python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2023 Richtek Technology Corp. * * Authors: * Alice Chen <[email protected]> * ChiYuan Huang <[email protected]> */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/led-class-flash.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> #include <media/v4l2-flash-led-class.h> enum { MT6370_LED_FLASH1 = 0, MT6370_LED_FLASH2, MT6370_MAX_LEDS }; /* Virtual definition for multicolor */ #define MT6370_REG_FLEDEN 0x17E #define MT6370_REG_STRBTO 0x173 #define MT6370_REG_CHGSTAT2 0x1D1 #define MT6370_REG_FLEDSTAT1 0x1D9 #define MT6370_REG_FLEDISTRB(_id) (0x174 + 4 * (_id)) #define MT6370_REG_FLEDITOR(_id) (0x175 + 4 * (_id)) #define MT6370_ITORCH_MASK GENMASK(4, 0) #define MT6370_ISTROBE_MASK GENMASK(6, 0) #define MT6370_STRBTO_MASK GENMASK(6, 0) #define MT6370_TORCHEN_MASK BIT(3) #define MT6370_STROBEN_MASK BIT(2) #define MT6370_FLCSEN_MASK(_id) BIT(MT6370_LED_FLASH2 - (_id)) #define MT6370_FLCSEN_MASK_ALL GENMASK(1, 0) #define MT6370_FLEDCHGVINOVP_MASK BIT(3) #define MT6370_FLED1STRBTO_MASK BIT(11) #define MT6370_FLED2STRBTO_MASK BIT(10) #define MT6370_FLED1STRB_MASK BIT(9) #define MT6370_FLED2STRB_MASK BIT(8) #define MT6370_FLED1SHORT_MASK BIT(7) #define MT6370_FLED2SHORT_MASK BIT(6) #define MT6370_FLEDLVF_MASK BIT(3) #define MT6370_LED_JOINT 2 #define MT6370_RANGE_FLED_REG 4 #define MT6370_ITORCH_MIN_uA 25000 #define MT6370_ITORCH_STEP_uA 12500 #define MT6370_ITORCH_MAX_uA 400000 #define MT6370_ITORCH_DOUBLE_MAX_uA 800000 #define MT6370_ISTRB_MIN_uA 50000 #define MT6370_ISTRB_STEP_uA 12500 #define MT6370_ISTRB_MAX_uA 1500000 #define MT6370_ISTRB_DOUBLE_MAX_uA 3000000 #define MT6370_STRBTO_MIN_US 64000 #define MT6370_STRBTO_STEP_US 32000 #define MT6370_STRBTO_MAX_US 2432000 #define to_mt6370_led(ptr, member) container_of(ptr, struct mt6370_led, member) struct mt6370_led { struct led_classdev_flash flash; struct v4l2_flash *v4l2_flash; struct mt6370_priv *priv; u8 led_no; }; struct mt6370_priv { struct regmap *regmap; struct mutex lock; unsigned int fled_strobe_used; unsigned int fled_torch_used; unsigned int leds_active; unsigned int leds_count; struct mt6370_led leds[]; }; static int mt6370_torch_brightness_set(struct led_classdev *lcdev, enum led_brightness level) { struct mt6370_led *led = to_mt6370_led(lcdev, flash.led_cdev); struct mt6370_priv *priv = led->priv; u32 led_enable_mask = led->led_no == MT6370_LED_JOINT ? MT6370_FLCSEN_MASK_ALL : MT6370_FLCSEN_MASK(led->led_no); u32 enable_mask = MT6370_TORCHEN_MASK | led_enable_mask; u32 val = level ? led_enable_mask : 0; u32 curr; int ret, i; mutex_lock(&priv->lock); /* * There is only one set of flash control logic, and this flag is used to check if 'strobe' * is currently being used. */ if (priv->fled_strobe_used) { dev_warn(lcdev->dev, "Please disable strobe first [%d]\n", priv->fled_strobe_used); ret = -EBUSY; goto unlock; } if (level) curr = priv->fled_torch_used | BIT(led->led_no); else curr = priv->fled_torch_used & ~BIT(led->led_no); if (curr) val |= MT6370_TORCHEN_MASK; if (level) { level -= 1; if (led->led_no == MT6370_LED_JOINT) { u32 flevel[MT6370_MAX_LEDS]; /* * There're two flash channels in MT6370. If joint flash output is used, * torch current will be averaged output from both channels. */ flevel[0] = level / 2; flevel[1] = level - flevel[0]; for (i = 0; i < MT6370_MAX_LEDS; i++) { ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDITOR(i), MT6370_ITORCH_MASK, flevel[i]); if (ret) goto unlock; } } else { ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDITOR(led->led_no), MT6370_ITORCH_MASK, level); if (ret) goto unlock; } } ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDEN, enable_mask, val); if (ret) goto unlock; priv->fled_torch_used = curr; unlock: mutex_unlock(&priv->lock); return ret; } static int mt6370_flash_brightness_set(struct led_classdev_flash *fl_cdev, u32 brightness) { /* * Because of the current spikes when turning on the flash, the brightness should be kept * by the LED framework. This empty function is used to prevent checking failure when * led_classdev_flash registers ops. */ return 0; } static int _mt6370_flash_brightness_set(struct led_classdev_flash *fl_cdev, u32 brightness) { struct mt6370_led *led = to_mt6370_led(fl_cdev, flash); struct mt6370_priv *priv = led->priv; struct led_flash_setting *setting = &fl_cdev->brightness; u32 val = (brightness - setting->min) / setting->step; int ret, i; if (led->led_no == MT6370_LED_JOINT) { u32 flevel[MT6370_MAX_LEDS]; /* * There're two flash channels in MT6370. If joint flash output is used, storbe * current will be averaged output from both channels. */ flevel[0] = val / 2; flevel[1] = val - flevel[0]; for (i = 0; i < MT6370_MAX_LEDS; i++) { ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDISTRB(i), MT6370_ISTROBE_MASK, flevel[i]); if (ret) break; } } else { ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDISTRB(led->led_no), MT6370_ISTROBE_MASK, val); } return ret; } static int mt6370_strobe_set(struct led_classdev_flash *fl_cdev, bool state) { struct mt6370_led *led = to_mt6370_led(fl_cdev, flash); struct mt6370_priv *priv = led->priv; struct led_classdev *lcdev = &fl_cdev->led_cdev; struct led_flash_setting *s = &fl_cdev->brightness; u32 led_enable_mask = led->led_no == MT6370_LED_JOINT ? MT6370_FLCSEN_MASK_ALL : MT6370_FLCSEN_MASK(led->led_no); u32 enable_mask = MT6370_STROBEN_MASK | led_enable_mask; u32 val = state ? led_enable_mask : 0; u32 curr; int ret; mutex_lock(&priv->lock); /* * There is only one set of flash control logic, and this flag is used to check if 'torch' * is currently being used. */ if (priv->fled_torch_used) { dev_warn(lcdev->dev, "Please disable torch first [0x%x]\n", priv->fled_torch_used); ret = -EBUSY; goto unlock; } if (state) curr = priv->fled_strobe_used | BIT(led->led_no); else curr = priv->fled_strobe_used & ~BIT(led->led_no); if (curr) val |= MT6370_STROBEN_MASK; ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDEN, enable_mask, val); if (ret) { dev_err(lcdev->dev, "[%d] control current source %d fail\n", led->led_no, state); goto unlock; } /* * If the flash needs to turn on, configure the flash current to ramp up to the setting * value. Otherwise, always revert to the minimum one. */ ret = _mt6370_flash_brightness_set(fl_cdev, state ? s->val : s->min); if (ret) { dev_err(lcdev->dev, "[%d] Failed to set brightness\n", led->led_no); goto unlock; } /* * For the flash to turn on/off, we must wait for HW ramping up/down time 5ms/500us to * prevent the unexpected problem. */ if (!priv->fled_strobe_used && curr) usleep_range(5000, 6000); else if (priv->fled_strobe_used && !curr) usleep_range(500, 600); priv->fled_strobe_used = curr; unlock: mutex_unlock(&priv->lock); return ret; } static int mt6370_strobe_get(struct led_classdev_flash *fl_cdev, bool *state) { struct mt6370_led *led = to_mt6370_led(fl_cdev, flash); struct mt6370_priv *priv = led->priv; mutex_lock(&priv->lock); *state = !!(priv->fled_strobe_used & BIT(led->led_no)); mutex_unlock(&priv->lock); return 0; } static int mt6370_timeout_set(struct led_classdev_flash *fl_cdev, u32 timeout) { struct mt6370_led *led = to_mt6370_led(fl_cdev, flash); struct mt6370_priv *priv = led->priv; struct led_flash_setting *s = &fl_cdev->timeout; u32 val = (timeout - s->min) / s->step; return regmap_update_bits(priv->regmap, MT6370_REG_STRBTO, MT6370_STRBTO_MASK, val); } static int mt6370_fault_get(struct led_classdev_flash *fl_cdev, u32 *fault) { struct mt6370_led *led = to_mt6370_led(fl_cdev, flash); struct mt6370_priv *priv = led->priv; u16 fled_stat; unsigned int chg_stat, strobe_timeout_mask, fled_short_mask; u32 rfault = 0; int ret; ret = regmap_read(priv->regmap, MT6370_REG_CHGSTAT2, &chg_stat); if (ret) return ret; ret = regmap_raw_read(priv->regmap, MT6370_REG_FLEDSTAT1, &fled_stat, sizeof(fled_stat)); if (ret) return ret; switch (led->led_no) { case MT6370_LED_FLASH1: strobe_timeout_mask = MT6370_FLED1STRBTO_MASK; fled_short_mask = MT6370_FLED1SHORT_MASK; break; case MT6370_LED_FLASH2: strobe_timeout_mask = MT6370_FLED2STRBTO_MASK; fled_short_mask = MT6370_FLED2SHORT_MASK; break; case MT6370_LED_JOINT: strobe_timeout_mask = MT6370_FLED1STRBTO_MASK | MT6370_FLED2STRBTO_MASK; fled_short_mask = MT6370_FLED1SHORT_MASK | MT6370_FLED2SHORT_MASK; break; default: return -EINVAL; } if (chg_stat & MT6370_FLEDCHGVINOVP_MASK) rfault |= LED_FAULT_INPUT_VOLTAGE; if (fled_stat & strobe_timeout_mask) rfault |= LED_FAULT_TIMEOUT; if (fled_stat & fled_short_mask) rfault |= LED_FAULT_SHORT_CIRCUIT; if (fled_stat & MT6370_FLEDLVF_MASK) rfault |= LED_FAULT_UNDER_VOLTAGE; *fault = rfault; return ret; } static const struct led_flash_ops mt6370_flash_ops = { .flash_brightness_set = mt6370_flash_brightness_set, .strobe_set = mt6370_strobe_set, .strobe_get = mt6370_strobe_get, .timeout_set = mt6370_timeout_set, .fault_get = mt6370_fault_get, }; #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static int mt6370_flash_external_strobe_set(struct v4l2_flash *v4l2_flash, bool enable) { struct led_classdev_flash *flash = v4l2_flash->fled_cdev; struct mt6370_led *led = to_mt6370_led(flash, flash); struct mt6370_priv *priv = led->priv; u32 mask = led->led_no == MT6370_LED_JOINT ? MT6370_FLCSEN_MASK_ALL : MT6370_FLCSEN_MASK(led->led_no); u32 val = enable ? mask : 0; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, MT6370_REG_FLEDEN, mask, val); if (ret) goto unlock; if (enable) priv->fled_strobe_used |= BIT(led->led_no); else priv->fled_strobe_used &= ~BIT(led->led_no); unlock: mutex_unlock(&priv->lock); return ret; } static const struct v4l2_flash_ops v4l2_flash_ops = { .external_strobe_set = mt6370_flash_external_strobe_set, }; static void mt6370_init_v4l2_flash_config(struct mt6370_led *led, struct v4l2_flash_config *cfg) { struct led_classdev *lcdev; struct led_flash_setting *s = &cfg->intensity; lcdev = &led->flash.led_cdev; s->min = MT6370_ITORCH_MIN_uA; s->step = MT6370_ITORCH_STEP_uA; s->val = s->max = s->min + (lcdev->max_brightness - 1) * s->step; cfg->has_external_strobe = 1; strscpy(cfg->dev_name, dev_name(lcdev->dev), sizeof(cfg->dev_name)); cfg->flash_faults = LED_FAULT_SHORT_CIRCUIT | LED_FAULT_TIMEOUT | LED_FAULT_INPUT_VOLTAGE | LED_FAULT_UNDER_VOLTAGE; } #else static const struct v4l2_flash_ops v4l2_flash_ops; static void mt6370_init_v4l2_flash_config(struct mt6370_led *led, struct v4l2_flash_config *cfg) { } #endif static void mt6370_v4l2_flash_release(void *v4l2_flash) { v4l2_flash_release(v4l2_flash); } static int mt6370_led_register(struct device *parent, struct mt6370_led *led, struct fwnode_handle *fwnode) { struct led_init_data init_data = { .fwnode = fwnode }; struct v4l2_flash_config v4l2_config = {}; int ret; ret = devm_led_classdev_flash_register_ext(parent, &led->flash, &init_data); if (ret) return dev_err_probe(parent, ret, "Couldn't register flash %d\n", led->led_no); mt6370_init_v4l2_flash_config(led, &v4l2_config); led->v4l2_flash = v4l2_flash_init(parent, fwnode, &led->flash, &v4l2_flash_ops, &v4l2_config); if (IS_ERR(led->v4l2_flash)) return dev_err_probe(parent, PTR_ERR(led->v4l2_flash), "Failed to register %d v4l2 sd\n", led->led_no); return devm_add_action_or_reset(parent, mt6370_v4l2_flash_release, led->v4l2_flash); } static u32 mt6370_clamp(u32 val, u32 min, u32 max, u32 step) { u32 retval; retval = clamp_val(val, min, max); if (step > 1) retval = rounddown(retval - min, step) + min; return retval; } static int mt6370_init_flash_properties(struct device *dev, struct mt6370_led *led, struct fwnode_handle *fwnode) { struct led_classdev_flash *flash = &led->flash; struct led_classdev *lcdev = &flash->led_cdev; struct mt6370_priv *priv = led->priv; struct led_flash_setting *s; u32 sources[MT6370_MAX_LEDS]; u32 max_ua, val; int i, ret, num; num = fwnode_property_count_u32(fwnode, "led-sources"); if (num < 1) return dev_err_probe(dev, -EINVAL, "Not specified or wrong number of led-sources\n"); ret = fwnode_property_read_u32_array(fwnode, "led-sources", sources, num); if (ret) return ret; for (i = 0; i < num; i++) { if (sources[i] >= MT6370_MAX_LEDS) return -EINVAL; if (priv->leds_active & BIT(sources[i])) return -EINVAL; priv->leds_active |= BIT(sources[i]); } /* If both channels are specified in 'led-sources', joint flash output mode is used */ led->led_no = num == 2 ? MT6370_LED_JOINT : sources[0]; max_ua = num == 2 ? MT6370_ITORCH_DOUBLE_MAX_uA : MT6370_ITORCH_MAX_uA; val = MT6370_ITORCH_MIN_uA; ret = fwnode_property_read_u32(fwnode, "led-max-microamp", &val); if (!ret) val = mt6370_clamp(val, MT6370_ITORCH_MIN_uA, max_ua, MT6370_ITORCH_STEP_uA); lcdev->max_brightness = (val - MT6370_ITORCH_MIN_uA) / MT6370_ITORCH_STEP_uA + 1; lcdev->brightness_set_blocking = mt6370_torch_brightness_set; lcdev->flags |= LED_DEV_CAP_FLASH; max_ua = num == 2 ? MT6370_ISTRB_DOUBLE_MAX_uA : MT6370_ISTRB_MAX_uA; val = MT6370_ISTRB_MIN_uA; ret = fwnode_property_read_u32(fwnode, "flash-max-microamp", &val); if (!ret) val = mt6370_clamp(val, MT6370_ISTRB_MIN_uA, max_ua, MT6370_ISTRB_STEP_uA); s = &flash->brightness; s->min = MT6370_ISTRB_MIN_uA; s->step = MT6370_ISTRB_STEP_uA; s->val = s->max = val; /* Always configure to the minimum level when off to prevent flash current spikes. */ ret = _mt6370_flash_brightness_set(flash, s->min); if (ret) return ret; val = MT6370_STRBTO_MIN_US; ret = fwnode_property_read_u32(fwnode, "flash-max-timeout-us", &val); if (!ret) val = mt6370_clamp(val, MT6370_STRBTO_MIN_US, MT6370_STRBTO_MAX_US, MT6370_STRBTO_STEP_US); s = &flash->timeout; s->min = MT6370_STRBTO_MIN_US; s->step = MT6370_STRBTO_STEP_US; s->val = s->max = val; flash->ops = &mt6370_flash_ops; return 0; } static int mt6370_led_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mt6370_priv *priv; struct fwnode_handle *child; size_t count; int i = 0, ret; count = device_get_child_node_count(dev); if (!count || count > MT6370_MAX_LEDS) return dev_err_probe(dev, -EINVAL, "No child node or node count over max led number %zu\n", count); priv = devm_kzalloc(dev, struct_size(priv, leds, count), GFP_KERNEL); if (!priv) return -ENOMEM; priv->leds_count = count; mutex_init(&priv->lock); priv->regmap = dev_get_regmap(dev->parent, NULL); if (!priv->regmap) return dev_err_probe(dev, -ENODEV, "Failed to get parent regmap\n"); device_for_each_child_node(dev, child) { struct mt6370_led *led = priv->leds + i; led->priv = priv; ret = mt6370_init_flash_properties(dev, led, child); if (ret) { fwnode_handle_put(child); return ret; } ret = mt6370_led_register(dev, led, child); if (ret) { fwnode_handle_put(child); return ret; } i++; } return 0; } static const struct of_device_id mt6370_led_of_id[] = { { .compatible = "mediatek,mt6370-flashlight" }, {} }; MODULE_DEVICE_TABLE(of, mt6370_led_of_id); static struct platform_driver mt6370_led_driver = { .driver = { .name = "mt6370-flashlight", .of_match_table = mt6370_led_of_id, }, .probe = mt6370_led_probe, }; module_platform_driver(mt6370_led_driver); MODULE_AUTHOR("Alice Chen <[email protected]>"); MODULE_AUTHOR("ChiYuan Huang <[email protected]>"); MODULE_DESCRIPTION("MT6370 FLASH LED Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/leds/flash/leds-mt6370-flash.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2020 Luca Weiss <[email protected]> #include <linux/gpio/consumer.h> #include <linux/led-class-flash.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/platform_device.h> #include <media/v4l2-flash-led-class.h> #define FLASH_TIMEOUT_DEFAULT 250000U /* 250ms */ #define FLASH_MAX_TIMEOUT_DEFAULT 300000U /* 300ms */ struct sgm3140 { struct led_classdev_flash fled_cdev; struct v4l2_flash *v4l2_flash; struct timer_list powerdown_timer; struct gpio_desc *flash_gpio; struct gpio_desc *enable_gpio; struct regulator *vin_regulator; bool enabled; /* current timeout in us */ u32 timeout; /* maximum timeout in us */ u32 max_timeout; }; static struct sgm3140 *flcdev_to_sgm3140(struct led_classdev_flash *flcdev) { return container_of(flcdev, struct sgm3140, fled_cdev); } static int sgm3140_strobe_set(struct led_classdev_flash *fled_cdev, bool state) { struct sgm3140 *priv = flcdev_to_sgm3140(fled_cdev); int ret; if (priv->enabled == state) return 0; if (state) { ret = regulator_enable(priv->vin_regulator); if (ret) { dev_err(fled_cdev->led_cdev.dev, "failed to enable regulator: %d\n", ret); return ret; } gpiod_set_value_cansleep(priv->flash_gpio, 1); gpiod_set_value_cansleep(priv->enable_gpio, 1); mod_timer(&priv->powerdown_timer, jiffies + usecs_to_jiffies(priv->timeout)); } else { del_timer_sync(&priv->powerdown_timer); gpiod_set_value_cansleep(priv->enable_gpio, 0); gpiod_set_value_cansleep(priv->flash_gpio, 0); ret = regulator_disable(priv->vin_regulator); if (ret) { dev_err(fled_cdev->led_cdev.dev, "failed to disable regulator: %d\n", ret); return ret; } } priv->enabled = state; return 0; } static int sgm3140_strobe_get(struct led_classdev_flash *fled_cdev, bool *state) { struct sgm3140 *priv = flcdev_to_sgm3140(fled_cdev); *state = timer_pending(&priv->powerdown_timer); return 0; } static int sgm3140_timeout_set(struct led_classdev_flash *fled_cdev, u32 timeout) { struct sgm3140 *priv = flcdev_to_sgm3140(fled_cdev); priv->timeout = timeout; return 0; } static const struct led_flash_ops sgm3140_flash_ops = { .strobe_set = sgm3140_strobe_set, .strobe_get = sgm3140_strobe_get, .timeout_set = sgm3140_timeout_set, }; static int sgm3140_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct led_classdev_flash *fled_cdev = lcdev_to_flcdev(led_cdev); struct sgm3140 *priv = flcdev_to_sgm3140(fled_cdev); bool enable = brightness == LED_ON; int ret; if (priv->enabled == enable) return 0; if (enable) { ret = regulator_enable(priv->vin_regulator); if (ret) { dev_err(led_cdev->dev, "failed to enable regulator: %d\n", ret); return ret; } gpiod_set_value_cansleep(priv->enable_gpio, 1); } else { gpiod_set_value_cansleep(priv->enable_gpio, 0); ret = regulator_disable(priv->vin_regulator); if (ret) { dev_err(led_cdev->dev, "failed to disable regulator: %d\n", ret); return ret; } } priv->enabled = enable; return 0; } static void sgm3140_powerdown_timer(struct timer_list *t) { struct sgm3140 *priv = from_timer(priv, t, powerdown_timer); gpiod_set_value(priv->enable_gpio, 0); gpiod_set_value(priv->flash_gpio, 0); regulator_disable(priv->vin_regulator); priv->enabled = false; } static void sgm3140_init_flash_timeout(struct sgm3140 *priv) { struct led_classdev_flash *fled_cdev = &priv->fled_cdev; struct led_flash_setting *s; /* Init flash timeout setting */ s = &fled_cdev->timeout; s->min = 1; s->max = priv->max_timeout; s->step = 1; s->val = FLASH_TIMEOUT_DEFAULT; } #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static void sgm3140_init_v4l2_flash_config(struct sgm3140 *priv, struct v4l2_flash_config *v4l2_sd_cfg) { struct led_classdev *led_cdev = &priv->fled_cdev.led_cdev; struct led_flash_setting *s; strscpy(v4l2_sd_cfg->dev_name, led_cdev->dev->kobj.name, sizeof(v4l2_sd_cfg->dev_name)); /* Init flash intensity setting */ s = &v4l2_sd_cfg->intensity; s->min = 0; s->max = 1; s->step = 1; s->val = 1; } #else static void sgm3140_init_v4l2_flash_config(struct sgm3140 *priv, struct v4l2_flash_config *v4l2_sd_cfg) { } #endif static int sgm3140_probe(struct platform_device *pdev) { struct sgm3140 *priv; struct led_classdev *led_cdev; struct led_classdev_flash *fled_cdev; struct led_init_data init_data = {}; struct fwnode_handle *child_node; struct v4l2_flash_config v4l2_sd_cfg = {}; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->flash_gpio = devm_gpiod_get(&pdev->dev, "flash", GPIOD_OUT_LOW); ret = PTR_ERR_OR_ZERO(priv->flash_gpio); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to request flash gpio\n"); priv->enable_gpio = devm_gpiod_get(&pdev->dev, "enable", GPIOD_OUT_LOW); ret = PTR_ERR_OR_ZERO(priv->enable_gpio); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to request enable gpio\n"); priv->vin_regulator = devm_regulator_get(&pdev->dev, "vin"); ret = PTR_ERR_OR_ZERO(priv->vin_regulator); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to request regulator\n"); child_node = fwnode_get_next_available_child_node(pdev->dev.fwnode, NULL); if (!child_node) { dev_err(&pdev->dev, "No fwnode child node found for connected LED.\n"); return -EINVAL; } ret = fwnode_property_read_u32(child_node, "flash-max-timeout-us", &priv->max_timeout); if (ret) { priv->max_timeout = FLASH_MAX_TIMEOUT_DEFAULT; dev_warn(&pdev->dev, "flash-max-timeout-us property missing\n"); } /* * Set default timeout to FLASH_DEFAULT_TIMEOUT except if max_timeout * from DT is lower. */ priv->timeout = min(priv->max_timeout, FLASH_TIMEOUT_DEFAULT); timer_setup(&priv->powerdown_timer, sgm3140_powerdown_timer, 0); fled_cdev = &priv->fled_cdev; led_cdev = &fled_cdev->led_cdev; fled_cdev->ops = &sgm3140_flash_ops; led_cdev->brightness_set_blocking = sgm3140_brightness_set; led_cdev->max_brightness = LED_ON; led_cdev->flags |= LED_DEV_CAP_FLASH; sgm3140_init_flash_timeout(priv); init_data.fwnode = child_node; platform_set_drvdata(pdev, priv); /* Register in the LED subsystem */ ret = devm_led_classdev_flash_register_ext(&pdev->dev, fled_cdev, &init_data); if (ret) { dev_err(&pdev->dev, "Failed to register flash device: %d\n", ret); goto err; } sgm3140_init_v4l2_flash_config(priv, &v4l2_sd_cfg); /* Create V4L2 Flash subdev */ priv->v4l2_flash = v4l2_flash_init(&pdev->dev, child_node, fled_cdev, NULL, &v4l2_sd_cfg); if (IS_ERR(priv->v4l2_flash)) { ret = PTR_ERR(priv->v4l2_flash); goto err; } return ret; err: fwnode_handle_put(child_node); return ret; } static int sgm3140_remove(struct platform_device *pdev) { struct sgm3140 *priv = platform_get_drvdata(pdev); del_timer_sync(&priv->powerdown_timer); v4l2_flash_release(priv->v4l2_flash); return 0; } static const struct of_device_id sgm3140_dt_match[] = { { .compatible = "ocs,ocp8110" }, { .compatible = "richtek,rt5033-led" }, { .compatible = "sgmicro,sgm3140" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sgm3140_dt_match); static struct platform_driver sgm3140_driver = { .probe = sgm3140_probe, .remove = sgm3140_remove, .driver = { .name = "sgm3140", .of_match_table = sgm3140_dt_match, }, }; module_platform_driver(sgm3140_driver); MODULE_AUTHOR("Luca Weiss <[email protected]>"); MODULE_DESCRIPTION("SG Micro SGM3140 charge pump LED driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/leds/flash/leds-sgm3140.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/bitops.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/led-class-flash.h> #include <linux/led-class-multicolor.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> #include <media/v4l2-flash-led-class.h> enum { MT6360_LED_ISNK1 = 0, MT6360_LED_ISNK2, MT6360_LED_ISNK3, MT6360_LED_ISNKML, MT6360_LED_FLASH1, MT6360_LED_FLASH2, MT6360_MAX_LEDS }; #define MT6360_REG_RGBEN 0x380 #define MT6360_REG_ISNK(_led_no) (0x381 + (_led_no)) #define MT6360_ISNK_ENMASK(_led_no) BIT(7 - (_led_no)) #define MT6360_ISNK_MASK GENMASK(4, 0) #define MT6360_CHRINDSEL_MASK BIT(3) /* Virtual definition for multicolor */ #define MT6360_VIRTUAL_MULTICOLOR (MT6360_MAX_LEDS + 1) #define MULTICOLOR_NUM_CHANNELS 3 #define MT6360_REG_FLEDEN 0x37E #define MT6360_REG_STRBTO 0x373 #define MT6360_REG_FLEDBASE(_id) (0x372 + 4 * (_id - MT6360_LED_FLASH1)) #define MT6360_REG_FLEDISTRB(_id) (MT6360_REG_FLEDBASE(_id) + 2) #define MT6360_REG_FLEDITOR(_id) (MT6360_REG_FLEDBASE(_id) + 3) #define MT6360_REG_CHGSTAT2 0x3E1 #define MT6360_REG_FLEDSTAT1 0x3E9 #define MT6360_ITORCH_MASK GENMASK(4, 0) #define MT6360_ISTROBE_MASK GENMASK(6, 0) #define MT6360_STRBTO_MASK GENMASK(6, 0) #define MT6360_TORCHEN_MASK BIT(3) #define MT6360_STROBEN_MASK BIT(2) #define MT6360_FLCSEN_MASK(_id) BIT(MT6360_LED_FLASH2 - _id) #define MT6360_FLEDCHGVINOVP_MASK BIT(3) #define MT6360_FLED1STRBTO_MASK BIT(11) #define MT6360_FLED2STRBTO_MASK BIT(10) #define MT6360_FLED1STRB_MASK BIT(9) #define MT6360_FLED2STRB_MASK BIT(8) #define MT6360_FLED1SHORT_MASK BIT(7) #define MT6360_FLED2SHORT_MASK BIT(6) #define MT6360_FLEDLVF_MASK BIT(3) #define MT6360_ISNKRGB_STEPUA 2000 #define MT6360_ISNKRGB_MAXUA 24000 #define MT6360_ISNKML_STEPUA 5000 #define MT6360_ISNKML_MAXUA 150000 #define MT6360_ITORCH_MINUA 25000 #define MT6360_ITORCH_STEPUA 12500 #define MT6360_ITORCH_MAXUA 400000 #define MT6360_ISTRB_MINUA 50000 #define MT6360_ISTRB_STEPUA 12500 #define MT6360_ISTRB_MAXUA 1500000 #define MT6360_STRBTO_MINUS 64000 #define MT6360_STRBTO_STEPUS 32000 #define MT6360_STRBTO_MAXUS 2432000 struct mt6360_led { union { struct led_classdev isnk; struct led_classdev_mc mc; struct led_classdev_flash flash; }; struct v4l2_flash *v4l2_flash; struct mt6360_priv *priv; u32 led_no; enum led_default_state default_state; }; struct mt6360_priv { struct device *dev; struct regmap *regmap; struct mutex lock; unsigned int fled_strobe_used; unsigned int fled_torch_used; unsigned int leds_active; unsigned int leds_count; struct mt6360_led leds[]; }; static int mt6360_mc_brightness_set(struct led_classdev *lcdev, enum led_brightness level) { struct led_classdev_mc *mccdev = lcdev_to_mccdev(lcdev); struct mt6360_led *led = container_of(mccdev, struct mt6360_led, mc); struct mt6360_priv *priv = led->priv; u32 real_bright, enable_mask = 0, enable = 0; int i, ret; mutex_lock(&priv->lock); led_mc_calc_color_components(mccdev, level); for (i = 0; i < mccdev->num_colors; i++) { struct mc_subled *subled = mccdev->subled_info + i; real_bright = min(lcdev->max_brightness, subled->brightness); ret = regmap_update_bits(priv->regmap, MT6360_REG_ISNK(i), MT6360_ISNK_MASK, real_bright); if (ret) goto out; enable_mask |= MT6360_ISNK_ENMASK(subled->channel); if (real_bright) enable |= MT6360_ISNK_ENMASK(subled->channel); } ret = regmap_update_bits(priv->regmap, MT6360_REG_RGBEN, enable_mask, enable); out: mutex_unlock(&priv->lock); return ret; } static int mt6360_isnk_brightness_set(struct led_classdev *lcdev, enum led_brightness level) { struct mt6360_led *led = container_of(lcdev, struct mt6360_led, isnk); struct mt6360_priv *priv = led->priv; u32 enable_mask = MT6360_ISNK_ENMASK(led->led_no); u32 val = level ? MT6360_ISNK_ENMASK(led->led_no) : 0; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, MT6360_REG_ISNK(led->led_no), MT6360_ISNK_MASK, level); if (ret) goto out; ret = regmap_update_bits(priv->regmap, MT6360_REG_RGBEN, enable_mask, val); out: mutex_unlock(&priv->lock); return ret; } static int mt6360_torch_brightness_set(struct led_classdev *lcdev, enum led_brightness level) { struct mt6360_led *led = container_of(lcdev, struct mt6360_led, flash.led_cdev); struct mt6360_priv *priv = led->priv; u32 enable_mask = MT6360_TORCHEN_MASK | MT6360_FLCSEN_MASK(led->led_no); u32 val = level ? MT6360_FLCSEN_MASK(led->led_no) : 0; u32 prev = priv->fled_torch_used, curr; int ret; mutex_lock(&priv->lock); /* * Only one set of flash control logic, use the flag to avoid strobe is * currently used. */ if (priv->fled_strobe_used) { dev_warn(lcdev->dev, "Please disable strobe first [%d]\n", priv->fled_strobe_used); ret = -EBUSY; goto unlock; } if (level) curr = prev | BIT(led->led_no); else curr = prev & ~BIT(led->led_no); if (curr) val |= MT6360_TORCHEN_MASK; if (level) { ret = regmap_update_bits(priv->regmap, MT6360_REG_FLEDITOR(led->led_no), MT6360_ITORCH_MASK, level - 1); if (ret) goto unlock; } ret = regmap_update_bits(priv->regmap, MT6360_REG_FLEDEN, enable_mask, val); if (ret) goto unlock; priv->fled_torch_used = curr; unlock: mutex_unlock(&priv->lock); return ret; } static int mt6360_flash_brightness_set(struct led_classdev_flash *fl_cdev, u32 brightness) { /* * Due to the current spike when turning on flash, let brightness to be * kept by framework. * This empty function is used to prevent led_classdev_flash register * ops check failure. */ return 0; } static int _mt6360_flash_brightness_set(struct led_classdev_flash *fl_cdev, u32 brightness) { struct mt6360_led *led = container_of(fl_cdev, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; struct led_flash_setting *s = &fl_cdev->brightness; u32 val = (brightness - s->min) / s->step; return regmap_update_bits(priv->regmap, MT6360_REG_FLEDISTRB(led->led_no), MT6360_ISTROBE_MASK, val); } static int mt6360_strobe_set(struct led_classdev_flash *fl_cdev, bool state) { struct mt6360_led *led = container_of(fl_cdev, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; struct led_classdev *lcdev = &fl_cdev->led_cdev; struct led_flash_setting *s = &fl_cdev->brightness; u32 enable_mask = MT6360_STROBEN_MASK | MT6360_FLCSEN_MASK(led->led_no); u32 val = state ? MT6360_FLCSEN_MASK(led->led_no) : 0; u32 prev = priv->fled_strobe_used, curr; int ret; mutex_lock(&priv->lock); /* * Only one set of flash control logic, use the flag to avoid torch is * currently used */ if (priv->fled_torch_used) { dev_warn(lcdev->dev, "Please disable torch first [0x%x]\n", priv->fled_torch_used); ret = -EBUSY; goto unlock; } if (state) curr = prev | BIT(led->led_no); else curr = prev & ~BIT(led->led_no); if (curr) val |= MT6360_STROBEN_MASK; ret = regmap_update_bits(priv->regmap, MT6360_REG_FLEDEN, enable_mask, val); if (ret) { dev_err(lcdev->dev, "[%d] control current source %d fail\n", led->led_no, state); goto unlock; } /* * If the flash need to be on, config the flash current ramping up to * the setting value. * Else, always recover back to the minimum one */ ret = _mt6360_flash_brightness_set(fl_cdev, state ? s->val : s->min); if (ret) goto unlock; /* * For the flash turn on/off, HW rampping up/down time is 5ms/500us, * respectively. */ if (!prev && curr) usleep_range(5000, 6000); else if (prev && !curr) udelay(500); priv->fled_strobe_used = curr; unlock: mutex_unlock(&priv->lock); return ret; } static int mt6360_strobe_get(struct led_classdev_flash *fl_cdev, bool *state) { struct mt6360_led *led = container_of(fl_cdev, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; mutex_lock(&priv->lock); *state = !!(priv->fled_strobe_used & BIT(led->led_no)); mutex_unlock(&priv->lock); return 0; } static int mt6360_timeout_set(struct led_classdev_flash *fl_cdev, u32 timeout) { struct mt6360_led *led = container_of(fl_cdev, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; struct led_flash_setting *s = &fl_cdev->timeout; u32 val = (timeout - s->min) / s->step; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, MT6360_REG_STRBTO, MT6360_STRBTO_MASK, val); mutex_unlock(&priv->lock); return ret; } static int mt6360_fault_get(struct led_classdev_flash *fl_cdev, u32 *fault) { struct mt6360_led *led = container_of(fl_cdev, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; u16 fled_stat; unsigned int chg_stat, strobe_timeout_mask, fled_short_mask; u32 rfault = 0; int ret; mutex_lock(&priv->lock); ret = regmap_read(priv->regmap, MT6360_REG_CHGSTAT2, &chg_stat); if (ret) goto unlock; ret = regmap_raw_read(priv->regmap, MT6360_REG_FLEDSTAT1, &fled_stat, sizeof(fled_stat)); if (ret) goto unlock; if (led->led_no == MT6360_LED_FLASH1) { strobe_timeout_mask = MT6360_FLED1STRBTO_MASK; fled_short_mask = MT6360_FLED1SHORT_MASK; } else { strobe_timeout_mask = MT6360_FLED2STRBTO_MASK; fled_short_mask = MT6360_FLED2SHORT_MASK; } if (chg_stat & MT6360_FLEDCHGVINOVP_MASK) rfault |= LED_FAULT_INPUT_VOLTAGE; if (fled_stat & strobe_timeout_mask) rfault |= LED_FAULT_TIMEOUT; if (fled_stat & fled_short_mask) rfault |= LED_FAULT_SHORT_CIRCUIT; if (fled_stat & MT6360_FLEDLVF_MASK) rfault |= LED_FAULT_UNDER_VOLTAGE; *fault = rfault; unlock: mutex_unlock(&priv->lock); return ret; } static const struct led_flash_ops mt6360_flash_ops = { .flash_brightness_set = mt6360_flash_brightness_set, .strobe_set = mt6360_strobe_set, .strobe_get = mt6360_strobe_get, .timeout_set = mt6360_timeout_set, .fault_get = mt6360_fault_get, }; static int mt6360_isnk_init_default_state(struct mt6360_led *led) { struct mt6360_priv *priv = led->priv; unsigned int regval; u32 level; int ret; ret = regmap_read(priv->regmap, MT6360_REG_ISNK(led->led_no), &regval); if (ret) return ret; level = regval & MT6360_ISNK_MASK; ret = regmap_read(priv->regmap, MT6360_REG_RGBEN, &regval); if (ret) return ret; if (!