_lock_irqsave(&phy_lock, flags); if (x) list_del(&x->head); spin_unlock_irqrestore(&phy_lock, flags); } EXPORT_SYMBOL_GPL(usb_remove_phy); /** * usb_phy_set_event - set event to phy event * @x: the phy returned by usb_get_phy(); * @event: event to set * * This sets event to phy event */ void usb_phy_set_event(struct usb_phy *x, unsigned long event) { x->last_event = event; } EXPORT_SYMBOL_GPL(usb_phy_set_event);
linux-master
drivers/usb/phy/phy.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2007,2008 Freescale semiconductor, Inc. * * Author: Li Yang <[email protected]> * Jerry Huang <[email protected]> * * Initialization based on code from Shlomi Gridish. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/proc_fs.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/timer.h> #include <linux/usb.h> #include <linux/device.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/workqueue.h> #include <linux/time.h> #include <linux/fsl_devices.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <asm/unaligned.h> #include "phy-fsl-usb.h" #ifdef VERBOSE #define VDBG(fmt, args...) pr_debug("[%s] " fmt, \ __func__, ## args) #else #define VDBG(stuff...) do {} while (0) #endif #define DRIVER_VERSION "Rev. 1.55" #define DRIVER_AUTHOR "Jerry Huang/Li Yang" #define DRIVER_DESC "Freescale USB OTG Transceiver Driver" #define DRIVER_INFO DRIVER_DESC " " DRIVER_VERSION static const char driver_name[] = "fsl-usb2-otg"; const pm_message_t otg_suspend_state = { .event = 1, }; #define HA_DATA_PULSE static struct usb_dr_mmap *usb_dr_regs; static struct fsl_otg *fsl_otg_dev; static int srp_wait_done; /* FSM timers */ struct fsl_otg_timer *a_wait_vrise_tmr, *a_wait_bcon_tmr, *a_aidl_bdis_tmr, *b_ase0_brst_tmr, *b_se0_srp_tmr; /* Driver specific timers */ struct fsl_otg_timer *b_data_pulse_tmr, *b_vbus_pulse_tmr, *b_srp_fail_tmr, *b_srp_wait_tmr, *a_wait_enum_tmr; static struct list_head active_timers; static const struct fsl_otg_config fsl_otg_initdata = { .otg_port = 1, }; #ifdef CONFIG_PPC32 static u32 _fsl_readl_be(const unsigned __iomem *p) { return in_be32(p); } static u32 _fsl_readl_le(const unsigned __iomem *p) { return in_le32(p); } static void _fsl_writel_be(u32 v, unsigned __iomem *p) { out_be32(p, v); } static void _fsl_writel_le(u32 v, unsigned __iomem *p) { out_le32(p, v); } static u32 (*_fsl_readl)(const unsigned __iomem *p); static void (*_fsl_writel)(u32 v, unsigned __iomem *p); #define fsl_readl(p) (*_fsl_readl)((p)) #define fsl_writel(v, p) (*_fsl_writel)((v), (p)) #else #define fsl_readl(addr) readl(addr) #define fsl_writel(val, addr) writel(val, addr) #endif /* CONFIG_PPC32 */ int write_ulpi(u8 addr, u8 data) { u32 temp; temp = 0x60000000 | (addr << 16) | data; fsl_writel(temp, &usb_dr_regs->ulpiview); return 0; } /* -------------------------------------------------------------*/ /* Operations that will be called from OTG Finite State Machine */ /* Charge vbus for vbus pulsing in SRP */ void fsl_otg_chrg_vbus(struct otg_fsm *fsm, int on) { u32 tmp; tmp = fsl_readl(&usb_dr_regs->otgsc) & ~OTGSC_INTSTS_MASK; if (on) /* stop discharging, start charging */ tmp = (tmp & ~OTGSC_CTRL_VBUS_DISCHARGE) | OTGSC_CTRL_VBUS_CHARGE; else /* stop charging */ tmp &= ~OTGSC_CTRL_VBUS_CHARGE; fsl_writel(tmp, &usb_dr_regs->otgsc); } /* Discharge vbus through a resistor to ground */ void fsl_otg_dischrg_vbus(int on) { u32 tmp; tmp = fsl_readl(&usb_dr_regs->otgsc) & ~OTGSC_INTSTS_MASK; if (on) /* stop charging, start discharging */ tmp = (tmp & ~OTGSC_CTRL_VBUS_CHARGE) | OTGSC_CTRL_VBUS_DISCHARGE; else /* stop discharging */ tmp &= ~OTGSC_CTRL_VBUS_DISCHARGE; fsl_writel(tmp, &usb_dr_regs->otgsc); } /* A-device driver vbus, controlled through PP bit in PORTSC */ void fsl_otg_drv_vbus(struct otg_fsm *fsm, int on) { u32 tmp; if (on) { tmp = fsl_readl(&usb_dr_regs->portsc) & ~PORTSC_W1C_BITS; fsl_writel(tmp | PORTSC_PORT_POWER, &usb_dr_regs->portsc); } else { tmp = fsl_readl(&usb_dr_regs->portsc) & ~PORTSC_W1C_BITS & ~PORTSC_PORT_POWER; fsl_writel(tmp, &usb_dr_regs->portsc); } } /* * Pull-up D+, signalling connect by periperal. Also used in * data-line pulsing in SRP */ void fsl_otg_loc_conn(struct otg_fsm *fsm, int on) { u32 tmp; tmp = fsl_readl(&usb_dr_regs->otgsc) & ~OTGSC_INTSTS_MASK; if (on) tmp |= OTGSC_CTRL_DATA_PULSING; else tmp &= ~OTGSC_CTRL_DATA_PULSING; fsl_writel(tmp, &usb_dr_regs->otgsc); } /* * Generate SOF by host. This is controlled through suspend/resume the * port. In host mode, controller will automatically send SOF. * Suspend will block the data on the port. */ void fsl_otg_loc_sof(struct otg_fsm *fsm, int on) { u32 tmp; tmp = fsl_readl(&fsl_otg_dev->dr_mem_map->portsc) & ~PORTSC_W1C_BITS; if (on) tmp |= PORTSC_PORT_FORCE_RESUME; else tmp |= PORTSC_PORT_SUSPEND; fsl_writel(tmp, &fsl_otg_dev->dr_mem_map->portsc); } /* Start SRP pulsing by data-line pulsing, followed with v-bus pulsing. */ void fsl_otg_start_pulse(struct otg_fsm *fsm) { u32 tmp; srp_wait_done = 0; #ifdef HA_DATA_PULSE tmp = fsl_readl(&usb_dr_regs->otgsc) & ~OTGSC_INTSTS_MASK; tmp |= OTGSC_HA_DATA_PULSE; fsl_writel(tmp, &usb_dr_regs->otgsc); #else fsl_otg_loc_conn(1); #endif fsl_otg_add_timer(fsm, b_data_pulse_tmr); } void b_data_pulse_end(unsigned long foo) { #ifdef HA_DATA_PULSE #else fsl_otg_loc_conn(0); #endif /* Do VBUS pulse after data pulse */ fsl_otg_pulse_vbus(); } void fsl_otg_pulse_vbus(void) { srp_wait_done = 0; fsl_otg_chrg_vbus(&fsl_otg_dev->fsm, 1); /* start the timer to end vbus charge */ fsl_otg_add_timer(&fsl_otg_dev->fsm, b_vbus_pulse_tmr); } void b_vbus_pulse_end(unsigned long foo) { fsl_otg_chrg_vbus(&fsl_otg_dev->fsm, 0); /* * As USB3300 using the same a_sess_vld and b_sess_vld voltage * we need to discharge the bus for a while to distinguish * residual voltage of vbus pulsing and A device pull up */ fsl_otg_dischrg_vbus(1); fsl_otg_add_timer(&fsl_otg_dev->fsm, b_srp_wait_tmr); } void b_srp_end(unsigned long foo) { fsl_otg_dischrg_vbus(0); srp_wait_done = 1; if ((fsl_otg_dev->phy.otg->state == OTG_STATE_B_SRP_INIT) && fsl_otg_dev->fsm.b_sess_vld) fsl_otg_dev->fsm.b_srp_done = 1; } /* * Workaround for a_host suspending too fast. When a_bus_req=0, * a_host will start by SRP. It needs to set b_hnp_enable before * actually suspending to start HNP */ void a_wait_enum(unsigned long foo) { VDBG("a_wait_enum timeout\n"); if (!fsl_otg_dev->phy.otg->host->b_hnp_enable) fsl_otg_add_timer(&fsl_otg_dev->fsm, a_wait_enum_tmr); else otg_statemachine(&fsl_otg_dev->fsm); } /* The timeout callback function to set time out bit */ void set_tmout(unsigned long indicator) { *(int *)indicator = 1; } /* Initialize timers */ int fsl_otg_init_timers(struct otg_fsm *fsm) { /* FSM used timers */ a_wait_vrise_tmr = otg_timer_initializer(&set_tmout, TA_WAIT_VRISE, (unsigned long)&fsm->a_wait_vrise_tmout); if (!a_wait_vrise_tmr) return -ENOMEM; a_wait_bcon_tmr = otg_timer_initializer(&set_tmout, TA_WAIT_BCON, (unsigned long)&fsm->a_wait_bcon_tmout); if (!a_wait_bcon_tmr) return -ENOMEM; a_aidl_bdis_tmr = otg_timer_initializer(&set_tmout, TA_AIDL_BDIS, (unsigned long)&fsm->a_aidl_bdis_tmout); if (!a_aidl_bdis_tmr) return -ENOMEM; b_ase0_brst_tmr = otg_timer_initializer(&set_tmout, TB_ASE0_BRST, (unsigned long)&fsm->b_ase0_brst_tmout); if (!b_ase0_brst_tmr) return -ENOMEM; b_se0_srp_tmr = otg_timer_initializer(&set_tmout, TB_SE0_SRP, (unsigned long)&fsm->b_se0_srp); if (!b_se0_srp_tmr) return -ENOMEM; b_srp_fail_tmr = otg_timer_initializer(&set_tmout, TB_SRP_FAIL, (unsigned long)&fsm->b_srp_done); if (!b_srp_fail_tmr) return -ENOMEM; a_wait_enum_tmr = otg_timer_initializer(&a_wait_enum, 10, (unsigned long)&fsm); if (!a_wait_enum_tmr) return -ENOMEM; /* device driver used timers */ b_srp_wait_tmr = otg_timer_initializer(&b_srp_end, TB_SRP_WAIT, 0); if (!b_srp_wait_tmr) return -ENOMEM; b_data_pulse_tmr = otg_timer_initializer(&b_data_pulse_end, TB_DATA_PLS, 0); if (!b_data_pulse_tmr) return -ENOMEM; b_vbus_pulse_tmr = otg_timer_initializer(&b_vbus_pulse_end, TB_VBUS_PLS, 0); if (!b_vbus_pulse_tmr) return -ENOMEM; return 0; } /* Uninitialize timers */ void fsl_otg_uninit_timers(void) { /* FSM used timers */ kfree(a_wait_vrise_tmr); kfree(a_wait_bcon_tmr); kfree(a_aidl_bdis_tmr); kfree(b_ase0_brst_tmr); kfree(b_se0_srp_tmr); kfree(b_srp_fail_tmr); kfree(a_wait_enum_tmr); /* device driver used timers */ kfree(b_srp_wait_tmr); kfree(b_data_pulse_tmr); kfree(b_vbus_pulse_tmr); } static struct fsl_otg_timer *fsl_otg_get_timer(enum otg_fsm_timer t) { struct fsl_otg_timer *timer; /* REVISIT: use array of pointers to timers instead */ switch (t) { case A_WAIT_VRISE: timer = a_wait_vrise_tmr; break; case A_WAIT_BCON: timer = a_wait_vrise_tmr; break; case A_AIDL_BDIS: timer = a_wait_vrise_tmr; break; case B_ASE0_BRST: timer = a_wait_vrise_tmr; break; case B_SE0_SRP: timer = a_wait_vrise_tmr; break; case B_SRP_FAIL: timer = a_wait_vrise_tmr; break; case A_WAIT_ENUM: timer = a_wait_vrise_tmr; break; default: timer = NULL; } return timer; } /* Add timer to timer list */ void fsl_otg_add_timer(struct otg_fsm *fsm, void *gtimer) { struct fsl_otg_timer *timer = gtimer; struct fsl_otg_timer *tmp_timer; /* * Check if the timer is already in the active list, * if so update timer count */ list_for_each_entry(tmp_timer, &active_timers, list) if (tmp_timer == timer) { timer->count = timer->expires; return; } timer->count = timer->expires; list_add_tail(&timer->list, &active_timers); } static void fsl_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) { struct fsl_otg_timer *timer; timer = fsl_otg_get_timer(t); if (!timer) return; fsl_otg_add_timer(fsm, timer); } /* Remove timer from the timer list; clear timeout status */ void fsl_otg_del_timer(struct otg_fsm *fsm, void *gtimer) { struct fsl_otg_timer *timer = gtimer; struct fsl_otg_timer *tmp_timer, *del_tmp; list_for_each_entry_safe(tmp_timer, del_tmp, &active_timers, list) if (tmp_timer == timer) list_del(&timer->list); } static void fsl_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) { struct fsl_otg_timer *timer; timer = fsl_otg_get_timer(t); if (!timer) return; fsl_otg_del_timer(fsm, timer); } /* Reset controller, not reset the bus */ void otg_reset_controller(void) { u32 command; command = fsl_readl(&usb_dr_regs->usbcmd); command |= (1 << 1); fsl_writel(command, &usb_dr_regs->usbcmd); while (fsl_readl(&usb_dr_regs->usbcmd) & (1 << 1)) ; } /* Call suspend/resume routines in host driver */ int fsl_otg_start_host(struct otg_fsm *fsm, int on) { struct usb_otg *otg = fsm->otg; struct device *dev; struct fsl_otg *otg_dev = container_of(otg->usb_phy, struct fsl_otg, phy); u32 retval = 0; if (!otg->host) return -ENODEV; dev = otg->host->controller; /* * Update a_vbus_vld state as a_vbus_vld int is disabled * in device mode */ fsm->a_vbus_vld = !!(fsl_readl(&usb_dr_regs->otgsc) & OTGSC_STS_A_VBUS_VALID); if (on) { /* start fsl usb host controller */ if (otg_dev->host_working) goto end; else { otg_reset_controller(); VDBG("host on......\n"); if (dev->driver->pm && dev->driver->pm->resume) { retval = dev->driver->pm->resume(dev); if (fsm->id) { /* default-b */ fsl_otg_drv_vbus(fsm, 1); /* * Workaround: b_host can't driver * vbus, but PP in PORTSC needs to * be 1 for host to work. * So we set drv_vbus bit in * transceiver to 0 thru ULPI. */ write_ulpi(0x0c, 0x20); } } otg_dev->host_working = 1; } } else { /* stop fsl usb host controller */ if (!otg_dev->host_working) goto end; else { VDBG("host off......\n"); if (dev && dev->driver) { if (dev->driver->pm && dev->driver->pm->suspend) retval = dev->driver->pm->suspend(dev); if (fsm->id) /* default-b */ fsl_otg_drv_vbus(fsm, 0); } otg_dev->host_working = 0; } } end: return retval; } /* * Call suspend and resume function in udc driver * to stop and start udc driver. */ int fsl_otg_start_gadget(struct otg_fsm *fsm, int on) { struct usb_otg *otg = fsm->otg; struct device *dev; if (!otg->gadget || !otg->gadget->dev.parent) return -ENODEV; VDBG("gadget %s\n", on ? "on" : "off"); dev = otg->gadget->dev.parent; if (on) { if (dev->driver->resume) dev->driver->resume(dev); } else { if (dev->driver->suspend) dev->driver->suspend(dev, otg_suspend_state); } return 0; } /* * Called by initialization code of host driver. Register host controller * to the OTG. Suspend host for OTG role detection. */ static int fsl_otg_set_host(struct usb_otg *otg, struct usb_bus *host) { struct fsl_otg *otg_dev; if (!otg) return -ENODEV; otg_dev = container_of(otg->usb_phy, struct fsl_otg, phy); if (otg_dev != fsl_otg_dev) return -ENODEV; otg->host = host; otg_dev->fsm.a_bus_drop = 0; otg_dev->fsm.a_bus_req = 1; if (host) { VDBG("host off......\n"); otg->host->otg_port = fsl_otg_initdata.otg_port; otg->host->is_b_host = otg_dev->fsm.id; /* * must leave time for hub_wq to finish its thing * before yanking the host driver out from under it, * so suspend the host after a short delay. */ otg_dev->host_working = 1; schedule_delayed_work(&otg_dev->otg_event, 100); return 0; } else { /* host driver going away */ if (!(fsl_readl(&otg_dev->dr_mem_map->otgsc) & OTGSC_STS_USB_ID)) { /* Mini-A cable connected */ struct otg_fsm *fsm = &otg_dev->fsm; otg->state = OTG_STATE_UNDEFINED; fsm->protocol = PROTO_UNDEF; } } otg_dev->host_working = 0; otg_statemachine(&otg_dev->fsm); return 0; } /* Called by initialization code of udc. Register udc to OTG. */ static int fsl_otg_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { struct fsl_otg *otg_dev; if (!otg) return -ENODEV; otg_dev = container_of(otg->usb_phy, struct fsl_otg, phy); VDBG("otg_dev 0x%x\n", (int)otg_dev); VDBG("fsl_otg_dev 0x%x\n", (int)fsl_otg_dev); if (otg_dev != fsl_otg_dev) return -ENODEV; if (!gadget) { if (!otg->default_a) otg->gadget->ops->vbus_draw(otg->gadget, 0); usb_gadget_vbus_disconnect(otg->gadget); otg->gadget = 0; otg_dev->fsm.b_bus_req = 0; otg_statemachine(&otg_dev->fsm); return 0; } otg->gadget = gadget; otg->gadget->is_a_peripheral = !otg_dev->fsm.id; otg_dev->fsm.b_bus_req = 1; /* start the gadget right away if the ID pin says Mini-B */ pr_debug("ID pin=%d\n", otg_dev->fsm.id); if (otg_dev->fsm.id == 1) { fsl_otg_start_host(&otg_dev->fsm, 0); otg_drv_vbus(&otg_dev->fsm, 0); fsl_otg_start_gadget(&otg_dev->fsm, 1); } return 0; } /* * Delayed pin detect interrupt processing. * * When the Mini-A cable is disconnected from the board, * the pin-detect interrupt happens before the disconnect * interrupts for the connected device(s). In order to * process the disconnect interrupt(s) prior to switching * roles, the pin-detect interrupts are delayed, and handled * by this routine. */ static void fsl_otg_event(struct work_struct *work) { struct fsl_otg *og = container_of(work, struct fsl_otg, otg_event.work); struct otg_fsm *fsm = &og->fsm; if (fsm->id) { /* switch to gadget */ fsl_otg_start_host(fsm, 0); otg_drv_vbus(fsm, 0); fsl_otg_start_gadget(fsm, 1); } } /* B-device start SRP */ static int fsl_otg_start_srp(struct usb_otg *otg) { struct fsl_otg *otg_dev; if (!otg || otg->state != OTG_STATE_B_IDLE) return -ENODEV; otg_dev = container_of(otg->usb_phy, struct fsl_otg, phy); if (otg_dev != fsl_otg_dev) return -ENODEV; otg_dev->fsm.b_bus_req = 1; otg_statemachine(&otg_dev->fsm); return 0; } /* A_host suspend will call this function to start hnp */ static int fsl_otg_start_hnp(struct usb_otg *otg) { struct fsl_otg *otg_dev; if (!otg) return -ENODEV; otg_dev = container_of(otg->usb_phy, struct fsl_otg, phy); if (otg_dev != fsl_otg_dev) return -ENODEV; pr_debug("start_hnp...\n"); /* clear a_bus_req to enter a_suspend state */ otg_dev->fsm.a_bus_req = 0; otg_statemachine(&otg_dev->fsm); return 0; } /* * Interrupt handler. OTG/host/peripheral share the same int line. * OTG driver clears OTGSC interrupts and leaves USB interrupts * intact. It needs to have knowledge of some USB interrupts * such as port change. */ irqreturn_t fsl_otg_isr(int irq, void *dev_id) { struct otg_fsm *fsm = &((struct fsl_otg *)dev_id)->fsm; struct usb_otg *otg = ((struct fsl_otg *)dev_id)->phy.otg; u32 otg_int_src, otg_sc; otg_sc = fsl_readl(&usb_dr_regs->otgsc); otg_int_src = otg_sc & OTGSC_INTSTS_MASK & (otg_sc >> 8); /* Only clear otg interrupts */ fsl_writel(otg_sc, &usb_dr_regs->otgsc); /*FIXME: ID change not generate when init to 0 */ fsm->id = (otg_sc & OTGSC_STS_USB_ID) ? 1 : 0; otg->default_a = (fsm->id == 0); /* process OTG interrupts */ if (otg_int_src) { if (otg_int_src & OTGSC_INTSTS_USB_ID) { fsm->id = (otg_sc & OTGSC_STS_USB_ID) ? 1 : 0; otg->default_a = (fsm->id == 0); /* clear conn information */ if (fsm->id) fsm->b_conn = 0; else fsm->a_conn = 0; if (otg->host) otg->host->is_b_host = fsm->id; if (otg->gadget) otg->gadget->is_a_peripheral = !fsm->id; VDBG("ID int (ID is %d)\n", fsm->id); if (fsm->id) { /* switch to gadget */ schedule_delayed_work( &((struct fsl_otg *)dev_id)->otg_event, 100); } else { /* switch to host */ cancel_delayed_work(& ((struct fsl_otg *)dev_id)-> otg_event); fsl_otg_start_gadget(fsm, 0); otg_drv_vbus(fsm, 1); fsl_otg_start_host(fsm, 1); } return IRQ_HANDLED; } } return IRQ_NONE; } static struct otg_fsm_ops fsl_otg_ops = { .chrg_vbus = fsl_otg_chrg_vbus, .drv_vbus = fsl_otg_drv_vbus, .loc_conn = fsl_otg_loc_conn, .loc_sof = fsl_otg_loc_sof, .start_pulse = fsl_otg_start_pulse, .add_timer = fsl_otg_fsm_add_timer, .del_timer = fsl_otg_fsm_del_timer, .start_host = fsl_otg_start_host, .start_gadget = fsl_otg_start_gadget, }; /* Initialize the global variable fsl_otg_dev and request IRQ for OTG */ static int fsl_otg_conf(struct platform_device *pdev) { struct fsl_otg *fsl_otg_tc; int status; if (fsl_otg_dev) return 0; /* allocate space to fsl otg device */ fsl_otg_tc = kzalloc(sizeof(struct fsl_otg), GFP_KERNEL); if (!fsl_otg_tc) return -ENOMEM; fsl_otg_tc->phy.otg = kzalloc(sizeof(struct usb_otg), GFP_KERNEL); if (!fsl_otg_tc->phy.otg) { kfree(fsl_otg_tc); return -ENOMEM; } INIT_DELAYED_WORK(&fsl_otg_tc->otg_event, fsl_otg_event); INIT_LIST_HEAD(&active_timers); status = fsl_otg_init_timers(&fsl_otg_tc->fsm); if (status) { pr_info("Couldn't init OTG timers\n"); goto err; } mutex_init(&fsl_otg_tc->fsm.lock); /* Set OTG state machine operations */ fsl_otg_tc->fsm.ops = &fsl_otg_ops; /* initialize the otg structure */ fsl_otg_tc->phy.label = DRIVER_DESC; fsl_otg_tc->phy.dev = &pdev->dev; fsl_otg_tc->phy.otg->usb_phy = &fsl_otg_tc->phy; fsl_otg_tc->phy.otg->set_host = fsl_otg_set_host; fsl_otg_tc->phy.otg->set_peripheral = fsl_otg_set_peripheral; fsl_otg_tc->phy.otg->start_hnp = fsl_otg_start_hnp; fsl_otg_tc->phy.otg->start_srp = fsl_otg_start_srp; fsl_otg_dev = fsl_otg_tc; /* Store the otg transceiver */ status = usb_add_phy(&fsl_otg_tc->phy, USB_PHY_TYPE_USB2); if (status) { pr_warn(FSL_OTG_NAME ": unable to register OTG transceiver.