(regval & MT6360_ISNK_ENMASK(led->led_no))) level = LED_OFF; switch (led->default_state) { case LEDS_DEFSTATE_ON: led->isnk.brightness = led->isnk.max_brightness; break; case LEDS_DEFSTATE_KEEP: led->isnk.brightness = min(level, led->isnk.max_brightness); break; default: led->isnk.brightness = LED_OFF; } return mt6360_isnk_brightness_set(&led->isnk, led->isnk.brightness); } static int mt6360_flash_init_default_state(struct mt6360_led *led) { struct led_classdev_flash *flash = &led->flash; struct mt6360_priv *priv = led->priv; u32 enable_mask = MT6360_TORCHEN_MASK | MT6360_FLCSEN_MASK(led->led_no); u32 level; unsigned int regval; int ret; ret = regmap_read(priv->regmap, MT6360_REG_FLEDITOR(led->led_no), &regval); if (ret) return ret; level = regval & MT6360_ITORCH_MASK; ret = regmap_read(priv->regmap, MT6360_REG_FLEDEN, &regval); if (ret) return ret; if ((regval & enable_mask) == enable_mask) level += 1; else level = LED_OFF; switch (led->default_state) { case LEDS_DEFSTATE_ON: flash->led_cdev.brightness = flash->led_cdev.max_brightness; break; case LEDS_DEFSTATE_KEEP: flash->led_cdev.brightness = min(level, flash->led_cdev.max_brightness); break; default: flash->led_cdev.brightness = LED_OFF; } return mt6360_torch_brightness_set(&flash->led_cdev, flash->led_cdev.brightness); } #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static int mt6360_flash_external_strobe_set(struct v4l2_flash *v4l2_flash, bool enable) { struct led_classdev_flash *flash = v4l2_flash->fled_cdev; struct mt6360_led *led = container_of(flash, struct mt6360_led, flash); struct mt6360_priv *priv = led->priv; u32 mask = MT6360_FLCSEN_MASK(led->led_no); u32 val = enable ? mask : 0; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, MT6360_REG_FLEDEN, mask, val); if (ret) goto unlock; if (enable) priv->fled_strobe_used |= BIT(led->led_no); else priv->fled_strobe_used &= ~BIT(led->led_no); unlock: mutex_unlock(&priv->lock); return ret; } static const struct v4l2_flash_ops v4l2_flash_ops = { .external_strobe_set = mt6360_flash_external_strobe_set, }; static void mt6360_init_v4l2_flash_config(struct mt6360_led *led, struct v4l2_flash_config *config) { struct led_classdev *lcdev; struct led_flash_setting *s = &config->intensity; lcdev = &led->flash.led_cdev; s->min = MT6360_ITORCH_MINUA; s->step = MT6360_ITORCH_STEPUA; s->val = s->max = s->min + (lcdev->max_brightness - 1) * s->step; config->has_external_strobe = 1; strscpy(config->dev_name, lcdev->dev->kobj.name, sizeof(config->dev_name)); config->flash_faults = LED_FAULT_SHORT_CIRCUIT | LED_FAULT_TIMEOUT | LED_FAULT_INPUT_VOLTAGE | LED_FAULT_UNDER_VOLTAGE; } #else static const struct v4l2_flash_ops v4l2_flash_ops; static void mt6360_init_v4l2_flash_config(struct mt6360_led *led, struct v4l2_flash_config *config) { } #endif static int mt6360_led_register(struct device *parent, struct mt6360_led *led, struct led_init_data *init_data) { struct mt6360_priv *priv = led->priv; struct v4l2_flash_config v4l2_config = {0}; int ret; if ((led->led_no == MT6360_LED_ISNK1 || led->led_no == MT6360_VIRTUAL_MULTICOLOR) && (priv->leds_active & BIT(MT6360_LED_ISNK1))) { /* * Change isink1 to SW control mode, disconnect it with * charger state */ ret = regmap_update_bits(priv->regmap, MT6360_REG_RGBEN, MT6360_CHRINDSEL_MASK, MT6360_CHRINDSEL_MASK); if (ret) { dev_err(parent, "Failed to config ISNK1 to SW mode\n"); return ret; } } switch (led->led_no) { case MT6360_VIRTUAL_MULTICOLOR: ret = mt6360_mc_brightness_set(&led->mc.led_cdev, LED_OFF); if (ret) { dev_err(parent, "Failed to init multicolor brightness\n"); return ret; } ret = devm_led_classdev_multicolor_register_ext(parent, &led->mc, init_data); if (ret) { dev_err(parent, "Couldn't register multicolor\n"); return ret; } break; case MT6360_LED_ISNK1 ... MT6360_LED_ISNKML: ret = mt6360_isnk_init_default_state(led); if (ret) { dev_err(parent, "Failed to init %d isnk state\n", led->led_no); return ret; } ret = devm_led_classdev_register_ext(parent, &led->isnk, init_data); if (ret) { dev_err(parent, "Couldn't register isink %d\n", led->led_no); return ret; } break; default: ret = mt6360_flash_init_default_state(led); if (ret) { dev_err(parent, "Failed to init %d flash state\n", led->led_no); return ret; } ret = devm_led_classdev_flash_register_ext(parent, &led->flash, init_data); if (ret) { dev_err(parent, "Couldn't register flash %d\n", led->led_no); return ret; } mt6360_init_v4l2_flash_config(led, &v4l2_config); led->v4l2_flash = v4l2_flash_init(parent, init_data->fwnode, &led->flash, &v4l2_flash_ops, &v4l2_config); if (IS_ERR(led->v4l2_flash)) { dev_err(parent, "Failed to register %d v4l2 sd\n", led->led_no); return PTR_ERR(led->v4l2_flash); } } return 0; } static u32 clamp_align(u32 val, u32 min, u32 max, u32 step) { u32 retval; retval = clamp_val(val, min, max); if (step > 1) retval = rounddown(retval - min, step) + min; return retval; } static int mt6360_init_isnk_properties(struct mt6360_led *led, struct led_init_data *init_data) { struct led_classdev *lcdev; struct mt6360_priv *priv = led->priv; struct fwnode_handle *child; u32 step_uA = MT6360_ISNKRGB_STEPUA, max_uA = MT6360_ISNKRGB_MAXUA; u32 val; int num_color = 0, ret; if (led->led_no == MT6360_VIRTUAL_MULTICOLOR) { struct mc_subled *sub_led; sub_led = devm_kzalloc(priv->dev, sizeof(*sub_led) * MULTICOLOR_NUM_CHANNELS, GFP_KERNEL); if (!sub_led) return -ENOMEM; fwnode_for_each_child_node(init_data->fwnode, child) { u32 reg, color; ret = fwnode_property_read_u32(child, "reg", &reg); if (ret || reg > MT6360_LED_ISNK3 || priv->leds_active & BIT(reg)) return -EINVAL; ret = fwnode_property_read_u32(child, "color", &color); if (ret) { dev_err(priv->dev, "led %d, no color specified\n", led->led_no); return ret; } priv->leds_active |= BIT(reg); sub_led[num_color].color_index = color; sub_led[num_color].channel = reg; num_color++; } if (num_color < 2) { dev_err(priv->dev, "Multicolor must include 2 or more led channel\n"); return -EINVAL; } led->mc.num_colors = num_color; led->mc.subled_info = sub_led; lcdev = &led->mc.led_cdev; lcdev->brightness_set_blocking = mt6360_mc_brightness_set; } else { if (led->led_no == MT6360_LED_ISNKML) { step_uA = MT6360_ISNKML_STEPUA; max_uA = MT6360_ISNKML_MAXUA; } lcdev = &led->isnk; lcdev->brightness_set_blocking = mt6360_isnk_brightness_set; } ret = fwnode_property_read_u32(init_data->fwnode, "led-max-microamp", &val); if (ret) { dev_warn(priv->dev, "Not specified led-max-microamp, config to the minimum\n"); val = step_uA; } else val = clamp_align(val, 0, max_uA, step_uA); lcdev->max_brightness = val / step_uA; fwnode_property_read_string(init_data->fwnode, "linux,default-trigger", &lcdev->default_trigger); return 0; } static int mt6360_init_flash_properties(struct mt6360_led *led, struct led_init_data *init_data) { struct led_classdev_flash *flash = &led->flash; struct led_classdev *lcdev = &flash->led_cdev; struct mt6360_priv *priv = led->priv; struct led_flash_setting *s; u32 val; int ret; ret = fwnode_property_read_u32(init_data->fwnode, "led-max-microamp", &val); if (ret) { dev_warn(priv->dev, "Not specified led-max-microamp, config to the minimum\n"); val = MT6360_ITORCH_MINUA; } else val = clamp_align(val, MT6360_ITORCH_MINUA, MT6360_ITORCH_MAXUA, MT6360_ITORCH_STEPUA); lcdev->max_brightness = (val - MT6360_ITORCH_MINUA) / MT6360_ITORCH_STEPUA + 1; lcdev->brightness_set_blocking = mt6360_torch_brightness_set; lcdev->flags |= LED_DEV_CAP_FLASH; ret = fwnode_property_read_u32(init_data->fwnode, "flash-max-microamp", &val); if (ret) { dev_warn(priv->dev, "Not specified flash-max-microamp, config to the minimum\n"); val = MT6360_ISTRB_MINUA; } else val = clamp_align(val, MT6360_ISTRB_MINUA, MT6360_ISTRB_MAXUA, MT6360_ISTRB_STEPUA); s = &flash->brightness; s->min = MT6360_ISTRB_MINUA; s->step = MT6360_ISTRB_STEPUA; s->val = s->max = val; /* * Always configure as min level when off to prevent flash current * spike. */ ret = _mt6360_flash_brightness_set(flash, s->min); if (ret) return ret; ret = fwnode_property_read_u32(init_data->fwnode, "flash-max-timeout-us", &val); if (ret) { dev_warn(priv->dev, "Not specified flash-max-timeout-us, config to the minimum\n"); val = MT6360_STRBTO_MINUS; } else val = clamp_align(val, MT6360_STRBTO_MINUS, MT6360_STRBTO_MAXUS, MT6360_STRBTO_STEPUS); s = &flash->timeout; s->min = MT6360_STRBTO_MINUS; s->step = MT6360_STRBTO_STEPUS; s->val = s->max = val; flash->ops = &mt6360_flash_ops; return 0; } static void mt6360_v4l2_flash_release(struct mt6360_priv *priv) { int i; for (i = 0; i < priv->leds_count; i++) { struct mt6360_led *led = priv->leds + i; if (led->v4l2_flash) v4l2_flash_release(led->v4l2_flash); } } static int mt6360_led_probe(struct platform_device *pdev) { struct mt6360_priv *priv; struct fwnode_handle *child; size_t count; int i = 0, ret; count = device_get_child_node_count(&pdev->dev); if (!count || count > MT6360_MAX_LEDS) { dev_err(&pdev->dev, "No child node or node count over max led number %zu\n", count); return -EINVAL; } priv = devm_kzalloc(&pdev->dev, struct_size(priv, leds, count), GFP_KERNEL); if (!priv) return -ENOMEM; priv->leds_count = count; priv->dev = &pdev->dev; mutex_init(&priv->lock); priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) { dev_err(&pdev->dev, "Failed to get parent regmap\n"); return -ENODEV; } device_for_each_child_node(&pdev->dev, child) { struct mt6360_led *led = priv->leds + i; struct led_init_data init_data = { .fwnode = child, }; u32 reg, led_color; ret = fwnode_property_read_u32(child, "color", &led_color); if (ret) goto out_flash_release; if (led_color == LED_COLOR_ID_RGB || led_color == LED_COLOR_ID_MULTI) reg = MT6360_VIRTUAL_MULTICOLOR; else { ret = fwnode_property_read_u32(child, "reg", &reg); if (ret) goto out_flash_release; if (reg >= MT6360_MAX_LEDS) { ret = -EINVAL; goto out_flash_release; } } if (priv->leds_active & BIT(reg)) { ret = -EINVAL; goto out_flash_release; } priv->leds_active |= BIT(reg); led->led_no = reg; led->priv = priv; led->default_state = led_init_default_state_get(child); if (reg == MT6360_VIRTUAL_MULTICOLOR || reg <= MT6360_LED_ISNKML) ret = mt6360_init_isnk_properties(led, &init_data); else ret = mt6360_init_flash_properties(led, &init_data); if (ret) goto out_flash_release; ret = mt6360_led_register(&pdev->dev, led, &init_data); if (ret) goto out_flash_release; i++; } platform_set_drvdata(pdev, priv); return 0; out_flash_release: mt6360_v4l2_flash_release(priv); return ret; } static int mt6360_led_remove(struct platform_device *pdev) { struct mt6360_priv *priv = platform_get_drvdata(pdev); mt6360_v4l2_flash_release(priv); return 0; } static const struct of_device_id __maybe_unused mt6360_led_of_id[] = { { .compatible = "mediatek,mt6360-led", }, {} }; MODULE_DEVICE_TABLE(of, mt6360_led_of_id); static struct platform_driver mt6360_led_driver = { .driver = { .name = "mt6360-led", .of_match_table = mt6360_led_of_id, }, .probe = mt6360_led_probe, .remove = mt6360_led_remove, }; module_platform_driver(mt6360_led_driver); MODULE_AUTHOR("Gene Chen <[email protected]>"); MODULE_DESCRIPTION("MT6360 LED Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/leds/flash/leds-mt6360.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * LED driver for Richtek RT8515 flash/torch white LEDs * found on some Samsung mobile phones. * * This is a 1.5A Boost dual channel driver produced around 2011. * * The component lacks a datasheet, but in the schematic picture * from the LG P970 service manual you can see the connections * from the RT8515 to the LED, with two resistors connected * from the pins "RFS" and "RTS" to ground. * * On the LG P970: * RFS (resistance flash setting?) is 20 kOhm * RTS (resistance torch setting?) is 39 kOhm * * Some sleuthing finds us the RT9387A which we have a datasheet for: * https://static5.arrow.com/pdfs/2014/7/27/8/21/12/794/rtt_/manual/94download_ds.jspprt9387a.jspprt9387a.pdf * This apparently works the same way so in theory this driver * should cover RT9387A as well. This has not been tested, please * update the compatibles if you add RT9387A support. * * Linus Walleij <[email protected]> */ #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/led-class-flash.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <media/v4l2-flash-led-class.h> /* We can provide 15-700 mA out to the LED */ #define RT8515_MIN_IOUT_MA 15 #define RT8515_MAX_IOUT_MA 700 /* The maximum intensity is 1-16 for flash and 1-100 for torch */ #define RT8515_FLASH_MAX 16 #define RT8515_TORCH_MAX 100 #define RT8515_TIMEOUT_US 250000U #define RT8515_MAX_TIMEOUT_US 300000U struct rt8515 { struct led_classdev_flash fled; struct device *dev; struct v4l2_flash *v4l2_flash; struct mutex lock; struct regulator *reg; struct gpio_desc *enable_torch; struct gpio_desc *enable_flash; struct timer_list powerdown_timer; u32 max_timeout; /* Flash max timeout */ int flash_max_intensity; int torch_max_intensity; }; static struct rt8515 *to_rt8515(struct led_classdev_flash *fled) { return container_of(fled, struct rt8515, fled); } static void rt8515_gpio_led_off(struct rt8515 *rt) { gpiod_set_value(rt->enable_flash, 0); gpiod_set_value(rt->enable_torch, 0); } static void rt8515_gpio_brightness_commit(struct gpio_desc *gpiod, int brightness) { int i; /* * Toggling a GPIO line with a small delay increases the * brightness one step at a time. */ for (i = 0; i < brightness; i++) { gpiod_set_value(gpiod, 0); udelay(1); gpiod_set_value(gpiod, 1); udelay(1); } } /* This is setting the torch light level */ static int rt8515_led_brightness_set(struct led_classdev *led, enum led_brightness brightness) { struct led_classdev_flash *fled = lcdev_to_flcdev(led); struct rt8515 *rt = to_rt8515(fled); mutex_lock(&rt->lock); if (brightness == LED_OFF) { /* Off */ rt8515_gpio_led_off(rt); } else if (brightness < RT8515_TORCH_MAX) { /* Step it up to movie mode brightness using the flash pin */ rt8515_gpio_brightness_commit(rt->enable_torch, brightness); } else { /* Max torch brightness requested */ gpiod_set_value(rt->enable_torch, 1); } mutex_unlock(&rt->lock); return 0; } static int rt8515_led_flash_strobe_set(struct led_classdev_flash *fled, bool state) { struct rt8515 *rt = to_rt8515(fled); struct led_flash_setting *timeout = &fled->timeout; int brightness = rt->flash_max_intensity; mutex_lock(&rt->lock); if (state) { /* Enable LED flash mode and set brightness */ rt8515_gpio_brightness_commit(rt->enable_flash, brightness); /* Set timeout */ mod_timer(&rt->powerdown_timer, jiffies + usecs_to_jiffies(timeout->val)); } else { del_timer_sync(&rt->powerdown_timer); /* Turn the LED off */ rt8515_gpio_led_off(rt); } fled->led_cdev.brightness = LED_OFF; /* After this the torch LED will be disabled */ mutex_unlock(&rt->lock); return 0; } static int rt8515_led_flash_strobe_get(struct led_classdev_flash *fled, bool *state) { struct rt8515 *rt = to_rt8515(fled); *state = timer_pending(&rt->powerdown_timer); return 0; } static int rt8515_led_flash_timeout_set(struct led_classdev_flash *fled, u32 timeout) { /* The timeout is stored in the led-class-flash core */ return 0; } static const struct led_flash_ops rt8515_flash_ops = { .strobe_set = rt8515_led_flash_strobe_set, .strobe_get = rt8515_led_flash_strobe_get, .timeout_set = rt8515_led_flash_timeout_set, }; static void rt8515_powerdown_timer(struct timer_list *t) { struct rt8515 *rt = from_timer(rt, t, powerdown_timer); /* Turn the LED off */ rt8515_gpio_led_off(rt); } static void rt8515_init_flash_timeout(struct rt8515 *rt) { struct led_classdev_flash *fled = &rt->fled; struct led_flash_setting *s; /* Init flash timeout setting */ s = &fled->timeout; s->min = 1; s->max = rt->max_timeout; s->step = 1; /* * Set default timeout to RT8515_TIMEOUT_US except if * max_timeout from DT is lower. */ s->val = min(rt->max_timeout, RT8515_TIMEOUT_US); } #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) /* Configure the V2L2 flash subdevice */ static void rt8515_init_v4l2_flash_config(struct rt8515 *rt, struct v4l2_flash_config *v4l2_sd_cfg) { struct led_classdev *led = &rt->fled.led_cdev; struct led_flash_setting *s; strscpy(v4l2_sd_cfg->dev_name, led->dev->kobj.name, sizeof(v4l2_sd_cfg->dev_name)); /* * Init flash intensity setting: this is a linear scale * capped from the device tree max intensity setting * 1..flash_max_intensity */ s = &v4l2_sd_cfg->intensity; s->min = 1; s->max = rt->flash_max_intensity; s->step = 1; s->val = s->max; } static void rt8515_v4l2_flash_release(struct rt8515 *rt) { v4l2_flash_release(rt->v4l2_flash); } #else static void rt8515_init_v4l2_flash_config(struct rt8515 *rt, struct v4l2_flash_config *v4l2_sd_cfg) { } static void rt8515_v4l2_flash_release(struct rt8515 *rt) { } #endif static void rt8515_determine_max_intensity(struct rt8515 *rt, struct fwnode_handle *led, const char *resistance, const char *max_ua_prop, int hw_max, int *max_intensity_setting) { u32 res = 0; /* Can't be 0 so 0 is undefined */ u32 ua; u32 max_ma; int max_intensity; int ret; fwnode_property_read_u32(rt->dev->fwnode, resistance, &res); ret = fwnode_property_read_u32(led, max_ua_prop, &ua); /* Missing info in DT, OK go with hardware maxima */ if (ret || res == 0) { dev_err(rt->dev, "either %s or %s missing from DT, using HW max\n", resistance, max_ua_prop); max_ma = RT8515_MAX_IOUT_MA; max_intensity = hw_max; goto out_assign_max; } /* * Formula from the datasheet, this is the maximum current * defined by the hardware. */ max_ma = (5500 * 1000) / res; /* * Calculate max intensity (linear scaling) * Formula is ((ua / 1000) / max_ma) * 100, then simplified */ max_intensity = (ua / 10) / max_ma; dev_info(rt->dev, "current restricted from %u to %u mA, max intensity %d/100\n", max_ma, (ua / 1000), max_intensity); out_assign_max: dev_info(rt->dev, "max intensity %d/%d = %d mA\n", max_intensity, hw_max, max_ma); *max_intensity_setting = max_intensity; } static int rt8515_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct fwnode_handle *child; struct rt8515 *rt; struct led_classdev *led; struct led_classdev_flash *fled; struct led_init_data init_data = {}; struct v4l2_flash_config v4l2_sd_cfg = {}; int ret; rt = devm_kzalloc(dev, sizeof(*rt), GFP_KERNEL); if (!rt) return -ENOMEM; rt->dev = dev; fled = &rt->fled; led = &fled->led_cdev; /* ENF - Enable Flash line */ rt->enable_flash = devm_gpiod_get(dev, "enf", GPIOD_OUT_LOW); if (IS_ERR(rt->enable_flash)) return dev_err_probe(dev, PTR_ERR(rt->enable_flash), "cannot get ENF (enable flash) GPIO\n"); /* ENT - Enable Torch line */ rt->enable_torch = devm_gpiod_get(dev, "ent", GPIOD_OUT_LOW); if (IS_ERR(rt->enable_torch)) return dev_err_probe(dev, PTR_ERR(rt->enable_torch), "cannot get ENT (enable torch) GPIO\n"); child = fwnode_get_next_available_child_node(dev->fwnode, NULL); if (!child) { dev_err(dev, "No fwnode child node found for connected LED.\n"); return -EINVAL; } init_data.fwnode = child; rt8515_determine_max_intensity(rt, child, "richtek,rfs-ohms", "flash-max-microamp", RT8515_FLASH_MAX, &rt->flash_max_intensity); rt8515_determine_max_intensity(rt, child, "richtek,rts-ohms", "led-max-microamp", RT8515_TORCH_MAX, &rt->torch_max_intensity); ret = fwnode_property_read_u32(child, "flash-max-timeout-us", &rt->max_timeout); if (ret) { rt->max_timeout = RT8515_MAX_TIMEOUT_US; dev_warn(dev, "flash-max-timeout-us property missing\n"); } timer_setup(&rt->powerdown_timer, rt8515_powerdown_timer, 0); rt8515_init_flash_timeout(rt); fled->ops = &rt8515_flash_ops; led->max_brightness = rt->torch_max_intensity; led->brightness_set_blocking = rt8515_led_brightness_set; led->flags |= LED_CORE_SUSPENDRESUME | LED_DEV_CAP_FLASH; mutex_init(&rt->lock); platform_set_drvdata(pdev, rt); ret = devm_led_classdev_flash_register_ext(dev, fled, &init_data); if (ret) { fwnode_handle_put(child); mutex_destroy(&rt->lock); dev_err(dev, "can't register LED %s\n", led->name); return ret; } rt8515_init_v4l2_flash_config(rt, &v4l2_sd_cfg); /* Create a V4L2 Flash device if V4L2 flash is enabled */ rt->v4l2_flash = v4l2_flash_init(dev, child, fled, NULL, &v4l2_sd_cfg); if (IS_ERR(rt->v4l2_flash)) { ret = PTR_ERR(rt->v4l2_flash); dev_err(dev, "failed to register V4L2 flash device (%d)\n", ret); /* * Continue without the V4L2 flash * (we still have the classdev) */ } fwnode_handle_put(child); return 0; } static int rt8515_remove(struct platform_device *pdev) { struct rt8515 *rt = platform_get_drvdata(pdev); rt8515_v4l2_flash_release(rt); del_timer_sync(&rt->powerdown_timer); mutex_destroy(&rt->lock); return 0; } static const struct of_device_id rt8515_match[] = { { .compatible = "richtek,rt8515", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rt8515_match); static struct platform_driver rt8515_driver = { .driver = { .name = "rt8515", .of_match_table = rt8515_match, }, .probe = rt8515_probe, .remove = rt8515_remove, }; module_platform_driver(rt8515_driver); MODULE_AUTHOR("Linus Walleij <[email protected]>"); MODULE_DESCRIPTION("Richtek RT8515 LED driver"); MODULE_LICENSE("GPL");
linux-master
drivers/leds/flash/leds-rt8515.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/bitops.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/led-class-flash.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/regmap.h> #include <media/v4l2-flash-led-class.h> #define RT4505_REG_RESET 0x0 #define RT4505_REG_CONFIG 0x8 #define RT4505_REG_ILED 0x9 #define RT4505_REG_ENABLE 0xA #define RT4505_REG_FLAGS 0xB #define RT4505_RESET_MASK BIT(7) #define RT4505_FLASHTO_MASK GENMASK(2, 0) #define RT4505_ITORCH_MASK GENMASK(7, 5) #define RT4505_ITORCH_SHIFT 5 #define RT4505_IFLASH_MASK GENMASK(4, 0) #define RT4505_ENABLE_MASK GENMASK(5, 0) #define RT4505_TORCH_SET (BIT(0) | BIT(4)) #define RT4505_FLASH_SET (BIT(0) | BIT(1) | BIT(2) | BIT(4)) #define RT4505_EXT_FLASH_SET (BIT(0) | BIT(1) | BIT(4) | BIT(5)) #define RT4505_FLASH_GET (BIT(0) | BIT(1) | BIT(4)) #define RT4505_OVP_MASK BIT(3) #define RT4505_SHORT_MASK BIT(2) #define RT4505_OTP_MASK BIT(1) #define RT4505_TIMEOUT_MASK BIT(0) #define RT4505_ITORCH_MINUA 46000 #define RT4505_ITORCH_MAXUA 375000 #define RT4505_ITORCH_STPUA 47000 #define RT4505_IFLASH_MINUA 93750 #define RT4505_IFLASH_MAXUA 1500000 #define RT4505_IFLASH_STPUA 93750 #define RT4505_FLASHTO_MINUS 100000 #define RT4505_FLASHTO_MAXUS 800000 #define RT4505_FLASHTO_STPUS 100000 struct rt4505_priv { struct device *dev; struct regmap *regmap; struct mutex lock; struct led_classdev_flash flash; struct v4l2_flash *v4l2_flash; }; static int rt4505_torch_brightness_set(struct led_classdev *lcdev, enum led_brightness level) { struct rt4505_priv *priv = container_of(lcdev, struct rt4505_priv, flash.led_cdev); u32 val = 0; int ret; mutex_lock(&priv->lock); if (level != LED_OFF) { ret = regmap_update_bits(priv->regmap, RT4505_REG_ILED, RT4505_ITORCH_MASK, (level - 1) << RT4505_ITORCH_SHIFT); if (ret) goto unlock; val = RT4505_TORCH_SET; } ret = regmap_update_bits(priv->regmap, RT4505_REG_ENABLE, RT4505_ENABLE_MASK, val); unlock: mutex_unlock(&priv->lock); return ret; } static enum led_brightness rt4505_torch_brightness_get( struct led_classdev *lcdev) { struct rt4505_priv *priv = container_of(lcdev, struct rt4505_priv, flash.led_cdev); u32 val; int ret; mutex_lock(&priv->lock); ret = regmap_read(priv->regmap, RT4505_REG_ENABLE, &val); if (ret) { dev_err(lcdev->dev, "Failed to get LED enable\n"); ret = LED_OFF; goto unlock; } if ((val & RT4505_ENABLE_MASK) != RT4505_TORCH_SET) { ret = LED_OFF; goto unlock; } ret = regmap_read(priv->regmap, RT4505_REG_ILED, &val); if (ret) { dev_err(lcdev->dev, "Failed to get LED brightness\n"); ret = LED_OFF; goto unlock; } ret = ((val & RT4505_ITORCH_MASK) >> RT4505_ITORCH_SHIFT) + 1; unlock: mutex_unlock(&priv->lock); return ret; } static int rt4505_flash_brightness_set(struct led_classdev_flash *fled_cdev, u32 brightness) { struct rt4505_priv *priv = container_of(fled_cdev, struct rt4505_priv, flash); struct led_flash_setting *s = &fled_cdev->brightness; u32 val = (brightness - s->min) / s->step; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, RT4505_REG_ILED, RT4505_IFLASH_MASK, val); mutex_unlock(&priv->lock); return ret; } static int rt4505_flash_strobe_set(struct led_classdev_flash *fled_cdev, bool state) { struct rt4505_priv *priv = container_of(fled_cdev, struct rt4505_priv, flash); u32 val = state ? RT4505_FLASH_SET : 0; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, RT4505_REG_ENABLE, RT4505_ENABLE_MASK, val); mutex_unlock(&priv->lock); return ret; } static int rt4505_flash_strobe_get(struct led_classdev_flash *fled_cdev, bool *state) { struct rt4505_priv *priv = container_of(fled_cdev, struct rt4505_priv, flash); u32 val; int ret; mutex_lock(&priv->lock); ret = regmap_read(priv->regmap, RT4505_REG_ENABLE, &val); if (ret) goto unlock; *state = (val & RT4505_FLASH_GET) == RT4505_FLASH_GET; unlock: mutex_unlock(&priv->lock); return ret; } static int rt4505_flash_timeout_set(struct led_classdev_flash *fled_cdev, u32 timeout) { struct rt4505_priv *priv = container_of(fled_cdev, struct rt4505_priv, flash); struct led_flash_setting *s = &fled_cdev->timeout; u32 val = (timeout - s->min) / s->step; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, RT4505_REG_CONFIG, RT4505_FLASHTO_MASK, val); mutex_unlock(&priv->lock); return ret; } static int rt4505_fault_get(struct led_classdev_flash *fled_cdev, u32 *fault) { struct rt4505_priv *priv = container_of(fled_cdev, struct rt4505_priv, flash); u32 val, led_faults = 0; int ret; ret = regmap_read(priv->regmap, RT4505_REG_FLAGS, &val); if (ret) return ret; if (val & RT4505_OVP_MASK) led_faults |= LED_FAULT_OVER_VOLTAGE; if (val & RT4505_SHORT_MASK) led_faults |= LED_FAULT_SHORT_CIRCUIT; if (val & RT4505_OTP_MASK) led_faults |= LED_FAULT_OVER_TEMPERATURE; if (val & RT4505_TIMEOUT_MASK) led_faults |= LED_FAULT_TIMEOUT; *fault = led_faults; return 0; } static const struct led_flash_ops rt4505_flash_ops = { .flash_brightness_set = rt4505_flash_brightness_set, .strobe_set = rt4505_flash_strobe_set, .strobe_get = rt4505_flash_strobe_get, .timeout_set = rt4505_flash_timeout_set, .fault_get = rt4505_fault_get, }; static bool rt4505_is_accessible_reg(struct device *dev, unsigned int reg) { if (reg == RT4505_REG_RESET || (reg >= RT4505_REG_CONFIG && reg <= RT4505_REG_FLAGS)) return true; return false; } static const struct regmap_config rt4505_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = RT4505_REG_FLAGS, .readable_reg = rt4505_is_accessible_reg, .writeable_reg = rt4505_is_accessible_reg, }; #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static int rt4505_flash_external_strobe_set(struct v4l2_flash *v4l2_flash, bool enable) { struct led_classdev_flash *flash = v4l2_flash->fled_cdev; struct rt4505_priv *priv = container_of(flash, struct rt4505_priv, flash); u32 val = enable ? RT4505_EXT_FLASH_SET : 0; int ret; mutex_lock(&priv->lock); ret = regmap_update_bits(priv->regmap, RT4505_REG_ENABLE, RT4505_ENABLE_MASK, val); mutex_unlock(&priv->lock); return ret; } static const struct v4l2_flash_ops v4l2_flash_ops = { .external_strobe_set = rt4505_flash_external_strobe_set, }; static void rt4505_init_v4l2_config(struct rt4505_priv *priv, struct v4l2_flash_config *config) { struct led_classdev_flash *flash = &priv->flash; struct led_classdev *lcdev = &flash->led_cdev; struct led_flash_setting *s; strscpy(config->dev_name, lcdev->dev->kobj.name, sizeof(config->dev_name)); s = &config->intensity; s->min = RT4505_ITORCH_MINUA; s->step = RT4505_ITORCH_STPUA; s->max = s->val = s->min + (lcdev->max_brightness - 1) * s->step; config->flash_faults = LED_FAULT_OVER_VOLTAGE | LED_FAULT_SHORT_CIRCUIT | LED_FAULT_LED_OVER_TEMPERATURE | LED_FAULT_TIMEOUT; config->has_external_strobe = 1; } #else static const struct v4l2_flash_ops v4l2_flash_ops; static void rt4505_init_v4l2_config(struct rt4505_priv *priv, struct v4l2_flash_config *config) { } #endif static void rt4505_init_flash_properties(struct rt4505_priv *priv, struct fwnode_handle *child) { struct led_classdev_flash *flash = &priv->flash; struct led_classdev *lcdev = &flash->led_cdev; struct led_flash_setting *s; u32 val; int ret; ret = fwnode_property_read_u32(child, "led-max-microamp", &val); if (ret) { dev_warn(priv->dev, "led-max-microamp DT property missing\n"); val = RT4505_ITORCH_MINUA; } else val = clamp_val(val, RT4505_ITORCH_MINUA, RT4505_ITORCH_MAXUA); lcdev->max_brightness = (val - RT4505_ITORCH_MINUA) / RT4505_ITORCH_STPUA + 1; lcdev->brightness_set_blocking = rt4505_torch_brightness_set; lcdev->brightness_get = rt4505_torch_brightness_get; lcdev->flags |= LED_DEV_CAP_FLASH; ret = fwnode_property_read_u32(child, "flash-max-microamp", &val); if (ret) { dev_warn(priv->dev, "flash-max-microamp DT property missing\n"); val = RT4505_IFLASH_MINUA; } else val = clamp_val(val, RT4505_IFLASH_MINUA, RT4505_IFLASH_MAXUA); s = &flash->brightness; s->min = RT4505_IFLASH_MINUA; s->step = RT4505_IFLASH_STPUA; s->max = s->val = val; ret = fwnode_property_read_u32(child, "flash-max-timeout-us", &val); if (ret) { dev_warn(priv->dev, "flash-max-timeout-us DT property missing\n"); val = RT4505_FLASHTO_MINUS; } else val = clamp_val(val, RT4505_FLASHTO_MINUS, RT4505_FLASHTO_MAXUS); s = &flash->timeout; s->min = RT4505_FLASHTO_MINUS; s->step = RT4505_FLASHTO_STPUS; s->max = s->val = val; flash->ops = &rt4505_flash_ops; } static int rt4505_probe(struct i2c_client *client) { struct rt4505_priv *priv; struct fwnode_handle *child; struct led_init_data init_data = {}; struct v4l2_flash_config v4l2_config = {}; int ret; priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &client->dev; mutex_init(&priv->lock); priv->regmap = devm_regmap_init_i2c(client, &rt4505_regmap_config); if (IS_ERR(priv->regmap)) { dev_err(priv->dev, "Failed to allocate register map\n"); return PTR_ERR(priv->regmap); } ret = regmap_write(priv->regmap, RT4505_REG_RESET, RT4505_RESET_MASK); if (ret) { dev_err(priv->dev, "Failed to reset registers\n"); return ret; } child = fwnode_get_next_available_child_node(client->dev.fwnode, NULL); if (!child) { dev_err(priv->dev, "Failed to get child node\n"); return -EINVAL; } init_data.fwnode = child; rt4505_init_flash_properties(priv, child); ret = devm_led_classdev_flash_register_ext(priv->dev, &priv->flash, &init_data); if (ret) { dev_err(priv->dev, "Failed to register flash\n"); return ret; } rt4505_init_v4l2_config(priv, &v4l2_config); priv->v4l2_flash = v4l2_flash_init(priv->dev, init_data.fwnode, &priv->flash, &v4l2_flash_ops, &v4l2_config); if (IS_ERR(priv->v4l2_flash)) { dev_err(priv->dev, "Failed to register v4l2 flash\n"); return PTR_ERR(priv->v4l2_flash); } i2c_set_clientdata(client, priv); return 0; } static void rt4505_remove(struct i2c_client *client) { struct rt4505_priv *priv = i2c_get_clientdata(client); v4l2_flash_release(priv->v4l2_flash); } static void rt4505_shutdown(struct i2c_client *client) { struct rt4505_priv *priv = i2c_get_clientdata(client); /* Reset registers to make sure all off before shutdown */ regmap_write(priv->regmap, RT4505_REG_RESET, RT4505_RESET_MASK); } static const struct of_device_id __maybe_unused rt4505_leds_match[] = { { .compatible = "richtek,rt4505", }, {} }; MODULE_DEVICE_TABLE(of, rt4505_leds_match); static struct i2c_driver rt4505_driver = { .driver = { .name = "rt4505", .of_match_table = of_match_ptr(rt4505_leds_match), }, .probe = rt4505_probe, .remove = rt4505_remove, .shutdown = rt4505_shutdown, }; module_i2c_driver(rt4505_driver); MODULE_AUTHOR("ChiYuan Huang <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/leds/flash/leds-rt4505.c
// SPDX-License-Identifier: GPL-2.0-only /* * LED Flash class driver for the flash cell of max77693 mfd. * * Copyright (C) 2015, Samsung Electronics Co., Ltd. * * Authors: Jacek Anaszewski <[email protected]> * Andrzej Hajda <[email protected]> */ #include <linux/led-class-flash.h> #include <linux/mfd/max77693.h> #include <linux/mfd/max77693-common.h> #include <linux/mfd/max77693-private.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <media/v4l2-flash-led-class.h> #define MODE_OFF 0 #define MODE_FLASH(a) (1 << (a)) #define MODE_TORCH(a) (1 << (2 + (a))) #define MODE_FLASH_EXTERNAL(a) (1 << (4 + (a))) #define MODE_FLASH_MASK (MODE_FLASH(FLED1) | MODE_FLASH(FLED2) | \ MODE_FLASH_EXTERNAL(FLED1) | \ MODE_FLASH_EXTERNAL(FLED2)) #define MODE_TORCH_MASK (MODE_TORCH(FLED1) | MODE_TORCH(FLED2)) #define FLED1_IOUT (1 << 0) #define FLED2_IOUT (1 << 1) enum max77693_fled { FLED1, FLED2, }; enum max77693_led_mode { FLASH, TORCH, }; struct max77693_led_config_data { const char *label[2]; u32 iout_torch_max[2]; u32 iout_flash_max[2]; u32 flash_timeout_max[2]; u32 num_leds; u32 boost_mode; u32 boost_vout; u32 low_vsys; }; struct max77693_sub_led { /* corresponding FLED output identifier */ int fled_id; /* corresponding LED Flash class device */ struct led_classdev_flash fled_cdev; /* V4L2 Flash device */ struct v4l2_flash *v4l2_flash; /* brightness cache */ unsigned int torch_brightness; /* flash timeout cache */ unsigned int flash_timeout; /* flash faults that may have occurred */ u32 flash_faults; }; struct max77693_led_device { /* parent mfd regmap */ struct regmap *regmap; /* platform device data */ struct platform_device *pdev; /* secures access to the device */ struct mutex lock; /* sub led data */ struct max77693_sub_led sub_leds[2]; /* maximum torch current values for FLED outputs */ u32 iout_torch_max[2]; /* maximum flash current values for FLED outputs */ u32 iout_flash_max[2]; /* current flash timeout cache */ unsigned int current_flash_timeout; /* ITORCH register cache */ u8 torch_iout_reg; /* mode of fled outputs */ unsigned int mode_flags; /* recently strobed fled */ int strobing_sub_led_id; /* bitmask of FLED outputs use state (bit 0. - FLED1, bit 1. - FLED2) */ u8 fled_mask; /* FLED modes that can be set */ u8 allowed_modes; /* arrangement of current outputs */ bool iout_joint; }; static u8 max77693_led_iout_to_reg(u32 ua) { if (ua < FLASH_IOUT_MIN) ua = FLASH_IOUT_MIN; return (ua - FLASH_IOUT_MIN) / FLASH_IOUT_STEP; } static u8 max77693_flash_timeout_to_reg(u32 us) { return (us - FLASH_TIMEOUT_MIN) / FLASH_TIMEOUT_STEP; } static inline struct max77693_sub_led *flcdev_to_sub_led( struct led_classdev_flash *fled_cdev) { return container_of(fled_cdev, struct max77693_sub_led, fled_cdev); } static inline struct max77693_led_device *sub_led_to_led( struct max77693_sub_led *sub_led) { return container_of(sub_led, struct max77693_led_device, sub_leds[sub_led->fled_id]); } static inline u8 max77693_led_vsys_to_reg(u32 mv) { return ((mv - MAX_FLASH1_VSYS_MIN) / MAX_FLASH1_VSYS_STEP) << 2; } static inline u8 max77693_led_vout_to_reg(u32 mv) { return (mv - FLASH_VOUT_MIN) / FLASH_VOUT_STEP + FLASH_VOUT_RMIN; } static inline bool max77693_fled_used(struct max77693_led_device *led, int fled_id) { u8 fled_bit = (fled_id == FLED1) ? FLED1_IOUT : FLED2_IOUT; return led->fled_mask & fled_bit; } static int max77693_set_mode_reg(struct max77693_led_device *led, u8 mode) { struct regmap *rmap = led->regmap; int ret, v = 0, i; for (i = FLED1; i <= FLED2; ++i) { if (mode & MODE_TORCH(i)) v |= FLASH_EN_ON << TORCH_EN_SHIFT(i); if (mode & MODE_FLASH(i)) { v |= FLASH_EN_ON << FLASH_EN_SHIFT(i); } else if (mode & MODE_FLASH_EXTERNAL(i)) { v |= FLASH_EN_FLASH << FLASH_EN_SHIFT(i); /* * Enable hw triggering also for torch mode, as some * camera sensors use torch led to fathom ambient light * conditions before strobing the flash. */ v |= FLASH_EN_TORCH << TORCH_EN_SHIFT(i); } } /* Reset the register only prior setting flash modes */ if (mode & ~(MODE_TORCH(FLED1) | MODE_TORCH(FLED2))) { ret = regmap_write(rmap, MAX77693_LED_REG_FLASH_EN, 0); if (ret < 0) return ret; } return regmap_write(rmap, MAX77693_LED_REG_FLASH_EN, v); } static int max77693_add_mode(struct max77693_led_device *led, u8 mode) { u8 new_mode_flags; int i, ret; if (led->iout_joint) /* Span the mode on FLED2 for joint iouts case */ mode |= (mode << 1); /* * FLASH_EXTERNAL mode activates FLASHEN and TORCHEN pins in the device. * Corresponding register bit fields interfere with SW triggered modes, * thus clear them to ensure proper device configuration. */ for (i = FLED1; i <= FLED2; ++i) if (mode & MODE_FLASH_EXTERNAL(i)) led->mode_flags &= (~MODE_TORCH(i) & ~MODE_FLASH(i)); new_mode_flags = mode | led->mode_flags; new_mode_flags &= led->allowed_modes; if (new_mode_flags ^ led->mode_flags) led->mode_flags = new_mode_flags; else return 0; ret = max77693_set_mode_reg(led, led->mode_flags); if (ret < 0) return ret; /* * Clear flash mode flag after setting the mode to avoid spurious flash * strobing on each subsequent torch mode setting. */ if (mode & MODE_FLASH_MASK) led->mode_flags &= ~mode; return ret; } static int max77693_clear_mode(struct max77693_led_device *led, u8 mode) { if (led->iout_joint) /* Clear mode also on FLED2 for joint iouts case */ mode |= (mode << 1); led->mode_flags &= ~mode; return max77693_set_mode_reg(led, led->mode_flags); } static void max77693_add_allowed_modes(struct max77693_led_device *led, int fled_id, enum max77693_led_mode mode) { if (mode == FLASH) led->allowed_modes |= (MODE_FLASH(fled_id) | MODE_FLASH_EXTERNAL(fled_id)); else led->allowed_modes |= MODE_TORCH(fled_id); } static void max77693_distribute_currents(struct max77693_led_device *led, int fled_id, enum max77693_led_mode mode, u32 micro_amp, u32 iout_max[2], u32 iout[2]) { if (!led->iout_joint) { iout[fled_id] = micro_amp; max77693_add_allowed_modes(led, fled_id, mode); return; } iout[FLED1] = min(micro_amp, iout_max[FLED1]); iout[FLED2] = micro_amp - iout[FLED1]; if (mode == FLASH) led->allowed_modes &= ~MODE_FLASH_MASK; else led->allowed_modes &= ~MODE_TORCH_MASK; max77693_add_allowed_modes(led, FLED1, mode); if (iout[FLED2]) max77693_add_allowed_modes(led, FLED2, mode); } static int max77693_set_torch_current(struct max77693_led_device *led, int fled_id, u32 micro_amp) { struct regmap *rmap = led->regmap; u8 iout1_reg = 0, iout2_reg = 0; u32 iout[2]; max77693_distribute_currents(led, fled_id, TORCH, micro_amp, led->iout_torch_max, iout); if (fled_id == FLED1 || led->iout_joint) { iout1_reg = max77693_led_iout_to_reg(iout[FLED1]); led->torch_iout_reg &= TORCH_IOUT_MASK(TORCH_IOUT2_SHIFT); } if (fled_id == FLED2 || led->iout_joint) { iout2_reg = max77693_led_iout_to_reg(iout[FLED2]); led->torch_iout_reg &= TORCH_IOUT_MASK(TORCH_IOUT1_SHIFT); } led->torch_iout_reg |= ((iout1_reg << TORCH_IOUT1_SHIFT) | (iout2_reg << TORCH_IOUT2_SHIFT)); return regmap_write(rmap, MAX77693_LED_REG_ITORCH, led->torch_iout_reg); } static int max77693_set_flash_current(struct max77693_led_device *led, int fled_id, u32 micro_amp) { struct regmap *rmap = led->regmap; u8 iout1_reg, iout2_reg; u32 iout[2]; int ret = -EINVAL; max77693_distribute_currents(led, fled_id, FLASH, micro_amp, led->iout_flash_max, iout); if (fled_id == FLED1 || led->iout_joint) { iout1_reg = max77693_led_iout_to_reg(iout[FLED1]); ret = regmap_write(rmap, MAX77693_LED_REG_IFLASH1, iout1_reg); if (ret < 0) return ret; } if (fled_id == FLED2 || led->iout_joint) { iout2_reg = max77693_led_iout_to_reg(iout[FLED2]); ret = regmap_write(rmap, MAX77693_LED_REG_IFLASH2, iout2_reg); } return ret; } static int max77693_set_timeout(struct max77693_led_device *led, u32 microsec) { struct regmap *rmap = led->regmap; u8 v; int ret; v = max77693_flash_timeout_to_reg(microsec) | FLASH_TMR_LEVEL; ret = regmap_write(rmap, MAX77693_LED_REG_FLASH_TIMER, v); if (ret < 0) return ret; led->current_flash_timeout = microsec; return 0; } static int max77693_get_strobe_status(struct max77693_led_device *led, bool *state) { struct regmap *rmap = led->regmap; unsigned int v; int ret; ret = regmap_read(rmap, MAX77693_LED_REG_FLASH_STATUS, &v); if (ret < 0) return ret; *state = v & FLASH_STATUS_FLASH_ON; return ret; } static int max77693_get_flash_faults(struct max77693_sub_led *sub_led) { struct max77693_led_device *led = sub_led_to_led(sub_led); struct regmap *rmap = led->regmap; unsigned int v; u8 fault_open_mask, fault_short_mask; int ret; sub_led->flash_faults = 0; if (led->iout_joint) { fault_open_mask = FLASH_INT_FLED1_OPEN | FLASH_INT_FLED2_OPEN; fault_short_mask = FLASH_INT_FLED1_SHORT | FLASH_INT_FLED2_SHORT; } else { fault_open_mask = (sub_led->fled_id == FLED1) ? FLASH_INT_FLED1_OPEN : FLASH_INT_FLED2_OPEN; fault_short_mask = (sub_led->fled_id == FLED1) ? FLASH_INT_FLED1_SHORT : FLASH_INT_FLED2_SHORT; } ret = regmap_read(rmap, MAX77693_LED_REG_FLASH_INT, &v); if (ret < 0) return ret; if (v & fault_open_mask) sub_led->flash_faults |= LED_FAULT_OVER_VOLTAGE; if (v & fault_short_mask) sub_led->flash_faults |= LED_FAULT_SHORT_CIRCUIT; if (v & FLASH_INT_OVER_CURRENT) sub_led->flash_faults |= LED_FAULT_OVER_CURRENT; return 0; } static int max77693_setup(struct max77693_led_device *led, struct max77693_led_config_data *led_cfg) { struct regmap *rmap = led->regmap; int i, first_led, last_led, ret; u32 max_flash_curr[2]; u8 v; /* * Initialize only flash current. Torch current doesn't * require initialization as ITORCH register is written with * new value each time brightness_set op is called. */ if (led->iout_joint) { first_led = FLED1; last_led = FLED1; max_flash_curr[FLED1] = led_cfg->iout_flash_max[FLED1] + led_cfg->iout_flash_max[FLED2]; } else { first_led = max77693_fled_used(led, FLED1) ? FLED1 : FLED2; last_led = max77693_fled_used(led, FLED2) ? FLED2 : FLED1; max_flash_curr[FLED1] = led_cfg->iout_flash_max[FLED1]; max_flash_curr[FLED2] = led_cfg->iout_flash_max[FLED2]; } for (i = first_led; i <= last_led; ++i) { ret = max77693_set_flash_current(led, i, max_flash_curr[i]); if (ret < 0) return ret; } v = TORCH_TMR_NO_TIMER | MAX77693_LED_TRIG_TYPE_LEVEL; ret = regmap_write(rmap, MAX77693_LED_REG_ITORCHTIMER, v); if (ret < 0) return ret; if (led_cfg->low_vsys > 0) v = max77693_led_vsys_to_reg(led_cfg->low_vsys) | MAX_FLASH1_MAX_FL_EN; else v = 0; ret = regmap_write(rmap, MAX77693_LED_REG_MAX_FLASH1, v); if (ret < 0) return ret; ret = regmap_write(rmap, MAX77693_LED_REG_MAX_FLASH2, 0); if (ret < 0) return ret; if (led_cfg->boost_mode == MAX77693_LED_BOOST_FIXED) v = FLASH_BOOST_FIXED; else v = led_cfg->boost_mode | led_cfg->boost_mode << 1; if (max77693_fled_used(led, FLED1) && max77693_fled_used(led, FLED2)) v |= FLASH_BOOST_LEDNUM_2; ret = regmap_write(rmap, MAX77693_LED_REG_VOUT_CNTL, v); if (ret < 0) return ret; v = max77693_led_vout_to_reg(led_cfg->boost_vout); ret = regmap_write(rmap, MAX77693_LED_REG_VOUT_FLASH1, v); if (ret < 0) return ret; return max77693_set_mode_reg(led, MODE_OFF); } /* LED subsystem callbacks */ static int max77693_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness value) { struct led_classdev_flash *fled_cdev = lcdev_to_flcdev(led_cdev); struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); int fled_id = sub_led->fled_id, ret; mutex_lock(&led->lock); if (value == 0) { ret = max77693_clear_mode(led, MODE_TORCH(fled_id)); if (ret < 0) dev_dbg(&led->pdev->dev, "Failed to clear torch mode (%d)\n", ret); goto unlock; } ret = max77693_set_torch_current(led, fled_id, value * TORCH_IOUT_STEP); if (ret < 0) { dev_dbg(&led->pdev->dev, "Failed to set torch current (%d)\n", ret); goto unlock; } ret = max77693_add_mode(led, MODE_TORCH(fled_id)); if (ret < 0) dev_dbg(&led->pdev->dev, "Failed to set torch mode (%d)\n", ret); unlock: mutex_unlock(&led->lock); return ret; } static int max77693_led_flash_brightness_set( struct led_classdev_flash *fled_cdev, u32 brightness) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); int ret; mutex_lock(&led->lock); ret = max77693_set_flash_current(led, sub_led->fled_id, brightness); mutex_unlock(&led->lock); return ret; } static int max77693_led_flash_strobe_set( struct led_classdev_flash *fled_cdev, bool state) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); int fled_id = sub_led->fled_id; int ret; mutex_lock(&led->lock); if (!state) { ret = max77693_clear_mode(led, MODE_FLASH(fled_id)); goto unlock; } if (sub_led->flash_timeout != led->current_flash_timeout) { ret = max77693_set_timeout(led, sub_led->flash_timeout); if (ret < 0) goto unlock; } led->strobing_sub_led_id = fled_id; ret = max77693_add_mode(led, MODE_FLASH(fled_id)); if (ret < 0) goto unlock; ret = max77693_get_flash_faults(sub_led); unlock: mutex_unlock(&led->lock); return ret; } static int max77693_led_flash_fault_get( struct led_classdev_flash *fled_cdev, u32 *fault) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); *fault = sub_led->flash_faults; return 0; } static int max77693_led_flash_strobe_get( struct led_classdev_flash *fled_cdev, bool *state) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); int ret; if (!state) return -EINVAL; mutex_lock(&led->lock); ret = max77693_get_strobe_status(led, state); *state = !!(*state && (led->strobing_sub_led_id == sub_led->fled_id)); mutex_unlock(&led->lock); return ret; } static int max77693_led_flash_timeout_set( struct led_classdev_flash *fled_cdev, u32 timeout) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); mutex_lock(&led->lock); sub_led->flash_timeout = timeout; mutex_unlock(&led->lock); return 0; } static int max77693_led_parse_dt(struct max77693_led_device *led, struct max77693_led_config_data *cfg, struct device_node **sub_nodes) { struct device *dev = &led->pdev->dev; struct max77693_sub_led *sub_leds = led->sub_leds; struct device_node *node = dev_of_node(dev), *child_node; struct property *prop; u32 led_sources[2]; int i, ret, fled_id; of_property_read_u32(node, "maxim,boost-mode", &cfg->boost_mode); of_property_read_u32(node, "maxim,boost-mvout", &cfg->boost_vout); of_property_read_u32(node, "maxim,mvsys-min", &cfg->low_vsys); for_each_available_child_of_node(node, child_node) { prop = of_find_property(child_node, "led-sources", NULL); if (prop) { const __be32 *srcs = NULL; for (i = 0; i < ARRAY_SIZE(led_sources); ++i) { srcs = of_prop_next_u32(prop, srcs, &led_sources[i]); if (!srcs) break; } } else { dev_err(dev, "led-sources DT property missing\n"); of_node_put(child_node); return -EINVAL; } if (i == 2) { fled_id = FLED1; led->fled_mask = FLED1_IOUT | FLED2_IOUT; } else if (led_sources[0] == FLED1) { fled_id = FLED1; led->fled_mask |= FLED1_IOUT; } else if (led_sources[0] == FLED2) { fled_id = FLED2; led->fled_mask |= FLED2_IOUT; } else { dev_err(dev, "Wrong led-sources DT property value.\n"); of_node_put(child_node); return -EINVAL; } if (sub_nodes[fled_id]) { dev_err(dev, "Conflicting \"led-sources\" DT properties\n"); of_node_put(child_node); return -EINVAL; } sub_nodes[fled_id] = child_node; sub_leds[fled_id].fled_id = fled_id; cfg->label[fled_id] = of_get_property(child_node, "label", NULL) ? : child_node->name; ret = of_property_read_u32(child_node, "led-max-microamp", &cfg->iout_torch_max[fled_id]); if (ret < 0) { cfg->iout_torch_max[fled_id] = TORCH_IOUT_MIN; dev_warn(dev, "led-max-microamp DT property missing\n"); } ret = of_property_read_u32(child_node, "flash-max-microamp", &cfg->iout_flash_max[fled_id]); if (ret < 0) { cfg->iout_flash_max[fled_id] = FLASH_IOUT_MIN; dev_warn(dev, "flash-max-microamp DT property missing\n"); } ret = of_property_read_u32(child_node, "flash-max-timeout-us", &cfg->flash_timeout_max[fled_id]); if (ret < 0) { cfg->flash_timeout_max[fled_id] = FLASH_TIMEOUT_MIN; dev_warn(dev, "flash-max-timeout-us DT property missing\n"); } if (++cfg->num_leds == 2 || (max77693_fled_used(led, FLED1) && max77693_fled_used(led, FLED2))) { of_node_put(child_node); break; } } if (cfg->num_leds == 0) { dev_err(dev, "No DT child node found for connected LED(s).\n"); return -EINVAL; } return 0; } static void clamp_align(u32 *v, u32 min, u32 max, u32 step) { *v = clamp_val(*v, min, max); if (step > 1) *v = (*v - min) / step * step + min; } static void max77693_align_iout_current(struct max77693_led_device *led, u32 *iout, u32 min, u32 max, u32 step) { int i; if (led->iout_joint) { if (iout[FLED1] > min) { iout[FLED1] /= 2; iout[FLED2] = iout[FLED1]; } else { iout[FLED1] = min; iout[FLED2] = 0; return; } } for (i = FLED1; i <= FLED2; ++i) if (max77693_fled_used(led, i)) clamp_align(&iout[i], min, max, step); else iout[i] = 0; } static void max77693_led_validate_configuration(struct max77693_led_device *led, struct max77693_led_config_data *cfg) { u32 flash_iout_max = cfg->boost_mode ? FLASH_IOUT_MAX_2LEDS : FLASH_IOUT_MAX_1LED; int i; if (cfg->num_leds == 1 && max77693_fled_used(led, FLED1) && max77693_fled_used(led, FLED2)) led->iout_joint = true; cfg->boost_mode = clamp_val(cfg->boost_mode, MAX77693_LED_BOOST_NONE, MAX77693_LED_BOOST_FIXED); /* Boost must be enabled if both current outputs are used */ if ((cfg->boost_mode == MAX77693_LED_BOOST_NONE) && led->iout_joint) cfg->boost_mode = MAX77693_LED_BOOST_FIXED; max77693_align_iout_current(led, cfg->iout_torch_max, TORCH_IOUT_MIN, TORCH_IOUT_MAX, TORCH_IOUT_STEP); max77693_align_iout_current(led, cfg->iout_flash_max, FLASH_IOUT_MIN, flash_iout_max, FLASH_IOUT_STEP); for (i = 0; i < ARRAY_SIZE(cfg->flash_timeout_max); ++i) clamp_align(&cfg->flash_timeout_max[i], FLASH_TIMEOUT_MIN, FLASH_TIMEOUT_MAX, FLASH_TIMEOUT_STEP); clamp_align(&cfg->boost_vout, FLASH_VOUT_MIN, FLASH_VOUT_MAX, FLASH_VOUT_STEP); if (cfg->low_vsys) clamp_align(&cfg->low_vsys, MAX_FLASH1_VSYS_MIN, MAX_FLASH1_VSYS_MAX, MAX_FLASH1_VSYS_STEP); } static int max77693_led_get_configuration(struct max77693_led_device *led, struct max77693_led_config_data *cfg, struct device_node **sub_nodes) { int ret; ret = max77693_led_parse_dt(led, cfg, sub_nodes); if (ret < 0) return ret; max77693_led_validate_configuration(led, cfg); memcpy(led->iout_torch_max, cfg->iout_torch_max, sizeof(led->iout_torch_max)); memcpy(led->iout_flash_max, cfg->iout_flash_max, sizeof(led->iout_flash_max)); return 0; } static const struct led_flash_ops flash_ops = { .flash_brightness_set = max77693_led_flash_brightness_set, .strobe_set = max77693_led_flash_strobe_set, .strobe_get = max77693_led_flash_strobe_get, .timeout_set = max77693_led_flash_timeout_set, .fault_get = max77693_led_flash_fault_get, }; static void max77693_init_flash_settings(struct max77693_sub_led *sub_led, struct max77693_led_config_data *led_cfg) { struct led_classdev_flash *fled_cdev = &sub_led->fled_cdev; struct max77693_led_device *led = sub_led_to_led(sub_led); int fled_id = sub_led->fled_id; struct led_flash_setting *setting; /* Init flash intensity setting */ setting = &fled_cdev->brightness; setting->min = FLASH_IOUT_MIN; setting->max = led->iout_joint ? led_cfg->iout_flash_max[FLED1] + led_cfg->iout_flash_max[FLED2] : led_cfg->iout_flash_max[fled_id]; setting->step = FLASH_IOUT_STEP; setting->val = setting->max; /* Init flash timeout setting */ setting = &fled_cdev->timeout; setting->min = FLASH_TIMEOUT_MIN; setting->max = led_cfg->flash_timeout_max[fled_id]; setting->step = FLASH_TIMEOUT_STEP; setting->val = setting->max; } #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static int max77693_led_external_strobe_set( struct v4l2_flash *v4l2_flash, bool enable) { struct max77693_sub_led *sub_led = flcdev_to_sub_led(v4l2_flash->fled_cdev); struct max77693_led_device *led = sub_led_to_led(sub_led); int fled_id = sub_led->fled_id; int ret; mutex_lock(&led->lock); if (enable) ret = max77693_add_mode(led, MODE_FLASH_EXTERNAL(fled_id)); else ret = max77693_clear_mode(led, MODE_FLASH_EXTERNAL(fled_id)); mutex_unlock(&led->lock); return ret; } static void max77693_init_v4l2_flash_config(struct max77693_sub_led *sub_led, struct max77693_led_config_data *led_cfg, struct v4l2_flash_config *v4l2_sd_cfg) { struct max77693_led_device *led = sub_led_to_led(sub_led); struct device *dev = &led->pdev->dev; struct max77693_dev *iodev = dev_get_drvdata(dev->parent); struct i2c_client *i2c = iodev->i2c; struct led_flash_setting *s; snprintf(v4l2_sd_cfg->dev_name, sizeof(v4l2_sd_cfg->dev_name), "%s %d-%04x", sub_led->fled_cdev.led_cdev.name, i2c_adapter_id(i2c->adapter), i2c->addr); s = &v4l2_sd_cfg->intensity; s->min = TORCH_IOUT_MIN; s->max = sub_led->fled_cdev.led_cdev.max_brightness * TORCH_IOUT_STEP; s->step = TORCH_IOUT_STEP; s->val = s->max; /* Init flash faults config */ v4l2_sd_cfg->flash_faults = LED_FAULT_OVER_VOLTAGE | LED_FAULT_SHORT_CIRCUIT | LED_FAULT_OVER_CURRENT; v4l2_sd_cfg->has_external_strobe = true; } static const struct v4l2_flash_ops v4l2_flash_ops = { .external_strobe_set = max77693_led_external_strobe_set, }; #else static inline void max77693_init_v4l2_flash_config( struct max77693_sub_led *sub_led, struct max77693_led_config_data *led_cfg, struct v4l2_flash_config *v4l2_sd_cfg) { } static const struct v4l2_flash_ops v4l2_flash_ops; #endif static void max77693_init_fled_cdev(struct max77693_sub_led *sub_led, struct max77693_led_config_data *led_cfg) { struct max77693_led_device *led = sub_led_to_led(sub_led); int fled_id = sub_led->fled_id; struct led_classdev_flash *fled_cdev; struct led_classdev *led_cdev; /* Initialize LED Flash class device */ fled_cdev = &sub_led->fled_cdev; fled_cdev->ops = &flash_ops; led_cdev = &fled_cdev->led_cdev; led_cdev->name = led_cfg->label[fled_id]; led_cdev->brightness_set_blocking = max77693_led_brightness_set; led_cdev->max_brightness = (led->iout_joint ? led_cfg->iout_torch_max[FLED1] + led_cfg->iout_torch_max[FLED2] : led_cfg->iout_torch_max[fled_id]) / TORCH_IOUT_STEP; led_cdev->flags |= LED_DEV_CAP_FLASH; max77693_init_flash_settings(sub_led, led_cfg); /* Init flash timeout cache */ sub_led->flash_timeout = fled_cdev->timeout.val; } static int max77693_register_led(struct max77693_sub_led *sub_led, struct max77693_led_config_data *led_cfg, struct device_node *sub_node) { struct max77693_led_device *led = sub_led_to_led(sub_led); struct led_classdev_flash *fled_cdev = &sub_led->fled_cdev; struct device *dev = &led->pdev->dev; struct v4l2_flash_config v4l2_sd_cfg = {}; int ret; /* Register in the LED subsystem */ ret = led_classdev_flash_register(dev, fled_cdev); if (ret < 0) return ret; max77693_init_v4l2_flash_config(sub_led, led_cfg, &v4l2_sd_cfg); /* Register in the V4L2 subsystem. */ sub_led->v4l2_flash = v4l2_flash_init(dev, of_fwnode_handle(sub_node), fled_cdev, &v4l2_flash_ops, &v4l2_sd_cfg); if (IS_ERR(sub_led->v4l2_flash)) { ret = PTR_ERR(sub_led->v4l2_flash); goto err_v4l2_flash_init; } return 0; err_v4l2_flash_init: led_classdev_flash_unregister(fled_cdev); return ret; } static int max77693_led_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct max77693_dev *iodev = dev_get_drvdata(dev->parent); struct max77693_led_device *led; struct max77693_sub_led *sub_leds; struct device_node *sub_nodes[2] = {}; struct max77693_led_config_data led_cfg = {}; int init_fled_cdev[2], i, ret; led = devm_kzalloc(dev, sizeof(*led), GFP_KERNEL); if (!led) return -ENOMEM; led->pdev = pdev; led->regmap = iodev->regmap; led->allowed_modes = MODE_FLASH_MASK; sub_leds = led->sub_leds; platform_set_drvdata(pdev, led); ret = max77693_led_get_configuration(led, &led_cfg, sub_nodes); if (ret < 0) return ret; ret = max77693_setup(led, &led_cfg); if (ret < 0) return ret; mutex_init(&led->lock); init_fled_cdev[FLED1] = led->iout_joint || max77693_fled_used(led, FLED1); init_fled_cdev[FLED2] = !led->iout_joint && max77693_fled_used(led, FLED2); for (i = FLED1; i <= FLED2; ++i) { if (!init_fled_cdev[i]) continue; /* Initialize LED Flash class device */ max77693_init_fled_cdev(&sub_leds[i], &led_cfg); /* * Register LED Flash class device and corresponding * V4L2 Flash device. */ ret = max77693_register_led(&sub_leds[i], &led_cfg, sub_nodes[i]); if (ret < 0) { /* * At this moment FLED1 might have been already * registered and it needs to be released. */ if (i == FLED2) goto err_register_led2; else goto err_register_led1; } } return 0; err_register_led2: /* It is possible than only FLED2 was to be registered */ if (!init_fled_cdev[FLED1]) goto err_register_led1; v4l2_flash_release(sub_leds[FLED1].v4l2_flash); led_classdev_flash_unregister(&sub_leds[FLED1].fled_cdev); err_register_led1: mutex_destroy(&led->lock); return ret; } static int max77693_led_remove(struct platform_device *pdev) { struct max77693_led_device *led = platform_get_drvdata(pdev); struct max77693_sub_led *sub_leds = led->sub_leds; if (led->iout_joint || max77693_fled_used(led, FLED1)) { v4l2_flash_release(sub_leds[FLED1].v4l2_flash); led_classdev_flash_unregister(&sub_leds[FLED1].fled_cdev); } if (!led->iout_joint && max77693_fled_used(led, FLED2)) { v4l2_flash_release(sub_leds[FLED2].v4l2_flash); led_classdev_flash_unregister(&sub_leds[FLED2].fled_cdev); } mutex_destroy(&led->lock); return 0; } static const struct of_device_id max77693_led_dt_match[] = { { .compatible = "maxim,max77693-led" }, {}, }; MODULE_DEVICE_TABLE(of, max77693_led_dt_match); static struct platform_driver max77693_led_driver = { .probe = max77693_led_probe, .remove = max77693_led_remove, .driver = { .name = "max77693-led", .of_match_table = max77693_led_dt_match, }, }; module_platform_driver(max77693_led_driver); MODULE_AUTHOR("Jacek Anaszewski <[email protected]>"); MODULE_AUTHOR("Andrzej Hajda <[email protected]>"); MODULE_DESCRIPTION("Maxim MAX77693 led flash driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/leds/flash/leds-max77693.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022 Jason A. Donenfeld <[email protected]>. All Rights Reserved. * * The "Virtual Machine Generation ID" is exposed via ACPI and changes when a * virtual machine forks or is cloned. This driver exists for shepherding that * information to random.c. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/acpi.h> #include <linux/random.h> ACPI_MODULE_NAME("vmgenid"); enum { VMGENID_SIZE = 16 }; struct vmgenid_state { u8 *next_id; u8 this_id[VMGENID_SIZE]; }; static int vmgenid_add(struct acpi_device *device) { struct acpi_buffer parsed = { ACPI_ALLOCATE_BUFFER }; struct vmgenid_state *state; union acpi_object *obj; phys_addr_t phys_addr; acpi_status status; int ret = 0; state = devm_kmalloc(&device->dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; status = acpi_evaluate_object(device->handle, "ADDR", NULL, &parsed); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating ADDR")); return -ENODEV; } obj = parsed.pointer; if (!obj || obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 2 || obj->package.elements[0].type != ACPI_TYPE_INTEGER || obj->package.elements[1].type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto out; } phys_addr = (obj->package.elements[0].integer.value << 0) | (obj->package.elements[1].integer.value << 32); state->next_id = devm_memremap(&device->dev, phys_addr, VMGENID_SIZE, MEMREMAP_WB); if (IS_ERR(state->next_id)) { ret = PTR_ERR(state->next_id); goto out; } memcpy(state->this_id, state->next_id, sizeof(state->this_id)); add_device_randomness(state->this_id, sizeof(state->this_id)); device->driver_data = state; out: ACPI_FREE(parsed.pointer); return ret; } static void vmgenid_notify(struct acpi_device *device, u32 event) { struct vmgenid_state *state = acpi_driver_data(device); u8 old_id[VMGENID_SIZE]; memcpy(old_id, state->this_id, sizeof(old_id)); memcpy(state->this_id, state->next_id, sizeof(state->this_id)); if (!memcmp(old_id, state->this_id, sizeof(old_id))) return; add_vmfork_randomness(state->this_id, sizeof(state->this_id)); } static const struct acpi_device_id vmgenid_ids[] = { { "VMGENCTR", 0 }, { "VM_GEN_COUNTER", 0 }, { } }; static struct acpi_driver vmgenid_driver = { .name = "vmgenid", .ids = vmgenid_ids, .owner = THIS_MODULE, .ops = { .add = vmgenid_add, .notify = vmgenid_notify } }; module_acpi_driver(vmgenid_driver); MODULE_DEVICE_TABLE(acpi, vmgenid_ids); MODULE_DESCRIPTION("Virtual Machine Generation ID"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Jason A. Donenfeld <[email protected]>");
linux-master
drivers/virt/vmgenid.c
/* * Freescale Hypervisor Management Driver * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. * Author: Timur Tabi <[email protected]> * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * * The Freescale hypervisor management driver provides several services to * drivers and applications related to the Freescale hypervisor: * * 1. An ioctl interface for querying and managing partitions. * * 2. A file interface to reading incoming doorbells. * * 3. An interrupt handler for shutting down the partition upon receiving the * shutdown doorbell from a manager partition. * * 4. A kernel interface for receiving callbacks when a managed partition * shuts down. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/reboot.h> #include <linux/uaccess.h> #include <linux/notifier.h> #include <linux/interrupt.h> #include <linux/io.h> #include <asm/fsl_hcalls.h> #include <linux/fsl_hypervisor.h> static BLOCKING_NOTIFIER_HEAD(failover_subscribers); /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART * * Restart a running partition */ static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) { struct fsl_hv_ioctl_restart param; /* Get the parameters from the user */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart))) return -EFAULT; param.ret = fh_partition_restart(param.partition); if (copy_to_user(&p->ret, &param.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS * * Query the status of a partition */ static long ioctl_status(struct fsl_hv_ioctl_status __user *p) { struct fsl_hv_ioctl_status param; u32 status; /* Get the parameters from the user */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status))) return -EFAULT; param.ret = fh_partition_get_status(param.partition, &status); if (!param.ret) param.status = status; if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_START * * Start a stopped partition. */ static long ioctl_start(struct fsl_hv_ioctl_start __user *p) { struct fsl_hv_ioctl_start param; /* Get the parameters from the user */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start))) return -EFAULT; param.ret = fh_partition_start(param.partition, param.entry_point, param.load); if (copy_to_user(&p->ret, &param.