\n"); goto err; } return 0; err: fsl_otg_uninit_timers(); kfree(fsl_otg_tc->phy.otg); kfree(fsl_otg_tc); return status; } /* OTG Initialization */ int usb_otg_start(struct platform_device *pdev) { struct fsl_otg *p_otg; struct usb_phy *otg_trans = usb_get_phy(USB_PHY_TYPE_USB2); struct otg_fsm *fsm; int status; struct resource *res; u32 temp; struct fsl_usb2_platform_data *pdata = dev_get_platdata(&pdev->dev); p_otg = container_of(otg_trans, struct fsl_otg, phy); fsm = &p_otg->fsm; /* Initialize the state machine structure with default values */ SET_OTG_STATE(otg_trans, OTG_STATE_UNDEFINED); fsm->otg = p_otg->phy.otg; /* We don't require predefined MEM/IRQ resource index */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; /* We don't request_mem_region here to enable resource sharing * with host/device */ usb_dr_regs = ioremap(res->start, sizeof(struct usb_dr_mmap)); p_otg->dr_mem_map = (struct usb_dr_mmap *)usb_dr_regs; pdata->regs = (void *)usb_dr_regs; if (pdata->init && pdata->init(pdev) != 0) return -EINVAL; #ifdef CONFIG_PPC32 if (pdata->big_endian_mmio) { _fsl_readl = _fsl_readl_be; _fsl_writel = _fsl_writel_be; } else { _fsl_readl = _fsl_readl_le; _fsl_writel = _fsl_writel_le; } #endif /* request irq */ p_otg->irq = platform_get_irq(pdev, 0); if (p_otg->irq < 0) return p_otg->irq; status = request_irq(p_otg->irq, fsl_otg_isr, IRQF_SHARED, driver_name, p_otg); if (status) { dev_dbg(p_otg->phy.dev, "can't get IRQ %d, error %d\n", p_otg->irq, status); iounmap(p_otg->dr_mem_map); kfree(p_otg->phy.otg); kfree(p_otg); return status; } /* stop the controller */ temp = fsl_readl(&p_otg->dr_mem_map->usbcmd); temp &= ~USB_CMD_RUN_STOP; fsl_writel(temp, &p_otg->dr_mem_map->usbcmd); /* reset the controller */ temp = fsl_readl(&p_otg->dr_mem_map->usbcmd); temp |= USB_CMD_CTRL_RESET; fsl_writel(temp, &p_otg->dr_mem_map->usbcmd); /* wait reset completed */ while (fsl_readl(&p_otg->dr_mem_map->usbcmd) & USB_CMD_CTRL_RESET) ; /* configure the VBUSHS as IDLE(both host and device) */ temp = USB_MODE_STREAM_DISABLE | (pdata->es ? USB_MODE_ES : 0); fsl_writel(temp, &p_otg->dr_mem_map->usbmode); /* configure PHY interface */ temp = fsl_readl(&p_otg->dr_mem_map->portsc); temp &= ~(PORTSC_PHY_TYPE_SEL | PORTSC_PTW); switch (pdata->phy_mode) { case FSL_USB2_PHY_ULPI: temp |= PORTSC_PTS_ULPI; break; case FSL_USB2_PHY_UTMI_WIDE: temp |= PORTSC_PTW_16BIT; fallthrough; case FSL_USB2_PHY_UTMI: temp |= PORTSC_PTS_UTMI; fallthrough; default: break; } fsl_writel(temp, &p_otg->dr_mem_map->portsc); if (pdata->have_sysif_regs) { /* configure control enable IO output, big endian register */ temp = __raw_readl(&p_otg->dr_mem_map->control); temp |= USB_CTRL_IOENB; __raw_writel(temp, &p_otg->dr_mem_map->control); } /* disable all interrupt and clear all OTGSC status */ temp = fsl_readl(&p_otg->dr_mem_map->otgsc); temp &= ~OTGSC_INTERRUPT_ENABLE_BITS_MASK; temp |= OTGSC_INTERRUPT_STATUS_BITS_MASK | OTGSC_CTRL_VBUS_DISCHARGE; fsl_writel(temp, &p_otg->dr_mem_map->otgsc); /* * The identification (id) input is FALSE when a Mini-A plug is inserted * in the devices Mini-AB receptacle. Otherwise, this input is TRUE. * Also: record initial state of ID pin */ if (fsl_readl(&p_otg->dr_mem_map->otgsc) & OTGSC_STS_USB_ID) { p_otg->phy.otg->state = OTG_STATE_UNDEFINED; p_otg->fsm.id = 1; } else { p_otg->phy.otg->state = OTG_STATE_A_IDLE; p_otg->fsm.id = 0; } pr_debug("initial ID pin=%d\n", p_otg->fsm.id); /* enable OTG ID pin interrupt */ temp = fsl_readl(&p_otg->dr_mem_map->otgsc); temp |= OTGSC_INTR_USB_ID_EN; temp &= ~(OTGSC_CTRL_VBUS_DISCHARGE | OTGSC_INTR_1MS_TIMER_EN); fsl_writel(temp, &p_otg->dr_mem_map->otgsc); return 0; } static int fsl_otg_probe(struct platform_device *pdev) { int ret; if (!dev_get_platdata(&pdev->dev)) return -ENODEV; /* configure the OTG */ ret = fsl_otg_conf(pdev); if (ret) { dev_err(&pdev->dev, "Couldn't configure OTG module\n"); return ret; } /* start OTG */ ret = usb_otg_start(pdev); if (ret) { dev_err(&pdev->dev, "Can't init FSL OTG device\n"); return ret; } return ret; } static void fsl_otg_remove(struct platform_device *pdev) { struct fsl_usb2_platform_data *pdata = dev_get_platdata(&pdev->dev); usb_remove_phy(&fsl_otg_dev->phy); free_irq(fsl_otg_dev->irq, fsl_otg_dev); iounmap((void *)usb_dr_regs); fsl_otg_uninit_timers(); kfree(fsl_otg_dev->phy.otg); kfree(fsl_otg_dev); if (pdata->exit) pdata->exit(pdev); } struct platform_driver fsl_otg_driver = { .probe = fsl_otg_probe, .remove_new = fsl_otg_remove, .driver = { .name = driver_name, .owner = THIS_MODULE, }, }; module_platform_driver(fsl_otg_driver); MODULE_DESCRIPTION(DRIVER_INFO); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-fsl-usb.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2011 Google, Inc. */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/usb.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/usb/otg.h> #include <linux/usb/ulpi.h> #define ULPI_VIEW_WAKEUP (1 << 31) #define ULPI_VIEW_RUN (1 << 30) #define ULPI_VIEW_WRITE (1 << 29) #define ULPI_VIEW_READ (0 << 29) #define ULPI_VIEW_ADDR(x) (((x) & 0xff) << 16) #define ULPI_VIEW_DATA_READ(x) (((x) >> 8) & 0xff) #define ULPI_VIEW_DATA_WRITE(x) ((x) & 0xff) static int ulpi_viewport_wait(void __iomem *view, u32 mask) { u32 val; return readl_poll_timeout_atomic(view, val, !(val & mask), 1, 2000); } static int ulpi_viewport_read(struct usb_phy *otg, u32 reg) { int ret; void __iomem *view = otg->io_priv; writel(ULPI_VIEW_WAKEUP | ULPI_VIEW_WRITE, view); ret = ulpi_viewport_wait(view, ULPI_VIEW_WAKEUP); if (ret) return ret; writel(ULPI_VIEW_RUN | ULPI_VIEW_READ | ULPI_VIEW_ADDR(reg), view); ret = ulpi_viewport_wait(view, ULPI_VIEW_RUN); if (ret) return ret; return ULPI_VIEW_DATA_READ(readl(view)); } static int ulpi_viewport_write(struct usb_phy *otg, u32 val, u32 reg) { int ret; void __iomem *view = otg->io_priv; writel(ULPI_VIEW_WAKEUP | ULPI_VIEW_WRITE, view); ret = ulpi_viewport_wait(view, ULPI_VIEW_WAKEUP); if (ret) return ret; writel(ULPI_VIEW_RUN | ULPI_VIEW_WRITE | ULPI_VIEW_DATA_WRITE(val) | ULPI_VIEW_ADDR(reg), view); return ulpi_viewport_wait(view, ULPI_VIEW_RUN); } struct usb_phy_io_ops ulpi_viewport_access_ops = { .read = ulpi_viewport_read, .write = ulpi_viewport_write, }; EXPORT_SYMBOL_GPL(ulpi_viewport_access_ops);
linux-master
drivers/usb/phy/phy-ulpi-viewport.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/module.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/usb/otg.h> #include <linux/usb/usb_phy_generic.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/usb/of.h> #include "phy-am335x-control.h" #include "phy-generic.h" struct am335x_phy { struct usb_phy_generic usb_phy_gen; struct phy_control *phy_ctrl; int id; enum usb_dr_mode dr_mode; }; static int am335x_init(struct usb_phy *phy) { struct am335x_phy *am_phy = dev_get_drvdata(phy->dev); phy_ctrl_power(am_phy->phy_ctrl, am_phy->id, am_phy->dr_mode, true); return 0; } static void am335x_shutdown(struct usb_phy *phy) { struct am335x_phy *am_phy = dev_get_drvdata(phy->dev); phy_ctrl_power(am_phy->phy_ctrl, am_phy->id, am_phy->dr_mode, false); } static int am335x_phy_probe(struct platform_device *pdev) { struct am335x_phy *am_phy; struct device *dev = &pdev->dev; int ret; am_phy = devm_kzalloc(dev, sizeof(*am_phy), GFP_KERNEL); if (!am_phy) return -ENOMEM; am_phy->phy_ctrl = am335x_get_phy_control(dev); if (!am_phy->phy_ctrl) return -EPROBE_DEFER; am_phy->id = of_alias_get_id(pdev->dev.of_node, "phy"); if (am_phy->id < 0) { dev_err(&pdev->dev, "Missing PHY id: %d\n", am_phy->id); return am_phy->id; } am_phy->dr_mode = of_usb_get_dr_mode_by_phy(pdev->dev.of_node, -1); ret = usb_phy_gen_create_phy(dev, &am_phy->usb_phy_gen); if (ret) return ret; am_phy->usb_phy_gen.phy.init = am335x_init; am_phy->usb_phy_gen.phy.shutdown = am335x_shutdown; platform_set_drvdata(pdev, am_phy); device_init_wakeup(dev, true); /* * If we leave PHY wakeup enabled then AM33XX wakes up * immediately from DS0. To avoid this we mark dev->power.can_wakeup * to false. The same is checked in suspend routine to decide * on whether to enable PHY wakeup or not. * PHY wakeup works fine in standby mode, there by allowing us to * handle remote wakeup, wakeup on disconnect and connect. */ device_set_wakeup_enable(dev, false); phy_ctrl_power(am_phy->phy_ctrl, am_phy->id, am_phy->dr_mode, false); return usb_add_phy_dev(&am_phy->usb_phy_gen.phy); } static void am335x_phy_remove(struct platform_device *pdev) { struct am335x_phy *am_phy = platform_get_drvdata(pdev); usb_remove_phy(&am_phy->usb_phy_gen.phy); } #ifdef CONFIG_PM_SLEEP static int am335x_phy_suspend(struct device *dev) { struct am335x_phy *am_phy = dev_get_drvdata(dev); /* * Enable phy wakeup only if dev->power.can_wakeup is true. * Make sure to enable wakeup to support remote wakeup in * standby mode ( same is not supported in OFF(DS0) mode). * Enable it by doing * echo enabled > /sys/bus/platform/devices/<usb-phy-id>/power/wakeup */ if (device_may_wakeup(dev)) phy_ctrl_wkup(am_phy->phy_ctrl, am_phy->id, true); phy_ctrl_power(am_phy->phy_ctrl, am_phy->id, am_phy->dr_mode, false); return 0; } static int am335x_phy_resume(struct device *dev) { struct am335x_phy *am_phy = dev_get_drvdata(dev); phy_ctrl_power(am_phy->phy_ctrl, am_phy->id, am_phy->dr_mode, true); if (device_may_wakeup(dev)) phy_ctrl_wkup(am_phy->phy_ctrl, am_phy->id, false); return 0; } #endif static SIMPLE_DEV_PM_OPS(am335x_pm_ops, am335x_phy_suspend, am335x_phy_resume); static const struct of_device_id am335x_phy_ids[] = { { .compatible = "ti,am335x-usb-phy" }, { } }; MODULE_DEVICE_TABLE(of, am335x_phy_ids); static struct platform_driver am335x_phy_driver = { .probe = am335x_phy_probe, .remove_new = am335x_phy_remove, .driver = { .name = "am335x-phy-driver", .pm = &am335x_pm_ops, .of_match_table = am335x_phy_ids, }, }; module_platform_driver(am335x_phy_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/phy/phy-am335x.c
// SPDX-License-Identifier: GPL-2.0+ /* * phy-keystone - USB PHY, talking to dwc3 controller in Keystone. * * Copyright (C) 2013 Texas Instruments Incorporated - https://www.ti.com * * Author: WingMan Kwok <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/usb/usb_phy_generic.h> #include <linux/io.h> #include <linux/of.h> #include "phy-generic.h" /* USB PHY control register offsets */ #define USB_PHY_CTL_UTMI 0x0000 #define USB_PHY_CTL_PIPE 0x0004 #define USB_PHY_CTL_PARAM_1 0x0008 #define USB_PHY_CTL_PARAM_2 0x000c #define USB_PHY_CTL_CLOCK 0x0010 #define USB_PHY_CTL_PLL 0x0014 #define PHY_REF_SSP_EN BIT(29) struct keystone_usbphy { struct usb_phy_generic usb_phy_gen; void __iomem *phy_ctrl; }; static inline u32 keystone_usbphy_readl(void __iomem *base, u32 offset) { return readl(base + offset); } static inline void keystone_usbphy_writel(void __iomem *base, u32 offset, u32 value) { writel(value, base + offset); } static int keystone_usbphy_init(struct usb_phy *phy) { struct keystone_usbphy *k_phy = dev_get_drvdata(phy->dev); u32 val; val = keystone_usbphy_readl(k_phy->phy_ctrl, USB_PHY_CTL_CLOCK); keystone_usbphy_writel(k_phy->phy_ctrl, USB_PHY_CTL_CLOCK, val | PHY_REF_SSP_EN); return 0; } static void keystone_usbphy_shutdown(struct usb_phy *phy) { struct keystone_usbphy *k_phy = dev_get_drvdata(phy->dev); u32 val; val = keystone_usbphy_readl(k_phy->phy_ctrl, USB_PHY_CTL_CLOCK); keystone_usbphy_writel(k_phy->phy_ctrl, USB_PHY_CTL_CLOCK, val & ~PHY_REF_SSP_EN); } static int keystone_usbphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct keystone_usbphy *k_phy; int ret; k_phy = devm_kzalloc(dev, sizeof(*k_phy), GFP_KERNEL); if (!k_phy) return -ENOMEM; k_phy->phy_ctrl = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(k_phy->phy_ctrl)) return PTR_ERR(k_phy->phy_ctrl); ret = usb_phy_gen_create_phy(dev, &k_phy->usb_phy_gen); if (ret) return ret; k_phy->usb_phy_gen.phy.init = keystone_usbphy_init; k_phy->usb_phy_gen.phy.shutdown = keystone_usbphy_shutdown; platform_set_drvdata(pdev, k_phy); return usb_add_phy_dev(&k_phy->usb_phy_gen.phy); } static void keystone_usbphy_remove(struct platform_device *pdev) { struct keystone_usbphy *k_phy = platform_get_drvdata(pdev); usb_remove_phy(&k_phy->usb_phy_gen.phy); } static const struct of_device_id keystone_usbphy_ids[] = { { .compatible = "ti,keystone-usbphy" }, { } }; MODULE_DEVICE_TABLE(of, keystone_usbphy_ids); static struct platform_driver keystone_usbphy_driver = { .probe = keystone_usbphy_probe, .remove_new = keystone_usbphy_remove, .driver = { .name = "keystone-usbphy", .of_match_table = keystone_usbphy_ids, }, }; module_platform_driver(keystone_usbphy_driver); MODULE_ALIAS("platform:keystone-usbphy"); MODULE_AUTHOR("Texas Instruments Inc."); MODULE_DESCRIPTION("Keystone USB phy driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/phy/phy-keystone.c
// SPDX-License-Identifier: GPL-2.0+ /* * USB of helper code */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/usb/of.h> #include <linux/usb/otg.h> static const char *const usbphy_modes[] = { [USBPHY_INTERFACE_MODE_UNKNOWN] = "", [USBPHY_INTERFACE_MODE_UTMI] = "utmi", [USBPHY_INTERFACE_MODE_UTMIW] = "utmi_wide", [USBPHY_INTERFACE_MODE_ULPI] = "ulpi", [USBPHY_INTERFACE_MODE_SERIAL] = "serial", [USBPHY_INTERFACE_MODE_HSIC] = "hsic", }; /** * of_usb_get_phy_mode - Get phy mode for given device_node * @np: Pointer to the given device_node * * The function gets phy interface string from property 'phy_type', * and returns the corresponding enum usb_phy_interface */ enum usb_phy_interface of_usb_get_phy_mode(struct device_node *np) { const char *phy_type; int err, i; err = of_property_read_string(np, "phy_type", &phy_type); if (err < 0) return USBPHY_INTERFACE_MODE_UNKNOWN; for (i = 0; i < ARRAY_SIZE(usbphy_modes); i++) if (!strcmp(phy_type, usbphy_modes[i])) return i; return USBPHY_INTERFACE_MODE_UNKNOWN; } EXPORT_SYMBOL_GPL(of_usb_get_phy_mode);
linux-master
drivers/usb/phy/of.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2011 Marvell International Ltd. All rights reserved. * Author: Chao Xie <[email protected]> * Neil Zhang <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/uaccess.h> #include <linux/device.h> #include <linux/proc_fs.h> #include <linux/clk.h> #include <linux/workqueue.h> #include <linux/platform_device.h> #include <linux/usb.h> #include <linux/usb/ch9.h> #include <linux/usb/otg.h> #include <linux/usb/gadget.h> #include <linux/usb/hcd.h> #include <linux/platform_data/mv_usb.h> #include "phy-mv-usb.h" #define DRIVER_DESC "Marvell USB OTG transceiver driver" MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); static const char driver_name[] = "mv-otg"; static char *state_string[] = { "undefined", "b_idle", "b_srp_init", "b_peripheral", "b_wait_acon", "b_host", "a_idle", "a_wait_vrise", "a_wait_bcon", "a_host", "a_suspend", "a_peripheral", "a_wait_vfall", "a_vbus_err" }; static int mv_otg_set_vbus(struct usb_otg *otg, bool on) { struct mv_otg *mvotg = container_of(otg->usb_phy, struct mv_otg, phy); if (mvotg->pdata->set_vbus == NULL) return -ENODEV; return mvotg->pdata->set_vbus(on); } static int mv_otg_set_host(struct usb_otg *otg, struct usb_bus *host) { otg->host = host; return 0; } static int mv_otg_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { otg->gadget = gadget; return 0; } static void mv_otg_run_state_machine(struct mv_otg *mvotg, unsigned long delay) { dev_dbg(&mvotg->pdev->dev, "transceiver is updated\n"); if (!mvotg->qwork) return; queue_delayed_work(mvotg->qwork, &mvotg->work, delay); } static void mv_otg_timer_await_bcon(struct timer_list *t) { struct mv_otg *mvotg = from_timer(mvotg, t, otg_ctrl.timer[A_WAIT_BCON_TIMER]); mvotg->otg_ctrl.a_wait_bcon_timeout = 1; dev_info(&mvotg->pdev->dev, "B Device No Response!\n"); if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 0); spin_unlock(&mvotg->wq_lock); } } static int mv_otg_cancel_timer(struct mv_otg *mvotg, unsigned int id) { struct timer_list *timer; if (id >= OTG_TIMER_NUM) return -EINVAL; timer = &mvotg->otg_ctrl.timer[id]; if (timer_pending(timer)) del_timer(timer); return 0; } static int mv_otg_set_timer(struct mv_otg *mvotg, unsigned int id, unsigned long interval) { struct timer_list *timer; if (id >= OTG_TIMER_NUM) return -EINVAL; timer = &mvotg->otg_ctrl.timer[id]; if (timer_pending(timer)) { dev_err(&mvotg->pdev->dev, "Timer%d is already running\n", id); return -EBUSY; } timer->expires = jiffies + interval; add_timer(timer); return 0; } static int mv_otg_reset(struct mv_otg *mvotg) { u32 tmp; int ret; /* Stop the controller */ tmp = readl(&mvotg->op_regs->usbcmd); tmp &= ~USBCMD_RUN_STOP; writel(tmp, &mvotg->op_regs->usbcmd); /* Reset the controller to get default values */ writel(USBCMD_CTRL_RESET, &mvotg->op_regs->usbcmd); ret = readl_poll_timeout_atomic(&mvotg->op_regs->usbcmd, tmp, (tmp & USBCMD_CTRL_RESET), 10, 10000); if (ret < 0) { dev_err(&mvotg->pdev->dev, "Wait for RESET completed TIMEOUT\n"); return ret; } writel(0x0, &mvotg->op_regs->usbintr); tmp = readl(&mvotg->op_regs->usbsts); writel(tmp, &mvotg->op_regs->usbsts); return 0; } static void mv_otg_init_irq(struct mv_otg *mvotg) { u32 otgsc; mvotg->irq_en = OTGSC_INTR_A_SESSION_VALID | OTGSC_INTR_A_VBUS_VALID; mvotg->irq_status = OTGSC_INTSTS_A_SESSION_VALID | OTGSC_INTSTS_A_VBUS_VALID; if (mvotg->pdata->vbus == NULL) { mvotg->irq_en |= OTGSC_INTR_B_SESSION_VALID | OTGSC_INTR_B_SESSION_END; mvotg->irq_status |= OTGSC_INTSTS_B_SESSION_VALID | OTGSC_INTSTS_B_SESSION_END; } if (mvotg->pdata->id == NULL) { mvotg->irq_en |= OTGSC_INTR_USB_ID; mvotg->irq_status |= OTGSC_INTSTS_USB_ID; } otgsc = readl(&mvotg->op_regs->otgsc); otgsc |= mvotg->irq_en; writel(otgsc, &mvotg->op_regs->otgsc); } static void mv_otg_start_host(struct mv_otg *mvotg, int on) { #ifdef CONFIG_USB struct usb_otg *otg = mvotg->phy.otg; struct usb_hcd *hcd; if (!otg->host) return; dev_info(&mvotg->pdev->dev, "%s host\n", on ? "start" : "stop"); hcd = bus_to_hcd(otg->host); if (on) { usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); device_wakeup_enable(hcd->self.controller); } else { usb_remove_hcd(hcd); } #endif /* CONFIG_USB */ } static void mv_otg_start_periphrals(struct mv_otg *mvotg, int on) { struct usb_otg *otg = mvotg->phy.otg; if (!otg->gadget) return; dev_info(mvotg->phy.dev, "gadget %s\n", on ? "on" : "off"); if (on) usb_gadget_vbus_connect(otg->gadget); else usb_gadget_vbus_disconnect(otg->gadget); } static void otg_clock_enable(struct mv_otg *mvotg) { clk_prepare_enable(mvotg->clk); } static void otg_clock_disable(struct mv_otg *mvotg) { clk_disable_unprepare(mvotg->clk); } static int mv_otg_enable_internal(struct mv_otg *mvotg) { int retval = 0; if (mvotg->active) return 0; dev_dbg(&mvotg->pdev->dev, "otg enabled\n"); otg_clock_enable(mvotg); if (mvotg->pdata->phy_init) { retval = mvotg->pdata->phy_init(mvotg->phy_regs); if (retval) { dev_err(&mvotg->pdev->dev, "init phy error %d\n", retval); otg_clock_disable(mvotg); return retval; } } mvotg->active = 1; return 0; } static int mv_otg_enable(struct mv_otg *mvotg) { if (mvotg->clock_gating) return mv_otg_enable_internal(mvotg); return 0; } static void mv_otg_disable_internal(struct mv_otg *mvotg) { if (mvotg->active) { dev_dbg(&mvotg->pdev->dev, "otg disabled\n"); if (mvotg->pdata->phy_deinit) mvotg->pdata->phy_deinit(mvotg->phy_regs); otg_clock_disable(mvotg); mvotg->active = 0; } } static void mv_otg_disable(struct mv_otg *mvotg) { if (mvotg->clock_gating) mv_otg_disable_internal(mvotg); } static void mv_otg_update_inputs(struct mv_otg *mvotg) { struct mv_otg_ctrl *otg_ctrl = &mvotg->otg_ctrl; u32 otgsc; otgsc = readl(&mvotg->op_regs->otgsc); if (mvotg->pdata->vbus) { if (mvotg->pdata->vbus->poll() == VBUS_HIGH) { otg_ctrl->b_sess_vld = 1; otg_ctrl->b_sess_end = 0; } else { otg_ctrl->b_sess_vld = 0; otg_ctrl->b_sess_end = 1; } } else { otg_ctrl->b_sess_vld = !!(otgsc & OTGSC_STS_B_SESSION_VALID); otg_ctrl->b_sess_end = !!(otgsc & OTGSC_STS_B_SESSION_END); } if (mvotg->pdata->id) otg_ctrl->id = !!mvotg->pdata->id->poll(); else otg_ctrl->id = !!(otgsc & OTGSC_STS_USB_ID); if (mvotg->pdata->otg_force_a_bus_req && !otg_ctrl->id) otg_ctrl->a_bus_req = 1; otg_ctrl->a_sess_vld = !!(otgsc & OTGSC_STS_A_SESSION_VALID); otg_ctrl->a_vbus_vld = !!(otgsc & OTGSC_STS_A_VBUS_VALID); dev_dbg(&mvotg->pdev->dev, "%s: ", __func__); dev_dbg(&mvotg->pdev->dev, "id %d\n", otg_ctrl->id); dev_dbg(&mvotg->pdev->dev, "b_sess_vld %d\n", otg_ctrl->b_sess_vld); dev_dbg(&mvotg->pdev->dev, "b_sess_end %d\n", otg_ctrl->b_sess_end); dev_dbg(&mvotg->pdev->dev, "a_vbus_vld %d\n", otg_ctrl->a_vbus_vld); dev_dbg(&mvotg->pdev->dev, "a_sess_vld %d\n", otg_ctrl->a_sess_vld); } static void mv_otg_update_state(struct mv_otg *mvotg) { struct mv_otg_ctrl *otg_ctrl = &mvotg->otg_ctrl; int old_state = mvotg->phy.otg->state; switch (old_state) { case OTG_STATE_UNDEFINED: mvotg->phy.otg->state = OTG_STATE_B_IDLE; fallthrough; case OTG_STATE_B_IDLE: if (otg_ctrl->id == 0) mvotg->phy.otg->state = OTG_STATE_A_IDLE; else if (otg_ctrl->b_sess_vld) mvotg->phy.otg->state = OTG_STATE_B_PERIPHERAL; break; case OTG_STATE_B_PERIPHERAL: if (!otg_ctrl->b_sess_vld || otg_ctrl->id == 0) mvotg->phy.otg->state = OTG_STATE_B_IDLE; break; case OTG_STATE_A_IDLE: if (otg_ctrl->id) mvotg->phy.otg->state = OTG_STATE_B_IDLE; else if (!