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP * * Stop a running partition */ static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) { struct fsl_hv_ioctl_stop param; /* Get the parameters from the user */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop))) return -EFAULT; param.ret = fh_partition_stop(param.partition); if (copy_to_user(&p->ret, &param.ret, sizeof(__u32))) return -EFAULT; return 0; } /* * Ioctl interface for FSL_HV_IOCTL_MEMCPY * * The FH_MEMCPY hypercall takes an array of address/address/size structures * to represent the data being copied. As a convenience to the user, this * ioctl takes a user-create buffer and a pointer to a guest physically * contiguous buffer in the remote partition, and creates the * address/address/size array for the hypercall. */ static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) { struct fsl_hv_ioctl_memcpy param; struct page **pages = NULL; void *sg_list_unaligned = NULL; struct fh_sg_list *sg_list = NULL; unsigned int num_pages; unsigned long lb_offset; /* Offset within a page of the local buffer */ unsigned int i; long ret = 0; int num_pinned = 0; /* return value from get_user_pages_fast() */ phys_addr_t remote_paddr; /* The next address in the remote buffer */ uint32_t count; /* The number of bytes left to copy */ /* Get the parameters from the user */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy))) return -EFAULT; /* * One partition must be local, the other must be remote. In other * words, if source and target are both -1, or are both not -1, then * return an error. */ if ((param.source == -1) == (param.target == -1)) return -EINVAL; /* * The array of pages returned by get_user_pages_fast() covers only * page-aligned memory. Since the user buffer is probably not * page-aligned, we need to handle the discrepancy. * * We calculate the offset within a page of the S/G list, and make * adjustments accordingly. This will result in a page list that looks * like this: * * ---- <-- first page starts before the buffer * | | * |////|-> ---- * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////| | | * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////| | | * |////| | | * ---- | | * | | * ---- | | * |////| | | * |////|-> ---- * | | <-- last page ends after the buffer * ---- * * The distance between the start of the first page and the start of the * buffer is lb_offset. The hashed (///) areas are the parts of the * page list that contain the actual buffer. * * The advantage of this approach is that the number of pages is * equal to the number of entries in the S/G list that we give to the * hypervisor. */ lb_offset = param.local_vaddr & (PAGE_SIZE - 1); if (param.count == 0 || param.count > U64_MAX - lb_offset - PAGE_SIZE + 1) return -EINVAL; num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Allocate the buffers we need */ /* * 'pages' is an array of struct page pointers that's initialized by * get_user_pages_fast(). */ pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { pr_debug("fsl-hv: could not allocate page list\n"); return -ENOMEM; } /* * sg_list is the list of fh_sg_list objects that we pass to the * hypervisor. */ sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + sizeof(struct fh_sg_list) - 1, GFP_KERNEL); if (!sg_list_unaligned) { pr_debug("fsl-hv: could not allocate S/G list\n"); ret = -ENOMEM; goto free_pages; } sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); /* Get the physical addresses of the source buffer */ num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset, num_pages, param.source != -1 ? FOLL_WRITE : 0, pages); if (num_pinned != num_pages) { pr_debug("fsl-hv: could not lock source buffer\n"); ret = (num_pinned < 0) ? num_pinned : -EFAULT; goto exit; } /* * Build the fh_sg_list[] array. The first page is special * because it's misaligned. */ if (param.source == -1) { sg_list[0].source = page_to_phys(pages[0]) + lb_offset; sg_list[0].target = param.remote_paddr; } else { sg_list[0].source = param.remote_paddr; sg_list[0].target = page_to_phys(pages[0]) + lb_offset; } sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); remote_paddr = param.remote_paddr + sg_list[0].size; count = param.count - sg_list[0].size; for (i = 1; i < num_pages; i++) { if (param.source == -1) { /* local to remote */ sg_list[i].source = page_to_phys(pages[i]); sg_list[i].target = remote_paddr; } else { /* remote to local */ sg_list[i].source = remote_paddr; sg_list[i].target = page_to_phys(pages[i]); } sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); remote_paddr += sg_list[i].size; count -= sg_list[i].size; } param.ret = fh_partition_memcpy(param.source, param.target, virt_to_phys(sg_list), num_pages); exit: if (pages && (num_pinned > 0)) { for (i = 0; i < num_pinned; i++) put_page(pages[i]); } kfree(sg_list_unaligned); free_pages: kfree(pages); if (!ret) if (copy_to_user(&p->ret, &param.ret, sizeof(__u32))) return -EFAULT; return ret; } /* * Ioctl interface for FSL_HV_IOCTL_DOORBELL * * Ring a doorbell */ static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) { struct fsl_hv_ioctl_doorbell param; /* Get the parameters from the user. */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell))) return -EFAULT; param.ret = ev_doorbell_send(param.doorbell); if (copy_to_user(&p->ret, &param.ret, sizeof(__u32))) return -EFAULT; return 0; } static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) { struct fsl_hv_ioctl_prop param; char __user *upath, *upropname; void __user *upropval; char *path, *propname; void *propval; int ret = 0; /* Get the parameters from the user. */ if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop))) return -EFAULT; upath = (char __user *)(uintptr_t)param.path; upropname = (char __user *)(uintptr_t)param.propname; upropval = (void __user *)(uintptr_t)param.propval; path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); if (IS_ERR(path)) return PTR_ERR(path); propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); if (IS_ERR(propname)) { ret = PTR_ERR(propname); goto err_free_path; } if (param.proplen > FH_DTPROP_MAX_PROPLEN) { ret = -EINVAL; goto err_free_propname; } propval = kmalloc(param.proplen, GFP_KERNEL); if (!propval) { ret = -ENOMEM; goto err_free_propname; } if (set) { if (copy_from_user(propval, upropval, param.proplen)) { ret = -EFAULT; goto err_free_propval; } param.ret = fh_partition_set_dtprop(param.handle, virt_to_phys(path), virt_to_phys(propname), virt_to_phys(propval), param.proplen); } else { param.ret = fh_partition_get_dtprop(param.handle, virt_to_phys(path), virt_to_phys(propname), virt_to_phys(propval), &param.proplen); if (param.ret == 0) { if (copy_to_user(upropval, propval, param.proplen) || put_user(param.proplen, &p->proplen)) { ret = -EFAULT; goto err_free_propval; } } } if (put_user(param.ret, &p->ret)) ret = -EFAULT; err_free_propval: kfree(propval); err_free_propname: kfree(propname); err_free_path: kfree(path); return ret; } /* * Ioctl main entry point */ static long fsl_hv_ioctl(struct file *file, unsigned int cmd, unsigned long argaddr) { void __user *arg = (void __user *)argaddr; long ret; switch (cmd) { case FSL_HV_IOCTL_PARTITION_RESTART: ret = ioctl_restart(arg); break; case FSL_HV_IOCTL_PARTITION_GET_STATUS: ret = ioctl_status(arg); break; case FSL_HV_IOCTL_PARTITION_START: ret = ioctl_start(arg); break; case FSL_HV_IOCTL_PARTITION_STOP: ret = ioctl_stop(arg); break; case FSL_HV_IOCTL_MEMCPY: ret = ioctl_memcpy(arg); break; case FSL_HV_IOCTL_DOORBELL: ret = ioctl_doorbell(arg); break; case FSL_HV_IOCTL_GETPROP: ret = ioctl_dtprop(arg, 0); break; case FSL_HV_IOCTL_SETPROP: ret = ioctl_dtprop(arg, 1); break; default: pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), _IOC_SIZE(cmd)); return -ENOTTY; } return ret; } /* Linked list of processes that have us open */ static struct list_head db_list; /* spinlock for db_list */ static DEFINE_SPINLOCK(db_list_lock); /* The size of the doorbell event queue. This must be a power of two. */ #define QSIZE 16 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ #define nextp(x) (((x) + 1) & (QSIZE - 1)) /* Per-open data structure */ struct doorbell_queue { struct list_head list; spinlock_t lock; wait_queue_head_t wait; unsigned int head; unsigned int tail; uint32_t q[QSIZE]; }; /* Linked list of ISRs that we registered */ struct list_head isr_list; /* Per-ISR data structure */ struct doorbell_isr { struct list_head list; unsigned int irq; uint32_t doorbell; /* The doorbell handle */ uint32_t partition; /* The partition handle, if used */ }; /* * Add a doorbell to all of the doorbell queues */ static void fsl_hv_queue_doorbell(uint32_t doorbell) { struct doorbell_queue *dbq; unsigned long flags; /* Prevent another core from modifying db_list */ spin_lock_irqsave(&db_list_lock, flags); list_for_each_entry(dbq, &db_list, list) { if (dbq->head != nextp(dbq->tail)) { dbq->q[dbq->tail] = doorbell; /* * This memory barrier eliminates the need to grab * the spinlock for dbq. */ smp_wmb(); dbq->tail = nextp(dbq->tail); wake_up_interruptible(&dbq->wait); } } spin_unlock_irqrestore(&db_list_lock, flags); } /* * Interrupt handler for all doorbells * * We use the same interrupt handler for all doorbells. Whenever a doorbell * is rung, and we receive an interrupt, we just put the handle for that * doorbell (passed to us as *data) into all of the queues. */ static irqreturn_t fsl_hv_isr(int irq, void *data) { fsl_hv_queue_doorbell((uintptr_t) data); return IRQ_HANDLED; } /* * State change thread function * * The state change notification arrives in an interrupt, but we can't call * blocking_notifier_call_chain() in an interrupt handler. We could call * atomic_notifier_call_chain(), but that would require the clients' call-back * function to run in interrupt context. Since we don't want to impose that * restriction on the clients, we use a threaded IRQ to process the * notification in kernel context. */ static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) { struct doorbell_isr *dbisr = data; blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, NULL); return IRQ_HANDLED; } /* * Interrupt handler for state-change doorbells */ static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) { unsigned int status; struct doorbell_isr *dbisr = data; int ret; /* It's still a doorbell, so add it to all the queues. */ fsl_hv_queue_doorbell(dbisr->doorbell); /* Determine the new state, and if it's stopped, notify the clients. */ ret = fh_partition_get_status(dbisr->partition, &status); if (!ret && (status == FH_PARTITION_STOPPED)) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } /* * Returns a bitmask indicating whether a read will block */ static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p) { struct doorbell_queue *dbq = filp->private_data; unsigned long flags; __poll_t mask; spin_lock_irqsave(&dbq->lock, flags); poll_wait(filp, &dbq->wait, p); mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM); spin_unlock_irqrestore(&dbq->lock, flags); return mask; } /* * Return the handles for any incoming doorbells * * If there are doorbell handles in the queue for this open instance, then * return them to the caller as an array of 32-bit integers. Otherwise, * block until there is at least one handle to return. */ static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, loff_t *off) { struct doorbell_queue *dbq = filp->private_data; uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ unsigned long flags; ssize_t count = 0; /* Make sure we stop when the user buffer is full. */ while (len >= sizeof(uint32_t)) { uint32_t dbell; /* Local copy of doorbell queue data */ spin_lock_irqsave(&dbq->lock, flags); /* * If the queue is empty, then either we're done or we need * to block. If the application specified O_NONBLOCK, then * we return the appropriate error code. */ if (dbq->head == dbq->tail) { spin_unlock_irqrestore(&dbq->lock, flags); if (count) break; if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(dbq->wait, dbq->head != dbq->tail)) return -ERESTARTSYS; continue; } /* * Even though we have an smp_wmb() in the ISR, the core * might speculatively execute the "dbell = ..." below while * it's evaluating the if-statement above. In that case, the * value put into dbell could be stale if the core accepts the * speculation. To prevent that, we need a read memory barrier * here as well. */ smp_rmb(); /* Copy the data to a temporary local buffer, because * we can't call copy_to_user() from inside a spinlock */ dbell = dbq->q[dbq->head]; dbq->head = nextp(dbq->head); spin_unlock_irqrestore(&dbq->lock, flags); if (put_user(dbell, p)) return -EFAULT; p++; count += sizeof(uint32_t); len -= sizeof(uint32_t); } return count; } /* * Open the driver and prepare for reading doorbells. * * Every time an application opens the driver, we create a doorbell queue * for that file handle. This queue is used for any incoming doorbells. */ static int fsl_hv_open(struct inode *inode, struct file *filp) { struct doorbell_queue *dbq; unsigned long flags; dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); if (!dbq) { pr_err("fsl-hv: out of memory\n"); return -ENOMEM; } spin_lock_init(&dbq->lock); init_waitqueue_head(&dbq->wait); spin_lock_irqsave(&db_list_lock, flags); list_add(&dbq->list, &db_list); spin_unlock_irqrestore(&db_list_lock, flags); filp->private_data = dbq; return 0; } /* * Close the driver */ static int fsl_hv_close(struct inode *inode, struct file *filp) { struct doorbell_queue *dbq = filp->private_data; unsigned long flags; spin_lock_irqsave(&db_list_lock, flags); list_del(&dbq->list); spin_unlock_irqrestore(&db_list_lock, flags); kfree(dbq); return 0; } static const struct file_operations fsl_hv_fops = { .owner = THIS_MODULE, .open = fsl_hv_open, .release = fsl_hv_close, .poll = fsl_hv_poll, .read = fsl_hv_read, .unlocked_ioctl = fsl_hv_ioctl, .compat_ioctl = compat_ptr_ioctl, }; static struct miscdevice fsl_hv_misc_dev = { MISC_DYNAMIC_MINOR, "fsl-hv", &fsl_hv_fops }; static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) { orderly_poweroff(false); return IRQ_HANDLED; } /* * Returns the handle of the parent of the given node * * The handle is the value of the 'hv-handle' property */ static int get_parent_handle(struct device_node *np) { struct device_node *parent; const uint32_t *prop; uint32_t handle; int len; parent = of_get_parent(np); if (!parent) /* It's not really possible for this to fail */ return -ENODEV; /* * The proper name for the handle property is "hv-handle", but some * older versions of the hypervisor used "reg". */ prop = of_get_property(parent, "hv-handle", &len); if (!prop) prop = of_get_property(parent, "reg", &len); if (!prop || (len != sizeof(uint32_t))) { /* This can happen only if the node is malformed */ of_node_put(parent); return -ENODEV; } handle = be32_to_cpup(prop); of_node_put(parent); return handle; } /* * Register a callback for failover events * * This function is called by device drivers to register their callback * functions for fail-over events. */ int fsl_hv_failover_register(struct notifier_block *nb) { return blocking_notifier_chain_register(&failover_subscribers, nb); } EXPORT_SYMBOL(fsl_hv_failover_register); /* * Unregister a callback for failover events */ int fsl_hv_failover_unregister(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&failover_subscribers, nb); } EXPORT_SYMBOL(fsl_hv_failover_unregister); /* * Return TRUE if we're running under FSL hypervisor * * This function checks to see if we're running under the Freescale * hypervisor, and returns zero if we're not, or non-zero if we are. * * First, it checks if MSR[GS]==1, which means we're running under some * hypervisor. Then it checks if there is a hypervisor node in the device * tree. Currently, that means there needs to be a node in the root called * "hypervisor" and which has a property named "fsl,hv-version". */ static int has_fsl_hypervisor(void) { struct device_node *node; int ret; node = of_find_node_by_path("/hypervisor"); if (!node) return 0; ret = of_property_present(node, "fsl,hv-version"); of_node_put(node); return ret; } /* * Freescale hypervisor management driver init * * This function is called when this module is loaded. * * Register ourselves as a miscellaneous driver. This will register the * fops structure and create the right sysfs entries for udev. */ static int __init fsl_hypervisor_init(void) { struct device_node *np; struct doorbell_isr *dbisr, *n; int ret; pr_info("Freescale hypervisor management driver\n"); if (!has_fsl_hypervisor()) { pr_info("fsl-hv: no hypervisor found\n"); return -ENODEV; } ret = misc_register(&fsl_hv_misc_dev); if (ret) { pr_err("fsl-hv: cannot register device\n"); return ret; } INIT_LIST_HEAD(&db_list); INIT_LIST_HEAD(&isr_list); for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { unsigned int irq; const uint32_t *handle; handle = of_get_property(np, "interrupts", NULL); irq = irq_of_parse_and_map(np, 0); if (!handle || !irq) { pr_err("fsl-hv: no 'interrupts' property in %pOF node\n", np); continue; } dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); if (!dbisr) goto out_of_memory; dbisr->irq = irq; dbisr->doorbell = be32_to_cpup(handle); if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { /* The shutdown doorbell gets its own ISR */ ret = request_irq(irq, fsl_hv_shutdown_isr, 0, np->name, NULL); } else if (of_device_is_compatible(np, "fsl,hv-state-change-doorbell")) { /* * The state change doorbell triggers a notification if * the state of the managed partition changes to * "stopped". We need a separate interrupt handler for * that, and we also need to know the handle of the * target partition, not just the handle of the * doorbell. */ dbisr->partition = ret = get_parent_handle(np); if (ret < 0) { pr_err("fsl-hv: node %pOF has missing or " "malformed parent\n", np); kfree(dbisr); continue; } ret = request_threaded_irq(irq, fsl_hv_state_change_isr, fsl_hv_state_change_thread, 0, np->name, dbisr); } else ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); if (ret < 0) { pr_err("fsl-hv: could not request irq %u for node %pOF\n", irq, np); kfree(dbisr); continue; } list_add(&dbisr->list, &isr_list); pr_info("fsl-hv: registered handler for doorbell %u\n", dbisr->doorbell); } return 0; out_of_memory: list_for_each_entry_safe(dbisr, n, &isr_list, list) { free_irq(dbisr->irq, dbisr); list_del(&dbisr->list); kfree(dbisr); } misc_deregister(&fsl_hv_misc_dev); return -ENOMEM; } /* * Freescale hypervisor management driver termination * * This function is called when this driver is unloaded. */ static void __exit fsl_hypervisor_exit(void) { struct doorbell_isr *dbisr, *n; list_for_each_entry_safe(dbisr, n, &isr_list, list) { free_irq(dbisr->irq, dbisr); list_del(&dbisr->list); kfree(dbisr); } misc_deregister(&fsl_hv_misc_dev); } module_init(fsl_hypervisor_init); module_exit(fsl_hypervisor_exit); MODULE_AUTHOR("Timur Tabi <[email protected]>"); MODULE_DESCRIPTION("Freescale hypervisor management driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/virt/fsl_hypervisor.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. */ /** * DOC: Enclave lifetime management driver for Nitro Enclaves (NE). * Nitro is a hypervisor that has been developed by Amazon. */ #include <linux/anon_inodes.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/device.h> #include <linux/file.h> #include <linux/hugetlb.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nitro_enclaves.h> #include <linux/pci.h> #include <linux/poll.h> #include <linux/range.h> #include <linux/slab.h> #include <linux/types.h> #include <uapi/linux/vm_sockets.h> #include "ne_misc_dev.h" #include "ne_pci_dev.h" /** * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma * separated. The NE CPU pool includes CPUs from a single NUMA * node. */ #define NE_CPUS_SIZE (512) /** * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF) * image in enclave memory. */ #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL) /** * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched * with. */ #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL) /** * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region. */ #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL) /** * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM. */ #define NE_PARENT_VM_CID (3) static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg); static const struct file_operations ne_fops = { .owner = THIS_MODULE, .llseek = noop_llseek, .unlocked_ioctl = ne_ioctl, }; static struct miscdevice ne_misc_dev = { .minor = MISC_DYNAMIC_MINOR, .name = "nitro_enclaves", .fops = &ne_fops, .mode = 0660, }; struct ne_devs ne_devs = { .ne_misc_dev = &ne_misc_dev, }; /* * TODO: Update logic to create new sysfs entries instead of using * a kernel parameter e.g. if multiple sysfs files needed. */ static int ne_set_kernel_param(const char *val, const struct kernel_param *kp); static const struct kernel_param_ops ne_cpu_pool_ops = { .get = param_get_string, .set = ne_set_kernel_param, }; static char ne_cpus[NE_CPUS_SIZE]; static struct kparam_string ne_cpus_arg = { .maxlen = sizeof(ne_cpus), .string = ne_cpus, }; module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644); /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */ MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves"); /** * struct ne_cpu_pool - CPU pool used for Nitro Enclaves. * @avail_threads_per_core: Available full CPU cores to be dedicated to * enclave(s). The cpumasks from the array, indexed * by core id, contain all the threads from the * available cores, that are not set for created * enclave(s). The full CPU cores are part of the * NE CPU pool. * @mutex: Mutex for the access to the NE CPU pool. * @nr_parent_vm_cores : The size of the available threads per core array. * The total number of CPU cores available on the * primary / parent VM. * @nr_threads_per_core: The number of threads that a full CPU core has. * @numa_node: NUMA node of the CPUs in the pool. */ struct ne_cpu_pool { cpumask_var_t *avail_threads_per_core; struct mutex mutex; unsigned int nr_parent_vm_cores; unsigned int nr_threads_per_core; int numa_node; }; static struct ne_cpu_pool ne_cpu_pool; /** * struct ne_phys_contig_mem_regions - Contiguous physical memory regions. * @num: The number of regions that currently has. * @regions: The array of physical memory regions. */ struct ne_phys_contig_mem_regions { unsigned long num; struct range *regions; }; /** * ne_check_enclaves_created() - Verify if at least one enclave has been created. * @void: No parameters provided. * * Context: Process context. * Return: * * True if at least one enclave is created. * * False otherwise. */ static bool ne_check_enclaves_created(void) { struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; bool ret = false; if (!ne_pci_dev) return ret; mutex_lock(&ne_pci_dev->enclaves_list_mutex); if (!list_empty(&ne_pci_dev->enclaves_list)) ret = true; mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return ret; } /** * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such * as not sharing CPU cores with the primary / parent VM * or not using CPU 0, which should remain available for * the primary / parent VM. Offline the CPUs from the * pool after the checks passed. * @ne_cpu_list: The CPU list used for setting NE CPU pool. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_setup_cpu_pool(const char *ne_cpu_list) { int core_id = -1; unsigned int cpu = 0; cpumask_var_t cpu_pool; unsigned int cpu_sibling = 0; unsigned int i = 0; int numa_node = -1; int rc = -EINVAL; if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL)) return -ENOMEM; mutex_lock(&ne_cpu_pool.mutex); rc = cpulist_parse(ne_cpu_list, cpu_pool); if (rc < 0) { pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc); goto free_pool_cpumask; } cpu = cpumask_any(cpu_pool); if (cpu >= nr_cpu_ids) { pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } /* * Check if the CPUs are online, to further get info about them * e.g. numa node, core id, siblings. */ for_each_cpu(cpu, cpu_pool) if (cpu_is_offline(cpu)) { pr_err("%s: CPU %d is offline, has to be online to get its metadata\n", ne_misc_dev.name, cpu); rc = -EINVAL; goto free_pool_cpumask; } /* * Check if the CPUs from the NE CPU pool are from the same NUMA node. */ for_each_cpu(cpu, cpu_pool) if (numa_node < 0) { numa_node = cpu_to_node(cpu); if (numa_node < 0) { pr_err("%s: Invalid NUMA node %d\n", ne_misc_dev.name, numa_node); rc = -EINVAL; goto free_pool_cpumask; } } else { if (numa_node != cpu_to_node(cpu)) { pr_err("%s: CPUs with different NUMA nodes\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } } /* * Check if CPU 0 and its siblings are included in the provided CPU pool * They should remain available for the primary / parent VM. */ if (cpumask_test_cpu(0, cpu_pool)) { pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) { if (cpumask_test_cpu(cpu_sibling, cpu_pool)) { pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n", ne_misc_dev.name, cpu_sibling); rc = -EINVAL; goto free_pool_cpumask; } } /* * Check if CPU siblings are included in the provided CPU pool. The * expectation is that full CPU cores are made available in the CPU pool * for enclaves. */ for_each_cpu(cpu, cpu_pool) { for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) { if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) { pr_err("%s: CPU %d is not in CPU pool\n", ne_misc_dev.name, cpu_sibling); rc = -EINVAL; goto free_pool_cpumask; } } } /* Calculate the number of threads from a full CPU core. */ cpu = cpumask_any(cpu_pool); for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) ne_cpu_pool.nr_threads_per_core++; ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core; ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores, sizeof(*ne_cpu_pool.avail_threads_per_core), GFP_KERNEL); if (!ne_cpu_pool.avail_threads_per_core) { rc = -ENOMEM; goto free_pool_cpumask; } for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) { rc = -ENOMEM; goto free_cores_cpumask; } /* * Split the NE CPU pool in threads per core to keep the CPU topology * after offlining the CPUs. */ for_each_cpu(cpu, cpu_pool) { core_id = topology_core_id(cpu); if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) { pr_err("%s: Invalid core id %d for CPU %d\n", ne_misc_dev.name, core_id, cpu); rc = -EINVAL; goto clear_cpumask; } cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]); } /* * CPUs that are given to enclave(s) should not be considered online * by Linux anymore, as the hypervisor will degrade them to floating. * The physical CPUs (full cores) are carved out of the primary / parent * VM and given to the enclave VM. The same number of vCPUs would run * on less pCPUs for the primary / parent VM. * * We offline them here, to not degrade performance and expose correct * topology to Linux and user space. */ for_each_cpu(cpu, cpu_pool) { rc = remove_cpu(cpu); if (rc != 0) { pr_err("%s: CPU %d is not offlined [rc=%d]\n", ne_misc_dev.name, cpu, rc); goto online_cpus; } } free_cpumask_var(cpu_pool); ne_cpu_pool.numa_node = numa_node; mutex_unlock(&ne_cpu_pool.mutex); return 0; online_cpus: for_each_cpu(cpu, cpu_pool) add_cpu(cpu); clear_cpumask: for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); free_cores_cpumask: for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); kfree(ne_cpu_pool.avail_threads_per_core); free_pool_cpumask: free_cpumask_var(cpu_pool); ne_cpu_pool.nr_parent_vm_cores = 0; ne_cpu_pool.nr_threads_per_core = 0; ne_cpu_pool.numa_node = -1; mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the * CPU pool. * @void: No parameters provided. * * Context: Process context. */ static void ne_teardown_cpu_pool(void) { unsigned int cpu = 0; unsigned int i = 0; int rc = -EINVAL; mutex_lock(&ne_cpu_pool.mutex); if (!ne_cpu_pool.nr_parent_vm_cores) { mutex_unlock(&ne_cpu_pool.mutex); return; } for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) { for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) { rc = add_cpu(cpu); if (rc != 0) pr_err("%s: CPU %d is not onlined [rc=%d]\n", ne_misc_dev.name, cpu, rc); } cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); } kfree(ne_cpu_pool.avail_threads_per_core); ne_cpu_pool.nr_parent_vm_cores = 0; ne_cpu_pool.nr_threads_per_core = 0; ne_cpu_pool.numa_node = -1; mutex_unlock(&ne_cpu_pool.mutex); } /** * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter. * @val: NE CPU pool string value. * @kp : NE kernel parameter associated with the NE CPU pool. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_kernel_param(const char *val, const struct kernel_param *kp) { char error_val[] = ""; int rc = -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (ne_check_enclaves_created()) { pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name); return -EPERM; } ne_teardown_cpu_pool(); rc = ne_setup_cpu_pool(val); if (rc < 0) { pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc); param_set_copystring(error_val, kp); return rc; } rc = param_set_copystring(val, kp); if (rc < 0) { pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc); ne_teardown_cpu_pool(); param_set_copystring(error_val, kp); return rc; } return 0; } /** * ne_donated_cpu() - Check if the provided CPU is already used by the enclave. * @ne_enclave : Private data associated with the current enclave. * @cpu: CPU to check if already used. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * True if the provided CPU is already used by the enclave. * * False otherwise. */ static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu) { if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) return true; return false; } /** * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the * NE CPU pool. * @void: No parameters provided. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * Core id. * * -1 if no CPU core available in the pool. */ static int ne_get_unused_core_from_cpu_pool(void) { int core_id = -1; unsigned int i = 0; for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) { core_id = i; break; } return core_id; } /** * ne_set_enclave_threads_per_core() - Set the threads of the provided core in * the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * @core_id: Core id to get its threads from the NE CPU pool. * @vcpu_id: vCPU id part of the provided core. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave, int core_id, u32 vcpu_id) { unsigned int cpu = 0; if (core_id < 0 && vcpu_id == 0) { dev_err_ratelimited(ne_misc_dev.this_device, "No CPUs available in NE CPU pool\n"); return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; } if (core_id < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "CPU %d is not in NE CPU pool\n", vcpu_id); return -NE_ERR_VCPU_NOT_IN_CPU_POOL; } if (core_id >= ne_enclave->nr_parent_vm_cores) { dev_err_ratelimited(ne_misc_dev.this_device, "Invalid core id %d - ne_enclave\n", core_id); return -NE_ERR_VCPU_INVALID_CPU_CORE; } for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]) cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]); cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]); return 0; } /** * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the * remaining sibling(s) of a CPU core or the first * sibling of a new CPU core. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: vCPU to get from the NE CPU pool. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id) { int core_id = -1; unsigned int cpu = 0; unsigned int i = 0; int rc = -EINVAL; /* * If previously allocated a thread of a core to this enclave, first * check remaining sibling(s) for new CPU allocations, so that full * CPU cores are used for the enclave. */ for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) for_each_cpu(cpu, ne_enclave->threads_per_core[i]) if (!ne_donated_cpu(ne_enclave, cpu)) { *vcpu_id = cpu; return 0; } mutex_lock(&ne_cpu_pool.mutex); /* * If no remaining siblings, get a core from the NE CPU pool and keep * track of all the threads in the enclave threads per core data structure. */ core_id = ne_get_unused_core_from_cpu_pool(); rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id); if (rc < 0) goto unlock_mutex; *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]); rc = 0; unlock_mutex: mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the * core associated with the provided vCPU. * @vcpu_id: Provided vCPU id to get its associated core id. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * Core id. * * -1 if the provided vCPU is not in the pool. */ static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id) { int core_id = -1; unsigned int i = 0; for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) { core_id = i; break; } return core_id; } /** * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs * from the pool. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id) { int core_id = -1; unsigned int i = 0; int rc = -EINVAL; if (ne_donated_cpu(ne_enclave, vcpu_id)) { dev_err_ratelimited(ne_misc_dev.this_device, "CPU %d already used\n", vcpu_id); return -NE_ERR_VCPU_ALREADY_USED; } /* * If previously allocated a thread of a core to this enclave, but not * the full core, first check remaining sibling(s). */ for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i])) return 0; mutex_lock(&ne_cpu_pool.mutex); /* * If no remaining siblings, get from the NE CPU pool the core * associated with the vCPU and keep track of all the threads in the * enclave threads per core data structure. */ core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id); rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id); if (rc < 0) goto unlock_mutex; rc = 0; unlock_mutex: mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current * enclave. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: ID of the CPU to be associated with the given slot, * apic id on x86. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; int rc = -EINVAL; struct slot_add_vcpu_req slot_add_vcpu_req = {}; if (ne_enclave->mm != current->mm) return -EIO; slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid; slot_add_vcpu_req.vcpu_id = vcpu_id; rc = ne_do_request(pdev, SLOT_ADD_VCPU, &slot_add_vcpu_req, sizeof(slot_add_vcpu_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot add vCPU [rc=%d]\n", rc); return rc; } cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids); ne_enclave->nr_vcpus++; return 0; } /** * ne_sanity_check_user_mem_region() - Sanity check the user space memory * region received during the set user * memory region ioctl call. * @ne_enclave : Private data associated with the current enclave. * @mem_region : User space memory region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave, struct ne_user_memory_region mem_region) { struct ne_mem_region *ne_mem_region = NULL; if (ne_enclave->mm != current->mm) return -EIO; if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space memory size is not multiple of 2 MiB\n"); return -NE_ERR_INVALID_MEM_REGION_SIZE; } if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space address is not 2 MiB aligned\n"); return -NE_ERR_UNALIGNED_MEM_REGION_ADDR; } if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) || !access_ok((void __user *)(unsigned long)mem_region.userspace_addr, mem_region.memory_size)) { dev_err_ratelimited(ne_misc_dev.this_device, "Invalid user space address range\n"); return -NE_ERR_INVALID_MEM_REGION_ADDR; } list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list, mem_region_list_entry) { u64 memory_size = ne_mem_region->memory_size; u64 userspace_addr = ne_mem_region->userspace_addr; if ((userspace_addr <= mem_region.userspace_addr && mem_region.userspace_addr < (userspace_addr + memory_size)) || (mem_region.userspace_addr <= userspace_addr && (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space memory region already used\n"); return -NE_ERR_MEM_REGION_ALREADY_USED; } } return 0; } /** * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space * memory region received during the set * user memory region ioctl call. * @ne_enclave : Private data associated with the current enclave. * @mem_region_page: Page from the user space memory region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave, struct page *mem_region_page) { if (!PageHuge(mem_region_page)) { dev_err_ratelimited(ne_misc_dev.this_device, "Not a hugetlbfs page\n"); return -NE_ERR_MEM_NOT_HUGE_PAGE; } if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "Page size not multiple of 2 MiB\n"); return -NE_ERR_INVALID_PAGE_SIZE; } if (ne_enclave->numa_node != page_to_nid(mem_region_page)) { dev_err_ratelimited(ne_misc_dev.this_device, "Page is not from NUMA node %d\n", ne_enclave->numa_node); return -NE_ERR_MEM_DIFFERENT_NUMA_NODE; } return 0; } /** * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size * of a physical memory region. * @phys_mem_region_paddr : Physical start address of the region to be sanity checked. * @phys_mem_region_size : Length of the region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr, u64 phys_mem_region_size) { if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "Physical mem region size is not multiple of 2 MiB\n"); return -EINVAL; } if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) { dev_err_ratelimited(ne_misc_dev.this_device, "Physical mem region address is not 2 MiB aligned\n"); return -EINVAL; } return 0; } /** * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent * regions if they are physically contiguous. * @phys_contig_regions : Private data associated with the contiguous physical memory regions. * @page_paddr : Physical start address of the region to be added. * @page_size : Length of the region to be added. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions, u64 page_paddr, u64 page_size) { unsigned long num = phys_contig_regions->num; int rc = 0; rc = ne_sanity_check_phys_mem_region(page_paddr, page_size); if (rc < 0) return rc; /* Physically contiguous, just merge */ if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) { phys_contig_regions->regions[num - 1].end += page_size; } else { phys_contig_regions->regions[num].start = page_paddr; phys_contig_regions->regions[num].end = page_paddr + page_size - 1; phys_contig_regions->num++; } return 0; } /** * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot * associated with the current enclave. * @ne_enclave : Private data associated with the current enclave. * @mem_region : User space memory region to be associated with the given slot. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave, struct ne_user_memory_region mem_region) { long gup_rc = 0; unsigned long i = 0; unsigned long max_nr_pages = 0; unsigned long memory_size = 0; struct ne_mem_region *ne_mem_region = NULL; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; struct ne_phys_contig_mem_regions phys_contig_mem_regions = {}; int rc = -EINVAL; rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region); if (rc < 0) return rc; ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL); if (!ne_mem_region) return -ENOMEM; max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE; ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages), GFP_KERNEL); if (!ne_mem_region->pages) { rc = -ENOMEM; goto free_mem_region; } phys_contig_mem_regions.regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions.regions), GFP_KERNEL); if (!phys_contig_mem_regions.regions) { rc = -ENOMEM; goto free_mem_region; } do { i = ne_mem_region->nr_pages; if (i == max_nr_pages) { dev_err_ratelimited(ne_misc_dev.this_device, "Reached max nr of pages in the pages data struct\n"); rc = -ENOMEM; goto put_pages; } gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1, ne_mem_region->pages + i, FOLL_GET); if (gup_rc < 0) { rc = gup_rc; dev_err_ratelimited(ne_misc_dev.this_device, "Error in get user pages [rc=%d]\n", rc); goto put_pages; } rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]); if (rc < 0) goto put_pages; rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions, page_to_phys(ne_mem_region->pages[i]), page_size(ne_mem_region->pages[i])); if (rc < 0) goto put_pages; memory_size += page_size(ne_mem_region->pages[i]); ne_mem_region->nr_pages++; } while (memory_size < mem_region.memory_size); if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) > ne_enclave->max_mem_regions) { dev_err_ratelimited(ne_misc_dev.this_device, "Reached max memory regions %lld\n", ne_enclave->max_mem_regions); rc = -NE_ERR_MEM_MAX_REGIONS; goto put_pages; } for (i = 0; i < phys_contig_mem_regions.num; i++) { u64 phys_region_addr = phys_contig_mem_regions.regions[i].start; u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]); rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size); if (rc < 0) goto put_pages; } ne_mem_region->memory_size = mem_region.memory_size; ne_mem_region->userspace_addr = mem_region.userspace_addr; list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list); for (i = 0; i < phys_contig_mem_regions.num; i++) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct slot_add_mem_req slot_add_mem_req = {}; slot_add_mem_req.slot_uid = ne_enclave->slot_uid; slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start; slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]); rc = ne_do_request(pdev, SLOT_ADD_MEM, &slot_add_mem_req, sizeof(slot_add_mem_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot add mem [rc=%d]\n", rc); kfree(phys_contig_mem_regions.regions); /* * Exit here without put pages as memory regions may * already been added. */ return rc; } ne_enclave->mem_size += slot_add_mem_req.size; ne_enclave->nr_mem_regions++; } kfree(phys_contig_mem_regions.regions); return 0; put_pages: for (i = 0; i < ne_mem_region->nr_pages; i++) put_page(ne_mem_region->pages[i]); free_mem_region: kfree(phys_contig_mem_regions.regions); kfree(ne_mem_region->pages); kfree(ne_mem_region); return rc; } /** * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources, * such as memory and CPU, have been set. * @ne_enclave : Private data associated with the current enclave. * @enclave_start_info : Enclave info that includes enclave cid and flags. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave, struct ne_enclave_start_info *enclave_start_info) { struct ne_pci_dev_cmd_reply cmd_reply = {}; unsigned int cpu = 0; struct enclave_start_req enclave_start_req = {}; unsigned int i = 0; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; int rc = -EINVAL; if (!ne_enclave->nr_mem_regions) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave has no mem regions\n"); return -NE_ERR_NO_MEM_REGIONS_ADDED; } if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave memory is less than %ld\n", NE_MIN_ENCLAVE_MEM_SIZE); return -NE_ERR_ENCLAVE_MEM_MIN_SIZE; } if (!ne_enclave->nr_vcpus) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave has no vCPUs\n"); return -NE_ERR_NO_VCPUS_ADDED; } for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) for_each_cpu(cpu, ne_enclave->threads_per_core[i]) if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) { dev_err_ratelimited(ne_misc_dev.this_device, "Full CPU cores not used\n"); return -NE_ERR_FULL_CORES_NOT_USED; } enclave_start_req.enclave_cid = enclave_start_info->enclave_cid; enclave_start_req.flags = enclave_start_info->flags; enclave_start_req.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, ENCLAVE_START, &enclave_start_req, sizeof(enclave_start_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in enclave start [rc=%d]\n", rc); return rc; } ne_enclave->state = NE_STATE_RUNNING; enclave_start_info->enclave_cid = cmd_reply.enclave_cid; return 0; } /** * ne_enclave_ioctl() - Ioctl function provided by the enclave file. * @file: File associated with this ioctl function. * @cmd: The command that is set for the ioctl call. * @arg: The argument that is provided for the ioctl call. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ne_enclave *ne_enclave = file->private_data; switch (cmd) { case NE_ADD_VCPU: { int rc = -EINVAL; u32 vcpu_id = 0; if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id))) return -EFAULT; mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } if (vcpu_id >= (ne_enclave->nr_parent_vm_cores * ne_enclave->nr_threads_per_core)) { dev_err_ratelimited(ne_misc_dev.this_device, "vCPU id higher than max CPU id\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_INVALID_VCPU; } if (!vcpu_id) { /* Use the CPU pool for choosing a CPU for the enclave. */ rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in get CPU from pool [rc=%d]\n", rc); mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } } else { /* Check if the provided vCPU is available in the NE CPU pool. */ rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in check CPU %d in pool [rc=%d]\n", vcpu_id, rc); mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } } rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id))) return -EFAULT; return 0; } case NE_GET_IMAGE_LOAD_INFO: { struct ne_image_load_info image_load_info = {}; if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info))) return -EFAULT; mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (!image_load_info.flags || image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag in enclave image load info\n"); return -NE_ERR_INVALID_FLAG_VALUE; } if (image_load_info.flags == NE_EIF_IMAGE) image_load_info.memory_offset = NE_EIF_LOAD_OFFSET; if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info))) return -EFAULT; return 0; } case NE_SET_USER_MEMORY_REGION: { struct ne_user_memory_region mem_region = {}; int rc = -EINVAL; if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region))) return -EFAULT; if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag for user memory region\n"); return -NE_ERR_INVALID_FLAG_VALUE; } mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); return 0; } case NE_START_ENCLAVE: { struct ne_enclave_start_info enclave_start_info = {}; int rc = -EINVAL; if (copy_from_user(&enclave_start_info, (void __user *)arg, sizeof(enclave_start_info))) return -EFAULT; if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag in enclave start info\n"); return -NE_ERR_INVALID_FLAG_VALUE; } /* * Do not use well-known CIDs - 0, 1, 2 - for enclaves. * VMADDR_CID_ANY = -1U * VMADDR_CID_HYPERVISOR = 0 * VMADDR_CID_LOCAL = 1 * VMADDR_CID_HOST = 2 * Note: 0 is used as a placeholder to auto-generate an enclave CID. * http://man7.org/linux/man-pages/man7/vsock.7.html */ if (enclave_start_info.enclave_cid > 0 && enclave_start_info.enclave_cid <= VMADDR_CID_HOST) { dev_err_ratelimited(ne_misc_dev.this_device, "Well-known CID value, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } if (enclave_start_info.enclave_cid == U32_MAX) { dev_err_ratelimited(ne_misc_dev.this_device, "Well-known CID value, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } /* * Do not use the CID of the primary / parent VM for enclaves. */ if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) { dev_err_ratelimited(ne_misc_dev.this_device, "CID of the parent VM, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } /* 64-bit CIDs are not yet supported for the vsock device. */ if (enclave_start_info.enclave_cid > U32_MAX) { dev_err_ratelimited(ne_misc_dev.this_device, "64-bit CIDs not yet supported for the vsock device\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (copy_to_user((void __user *)arg, &enclave_start_info, sizeof(enclave_start_info))) return -EFAULT; return 0; } default: return -ENOTTY; } return 0; } /** * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries * from the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * * Context: Process context. This function is called with the ne_enclave mutex held. */ static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave) { unsigned long i = 0; struct ne_mem_region *ne_mem_region = NULL; struct ne_mem_region *ne_mem_region_tmp = NULL; list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp, &ne_enclave->mem_regions_list, mem_region_list_entry) { list_del(&ne_mem_region->mem_region_list_entry); for (i = 0; i < ne_mem_region->nr_pages; i++) put_page(ne_mem_region->pages[i]); kfree(ne_mem_region->pages); kfree(ne_mem_region); } } /** * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from * the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * * Context: Process context. This function is called with the ne_enclave mutex held. */ static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave) { unsigned int cpu = 0; unsigned int i = 0; mutex_lock(&ne_cpu_pool.mutex); for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) { for_each_cpu(cpu, ne_enclave->threads_per_core[i]) /* Update the available NE CPU pool. */ cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]); free_cpumask_var(ne_enclave->threads_per_core[i]); } mutex_unlock(&ne_cpu_pool.mutex); kfree(ne_enclave->threads_per_core); free_cpumask_var(ne_enclave->vcpu_ids); } /** * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data * structure that is part of the NE PCI * device private data. * @ne_enclave : Private data associated with the current enclave. * @ne_pci_dev : Private data associated with the PCI device. * * Context: Process context. This function is called with the ne_pci_dev enclave * mutex held. */ static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave, struct ne_pci_dev *ne_pci_dev) { struct ne_enclave *ne_enclave_entry = NULL; struct ne_enclave *ne_enclave_entry_tmp = NULL; list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp, &ne_pci_dev->enclaves_list, enclave_list_entry) { if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) { list_del(&ne_enclave_entry->enclave_list_entry); break; } } } /** * ne_enclave_release() - Release function provided by the enclave file. * @inode: Inode associated with this file release function. * @file: File associated with this release function. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_enclave_release(struct inode *inode, struct file *file) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct enclave_stop_req enclave_stop_request = {}; struct ne_enclave *ne_enclave = file->private_data; struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; struct pci_dev *pdev = ne_pci_dev->pdev; int rc = -EINVAL; struct slot_free_req slot_free_req = {}; if (!ne_enclave) return 0; /* * Early exit in case there is an error in the enclave creation logic * and fput() is called on the cleanup path. */ if (!ne_enclave->slot_uid) return 0; /* * Acquire the enclave list mutex before the enclave mutex * in order to avoid deadlocks with @ref ne_event_work_handler. */ mutex_lock(&ne_pci_dev->enclaves_list_mutex); mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) { enclave_stop_request.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, ENCLAVE_STOP, &enclave_stop_request, sizeof(enclave_stop_request), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in enclave stop [rc=%d]\n", rc); goto unlock_mutex; } memset(&cmd_reply, 0, sizeof(cmd_reply)); } slot_free_req.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, SLOT_FREE, &slot_free_req, sizeof(slot_free_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot free [rc=%d]\n", rc); goto unlock_mutex; } ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev); ne_enclave_remove_all_mem_region_entries(ne_enclave); ne_enclave_remove_all_vcpu_id_entries(ne_enclave); mutex_unlock(&ne_enclave->enclave_info_mutex); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); kfree(ne_enclave); return 0; unlock_mutex: mutex_unlock(&ne_enclave->enclave_info_mutex); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return rc; } /** * ne_enclave_poll() - Poll functionality used for enclave out-of-band events. * @file: File associated with this poll function. * @wait: Poll table data structure. * * Context: Process context. * Return: * * Poll mask. */ static __poll_t ne_enclave_poll(struct file *file, poll_table *wait) { __poll_t mask = 0; struct ne_enclave *ne_enclave = file->private_data; poll_wait(file, &ne_enclave->eventq, wait); if (ne_enclave->has_event) mask |= EPOLLHUP; return mask; } static const struct file_operations ne_enclave_fops = { .owner = THIS_MODULE, .llseek = noop_llseek, .poll = ne_enclave_poll, .unlocked_ioctl = ne_enclave_ioctl, .release = ne_enclave_release, }; /** * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create * enclave file descriptor to be further used for enclave * resources handling e.g. memory regions and CPUs. * @ne_pci_dev : Private data associated with the PCI device. * @slot_uid: User pointer to store the generated unique slot id * associated with an enclave to. * * Context: Process context. This function is called with the ne_pci_dev enclave * mutex held. * Return: * * Enclave fd on success. * * Negative return value on failure. */ static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid) { struct ne_pci_dev_cmd_reply cmd_reply = {}; int enclave_fd = -1; struct file *enclave_file = NULL; unsigned int i = 0; struct ne_enclave *ne_enclave = NULL; struct pci_dev *pdev = ne_pci_dev->pdev; int rc = -EINVAL; struct slot_alloc_req slot_alloc_req = {}; mutex_lock(&ne_cpu_pool.mutex); for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) break; if (i == ne_cpu_pool.nr_parent_vm_cores) { dev_err_ratelimited(ne_misc_dev.this_device, "No CPUs available in CPU pool\n"); mutex_unlock(&ne_cpu_pool.mutex); return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; } mutex_unlock(&ne_cpu_pool.mutex); ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL); if (!ne_enclave) return -ENOMEM; mutex_lock(&ne_cpu_pool.mutex); ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores; ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core; ne_enclave->numa_node = ne_cpu_pool.numa_node; mutex_unlock(&ne_cpu_pool.mutex); ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores, sizeof(*ne_enclave->threads_per_core), GFP_KERNEL); if (!ne_enclave->threads_per_core) { rc = -ENOMEM; goto free_ne_enclave; } for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) { rc = -ENOMEM; goto free_cpumask; } if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) { rc = -ENOMEM; goto free_cpumask; } enclave_fd = get_unused_fd_flags(O_CLOEXEC); if (enclave_fd < 0) { rc = enclave_fd; dev_err_ratelimited(ne_misc_dev.this_device, "Error in getting unused fd [rc=%d]\n", rc); goto free_cpumask; } enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR); if (IS_ERR(enclave_file)) { rc = PTR_ERR(enclave_file); dev_err_ratelimited(ne_misc_dev.this_device, "Error in anon inode get file [rc=%d]\n", rc); goto put_fd; } rc = ne_do_request(pdev, SLOT_ALLOC, &slot_alloc_req, sizeof(slot_alloc_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot alloc [rc=%d]\n", rc); goto put_file; } init_waitqueue_head(&ne_enclave->eventq); ne_enclave->has_event = false; mutex_init(&ne_enclave->enclave_info_mutex); ne_enclave->max_mem_regions = cmd_reply.mem_regions; INIT_LIST_HEAD(&ne_enclave->mem_regions_list); ne_enclave->mm = current->mm; ne_enclave->slot_uid = cmd_reply.slot_uid; ne_enclave->state = NE_STATE_INIT; list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list); if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) { /* * As we're holding the only reference to 'enclave_file', fput() * will call ne_enclave_release() which will do a proper cleanup * of all so far allocated resources, leaving only the unused fd * for us to free. */ fput(enclave_file); put_unused_fd(enclave_fd); return -EFAULT; } fd_install(enclave_fd, enclave_file); return enclave_fd; put_file: fput(enclave_file); put_fd: put_unused_fd(enclave_fd); free_cpumask: free_cpumask_var(ne_enclave->vcpu_ids); for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) free_cpumask_var(ne_enclave->threads_per_core[i]); kfree(ne_enclave->threads_per_core); free_ne_enclave: kfree(ne_enclave); return rc; } /** * ne_ioctl() - Ioctl function provided by the NE misc device. * @file: File associated with this ioctl function. * @cmd: The command that is set for the ioctl call. * @arg: The argument that is provided for the ioctl call. * * Context: Process context. * Return: * * Ioctl result (e.g. enclave file descriptor) on success. * * Negative return value on failure. */ static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case NE_CREATE_VM: { int enclave_fd = -1; struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; u64 __user *slot_uid = (void __user *)arg; mutex_lock(&ne_pci_dev->enclaves_list_mutex); enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return enclave_fd; } default: return -ENOTTY; } return 0; } #if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST) #include "ne_misc_dev_test.c" #endif static int __init ne_init(void) { mutex_init(&ne_cpu_pool.mutex); return pci_register_driver(&ne_pci_driver); } static void __exit ne_exit(void) { pci_unregister_driver(&ne_pci_driver); ne_teardown_cpu_pool(); } module_init(ne_init); module_exit(ne_exit); MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); MODULE_DESCRIPTION("Nitro Enclaves Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/virt/nitro_enclaves/ne_misc_dev.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. */ /** * DOC: Nitro Enclaves (NE) PCI device driver. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/list.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nitro_enclaves.h> #include <linux/pci.h> #include <linux/types.h> #include <linux/wait.h> #include "ne_misc_dev.h" #include "ne_pci_dev.h" /** * NE_DEFAULT_TIMEOUT_MSECS - Default timeout to wait for a reply from * the NE PCI device. */ #define NE_DEFAULT_TIMEOUT_MSECS (120000) /* 120 sec */ static const struct pci_device_id ne_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_NE) }, { 0, } }; MODULE_DEVICE_TABLE(pci, ne_pci_ids); /** * ne_submit_request() - Submit command request to the PCI device based on the * command type. * @pdev: PCI device to send the command to. * @cmd_type: Command type of the request sent to the PCI device. * @cmd_request: Command request payload. * @cmd_request_size: Size of the command request payload. * * Context: Process context. This function is called with the ne_pci_dev mutex held. */ static void ne_submit_request(struct pci_dev *pdev, enum ne_pci_dev_cmd_type cmd_type, void *cmd_request, size_t cmd_request_size) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); memcpy_toio(ne_pci_dev->iomem_base + NE_SEND_DATA, cmd_request, cmd_request_size); iowrite32(cmd_type, ne_pci_dev->iomem_base + NE_COMMAND); } /** * ne_retrieve_reply() - Retrieve reply from the PCI device. * @pdev: PCI device to receive the reply from. * @cmd_reply: Command reply payload. * @cmd_reply_size: Size of the command reply payload. * * Context: Process context. This function is called with the ne_pci_dev mutex held. */ static void ne_retrieve_reply(struct pci_dev *pdev, struct ne_pci_dev_cmd_reply *cmd_reply, size_t cmd_reply_size) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); memcpy_fromio(cmd_reply, ne_pci_dev->iomem_base + NE_RECV_DATA, cmd_reply_size); } /** * ne_wait_for_reply() - Wait for a reply of a PCI device command. * @pdev: PCI device for which a reply is waited. * * Context: Process context. This function is called with the ne_pci_dev mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_wait_for_reply(struct pci_dev *pdev) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); int rc = -EINVAL; /* * TODO: Update to _interruptible and handle interrupted wait event * e.g. -ERESTARTSYS, incoming signals + update timeout, if needed. */ rc = wait_event_timeout(ne_pci_dev->cmd_reply_wait_q, atomic_read(&ne_pci_dev->cmd_reply_avail) != 0, msecs_to_jiffies(NE_DEFAULT_TIMEOUT_MSECS)); if (!rc) return -ETIMEDOUT; return 0; } int ne_do_request(struct pci_dev *pdev, enum ne_pci_dev_cmd_type cmd_type, void *cmd_request, size_t cmd_request_size, struct ne_pci_dev_cmd_reply *cmd_reply, size_t cmd_reply_size) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); int rc = -EINVAL; if (cmd_type <= INVALID_CMD || cmd_type >= MAX_CMD) { dev_err_ratelimited(&pdev->dev, "Invalid cmd type=%u\n", cmd_type); return -EINVAL; } if (!cmd_request) { dev_err_ratelimited(&pdev->dev, "Null cmd request for cmd type=%u\n", cmd_type); return -EINVAL; } if (cmd_request_size > NE_SEND_DATA_SIZE) { dev_err_ratelimited(&pdev->dev, "Invalid req size=%zu for cmd type=%u\n", cmd_request_size, cmd_type); return -EINVAL; } if (!cmd_reply) { dev_err_ratelimited(&pdev->dev, "Null cmd reply for cmd type=%u\n", cmd_type); return -EINVAL; } if (cmd_reply_size > NE_RECV_DATA_SIZE) { dev_err_ratelimited(&pdev->dev, "Invalid reply size=%zu for cmd type=%u\n", cmd_reply_size, cmd_type); return -EINVAL; } /* * Use this mutex so that the PCI device handles one command request at * a time. */ mutex_lock(&ne_pci_dev->pci_dev_mutex); atomic_set(&ne_pci_dev->cmd_reply_avail, 0); ne_submit_request(pdev, cmd_type, cmd_request, cmd_request_size); rc = ne_wait_for_reply(pdev); if (rc < 0) { dev_err_ratelimited(&pdev->dev, "Error in wait for reply for cmd type=%u [rc=%d]\n", cmd_type, rc); goto unlock_mutex; } ne_retrieve_reply(pdev, cmd_reply, cmd_reply_size); atomic_set(&ne_pci_dev->cmd_reply_avail, 0); if (cmd_reply->rc < 0) { rc = cmd_reply->rc; dev_err_ratelimited(&pdev->dev, "Error in cmd process logic, cmd type=%u [rc=%d]\n", cmd_type, rc); goto unlock_mutex; } rc = 0; unlock_mutex: mutex_unlock(&ne_pci_dev->pci_dev_mutex); return rc; } /** * ne_reply_handler() - Interrupt handler for retrieving a reply matching a * request sent to the PCI device for enclave lifetime * management. * @irq: Received interrupt for a reply sent by the PCI device. * @args: PCI device private data structure. * * Context: Interrupt context. * Return: * * IRQ_HANDLED on handled interrupt. */ static irqreturn_t ne_reply_handler(int irq, void *args) { struct ne_pci_dev *ne_pci_dev = (struct ne_pci_dev *)args; atomic_set(&ne_pci_dev->cmd_reply_avail, 1); /* TODO: Update to _interruptible. */ wake_up(&ne_pci_dev->cmd_reply_wait_q); return IRQ_HANDLED; } /** * ne_event_work_handler() - Work queue handler for notifying enclaves on a * state change received by the event interrupt * handler. * @work: Item containing the NE PCI device for which an out-of-band event * was issued. * * An out-of-band event is being issued by the Nitro Hypervisor when at least * one enclave is changing state without client interaction. * * Context: Work queue context. */ static void ne_event_work_handler(struct work_struct *work) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct ne_enclave *ne_enclave = NULL; struct ne_pci_dev *ne_pci_dev = container_of(work, struct ne_pci_dev, notify_work); struct pci_dev *pdev = ne_pci_dev->pdev; int rc = -EINVAL; struct slot_info_req slot_info_req = {}; mutex_lock(&ne_pci_dev->enclaves_list_mutex); /* * Iterate over all enclaves registered for the Nitro Enclaves * PCI device and determine for which enclave(s) the out-of-band event * is corresponding to. */ list_for_each_entry(ne_enclave, &ne_pci_dev->enclaves_list, enclave_list_entry) { mutex_lock(&ne_enclave->enclave_info_mutex); /* * Enclaves that were never started cannot receive out-of-band * events. */ if (ne_enclave->state != NE_STATE_RUNNING) goto unlock; slot_info_req.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, SLOT_INFO, &slot_info_req, sizeof(slot_info_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) dev_err(&pdev->dev, "Error in slot info [rc=%d]\n", rc); /* Notify enclave process that the enclave state changed. */ if (ne_enclave->state != cmd_reply.state) { ne_enclave->state = cmd_reply.state; ne_enclave->has_event = true; wake_up_interruptible(&ne_enclave->eventq); } unlock: mutex_unlock(&ne_enclave->enclave_info_mutex); } mutex_unlock(&ne_pci_dev->enclaves_list_mutex); } /** * ne_event_handler() - Interrupt handler for PCI device out-of-band events. * This interrupt does not supply any data in the MMIO * region. It notifies a change in the state of any of * the launched enclaves. * @irq: Received interrupt for an out-of-band event. * @args: PCI device private data structure. * * Context: Interrupt context. * Return: * * IRQ_HANDLED on handled interrupt. */ static irqreturn_t ne_event_handler(int irq, void *args) { struct ne_pci_dev *ne_pci_dev = (struct ne_pci_dev *)args; queue_work(ne_pci_dev->event_wq, &ne_pci_dev->notify_work); return IRQ_HANDLED; } /** * ne_setup_msix() - Setup MSI-X vectors for the PCI device. * @pdev: PCI device to setup the MSI-X for. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_setup_msix(struct pci_dev *pdev) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); int nr_vecs = 0; int rc = -EINVAL; nr_vecs = pci_msix_vec_count(pdev); if (nr_vecs < 0) { rc = nr_vecs; dev_err(&pdev->dev, "Error in getting vec count [rc=%d]\n", rc); return rc; } rc = pci_alloc_irq_vectors(pdev, nr_vecs, nr_vecs, PCI_IRQ_MSIX); if (rc < 0) { dev_err(&pdev->dev, "Error in alloc MSI-X vecs [rc=%d]\n", rc); return rc; } /* * This IRQ gets triggered every time the PCI device responds to a * command request. The reply is then retrieved, reading from the MMIO * space of the PCI device. */ rc = request_irq(pci_irq_vector(pdev, NE_VEC_REPLY), ne_reply_handler, 0, "enclave_cmd", ne_pci_dev); if (rc < 0) { dev_err(&pdev->dev, "Error in request irq reply [rc=%d]\n", rc); goto free_irq_vectors; } ne_pci_dev->event_wq = create_singlethread_workqueue("ne_pci_dev_wq"); if (!ne_pci_dev->event_wq) { rc = -ENOMEM; dev_err(&pdev->dev, "Cannot get wq for dev events [rc=%d]\n", rc); goto free_reply_irq_vec; } INIT_WORK(&ne_pci_dev->notify_work, ne_event_work_handler); /* * This IRQ gets triggered every time any enclave's state changes. Its * handler then scans for the changes and propagates them to the user * space. */ rc = request_irq(pci_irq_vector(pdev, NE_VEC_EVENT), ne_event_handler, 0, "enclave_evt", ne_pci_dev); if (rc < 0) { dev_err(&pdev->dev, "Error in request irq event [rc=%d]\n", rc); goto destroy_wq; } return 0; destroy_wq: destroy_workqueue(ne_pci_dev->event_wq); free_reply_irq_vec: free_irq(pci_irq_vector(pdev, NE_VEC_REPLY), ne_pci_dev); free_irq_vectors: pci_free_irq_vectors(pdev); return rc; } /** * ne_teardown_msix() - Teardown MSI-X vectors for the PCI device. * @pdev: PCI device to teardown the MSI-X for. * * Context: Process context. */ static void ne_teardown_msix(struct pci_dev *pdev) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); free_irq(pci_irq_vector(pdev, NE_VEC_EVENT), ne_pci_dev); flush_work(&ne_pci_dev->notify_work); destroy_workqueue(ne_pci_dev->event_wq); free_irq(pci_irq_vector(pdev, NE_VEC_REPLY), ne_pci_dev); pci_free_irq_vectors(pdev); } /** * ne_pci_dev_enable() - Select the PCI device version and enable it. * @pdev: PCI device to select version for and then enable. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_pci_dev_enable(struct pci_dev *pdev) { u8 dev_enable_reply = 0; u16 dev_version_reply = 0; struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); iowrite16(NE_VERSION_MAX, ne_pci_dev->iomem_base + NE_VERSION); dev_version_reply = ioread16(ne_pci_dev->iomem_base + NE_VERSION); if (dev_version_reply != NE_VERSION_MAX) { dev_err(&pdev->dev, "Error in pci dev version cmd\n"); return -EIO; } iowrite8(NE_ENABLE_ON, ne_pci_dev->iomem_base + NE_ENABLE); dev_enable_reply = ioread8(ne_pci_dev->iomem_base + NE_ENABLE); if (dev_enable_reply != NE_ENABLE_ON) { dev_err(&pdev->dev, "Error in pci dev enable cmd\n"); return -EIO; } return 0; } /** * ne_pci_dev_disable() - Disable the PCI device. * @pdev: PCI device to disable. * * Context: Process context. */ static void ne_pci_dev_disable(struct pci_dev *pdev) { u8 dev_disable_reply = 0; struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); const unsigned int sleep_time = 10; /* 10 ms */ unsigned int sleep_time_count = 0; iowrite8(NE_ENABLE_OFF, ne_pci_dev->iomem_base + NE_ENABLE); /* * Check for NE_ENABLE_OFF in a loop, to handle cases when the device * state is not immediately set to disabled and going through a * transitory state of disabling. */ while (sleep_time_count < NE_DEFAULT_TIMEOUT_MSECS) { dev_disable_reply = ioread8(ne_pci_dev->iomem_base + NE_ENABLE); if (dev_disable_reply == NE_ENABLE_OFF) return; msleep_interruptible(sleep_time); sleep_time_count += sleep_time; } dev_disable_reply = ioread8(ne_pci_dev->iomem_base + NE_ENABLE); if (dev_disable_reply != NE_ENABLE_OFF) dev_err(&pdev->dev, "Error in pci dev disable cmd\n"); } /** * ne_pci_probe() - Probe function for the NE PCI device. * @pdev: PCI device to match with the NE PCI driver. * @id : PCI device id table associated with the NE PCI driver. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct ne_pci_dev *ne_pci_dev = NULL; int rc = -EINVAL; ne_pci_dev = kzalloc(sizeof(*ne_pci_dev), GFP_KERNEL); if (!ne_pci_dev) return -ENOMEM; rc = pci_enable_device(pdev); if (rc < 0) { dev_err(&pdev->dev, "Error in pci dev enable [rc=%d]\n", rc); goto free_ne_pci_dev; } pci_set_master(pdev); rc = pci_request_regions_exclusive(pdev, "nitro_enclaves"); if (rc < 0) { dev_err(&pdev->dev, "Error in pci request regions [rc=%d]\n", rc); goto disable_pci_dev; } ne_pci_dev->iomem_base = pci_iomap(pdev, PCI_BAR_NE, 0); if (!ne_pci_dev->iomem_base) { rc = -ENOMEM; dev_err(&pdev->dev, "Error in pci iomap [rc=%d]\n", rc); goto release_pci_regions; } pci_set_drvdata(pdev, ne_pci_dev); rc = ne_setup_msix(pdev); if (rc < 0) { dev_err(&pdev->dev, "Error in pci dev msix setup [rc=%d]\n", rc); goto iounmap_pci_bar; } ne_pci_dev_disable(pdev); rc = ne_pci_dev_enable(pdev); if (rc < 0) { dev_err(&pdev->dev, "Error in ne_pci_dev enable [rc=%d]\n", rc); goto teardown_msix; } atomic_set(&ne_pci_dev->cmd_reply_avail, 0); init_waitqueue_head(&ne_pci_dev->cmd_reply_wait_q); INIT_LIST_HEAD(&ne_pci_dev->enclaves_list); mutex_init(&ne_pci_dev->enclaves_list_mutex); mutex_init(&ne_pci_dev->pci_dev_mutex); ne_pci_dev->pdev = pdev; ne_devs.ne_pci_dev = ne_pci_dev; rc = misc_register(ne_devs.ne_misc_dev); if (rc < 0) { dev_err(&pdev->dev, "Error in misc dev register [rc=%d]\n", rc); goto disable_ne_pci_dev; } return 0; disable_ne_pci_dev: ne_devs.ne_pci_dev = NULL; ne_pci_dev_disable(pdev); teardown_msix: ne_teardown_msix(pdev); iounmap_pci_bar: pci_set_drvdata(pdev, NULL); pci_iounmap(pdev, ne_pci_dev->iomem_base); release_pci_regions: pci_release_regions(pdev); disable_pci_dev: pci_disable_device(pdev); free_ne_pci_dev: kfree(ne_pci_dev); return rc; } /** * ne_pci_remove() - Remove function for the NE PCI device. * @pdev: PCI device associated with the NE PCI driver. * * Context: Process context. */ static void ne_pci_remove(struct pci_dev *pdev) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); misc_deregister(ne_devs.ne_misc_dev); ne_devs.ne_pci_dev = NULL; ne_pci_dev_disable(pdev); ne_teardown_msix(pdev); pci_set_drvdata(pdev, NULL); pci_iounmap(pdev, ne_pci_dev->iomem_base); pci_release_regions(pdev); pci_disable_device(pdev); kfree(ne_pci_dev); } /** * ne_pci_shutdown() - Shutdown function for the NE PCI device. * @pdev: PCI device associated with the NE PCI driver. * * Context: Process context. */ static void ne_pci_shutdown(struct pci_dev *pdev) { struct ne_pci_dev *ne_pci_dev = pci_get_drvdata(pdev); if (!ne_pci_dev) return; misc_deregister(ne_devs.ne_misc_dev); ne_devs.ne_pci_dev = NULL; ne_pci_dev_disable(pdev); ne_teardown_msix(pdev); pci_set_drvdata(pdev, NULL); pci_iounmap(pdev, ne_pci_dev->iomem_base); pci_release_regions(pdev); pci_disable_device(pdev); kfree(ne_pci_dev); } /* * TODO: Add suspend / resume functions for power management w/ CONFIG_PM, if * needed. */ /* NE PCI device driver. */ struct pci_driver ne_pci_driver = { .name = "nitro_enclaves", .id_table = ne_pci_ids, .probe = ne_pci_probe, .remove = ne_pci_remove, .shutdown = ne_pci_shutdown, };