(otg_ctrl->a_bus_drop) && (otg_ctrl->a_bus_req || otg_ctrl->a_srp_det)) mvotg->phy.otg->state = OTG_STATE_A_WAIT_VRISE; break; case OTG_STATE_A_WAIT_VRISE: if (otg_ctrl->a_vbus_vld) mvotg->phy.otg->state = OTG_STATE_A_WAIT_BCON; break; case OTG_STATE_A_WAIT_BCON: if (otg_ctrl->id || otg_ctrl->a_bus_drop || otg_ctrl->a_wait_bcon_timeout) { mv_otg_cancel_timer(mvotg, A_WAIT_BCON_TIMER); mvotg->otg_ctrl.a_wait_bcon_timeout = 0; mvotg->phy.otg->state = OTG_STATE_A_WAIT_VFALL; otg_ctrl->a_bus_req = 0; } else if (!otg_ctrl->a_vbus_vld) { mv_otg_cancel_timer(mvotg, A_WAIT_BCON_TIMER); mvotg->otg_ctrl.a_wait_bcon_timeout = 0; mvotg->phy.otg->state = OTG_STATE_A_VBUS_ERR; } else if (otg_ctrl->b_conn) { mv_otg_cancel_timer(mvotg, A_WAIT_BCON_TIMER); mvotg->otg_ctrl.a_wait_bcon_timeout = 0; mvotg->phy.otg->state = OTG_STATE_A_HOST; } break; case OTG_STATE_A_HOST: if (otg_ctrl->id || !otg_ctrl->b_conn || otg_ctrl->a_bus_drop) mvotg->phy.otg->state = OTG_STATE_A_WAIT_BCON; else if (!otg_ctrl->a_vbus_vld) mvotg->phy.otg->state = OTG_STATE_A_VBUS_ERR; break; case OTG_STATE_A_WAIT_VFALL: if (otg_ctrl->id || (!otg_ctrl->b_conn && otg_ctrl->a_sess_vld) || otg_ctrl->a_bus_req) mvotg->phy.otg->state = OTG_STATE_A_IDLE; break; case OTG_STATE_A_VBUS_ERR: if (otg_ctrl->id || otg_ctrl->a_clr_err || otg_ctrl->a_bus_drop) { otg_ctrl->a_clr_err = 0; mvotg->phy.otg->state = OTG_STATE_A_WAIT_VFALL; } break; default: break; } } static void mv_otg_work(struct work_struct *work) { struct mv_otg *mvotg; struct usb_otg *otg; int old_state; mvotg = container_of(to_delayed_work(work), struct mv_otg, work); run: /* work queue is single thread, or we need spin_lock to protect */ otg = mvotg->phy.otg; old_state = otg->state; if (!mvotg->active) return; mv_otg_update_inputs(mvotg); mv_otg_update_state(mvotg); if (old_state != mvotg->phy.otg->state) { dev_info(&mvotg->pdev->dev, "change from state %s to %s\n", state_string[old_state], state_string[mvotg->phy.otg->state]); switch (mvotg->phy.otg->state) { case OTG_STATE_B_IDLE: otg->default_a = 0; if (old_state == OTG_STATE_B_PERIPHERAL) mv_otg_start_periphrals(mvotg, 0); mv_otg_reset(mvotg); mv_otg_disable(mvotg); usb_phy_set_event(&mvotg->phy, USB_EVENT_NONE); break; case OTG_STATE_B_PERIPHERAL: mv_otg_enable(mvotg); mv_otg_start_periphrals(mvotg, 1); usb_phy_set_event(&mvotg->phy, USB_EVENT_ENUMERATED); break; case OTG_STATE_A_IDLE: otg->default_a = 1; mv_otg_enable(mvotg); if (old_state == OTG_STATE_A_WAIT_VFALL) mv_otg_start_host(mvotg, 0); mv_otg_reset(mvotg); break; case OTG_STATE_A_WAIT_VRISE: mv_otg_set_vbus(otg, 1); break; case OTG_STATE_A_WAIT_BCON: if (old_state != OTG_STATE_A_HOST) mv_otg_start_host(mvotg, 1); mv_otg_set_timer(mvotg, A_WAIT_BCON_TIMER, T_A_WAIT_BCON); /* * Now, we directly enter A_HOST. So set b_conn = 1 * here. In fact, it need host driver to notify us. */ mvotg->otg_ctrl.b_conn = 1; break; case OTG_STATE_A_HOST: break; case OTG_STATE_A_WAIT_VFALL: /* * Now, we has exited A_HOST. So set b_conn = 0 * here. In fact, it need host driver to notify us. */ mvotg->otg_ctrl.b_conn = 0; mv_otg_set_vbus(otg, 0); break; case OTG_STATE_A_VBUS_ERR: break; default: break; } goto run; } } static irqreturn_t mv_otg_irq(int irq, void *dev) { struct mv_otg *mvotg = dev; u32 otgsc; otgsc = readl(&mvotg->op_regs->otgsc); writel(otgsc, &mvotg->op_regs->otgsc); /* * if we have vbus, then the vbus detection for B-device * will be done by mv_otg_inputs_irq(). */ if (mvotg->pdata->vbus) if ((otgsc & OTGSC_STS_USB_ID) && !(otgsc & OTGSC_INTSTS_USB_ID)) return IRQ_NONE; if ((otgsc & mvotg->irq_status) == 0) return IRQ_NONE; mv_otg_run_state_machine(mvotg, 0); return IRQ_HANDLED; } static irqreturn_t mv_otg_inputs_irq(int irq, void *dev) { struct mv_otg *mvotg = dev; /* The clock may disabled at this time */ if (!mvotg->active) { mv_otg_enable(mvotg); mv_otg_init_irq(mvotg); } mv_otg_run_state_machine(mvotg, 0); return IRQ_HANDLED; } static ssize_t a_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mv_otg *mvotg = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", mvotg->otg_ctrl.a_bus_req); } static ssize_t a_bus_req_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mv_otg *mvotg = dev_get_drvdata(dev); if (count > 2) return -1; /* We will use this interface to change to A device */ if (mvotg->phy.otg->state != OTG_STATE_B_IDLE && mvotg->phy.otg->state != OTG_STATE_A_IDLE) return -1; /* The clock may disabled and we need to set irq for ID detected */ mv_otg_enable(mvotg); mv_otg_init_irq(mvotg); if (buf[0] == '1') { mvotg->otg_ctrl.a_bus_req = 1; mvotg->otg_ctrl.a_bus_drop = 0; dev_dbg(&mvotg->pdev->dev, "User request: a_bus_req = 1\n"); if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 0); spin_unlock(&mvotg->wq_lock); } } return count; } static DEVICE_ATTR_RW(a_bus_req); static ssize_t a_clr_err_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mv_otg *mvotg = dev_get_drvdata(dev); if (!mvotg->phy.otg->default_a) return -1; if (count > 2) return -1; if (buf[0] == '1') { mvotg->otg_ctrl.a_clr_err = 1; dev_dbg(&mvotg->pdev->dev, "User request: a_clr_err = 1\n"); } if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 0); spin_unlock(&mvotg->wq_lock); } return count; } static DEVICE_ATTR_WO(a_clr_err); static ssize_t a_bus_drop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mv_otg *mvotg = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", mvotg->otg_ctrl.a_bus_drop); } static ssize_t a_bus_drop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mv_otg *mvotg = dev_get_drvdata(dev); if (!mvotg->phy.otg->default_a) return -1; if (count > 2) return -1; if (buf[0] == '0') { mvotg->otg_ctrl.a_bus_drop = 0; dev_dbg(&mvotg->pdev->dev, "User request: a_bus_drop = 0\n"); } else if (buf[0] == '1') { mvotg->otg_ctrl.a_bus_drop = 1; mvotg->otg_ctrl.a_bus_req = 0; dev_dbg(&mvotg->pdev->dev, "User request: a_bus_drop = 1\n"); dev_dbg(&mvotg->pdev->dev, "User request: and a_bus_req = 0\n"); } if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 0); spin_unlock(&mvotg->wq_lock); } return count; } static DEVICE_ATTR_RW(a_bus_drop); static struct attribute *inputs_attrs[] = { &dev_attr_a_bus_req.attr, &dev_attr_a_clr_err.attr, &dev_attr_a_bus_drop.attr, NULL, }; static const struct attribute_group inputs_attr_group = { .name = "inputs", .attrs = inputs_attrs, }; static const struct attribute_group *mv_otg_groups[] = { &inputs_attr_group, NULL, }; static void mv_otg_remove(struct platform_device *pdev) { struct mv_otg *mvotg = platform_get_drvdata(pdev); if (mvotg->qwork) destroy_workqueue(mvotg->qwork); mv_otg_disable(mvotg); usb_remove_phy(&mvotg->phy); } static int mv_otg_probe(struct platform_device *pdev) { struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev); struct mv_otg *mvotg; struct usb_otg *otg; struct resource *r; int retval = 0, i; if (pdata == NULL) { dev_err(&pdev->dev, "failed to get platform data\n"); return -ENODEV; } mvotg = devm_kzalloc(&pdev->dev, sizeof(*mvotg), GFP_KERNEL); if (!mvotg) return -ENOMEM; otg = devm_kzalloc(&pdev->dev, sizeof(*otg), GFP_KERNEL); if (!otg) return -ENOMEM; platform_set_drvdata(pdev, mvotg); mvotg->pdev = pdev; mvotg->pdata = pdata; mvotg->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mvotg->clk)) return PTR_ERR(mvotg->clk); mvotg->qwork = create_singlethread_workqueue("mv_otg_queue"); if (!mvotg->qwork) { dev_dbg(&pdev->dev, "cannot create workqueue for OTG\n"); return -ENOMEM; } INIT_DELAYED_WORK(&mvotg->work, mv_otg_work); /* OTG common part */ mvotg->pdev = pdev; mvotg->phy.dev = &pdev->dev; mvotg->phy.otg = otg; mvotg->phy.label = driver_name; otg->state = OTG_STATE_UNDEFINED; otg->usb_phy = &mvotg->phy; otg->set_host = mv_otg_set_host; otg->set_peripheral = mv_otg_set_peripheral; otg->set_vbus = mv_otg_set_vbus; for (i = 0; i < OTG_TIMER_NUM; i++) timer_setup(&mvotg->otg_ctrl.timer[i], mv_otg_timer_await_bcon, 0); r = platform_get_resource_byname(mvotg->pdev, IORESOURCE_MEM, "phyregs"); if (r == NULL) { dev_err(&pdev->dev, "no phy I/O memory resource defined\n"); retval = -ENODEV; goto err_destroy_workqueue; } mvotg->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (mvotg->phy_regs == NULL) { dev_err(&pdev->dev, "failed to map phy I/O memory\n"); retval = -EFAULT; goto err_destroy_workqueue; } r = platform_get_resource_byname(mvotg->pdev, IORESOURCE_MEM, "capregs"); if (r == NULL) { dev_err(&pdev->dev, "no I/O memory resource defined\n"); retval = -ENODEV; goto err_destroy_workqueue; } mvotg->cap_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (mvotg->cap_regs == NULL) { dev_err(&pdev->dev, "failed to map I/O memory\n"); retval = -EFAULT; goto err_destroy_workqueue; } /* we will acces controller register, so enable the udc controller */ retval = mv_otg_enable_internal(mvotg); if (retval) { dev_err(&pdev->dev, "mv otg enable error %d\n", retval); goto err_destroy_workqueue; } mvotg->op_regs = (struct mv_otg_regs __iomem *) ((unsigned long) mvotg->cap_regs + (readl(mvotg->cap_regs) & CAPLENGTH_MASK)); if (pdata->id) { retval = devm_request_threaded_irq(&pdev->dev, pdata->id->irq, NULL, mv_otg_inputs_irq, IRQF_ONESHOT, "id", mvotg); if (retval) { dev_info(&pdev->dev, "Failed to request irq for ID\n"); pdata->id = NULL; } } if (pdata->vbus) { mvotg->clock_gating = 1; retval = devm_request_threaded_irq(&pdev->dev, pdata->vbus->irq, NULL, mv_otg_inputs_irq, IRQF_ONESHOT, "vbus", mvotg); if (retval) { dev_info(&pdev->dev, "Failed to request irq for VBUS, " "disable clock gating\n"); mvotg->clock_gating = 0; pdata->vbus = NULL; } } if (pdata->disable_otg_clock_gating) mvotg->clock_gating = 0; mv_otg_reset(mvotg); mv_otg_init_irq(mvotg); r = platform_get_resource(mvotg->pdev, IORESOURCE_IRQ, 0); if (r == NULL) { dev_err(&pdev->dev, "no IRQ resource defined\n"); retval = -ENODEV; goto err_disable_clk; } mvotg->irq = r->start; if (devm_request_irq(&pdev->dev, mvotg->irq, mv_otg_irq, IRQF_SHARED, driver_name, mvotg)) { dev_err(&pdev->dev, "Request irq %d for OTG failed\n", mvotg->irq); mvotg->irq = 0; retval = -ENODEV; goto err_disable_clk; } retval = usb_add_phy(&mvotg->phy, USB_PHY_TYPE_USB2); if (retval < 0) { dev_err(&pdev->dev, "can't register transceiver, %d\n", retval); goto err_disable_clk; } spin_lock_init(&mvotg->wq_lock); if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 2 * HZ); spin_unlock(&mvotg->wq_lock); } dev_info(&pdev->dev, "successful probe OTG device %s clock gating.\n", mvotg->clock_gating ? "with" : "without"); return 0; err_disable_clk: mv_otg_disable_internal(mvotg); err_destroy_workqueue: destroy_workqueue(mvotg->qwork); return retval; } #ifdef CONFIG_PM static int mv_otg_suspend(struct platform_device *pdev, pm_message_t state) { struct mv_otg *mvotg = platform_get_drvdata(pdev); if (mvotg->phy.otg->state != OTG_STATE_B_IDLE) { dev_info(&pdev->dev, "OTG state is not B_IDLE, it is %d!\n", mvotg->phy.otg->state); return -EAGAIN; } if (!mvotg->clock_gating) mv_otg_disable_internal(mvotg); return 0; } static int mv_otg_resume(struct platform_device *pdev) { struct mv_otg *mvotg = platform_get_drvdata(pdev); u32 otgsc; if (!mvotg->clock_gating) { mv_otg_enable_internal(mvotg); otgsc = readl(&mvotg->op_regs->otgsc); otgsc |= mvotg->irq_en; writel(otgsc, &mvotg->op_regs->otgsc); if (spin_trylock(&mvotg->wq_lock)) { mv_otg_run_state_machine(mvotg, 0); spin_unlock(&mvotg->wq_lock); } } return 0; } #endif static struct platform_driver mv_otg_driver = { .probe = mv_otg_probe, .remove_new = mv_otg_remove, .driver = { .name = driver_name, .dev_groups = mv_otg_groups, }, #ifdef CONFIG_PM .suspend = mv_otg_suspend, .resume = mv_otg_resume, #endif }; module_platform_driver(mv_otg_driver);
linux-master
drivers/usb/phy/phy-mv-usb.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/module.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/of.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/usb/otg.h> #include "phy-am335x-control.h" struct am335x_control_usb { struct device *dev; void __iomem *phy_reg; void __iomem *wkup; spinlock_t lock; struct phy_control phy_ctrl; }; #define AM335X_USB0_CTRL 0x0 #define AM335X_USB1_CTRL 0x8 #define AM335x_USB_WKUP 0x0 #define USBPHY_CM_PWRDN (1 << 0) #define USBPHY_OTG_PWRDN (1 << 1) #define USBPHY_OTGVDET_EN (1 << 19) #define USBPHY_OTGSESSEND_EN (1 << 20) #define AM335X_PHY0_WK_EN (1 << 0) #define AM335X_PHY1_WK_EN (1 << 8) static void am335x_phy_wkup(struct phy_control *phy_ctrl, u32 id, bool on) { struct am335x_control_usb *usb_ctrl; u32 val; u32 reg; usb_ctrl = container_of(phy_ctrl, struct am335x_control_usb, phy_ctrl); switch (id) { case 0: reg = AM335X_PHY0_WK_EN; break; case 1: reg = AM335X_PHY1_WK_EN; break; default: WARN_ON(1); return; } spin_lock(&usb_ctrl->lock); val = readl(usb_ctrl->wkup); if (on) val |= reg; else val &= ~reg; writel(val, usb_ctrl->wkup); spin_unlock(&usb_ctrl->lock); } static void am335x_phy_power(struct phy_control *phy_ctrl, u32 id, enum usb_dr_mode dr_mode, bool on) { struct am335x_control_usb *usb_ctrl; u32 val; u32 reg; usb_ctrl = container_of(phy_ctrl, struct am335x_control_usb, phy_ctrl); switch (id) { case 0: reg = AM335X_USB0_CTRL; break; case 1: reg = AM335X_USB1_CTRL; break; default: WARN_ON(1); return; } val = readl(usb_ctrl->phy_reg + reg); if (on) { if (dr_mode == USB_DR_MODE_HOST) { val &= ~(USBPHY_CM_PWRDN | USBPHY_OTG_PWRDN | USBPHY_OTGVDET_EN); val |= USBPHY_OTGSESSEND_EN; } else { val &= ~(USBPHY_CM_PWRDN | USBPHY_OTG_PWRDN); val |= USBPHY_OTGVDET_EN | USBPHY_OTGSESSEND_EN; } } else { val |= USBPHY_CM_PWRDN | USBPHY_OTG_PWRDN; } writel(val, usb_ctrl->phy_reg + reg); /* * Give the PHY ~1ms to complete the power up operation. * Tests have shown unstable behaviour if other USB PHY related * registers are written too shortly after such a transition. */ if (on) mdelay(1); } static const struct phy_control ctrl_am335x = { .phy_power = am335x_phy_power, .phy_wkup = am335x_phy_wkup, }; static const struct of_device_id omap_control_usb_id_table[] = { { .compatible = "ti,am335x-usb-ctrl-module", .data = &ctrl_am335x }, {} }; MODULE_DEVICE_TABLE(of, omap_control_usb_id_table); static struct platform_driver am335x_control_driver; static int match(struct device *dev, const void *data) { const struct device_node *node = (const struct device_node *)data; return dev->of_node == node && dev->driver == &am335x_control_driver.driver; } struct phy_control *am335x_get_phy_control(struct device *dev) { struct device_node *node; struct am335x_control_usb *ctrl_usb; node = of_parse_phandle(dev->of_node, "ti,ctrl_mod", 0); if (!node) return NULL; dev = bus_find_device(&platform_bus_type, NULL, node, match); of_node_put(node); if (!dev) return NULL; ctrl_usb = dev_get_drvdata(dev); put_device(dev); if (!ctrl_usb) return NULL; return &ctrl_usb->phy_ctrl; } EXPORT_SYMBOL_GPL(am335x_get_phy_control); static int am335x_control_usb_probe(struct platform_device *pdev) { struct am335x_control_usb *ctrl_usb; const struct of_device_id *of_id; const struct phy_control *phy_ctrl; of_id = of_match_node(omap_control_usb_id_table, pdev->dev.of_node); if (!of_id) return -EINVAL; phy_ctrl = of_id->data; ctrl_usb = devm_kzalloc(&pdev->dev, sizeof(*ctrl_usb), GFP_KERNEL); if (!ctrl_usb) return -ENOMEM; ctrl_usb->dev = &pdev->dev; ctrl_usb->phy_reg = devm_platform_ioremap_resource_byname(pdev, "phy_ctrl"); if (IS_ERR(ctrl_usb->phy_reg)) return PTR_ERR(ctrl_usb->phy_reg); ctrl_usb->wkup = devm_platform_ioremap_resource_byname(pdev, "wakeup"); if (IS_ERR(ctrl_usb->wkup)) return PTR_ERR(ctrl_usb->wkup); spin_lock_init(&ctrl_usb->lock); ctrl_usb->phy_ctrl = *phy_ctrl; dev_set_drvdata(ctrl_usb->dev, ctrl_usb); return 0; } static struct platform_driver am335x_control_driver = { .probe = am335x_control_usb_probe, .driver = { .name = "am335x-control-usb", .of_match_table = omap_control_usb_id_table, }, }; module_platform_driver(am335x_control_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/phy/phy-am335x-control.c
// SPDX-License-Identifier: GPL-2.0+ /* * NOP USB transceiver for all USB transceiver which are either built-in * into USB IP or which are mostly autonomous. * * Copyright (C) 2009 Texas Instruments Inc * Author: Ajay Kumar Gupta <[email protected]> * * Current status: * This provides a "nop" transceiver for PHYs which are * autonomous such as isp1504, isp1707, etc. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/usb/gadget.h> #include <linux/usb/otg.h> #include <linux/usb/usb_phy_generic.