linux-master
drivers/virt/nitro_enclaves/ne_pci_dev.c
// SPDX-License-Identifier: GPL-2.0 #include <kunit/test.h> #define MAX_PHYS_REGIONS 16 #define INVALID_VALUE (~0ull) struct ne_phys_regions_test { u64 paddr; u64 size; int expect_rc; unsigned long expect_num; u64 expect_last_paddr; u64 expect_last_size; } phys_regions_test_cases[] = { /* * Add the region from 0x1000 to (0x1000 + 0x200000 - 1): * Expected result: * Failed, start address is not 2M-aligned * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 0 * regions = {} */ {0x1000, 0x200000, -EINVAL, 0, INVALID_VALUE, INVALID_VALUE}, /* * Add the region from 0x200000 to (0x200000 + 0x1000 - 1): * Expected result: * Failed, size is not 2M-aligned * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 0 * regions = {} */ {0x200000, 0x1000, -EINVAL, 0, INVALID_VALUE, INVALID_VALUE}, /* * Add the region from 0x200000 to (0x200000 + 0x200000 - 1): * Expected result: * Successful * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 1 * regions = { * {start=0x200000, end=0x3fffff}, // len=0x200000 * } */ {0x200000, 0x200000, 0, 1, 0x200000, 0x200000}, /* * Add the region from 0x0 to (0x0 + 0x200000 - 1): * Expected result: * Successful * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 2 * regions = { * {start=0x200000, end=0x3fffff}, // len=0x200000 * {start=0x0, end=0x1fffff}, // len=0x200000 * } */ {0x0, 0x200000, 0, 2, 0x0, 0x200000}, /* * Add the region from 0x600000 to (0x600000 + 0x400000 - 1): * Expected result: * Successful * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 3 * regions = { * {start=0x200000, end=0x3fffff}, // len=0x200000 * {start=0x0, end=0x1fffff}, // len=0x200000 * {start=0x600000, end=0x9fffff}, // len=0x400000 * } */ {0x600000, 0x400000, 0, 3, 0x600000, 0x400000}, /* * Add the region from 0xa00000 to (0xa00000 + 0x400000 - 1): * Expected result: * Successful, merging case! * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 3 * regions = { * {start=0x200000, end=0x3fffff}, // len=0x200000 * {start=0x0, end=0x1fffff}, // len=0x200000 * {start=0x600000, end=0xdfffff}, // len=0x800000 * } */ {0xa00000, 0x400000, 0, 3, 0x600000, 0x800000}, /* * Add the region from 0x1000 to (0x1000 + 0x200000 - 1): * Expected result: * Failed, start address is not 2M-aligned * * Now the instance of struct ne_phys_contig_mem_regions is: * num = 3 * regions = { * {start=0x200000, end=0x3fffff}, // len=0x200000 * {start=0x0, end=0x1fffff}, // len=0x200000 * {start=0x600000, end=0xdfffff}, // len=0x800000 * } */ {0x1000, 0x200000, -EINVAL, 3, 0x600000, 0x800000}, }; static void ne_misc_dev_test_merge_phys_contig_memory_regions(struct kunit *test) { struct ne_phys_contig_mem_regions phys_contig_mem_regions = {}; int rc = 0; int i = 0; phys_contig_mem_regions.regions = kunit_kcalloc(test, MAX_PHYS_REGIONS, sizeof(*phys_contig_mem_regions.regions), GFP_KERNEL); KUNIT_ASSERT_TRUE(test, phys_contig_mem_regions.regions); for (i = 0; i < ARRAY_SIZE(phys_regions_test_cases); i++) { struct ne_phys_regions_test *test_case = &phys_regions_test_cases[i]; unsigned long num = 0; rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions, test_case->paddr, test_case->size); KUNIT_EXPECT_EQ(test, rc, test_case->expect_rc); KUNIT_EXPECT_EQ(test, phys_contig_mem_regions.num, test_case->expect_num); if (test_case->expect_last_paddr == INVALID_VALUE) continue; num = phys_contig_mem_regions.num; KUNIT_EXPECT_EQ(test, phys_contig_mem_regions.regions[num - 1].start, test_case->expect_last_paddr); KUNIT_EXPECT_EQ(test, range_len(&phys_contig_mem_regions.regions[num - 1]), test_case->expect_last_size); } kunit_kfree(test, phys_contig_mem_regions.regions); } static struct kunit_case ne_misc_dev_test_cases[] = { KUNIT_CASE(ne_misc_dev_test_merge_phys_contig_memory_regions), {} }; static struct kunit_suite ne_misc_dev_test_suite = { .name = "ne_misc_dev_test", .test_cases = ne_misc_dev_test_cases, }; kunit_test_suite(ne_misc_dev_test_suite);
linux-master
drivers/virt/nitro_enclaves/ne_misc_dev_test.c
// SPDX-License-Identifier: GPL-2.0-only /* * AMD Secure Encrypted Virtualization (SEV) guest driver interface * * Copyright (C) 2021 Advanced Micro Devices, Inc. * * Author: Brijesh Singh <[email protected]> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/miscdevice.h> #include <linux/set_memory.h> #include <linux/fs.h> #include <crypto/aead.h> #include <linux/scatterlist.h> #include <linux/psp-sev.h> #include <uapi/linux/sev-guest.h> #include <uapi/linux/psp-sev.h> #include <asm/svm.h> #include <asm/sev.h> #include "sev-guest.h" #define DEVICE_NAME "sev-guest" #define AAD_LEN 48 #define MSG_HDR_VER 1 #define SNP_REQ_MAX_RETRY_DURATION (60*HZ) #define SNP_REQ_RETRY_DELAY (2*HZ) struct snp_guest_crypto { struct crypto_aead *tfm; u8 *iv, *authtag; int iv_len, a_len; }; struct snp_guest_dev { struct device *dev; struct miscdevice misc; void *certs_data; struct snp_guest_crypto *crypto; /* request and response are in unencrypted memory */ struct snp_guest_msg *request, *response; /* * Avoid information leakage by double-buffering shared messages * in fields that are in regular encrypted memory. */ struct snp_guest_msg secret_request, secret_response; struct snp_secrets_page_layout *layout; struct snp_req_data input; u32 *os_area_msg_seqno; u8 *vmpck; }; static u32 vmpck_id; module_param(vmpck_id, uint, 0444); MODULE_PARM_DESC(vmpck_id, "The VMPCK ID to use when communicating with the PSP."); /* Mutex to serialize the shared buffer access and command handling. */ static DEFINE_MUTEX(snp_cmd_mutex); static bool is_vmpck_empty(struct snp_guest_dev *snp_dev) { char zero_key[VMPCK_KEY_LEN] = {0}; if (snp_dev->vmpck) return !memcmp(snp_dev->vmpck, zero_key, VMPCK_KEY_LEN); return true; } /* * If an error is received from the host or AMD Secure Processor (ASP) there * are two options. Either retry the exact same encrypted request or discontinue * using the VMPCK. * * This is because in the current encryption scheme GHCB v2 uses AES-GCM to * encrypt the requests. The IV for this scheme is the sequence number. GCM * cannot tolerate IV reuse. * * The ASP FW v1.51 only increments the sequence numbers on a successful * guest<->ASP back and forth and only accepts messages at its exact sequence * number. * * So if the sequence number were to be reused the encryption scheme is * vulnerable. If the sequence number were incremented for a fresh IV the ASP * will reject the request. */ static void snp_disable_vmpck(struct snp_guest_dev *snp_dev) { dev_alert(snp_dev->dev, "Disabling vmpck_id %d to prevent IV reuse.\n", vmpck_id); memzero_explicit(snp_dev->vmpck, VMPCK_KEY_LEN); snp_dev->vmpck = NULL; } static inline u64 __snp_get_msg_seqno(struct snp_guest_dev *snp_dev) { u64 count; lockdep_assert_held(&snp_cmd_mutex); /* Read the current message sequence counter from secrets pages */ count = *snp_dev->os_area_msg_seqno; return count + 1; } /* Return a non-zero on success */ static u64 snp_get_msg_seqno(struct snp_guest_dev *snp_dev) { u64 count = __snp_get_msg_seqno(snp_dev); /* * The message sequence counter for the SNP guest request is a 64-bit * value but the version 2 of GHCB specification defines a 32-bit storage * for it. If the counter exceeds the 32-bit value then return zero. * The caller should check the return value, but if the caller happens to * not check the value and use it, then the firmware treats zero as an * invalid number and will fail the message request. */ if (count >= UINT_MAX) { dev_err(snp_dev->dev, "request message sequence counter overflow\n"); return 0; } return count; } static void snp_inc_msg_seqno(struct snp_guest_dev *snp_dev) { /* * The counter is also incremented by the PSP, so increment it by 2 * and save in secrets page. */ *snp_dev->os_area_msg_seqno += 2; } static inline struct snp_guest_dev *to_snp_dev(struct file *file) { struct miscdevice *dev = file->private_data; return container_of(dev, struct snp_guest_dev, misc); } static struct snp_guest_crypto *init_crypto(struct snp_guest_dev *snp_dev, u8 *key, size_t keylen) { struct snp_guest_crypto *crypto; crypto = kzalloc(sizeof(*crypto), GFP_KERNEL_ACCOUNT); if (!crypto) return NULL; crypto->tfm = crypto_alloc_aead("gcm(aes)", 0, 0); if (IS_ERR(crypto->tfm)) goto e_free; if (crypto_aead_setkey(crypto->tfm, key, keylen)) goto e_free_crypto; crypto->iv_len = crypto_aead_ivsize(crypto->tfm); crypto->iv = kmalloc(crypto->iv_len, GFP_KERNEL_ACCOUNT); if (!crypto->iv) goto e_free_crypto; if (crypto_aead_authsize(crypto->tfm) > MAX_AUTHTAG_LEN) { if (crypto_aead_setauthsize(crypto->tfm, MAX_AUTHTAG_LEN)) { dev_err(snp_dev->dev, "failed to set authsize to %d\n", MAX_AUTHTAG_LEN); goto e_free_iv; } } crypto->a_len = crypto_aead_authsize(crypto->tfm); crypto->authtag = kmalloc(crypto->a_len, GFP_KERNEL_ACCOUNT); if (!crypto->authtag) goto e_free_iv; return crypto; e_free_iv: kfree(crypto->iv); e_free_crypto: crypto_free_aead(crypto->tfm); e_free: kfree(crypto); return NULL; } static void deinit_crypto(struct snp_guest_crypto *crypto) { crypto_free_aead(crypto->tfm); kfree(crypto->iv); kfree(crypto->authtag); kfree(crypto); } static int enc_dec_message(struct snp_guest_crypto *crypto, struct snp_guest_msg *msg, u8 *src_buf, u8 *dst_buf, size_t len, bool enc) { struct snp_guest_msg_hdr *hdr = &msg->hdr; struct scatterlist src[3], dst[3]; DECLARE_CRYPTO_WAIT(wait); struct aead_request *req; int ret; req = aead_request_alloc(crypto->tfm, GFP_KERNEL); if (!req) return -ENOMEM; /* * AEAD memory operations: * +------ AAD -------+------- DATA -----+---- AUTHTAG----+ * | msg header | plaintext | hdr->authtag | * | bytes 30h - 5Fh | or | | * | | cipher | | * +------------------+------------------+----------------+ */ sg_init_table(src, 3); sg_set_buf(&src[0], &hdr->algo, AAD_LEN); sg_set_buf(&src[1], src_buf, hdr->msg_sz); sg_set_buf(&src[2], hdr->authtag, crypto->a_len); sg_init_table(dst, 3); sg_set_buf(&dst[0], &hdr->algo, AAD_LEN); sg_set_buf(&dst[1], dst_buf, hdr->msg_sz); sg_set_buf(&dst[2], hdr->authtag, crypto->a_len); aead_request_set_ad(req, AAD_LEN); aead_request_set_tfm(req, crypto->tfm); aead_request_set_callback(req, 0, crypto_req_done, &wait); aead_request_set_crypt(req, src, dst, len, crypto->iv); ret = crypto_wait_req(enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req), &wait); aead_request_free(req); return ret; } static int __enc_payload(struct snp_guest_dev *snp_dev, struct snp_guest_msg *msg, void *plaintext, size_t len) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg_hdr *hdr = &msg->hdr; memset(crypto->iv, 0, crypto->iv_len); memcpy(crypto->iv, &hdr->msg_seqno, sizeof(hdr->msg_seqno)); return enc_dec_message(crypto, msg, plaintext, msg->payload, len, true); } static int dec_payload(struct snp_guest_dev *snp_dev, struct snp_guest_msg *msg, void *plaintext, size_t len) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg_hdr *hdr = &msg->hdr; /* Build IV with response buffer sequence number */ memset(crypto->iv, 0, crypto->iv_len); memcpy(crypto->iv, &hdr->msg_seqno, sizeof(hdr->msg_seqno)); return enc_dec_message(crypto, msg, msg->payload, plaintext, len, false); } static int verify_and_dec_payload(struct snp_guest_dev *snp_dev, void *payload, u32 sz) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_guest_msg *resp = &snp_dev->secret_response; struct snp_guest_msg *req = &snp_dev->secret_request; struct snp_guest_msg_hdr *req_hdr = &req->hdr; struct snp_guest_msg_hdr *resp_hdr = &resp->hdr; dev_dbg(snp_dev->dev, "response [seqno %lld type %d version %d sz %d]\n", resp_hdr->msg_seqno, resp_hdr->msg_type, resp_hdr->msg_version, resp_hdr->msg_sz); /* Copy response from shared memory to encrypted memory. */ memcpy(resp, snp_dev->response, sizeof(*resp)); /* Verify that the sequence counter is incremented by 1 */ if (unlikely(resp_hdr->msg_seqno != (req_hdr->msg_seqno + 1))) return -EBADMSG; /* Verify response message type and version number. */ if (resp_hdr->msg_type != (req_hdr->msg_type + 1) || resp_hdr->msg_version != req_hdr->msg_version) return -EBADMSG; /* * If the message size is greater than our buffer length then return * an error. */ if (unlikely((resp_hdr->msg_sz + crypto->a_len) > sz)) return -EBADMSG; /* Decrypt the payload */ return dec_payload(snp_dev, resp, payload, resp_hdr->msg_sz + crypto->a_len); } static int enc_payload(struct snp_guest_dev *snp_dev, u64 seqno, int version, u8 type, void *payload, size_t sz) { struct snp_guest_msg *req = &snp_dev->secret_request; struct snp_guest_msg_hdr *hdr = &req->hdr; memset(req, 0, sizeof(*req)); hdr->algo = SNP_AEAD_AES_256_GCM; hdr->hdr_version = MSG_HDR_VER; hdr->hdr_sz = sizeof(*hdr); hdr->msg_type = type; hdr->msg_version = version; hdr->msg_seqno = seqno; hdr->msg_vmpck = vmpck_id; hdr->msg_sz = sz; /* Verify the sequence number is non-zero */ if (!hdr->msg_seqno) return -ENOSR; dev_dbg(snp_dev->dev, "request [seqno %lld type %d version %d sz %d]\n", hdr->msg_seqno, hdr->msg_type, hdr->msg_version, hdr->msg_sz); return __enc_payload(snp_dev, req, payload, sz); } static int __handle_guest_request(struct snp_guest_dev *snp_dev, u64 exit_code, struct snp_guest_request_ioctl *rio) { unsigned long req_start = jiffies; unsigned int override_npages = 0; u64 override_err = 0; int rc; retry_request: /* * Call firmware to process the request. In this function the encrypted * message enters shared memory with the host. So after this call the * sequence number must be incremented or the VMPCK must be deleted to * prevent reuse of the IV. */ rc = snp_issue_guest_request(exit_code, &snp_dev->input, rio); switch (rc) { case -ENOSPC: /* * If the extended guest request fails due to having too * small of a certificate data buffer, retry the same * guest request without the extended data request in * order to increment the sequence number and thus avoid * IV reuse. */ override_npages = snp_dev->input.data_npages; exit_code = SVM_VMGEXIT_GUEST_REQUEST; /* * Override the error to inform callers the given extended * request buffer size was too small and give the caller the * required buffer size. */ override_err = SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN); /* * If this call to the firmware succeeds, the sequence number can * be incremented allowing for continued use of the VMPCK. If * there is an error reflected in the return value, this value * is checked further down and the result will be the deletion * of the VMPCK and the error code being propagated back to the * user as an ioctl() return code. */ goto retry_request; /* * The host may return SNP_GUEST_VMM_ERR_BUSY if the request has been * throttled. Retry in the driver to avoid returning and reusing the * message sequence number on a different message. */ case -EAGAIN: if (jiffies - req_start > SNP_REQ_MAX_RETRY_DURATION) { rc = -ETIMEDOUT; break; } schedule_timeout_killable(SNP_REQ_RETRY_DELAY); goto retry_request; } /* * Increment the message sequence number. There is no harm in doing * this now because decryption uses the value stored in the response * structure and any failure will wipe the VMPCK, preventing further * use anyway. */ snp_inc_msg_seqno(snp_dev); if (override_err) { rio->exitinfo2 = override_err; /* * If an extended guest request was issued and the supplied certificate * buffer was not large enough, a standard guest request was issued to * prevent IV reuse. If the standard request was successful, return -EIO * back to the caller as would have originally been returned. */ if (!rc && override_err == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN)) rc = -EIO; } if (override_npages) snp_dev->input.data_npages = override_npages; return rc; } static int handle_guest_request(struct snp_guest_dev *snp_dev, u64 exit_code, struct snp_guest_request_ioctl *rio, u8 type, void *req_buf, size_t req_sz, void *resp_buf, u32 resp_sz) { u64 seqno; int rc; /* Get message sequence and verify that its a non-zero */ seqno = snp_get_msg_seqno(snp_dev); if (!seqno) return -EIO; /* Clear shared memory's response for the host to populate. */ memset(snp_dev->response, 0, sizeof(struct snp_guest_msg)); /* Encrypt the userspace provided payload in snp_dev->secret_request. */ rc = enc_payload(snp_dev, seqno, rio->msg_version, type, req_buf, req_sz); if (rc) return rc; /* * Write the fully encrypted request to the shared unencrypted * request page. */ memcpy(snp_dev->request, &snp_dev->secret_request, sizeof(snp_dev->secret_request)); rc = __handle_guest_request(snp_dev, exit_code, rio); if (rc) { if (rc == -EIO && rio->exitinfo2 == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN)) return rc; dev_alert(snp_dev->dev, "Detected error from ASP request. rc: %d, exitinfo2: 0x%llx\n", rc, rio->exitinfo2); snp_disable_vmpck(snp_dev); return rc; } rc = verify_and_dec_payload(snp_dev, resp_buf, resp_sz); if (rc) { dev_alert(snp_dev->dev, "Detected unexpected decode failure from ASP. rc: %d\n", rc); snp_disable_vmpck(snp_dev); return rc; } return 0; } static int get_report(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_report_resp *resp; struct snp_report_req req; int rc, resp_len; lockdep_assert_held(&snp_cmd_mutex); if (!arg->req_data || !arg->resp_data) return -EINVAL; if (copy_from_user(&req, (void __user *)arg->req_data, sizeof(req))) return -EFAULT; /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp->data) + crypto->a_len; resp = kzalloc(resp_len, GFP_KERNEL_ACCOUNT); if (!resp) return -ENOMEM; rc = handle_guest_request(snp_dev, SVM_VMGEXIT_GUEST_REQUEST, arg, SNP_MSG_REPORT_REQ, &req, sizeof(req), resp->data, resp_len); if (rc) goto e_free; if (copy_to_user((void __user *)arg->resp_data, resp, sizeof(*resp))) rc = -EFAULT; e_free: kfree(resp); return rc; } static int get_derived_key(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_derived_key_resp resp = {0}; struct snp_derived_key_req req; int rc, resp_len; /* Response data is 64 bytes and max authsize for GCM is 16 bytes. */ u8 buf[64 + 16]; lockdep_assert_held(&snp_cmd_mutex); if (!arg->req_data || !arg->resp_data) return -EINVAL; /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp.data) + crypto->a_len; if (sizeof(buf) < resp_len) return -ENOMEM; if (copy_from_user(&req, (void __user *)arg->req_data, sizeof(req))) return -EFAULT; rc = handle_guest_request(snp_dev, SVM_VMGEXIT_GUEST_REQUEST, arg, SNP_MSG_KEY_REQ, &req, sizeof(req), buf, resp_len); if (rc) return rc; memcpy(resp.data, buf, sizeof(resp.data)); if (copy_to_user((void __user *)arg->resp_data, &resp, sizeof(resp))) rc = -EFAULT; /* The response buffer contains the sensitive data, explicitly clear it. */ memzero_explicit(buf, sizeof(buf)); memzero_explicit(&resp, sizeof(resp)); return rc; } static int get_ext_report(struct snp_guest_dev *snp_dev, struct snp_guest_request_ioctl *arg) { struct snp_guest_crypto *crypto = snp_dev->crypto; struct snp_ext_report_req req; struct snp_report_resp *resp; int ret, npages = 0, resp_len; lockdep_assert_held(&snp_cmd_mutex); if (!arg->req_data || !arg->resp_data) return -EINVAL; if (copy_from_user(&req, (void __user *)arg->req_data, sizeof(req))) return -EFAULT; /* userspace does not want certificate data */ if (!req.certs_len || !req.certs_address) goto cmd; if (req.certs_len > SEV_FW_BLOB_MAX_SIZE || !IS_ALIGNED(req.certs_len, PAGE_SIZE)) return -EINVAL; if (!access_ok((const void __user *)req.certs_address, req.certs_len)) return -EFAULT; /* * Initialize the intermediate buffer with all zeros. This buffer * is used in the guest request message to get the certs blob from * the host. If host does not supply any certs in it, then copy * zeros to indicate that certificate data was not provided. */ memset(snp_dev->certs_data, 0, req.certs_len); npages = req.certs_len >> PAGE_SHIFT; cmd: /* * The intermediate response buffer is used while decrypting the * response payload. Make sure that it has enough space to cover the * authtag. */ resp_len = sizeof(resp->data) + crypto->a_len; resp = kzalloc(resp_len, GFP_KERNEL_ACCOUNT); if (!resp) return -ENOMEM; snp_dev->input.data_npages = npages; ret = handle_guest_request(snp_dev, SVM_VMGEXIT_EXT_GUEST_REQUEST, arg, SNP_MSG_REPORT_REQ, &req.data, sizeof(req.data), resp->data, resp_len); /* If certs length is invalid then copy the returned length */ if (arg->vmm_error == SNP_GUEST_VMM_ERR_INVALID_LEN) { req.certs_len = snp_dev->input.data_npages << PAGE_SHIFT; if (copy_to_user((void __user *)arg->req_data, &req, sizeof(req))) ret = -EFAULT; } if (ret) goto e_free; if (npages && copy_to_user((void __user *)req.certs_address, snp_dev->certs_data, req.certs_len)) { ret = -EFAULT; goto e_free; } if (copy_to_user((void __user *)arg->resp_data, resp, sizeof(*resp))) ret = -EFAULT; e_free: kfree(resp); return ret; } static long snp_guest_ioctl(struct file *file, unsigned int ioctl, unsigned long arg) { struct snp_guest_dev *snp_dev = to_snp_dev(file); void __user *argp = (void __user *)arg; struct snp_guest_request_ioctl input; int ret = -ENOTTY; if (copy_from_user(&input, argp, sizeof(input))) return -EFAULT; input.exitinfo2 = 0xff; /* Message version must be non-zero */ if (!input.msg_version) return -EINVAL; mutex_lock(&snp_cmd_mutex); /* Check if the VMPCK is not empty */ if (is_vmpck_empty(snp_dev)) { dev_err_ratelimited(snp_dev->dev, "VMPCK is disabled\n"); mutex_unlock(&snp_cmd_mutex); return -ENOTTY; } switch (ioctl) { case SNP_GET_REPORT: ret = get_report(snp_dev, &input); break; case SNP_GET_DERIVED_KEY: ret = get_derived_key(snp_dev, &input); break; case SNP_GET_EXT_REPORT: ret = get_ext_report(snp_dev, &input); break; default: break; } mutex_unlock(&snp_cmd_mutex); if (input.exitinfo2 && copy_to_user(argp, &input, sizeof(input))) return -EFAULT; return ret; } static void free_shared_pages(void *buf, size_t sz) { unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; int ret; if (!buf) return; ret = set_memory_encrypted((unsigned long)buf, npages); if (ret) { WARN_ONCE(ret, "failed to restore encryption mask (leak it)\n"); return; } __free_pages(virt_to_page(buf), get_order(sz)); } static void *alloc_shared_pages(struct device *dev, size_t sz) { unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; struct page *page; int ret; page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(sz)); if (!page) return NULL; ret = set_memory_decrypted((unsigned long)page_address(page), npages); if (ret) { dev_err(dev, "failed to mark page shared, ret=%d\n", ret); __free_pages(page, get_order(sz)); return NULL; } return page_address(page); } static const struct file_operations snp_guest_fops = { .owner = THIS_MODULE, .unlocked_ioctl = snp_guest_ioctl, }; static u8 *get_vmpck(int id, struct snp_secrets_page_layout *layout, u32 **seqno) { u8 *key = NULL; switch (id) { case 0: *seqno = &layout->os_area.msg_seqno_0; key = layout->vmpck0; break; case 1: *seqno = &layout->os_area.msg_seqno_1; key = layout->vmpck1; break; case 2: *seqno = &layout->os_area.msg_seqno_2; key = layout->vmpck2; break; case 3: *seqno = &layout->os_area.msg_seqno_3; key = layout->vmpck3; break; default: break; } return key; } static int __init sev_guest_probe(struct platform_device *pdev) { struct snp_secrets_page_layout *layout; struct sev_guest_platform_data *data; struct device *dev = &pdev->dev; struct snp_guest_dev *snp_dev; struct miscdevice *misc; void __iomem *mapping; int ret; if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) return -ENODEV; if (!dev->platform_data) return -ENODEV; data = (struct sev_guest_platform_data *)dev->platform_data; mapping = ioremap_encrypted(data->secrets_gpa, PAGE_SIZE); if (!mapping) return -ENODEV; layout = (__force void *)mapping; ret = -ENOMEM; snp_dev = devm_kzalloc(&pdev->dev, sizeof(struct snp_guest_dev), GFP_KERNEL); if (!snp_dev) goto e_unmap; ret = -EINVAL; snp_dev->vmpck = get_vmpck(vmpck_id, layout, &snp_dev->os_area_msg_seqno); if (!snp_dev->vmpck) { dev_err(dev, "invalid vmpck id %d\n", vmpck_id); goto e_unmap; } /* Verify that VMPCK is not zero. */ if (is_vmpck_empty(snp_dev)) { dev_err(dev, "vmpck id %d is null\n", vmpck_id); goto e_unmap; } platform_set_drvdata(pdev, snp_dev); snp_dev->dev = dev; snp_dev->layout = layout; /* Allocate the shared page used for the request and response message. */ snp_dev->request = alloc_shared_pages(dev, sizeof(struct snp_guest_msg)); if (!snp_dev->request) goto e_unmap; snp_dev->response = alloc_shared_pages(dev, sizeof(struct snp_guest_msg)); if (!snp_dev->response) goto e_free_request; snp_dev->certs_data = alloc_shared_pages(dev, SEV_FW_BLOB_MAX_SIZE); if (!snp_dev->certs_data) goto e_free_response; ret = -EIO; snp_dev->crypto = init_crypto(snp_dev, snp_dev->vmpck, VMPCK_KEY_LEN); if (!snp_dev->crypto) goto e_free_cert_data; misc = &snp_dev->misc; misc->minor = MISC_DYNAMIC_MINOR; misc->name = DEVICE_NAME; misc->fops = &snp_guest_fops; /* initial the input address for guest request */ snp_dev->input.req_gpa = __pa(snp_dev->request); snp_dev->input.resp_gpa = __pa(snp_dev->response); snp_dev->input.data_gpa = __pa(snp_dev->certs_data); ret = misc_register(misc); if (ret) goto e_free_cert_data; dev_info(dev, "Initialized SEV guest driver (using vmpck_id %d)\n", vmpck_id); return 0; e_free_cert_data: free_shared_pages(snp_dev->certs_data, SEV_FW_BLOB_MAX_SIZE); e_free_response: free_shared_pages(snp_dev->response, sizeof(struct snp_guest_msg)); e_free_request: free_shared_pages(snp_dev->request, sizeof(struct snp_guest_msg)); e_unmap: iounmap(mapping); return ret; } static int __exit sev_guest_remove(struct platform_device *pdev) { struct snp_guest_dev *snp_dev = platform_get_drvdata(pdev); free_shared_pages(snp_dev->certs_data, SEV_FW_BLOB_MAX_SIZE); free_shared_pages(snp_dev->response, sizeof(struct snp_guest_msg)); free_shared_pages(snp_dev->request, sizeof(struct snp_guest_msg)); deinit_crypto(snp_dev->crypto); misc_deregister(&snp_dev->misc); return 0; } /* * This driver is meant to be a common SEV guest interface driver and to * support any SEV guest API. As such, even though it has been introduced * with the SEV-SNP support, it is named "sev-guest". */ static struct platform_driver sev_guest_driver = { .remove = __exit_p(sev_guest_remove), .driver = { .name = "sev-guest", }, }; module_platform_driver_probe(sev_guest_driver, sev_guest_probe); MODULE_AUTHOR("Brijesh Singh <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0.0"); MODULE_DESCRIPTION("AMD SEV Guest Driver"); MODULE_ALIAS("platform:sev-guest");
linux-master
drivers/virt/coco/sev-guest/sev-guest.c