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/regulator/consumer.h> #include <linux/of.h> #include <linux/gpio/consumer.h> #include <linux/delay.h> #include "phy-generic.h" #define VBUS_IRQ_FLAGS \ (IRQF_SHARED | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | \ IRQF_ONESHOT) struct platform_device *usb_phy_generic_register(void) { return platform_device_register_simple("usb_phy_generic", PLATFORM_DEVID_AUTO, NULL, 0); } EXPORT_SYMBOL_GPL(usb_phy_generic_register); void usb_phy_generic_unregister(struct platform_device *pdev) { platform_device_unregister(pdev); } EXPORT_SYMBOL_GPL(usb_phy_generic_unregister); static int nop_set_suspend(struct usb_phy *x, int suspend) { struct usb_phy_generic *nop = dev_get_drvdata(x->dev); if (!IS_ERR(nop->clk)) { if (suspend) clk_disable_unprepare(nop->clk); else clk_prepare_enable(nop->clk); } return 0; } static void nop_reset(struct usb_phy_generic *nop) { if (!nop->gpiod_reset) return; gpiod_set_value_cansleep(nop->gpiod_reset, 1); usleep_range(10000, 20000); gpiod_set_value_cansleep(nop->gpiod_reset, 0); } /* interface to regulator framework */ static void nop_set_vbus_draw(struct usb_phy_generic *nop, unsigned mA) { struct regulator *vbus_draw = nop->vbus_draw; int enabled; int ret; if (!vbus_draw) return; enabled = nop->vbus_draw_enabled; if (mA) { regulator_set_current_limit(vbus_draw, 0, 1000 * mA); if (!enabled) { ret = regulator_enable(vbus_draw); if (ret < 0) return; nop->vbus_draw_enabled = 1; } } else { if (enabled) { ret = regulator_disable(vbus_draw); if (ret < 0) return; nop->vbus_draw_enabled = 0; } } nop->mA = mA; } static irqreturn_t nop_gpio_vbus_thread(int irq, void *data) { struct usb_phy_generic *nop = data; struct usb_otg *otg = nop->phy.otg; int vbus, status; vbus = gpiod_get_value(nop->gpiod_vbus); if ((vbus ^ nop->vbus) == 0) return IRQ_HANDLED; nop->vbus = vbus; if (vbus) { status = USB_EVENT_VBUS; otg->state = OTG_STATE_B_PERIPHERAL; nop->phy.last_event = status; /* drawing a "unit load" is *always* OK, except for OTG */ nop_set_vbus_draw(nop, 100); atomic_notifier_call_chain(&nop->phy.notifier, status, otg->gadget); } else { nop_set_vbus_draw(nop, 0); status = USB_EVENT_NONE; otg->state = OTG_STATE_B_IDLE; nop->phy.last_event = status; atomic_notifier_call_chain(&nop->phy.notifier, status, otg->gadget); } return IRQ_HANDLED; } int usb_gen_phy_init(struct usb_phy *phy) { struct usb_phy_generic *nop = dev_get_drvdata(phy->dev); int ret; if (!IS_ERR(nop->vcc)) { if (regulator_enable(nop->vcc)) dev_err(phy->dev, "Failed to enable power\n"); } if (!IS_ERR(nop->clk)) { ret = clk_prepare_enable(nop->clk); if (ret) return ret; } nop_reset(nop); return 0; } EXPORT_SYMBOL_GPL(usb_gen_phy_init); void usb_gen_phy_shutdown(struct usb_phy *phy) { struct usb_phy_generic *nop = dev_get_drvdata(phy->dev); gpiod_set_value_cansleep(nop->gpiod_reset, 1); if (!IS_ERR(nop->clk)) clk_disable_unprepare(nop->clk); if (!IS_ERR(nop->vcc)) { if (regulator_disable(nop->vcc)) dev_err(phy->dev, "Failed to disable power\n"); } } EXPORT_SYMBOL_GPL(usb_gen_phy_shutdown); static int nop_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { if (!otg) return -ENODEV; if (!gadget) { otg->gadget = NULL; return -ENODEV; } otg->gadget = gadget; if (otg->state == OTG_STATE_B_PERIPHERAL) atomic_notifier_call_chain(&otg->usb_phy->notifier, USB_EVENT_VBUS, otg->gadget); else otg->state = OTG_STATE_B_IDLE; return 0; } static int nop_set_host(struct usb_otg *otg, struct usb_bus *host) { if (!otg) return -ENODEV; if (!host) { otg->host = NULL; return -ENODEV; } otg->host = host; return 0; } int usb_phy_gen_create_phy(struct device *dev, struct usb_phy_generic *nop) { enum usb_phy_type type = USB_PHY_TYPE_USB2; int err = 0; u32 clk_rate = 0; bool needs_clk = false; if (dev->of_node) { struct device_node *node = dev->of_node; if (of_property_read_u32(node, "clock-frequency", &clk_rate)) clk_rate = 0; needs_clk = of_property_read_bool(node, "clocks"); } nop->gpiod_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS); err = PTR_ERR_OR_ZERO(nop->gpiod_reset); if (!err) { nop->gpiod_vbus = devm_gpiod_get_optional(dev, "vbus-detect", GPIOD_ASIS); err = PTR_ERR_OR_ZERO(nop->gpiod_vbus); } if (err) return dev_err_probe(dev, err, "Error requesting RESET or VBUS GPIO\n"); if (nop->gpiod_reset) gpiod_direction_output(nop->gpiod_reset, 1); nop->phy.otg = devm_kzalloc(dev, sizeof(*nop->phy.otg), GFP_KERNEL); if (!nop->phy.otg) return -ENOMEM; nop->clk = devm_clk_get(dev, "main_clk"); if (IS_ERR(nop->clk)) { dev_dbg(dev, "Can't get phy clock: %ld\n", PTR_ERR(nop->clk)); if (needs_clk) return PTR_ERR(nop->clk); } if (!IS_ERR(nop->clk) && clk_rate) { err = clk_set_rate(nop->clk, clk_rate); if (err) { dev_err(dev, "Error setting clock rate\n"); return err; } } nop->vcc = devm_regulator_get_optional(dev, "vcc"); if (IS_ERR(nop->vcc) && PTR_ERR(nop->vcc) != -ENODEV) return dev_err_probe(dev, PTR_ERR(nop->vcc), "could not get vcc regulator\n"); nop->vbus_draw = devm_regulator_get_exclusive(dev, "vbus"); if (PTR_ERR(nop->vbus_draw) == -ENODEV) nop->vbus_draw = NULL; if (IS_ERR(nop->vbus_draw)) return dev_err_probe(dev, PTR_ERR(nop->vbus_draw), "could not get vbus regulator\n"); nop->dev = dev; nop->phy.dev = nop->dev; nop->phy.label = "nop-xceiv"; nop->phy.set_suspend = nop_set_suspend; nop->phy.type = type; nop->phy.otg->state = OTG_STATE_UNDEFINED; nop->phy.otg->usb_phy = &nop->phy; nop->phy.otg->set_host = nop_set_host; nop->phy.otg->set_peripheral = nop_set_peripheral; return 0; } EXPORT_SYMBOL_GPL(usb_phy_gen_create_phy); static int usb_phy_generic_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node; struct usb_phy_generic *nop; int err; nop = devm_kzalloc(dev, sizeof(*nop), GFP_KERNEL); if (!nop) return -ENOMEM; err = usb_phy_gen_create_phy(dev, nop); if (err) return err; if (nop->gpiod_vbus) { err = devm_request_threaded_irq(&pdev->dev, gpiod_to_irq(nop->gpiod_vbus), NULL, nop_gpio_vbus_thread, VBUS_IRQ_FLAGS, "vbus_detect", nop); if (err) { dev_err(&pdev->dev, "can't request irq %i, err: %d\n", gpiod_to_irq(nop->gpiod_vbus), err); return err; } nop->phy.otg->state = gpiod_get_value(nop->gpiod_vbus) ? OTG_STATE_B_PERIPHERAL : OTG_STATE_B_IDLE; } nop->phy.init = usb_gen_phy_init; nop->phy.shutdown = usb_gen_phy_shutdown; err = usb_add_phy_dev(&nop->phy); if (err) { dev_err(&pdev->dev, "can't register transceiver, err: %d\n", err); return err; } platform_set_drvdata(pdev, nop); device_set_wakeup_capable(&pdev->dev, of_property_read_bool(dn, "wakeup-source")); return 0; } static void usb_phy_generic_remove(struct platform_device *pdev) { struct usb_phy_generic *nop = platform_get_drvdata(pdev); usb_remove_phy(&nop->phy); } static const struct of_device_id nop_xceiv_dt_ids[] = { { .compatible = "usb-nop-xceiv" }, { } }; MODULE_DEVICE_TABLE(of, nop_xceiv_dt_ids); static struct platform_driver usb_phy_generic_driver = { .probe = usb_phy_generic_probe, .remove_new = usb_phy_generic_remove, .driver = { .name = "usb_phy_generic", .of_match_table = nop_xceiv_dt_ids, }, }; static int __init usb_phy_generic_init(void) { return platform_driver_register(&usb_phy_generic_driver); } subsys_initcall(usb_phy_generic_init); static void __exit usb_phy_generic_exit(void) { platform_driver_unregister(&usb_phy_generic_driver); } module_exit(usb_phy_generic_exit); MODULE_ALIAS("platform:usb_phy_generic"); MODULE_AUTHOR("Texas Instruments Inc"); MODULE_DESCRIPTION("NOP USB Transceiver driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/phy/phy-generic.c
// SPDX-License-Identifier: GPL-2.0 /* * Tahvo USB transceiver driver * * Copyright (C) 2005-2006 Nokia Corporation * * Parts copied from isp1301_omap.c. * Copyright (C) 2004 Texas Instruments * Copyright (C) 2004 David Brownell * * Original driver written by Juha Yrjölä, Tony Lindgren and Timo Teräs. * Modified for Retu/Tahvo MFD by Aaro Koskinen. */ #include <linux/io.h> #include <linux/clk.h> #include <linux/usb.h> #include <linux/extcon-provider.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/usb/otg.h> #include <linux/mfd/retu.h> #include <linux/usb/gadget.h> #include <linux/platform_device.h> #define DRIVER_NAME "tahvo-usb" #define TAHVO_REG_IDSR 0x02 #define TAHVO_REG_USBR 0x06 #define USBR_SLAVE_CONTROL (1 << 8) #define USBR_VPPVIO_SW (1 << 7) #define USBR_SPEED (1 << 6) #define USBR_REGOUT (1 << 5) #define USBR_MASTER_SW2 (1 << 4) #define USBR_MASTER_SW1 (1 << 3) #define USBR_SLAVE_SW (1 << 2) #define USBR_NSUSPEND (1 << 1) #define USBR_SEMODE (1 << 0) #define TAHVO_MODE_HOST 0 #define TAHVO_MODE_PERIPHERAL 1 struct tahvo_usb { struct platform_device *pt_dev; struct usb_phy phy; int vbus_state; struct mutex serialize; struct clk *ick; int irq; int tahvo_mode; struct extcon_dev *extcon; }; static const unsigned int tahvo_cable[] = { EXTCON_USB, EXTCON_USB_HOST, EXTCON_NONE, }; static ssize_t vbus_show(struct device *device, struct device_attribute *attr, char *buf) { struct tahvo_usb *tu = dev_get_drvdata(device); return sprintf(buf, "%s\n", tu->vbus_state ? "on" : "off"); } static DEVICE_ATTR_RO(vbus); static void check_vbus_state(struct tahvo_usb *tu) { struct retu_dev *rdev = dev_get_drvdata(tu->pt_dev->dev.parent); int reg, prev_state; reg = retu_read(rdev, TAHVO_REG_IDSR); if (reg & TAHVO_STAT_VBUS) { switch (tu->phy.otg->state) { case OTG_STATE_B_IDLE: /* Enable the gadget driver */ if (tu->phy.otg->gadget) usb_gadget_vbus_connect(tu->phy.otg->gadget); tu->phy.otg->state = OTG_STATE_B_PERIPHERAL; usb_phy_set_event(&tu->phy, USB_EVENT_ENUMERATED); break; case OTG_STATE_A_IDLE: /* * Session is now valid assuming the USB hub is driving * Vbus. */ tu->phy.otg->state = OTG_STATE_A_HOST; break; default: break; } dev_info(&tu->pt_dev->dev, "USB cable connected\n"); } else { switch (tu->phy.otg->state) { case OTG_STATE_B_PERIPHERAL: if (tu->phy.otg->gadget) usb_gadget_vbus_disconnect(tu->phy.otg->gadget); tu->phy.otg->state = OTG_STATE_B_IDLE; usb_phy_set_event(&tu->phy, USB_EVENT_NONE); break; case OTG_STATE_A_HOST: tu->phy.otg->state = OTG_STATE_A_IDLE; break; default: break; } dev_info(&tu->pt_dev->dev, "USB cable disconnected\n"); } prev_state = tu->vbus_state; tu->vbus_state = reg & TAHVO_STAT_VBUS; if (prev_state != tu->vbus_state) { extcon_set_state_sync(tu->extcon, EXTCON_USB, tu->vbus_state); sysfs_notify(&tu->pt_dev->dev.kobj, NULL, "vbus_state"); } } static void tahvo_usb_become_host(struct tahvo_usb *tu) { struct retu_dev *rdev = dev_get_drvdata(tu->pt_dev->dev.parent); extcon_set_state_sync(tu->extcon, EXTCON_USB_HOST, true); /* Power up the transceiver in USB host mode */ retu_write(rdev, TAHVO_REG_USBR, USBR_REGOUT | USBR_NSUSPEND | USBR_MASTER_SW2 | USBR_MASTER_SW1); tu->phy.otg->state = OTG_STATE_A_IDLE; check_vbus_state(tu); } static void tahvo_usb_stop_host(struct tahvo_usb *tu) { tu->phy.otg->state = OTG_STATE_A_IDLE; } static void tahvo_usb_become_peripheral(struct tahvo_usb *tu) { struct retu_dev *rdev = dev_get_drvdata(tu->pt_dev->dev.parent); extcon_set_state_sync(tu->extcon, EXTCON_USB_HOST, false); /* Power up transceiver and set it in USB peripheral mode */ retu_write(rdev, TAHVO_REG_USBR, USBR_SLAVE_CONTROL | USBR_REGOUT | USBR_NSUSPEND | USBR_SLAVE_SW); tu->phy.otg->state = OTG_STATE_B_IDLE; check_vbus_state(tu); } static void tahvo_usb_stop_peripheral(struct tahvo_usb *tu) { if (tu->phy.otg->gadget) usb_gadget_vbus_disconnect(tu->phy.otg->gadget); tu->phy.otg->state = OTG_STATE_B_IDLE; } static void tahvo_usb_power_off(struct tahvo_usb *tu) { struct retu_dev *rdev = dev_get_drvdata(tu->pt_dev->dev.parent); /* Disable gadget controller if any */ if (tu->phy.otg->gadget) usb_gadget_vbus_disconnect(tu->phy.otg->gadget); /* Power off transceiver */ retu_write(rdev, TAHVO_REG_USBR, 0); tu->phy.otg->state = OTG_STATE_UNDEFINED; } static int tahvo_usb_set_suspend(struct usb_phy *dev, int suspend) { struct tahvo_usb *tu = container_of(dev, struct tahvo_usb, phy); struct retu_dev *rdev = dev_get_drvdata(tu->pt_dev->dev.parent); u16 w; dev_dbg(&tu->pt_dev->dev, "%s\n", __func__); w = retu_read(rdev, TAHVO_REG_USBR); if (suspend) w &= ~USBR_NSUSPEND; else w |= USBR_NSUSPEND; retu_write(rdev, TAHVO_REG_USBR, w); return 0; } static int tahvo_usb_set_host(struct usb_otg *otg, struct usb_bus *host) { struct tahvo_usb *tu = container_of(otg->usb_phy, struct tahvo_usb, phy); mutex_lock(&tu->serialize); if (host == NULL) { if (tu->tahvo_mode == TAHVO_MODE_HOST) tahvo_usb_power_off(tu); otg->host = NULL; mutex_unlock(&tu->serialize); return 0; } if (tu->tahvo_mode == TAHVO_MODE_HOST) { otg->host = NULL; tahvo_usb_become_host(tu); } otg->host = host; mutex_unlock(&tu->serialize); return 0; } static int tahvo_usb_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { struct tahvo_usb *tu = container_of(otg->usb_phy, struct tahvo_usb, phy); mutex_lock(&tu->serialize); if (!gadget) { if (tu->tahvo_mode == TAHVO_MODE_PERIPHERAL) tahvo_usb_power_off(tu); tu->phy.otg->gadget = NULL; mutex_unlock(&tu->serialize); return 0; } tu->phy.otg->gadget = gadget; if (tu->tahvo_mode == TAHVO_MODE_PERIPHERAL) tahvo_usb_become_peripheral(tu); mutex_unlock(&tu->serialize); return 0; } static irqreturn_t tahvo_usb_vbus_interrupt(int irq, void *_tu) { struct tahvo_usb *tu = _tu; mutex_lock(&tu->serialize); check_vbus_state(tu); mutex_unlock(&tu->serialize); return IRQ_HANDLED; } static ssize_t otg_mode_show(struct device *device, struct device_attribute *attr, char *buf) { struct tahvo_usb *tu = dev_get_drvdata(device); switch (tu->tahvo_mode) { case TAHVO_MODE_HOST: return sprintf(buf, "host\n"); case TAHVO_MODE_PERIPHERAL: return sprintf(buf, "peripheral\n"); } return -EINVAL; } static ssize_t otg_mode_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct tahvo_usb *tu = dev_get_drvdata(device); int r; mutex_lock(&tu->serialize); if (count >= 4 && strncmp(buf, "host", 4) == 0) { if (tu->tahvo_mode == TAHVO_MODE_PERIPHERAL) tahvo_usb_stop_peripheral(tu); tu->tahvo_mode = TAHVO_MODE_HOST; if (tu->phy.otg->host) { dev_info(device, "HOST mode: host controller present\n"); tahvo_usb_become_host(tu); } else { dev_info(device, "HOST mode: no host controller, powering off\n"); tahvo_usb_power_off(tu); } r = strlen(buf); } else if (count >= 10 && strncmp(buf, "peripheral", 10) == 0) { if (tu->tahvo_mode == TAHVO_MODE_HOST) tahvo_usb_stop_host(tu); tu->tahvo_mode = TAHVO_MODE_PERIPHERAL; if (tu->phy.otg->gadget) { dev_info(device, "PERIPHERAL mode: gadget driver present\n"); tahvo_usb_become_peripheral(tu); } else { dev_info(device, "PERIPHERAL mode: no gadget driver, powering off\n"); tahvo_usb_power_off(tu); } r = strlen(buf); } else { r = -EINVAL; } mutex_unlock(&tu->serialize); return r; } static DEVICE_ATTR_RW(otg_mode); static struct attribute *tahvo_attrs[] = { &dev_attr_vbus.attr, &dev_attr_otg_mode.attr, NULL }; ATTRIBUTE_GROUPS(tahvo); static int tahvo_usb_probe(struct platform_device *pdev) { struct retu_dev *rdev = dev_get_drvdata(pdev->dev.parent); struct tahvo_usb *tu; int ret; tu = devm_kzalloc(&pdev->dev, sizeof(*tu), GFP_KERNEL); if (!tu) return -ENOMEM; tu->phy.otg = devm_kzalloc(&pdev->dev, sizeof(*tu->phy.otg), GFP_KERNEL); if (!tu->phy.otg) return -ENOMEM; tu->pt_dev = pdev; /* Default mode */ #ifdef CONFIG_TAHVO_USB_HOST_BY_DEFAULT tu->tahvo_mode = TAHVO_MODE_HOST; #else tu->tahvo_mode = TAHVO_MODE_PERIPHERAL; #endif mutex_init(&tu->serialize); tu->ick = devm_clk_get(&pdev->dev, "usb_l4_ick"); if (!IS_ERR(tu->ick)) clk_enable(tu->ick); /* * Set initial state, so that we generate kevents only on state changes. */ tu->vbus_state = retu_read(rdev, TAHVO_REG_IDSR) & TAHVO_STAT_VBUS; tu->extcon = devm_extcon_dev_allocate(&pdev->dev, tahvo_cable); if (IS_ERR(tu->extcon)) { dev_err(&pdev->dev, "failed to allocate memory for extcon\n"); ret = PTR_ERR(tu->extcon); goto err_disable_clk; } ret = devm_extcon_dev_register(&pdev->dev, tu->extcon); if (ret) { dev_err(&pdev->dev, "could not register extcon device: %d\n", ret); goto err_disable_clk; } /* Set the initial cable state. */ extcon_set_state_sync(tu->extcon, EXTCON_USB_HOST, tu->tahvo_mode == TAHVO_MODE_HOST); extcon_set_state_sync(tu->extcon, EXTCON_USB, tu->vbus_state); /* Create OTG interface */ tahvo_usb_power_off(tu); tu->phy.dev = &pdev->dev; tu->phy.otg->state = OTG_STATE_UNDEFINED; tu->phy.label = DRIVER_NAME; tu->phy.set_suspend = tahvo_usb_set_suspend; tu->phy.otg->usb_phy = &tu->phy; tu->phy.otg->set_host = tahvo_usb_set_host; tu->phy.otg->set_peripheral = tahvo_usb_set_peripheral; ret = usb_add_phy(&tu->phy, USB_PHY_TYPE_USB2); if (ret < 0) { dev_err(&pdev->dev, "cannot register USB transceiver: %d\n", ret); goto err_disable_clk; } dev_set_drvdata(&pdev->dev, tu); tu->irq = ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_remove_phy; ret = request_threaded_irq(tu->irq, NULL, tahvo_usb_vbus_interrupt, IRQF_ONESHOT, "tahvo-vbus", tu); if (ret) { dev_err(&pdev->dev, "could not register tahvo-vbus irq: %d\n", ret); goto err_remove_phy; } return 0; err_remove_phy: usb_remove_phy(&tu->phy); err_disable_clk: if (!IS_ERR(tu->ick)) clk_disable(tu->ick); return ret; } static void tahvo_usb_remove(struct platform_device *pdev) { struct tahvo_usb *tu = platform_get_drvdata(pdev); free_irq(tu->irq, tu); usb_remove_phy(&tu->phy); if (!IS_ERR(tu->ick)) clk_disable(tu->ick); } static struct platform_driver tahvo_usb_driver = { .probe = tahvo_usb_probe, .remove_new = tahvo_usb_remove, .driver = { .name = "tahvo-usb", .dev_groups = tahvo_groups, }, }; module_platform_driver(tahvo_usb_driver); MODULE_DESCRIPTION("Tahvo USB transceiver driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Juha Yrjölä, Tony Lindgren, and Timo Teräs"); MODULE_AUTHOR("Aaro Koskinen <[email protected]>");
linux-master
drivers/usb/phy/phy-tahvo.c
// SPDX-License-Identifier: GPL-2.0 /* * USB Attached SCSI * Note that this is not the same as the USB Mass Storage driver * * Copyright Hans de Goede <[email protected]> for Red Hat, Inc. 2013 - 2016 * Copyright Matthew Wilcox for Intel Corp, 2010 * Copyright Sarah Sharp for Intel Corp, 2010 */ #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/usb_usual.h> #include <linux/usb/hcd.h> #include <linux/usb/storage.h> #include <linux/usb/uas.h> #include <scsi/scsi.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_dbg.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include "uas-detect.h" #include "scsiglue.h" #define MAX_CMNDS 256 struct uas_dev_info { struct usb_interface *intf; struct usb_device *udev; struct usb_anchor cmd_urbs; struct usb_anchor sense_urbs; struct usb_anchor data_urbs; unsigned long flags; int qdepth, resetting; unsigned cmd_pipe, status_pipe, data_in_pipe, data_out_pipe; unsigned use_streams:1; unsigned shutdown:1; struct scsi_cmnd *cmnd[MAX_CMNDS]; spinlock_t lock; struct work_struct work; struct work_struct scan_work; /* for async scanning */ }; enum { SUBMIT_STATUS_URB = BIT(1), ALLOC_DATA_IN_URB = BIT(2), SUBMIT_DATA_IN_URB = BIT(3), ALLOC_DATA_OUT_URB = BIT(4), SUBMIT_DATA_OUT_URB = BIT(5), ALLOC_CMD_URB = BIT(6), SUBMIT_CMD_URB = BIT(7), COMMAND_INFLIGHT = BIT(8), DATA_IN_URB_INFLIGHT = BIT(9), DATA_OUT_URB_INFLIGHT = BIT(10), COMMAND_ABORTED = BIT(11), IS_IN_WORK_LIST = BIT(12), }; /* Overrides scsi_pointer */ struct uas_cmd_info { unsigned int state; unsigned int uas_tag; struct urb *cmd_urb; struct urb *data_in_urb; struct urb *data_out_urb; }; /* I hate forward declarations, but I actually have a loop */ static int uas_submit_urbs(struct scsi_cmnd *cmnd, struct uas_dev_info *devinfo); static void uas_do_work(struct work_struct *work); static int uas_try_complete(struct scsi_cmnd *cmnd, const char *caller); static void uas_free_streams(struct uas_dev_info *devinfo); static void uas_log_cmd_state(struct scsi_cmnd *cmnd, const char *prefix, int status); /* * This driver needs its own workqueue, as we need to control memory allocation. * * In the course of error handling and power management uas_wait_for_pending_cmnds() * needs to flush pending work items. In these contexts we cannot allocate memory * by doing block IO as we would deadlock. For the same reason we cannot wait * for anything allocating memory not heeding these constraints. * * So we have to control all work items that can be on the workqueue we flush. * Hence we cannot share a queue and need our own. */ static struct workqueue_struct *workqueue; static void uas_do_work(struct work_struct *work) { struct uas_dev_info *devinfo = container_of(work, struct uas_dev_info, work); struct uas_cmd_info *cmdinfo; struct scsi_cmnd *cmnd; unsigned long flags; int i, err; spin_lock_irqsave(&devinfo->lock, flags); if (devinfo->resetting) goto out; for (i = 0; i < devinfo->qdepth; i++) { if (!devinfo->cmnd[i]) continue; cmnd = devinfo->cmnd[i]; cmdinfo = scsi_cmd_priv(cmnd); if (!(cmdinfo->state & IS_IN_WORK_LIST)) continue; err = uas_submit_urbs(cmnd, cmnd->device->hostdata); if (!err) cmdinfo->state &= ~IS_IN_WORK_LIST; else queue_work(workqueue, &devinfo->work); } out: spin_unlock_irqrestore(&devinfo->lock, flags); } static void uas_scan_work(struct work_struct *work) { struct uas_dev_info *devinfo = container_of(work, struct uas_dev_info, scan_work); struct Scsi_Host *shost = usb_get_intfdata(devinfo->intf); dev_dbg(&devinfo->intf->dev, "starting scan\n"); scsi_scan_host(shost); dev_dbg(&devinfo->intf->dev, "scan complete\n"); } static void uas_add_work(struct scsi_cmnd *cmnd) { struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct uas_dev_info *devinfo = cmnd->device->hostdata; lockdep_assert_held(&devinfo->lock); cmdinfo->state |= IS_IN_WORK_LIST; queue_work(workqueue, &devinfo->work); } static void uas_zap_pending(struct uas_dev_info *devinfo, int result) { struct uas_cmd_info *cmdinfo; struct scsi_cmnd *cmnd; unsigned long flags; int i, err; spin_lock_irqsave(&devinfo->lock, flags); for (i = 0; i < devinfo->qdepth; i++) { if (!devinfo->cmnd[i]) continue; cmnd = devinfo->cmnd[i]; cmdinfo = scsi_cmd_priv(cmnd); uas_log_cmd_state(cmnd, __func__, 0); /* Sense urbs were killed, clear COMMAND_INFLIGHT manually */ cmdinfo->state &= ~COMMAND_INFLIGHT; cmnd->result = result << 16; err = uas_try_complete(cmnd, __func__); WARN_ON(err != 0); } spin_unlock_irqrestore(&devinfo->lock, flags); } static void uas_sense(struct urb *urb, struct scsi_cmnd *cmnd) { struct sense_iu *sense_iu = urb->transfer_buffer; struct scsi_device *sdev = cmnd->device; if (urb->actual_length > 16) { unsigned len = be16_to_cpup(&sense_iu->len); if (len + 16 != urb->actual_length) { int newlen = min(len + 16, urb->actual_length) - 16; if (newlen < 0) newlen = 0; sdev_printk(KERN_INFO, sdev, "%s: urb length %d " "disagrees with IU sense data length %d, " "using %d bytes of sense data\n", __func__, urb->actual_length, len, newlen); len = newlen; } memcpy(cmnd->sense_buffer, sense_iu->sense, len); } cmnd->result = sense_iu->status; } static void uas_log_cmd_state(struct scsi_cmnd *cmnd, const char *prefix, int status) { struct uas_cmd_info *ci = scsi_cmd_priv(cmnd); if (status == -ENODEV) /* too late */ return; scmd_printk(KERN_INFO, cmnd, "%s %d uas-tag %d inflight:%s%s%s%s%s%s%s%s%s%s%s%s ", prefix, status, ci->uas_tag, (ci->state & SUBMIT_STATUS_URB) ? " s-st" : "", (ci->state & ALLOC_DATA_IN_URB) ? " a-in" : "", (ci->state & SUBMIT_DATA_IN_URB) ? " s-in" : "", (ci->state & ALLOC_DATA_OUT_URB) ? " a-out" : "", (ci->state & SUBMIT_DATA_OUT_URB) ? " s-out" : "", (ci->state & ALLOC_CMD_URB) ? " a-cmd" : "", (ci->state & SUBMIT_CMD_URB) ? " s-cmd" : "", (ci->state & COMMAND_INFLIGHT) ? " CMD" : "", (ci->state & DATA_IN_URB_INFLIGHT) ? " IN" : "", (ci->state & DATA_OUT_URB_INFLIGHT) ? " OUT" : "", (ci->state & COMMAND_ABORTED) ? " abort" : "", (ci->state & IS_IN_WORK_LIST) ? " work" : ""); scsi_print_command(cmnd); } static void uas_free_unsubmitted_urbs(struct scsi_cmnd *cmnd) { struct uas_cmd_info *cmdinfo; if (!cmnd) return; cmdinfo = scsi_cmd_priv(cmnd); if (cmdinfo->state & SUBMIT_CMD_URB) usb_free_urb(cmdinfo->cmd_urb); /* data urbs may have never gotten their submit flag set */ if (!