// SPDX-License-Identifier: GPL-2.0 /* * efi_secret module * * Copyright (C) 2022 IBM Corporation * Author: Dov Murik <[email protected]> */ /** * DOC: efi_secret: Allow reading EFI confidential computing (coco) secret area * via securityfs interface. * * When the module is loaded (and securityfs is mounted, typically under * /sys/kernel/security), a "secrets/coco" directory is created in securityfs. * In it, a file is created for each secret entry. The name of each such file * is the GUID of the secret entry, and its content is the secret data. */ #include <linux/platform_device.h> #include <linux/seq_file.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/io.h> #include <linux/security.h> #include <linux/efi.h> #include <linux/cacheflush.h> #define EFI_SECRET_NUM_FILES 64 struct efi_secret { struct dentry *secrets_dir; struct dentry *fs_dir; struct dentry *fs_files[EFI_SECRET_NUM_FILES]; void __iomem *secret_data; u64 secret_data_len; }; /* * Structure of the EFI secret area * * Offset Length * (bytes) (bytes) Usage * ------- ------- ----- * 0 16 Secret table header GUID (must be 1e74f542-71dd-4d66-963e-ef4287ff173b) * 16 4 Length of bytes of the entire secret area * * 20 16 First secret entry's GUID * 36 4 First secret entry's length in bytes (= 16 + 4 + x) * 40 x First secret entry's data * * 40+x 16 Second secret entry's GUID * 56+x 4 Second secret entry's length in bytes (= 16 + 4 + y) * 60+x y Second secret entry's data * * (... and so on for additional entries) * * The GUID of each secret entry designates the usage of the secret data. */ /** * struct secret_header - Header of entire secret area; this should be followed * by instances of struct secret_entry. * @guid: Must be EFI_SECRET_TABLE_HEADER_GUID * @len: Length in bytes of entire secret area, including header */ struct secret_header { efi_guid_t guid; u32 len; } __attribute((packed)); /** * struct secret_entry - Holds one secret entry * @guid: Secret-specific GUID (or NULL_GUID if this secret entry was deleted) * @len: Length of secret entry, including its guid and len fields * @data: The secret data (full of zeros if this secret entry was deleted) */ struct secret_entry { efi_guid_t guid; u32 len; u8 data[]; } __attribute((packed)); static size_t secret_entry_data_len(struct secret_entry *e) { return e->len - sizeof(*e); } static struct efi_secret the_efi_secret; static inline struct efi_secret *efi_secret_get(void) { return &the_efi_secret; } static int efi_secret_bin_file_show(struct seq_file *file, void *data) { struct secret_entry *e = file->private; if (e) seq_write(file, e->data, secret_entry_data_len(e)); return 0; } DEFINE_SHOW_ATTRIBUTE(efi_secret_bin_file); /* * Overwrite memory content with zeroes, and ensure that dirty cache lines are * actually written back to memory, to clear out the secret. */ static void wipe_memory(void *addr, size_t size) { memzero_explicit(addr, size); #ifdef CONFIG_X86 clflush_cache_range(addr, size); #endif } static int efi_secret_unlink(struct inode *dir, struct dentry *dentry) { struct efi_secret *s = efi_secret_get(); struct inode *inode = d_inode(dentry); struct secret_entry *e = (struct secret_entry *)inode->i_private; int i; if (e) { /* Zero out the secret data */ wipe_memory(e->data, secret_entry_data_len(e)); e->guid = NULL_GUID; } inode->i_private = NULL; for (i = 0; i < EFI_SECRET_NUM_FILES; i++) if (s->fs_files[i] == dentry) s->fs_files[i] = NULL; /* * securityfs_remove tries to lock the directory's inode, but we reach * the unlink callback when it's already locked */ inode_unlock(dir); securityfs_remove(dentry); inode_lock(dir); return 0; } static const struct inode_operations efi_secret_dir_inode_operations = { .lookup = simple_lookup, .unlink = efi_secret_unlink, }; static int efi_secret_map_area(struct platform_device *dev) { int ret; struct efi_secret *s = efi_secret_get(); struct linux_efi_coco_secret_area *secret_area; if (efi.coco_secret == EFI_INVALID_TABLE_ADDR) { dev_err(&dev->dev, "Secret area address is not available\n"); return -EINVAL; } secret_area = memremap(efi.coco_secret, sizeof(*secret_area), MEMREMAP_WB); if (secret_area == NULL) { dev_err(&dev->dev, "Could not map secret area EFI config entry\n"); return -ENOMEM; } if (!secret_area->base_pa || secret_area->size < sizeof(struct secret_header)) { dev_err(&dev->dev, "Invalid secret area memory location (base_pa=0x%llx size=0x%llx)\n", secret_area->base_pa, secret_area->size); ret = -EINVAL; goto unmap; } s->secret_data = ioremap_encrypted(secret_area->base_pa, secret_area->size); if (s->secret_data == NULL) { dev_err(&dev->dev, "Could not map secret area\n"); ret = -ENOMEM; goto unmap; } s->secret_data_len = secret_area->size; ret = 0; unmap: memunmap(secret_area); return ret; } static void efi_secret_securityfs_teardown(struct platform_device *dev) { struct efi_secret *s = efi_secret_get(); int i; for (i = (EFI_SECRET_NUM_FILES - 1); i >= 0; i--) { securityfs_remove(s->fs_files[i]); s->fs_files[i] = NULL; } securityfs_remove(s->fs_dir); s->fs_dir = NULL; securityfs_remove(s->secrets_dir); s->secrets_dir = NULL; dev_dbg(&dev->dev, "Removed securityfs entries\n"); } static int efi_secret_securityfs_setup(struct platform_device *dev) { struct efi_secret *s = efi_secret_get(); int ret = 0, i = 0, bytes_left; unsigned char *ptr; struct secret_header *h; struct secret_entry *e; struct dentry *dent; char guid_str[EFI_VARIABLE_GUID_LEN + 1]; ptr = (void __force *)s->secret_data; h = (struct secret_header *)ptr; if (efi_guidcmp(h->guid, EFI_SECRET_TABLE_HEADER_GUID)) { /* * This is not an error: it just means that EFI defines secret * area but it was not populated by the Guest Owner. */ dev_dbg(&dev->dev, "EFI secret area does not start with correct GUID\n"); return -ENODEV; } if (h->len < sizeof(*h)) { dev_err(&dev->dev, "EFI secret area reported length is too small\n"); return -EINVAL; } if (h->len > s->secret_data_len) { dev_err(&dev->dev, "EFI secret area reported length is too big\n"); return -EINVAL; } s->secrets_dir = NULL; s->fs_dir = NULL; memset(s->fs_files, 0, sizeof(s->fs_files)); dent = securityfs_create_dir("secrets", NULL); if (IS_ERR(dent)) { dev_err(&dev->dev, "Error creating secrets securityfs directory entry err=%ld\n", PTR_ERR(dent)); return PTR_ERR(dent); } s->secrets_dir = dent; dent = securityfs_create_dir("coco", s->secrets_dir); if (IS_ERR(dent)) { dev_err(&dev->dev, "Error creating coco securityfs directory entry err=%ld\n", PTR_ERR(dent)); return PTR_ERR(dent); } d_inode(dent)->i_op = &efi_secret_dir_inode_operations; s->fs_dir = dent; bytes_left = h->len - sizeof(*h); ptr += sizeof(*h); while (bytes_left >= (int)sizeof(*e) && i < EFI_SECRET_NUM_FILES) { e = (struct secret_entry *)ptr; if (e->len < sizeof(*e) || e->len > (unsigned int)bytes_left) { dev_err(&dev->dev, "EFI secret area is corrupted\n"); ret = -EINVAL; goto err_cleanup; } /* Skip deleted entries (which will have NULL_GUID) */ if (efi_guidcmp(e->guid, NULL_GUID)) { efi_guid_to_str(&e->guid, guid_str); dent = securityfs_create_file(guid_str, 0440, s->fs_dir, (void *)e, &efi_secret_bin_file_fops); if (IS_ERR(dent)) { dev_err(&dev->dev, "Error creating efi_secret securityfs entry\n"); ret = PTR_ERR(dent); goto err_cleanup; } s->fs_files[i++] = dent; } ptr += e->len; bytes_left -= e->len; } dev_info(&dev->dev, "Created %d entries in securityfs secrets/coco\n", i); return 0; err_cleanup: efi_secret_securityfs_teardown(dev); return ret; } static void efi_secret_unmap_area(void) { struct efi_secret *s = efi_secret_get(); if (s->secret_data) { iounmap(s->secret_data); s->secret_data = NULL; s->secret_data_len = 0; } } static int efi_secret_probe(struct platform_device *dev) { int ret; ret = efi_secret_map_area(dev); if (ret) return ret; ret = efi_secret_securityfs_setup(dev); if (ret) goto err_unmap; return ret; err_unmap: efi_secret_unmap_area(); return ret; } static int efi_secret_remove(struct platform_device *dev) { efi_secret_securityfs_teardown(dev); efi_secret_unmap_area(); return 0; } static struct platform_driver efi_secret_driver = { .probe = efi_secret_probe, .remove = efi_secret_remove, .driver = { .name = "efi_secret", }, }; module_platform_driver(efi_secret_driver); MODULE_DESCRIPTION("Confidential computing EFI secret area access"); MODULE_AUTHOR("IBM"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:efi_secret");
linux-master
drivers/virt/coco/efi_secret/efi_secret.c
// SPDX-License-Identifier: GPL-2.0 /* * TDX guest user interface driver * * Copyright (C) 2022 Intel Corporation */ #include <linux/kernel.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/string.h> #include <linux/uaccess.h> #include <uapi/linux/tdx-guest.h> #include <asm/cpu_device_id.h> #include <asm/tdx.h> static long tdx_get_report0(struct tdx_report_req __user *req) { u8 *reportdata, *tdreport; long ret; reportdata = kmalloc(TDX_REPORTDATA_LEN, GFP_KERNEL); if (!reportdata) return -ENOMEM; tdreport = kzalloc(TDX_REPORT_LEN, GFP_KERNEL); if (!tdreport) { ret = -ENOMEM; goto out; } if (copy_from_user(reportdata, req->reportdata, TDX_REPORTDATA_LEN)) { ret = -EFAULT; goto out; } /* Generate TDREPORT0 using "TDG.MR.REPORT" TDCALL */ ret = tdx_mcall_get_report0(reportdata, tdreport); if (ret) goto out; if (copy_to_user(req->tdreport, tdreport, TDX_REPORT_LEN)) ret = -EFAULT; out: kfree(reportdata); kfree(tdreport); return ret; } static long tdx_guest_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case TDX_CMD_GET_REPORT0: return tdx_get_report0((struct tdx_report_req __user *)arg); default: return -ENOTTY; } } static const struct file_operations tdx_guest_fops = { .owner = THIS_MODULE, .unlocked_ioctl = tdx_guest_ioctl, .llseek = no_llseek, }; static struct miscdevice tdx_misc_dev = { .name = KBUILD_MODNAME, .minor = MISC_DYNAMIC_MINOR, .fops = &tdx_guest_fops, }; static const struct x86_cpu_id tdx_guest_ids[] = { X86_MATCH_FEATURE(X86_FEATURE_TDX_GUEST, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, tdx_guest_ids); static int __init tdx_guest_init(void) { if (!x86_match_cpu(tdx_guest_ids)) return -ENODEV; return misc_register(&tdx_misc_dev); } module_init(tdx_guest_init); static void __exit tdx_guest_exit(void) { misc_deregister(&tdx_misc_dev); } module_exit(tdx_guest_exit); MODULE_AUTHOR("Kuppuswamy Sathyanarayanan <[email protected]>"); MODULE_DESCRIPTION("TDX Guest Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/virt/coco/tdx-guest/tdx-guest.c
/* SPDX-License-Identifier: (GPL-2.0 OR CDDL-1.0) */ /* * vboxguest vmm-req and hgcm-call code, VBoxGuestR0LibHGCMInternal.cpp, * VBoxGuestR0LibGenericRequest.cpp and RTErrConvertToErrno.cpp in vbox svn. * * Copyright (C) 2006-2016 Oracle Corporation */ #include <linux/errno.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/vmalloc.h> #include <linux/vbox_err.h> #include <linux/vbox_utils.h> #include "vboxguest_core.h" /* Get the pointer to the first parameter of a HGCM call request. */ #define VMMDEV_HGCM_CALL_PARMS(a) \ ((struct vmmdev_hgcm_function_parameter *)( \ (u8 *)(a) + sizeof(struct vmmdev_hgcm_call))) /* The max parameter buffer size for a user request. */ #define VBG_MAX_HGCM_USER_PARM (24 * SZ_1M) /* The max parameter buffer size for a kernel request. */ #define VBG_MAX_HGCM_KERNEL_PARM (16 * SZ_1M) #define VBG_DEBUG_PORT 0x504 /* This protects vbg_log_buf and serializes VBG_DEBUG_PORT accesses */ static DEFINE_SPINLOCK(vbg_log_lock); static char vbg_log_buf[128]; #define VBG_LOG(name, pr_func) \ void name(const char *fmt, ...) \ { \ unsigned long flags; \ va_list args; \ int i, count; \ \ va_start(args, fmt); \ spin_lock_irqsave(&vbg_log_lock, flags); \ \ count = vscnprintf(vbg_log_buf, sizeof(vbg_log_buf), fmt, args);\ for (i = 0; i < count; i++) \ outb(vbg_log_buf[i], VBG_DEBUG_PORT); \ \ pr_func("%s", vbg_log_buf); \ \ spin_unlock_irqrestore(&vbg_log_lock, flags); \ va_end(args); \ } \ EXPORT_SYMBOL(name) VBG_LOG(vbg_info, pr_info); VBG_LOG(vbg_warn, pr_warn); VBG_LOG(vbg_err, pr_err); VBG_LOG(vbg_err_ratelimited, pr_err_ratelimited); #if defined(DEBUG) && !defined(CONFIG_DYNAMIC_DEBUG) VBG_LOG(vbg_debug, pr_debug); #endif void *vbg_req_alloc(size_t len, enum vmmdev_request_type req_type, u32 requestor) { struct vmmdev_request_header *req; int order = get_order(PAGE_ALIGN(len)); req = (void *)__get_free_pages(GFP_KERNEL | GFP_DMA32, order); if (!req) return NULL; memset(req, 0xaa, len); req->size = len; req->version = VMMDEV_REQUEST_HEADER_VERSION; req->request_type = req_type; req->rc = VERR_GENERAL_FAILURE; req->reserved1 = 0; req->requestor = requestor; return req; } void vbg_req_free(void *req, size_t len) { if (!req) return; free_pages((unsigned long)req, get_order(PAGE_ALIGN(len))); } /* Note this function returns a VBox status code, not a negative errno!! */ int vbg_req_perform(struct vbg_dev *gdev, void *req) { unsigned long phys_req = virt_to_phys(req); outl(phys_req, gdev->io_port + VMMDEV_PORT_OFF_REQUEST); /* * The host changes the request as a result of the outl, make sure * the outl and any reads of the req happen in the correct order. */ mb(); return ((struct vmmdev_request_header *)req)->rc; } static bool hgcm_req_done(struct vbg_dev *gdev, struct vmmdev_hgcmreq_header *header) { unsigned long flags; bool done; spin_lock_irqsave(&gdev->event_spinlock, flags); done = header->flags & VMMDEV_HGCM_REQ_DONE; spin_unlock_irqrestore(&gdev->event_spinlock, flags); return done; } int vbg_hgcm_connect(struct vbg_dev *gdev, u32 requestor, struct vmmdev_hgcm_service_location *loc, u32 *client_id, int *vbox_status) { struct vmmdev_hgcm_connect *hgcm_connect = NULL; int rc; hgcm_connect = vbg_req_alloc(sizeof(*hgcm_connect), VMMDEVREQ_HGCM_CONNECT, requestor); if (!hgcm_connect) return -ENOMEM; hgcm_connect->header.flags = 0; memcpy(&hgcm_connect->loc, loc, sizeof(*loc)); hgcm_connect->client_id = 0; rc = vbg_req_perform(gdev, hgcm_connect); if (rc == VINF_HGCM_ASYNC_EXECUTE) wait_event(gdev->hgcm_wq, hgcm_req_done(gdev, &hgcm_connect->header)); if (rc >= 0) { *client_id = hgcm_connect->client_id; rc = hgcm_connect->header.result; } vbg_req_free(hgcm_connect, sizeof(*hgcm_connect)); *vbox_status = rc; return 0; } EXPORT_SYMBOL(vbg_hgcm_connect); int vbg_hgcm_disconnect(struct vbg_dev *gdev, u32 requestor, u32 client_id, int *vbox_status) { struct vmmdev_hgcm_disconnect *hgcm_disconnect = NULL; int rc; hgcm_disconnect = vbg_req_alloc(sizeof(*hgcm_disconnect), VMMDEVREQ_HGCM_DISCONNECT, requestor); if (!hgcm_disconnect) return -ENOMEM; hgcm_disconnect->header.flags = 0; hgcm_disconnect->client_id = client_id; rc = vbg_req_perform(gdev, hgcm_disconnect); if (rc == VINF_HGCM_ASYNC_EXECUTE) wait_event(gdev->hgcm_wq, hgcm_req_done(gdev, &hgcm_disconnect->header)); if (rc >= 0) rc = hgcm_disconnect->header.result; vbg_req_free(hgcm_disconnect, sizeof(*hgcm_disconnect)); *vbox_status = rc; return 0; } EXPORT_SYMBOL(vbg_hgcm_disconnect); static u32 hgcm_call_buf_size_in_pages(void *buf, u32 len) { u32 size = PAGE_ALIGN(len + ((unsigned long)buf & ~PAGE_MASK)); return size >> PAGE_SHIFT; } static void hgcm_call_add_pagelist_size(void *buf, u32 len, size_t *extra) { u32 page_count; page_count = hgcm_call_buf_size_in_pages(buf, len); *extra += offsetof(struct vmmdev_hgcm_pagelist, pages[page_count]); } static int hgcm_call_preprocess_linaddr( const struct vmmdev_hgcm_function_parameter *src_parm, void **bounce_buf_ret, size_t *extra) { void *buf, *bounce_buf; bool copy_in; u32 len; int ret; buf = (void *)src_parm->u.pointer.u.linear_addr; len = src_parm->u.pointer.size; copy_in = src_parm->type != VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT; if (len > VBG_MAX_HGCM_USER_PARM) return -E2BIG; bounce_buf = kvmalloc(len, GFP_KERNEL); if (!bounce_buf) return -ENOMEM; *bounce_buf_ret = bounce_buf; if (copy_in) { ret = copy_from_user(bounce_buf, (void __user *)buf, len); if (ret) return -EFAULT; } else { memset(bounce_buf, 0, len); } hgcm_call_add_pagelist_size(bounce_buf, len, extra); return 0; } /** * Preprocesses the HGCM call, validate parameters, alloc bounce buffers and * figure out how much extra storage we need for page lists. * Return: 0 or negative errno value. * @src_parm: Pointer to source function call parameters * @parm_count: Number of function call parameters. * @bounce_bufs_ret: Where to return the allocated bouncebuffer array * @extra: Where to return the extra request space needed for * physical page lists. */ static int hgcm_call_preprocess( const struct vmmdev_hgcm_function_parameter *src_parm, u32 parm_count, void ***bounce_bufs_ret, size_t *extra) { void *buf, **bounce_bufs = NULL; u32 i, len; int ret; for (i = 0; i < parm_count; i++, src_parm++) { switch (src_parm->type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: case VMMDEV_HGCM_PARM_TYPE_64BIT: break; case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: if (!bounce_bufs) { bounce_bufs = kcalloc(parm_count, sizeof(void *), GFP_KERNEL); if (!bounce_bufs) return -ENOMEM; *bounce_bufs_ret = bounce_bufs; } ret = hgcm_call_preprocess_linaddr(src_parm, &bounce_bufs[i], extra); if (ret) return ret; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_OUT: buf = (void *)src_parm->u.pointer.u.linear_addr; len = src_parm->u.pointer.size; if (WARN_ON(len > VBG_MAX_HGCM_KERNEL_PARM)) return -E2BIG; hgcm_call_add_pagelist_size(buf, len, extra); break; default: return -EINVAL; } } return 0; } /** * Translates linear address types to page list direction flags. * * Return: page list flags. * @type: The type. */ static u32 hgcm_call_linear_addr_type_to_pagelist_flags( enum vmmdev_hgcm_function_parameter_type type) { switch (type) { default: WARN_ON(1); fallthrough; case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL: return VMMDEV_HGCM_F_PARM_DIRECTION_BOTH; case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_IN: return VMMDEV_HGCM_F_PARM_DIRECTION_TO_HOST; case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_OUT: return VMMDEV_HGCM_F_PARM_DIRECTION_FROM_HOST; } } static void hgcm_call_init_linaddr(struct vmmdev_hgcm_call *call, struct vmmdev_hgcm_function_parameter *dst_parm, void *buf, u32 len, enum vmmdev_hgcm_function_parameter_type type, u32 *off_extra) { struct vmmdev_hgcm_pagelist *dst_pg_lst; struct page *page; bool is_vmalloc; u32 i, page_count; dst_parm->type = type; if (len == 0) { dst_parm->u.pointer.size = 0; dst_parm->u.pointer.u.linear_addr = 0; return; } dst_pg_lst = (void *)call + *off_extra; page_count = hgcm_call_buf_size_in_pages(buf, len); is_vmalloc = is_vmalloc_addr(buf); dst_parm->type = VMMDEV_HGCM_PARM_TYPE_PAGELIST; dst_parm->u.page_list.size = len; dst_parm->u.page_list.offset = *off_extra; dst_pg_lst->flags = hgcm_call_linear_addr_type_to_pagelist_flags(type); dst_pg_lst->offset_first_page = (unsigned long)buf & ~PAGE_MASK; dst_pg_lst->page_count = page_count; for (i = 0; i < page_count; i++) { if (is_vmalloc) page = vmalloc_to_page(buf); else page = virt_to_page(buf); dst_pg_lst->pages[i] = page_to_phys(page); buf += PAGE_SIZE; } *off_extra += offsetof(struct vmmdev_hgcm_pagelist, pages[page_count]); } /** * Initializes the call request that we're sending to the host. * @call: The call to initialize. * @client_id: The client ID of the caller. * @function: The function number of the function to call. * @src_parm: Pointer to source function call parameters. * @parm_count: Number of function call parameters. * @bounce_bufs: The bouncebuffer array. */ static void hgcm_call_init_call( struct vmmdev_hgcm_call *call, u32 client_id, u32 function, const struct vmmdev_hgcm_function_parameter *src_parm, u32 parm_count, void **bounce_bufs) { struct vmmdev_hgcm_function_parameter *dst_parm = VMMDEV_HGCM_CALL_PARMS(call); u32 i, off_extra = (uintptr_t)(dst_parm + parm_count) - (uintptr_t)call; void *buf; call->header.flags = 0; call->header.result = VINF_SUCCESS; call->client_id = client_id; call->function = function; call->parm_count = parm_count; for (i = 0; i < parm_count; i++, src_parm++, dst_parm++) { switch (src_parm->type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: case VMMDEV_HGCM_PARM_TYPE_64BIT: *dst_parm = *src_parm; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: hgcm_call_init_linaddr(call, dst_parm, bounce_bufs[i], src_parm->u.pointer.size, src_parm->type, &off_extra); break; case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_OUT: buf = (void *)src_parm->u.pointer.u.linear_addr; hgcm_call_init_linaddr(call, dst_parm, buf, src_parm->u.pointer.size, src_parm->type, &off_extra); break; default: WARN_ON(1); dst_parm->type = VMMDEV_HGCM_PARM_TYPE_INVALID; } } } /** * Tries to cancel a pending HGCM call. * * Return: VBox status code */ static int hgcm_cancel_call(struct vbg_dev *gdev, struct vmmdev_hgcm_call *call) { int rc; /* * We use a pre-allocated request for cancellations, which is * protected by cancel_req_mutex. This means that all cancellations * get serialized, this should be fine since they should be rare. */ mutex_lock(&gdev->cancel_req_mutex); gdev->cancel_req->phys_req_to_cancel = virt_to_phys(call); rc = vbg_req_perform(gdev, gdev->cancel_req); mutex_unlock(&gdev->cancel_req_mutex); if (rc == VERR_NOT_IMPLEMENTED) { call->header.flags |= VMMDEV_HGCM_REQ_CANCELLED; call->header.header.request_type = VMMDEVREQ_HGCM_CANCEL; rc = vbg_req_perform(gdev, call); if (rc == VERR_INVALID_PARAMETER) rc = VERR_NOT_FOUND; } if (rc >= 0) call->header.flags |= VMMDEV_HGCM_REQ_CANCELLED; return rc; } /** * Performs the call and completion wait. * Return: 0 or negative errno value. * @gdev: The VBoxGuest device extension. * @call: The call to execute. * @timeout_ms: Timeout in ms. * @leak_it: Where to return the leak it / free it, indicator. * Cancellation fun. */ static int vbg_hgcm_do_call(struct vbg_dev *gdev, struct vmmdev_hgcm_call *call, u32 timeout_ms, bool interruptible, bool *leak_it) { int rc, cancel_rc, ret; long timeout; *leak_it = false; rc = vbg_req_perform(gdev, call); /* * If the call failed, then pretend success. Upper layers will * interpret the result code in the packet. */ if (rc < 0) { call->header.result = rc; return 0; } if (rc != VINF_HGCM_ASYNC_EXECUTE) return 0; /* Host decided to process the request asynchronously, wait for it */ if (timeout_ms == U32_MAX) timeout = MAX_SCHEDULE_TIMEOUT; else timeout = msecs_to_jiffies(timeout_ms); if (interruptible) { timeout = wait_event_interruptible_timeout(gdev->hgcm_wq, hgcm_req_done(gdev, &call->header), timeout); } else { timeout = wait_event_timeout(gdev->hgcm_wq, hgcm_req_done(gdev, &call->header), timeout); } /* timeout > 0 means hgcm_req_done has returned true, so success */ if (timeout > 0) return 0; if (timeout == 0) ret = -ETIMEDOUT; else ret = -EINTR; /* Cancel the request */ cancel_rc = hgcm_cancel_call(gdev, call); if (cancel_rc >= 0) return ret; /* * Failed to cancel, this should mean that the cancel has lost the * race with normal completion, wait while the host completes it. */ if (cancel_rc == VERR_NOT_FOUND || cancel_rc == VERR_SEM_DESTROYED) timeout = msecs_to_jiffies(500); else timeout = msecs_to_jiffies(2000); timeout = wait_event_timeout(gdev->hgcm_wq, hgcm_req_done(gdev, &call->header), timeout); if (WARN_ON(timeout == 0)) { /* We really should never get here */ vbg_err("%s: Call timedout and cancellation failed, leaking the request\n", __func__); *leak_it = true; return ret; } /* The call has completed normally after all */ return 0; } /** * Copies the result of the call back to the caller info structure and user * buffers. * Return: 0 or negative errno value. * @call: HGCM call request. * @dst_parm: Pointer to function call parameters destination. * @parm_count: Number of function call parameters. * @bounce_bufs: The bouncebuffer array. */ static int hgcm_call_copy_back_result( const struct vmmdev_hgcm_call *call, struct vmmdev_hgcm_function_parameter *dst_parm, u32 parm_count, void **bounce_bufs) { const struct vmmdev_hgcm_function_parameter *src_parm = VMMDEV_HGCM_CALL_PARMS(call); void __user *p; int ret; u32 i; /* Copy back parameters. */ for (i = 0; i < parm_count; i++, src_parm++, dst_parm++) { switch (dst_parm->type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: case VMMDEV_HGCM_PARM_TYPE_64BIT: *dst_parm = *src_parm; break; case VMMDEV_HGCM_PARM_TYPE_PAGELIST: dst_parm->u.page_list.size = src_parm->u.page_list.size; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_KERNEL_OUT: dst_parm->u.pointer.size = src_parm->u.pointer.size; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: dst_parm->u.pointer.size = src_parm->u.pointer.size; p = (void __user *)dst_parm->u.pointer.u.linear_addr; ret = copy_to_user(p, bounce_bufs[i], min(src_parm->u.pointer.size, dst_parm->u.pointer.size)); if (ret) return -EFAULT; break; default: WARN_ON(1); return -EINVAL; } } return 0; } int vbg_hgcm_call(struct vbg_dev *gdev, u32 requestor, u32 client_id, u32 function, u32 timeout_ms, struct vmmdev_hgcm_function_parameter *parms, u32 parm_count, int *vbox_status) { struct vmmdev_hgcm_call *call; void **bounce_bufs = NULL; bool leak_it; size_t size; int i, ret; size = sizeof(struct vmmdev_hgcm_call) + parm_count * sizeof(struct vmmdev_hgcm_function_parameter); /* * Validate and buffer the parameters for the call. This also increases * call_size with the amount of extra space needed for page lists. */ ret = hgcm_call_preprocess(parms, parm_count, &bounce_bufs, &size); if (ret) { /* Even on error bounce bufs may still have been allocated */ goto free_bounce_bufs; } call = vbg_req_alloc(size, VMMDEVREQ_HGCM_CALL, requestor); if (!call) { ret = -ENOMEM; goto free_bounce_bufs; } hgcm_call_init_call(call, client_id, function, parms, parm_count, bounce_bufs); ret = vbg_hgcm_do_call(gdev, call, timeout_ms, requestor & VMMDEV_REQUESTOR_USERMODE, &leak_it); if (ret == 0) { *vbox_status = call->header.result; ret = hgcm_call_copy_back_result(call, parms, parm_count, bounce_bufs); } if (!leak_it) vbg_req_free(call, size); free_bounce_bufs: if (bounce_bufs) { for (i = 0; i < parm_count; i++) kvfree(bounce_bufs[i]); kfree(bounce_bufs); } return ret; } EXPORT_SYMBOL(vbg_hgcm_call); #ifdef CONFIG_COMPAT int vbg_hgcm_call32( struct vbg_dev *gdev, u32 requestor, u32 client_id, u32 function, u32 timeout_ms, struct vmmdev_hgcm_function_parameter32 *parm32, u32 parm_count, int *vbox_status) { struct vmmdev_hgcm_function_parameter *parm64 = NULL; u32 i, size; int ret = 0; /* KISS allocate a temporary request and convert the parameters. */ size = parm_count * sizeof(struct vmmdev_hgcm_function_parameter); parm64 = kzalloc(size, GFP_KERNEL); if (!parm64) return -ENOMEM; for (i = 0; i < parm_count; i++) { switch (parm32[i].type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: parm64[i].type = VMMDEV_HGCM_PARM_TYPE_32BIT; parm64[i].u.value32 = parm32[i].u.value32; break; case VMMDEV_HGCM_PARM_TYPE_64BIT: parm64[i].type = VMMDEV_HGCM_PARM_TYPE_64BIT; parm64[i].u.value64 = parm32[i].u.value64; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: parm64[i].type = parm32[i].type; parm64[i].u.pointer.size = parm32[i].u.pointer.size; parm64[i].u.pointer.u.linear_addr = parm32[i].u.pointer.u.linear_addr; break; default: ret = -EINVAL; } if (ret < 0) goto out_free; } ret = vbg_hgcm_call(gdev, requestor, client_id, function, timeout_ms, parm64, parm_count, vbox_status); if (ret < 0) goto out_free; /* Copy back. */ for (i = 0; i < parm_count; i++, parm32++, parm64++) { switch (parm64[i].type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: parm32[i].u.value32 = parm64[i].u.value32; break; case VMMDEV_HGCM_PARM_TYPE_64BIT: parm32[i].u.value64 = parm64[i].u.value64; break; case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: parm32[i].u.pointer.size = parm64[i].u.pointer.size; break; default: WARN_ON(1); ret = -EINVAL; } } out_free: kfree(parm64); return ret; } #endif static const int vbg_status_code_to_errno_table[] = { [-VERR_ACCESS_DENIED] = -EPERM, [-VERR_FILE_NOT_FOUND] = -ENOENT, [-VERR_PROCESS_NOT_FOUND] = -ESRCH, [-VERR_INTERRUPTED] = -EINTR, [-VERR_DEV_IO_ERROR] = -EIO, [-VERR_TOO_MUCH_DATA] = -E2BIG, [-VERR_BAD_EXE_FORMAT] = -ENOEXEC, [-VERR_INVALID_HANDLE] = -EBADF, [-VERR_TRY_AGAIN] = -EAGAIN, [-VERR_NO_MEMORY] = -ENOMEM, [-VERR_INVALID_POINTER] = -EFAULT, [-VERR_RESOURCE_BUSY] = -EBUSY, [-VERR_ALREADY_EXISTS] = -EEXIST, [-VERR_NOT_SAME_DEVICE] = -EXDEV, [-VERR_NOT_A_DIRECTORY] = -ENOTDIR, [-VERR_PATH_NOT_FOUND] = -ENOTDIR, [-VERR_INVALID_NAME] = -ENOENT, [-VERR_IS_A_DIRECTORY] = -EISDIR, [-VERR_INVALID_PARAMETER] = -EINVAL, [-VERR_TOO_MANY_OPEN_FILES] = -ENFILE, [-VERR_INVALID_FUNCTION] = -ENOTTY, [-VERR_SHARING_VIOLATION] = -ETXTBSY, [-VERR_FILE_TOO_BIG] = -EFBIG, [-VERR_DISK_FULL] = -ENOSPC, [-VERR_SEEK_ON_DEVICE] = -ESPIPE, [-VERR_WRITE_PROTECT] = -EROFS, [-VERR_BROKEN_PIPE] = -EPIPE, [-VERR_DEADLOCK] = -EDEADLK, [-VERR_FILENAME_TOO_LONG] = -ENAMETOOLONG, [-VERR_FILE_LOCK_FAILED] = -ENOLCK, [-VERR_NOT_IMPLEMENTED] = -ENOSYS, [-VERR_NOT_SUPPORTED] = -ENOSYS, [-VERR_DIR_NOT_EMPTY] = -ENOTEMPTY, [-VERR_TOO_MANY_SYMLINKS] = -ELOOP, [-VERR_NO_MORE_FILES] = -ENODATA, [-VERR_NO_DATA] = -ENODATA, [-VERR_NET_NO_NETWORK] = -ENONET, [-VERR_NET_NOT_UNIQUE_NAME] = -ENOTUNIQ, [-VERR_NO_TRANSLATION] = -EILSEQ, [-VERR_NET_NOT_SOCKET] = -ENOTSOCK, [-VERR_NET_DEST_ADDRESS_REQUIRED] = -EDESTADDRREQ, [-VERR_NET_MSG_SIZE] = -EMSGSIZE, [-VERR_NET_PROTOCOL_TYPE] = -EPROTOTYPE, [-VERR_NET_PROTOCOL_NOT_AVAILABLE] = -ENOPROTOOPT, [-VERR_NET_PROTOCOL_NOT_SUPPORTED] = -EPROTONOSUPPORT, [-VERR_NET_SOCKET_TYPE_NOT_SUPPORTED] = -ESOCKTNOSUPPORT, [-VERR_NET_OPERATION_NOT_SUPPORTED] = -EOPNOTSUPP, [-VERR_NET_PROTOCOL_FAMILY_NOT_SUPPORTED] = -EPFNOSUPPORT, [-VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED] = -EAFNOSUPPORT, [-VERR_NET_ADDRESS_IN_USE] = -EADDRINUSE, [-VERR_NET_ADDRESS_NOT_AVAILABLE] = -EADDRNOTAVAIL, [-VERR_NET_DOWN] = -ENETDOWN, [-VERR_NET_UNREACHABLE] = -ENETUNREACH, [-VERR_NET_CONNECTION_RESET] = -ENETRESET, [-VERR_NET_CONNECTION_ABORTED] = -ECONNABORTED, [-VERR_NET_CONNECTION_RESET_BY_PEER] = -ECONNRESET, [-VERR_NET_NO_BUFFER_SPACE] = -ENOBUFS, [-VERR_NET_ALREADY_CONNECTED] = -EISCONN, [-VERR_NET_NOT_CONNECTED] = -ENOTCONN, [-VERR_NET_SHUTDOWN] = -ESHUTDOWN, [-VERR_NET_TOO_MANY_REFERENCES] = -ETOOMANYREFS, [-VERR_TIMEOUT] = -ETIMEDOUT, [-VERR_NET_CONNECTION_REFUSED] = -ECONNREFUSED, [-VERR_NET_HOST_DOWN] = -EHOSTDOWN, [-VERR_NET_HOST_UNREACHABLE] = -EHOSTUNREACH, [-VERR_NET_ALREADY_IN_PROGRESS] = -EALREADY, [-VERR_NET_IN_PROGRESS] = -EINPROGRESS, [-VERR_MEDIA_NOT_PRESENT] = -ENOMEDIUM, [-VERR_MEDIA_NOT_RECOGNIZED] = -EMEDIUMTYPE, }; int vbg_status_code_to_errno(int rc) { if (rc >= 0) return 0; rc = -rc; if (rc >= ARRAY_SIZE(vbg_status_code_to_errno_table) || vbg_status_code_to_errno_table[rc] == 0) { vbg_warn("%s: Unhandled err %d\n", __func__, -rc); return -EPROTO; } return vbg_status_code_to_errno_table[rc]; } EXPORT_SYMBOL(vbg_status_code_to_errno);
linux-master
drivers/virt/vboxguest/vboxguest_utils.c