(cmdinfo->state & DATA_IN_URB_INFLIGHT)) usb_free_urb(cmdinfo->data_in_urb); if (!(cmdinfo->state & DATA_OUT_URB_INFLIGHT)) usb_free_urb(cmdinfo->data_out_urb); } static int uas_try_complete(struct scsi_cmnd *cmnd, const char *caller) { struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct uas_dev_info *devinfo = (void *)cmnd->device->hostdata; lockdep_assert_held(&devinfo->lock); if (cmdinfo->state & (COMMAND_INFLIGHT | DATA_IN_URB_INFLIGHT | DATA_OUT_URB_INFLIGHT | COMMAND_ABORTED)) return -EBUSY; devinfo->cmnd[cmdinfo->uas_tag - 1] = NULL; uas_free_unsubmitted_urbs(cmnd); scsi_done(cmnd); return 0; } static void uas_xfer_data(struct urb *urb, struct scsi_cmnd *cmnd, unsigned direction) { struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); int err; cmdinfo->state |= direction | SUBMIT_STATUS_URB; err = uas_submit_urbs(cmnd, cmnd->device->hostdata); if (err) { uas_add_work(cmnd); } } static bool uas_evaluate_response_iu(struct response_iu *riu, struct scsi_cmnd *cmnd) { u8 response_code = riu->response_code; switch (response_code) { case RC_INCORRECT_LUN: set_host_byte(cmnd, DID_BAD_TARGET); break; case RC_TMF_SUCCEEDED: set_host_byte(cmnd, DID_OK); break; case RC_TMF_NOT_SUPPORTED: set_host_byte(cmnd, DID_BAD_TARGET); break; default: uas_log_cmd_state(cmnd, "response iu", response_code); set_host_byte(cmnd, DID_ERROR); break; } return response_code == RC_TMF_SUCCEEDED; } static void uas_stat_cmplt(struct urb *urb) { struct iu *iu = urb->transfer_buffer; struct Scsi_Host *shost = urb->context; struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; struct urb *data_in_urb = NULL; struct urb *data_out_urb = NULL; struct scsi_cmnd *cmnd; struct uas_cmd_info *cmdinfo; unsigned long flags; unsigned int idx; int status = urb->status; bool success; spin_lock_irqsave(&devinfo->lock, flags); if (devinfo->resetting) goto out; if (status) { if (status != -ENOENT && status != -ECONNRESET && status != -ESHUTDOWN) dev_err(&urb->dev->dev, "stat urb: status %d\n", status); goto out; } idx = be16_to_cpup(&iu->tag) - 1; if (idx >= MAX_CMNDS || !devinfo->cmnd[idx]) { dev_err(&urb->dev->dev, "stat urb: no pending cmd for uas-tag %d\n", idx + 1); goto out; } cmnd = devinfo->cmnd[idx]; cmdinfo = scsi_cmd_priv(cmnd); if (!(cmdinfo->state & COMMAND_INFLIGHT)) { uas_log_cmd_state(cmnd, "unexpected status cmplt", 0); goto out; } switch (iu->iu_id) { case IU_ID_STATUS: uas_sense(urb, cmnd); if (cmnd->result != 0) { /* cancel data transfers on error */ data_in_urb = usb_get_urb(cmdinfo->data_in_urb); data_out_urb = usb_get_urb(cmdinfo->data_out_urb); } cmdinfo->state &= ~COMMAND_INFLIGHT; uas_try_complete(cmnd, __func__); break; case IU_ID_READ_READY: if (!cmdinfo->data_in_urb || (cmdinfo->state & DATA_IN_URB_INFLIGHT)) { uas_log_cmd_state(cmnd, "unexpected read rdy", 0); break; } uas_xfer_data(urb, cmnd, SUBMIT_DATA_IN_URB); break; case IU_ID_WRITE_READY: if (!cmdinfo->data_out_urb || (cmdinfo->state & DATA_OUT_URB_INFLIGHT)) { uas_log_cmd_state(cmnd, "unexpected write rdy", 0); break; } uas_xfer_data(urb, cmnd, SUBMIT_DATA_OUT_URB); break; case IU_ID_RESPONSE: cmdinfo->state &= ~COMMAND_INFLIGHT; success = uas_evaluate_response_iu((struct response_iu *)iu, cmnd); if (!success) { /* Error, cancel data transfers */ data_in_urb = usb_get_urb(cmdinfo->data_in_urb); data_out_urb = usb_get_urb(cmdinfo->data_out_urb); } uas_try_complete(cmnd, __func__); break; default: uas_log_cmd_state(cmnd, "bogus IU", iu->iu_id); } out: usb_free_urb(urb); spin_unlock_irqrestore(&devinfo->lock, flags); /* Unlinking of data urbs must be done without holding the lock */ if (data_in_urb) { usb_unlink_urb(data_in_urb); usb_put_urb(data_in_urb); } if (data_out_urb) { usb_unlink_urb(data_out_urb); usb_put_urb(data_out_urb); } } static void uas_data_cmplt(struct urb *urb) { struct scsi_cmnd *cmnd = urb->context; struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct uas_dev_info *devinfo = (void *)cmnd->device->hostdata; struct scsi_data_buffer *sdb = &cmnd->sdb; unsigned long flags; int status = urb->status; spin_lock_irqsave(&devinfo->lock, flags); if (cmdinfo->data_in_urb == urb) { cmdinfo->state &= ~DATA_IN_URB_INFLIGHT; cmdinfo->data_in_urb = NULL; } else if (cmdinfo->data_out_urb == urb) { cmdinfo->state &= ~DATA_OUT_URB_INFLIGHT; cmdinfo->data_out_urb = NULL; } if (devinfo->resetting) goto out; /* Data urbs should not complete before the cmd urb is submitted */ if (cmdinfo->state & SUBMIT_CMD_URB) { uas_log_cmd_state(cmnd, "unexpected data cmplt", 0); goto out; } if (status) { if (status != -ENOENT && status != -ECONNRESET && status != -ESHUTDOWN) uas_log_cmd_state(cmnd, "data cmplt err", status); /* error: no data transfered */ scsi_set_resid(cmnd, sdb->length); } else { scsi_set_resid(cmnd, sdb->length - urb->actual_length); } uas_try_complete(cmnd, __func__); out: usb_free_urb(urb); spin_unlock_irqrestore(&devinfo->lock, flags); } static void uas_cmd_cmplt(struct urb *urb) { if (urb->status) dev_err(&urb->dev->dev, "cmd cmplt err %d\n", urb->status); usb_free_urb(urb); } static struct urb *uas_alloc_data_urb(struct uas_dev_info *devinfo, gfp_t gfp, struct scsi_cmnd *cmnd, enum dma_data_direction dir) { struct usb_device *udev = devinfo->udev; struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct urb *urb = usb_alloc_urb(0, gfp); struct scsi_data_buffer *sdb = &cmnd->sdb; unsigned int pipe = (dir == DMA_FROM_DEVICE) ? devinfo->data_in_pipe : devinfo->data_out_pipe; if (!urb) goto out; usb_fill_bulk_urb(urb, udev, pipe, NULL, sdb->length, uas_data_cmplt, cmnd); if (devinfo->use_streams) urb->stream_id = cmdinfo->uas_tag; urb->num_sgs = udev->bus->sg_tablesize ? sdb->table.nents : 0; urb->sg = sdb->table.sgl; out: return urb; } static struct urb *uas_alloc_sense_urb(struct uas_dev_info *devinfo, gfp_t gfp, struct scsi_cmnd *cmnd) { struct usb_device *udev = devinfo->udev; struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct urb *urb = usb_alloc_urb(0, gfp); struct sense_iu *iu; if (!urb) goto out; iu = kzalloc(sizeof(*iu), gfp); if (!iu) goto free; usb_fill_bulk_urb(urb, udev, devinfo->status_pipe, iu, sizeof(*iu), uas_stat_cmplt, cmnd->device->host); if (devinfo->use_streams) urb->stream_id = cmdinfo->uas_tag; urb->transfer_flags |= URB_FREE_BUFFER; out: return urb; free: usb_free_urb(urb); return NULL; } static struct urb *uas_alloc_cmd_urb(struct uas_dev_info *devinfo, gfp_t gfp, struct scsi_cmnd *cmnd) { struct usb_device *udev = devinfo->udev; struct scsi_device *sdev = cmnd->device; struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct urb *urb = usb_alloc_urb(0, gfp); struct command_iu *iu; int len; if (!urb) goto out; len = cmnd->cmd_len - 16; if (len < 0) len = 0; len = ALIGN(len, 4); iu = kzalloc(sizeof(*iu) + len, gfp); if (!iu) goto free; iu->iu_id = IU_ID_COMMAND; iu->tag = cpu_to_be16(cmdinfo->uas_tag); iu->prio_attr = UAS_SIMPLE_TAG; iu->len = len; int_to_scsilun(sdev->lun, &iu->lun); memcpy(iu->cdb, cmnd->cmnd, cmnd->cmd_len); usb_fill_bulk_urb(urb, udev, devinfo->cmd_pipe, iu, sizeof(*iu) + len, uas_cmd_cmplt, NULL); urb->transfer_flags |= URB_FREE_BUFFER; out: return urb; free: usb_free_urb(urb); return NULL; } /* * Why should I request the Status IU before sending the Command IU? Spec * says to, but also says the device may receive them in any order. Seems * daft to me. */ static struct urb *uas_submit_sense_urb(struct scsi_cmnd *cmnd, gfp_t gfp) { struct uas_dev_info *devinfo = cmnd->device->hostdata; struct urb *urb; int err; urb = uas_alloc_sense_urb(devinfo, gfp, cmnd); if (!urb) return NULL; usb_anchor_urb(urb, &devinfo->sense_urbs); err = usb_submit_urb(urb, gfp); if (err) { usb_unanchor_urb(urb); uas_log_cmd_state(cmnd, "sense submit err", err); usb_free_urb(urb); return NULL; } return urb; } static int uas_submit_urbs(struct scsi_cmnd *cmnd, struct uas_dev_info *devinfo) { struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct urb *urb; int err; lockdep_assert_held(&devinfo->lock); if (cmdinfo->state & SUBMIT_STATUS_URB) { urb = uas_submit_sense_urb(cmnd, GFP_ATOMIC); if (!urb) return SCSI_MLQUEUE_DEVICE_BUSY; cmdinfo->state &= ~SUBMIT_STATUS_URB; } if (cmdinfo->state & ALLOC_DATA_IN_URB) { cmdinfo->data_in_urb = uas_alloc_data_urb(devinfo, GFP_ATOMIC, cmnd, DMA_FROM_DEVICE); if (!cmdinfo->data_in_urb) return SCSI_MLQUEUE_DEVICE_BUSY; cmdinfo->state &= ~ALLOC_DATA_IN_URB; } if (cmdinfo->state & SUBMIT_DATA_IN_URB) { usb_anchor_urb(cmdinfo->data_in_urb, &devinfo->data_urbs); err = usb_submit_urb(cmdinfo->data_in_urb, GFP_ATOMIC); if (err) { usb_unanchor_urb(cmdinfo->data_in_urb); uas_log_cmd_state(cmnd, "data in submit err", err); return SCSI_MLQUEUE_DEVICE_BUSY; } cmdinfo->state &= ~SUBMIT_DATA_IN_URB; cmdinfo->state |= DATA_IN_URB_INFLIGHT; } if (cmdinfo->state & ALLOC_DATA_OUT_URB) { cmdinfo->data_out_urb = uas_alloc_data_urb(devinfo, GFP_ATOMIC, cmnd, DMA_TO_DEVICE); if (!cmdinfo->data_out_urb) return SCSI_MLQUEUE_DEVICE_BUSY; cmdinfo->state &= ~ALLOC_DATA_OUT_URB; } if (cmdinfo->state & SUBMIT_DATA_OUT_URB) { usb_anchor_urb(cmdinfo->data_out_urb, &devinfo->data_urbs); err = usb_submit_urb(cmdinfo->data_out_urb, GFP_ATOMIC); if (err) { usb_unanchor_urb(cmdinfo->data_out_urb); uas_log_cmd_state(cmnd, "data out submit err", err); return SCSI_MLQUEUE_DEVICE_BUSY; } cmdinfo->state &= ~SUBMIT_DATA_OUT_URB; cmdinfo->state |= DATA_OUT_URB_INFLIGHT; } if (cmdinfo->state & ALLOC_CMD_URB) { cmdinfo->cmd_urb = uas_alloc_cmd_urb(devinfo, GFP_ATOMIC, cmnd); if (!cmdinfo->cmd_urb) return SCSI_MLQUEUE_DEVICE_BUSY; cmdinfo->state &= ~ALLOC_CMD_URB; } if (cmdinfo->state & SUBMIT_CMD_URB) { usb_anchor_urb(cmdinfo->cmd_urb, &devinfo->cmd_urbs); err = usb_submit_urb(cmdinfo->cmd_urb, GFP_ATOMIC); if (err) { usb_unanchor_urb(cmdinfo->cmd_urb); uas_log_cmd_state(cmnd, "cmd submit err", err); return SCSI_MLQUEUE_DEVICE_BUSY; } cmdinfo->cmd_urb = NULL; cmdinfo->state &= ~SUBMIT_CMD_URB; cmdinfo->state |= COMMAND_INFLIGHT; } return 0; } static int uas_queuecommand_lck(struct scsi_cmnd *cmnd) { struct scsi_device *sdev = cmnd->device; struct uas_dev_info *devinfo = sdev->hostdata; struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); unsigned long flags; int idx, err; /* Re-check scsi_block_requests now that we've the host-lock */ if (cmnd->device->host->host_self_blocked) return SCSI_MLQUEUE_DEVICE_BUSY; if ((devinfo->flags & US_FL_NO_ATA_1X) && (cmnd->cmnd[0] == ATA_12 || cmnd->cmnd[0] == ATA_16)) { memcpy(cmnd->sense_buffer, usb_stor_sense_invalidCDB, sizeof(usb_stor_sense_invalidCDB)); cmnd->result = SAM_STAT_CHECK_CONDITION; scsi_done(cmnd); return 0; } spin_lock_irqsave(&devinfo->lock, flags); if (devinfo->resetting) { set_host_byte(cmnd, DID_ERROR); scsi_done(cmnd); goto zombie; } /* Find a free uas-tag */ for (idx = 0; idx < devinfo->qdepth; idx++) { if (!devinfo->cmnd[idx]) break; } if (idx == devinfo->qdepth) { spin_unlock_irqrestore(&devinfo->lock, flags); return SCSI_MLQUEUE_DEVICE_BUSY; } memset(cmdinfo, 0, sizeof(*cmdinfo)); cmdinfo->uas_tag = idx + 1; /* uas-tag == usb-stream-id, so 1 based */ cmdinfo->state = SUBMIT_STATUS_URB | ALLOC_CMD_URB | SUBMIT_CMD_URB; switch (cmnd->sc_data_direction) { case DMA_FROM_DEVICE: cmdinfo->state |= ALLOC_DATA_IN_URB | SUBMIT_DATA_IN_URB; break; case DMA_BIDIRECTIONAL: cmdinfo->state |= ALLOC_DATA_IN_URB | SUBMIT_DATA_IN_URB; fallthrough; case DMA_TO_DEVICE: cmdinfo->state |= ALLOC_DATA_OUT_URB | SUBMIT_DATA_OUT_URB; break; case DMA_NONE: break; } if (!devinfo->use_streams) cmdinfo->state &= ~(SUBMIT_DATA_IN_URB | SUBMIT_DATA_OUT_URB); err = uas_submit_urbs(cmnd, devinfo); /* * in case of fatal errors the SCSI layer is peculiar * a command that has finished is a success for the purpose * of queueing, no matter how fatal the error */ if (err == -ENODEV) { set_host_byte(cmnd, DID_ERROR); scsi_done(cmnd); goto zombie; } if (err) { /* If we did nothing, give up now */ if (cmdinfo->state & SUBMIT_STATUS_URB) { spin_unlock_irqrestore(&devinfo->lock, flags); return SCSI_MLQUEUE_DEVICE_BUSY; } uas_add_work(cmnd); } devinfo->cmnd[idx] = cmnd; zombie: spin_unlock_irqrestore(&devinfo->lock, flags); return 0; } static DEF_SCSI_QCMD(uas_queuecommand) /* * For now we do not support actually sending an abort to the device, so * this eh always fails. Still we must define it to make sure that we've * dropped all references to the cmnd in question once this function exits. */ static int uas_eh_abort_handler(struct scsi_cmnd *cmnd) { struct uas_cmd_info *cmdinfo = scsi_cmd_priv(cmnd); struct uas_dev_info *devinfo = (void *)cmnd->device->hostdata; struct urb *data_in_urb = NULL; struct urb *data_out_urb = NULL; unsigned long flags; spin_lock_irqsave(&devinfo->lock, flags); uas_log_cmd_state(cmnd, __func__, 0); /* Ensure that try_complete does not call scsi_done */ cmdinfo->state |= COMMAND_ABORTED; /* Drop all refs to this cmnd, kill data urbs to break their ref */ devinfo->cmnd[cmdinfo->uas_tag - 1] = NULL; if (cmdinfo->state & DATA_IN_URB_INFLIGHT) data_in_urb = usb_get_urb(cmdinfo->data_in_urb); if (cmdinfo->state & DATA_OUT_URB_INFLIGHT) data_out_urb = usb_get_urb(cmdinfo->data_out_urb); uas_free_unsubmitted_urbs(cmnd); spin_unlock_irqrestore(&devinfo->lock, flags); if (data_in_urb) { usb_kill_urb(data_in_urb); usb_put_urb(data_in_urb); } if (data_out_urb) { usb_kill_urb(data_out_urb); usb_put_urb(data_out_urb); } return FAILED; } static int uas_eh_device_reset_handler(struct scsi_cmnd *cmnd) { struct scsi_device *sdev = cmnd->device; struct uas_dev_info *devinfo = sdev->hostdata; struct usb_device *udev = devinfo->udev; unsigned long flags; int err; err = usb_lock_device_for_reset(udev, devinfo->intf); if (err) { shost_printk(KERN_ERR, sdev->host, "%s FAILED to get lock err %d\n", __func__, err); return FAILED; } shost_printk(KERN_INFO, sdev->host, "%s start\n", __func__); spin_lock_irqsave(&devinfo->lock, flags); devinfo->resetting = 1; spin_unlock_irqrestore(&devinfo->lock, flags); usb_kill_anchored_urbs(&devinfo->cmd_urbs); usb_kill_anchored_urbs(&devinfo->sense_urbs); usb_kill_anchored_urbs(&devinfo->data_urbs); uas_zap_pending(devinfo, DID_RESET); err = usb_reset_device(udev); spin_lock_irqsave(&devinfo->lock, flags); devinfo->resetting = 0; spin_unlock_irqrestore(&devinfo->lock, flags); usb_unlock_device(udev); if (err) { shost_printk(KERN_INFO, sdev->host, "%s FAILED err %d\n", __func__, err); return FAILED; } shost_printk(KERN_INFO, sdev->host, "%s success\n", __func__); return SUCCESS; } static int uas_target_alloc(struct scsi_target *starget) { struct uas_dev_info *devinfo = (struct uas_dev_info *) dev_to_shost(starget->dev.parent)->hostdata; if (devinfo->flags & US_FL_NO_REPORT_LUNS) starget->no_report_luns = 1; return 0; } static int uas_slave_alloc(struct scsi_device *sdev) { struct uas_dev_info *devinfo = (struct uas_dev_info *)sdev->host->hostdata; sdev->hostdata = devinfo; /* * The protocol has no requirements on alignment in the strict sense. * Controllers may or may not have alignment restrictions. * As this is not exported, we use an extremely conservative guess. */ blk_queue_update_dma_alignment(sdev->request_queue, (512 - 1)); if (devinfo->flags & US_FL_MAX_SECTORS_64) blk_queue_max_hw_sectors(sdev->request_queue, 64); else if (devinfo->flags & US_FL_MAX_SECTORS_240) blk_queue_max_hw_sectors(sdev->request_queue, 240); return 0; } static int uas_slave_configure(struct scsi_device *sdev) { struct uas_dev_info *devinfo = sdev->hostdata; if (devinfo->flags & US_FL_NO_REPORT_OPCODES) sdev->no_report_opcodes = 1; /* A few buggy USB-ATA bridges don't understand FUA */ if (devinfo->flags & US_FL_BROKEN_FUA) sdev->broken_fua = 1; /* UAS also needs to support FL_ALWAYS_SYNC */ if (devinfo->flags & US_FL_ALWAYS_SYNC) { sdev->skip_ms_page_3f = 1; sdev->skip_ms_page_8 = 1; sdev->wce_default_on = 1; } /* Some disks cannot handle READ_CAPACITY_16 */ if (devinfo->flags & US_FL_NO_READ_CAPACITY_16) sdev->no_read_capacity_16 = 1; /* Some disks cannot handle WRITE_SAME */ if (devinfo->flags & US_FL_NO_SAME) sdev->no_write_same = 1; /* * Some disks return the total number of blocks in response * to READ CAPACITY rather than the highest block number. * If this device makes that mistake, tell the sd driver. */ if (devinfo->flags & US_FL_FIX_CAPACITY) sdev->fix_capacity = 1; /* * in some cases we have to guess */ if (devinfo->flags & US_FL_CAPACITY_HEURISTICS) sdev->guess_capacity = 1; /* * Some devices don't like MODE SENSE with page=0x3f, * which is the command used for checking if a device * is write-protected. Now that we tell the sd driver * to do a 192-byte transfer with this command the * majority of devices work fine, but a few still can't * handle it. The sd driver will simply assume those * devices are write-enabled. */ if (devinfo->flags & US_FL_NO_WP_DETECT) sdev->skip_ms_page_3f = 1; scsi_change_queue_depth(sdev, devinfo->qdepth - 2); return 0; } static const struct scsi_host_template uas_host_template = { .module = THIS_MODULE, .name = "uas", .queuecommand = uas_queuecommand, .target_alloc = uas_target_alloc, .slave_alloc = uas_slave_alloc, .slave_configure = uas_slave_configure, .eh_abort_handler = uas_eh_abort_handler, .eh_device_reset_handler = uas_eh_device_reset_handler, .this_id = -1, .skip_settle_delay = 1, .dma_boundary = PAGE_SIZE - 1, .cmd_size = sizeof(struct uas_cmd_info), }; #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ vendorName, productName, useProtocol, useTransport, \ initFunction, flags) \ { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ .driver_info = (flags) } static struct usb_device_id uas_usb_ids[] = { # include "unusual_uas.h" { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_BULK) }, { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_UAS) }, { } }; MODULE_DEVICE_TABLE(usb, uas_usb_ids); #undef UNUSUAL_DEV static int uas_switch_interface(struct usb_device *udev, struct usb_interface *intf) { struct usb_host_interface *alt; alt = uas_find_uas_alt_setting(intf); if (!alt) return -ENODEV; return usb_set_interface(udev, alt->desc.bInterfaceNumber, alt->desc.bAlternateSetting); } static int uas_configure_endpoints(struct uas_dev_info *devinfo) { struct usb_host_endpoint *eps[4] = { }; struct usb_device *udev = devinfo->udev; int r; r = uas_find_endpoints(devinfo->intf->cur_altsetting, eps); if (r) return r; devinfo->cmd_pipe = usb_sndbulkpipe(udev, usb_endpoint_num(&eps[0]->desc)); devinfo->status_pipe = usb_rcvbulkpipe(udev, usb_endpoint_num(&eps[1]->desc)); devinfo->data_in_pipe = usb_rcvbulkpipe(udev, usb_endpoint_num(&eps[2]->desc)); devinfo->data_out_pipe = usb_sndbulkpipe(udev, usb_endpoint_num(&eps[3]->desc)); if (udev->speed < USB_SPEED_SUPER) { devinfo->qdepth = 32; devinfo->use_streams = 0; } else { devinfo->qdepth = usb_alloc_streams(devinfo->intf, eps + 1, 3, MAX_CMNDS, GFP_NOIO); if (devinfo->qdepth < 0) return devinfo->qdepth; devinfo->use_streams = 1; } return 0; } static void uas_free_streams(struct uas_dev_info *devinfo) { struct usb_device *udev = devinfo->udev; struct usb_host_endpoint *eps[3]; eps[0] = usb_pipe_endpoint(udev, devinfo->status_pipe); eps[1] = usb_pipe_endpoint(udev, devinfo->data_in_pipe); eps[2] = usb_pipe_endpoint(udev, devinfo->data_out_pipe); usb_free_streams(devinfo->intf, eps, 3, GFP_NOIO); } static int uas_probe(struct usb_interface *intf, const struct usb_device_id *id) { int result = -ENOMEM; struct Scsi_Host *shost = NULL; struct uas_dev_info *devinfo; struct usb_device *udev = interface_to_usbdev(intf); unsigned long dev_flags; if (!uas_use_uas_driver(intf, id, &dev_flags)) return -ENODEV; if (uas_switch_interface(udev, intf)) return -ENODEV; shost = scsi_host_alloc(&uas_host_template, sizeof(struct uas_dev_info)); if (!shost) goto set_alt0; shost->max_cmd_len = 16 + 252; shost->max_id = 1; shost->max_lun = 256; shost->max_channel = 0; shost->sg_tablesize = udev->bus->sg_tablesize; devinfo = (struct uas_dev_info *)shost->hostdata; devinfo->intf = intf; devinfo->udev = udev; devinfo->resetting = 0; devinfo->shutdown = 0; devinfo->flags = dev_flags; init_usb_anchor(&devinfo->cmd_urbs); init_usb_anchor(&devinfo->sense_urbs); init_usb_anchor(&devinfo->data_urbs); spin_lock_init(&devinfo->lock); INIT_WORK(&devinfo->work, uas_do_work); INIT_WORK(&devinfo->scan_work, uas_scan_work); result = uas_configure_endpoints(devinfo); if (result) goto set_alt0; /* * 1 tag is reserved for untagged commands + * 1 tag to avoid off by one errors in some bridge firmwares */ shost->can_queue = devinfo->qdepth - 2; usb_set_intfdata(intf, shost); result = scsi_add_host(shost, &intf->dev); if (result) goto free_streams; /* Submit the delayed_work for SCSI-device scanning */ schedule_work(&devinfo->scan_work); return result; free_streams: uas_free_streams(devinfo); usb_set_intfdata(intf, NULL); set_alt0: usb_set_interface(udev, intf->altsetting[0].desc.bInterfaceNumber, 0); if (shost) scsi_host_put(shost); return result; } static int uas_cmnd_list_empty(struct uas_dev_info *devinfo) { unsigned long flags; int i, r = 1; spin_lock_irqsave(&devinfo->lock, flags); for (i = 0; i < devinfo->qdepth; i++) { if (devinfo->cmnd[i]) { r = 0; /* Not empty */ break; } } spin_unlock_irqrestore(&devinfo->lock, flags); return r; } /* * Wait for any pending cmnds to complete, on usb-2 sense_urbs may temporarily * get empty while there still is more work to do due to sense-urbs completing * with a READ/WRITE_READY iu code, so keep waiting until the list gets empty. */ static int uas_wait_for_pending_cmnds(struct uas_dev_info *devinfo) { unsigned long start_time; int r; start_time = jiffies; do { flush_work(&devinfo->work); r = usb_wait_anchor_empty_timeout(&devinfo->sense_urbs, 5000); if (r == 0) return -ETIME; r = usb_wait_anchor_empty_timeout(&devinfo->data_urbs, 500); if (r == 0) return -ETIME; if (time_after(jiffies, start_time + 5 * HZ)) return -ETIME; } while (!uas_cmnd_list_empty(devinfo)); return 0; } static int uas_pre_reset(struct usb_interface *intf) { struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; unsigned long flags; if (devinfo->shutdown) return 0; /* Block new requests */ spin_lock_irqsave(shost->host_lock, flags); scsi_block_requests(shost); spin_unlock_irqrestore(shost->host_lock, flags); if (uas_wait_for_pending_cmnds(devinfo) != 0) { shost_printk(KERN_ERR, shost, "%s: timed out\n", __func__); scsi_unblock_requests(shost); return 1; } uas_free_streams(devinfo); return 0; } static int uas_post_reset(struct usb_interface *intf) { struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; unsigned long flags; int err; if (devinfo->shutdown) return 0; err = uas_configure_endpoints(devinfo); if (err && err != -ENODEV) shost_printk(KERN_ERR, shost, "%s: alloc streams error %d after reset", __func__, err); /* we must unblock the host in every case lest we deadlock */ spin_lock_irqsave(shost->host_lock, flags); scsi_report_bus_reset(shost, 0); spin_unlock_irqrestore(shost->host_lock, flags); scsi_unblock_requests(shost); return err ? 1 : 0; } static int uas_suspend(struct usb_interface *intf, pm_message_t message) { struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; if (uas_wait_for_pending_cmnds(devinfo) != 0) { shost_printk(KERN_ERR, shost, "%s: timed out\n", __func__); return -ETIME; } return 0; } static int uas_resume(struct usb_interface *intf) { return 0; } static int uas_reset_resume(struct usb_interface *intf) { struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; unsigned long flags; int err; err = uas_configure_endpoints(devinfo); if (err) { shost_printk(KERN_ERR, shost, "%s: alloc streams error %d after reset", __func__, err); return -EIO; } spin_lock_irqsave(shost->host_lock, flags); scsi_report_bus_reset(shost, 0); spin_unlock_irqrestore(shost->host_lock, flags); return 0; } static void uas_disconnect(struct usb_interface *intf) { struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; unsigned long flags; spin_lock_irqsave(&devinfo->lock, flags); devinfo->resetting = 1; spin_unlock_irqrestore(&devinfo->lock, flags); cancel_work_sync(&devinfo->work); usb_kill_anchored_urbs(&devinfo->cmd_urbs); usb_kill_anchored_urbs(&devinfo->sense_urbs); usb_kill_anchored_urbs(&devinfo->data_urbs); uas_zap_pending(devinfo, DID_NO_CONNECT); /* * Prevent SCSI scanning (if it hasn't started yet) * or wait for the SCSI-scanning routine to stop. */ cancel_work_sync(&devinfo->scan_work); scsi_remove_host(shost); uas_free_streams(devinfo); scsi_host_put(shost); } /* * Put the device back in usb-storage mode on shutdown, as some BIOS-es * hang on reboot when the device is still in uas mode. Note the reset is * necessary as some devices won't revert to usb-storage mode without it. */ static void uas_shutdown(struct device *dev) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *udev = interface_to_usbdev(intf); struct Scsi_Host *shost = usb_get_intfdata(intf); struct uas_dev_info *devinfo = (struct uas_dev_info *)shost->hostdata; if (system_state != SYSTEM_RESTART) return; devinfo->shutdown = 1; uas_free_streams(devinfo); usb_set_interface(udev, intf->altsetting[0].desc.bInterfaceNumber, 0); usb_reset_device(udev); } static struct usb_driver uas_driver = { .name = "uas", .probe = uas_probe, .disconnect = uas_disconnect, .pre_reset = uas_pre_reset, .post_reset = uas_post_reset, .suspend = uas_suspend, .resume = uas_resume, .reset_resume = uas_reset_resume, .drvwrap.driver.shutdown = uas_shutdown, .id_table = uas_usb_ids, }; static int __init uas_init(void) { int rv; workqueue = alloc_workqueue("uas", WQ_MEM_RECLAIM, 0); if (!workqueue) return -ENOMEM; rv = usb_register(&uas_driver); if (rv) { destroy_workqueue(workqueue); return -ENOMEM; } return 0; } static void __exit uas_exit(void) { usb_deregister(&uas_driver); destroy_workqueue(workqueue); } module_init(uas_init); module_exit(uas_exit); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(USB_STORAGE); MODULE_AUTHOR( "Hans de Goede <[email protected]>, Matthew Wilcox and Sarah Sharp");
linux-master
drivers/usb/storage/uas.c
// SPDX-License-Identifier: GPL-2.0 #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <linux/usb.h> #include <linux/module.h> #include <linux/slab.h> #include "usb.h" #include "transport.h" #include "protocol.h" #include "scsiglue.h" #include "sierra_ms.h" #include "debug.h" #define SWIMS_USB_REQUEST_SetSwocMode 0x0B #define SWIMS_USB_REQUEST_GetSwocInfo 0x0A #define SWIMS_USB_INDEX_SetMode 0x0000 #define SWIMS_SET_MODE_Modem 0x0001 #define TRU_NORMAL 0x01 #define TRU_FORCE_MS 0x02 #define TRU_FORCE_MODEM 0x03 static unsigned int swi_tru_install = 1; module_param(swi_tru_install, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(swi_tru_install, "TRU-Install mode (1=Full Logic (def)," " 2=Force CD-Rom, 3=Force Modem)"); struct swoc_info { __u8 rev; __u8 reserved[8]; __u16 LinuxSKU; __u16 LinuxVer; __u8 reserved2[47]; } __attribute__((__packed__)); static bool containsFullLinuxPackage(struct swoc_info *swocInfo) { if ((swocInfo->LinuxSKU >= 0x2100 && swocInfo->LinuxSKU <= 0x2FFF) || (swocInfo->LinuxSKU >= 0x7100 && swocInfo->LinuxSKU <= 0x7FFF)) return true; else return false; } static int sierra_set_ms_mode(struct usb_device *udev, __u16 eSWocMode) { int result; dev_dbg(&udev->dev, "SWIMS: %s", "DEVICE MODE SWITCH\n"); result = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), SWIMS_USB_REQUEST_SetSwocMode, /* __u8 request */ USB_TYPE_VENDOR | USB_DIR_OUT, /* __u8 request type */ eSWocMode, /* __u16 value */ 0x0000, /* __u16 index */ NULL, /* void *data */ 0, /* __u16 size */ USB_CTRL_SET_TIMEOUT); /* int timeout */ return result; } static int sierra_get_swoc_info(struct usb_device *udev, struct swoc_info *swocInfo) { int result; dev_dbg(&udev->dev, "SWIMS: Attempting to get TRU-Install info\n"); result = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), SWIMS_USB_REQUEST_GetSwocInfo, /* __u8 request */ USB_TYPE_VENDOR | USB_DIR_IN, /* __u8 request type */ 0, /* __u16 value */ 0, /* __u16 index */ (void *) swocInfo, /* void *data */ sizeof(struct swoc_info), /* __u16 size */ USB_CTRL_SET_TIMEOUT); /* int timeout */ swocInfo->LinuxSKU = le16_to_cpu(swocInfo->LinuxSKU); swocInfo->LinuxVer = le16_to_cpu(swocInfo->LinuxVer); return result; } static void debug_swoc(const struct device *dev, struct swoc_info *swocInfo) { dev_dbg(dev, "SWIMS: SWoC Rev: %02d\n", swocInfo->rev); dev_dbg(dev, "SWIMS: Linux SKU: %04X\n", swocInfo->LinuxSKU); dev_dbg(dev, "SWIMS: Linux Version: %04X\n", swocInfo->LinuxVer); } static ssize_t truinst_show(struct device *dev, struct device_attribute *attr, char *buf) { struct swoc_info *swocInfo; struct usb_interface *intf = to_usb_interface(dev); struct usb_device *udev = interface_to_usbdev(intf); int result; if (swi_tru_install == TRU_FORCE_MS) { result = snprintf(buf, PAGE_SIZE, "Forced Mass Storage\n"); } else { swocInfo = kmalloc(sizeof(struct swoc_info), GFP_KERNEL); if (!swocInfo) { snprintf(buf, PAGE_SIZE, "Error\n"); return -ENOMEM; } result = sierra_get_swoc_info(udev, swocInfo); if (result < 0) { dev_dbg(dev, "SWIMS: failed SWoC query\n"); kfree(swocInfo); snprintf(buf, PAGE_SIZE, "Error\n"); return -EIO; } debug_swoc(dev, swocInfo); result = snprintf(buf, PAGE_SIZE, "REV=%02d SKU=%04X VER=%04X\n", swocInfo->rev, swocInfo->LinuxSKU, swocInfo->LinuxVer); kfree(swocInfo); } return result; } static DEVICE_ATTR_RO(truinst); int sierra_ms_init(struct us_data *us) { int result, retries; struct swoc_info *swocInfo; struct usb_device *udev; udev = us->pusb_dev; /* Force Modem mode */ if (swi_tru_install == TRU_FORCE_MODEM) { usb_stor_dbg(us, "SWIMS: Forcing Modem Mode\n"); result = sierra_set_ms_mode(udev, SWIMS_SET_MODE_Modem); if (result < 0) usb_stor_dbg(us, "SWIMS: Failed to switch to modem mode\n"); return -EIO; } /* Force Mass Storage mode (keep CD-Rom) */ else if (swi_tru_install == TRU_FORCE_MS) { usb_stor_dbg(us, "SWIMS: Forcing Mass Storage Mode\n"); goto complete; } /* Normal TRU-Install Logic */ else { usb_stor_dbg(us, "SWIMS: Normal SWoC Logic\n"); swocInfo = kmalloc(sizeof(struct swoc_info), GFP_KERNEL); if (!swocInfo) return -ENOMEM; retries = 3; do { retries--; result = sierra_get_swoc_info(udev, swocInfo); if (result < 0) { usb_stor_dbg(us, "SWIMS: Failed SWoC query\n"); schedule_timeout_uninterruptible(2*HZ); } } while (retries && result < 0); if (result < 0) { usb_stor_dbg(us, "SWIMS: Completely failed SWoC query\n"); kfree(swocInfo); return -EIO; } debug_swoc(&us->pusb_dev->dev, swocInfo); /* * If there is not Linux software on the TRU-Install device * then switch to modem mode */ if (!containsFullLinuxPackage(swocInfo)) { usb_stor_dbg(us, "SWIMS: Switching to Modem Mode\n"); result = sierra_set_ms_mode(udev, SWIMS_SET_MODE_Modem); if (result < 0) usb_stor_dbg(us, "SWIMS: Failed to switch modem\n"); kfree(swocInfo); return -EIO; } kfree(swocInfo); } complete: return device_create_file(&us->pusb_intf->dev, &dev_attr_truinst); }
linux-master
drivers/usb/storage/sierra_ms.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Rio Karma * * (c) 2006 Bob Copeland <[email protected]> * (c) 2006 Keith Bennett <[email protected]> */ #include <linux/module.h> #include <linux/slab.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include "usb.h" #include "transport.h" #include "debug.h" #include "scsiglue.h" #define DRV_NAME "ums-karma" MODULE_DESCRIPTION("Driver for Rio Karma"); MODULE_AUTHOR("Bob Copeland <[email protected]>, Keith Bennett <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(USB_STORAGE); #define RIO_PREFIX "RIOP\x00" #define RIO_PREFIX_LEN 5 #define RIO_SEND_LEN 40 #define RIO_RECV_LEN 0x200 #define RIO_ENTER_STORAGE 0x1 #define RIO_LEAVE_STORAGE 0x2 #define RIO_RESET 0xC struct karma_data { int in_storage; char *recv; }; static int rio_karma_init(struct us_data *us); /* * The table of devices */ #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ vendorName, productName, useProtocol, useTransport, \ initFunction, flags) \ { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ .driver_info = (flags) } static struct usb_device_id karma_usb_ids[] = { # include "unusual_karma.h" { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, karma_usb_ids); #undef UNUSUAL_DEV /* * The flags table */ #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ vendor_name, product_name, use_protocol, use_transport, \ init_function, Flags) \ { \ .vendorName = vendor_name, \ .productName = product_name, \ .useProtocol = use_protocol, \ .useTransport = use_transport, \ .initFunction = init_function, \ } static struct us_unusual_dev karma_unusual_dev_list[] = { # include "unusual_karma.h" { } /* Terminating entry */ }; #undef UNUSUAL_DEV /* * Send commands to Rio Karma. * * For each command we send 40 bytes starting 'RIOP\0' followed by * the command number and a sequence number, which the device will ack * with a 512-byte packet with the high four bits set and everything * else null. Then we send 'RIOP\x80' followed by a zero and the * sequence number, until byte 5 in the response repeats the sequence * number. */ static int rio_karma_send_command(char cmd, struct us_data *us) { int result; unsigned long timeout; static unsigned char seq = 1; struct karma_data *data = (struct karma_data *) us->extra; usb_stor_dbg(us, "sending command %04x\n", cmd); memset(us->iobuf, 0, RIO_SEND_LEN); memcpy(us->iobuf, RIO_PREFIX, RIO_PREFIX_LEN); us->iobuf[5] = cmd; us->iobuf[6] = seq; timeout = jiffies + msecs_to_jiffies(6000); for (;;) { result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, us->iobuf, RIO_SEND_LEN, NULL); if (result != USB_STOR_XFER_GOOD) goto err; result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data->recv, RIO_RECV_LEN, NULL); if (result != USB_STOR_XFER_GOOD) goto err; if (data->recv[5] == seq) break; if (time_after(jiffies, timeout)) goto err; us->iobuf[4] = 0x80; us->iobuf[5] = 0; msleep(50); } seq++; if (seq == 0) seq = 1; usb_stor_dbg(us, "sent command %04x\n", cmd); return 0; err: usb_stor_dbg(us, "command %04x failed\n", cmd); return USB_STOR_TRANSPORT_FAILED; } /* * Trap START_STOP and READ_10 to leave/re-enter storage mode. * Everything else is propagated to the normal bulk layer. */ static int rio_karma_transport(struct scsi_cmnd *srb, struct us_data *us) { int ret; struct karma_data *data = (struct karma_data *) us->extra; if (srb->cmnd[0] == READ_10 && !data->in_storage) { ret = rio_karma_send_command(RIO_ENTER_STORAGE, us); if (ret) return ret; data->in_storage = 1; return usb_stor_Bulk_transport(srb, us); } else if (srb->cmnd[0] == START_STOP) { ret = rio_karma_send_command(RIO_LEAVE_STORAGE, us); if (ret) return ret; data->in_storage = 0; return rio_karma_send_command(RIO_RESET, us); } return usb_stor_Bulk_transport(srb, us); } static void rio_karma_destructor(void *extra) { struct karma_data *data = (struct karma_data *) extra; kfree(data->recv); } static int rio_karma_init(struct us_data *us) { struct karma_data *data = kzalloc(sizeof(struct karma_data), GFP_NOIO); if (!data) return -ENOMEM; data->recv = kmalloc(RIO_RECV_LEN, GFP_NOIO); if (!data->recv) { kfree(data); return -ENOMEM; } us->extra = data; us->extra_destructor = rio_karma_destructor; if (rio_karma_send_command(RIO_ENTER_STORAGE, us)) return -EIO; data->in_storage = 1; return 0; } static struct scsi_host_template karma_host_template; static int karma_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct us_data *us; int result; result = usb_stor_probe1(&us, intf, id, (id - karma_usb_ids) + karma_unusual_dev_list, &karma_host_template); if (result) return result; us->transport_name = "Rio Karma/Bulk"; us->transport = rio_karma_transport; us->transport_reset = usb_stor_Bulk_reset; result = usb_stor_probe2(us); return result; } static struct usb_driver karma_driver = { .name = DRV_NAME, .probe = karma_probe, .disconnect = usb_stor_disconnect, .suspend = usb_stor_suspend, .resume = usb_stor_resume, .reset_resume = usb_stor_reset_resume, .pre_reset = usb_stor_pre_reset, .post_reset = usb_stor_post_reset, .id_table = karma_usb_ids, .soft_unbind = 1, .no_dynamic_id = 1, }; module_usb_stor_driver(karma_driver, karma_host_template, DRV_NAME);
linux-master
drivers/usb/storage/karma.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for USB Mass Storage compliant devices * * Current development and maintenance by: * (c) 1999-2002 Matthew Dharm ([email protected]) * * Developed with the assistance of: * (c) 2000 David L. Brown, Jr. ([email protected]) * (c) 2000 Stephen J. Gowdy ([email protected]) * (c) 2002 Alan Stern <[email protected]> * * Initial work by: * (c) 1999 Michael Gee ([email protected]) * * This driver is based on the 'USB Mass Storage Class' document. This * describes in detail the protocol used to communicate with such * devices. Clearly, the designers had SCSI and ATAPI commands in * mind when they created this document. The commands are all very * similar to commands in the SCSI-II and ATAPI specifications. * * It is important to note that in a number of cases this class * exhibits class-specific exemptions from the USB specification. * Notably the usage of NAK, STALL and ACK differs from the norm, in * that they are used to communicate wait, failed and OK on commands. * * Also, for certain devices, the interrupt endpoint is used to convey * status of a command. */ #include <linux/sched.h> #include <linux/gfp.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/usb/quirks.h> #include <scsi/scsi.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_device.h> #include "usb.h" #include "transport.h" #include "protocol.h" #include "scsiglue.h" #include "debug.h" #include <linux/blkdev.h> #include "../../scsi/sd.h" /*********************************************************************** * Data transfer routines ***********************************************************************/ /* * This is subtle, so pay attention: * --------------------------------- * We're very concerned about races with a command abort. Hanging this code * is a sure fire way to hang the kernel. (Note that this discussion applies * only to transactions resulting from a scsi queued-command, since only * these transactions are subject to a scsi abort. Other transactions, such * as those occurring during device-specific initialization, must be handled * by a separate code path.) * * The abort function (usb_storage_command_abort() in scsiglue.c) first * sets the machine state and the ABORTING bit in us->dflags to prevent * new URBs from being submitted. It then calls usb_stor_stop_transport() * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE * bit is tested to see if the current_sg scatter-gather request needs to be * stopped. The timeout callback routine does much the same thing. * * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to * prevent new URBs from being submitted, and usb_stor_stop_transport() is * called to stop any ongoing requests. * * The submit function first verifies that the submitting is allowed * (neither ABORTING nor DISCONNECTING bits are set) and that the submit * completes without errors, and only then sets the URB_ACTIVE bit. This * prevents the stop_transport() function from trying to cancel the URB * while the submit call is underway. Next, the submit function must test * the flags to see if an abort or disconnect occurred during the submission * or before the URB_ACTIVE bit was set. If so, it's essential to cancel * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit * is still set). Either way, the function must then wait for the URB to * finish. Note that the URB can still be in progress even after a call to * usb_unlink_urb() returns. * * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, * either the stop_transport() function or the submitting function * is guaranteed to call usb_unlink_urb() for an active URB, * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being * called more than once or from being called during usb_submit_urb(). */ /* * This is the completion handler which will wake us up when an URB * completes. */ static void usb_stor_blocking_completion(struct urb *urb) { struct completion *urb_done_ptr = urb->context; complete(urb_done_ptr); } /* * This is the common part of the URB message submission code * * All URBs from the usb-storage driver involved in handling a queued scsi * command _must_ pass through this function (or something like it) for the * abort mechanisms to work properly. */ static int usb_stor_msg_common(struct us_data *us, int timeout) { struct completion urb_done; long timeleft; int status; /* don't submit URBs during abort processing */ if (test_bit(US_FLIDX_ABORTING, &us->dflags)) return -EIO; /* set up data structures for the wakeup system */ init_completion(&urb_done); /* fill the common fields in the URB */ us->current_urb->context = &urb_done; us->current_urb->transfer_flags = 0; /* * we assume that if transfer_buffer isn't us->iobuf then it * hasn't been mapped for DMA. Yes, this is clunky, but it's * easier than always having the caller tell us whether the * transfer buffer has already been mapped. */ if (us->current_urb->transfer_buffer == us->iobuf) us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; us->current_urb->transfer_dma = us->iobuf_dma; /* submit the URB */ status = usb_submit_urb(us->current_urb, GFP_NOIO); if (status) { /* something went wrong */ return status; } /* * since the URB has been submitted successfully, it's now okay * to cancel it */ set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); /* did an abort occur during the submission? */ if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { /* cancel the URB, if it hasn't been cancelled already */ if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { usb_stor_dbg(us, "-- cancelling URB\n"); usb_unlink_urb(us->current_urb); } } /* wait for the completion of the URB */ timeleft = wait_for_completion_interruptible_timeout( &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); if (timeleft <= 0) { usb_stor_dbg(us, "%s -- cancelling URB\n", timeleft == 0 ? "Timeout" : "Signal"); usb_kill_urb(us->current_urb); } /* return the URB status */ return us->current_urb->status; } /* * Transfer one control message, with timeouts, and allowing early * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. */ int usb_stor_control_msg(struct us_data *us, unsigned int pipe, u8 request, u8 requesttype, u16 value, u16 index, void *data, u16 size, int timeout) { int status; usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", request, requesttype, value, index, size); /* fill in the devrequest structure */ us->cr->bRequestType = requesttype; us->cr->bRequest = request; us->cr->wValue = cpu_to_le16(value); us->cr->wIndex = cpu_to_le16(index); us->cr->wLength = cpu_to_le16(size); /* fill and submit the URB */ usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, (unsigned char*) us->cr, data, size, usb_stor_blocking_completion, NULL); status = usb_stor_msg_common(us, timeout); /* return the actual length of the data transferred if no error */ if (status == 0) status = us->current_urb->actual_length; return status; } EXPORT_SYMBOL_GPL(usb_stor_control_msg); /* * This is a version of usb_clear_halt() that allows early termination and * doesn't read the status from the device -- this is because some devices * crash their internal firmware when the status is requested after a halt. * * A definitive list of these 'bad' devices is too difficult to maintain or * make complete enough to be useful. This problem was first observed on the * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither * MacOS nor Windows checks the status after clearing a halt. * * Since many vendors in this space limit their testing to interoperability * with these two OSes, specification violations like this one are common. */ int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) { int result; int endp = usb_pipeendpoint(pipe); if (usb_pipein (pipe)) endp |= USB_DIR_IN; result = usb_stor_control_msg(us, us->send_ctrl_pipe, USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, endp, NULL, 0, 3*HZ); if (result >= 0) usb_reset_endpoint(us->pusb_dev, endp); usb_stor_dbg(us, "result = %d\n", result); return result; } EXPORT_SYMBOL_GPL(usb_stor_clear_halt); /* * Interpret the results of a URB transfer * * This function prints appropriate debugging messages, clears halts on * non-control endpoints, and translates the status to the corresponding * USB_STOR_XFER_xxx return code. */ static int interpret_urb_result(struct us_data *us, unsigned int pipe, unsigned int length, int result, unsigned int partial) { usb_stor_dbg(us, "Status code %d; transferred %u/%u\n", result, partial, length); switch (result) { /* no error code; did we send all the data? */ case 0: if (partial != length) { usb_stor_dbg(us, "-- short transfer\n"); return USB_STOR_XFER_SHORT; } usb_stor_dbg(us, "-- transfer complete\n"); return USB_STOR_XFER_GOOD; /* stalled */ case -EPIPE: /* * for control endpoints, (used by CB[I]) a stall indicates * a failed command */ if (usb_pipecontrol(pipe)) { usb_stor_dbg(us, "-- stall on control pipe\n"); return USB_STOR_XFER_STALLED; } /* for other sorts of endpoint, clear the stall */ usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n", pipe); if (usb_stor_clear_halt(us, pipe) < 0) return USB_STOR_XFER_ERROR; return USB_STOR_XFER_STALLED; /* babble - the device tried to send more than we wanted to read */ case -EOVERFLOW: usb_stor_dbg(us, "-- babble\n"); return USB_STOR_XFER_LONG; /* the transfer was cancelled by abort, disconnect, or timeout */ case -ECONNRESET: usb_stor_dbg(us, "-- transfer cancelled\n"); return USB_STOR_XFER_ERROR; /* short scatter-gather read transfer */ case -EREMOTEIO: usb_stor_dbg(us, "-- short read transfer\n"); return USB_STOR_XFER_SHORT; /* abort or disconnect in progress */ case -EIO: usb_stor_dbg(us, "-- abort or disconnect in progress\n"); return USB_STOR_XFER_ERROR; /* the catch-all error case */ default: usb_stor_dbg(us, "-- unknown error\n"); return USB_STOR_XFER_ERROR; } } /* * Transfer one control message, without timeouts, but allowing early * termination. Return codes are USB_STOR_XFER_xxx. */ int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, u8 request, u8 requesttype, u16 value, u16 index, void *data, u16 size) { int result; usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", request, requesttype, value, index, size); /* fill in the devrequest structure */ us->cr->bRequestType = requesttype; us->cr->bRequest = request; us->cr->wValue = cpu_to_le16(value); us->cr->wIndex = cpu_to_le16(index); us->cr->wLength = cpu_to_le16(size); /* fill and submit the URB */ usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, (unsigned char*) us->cr, data, size, usb_stor_blocking_completion, NULL); result = usb_stor_msg_common(us, 0); return interpret_urb_result(us, pipe, size, result, us->current_urb->actual_length); } EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); /* * Receive one interrupt buffer, without timeouts, but allowing early * termination. Return codes are USB_STOR_XFER_xxx. * * This routine always uses us->recv_intr_pipe as the pipe and * us->ep_bInterval as the interrupt interval. */ static int usb_stor_intr_transfer(struct us_data *us, void *buf, unsigned int length) { int result; unsigned int pipe = us->recv_intr_pipe; unsigned int maxp; usb_stor_dbg(us, "xfer %u bytes\n", length); /* calculate the max packet size */ maxp = usb_maxpacket(us->pusb_dev, pipe); if (maxp > length) maxp = length; /* fill and submit the URB */ usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, maxp, usb_stor_blocking_completion, NULL, us->ep_bInterval); result = usb_stor_msg_common(us, 0); return interpret_urb_result(us, pipe, length, result, us->current_urb->actual_length); } /* * Transfer one buffer via bulk pipe, without timeouts, but allowing early * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe * stalls during the transfer, the halt is automatically cleared. */ int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, void *buf, unsigned int length, unsigned int *act_len) { int result; usb_stor_dbg(us, "xfer %u bytes\n", length); /* fill and submit the URB */ usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, usb_stor_blocking_completion, NULL); result = usb_stor_msg_common(us, 0); /* store the actual length of the data transferred */ if (act_len) *act_len = us->current_urb->actual_length; return interpret_urb_result(us, pipe, length, result, us->current_urb->actual_length); } EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); /* * Transfer a scatter-gather list via bulk transfer * * This function does basically the same thing as usb_stor_bulk_transfer_buf() * above, but it uses the usbcore scatter-gather library. */ static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, struct scatterlist *sg, int num_sg, unsigned int length, unsigned int *act_len) { int result; /* don't submit s-g requests during abort processing */ if (test_bit(US_FLIDX_ABORTING, &us->dflags)) goto usb_stor_xfer_error; /* initialize the scatter-gather request block */ usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg); result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, sg, num_sg, length, GFP_NOIO); if (result) { usb_stor_dbg(us, "usb_sg_init returned %d\n", result); goto usb_stor_xfer_error; } /* * since the block has been initialized successfully, it's now * okay to cancel it */ set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); /* did an abort occur during the submission? */ if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { /* cancel the request, if it hasn't been cancelled already */ if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { usb_stor_dbg(us, "-- cancelling sg request\n"); usb_sg_cancel(&us->current_sg); } } /* wait for the completion of the transfer */ usb_sg_wait(&us->current_sg); clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); result = us->current_sg.status; if (act_len) *act_len = us->current_sg.bytes; return interpret_urb_result(us, pipe, length, result, us->current_sg.bytes); usb_stor_xfer_error: if (act_len) *act_len = 0; return USB_STOR_XFER_ERROR; } /* * Common used function. Transfer a complete command * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid */ int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, struct scsi_cmnd* srb) { unsigned int partial; int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), scsi_sg_count(srb), scsi_bufflen(srb), &partial); scsi_set_resid(srb, scsi_bufflen(srb) - partial); return result; } EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); /* * Transfer an entire SCSI command's worth of data payload over the bulk * pipe. * * Note that this uses usb_stor_bulk_transfer_buf() and * usb_stor_bulk_transfer_sglist() to achieve its goals -- * this function simply determines whether we're going to use * scatter-gather or not, and acts appropriately. */ int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, void *buf, unsigned int length_left, int use_sg, int *residual) { int result; unsigned int partial; /* are we scatter-gathering? */ if (use_sg) { /* use the usb core scatter-gather primitives */ result = usb_stor_bulk_transfer_sglist(us, pipe, (struct scatterlist *) buf, use_sg, length_left, &partial); length_left -= partial; } else { /* no scatter-gather, just make the request */ result = usb_stor_bulk_transfer_buf(us, pipe, buf, length_left, &partial); length_left -= partial; } /* store the residual and return the error code */ if (residual) *residual = length_left; return result; } EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); /*********************************************************************** * Transport routines ***********************************************************************/ /* * There are so many devices that report the capacity incorrectly, * this routine was written to counteract some of the resulting * problems. */ static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) { struct gendisk *disk; struct scsi_disk *sdkp; u32 sector; /* To Report "Medium Error: Record Not Found */ static unsigned char record_not_found[18] = { [0] = 0x70, /* current error */ [2] = MEDIUM_ERROR, /* = 0x03 */ [7] = 0x0a, /* additional length */ [12] = 0x14 /* Record Not Found */ }; /* * If last-sector problems can't occur, whether because the * capacity was already decremented or because the device is * known to report the correct capacity, then we don't need * to do anything. */ if (!us->use_last_sector_hacks) return; /* Was this command a READ(10) or a WRITE(10)? */ if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) goto done; /* Did this command access the last sector? */ sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | (srb->cmnd[4] << 8) | (srb->cmnd[5]); disk = scsi_cmd_to_rq(srb)->q->disk; if (!disk) goto done; sdkp = scsi_disk(disk); if (!sdkp) goto done; if (sector + 1 != sdkp->capacity) goto done; if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { /* * The command succeeded. We know this device doesn't * have the last-sector bug, so stop checking it. */ us->use_last_sector_hacks = 0; } else { /* * The command failed. Allow up to 3 retries in case this * is some normal sort of failure. After that, assume the * capacity is wrong and we're trying to access the sector * beyond the end. Replace the result code and sense data * with values that will cause the SCSI core to fail the * command immediately, instead of going into an infinite * (or even just a very long) retry loop. */ if (++us->last_sector_retries < 3) return; srb->result = SAM_STAT_CHECK_CONDITION; memcpy(srb->sense_buffer, record_not_found, sizeof(record_not_found)); } done: /* * Don't reset the retry counter for TEST UNIT READY commands, * because they get issued after device resets which might be * caused by a failed last-sector access. */ if (srb->cmnd[0] != TEST_UNIT_READY) us->last_sector_retries = 0; } /* * Invoke the transport and basic error-handling/recovery methods * * This is used by the protocol layers to actually send the message to * the device and receive the response. */ void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) { int need_auto_sense; int result; /* send the command to the transport layer */ scsi_set_resid(srb, 0); result = us->transport(srb, us); /* * if the command gets aborted by the higher layers, we need to * short-circuit all other processing */ if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { usb_stor_dbg(us, "-- command was aborted\n"); srb->result = DID_ABORT << 16; goto Handle_Errors; } /* if there is a transport error, reset and don't auto-sense */ if (result == USB_STOR_TRANSPORT_ERROR) { usb_stor_dbg(us, "-- transport indicates error, resetting\n"); srb->result = DID_ERROR << 16; goto Handle_Errors; } /* if the transport provided its own sense data, don't auto-sense */ if (result == USB_STOR_TRANSPORT_NO_SENSE) { srb->result = SAM_STAT_CHECK_CONDITION; last_sector_hacks(us, srb); return; } srb->result = SAM_STAT_GOOD; /* * Determine if we need to auto-sense * * I normally don't use a flag like this, but it's almost impossible * to understand what's going on here if I don't. */ need_auto_sense = 0; /* * If we're running the CB transport, which is incapable * of determining status on its own, we will auto-sense * unless the operation involved a data-in transfer. Devices * can signal most data-in errors by stalling the bulk-in pipe. */ if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && srb->sc_data_direction != DMA_FROM_DEVICE) { usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n"); need_auto_sense = 1; } /* Some devices (Kindle) require another command after SYNC CACHE */ if ((us->fflags & US_FL_SENSE_AFTER_SYNC) && srb->cmnd[0] == SYNCHRONIZE_CACHE) { usb_stor_dbg(us, "-- sense after SYNC CACHE\n"); need_auto_sense = 1; } /* * If we have a failure, we're going to do a REQUEST_SENSE * automatically. Note that we differentiate between a command * "failure" and an "error" in the transport mechanism. */ if (result == USB_STOR_TRANSPORT_FAILED) { usb_stor_dbg(us, "-- transport indicates command failure\n"); need_auto_sense = 1; } /* * Determine if this device is SAT by seeing if the * command executed successfully. Otherwise we'll have * to wait for at least one CHECK_CONDITION to determine * SANE_SENSE support */ if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && result == USB_STOR_TRANSPORT_GOOD && !(us->fflags & US_FL_SANE_SENSE) && !(us->fflags & US_FL_BAD_SENSE) && !(srb->cmnd[2] & 0x20))) { usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n"); us->fflags |= US_FL_SANE_SENSE; } /* * A short transfer on a command where we don't expect it * is unusual, but it doesn't mean we need to auto-sense. */ if ((scsi_get_resid(srb) > 0) && !((srb->cmnd[0] == REQUEST_SENSE) || (srb->cmnd[0] == INQUIRY) || (srb->cmnd[0] == MODE_SENSE) || (srb->cmnd[0] == LOG_SENSE) || (srb->cmnd[0] == MODE_SENSE_10))) { usb_stor_dbg(us, "-- unexpectedly short transfer\n"); } /* Now, if we need to do the auto-sense, let's do it */ if (need_auto_sense) { int temp_result; struct scsi_eh_save ses; int sense_size = US_SENSE_SIZE; struct scsi_sense_hdr sshdr; const u8 *scdd; u8 fm_ili; /* device supports and needs bigger sense buffer */ if (us->fflags & US_FL_SANE_SENSE) sense_size = ~0; Retry_Sense: usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n"); scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); /* FIXME: we must do the protocol translation here */ if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || us->subclass == USB_SC_CYP_ATACB) srb->cmd_len = 6; else srb->cmd_len = 12; /* issue the auto-sense command */ scsi_set_resid(srb, 0); temp_result = us->transport(us->srb, us); /* let's clean up right away */ scsi_eh_restore_cmnd(srb, &ses); if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { usb_stor_dbg(us, "-- auto-sense aborted\n"); srb->result = DID_ABORT << 16; /* If SANE_SENSE caused this problem, disable it */ if (sense_size != US_SENSE_SIZE) { us->fflags &= ~US_FL_SANE_SENSE; us->fflags |= US_FL_BAD_SENSE; } goto Handle_Errors; } /* * Some devices claim to support larger sense but fail when * trying to request it. When a transport failure happens * using US_FS_SANE_SENSE, we always retry with a standard * (small) sense request. This fixes some USB GSM modems */ if (temp_result == USB_STOR_TRANSPORT_FAILED && sense_size != US_SENSE_SIZE) { usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n"); sense_size = US_SENSE_SIZE; us->fflags &= ~US_FL_SANE_SENSE; us->fflags |= US_FL_BAD_SENSE; goto Retry_Sense; } /* Other failures */ if (temp_result != USB_STOR_TRANSPORT_GOOD) { usb_stor_dbg(us, "-- auto-sense failure\n"); /* * we skip the reset if this happens to be a * multi-target device, since failure of an * auto-sense is perfectly valid */ srb->result = DID_ERROR << 16; if (!(us->fflags & US_FL_SCM_MULT_TARG)) goto Handle_Errors; return; } /* * If the sense data returned is larger than 18-bytes then we * assume this device supports requesting more in the future. * The response code must be 70h through 73h inclusive. */ if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && !(us->fflags & US_FL_SANE_SENSE) && !(us->fflags & US_FL_BAD_SENSE) && (srb->sense_buffer[0] & 0x7C) == 0x70) { usb_stor_dbg(us, "-- SANE_SENSE support enabled\n"); us->fflags |= US_FL_SANE_SENSE; /* * Indicate to the user that we truncated their sense * because we didn't know it supported larger sense. */ usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n", US_SENSE_SIZE, srb->sense_buffer[7] + 8); srb->sense_buffer[7] = (US_SENSE_SIZE - 8); } scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, &sshdr); usb_stor_dbg(us, "-- Result from auto-sense is %d\n", temp_result); usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", sshdr.response_code, sshdr.sense_key, sshdr.asc, sshdr.ascq); #ifdef CONFIG_USB_STORAGE_DEBUG usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq); #endif /* set the result so the higher layers expect this data */ srb->result = SAM_STAT_CHECK_CONDITION; scdd = scsi_sense_desc_find(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, 4); fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; /* * We often get empty sense data. This could indicate that * everything worked or that there was an unspecified * problem. We have to decide which. */ if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && fm_ili == 0) { /* * If things are really okay, then let's show that. * Zero out the sense buffer so the higher layers * won't realize we did an unsolicited auto-sense. */ if (result == USB_STOR_TRANSPORT_GOOD) { srb->result = SAM_STAT_GOOD; srb->sense_buffer[0] = 0x0; } /* * ATA-passthru commands use sense data to report * the command completion status, and often devices * return Check Condition status when nothing is * wrong. */ else if (srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) { /* leave the data alone */ } /* * If there was a problem, report an unspecified * hardware error to prevent the higher layers from * entering an infinite retry loop. */ else { srb->result = DID_ERROR << 16; if ((sshdr.response_code & 0x72) == 0x72) srb->sense_buffer[1] = HARDWARE_ERROR; else srb->sense_buffer[2] = HARDWARE_ERROR; } } } /* * Some devices don't work or return incorrect data the first * time they get a READ(10) command, or for the first READ(10) * after a media change. If the INITIAL_READ10 flag is set, * keep track of whether READ(10) commands succeed. If the * previous one succeeded and this one failed, set the REDO_READ10 * flag to force a retry. */ if (unlikely((us->fflags & US_FL_INITIAL_READ10) && srb->cmnd[0] == READ_10)) { if (srb->result == SAM_STAT_GOOD) { set_bit(US_FLIDX_READ10_WORKED, &us->dflags); } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); set_bit(US_FLIDX_REDO_READ10, &us->dflags); } /* * Next, if the REDO_READ10 flag is set, return a result * code that will cause the SCSI core to retry the READ(10) * command immediately. */ if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { clear_bit(US_FLIDX_REDO_READ10, &us->dflags); srb->result = DID_IMM_RETRY << 16; srb->sense_buffer[0] = 0; } } /* Did we transfer less than the minimum amount required? */ if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) srb->result = DID_ERROR << 16; last_sector_hacks(us, srb); return; /* * Error and abort processing: try to resynchronize with the device * by issuing a port reset. If that fails, try a class-specific * device reset. */ Handle_Errors: /* * Set the RESETTING bit, and clear the ABORTING bit so that * the reset may proceed. */ scsi_lock(us_to_host(us)); set_bit(US_FLIDX_RESETTING, &us->dflags); clear_bit(US_FLIDX_ABORTING, &us->dflags); scsi_unlock(us_to_host(us)); /* * We must release the device lock because the pre_reset routine * will want to acquire it. */ mutex_unlock(&us->dev_mutex); result = usb_stor_port_reset(us); mutex_lock(&us->dev_mutex); if (result < 0) { scsi_lock(us_to_host(us)); usb_stor_report_device_reset(us); scsi_unlock(us_to_host(us)); us->transport_reset(us); } clear_bit(US_FLIDX_RESETTING, &us->dflags); last_sector_hacks(us, srb); } /* Stop the current URB transfer */ void usb_stor_stop_transport(struct us_data *us) { /* * If the state machine is blocked waiting for an URB, * let's wake it up. The test_and_clear_bit() call * guarantees that if a URB has just been submitted, * it won't be cancelled more than once. */ if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { usb_stor_dbg(us, "-- cancelling URB\n"); usb_unlink_urb(us->current_urb); } /* If we are waiting for a scatter-gather operation, cancel it. */ if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { usb_stor_dbg(us, "-- cancelling sg request\n"); usb_sg_cancel(&us->current_sg); } } /* * Control/Bulk and Control/Bulk/Interrupt transport */ int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) { unsigned int transfer_length = scsi_bufflen(srb); unsigned int pipe = 0; int result; /* COMMAND STAGE */ /* let's send the command via the control pipe */ /* * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack. * Stack may be vmallocated. So no DMA for us. Make a copy. */ memcpy(us->iobuf, srb->cmnd, srb->cmd_len); result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, US_CBI_ADSC, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, us->ifnum, us->iobuf, srb->cmd_len); /* check the return code for the command */ usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n", result); /* if we stalled the command, it means command failed */ if (result == USB_STOR_XFER_STALLED) { return USB_STOR_TRANSPORT_FAILED; } /* Uh oh... serious problem here */ if (result != USB_STOR_XFER_GOOD) { return USB_STOR_TRANSPORT_ERROR; } /* DATA STAGE */ /* transfer the data payload for this command, if one exists*/ if (transfer_length) { pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? us->recv_bulk_pipe : us->send_bulk_pipe; result = usb_stor_bulk_srb(us, pipe, srb); usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result); /* if we stalled the data transfer it means command failed */ if (result == USB_STOR_XFER_STALLED) return USB_STOR_TRANSPORT_FAILED; if (result > USB_STOR_XFER_STALLED) return USB_STOR_TRANSPORT_ERROR; } /* STATUS STAGE */ /* * NOTE: CB does not have a status stage. Silly, I know. So * we have to catch this at a higher level. */ if (us->protocol != USB_PR_CBI) return USB_STOR_TRANSPORT_GOOD; result = usb_stor_intr_transfer(us, us->iobuf, 2); usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n", us->iobuf[0], us->iobuf[1]); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; /* * UFI gives us ASC and ASCQ, like a request sense * * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI * devices, so we ignore the information for those commands. Note * that this means we could be ignoring a real error on these * commands, but that can't be helped. */ if (us->subclass == USB_SC_UFI) { if (srb->cmnd[0] == REQUEST_SENSE || srb->cmnd[0] == INQUIRY) return USB_STOR_TRANSPORT_GOOD; if (us->iobuf[0]) goto Failed; return USB_STOR_TRANSPORT_GOOD; } /* * If not UFI, we interpret the data as a result code * The first byte should always be a 0x0. * * Some bogus devices don't follow that rule. They stuff the ASC * into the first byte -- so if it's non-zero, call it a failure. */ if (us->iobuf[0]) { usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n", us->iobuf[0]); goto Failed; } /* The second byte & 0x0F should be 0x0 for good, otherwise error */ switch (us->iobuf[1] & 0x0F) { case 0x00: return USB_STOR_TRANSPORT_GOOD; case 0x01: goto Failed; } return USB_STOR_TRANSPORT_ERROR; /* * the CBI spec requires that the bulk pipe must be cleared * following any data-in/out command failure (section 2.4.3.1.3) */ Failed: if (pipe) usb_stor_clear_halt(us, pipe); return USB_STOR_TRANSPORT_FAILED; } EXPORT_SYMBOL_GPL(usb_stor_CB_transport); /* * Bulk only transport */ /* Determine what the maximum LUN supported is */ int usb_stor_Bulk_max_lun(struct us_data *us) { int result; /* issue the command */ us->iobuf[0] = 0; result = usb_stor_control_msg(us, us->recv_ctrl_pipe, US_BULK_GET_MAX_LUN, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, us->ifnum, us->iobuf, 1, 10*HZ); usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n", result, us->iobuf[0]); /* * If we have a successful request, return the result if valid. The * CBW LUN field is 4 bits wide, so the value reported by the device * should fit into that. */ if (result > 0) { if (us->iobuf[0] < 16) { return us->iobuf[0]; } else { dev_info(&us->pusb_intf->dev, "Max LUN %d is not valid, using 0 instead", us->iobuf[0]); } } /* * Some devices don't like GetMaxLUN. They may STALL the control * pipe, they may return a zero-length result, they may do nothing at * all and timeout, or they may fail in even more bizarrely creative * ways. In these cases the best approach is to use the default * value: only one LUN. */ return 0; } int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) { struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; unsigned int transfer_length = scsi_bufflen(srb); unsigned int residue; int result; int fake_sense = 0; unsigned int cswlen; unsigned int cbwlen = US_BULK_CB_WRAP_LEN; /* Take care of BULK32 devices; set extra byte to 0 */ if (unlikely(us->fflags & US_FL_BULK32)) { cbwlen = 32; us->iobuf[31] = 0; } /* set up the command wrapper */ bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); bcb->DataTransferLength = cpu_to_le32(transfer_length); bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? US_BULK_FLAG_IN : 0; bcb->Tag = ++us->tag; bcb->Lun = srb->device->lun; if (us->fflags & US_FL_SCM_MULT_TARG) bcb->Lun |= srb->device->id << 4; bcb->Length = srb->cmd_len; /* copy the command payload */ memset(bcb->CDB, 0, sizeof(bcb->CDB)); memcpy(bcb->CDB, srb->cmnd, bcb->Length); /* send it to out endpoint */ usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", le32_to_cpu(bcb->Signature), bcb->Tag, le32_to_cpu(bcb->DataTransferLength), bcb->Flags, (bcb->Lun >> 4), (bcb->Lun & 0x0F), bcb->Length); result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, bcb, cbwlen, NULL); usb_stor_dbg(us, "Bulk command transfer result=%d\n", result); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; /* DATA STAGE */ /* send/receive data payload, if there is any */ /* * Some USB-IDE converter chips need a 100us delay between the * command phase and the data phase. Some devices need a little * more than that, probably because of clock rate inaccuracies. */ if (unlikely(us->fflags & US_FL_GO_SLOW)) usleep_range(125, 150); if (transfer_length) { unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? us->recv_bulk_pipe : us->send_bulk_pipe; result = usb_stor_bulk_srb(us, pipe, srb); usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result); if (result == USB_STOR_XFER_ERROR) return USB_STOR_TRANSPORT_ERROR; /* * If the device tried to send back more data than the * amount requested, the spec requires us to transfer * the CSW anyway. Since there's no point retrying * the command, we'll return fake sense data indicating * Illegal Request, Invalid Field in CDB. */ if (result == USB_STOR_XFER_LONG) fake_sense = 1; /* * Sometimes a device will mistakenly skip the data phase * and go directly to the status phase without sending a * zero-length packet. If we get a 13-byte response here, * check whether it really is a CSW. */ if (result == USB_STOR_XFER_SHORT && srb->sc_data_direction == DMA_FROM_DEVICE && transfer_length - scsi_get_resid(srb) == US_BULK_CS_WRAP_LEN) { struct scatterlist *sg = NULL; unsigned int offset = 0; if (usb_stor_access_xfer_buf((unsigned char *) bcs, US_BULK_CS_WRAP_LEN, srb, &sg, &offset, FROM_XFER_BUF) == US_BULK_CS_WRAP_LEN && bcs->Signature == cpu_to_le32(US_BULK_CS_SIGN)) { usb_stor_dbg(us, "Device skipped data phase\n"); scsi_set_resid(srb, transfer_length); goto skipped_data_phase; } } } /* * See flow chart on pg 15 of the Bulk Only Transport spec for * an explanation of how this code works. */ /* get CSW for device status */ usb_stor_dbg(us, "Attempting to get CSW...\n"); result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, bcs, US_BULK_CS_WRAP_LEN, &cswlen); /* * Some broken devices add unnecessary zero-length packets to the * end of their data transfers. Such packets show up as 0-length * CSWs. If we encounter such a thing, try to read the CSW again. */ if (result == USB_STOR_XFER_SHORT && cswlen == 0) { usb_stor_dbg(us, "Received 0-length CSW; retrying...\n"); result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, bcs, US_BULK_CS_WRAP_LEN, &cswlen); } /* did the attempt to read the CSW fail? */ if (result == USB_STOR_XFER_STALLED) { /* get the status again */ usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n"); result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, bcs, US_BULK_CS_WRAP_LEN, NULL); } /* if we still have a failure at this point, we're in trouble */ usb_stor_dbg(us, "Bulk status result = %d\n", result); if (result != USB_STOR_XFER_GOOD) return USB_STOR_TRANSPORT_ERROR; skipped_data_phase: /* check bulk status */ residue = le32_to_cpu(bcs->Residue); usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", le32_to_cpu(bcs->Signature), bcs->Tag, residue, bcs->Status); if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || bcs->Status > US_BULK_STAT_PHASE) { usb_stor_dbg(us, "Bulk logical error\n"); return USB_STOR_TRANSPORT_ERROR; } /* * Some broken devices report odd signatures, so we do not check them * for validity against the spec. We store the first one we see, * and check subsequent transfers for validity against this signature. */ if (!us->bcs_signature) { us->bcs_signature = bcs->Signature; if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n", le32_to_cpu(us->bcs_signature)); } else if (bcs->Signature != us->bcs_signature) { usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n", le32_to_cpu(bcs->Signature), le32_to_cpu(us->bcs_signature)); return USB_STOR_TRANSPORT_ERROR; } /* * try to compute the actual residue, based on how much data * was really transferred and what the device tells us */ if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { /* * Heuristically detect devices that generate bogus residues * by seeing what happens with INQUIRY and READ CAPACITY * commands. */ if (bcs->Status == US_BULK_STAT_OK && scsi_get_resid(srb) == 0 && ((srb->cmnd[0] == INQUIRY && transfer_length == 36) || (srb->cmnd[0] == READ_CAPACITY && transfer_length == 8))) { us->fflags |= US_FL_IGNORE_RESIDUE; } else { residue = min(residue, transfer_length); scsi_set_resid(srb, max(scsi_get_resid(srb), residue)); } } /* based on the status code, we report good or bad */ switch (bcs->Status) { case US_BULK_STAT_OK: /* device babbled -- return fake sense data */ if (fake_sense) { memcpy(srb->sense_buffer, usb_stor_sense_invalidCDB, sizeof(usb_stor_sense_invalidCDB)); return USB_STOR_TRANSPORT_NO_SENSE; } /* command good -- note that data could be short */ return USB_STOR_TRANSPORT_GOOD; case US_BULK_STAT_FAIL: /* command failed */ return USB_STOR_TRANSPORT_FAILED; case US_BULK_STAT_PHASE: /* * phase error -- note that a transport reset will be * invoked by the invoke_transport() function */ return USB_STOR_TRANSPORT_ERROR; } /* we should never get here, but if we do, we're in trouble */ return USB_STOR_TRANSPORT_ERROR; } EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); /*********************************************************************** * Reset routines ***********************************************************************/ /* * This is the common part of the device reset code. * * It's handy that every transport mechanism uses the control endpoint for * resets. * * Basically, we send a reset with a 5-second timeout, so we don't get * jammed attempting to do the reset. */ static int usb_stor_reset_common(struct us_data *us, u8 request, u8 requesttype, u16 value, u16 index, void *data, u16 size) { int result; int result2; if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { usb_stor_dbg(us, "No reset during disconnect\n"); return -EIO; } result = usb_stor_control_msg(us, us->send_ctrl_pipe, request, requesttype, value, index, data, size, 5*HZ); if (result < 0) { usb_stor_dbg(us, "Soft reset failed: %d\n", result); return result; } /* * Give the device some time to recover from the reset, * but don't delay disconnect processing. */ wait_event_interruptible_timeout(us->delay_wait, test_bit(US_FLIDX_DISCONNECTING, &us->dflags), HZ*6); if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { usb_stor_dbg(us, "Reset interrupted by disconnect\n"); return -EIO; } usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n"); result = usb_stor_clear_halt(us, us->recv_bulk_pipe); usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n"); result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); /* return a result code based on the result of the clear-halts */ if (result >= 0) result = result2; if (result < 0) usb_stor_dbg(us, "Soft reset failed\n"); else usb_stor_dbg(us, "Soft reset done\n"); return result; } /* This issues a CB[I] Reset to the device in question */ #define CB_RESET_CMD_SIZE 12 int usb_stor_CB_reset(struct us_data *us) { memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); us->iobuf[0] = SEND_DIAGNOSTIC; us->iobuf[1] = 4; return usb_stor_reset_common(us, US_CBI_ADSC, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); } EXPORT_SYMBOL_GPL(usb_stor_CB_reset); /* * This issues a Bulk-only Reset to the device in question, including * clearing the subsequent endpoint halts that may occur. */ int usb_stor_Bulk_reset(struct us_data *us) { return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, us->ifnum, NULL, 0); } EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); /* * Issue a USB port reset to the device. The caller must not hold * us->dev_mutex. */ int usb_stor_port_reset(struct us_data *us) { int result; /*for these devices we must use the class specific method */ if (us->pusb_dev->quirks & USB_QUIRK_RESET) return -EPERM; result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); if (result < 0) usb_stor_dbg(us, "unable to lock device for reset: %d\n", result); else { /* Were we disconnected while waiting for the lock? */ if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { result = -EIO; usb_stor_dbg(us, "No reset during disconnect\n"); } else { result = usb_reset_device(us->pusb_dev); usb_stor_dbg(us, "usb_reset_device returns %d\n", result); } usb_unlock_device(us->pusb_dev); } return result; }
linux-master
drivers/usb/storage/transport.c