/* SPDX-License-Identifier: GPL-2.0 */ /* * vboxguest linux pci driver, char-dev and input-device code, * * Copyright (C) 2006-2016 Oracle Corporation */ #include <linux/cred.h> #include <linux/input.h> #include <linux/kernel.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/poll.h> #include <linux/vbox_utils.h> #include "vboxguest_core.h" /** The device name. */ #define DEVICE_NAME "vboxguest" /** The device name for the device node open to everyone. */ #define DEVICE_NAME_USER "vboxuser" /** VirtualBox PCI vendor ID. */ #define VBOX_VENDORID 0x80ee /** VMMDev PCI card product ID. */ #define VMMDEV_DEVICEID 0xcafe /** Mutex protecting the global vbg_gdev pointer used by vbg_get/put_gdev. */ static DEFINE_MUTEX(vbg_gdev_mutex); /** Global vbg_gdev pointer used by vbg_get/put_gdev. */ static struct vbg_dev *vbg_gdev; static u32 vbg_misc_device_requestor(struct inode *inode) { u32 requestor = VMMDEV_REQUESTOR_USERMODE | VMMDEV_REQUESTOR_CON_DONT_KNOW | VMMDEV_REQUESTOR_TRUST_NOT_GIVEN; if (from_kuid(current_user_ns(), current_uid()) == 0) requestor |= VMMDEV_REQUESTOR_USR_ROOT; else requestor |= VMMDEV_REQUESTOR_USR_USER; if (in_egroup_p(inode->i_gid)) requestor |= VMMDEV_REQUESTOR_GRP_VBOX; return requestor; } static int vbg_misc_device_open(struct inode *inode, struct file *filp) { struct vbg_session *session; struct vbg_dev *gdev; /* misc_open sets filp->private_data to our misc device */ gdev = container_of(filp->private_data, struct vbg_dev, misc_device); session = vbg_core_open_session(gdev, vbg_misc_device_requestor(inode)); if (IS_ERR(session)) return PTR_ERR(session); filp->private_data = session; return 0; } static int vbg_misc_device_user_open(struct inode *inode, struct file *filp) { struct vbg_session *session; struct vbg_dev *gdev; /* misc_open sets filp->private_data to our misc device */ gdev = container_of(filp->private_data, struct vbg_dev, misc_device_user); session = vbg_core_open_session(gdev, vbg_misc_device_requestor(inode) | VMMDEV_REQUESTOR_USER_DEVICE); if (IS_ERR(session)) return PTR_ERR(session); filp->private_data = session; return 0; } /** * Close device. * Return: 0 on success, negated errno on failure. * @inode: Pointer to inode info structure. * @filp: Associated file pointer. */ static int vbg_misc_device_close(struct inode *inode, struct file *filp) { vbg_core_close_session(filp->private_data); filp->private_data = NULL; return 0; } /** * Device I/O Control entry point. * Return: 0 on success, negated errno on failure. * @filp: Associated file pointer. * @req: The request specified to ioctl(). * @arg: The argument specified to ioctl(). */ static long vbg_misc_device_ioctl(struct file *filp, unsigned int req, unsigned long arg) { struct vbg_session *session = filp->private_data; size_t returned_size, size; struct vbg_ioctl_hdr hdr; bool is_vmmdev_req; int ret = 0; void *buf; if (copy_from_user(&hdr, (void *)arg, sizeof(hdr))) return -EFAULT; if (hdr.version != VBG_IOCTL_HDR_VERSION) return -EINVAL; if (hdr.size_in < sizeof(hdr) || (hdr.size_out && hdr.size_out < sizeof(hdr))) return -EINVAL; size = max(hdr.size_in, hdr.size_out); if (_IOC_SIZE(req) && _IOC_SIZE(req) != size) return -EINVAL; if (size > SZ_16M) return -E2BIG; /* * IOCTL_VMMDEV_REQUEST needs the buffer to be below 4G to avoid * the need for a bounce-buffer and another copy later on. */ is_vmmdev_req = (req & ~IOCSIZE_MASK) == VBG_IOCTL_VMMDEV_REQUEST(0) || req == VBG_IOCTL_VMMDEV_REQUEST_BIG || req == VBG_IOCTL_VMMDEV_REQUEST_BIG_ALT; if (is_vmmdev_req) buf = vbg_req_alloc(size, VBG_IOCTL_HDR_TYPE_DEFAULT, session->requestor); else buf = kmalloc(size, GFP_KERNEL); if (!buf) return -ENOMEM; *((struct vbg_ioctl_hdr *)buf) = hdr; if (copy_from_user(buf + sizeof(hdr), (void *)arg + sizeof(hdr), hdr.size_in - sizeof(hdr))) { ret = -EFAULT; goto out; } if (hdr.size_in < size) memset(buf + hdr.size_in, 0, size - hdr.size_in); ret = vbg_core_ioctl(session, req, buf); if (ret) goto out; returned_size = ((struct vbg_ioctl_hdr *)buf)->size_out; if (returned_size > size) { vbg_debug("%s: too much output data %zu > %zu\n", __func__, returned_size, size); returned_size = size; } if (copy_to_user((void *)arg, buf, returned_size) != 0) ret = -EFAULT; out: if (is_vmmdev_req) vbg_req_free(buf, size); else kfree(buf); return ret; } /** The file_operations structures. */ static const struct file_operations vbg_misc_device_fops = { .owner = THIS_MODULE, .open = vbg_misc_device_open, .release = vbg_misc_device_close, .unlocked_ioctl = vbg_misc_device_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = vbg_misc_device_ioctl, #endif }; static const struct file_operations vbg_misc_device_user_fops = { .owner = THIS_MODULE, .open = vbg_misc_device_user_open, .release = vbg_misc_device_close, .unlocked_ioctl = vbg_misc_device_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = vbg_misc_device_ioctl, #endif }; /** * Called when the input device is first opened. * * Sets up absolute mouse reporting. */ static int vbg_input_open(struct input_dev *input) { struct vbg_dev *gdev = input_get_drvdata(input); u32 feat = VMMDEV_MOUSE_GUEST_CAN_ABSOLUTE | VMMDEV_MOUSE_NEW_PROTOCOL; return vbg_core_set_mouse_status(gdev, feat); } /** * Called if all open handles to the input device are closed. * * Disables absolute reporting. */ static void vbg_input_close(struct input_dev *input) { struct vbg_dev *gdev = input_get_drvdata(input); vbg_core_set_mouse_status(gdev, 0); } /** * Creates the kernel input device. * * Return: 0 on success, negated errno on failure. */ static int vbg_create_input_device(struct vbg_dev *gdev) { struct input_dev *input; input = devm_input_allocate_device(gdev->dev); if (!input) return -ENOMEM; input->id.bustype = BUS_PCI; input->id.vendor = VBOX_VENDORID; input->id.product = VMMDEV_DEVICEID; input->open = vbg_input_open; input->close = vbg_input_close; input->dev.parent = gdev->dev; input->name = "VirtualBox mouse integration"; input_set_abs_params(input, ABS_X, VMMDEV_MOUSE_RANGE_MIN, VMMDEV_MOUSE_RANGE_MAX, 0, 0); input_set_abs_params(input, ABS_Y, VMMDEV_MOUSE_RANGE_MIN, VMMDEV_MOUSE_RANGE_MAX, 0, 0); input_set_capability(input, EV_KEY, BTN_MOUSE); input_set_drvdata(input, gdev); gdev->input = input; return input_register_device(gdev->input); } static ssize_t host_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct vbg_dev *gdev = dev_get_drvdata(dev); return sprintf(buf, "%s\n", gdev->host_version); } static ssize_t host_features_show(struct device *dev, struct device_attribute *attr, char *buf) { struct vbg_dev *gdev = dev_get_drvdata(dev); return sprintf(buf, "%#x\n", gdev->host_features); } static DEVICE_ATTR_RO(host_version); static DEVICE_ATTR_RO(host_features); static struct attribute *vbg_pci_attrs[] = { &dev_attr_host_version.attr, &dev_attr_host_features.attr, NULL, }; ATTRIBUTE_GROUPS(vbg_pci); /** * Does the PCI detection and init of the device. * * Return: 0 on success, negated errno on failure. */ static int vbg_pci_probe(struct pci_dev *pci, const struct pci_device_id *id) { struct device *dev = &pci->dev; resource_size_t io, io_len, mmio, mmio_len; struct vmmdev_memory *vmmdev; struct vbg_dev *gdev; int ret; gdev = devm_kzalloc(dev, sizeof(*gdev), GFP_KERNEL); if (!gdev) return -ENOMEM; ret = pci_enable_device(pci); if (ret != 0) { vbg_err("vboxguest: Error enabling device: %d\n", ret); return ret; } ret = -ENODEV; io = pci_resource_start(pci, 0); io_len = pci_resource_len(pci, 0); if (!io || !io_len) { vbg_err("vboxguest: Error IO-port resource (0) is missing\n"); goto err_disable_pcidev; } if (devm_request_region(dev, io, io_len, DEVICE_NAME) == NULL) { vbg_err("vboxguest: Error could not claim IO resource\n"); ret = -EBUSY; goto err_disable_pcidev; } mmio = pci_resource_start(pci, 1); mmio_len = pci_resource_len(pci, 1); if (!mmio || !mmio_len) { vbg_err("vboxguest: Error MMIO resource (1) is missing\n"); goto err_disable_pcidev; } if (devm_request_mem_region(dev, mmio, mmio_len, DEVICE_NAME) == NULL) { vbg_err("vboxguest: Error could not claim MMIO resource\n"); ret = -EBUSY; goto err_disable_pcidev; } vmmdev = devm_ioremap(dev, mmio, mmio_len); if (!vmmdev) { vbg_err("vboxguest: Error ioremap failed; MMIO addr=%pap size=%pap\n", &mmio, &mmio_len); goto err_disable_pcidev; } /* Validate MMIO region version and size. */ if (vmmdev->version != VMMDEV_MEMORY_VERSION || vmmdev->size < 32 || vmmdev->size > mmio_len) { vbg_err("vboxguest: Bogus VMMDev memory; version=%08x (expected %08x) size=%d (expected <= %d)\n", vmmdev->version, VMMDEV_MEMORY_VERSION, vmmdev->size, (int)mmio_len); goto err_disable_pcidev; } gdev->io_port = io; gdev->mmio = vmmdev; gdev->dev = dev; gdev->misc_device.minor = MISC_DYNAMIC_MINOR; gdev->misc_device.name = DEVICE_NAME; gdev->misc_device.fops = &vbg_misc_device_fops; gdev->misc_device_user.minor = MISC_DYNAMIC_MINOR; gdev->misc_device_user.name = DEVICE_NAME_USER; gdev->misc_device_user.fops = &vbg_misc_device_user_fops; ret = vbg_core_init(gdev, VMMDEV_EVENT_MOUSE_POSITION_CHANGED); if (ret) goto err_disable_pcidev; ret = vbg_create_input_device(gdev); if (ret) { vbg_err("vboxguest: Error creating input device: %d\n", ret); goto err_vbg_core_exit; } ret = request_irq(pci->irq, vbg_core_isr, IRQF_SHARED, DEVICE_NAME, gdev); if (ret) { vbg_err("vboxguest: Error requesting irq: %d\n", ret); goto err_vbg_core_exit; } ret = misc_register(&gdev->misc_device); if (ret) { vbg_err("vboxguest: Error misc_register %s failed: %d\n", DEVICE_NAME, ret); goto err_free_irq; } ret = misc_register(&gdev->misc_device_user); if (ret) { vbg_err("vboxguest: Error misc_register %s failed: %d\n", DEVICE_NAME_USER, ret); goto err_unregister_misc_device; } mutex_lock(&vbg_gdev_mutex); if (!vbg_gdev) vbg_gdev = gdev; else ret = -EBUSY; mutex_unlock(&vbg_gdev_mutex); if (ret) { vbg_err("vboxguest: Error more then 1 vbox guest pci device\n"); goto err_unregister_misc_device_user; } pci_set_drvdata(pci, gdev); return 0; err_unregister_misc_device_user: misc_deregister(&gdev->misc_device_user); err_unregister_misc_device: misc_deregister(&gdev->misc_device); err_free_irq: free_irq(pci->irq, gdev); err_vbg_core_exit: vbg_core_exit(gdev); err_disable_pcidev: pci_disable_device(pci); return ret; } static void vbg_pci_remove(struct pci_dev *pci) { struct vbg_dev *gdev = pci_get_drvdata(pci); mutex_lock(&vbg_gdev_mutex); vbg_gdev = NULL; mutex_unlock(&vbg_gdev_mutex); free_irq(pci->irq, gdev); misc_deregister(&gdev->misc_device_user); misc_deregister(&gdev->misc_device); vbg_core_exit(gdev); pci_disable_device(pci); } struct vbg_dev *vbg_get_gdev(void) { mutex_lock(&vbg_gdev_mutex); /* * Note on success we keep the mutex locked until vbg_put_gdev(), * this stops vbg_pci_remove from removing the device from underneath * vboxsf. vboxsf will only hold a reference for a short while. */ if (vbg_gdev) return vbg_gdev; mutex_unlock(&vbg_gdev_mutex); return ERR_PTR(-ENODEV); } EXPORT_SYMBOL(vbg_get_gdev); void vbg_put_gdev(struct vbg_dev *gdev) { WARN_ON(gdev != vbg_gdev); mutex_unlock(&vbg_gdev_mutex); } EXPORT_SYMBOL(vbg_put_gdev); /** * Callback for mouse events. * * This is called at the end of the ISR, after leaving the event spinlock, if * VMMDEV_EVENT_MOUSE_POSITION_CHANGED was raised by the host. * * @gdev: The device extension. */ void vbg_linux_mouse_event(struct vbg_dev *gdev) { int rc; /* Report events to the kernel input device */ gdev->mouse_status_req->mouse_features = 0; gdev->mouse_status_req->pointer_pos_x = 0; gdev->mouse_status_req->pointer_pos_y = 0; rc = vbg_req_perform(gdev, gdev->mouse_status_req); if (rc >= 0) { input_report_abs(gdev->input, ABS_X, gdev->mouse_status_req->pointer_pos_x); input_report_abs(gdev->input, ABS_Y, gdev->mouse_status_req->pointer_pos_y); input_sync(gdev->input); } } static const struct pci_device_id vbg_pci_ids[] = { { .vendor = VBOX_VENDORID, .device = VMMDEV_DEVICEID }, {} }; MODULE_DEVICE_TABLE(pci, vbg_pci_ids); static struct pci_driver vbg_pci_driver = { .name = DEVICE_NAME, .dev_groups = vbg_pci_groups, .id_table = vbg_pci_ids, .probe = vbg_pci_probe, .remove = vbg_pci_remove, }; module_pci_driver(vbg_pci_driver); MODULE_AUTHOR("Oracle Corporation"); MODULE_DESCRIPTION("Oracle VM VirtualBox Guest Additions for Linux Module"); MODULE_LICENSE("GPL");
linux-master
drivers/virt/vboxguest/vboxguest_linux.c
/* SPDX-License-Identifier: (GPL-2.0 OR CDDL-1.0) */ /* * vboxguest core guest-device handling code, VBoxGuest.cpp in upstream svn. * * Copyright (C) 2007-2016 Oracle Corporation */ #include <linux/device.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/vbox_err.h> #include <linux/vbox_utils.h> #include <linux/vmalloc.h> #include "vboxguest_core.h" #include "vboxguest_version.h" /* Get the pointer to the first HGCM parameter. */ #define VBG_IOCTL_HGCM_CALL_PARMS(a) \ ((struct vmmdev_hgcm_function_parameter *)( \ (u8 *)(a) + sizeof(struct vbg_ioctl_hgcm_call))) /* Get the pointer to the first HGCM parameter in a 32-bit request. */ #define VBG_IOCTL_HGCM_CALL_PARMS32(a) \ ((struct vmmdev_hgcm_function_parameter32 *)( \ (u8 *)(a) + sizeof(struct vbg_ioctl_hgcm_call))) #define GUEST_MAPPINGS_TRIES 5 #define VBG_KERNEL_REQUEST \ (VMMDEV_REQUESTOR_KERNEL | VMMDEV_REQUESTOR_USR_DRV | \ VMMDEV_REQUESTOR_CON_DONT_KNOW | VMMDEV_REQUESTOR_TRUST_NOT_GIVEN) /** * Reserves memory in which the VMM can relocate any guest mappings * that are floating around. * * This operation is a little bit tricky since the VMM might not accept * just any address because of address clashes between the three contexts * it operates in, so we try several times. * * Failure to reserve the guest mappings is ignored. * * @gdev: The Guest extension device. */ static void vbg_guest_mappings_init(struct vbg_dev *gdev) { struct vmmdev_hypervisorinfo *req; void *guest_mappings[GUEST_MAPPINGS_TRIES]; struct page **pages = NULL; u32 size, hypervisor_size; int i, rc; /* Query the required space. */ req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_GET_HYPERVISOR_INFO, VBG_KERNEL_REQUEST); if (!req) return; req->hypervisor_start = 0; req->hypervisor_size = 0; rc = vbg_req_perform(gdev, req); if (rc < 0) goto out; /* * The VMM will report back if there is nothing it wants to map, like * for instance in VT-x and AMD-V mode. */ if (req->hypervisor_size == 0) goto out; hypervisor_size = req->hypervisor_size; /* Add 4M so that we can align the vmap to 4MiB as the host requires. */ size = PAGE_ALIGN(req->hypervisor_size) + SZ_4M; pages = kmalloc_array(size >> PAGE_SHIFT, sizeof(*pages), GFP_KERNEL); if (!pages) goto out; gdev->guest_mappings_dummy_page = alloc_page(GFP_HIGHUSER); if (!gdev->guest_mappings_dummy_page) goto out; for (i = 0; i < (size >> PAGE_SHIFT); i++) pages[i] = gdev->guest_mappings_dummy_page; /* * Try several times, the VMM might not accept some addresses because * of address clashes between the three contexts. */ for (i = 0; i < GUEST_MAPPINGS_TRIES; i++) { guest_mappings[i] = vmap(pages, (size >> PAGE_SHIFT), VM_MAP, PAGE_KERNEL_RO); if (!guest_mappings[i]) break; req->header.request_type = VMMDEVREQ_SET_HYPERVISOR_INFO; req->header.rc = VERR_INTERNAL_ERROR; req->hypervisor_size = hypervisor_size; req->hypervisor_start = (unsigned long)PTR_ALIGN(guest_mappings[i], SZ_4M); rc = vbg_req_perform(gdev, req); if (rc >= 0) { gdev->guest_mappings = guest_mappings[i]; break; } } /* Free vmap's from failed attempts. */ while (--i >= 0) vunmap(guest_mappings[i]); /* On failure free the dummy-page backing the vmap */ if (!gdev->guest_mappings) { __free_page(gdev->guest_mappings_dummy_page); gdev->guest_mappings_dummy_page = NULL; } out: vbg_req_free(req, sizeof(*req)); kfree(pages); } /** * Undo what vbg_guest_mappings_init did. * * @gdev: The Guest extension device. */ static void vbg_guest_mappings_exit(struct vbg_dev *gdev) { struct vmmdev_hypervisorinfo *req; int rc; if (!gdev->guest_mappings) return; /* * Tell the host that we're going to free the memory we reserved for * it, the free it up. (Leak the memory if anything goes wrong here.) */ req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_SET_HYPERVISOR_INFO, VBG_KERNEL_REQUEST); if (!req) return; req->hypervisor_start = 0; req->hypervisor_size = 0; rc = vbg_req_perform(gdev, req); vbg_req_free(req, sizeof(*req)); if (rc < 0) { vbg_err("%s error: %d\n", __func__, rc); return; } vunmap(gdev->guest_mappings); gdev->guest_mappings = NULL; __free_page(gdev->guest_mappings_dummy_page); gdev->guest_mappings_dummy_page = NULL; } /** * Report the guest information to the host. * Return: 0 or negative errno value. * @gdev: The Guest extension device. */ static int vbg_report_guest_info(struct vbg_dev *gdev) { /* * Allocate and fill in the two guest info reports. */ struct vmmdev_guest_info *req1 = NULL; struct vmmdev_guest_info2 *req2 = NULL; int rc, ret = -ENOMEM; req1 = vbg_req_alloc(sizeof(*req1), VMMDEVREQ_REPORT_GUEST_INFO, VBG_KERNEL_REQUEST); req2 = vbg_req_alloc(sizeof(*req2), VMMDEVREQ_REPORT_GUEST_INFO2, VBG_KERNEL_REQUEST); if (!req1 || !req2) goto out_free; req1->interface_version = VMMDEV_VERSION; req1->os_type = VMMDEV_OSTYPE_LINUX26; #if __BITS_PER_LONG == 64 req1->os_type |= VMMDEV_OSTYPE_X64; #endif req2->additions_major = VBG_VERSION_MAJOR; req2->additions_minor = VBG_VERSION_MINOR; req2->additions_build = VBG_VERSION_BUILD; req2->additions_revision = VBG_SVN_REV; req2->additions_features = VMMDEV_GUEST_INFO2_ADDITIONS_FEATURES_REQUESTOR_INFO; strscpy(req2->name, VBG_VERSION_STRING, sizeof(req2->name)); /* * There are two protocols here: * 1. INFO2 + INFO1. Supported by >=3.2.51. * 2. INFO1 and optionally INFO2. The old protocol. * * We try protocol 2 first. It will fail with VERR_NOT_SUPPORTED * if not supported by the VMMDev (message ordering requirement). */ rc = vbg_req_perform(gdev, req2); if (rc >= 0) { rc = vbg_req_perform(gdev, req1); } else if (rc == VERR_NOT_SUPPORTED || rc == VERR_NOT_IMPLEMENTED) { rc = vbg_req_perform(gdev, req1); if (rc >= 0) { rc = vbg_req_perform(gdev, req2); if (rc == VERR_NOT_IMPLEMENTED) rc = VINF_SUCCESS; } } ret = vbg_status_code_to_errno(rc); out_free: vbg_req_free(req2, sizeof(*req2)); vbg_req_free(req1, sizeof(*req1)); return ret; } /** * Report the guest driver status to the host. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @active: Flag whether the driver is now active or not. */ static int vbg_report_driver_status(struct vbg_dev *gdev, bool active) { struct vmmdev_guest_status *req; int rc; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_REPORT_GUEST_STATUS, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; req->facility = VBOXGUEST_FACILITY_TYPE_VBOXGUEST_DRIVER; if (active) req->status = VBOXGUEST_FACILITY_STATUS_ACTIVE; else req->status = VBOXGUEST_FACILITY_STATUS_INACTIVE; req->flags = 0; rc = vbg_req_perform(gdev, req); if (rc == VERR_NOT_IMPLEMENTED) /* Compatibility with older hosts. */ rc = VINF_SUCCESS; vbg_req_free(req, sizeof(*req)); return vbg_status_code_to_errno(rc); } /** * Inflate the balloon by one chunk. The caller owns the balloon mutex. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @chunk_idx: Index of the chunk. */ static int vbg_balloon_inflate(struct vbg_dev *gdev, u32 chunk_idx) { struct vmmdev_memballoon_change *req = gdev->mem_balloon.change_req; struct page **pages; int i, rc, ret; pages = kmalloc_array(VMMDEV_MEMORY_BALLOON_CHUNK_PAGES, sizeof(*pages), GFP_KERNEL | __GFP_NOWARN); if (!pages) return -ENOMEM; req->header.size = sizeof(*req); req->inflate = true; req->pages = VMMDEV_MEMORY_BALLOON_CHUNK_PAGES; for (i = 0; i < VMMDEV_MEMORY_BALLOON_CHUNK_PAGES; i++) { pages[i] = alloc_page(GFP_KERNEL | __GFP_NOWARN); if (!pages[i]) { ret = -ENOMEM; goto out_error; } req->phys_page[i] = page_to_phys(pages[i]); } rc = vbg_req_perform(gdev, req); if (rc < 0) { vbg_err("%s error, rc: %d\n", __func__, rc); ret = vbg_status_code_to_errno(rc); goto out_error; } gdev->mem_balloon.pages[chunk_idx] = pages; return 0; out_error: while (--i >= 0) __free_page(pages[i]); kfree(pages); return ret; } /** * Deflate the balloon by one chunk. The caller owns the balloon mutex. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @chunk_idx: Index of the chunk. */ static int vbg_balloon_deflate(struct vbg_dev *gdev, u32 chunk_idx) { struct vmmdev_memballoon_change *req = gdev->mem_balloon.change_req; struct page **pages = gdev->mem_balloon.pages[chunk_idx]; int i, rc; req->header.size = sizeof(*req); req->inflate = false; req->pages = VMMDEV_MEMORY_BALLOON_CHUNK_PAGES; for (i = 0; i < VMMDEV_MEMORY_BALLOON_CHUNK_PAGES; i++) req->phys_page[i] = page_to_phys(pages[i]); rc = vbg_req_perform(gdev, req); if (rc < 0) { vbg_err("%s error, rc: %d\n", __func__, rc); return vbg_status_code_to_errno(rc); } for (i = 0; i < VMMDEV_MEMORY_BALLOON_CHUNK_PAGES; i++) __free_page(pages[i]); kfree(pages); gdev->mem_balloon.pages[chunk_idx] = NULL; return 0; } /** * Respond to VMMDEV_EVENT_BALLOON_CHANGE_REQUEST events, query the size * the host wants the balloon to be and adjust accordingly. */ static void vbg_balloon_work(struct work_struct *work) { struct vbg_dev *gdev = container_of(work, struct vbg_dev, mem_balloon.work); struct vmmdev_memballoon_info *req = gdev->mem_balloon.get_req; u32 i, chunks; int rc, ret; /* * Setting this bit means that we request the value from the host and * change the guest memory balloon according to the returned value. */ req->event_ack = VMMDEV_EVENT_BALLOON_CHANGE_REQUEST; rc = vbg_req_perform(gdev, req); if (rc < 0) { vbg_err("%s error, rc: %d)\n", __func__, rc); return; } /* * The host always returns the same maximum amount of chunks, so * we do this once. */ if (!gdev->mem_balloon.max_chunks) { gdev->mem_balloon.pages = devm_kcalloc(gdev->dev, req->phys_mem_chunks, sizeof(struct page **), GFP_KERNEL); if (!gdev->mem_balloon.pages) return; gdev->mem_balloon.max_chunks = req->phys_mem_chunks; } chunks = req->balloon_chunks; if (chunks > gdev->mem_balloon.max_chunks) { vbg_err("%s: illegal balloon size %u (max=%u)\n", __func__, chunks, gdev->mem_balloon.max_chunks); return; } if (chunks > gdev->mem_balloon.chunks) { /* inflate */ for (i = gdev->mem_balloon.chunks; i < chunks; i++) { ret = vbg_balloon_inflate(gdev, i); if (ret < 0) return; gdev->mem_balloon.chunks++; } } else { /* deflate */ for (i = gdev->mem_balloon.chunks; i-- > chunks;) { ret = vbg_balloon_deflate(gdev, i); if (ret < 0) return; gdev->mem_balloon.chunks--; } } } /** * Callback for heartbeat timer. */ static void vbg_heartbeat_timer(struct timer_list *t) { struct vbg_dev *gdev = from_timer(gdev, t, heartbeat_timer); vbg_req_perform(gdev, gdev->guest_heartbeat_req); mod_timer(&gdev->heartbeat_timer, msecs_to_jiffies(gdev->heartbeat_interval_ms)); } /** * Configure the host to check guest's heartbeat * and get heartbeat interval from the host. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @enabled: Set true to enable guest heartbeat checks on host. */ static int vbg_heartbeat_host_config(struct vbg_dev *gdev, bool enabled) { struct vmmdev_heartbeat *req; int rc; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_HEARTBEAT_CONFIGURE, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; req->enabled = enabled; req->interval_ns = 0; rc = vbg_req_perform(gdev, req); do_div(req->interval_ns, 1000000); /* ns -> ms */ gdev->heartbeat_interval_ms = req->interval_ns; vbg_req_free(req, sizeof(*req)); return vbg_status_code_to_errno(rc); } /** * Initializes the heartbeat timer. This feature may be disabled by the host. * Return: 0 or negative errno value. * @gdev: The Guest extension device. */ static int vbg_heartbeat_init(struct vbg_dev *gdev) { int ret; /* Make sure that heartbeat checking is disabled if we fail. */ ret = vbg_heartbeat_host_config(gdev, false); if (ret < 0) return ret; ret = vbg_heartbeat_host_config(gdev, true); if (ret < 0) return ret; gdev->guest_heartbeat_req = vbg_req_alloc( sizeof(*gdev->guest_heartbeat_req), VMMDEVREQ_GUEST_HEARTBEAT, VBG_KERNEL_REQUEST); if (!gdev->guest_heartbeat_req) return -ENOMEM; vbg_info("%s: Setting up heartbeat to trigger every %d milliseconds\n", __func__, gdev->heartbeat_interval_ms); mod_timer(&gdev->heartbeat_timer, 0); return 0; } /** * Cleanup hearbeat code, stop HB timer and disable host heartbeat checking. * @gdev: The Guest extension device. */ static void vbg_heartbeat_exit(struct vbg_dev *gdev) { del_timer_sync(&gdev->heartbeat_timer); vbg_heartbeat_host_config(gdev, false); vbg_req_free(gdev->guest_heartbeat_req, sizeof(*gdev->guest_heartbeat_req)); } /** * Applies a change to the bit usage tracker. * Return: true if the mask changed, false if not. * @tracker: The bit usage tracker. * @changed: The bits to change. * @previous: The previous value of the bits. */ static bool vbg_track_bit_usage(struct vbg_bit_usage_tracker *tracker, u32 changed, u32 previous) { bool global_change = false; while (changed) { u32 bit = ffs(changed) - 1; u32 bitmask = BIT(bit); if (bitmask & previous) { tracker->per_bit_usage[bit] -= 1; if (tracker->per_bit_usage[bit] == 0) { global_change = true; tracker->mask &= ~bitmask; } } else { tracker->per_bit_usage[bit] += 1; if (tracker->per_bit_usage[bit] == 1) { global_change = true; tracker->mask |= bitmask; } } changed &= ~bitmask; } return global_change; } /** * Init and termination worker for resetting the (host) event filter on the host * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @fixed_events: Fixed events (init time). */ static int vbg_reset_host_event_filter(struct vbg_dev *gdev, u32 fixed_events) { struct vmmdev_mask *req; int rc; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_CTL_GUEST_FILTER_MASK, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; req->not_mask = U32_MAX & ~fixed_events; req->or_mask = fixed_events; rc = vbg_req_perform(gdev, req); if (rc < 0) vbg_err("%s error, rc: %d\n", __func__, rc); vbg_req_free(req, sizeof(*req)); return vbg_status_code_to_errno(rc); } /** * Changes the event filter mask for the given session. * * This is called in response to VBG_IOCTL_CHANGE_FILTER_MASK as well as to * do session cleanup. Takes the session mutex. * * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @session: The session. * @or_mask: The events to add. * @not_mask: The events to remove. * @session_termination: Set if we're called by the session cleanup code. * This tweaks the error handling so we perform * proper session cleanup even if the host * misbehaves. */ static int vbg_set_session_event_filter(struct vbg_dev *gdev, struct vbg_session *session, u32 or_mask, u32 not_mask, bool session_termination) { struct vmmdev_mask *req; u32 changed, previous; int rc, ret = 0; /* * Allocate a request buffer before taking the spinlock, when * the session is being terminated the requestor is the kernel, * as we're cleaning up. */ req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_CTL_GUEST_FILTER_MASK, session_termination ? VBG_KERNEL_REQUEST : session->requestor); if (!req) { if (!session_termination) return -ENOMEM; /* Ignore allocation failure, we must do session cleanup. */ } mutex_lock(&gdev->session_mutex); /* Apply the changes to the session mask. */ previous = session->event_filter; session->event_filter |= or_mask; session->event_filter &= ~not_mask; /* If anything actually changed, update the global usage counters. */ changed = previous ^ session->event_filter; if (!changed) goto out; vbg_track_bit_usage(&gdev->event_filter_tracker, changed, previous); or_mask = gdev->fixed_events | gdev->event_filter_tracker.mask; if (gdev->event_filter_host == or_mask || !req) goto out; gdev->event_filter_host = or_mask; req->or_mask = or_mask; req->not_mask = ~or_mask; rc = vbg_req_perform(gdev, req); if (rc < 0) { ret = vbg_status_code_to_errno(rc); /* Failed, roll back (unless it's session termination time). */ gdev->event_filter_host = U32_MAX; if (session_termination) goto out; vbg_track_bit_usage(&gdev->event_filter_tracker, changed, session->event_filter); session->event_filter = previous; } out: mutex_unlock(&gdev->session_mutex); vbg_req_free(req, sizeof(*req)); return ret; } /** * Init and termination worker for set guest capabilities to zero on the host. * Return: 0 or negative errno value. * @gdev: The Guest extension device. */ static int vbg_reset_host_capabilities(struct vbg_dev *gdev) { struct vmmdev_mask *req; int rc; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_SET_GUEST_CAPABILITIES, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; req->not_mask = U32_MAX; req->or_mask = 0; rc = vbg_req_perform(gdev, req); if (rc < 0) vbg_err("%s error, rc: %d\n", __func__, rc); vbg_req_free(req, sizeof(*req)); return vbg_status_code_to_errno(rc); } /** * Set guest capabilities on the host. * Must be called with gdev->session_mutex hold. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @session: The session. * @session_termination: Set if we're called by the session cleanup code. */ static int vbg_set_host_capabilities(struct vbg_dev *gdev, struct vbg_session *session, bool session_termination) { struct vmmdev_mask *req; u32 caps; int rc; WARN_ON(!mutex_is_locked(&gdev->session_mutex)); caps = gdev->acquired_guest_caps | gdev->set_guest_caps_tracker.mask; if (gdev->guest_caps_host == caps) return 0; /* On termination the requestor is the kernel, as we're cleaning up. */ req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_SET_GUEST_CAPABILITIES, session_termination ? VBG_KERNEL_REQUEST : session->requestor); if (!req) { gdev->guest_caps_host = U32_MAX; return -ENOMEM; } req->or_mask = caps; req->not_mask = ~caps; rc = vbg_req_perform(gdev, req); vbg_req_free(req, sizeof(*req)); gdev->guest_caps_host = (rc >= 0) ? caps : U32_MAX; return vbg_status_code_to_errno(rc); } /** * Acquire (get exclusive access) guest capabilities for a session. * Takes the session mutex. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @session: The session. * @flags: Flags (VBGL_IOC_AGC_FLAGS_XXX). * @or_mask: The capabilities to add. * @not_mask: The capabilities to remove. * @session_termination: Set if we're called by the session cleanup code. * This tweaks the error handling so we perform * proper session cleanup even if the host * misbehaves. */ static int vbg_acquire_session_capabilities(struct vbg_dev *gdev, struct vbg_session *session, u32 or_mask, u32 not_mask, u32 flags, bool session_termination) { unsigned long irqflags; bool wakeup = false; int ret = 0; mutex_lock(&gdev->session_mutex); if (gdev->set_guest_caps_tracker.mask & or_mask) { vbg_err("%s error: cannot acquire caps which are currently set\n", __func__); ret = -EINVAL; goto out; } /* * Mark any caps in the or_mask as now being in acquire-mode. Note * once caps are in acquire_mode they always stay in this mode. * This impacts event handling, so we take the event-lock. */ spin_lock_irqsave(&gdev->event_spinlock, irqflags); gdev->acquire_mode_guest_caps |= or_mask; spin_unlock_irqrestore(&gdev->event_spinlock, irqflags); /* If we only have to switch the caps to acquire mode, we're done. */ if (flags & VBGL_IOC_AGC_FLAGS_CONFIG_ACQUIRE_MODE) goto out; not_mask &= ~or_mask; /* or_mask takes priority over not_mask */ not_mask &= session->acquired_guest_caps; or_mask &= ~session->acquired_guest_caps; if (or_mask == 0 && not_mask == 0) goto out; if (gdev->acquired_guest_caps & or_mask) { ret = -EBUSY; goto out; } gdev->acquired_guest_caps |= or_mask; gdev->acquired_guest_caps &= ~not_mask; /* session->acquired_guest_caps impacts event handling, take the lock */ spin_lock_irqsave(&gdev->event_spinlock, irqflags); session->acquired_guest_caps |= or_mask; session->acquired_guest_caps &= ~not_mask; spin_unlock_irqrestore(&gdev->event_spinlock, irqflags); ret = vbg_set_host_capabilities(gdev, session, session_termination); /* Roll back on failure, unless it's session termination time. */ if (ret < 0 && !session_termination) { gdev->acquired_guest_caps &= ~or_mask; gdev->acquired_guest_caps |= not_mask; spin_lock_irqsave(&gdev->event_spinlock, irqflags); session->acquired_guest_caps &= ~or_mask; session->acquired_guest_caps |= not_mask; spin_unlock_irqrestore(&gdev->event_spinlock, irqflags); } /* * If we added a capability, check if that means some other thread in * our session should be unblocked because there are events pending * (the result of vbg_get_allowed_event_mask_for_session() may change). * * HACK ALERT! When the seamless support capability is added we generate * a seamless change event so that the ring-3 client can sync with * the seamless state. */ if (ret == 0 && or_mask != 0) { spin_lock_irqsave(&gdev->event_spinlock, irqflags); if (or_mask & VMMDEV_GUEST_SUPPORTS_SEAMLESS) gdev->pending_events |= VMMDEV_EVENT_SEAMLESS_MODE_CHANGE_REQUEST; if (gdev->pending_events) wakeup = true; spin_unlock_irqrestore(&gdev->event_spinlock, irqflags); if (wakeup) wake_up(&gdev->event_wq); } out: mutex_unlock(&gdev->session_mutex); return ret; } /** * Sets the guest capabilities for a session. Takes the session mutex. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @session: The session. * @or_mask: The capabilities to add. * @not_mask: The capabilities to remove. * @session_termination: Set if we're called by the session cleanup code. * This tweaks the error handling so we perform * proper session cleanup even if the host * misbehaves. */ static int vbg_set_session_capabilities(struct vbg_dev *gdev, struct vbg_session *session, u32 or_mask, u32 not_mask, bool session_termination) { u32 changed, previous; int ret = 0; mutex_lock(&gdev->session_mutex); if (gdev->acquire_mode_guest_caps & or_mask) { vbg_err("%s error: cannot set caps which are in acquire_mode\n", __func__); ret = -EBUSY; goto out; } /* Apply the changes to the session mask. */ previous = session->set_guest_caps; session->set_guest_caps |= or_mask; session->set_guest_caps &= ~not_mask; /* If anything actually changed, update the global usage counters. */ changed = previous ^ session->set_guest_caps; if (!changed) goto out; vbg_track_bit_usage(&gdev->set_guest_caps_tracker, changed, previous); ret = vbg_set_host_capabilities(gdev, session, session_termination); /* Roll back on failure, unless it's session termination time. */ if (ret < 0 && !session_termination) { vbg_track_bit_usage(&gdev->set_guest_caps_tracker, changed, session->set_guest_caps); session->set_guest_caps = previous; } out: mutex_unlock(&gdev->session_mutex); return ret; } /** * vbg_query_host_version get the host feature mask and version information. * Return: 0 or negative errno value. * @gdev: The Guest extension device. */ static int vbg_query_host_version(struct vbg_dev *gdev) { struct vmmdev_host_version *req; int rc, ret; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_GET_HOST_VERSION, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; rc = vbg_req_perform(gdev, req); ret = vbg_status_code_to_errno(rc); if (ret) { vbg_err("%s error: %d\n", __func__, rc); goto out; } snprintf(gdev->host_version, sizeof(gdev->host_version), "%u.%u.%ur%u", req->major, req->minor, req->build, req->revision); gdev->host_features = req->features; vbg_info("vboxguest: host-version: %s %#x\n", gdev->host_version, gdev->host_features); if (!(req->features & VMMDEV_HVF_HGCM_PHYS_PAGE_LIST)) { vbg_err("vboxguest: Error host too old (does not support page-lists)\n"); ret = -ENODEV; } out: vbg_req_free(req, sizeof(*req)); return ret; } /** * Initializes the VBoxGuest device extension when the * device driver is loaded. * * The native code locates the VMMDev on the PCI bus and retrieve * the MMIO and I/O port ranges, this function will take care of * mapping the MMIO memory (if present). Upon successful return * the native code should set up the interrupt handler. * * Return: 0 or negative errno value. * * @gdev: The Guest extension device. * @fixed_events: Events that will be enabled upon init and no client * will ever be allowed to mask. */ int vbg_core_init(struct vbg_dev *gdev, u32 fixed_events) { int ret = -ENOMEM; gdev->fixed_events = fixed_events | VMMDEV_EVENT_HGCM; gdev->event_filter_host = U32_MAX; /* forces a report */ gdev->guest_caps_host = U32_MAX; /* forces a report */ init_waitqueue_head(&gdev->event_wq); init_waitqueue_head(&gdev->hgcm_wq); spin_lock_init(&gdev->event_spinlock); mutex_init(&gdev->session_mutex); mutex_init(&gdev->cancel_req_mutex); timer_setup(&gdev->heartbeat_timer, vbg_heartbeat_timer, 0); INIT_WORK(&gdev->mem_balloon.work, vbg_balloon_work); gdev->mem_balloon.get_req = vbg_req_alloc(sizeof(*gdev->mem_balloon.get_req), VMMDEVREQ_GET_MEMBALLOON_CHANGE_REQ, VBG_KERNEL_REQUEST); gdev->mem_balloon.change_req = vbg_req_alloc(sizeof(*gdev->mem_balloon.change_req), VMMDEVREQ_CHANGE_MEMBALLOON, VBG_KERNEL_REQUEST); gdev->cancel_req = vbg_req_alloc(sizeof(*(gdev->cancel_req)), VMMDEVREQ_HGCM_CANCEL2, VBG_KERNEL_REQUEST); gdev->ack_events_req = vbg_req_alloc(sizeof(*gdev->ack_events_req), VMMDEVREQ_ACKNOWLEDGE_EVENTS, VBG_KERNEL_REQUEST); gdev->mouse_status_req = vbg_req_alloc(sizeof(*gdev->mouse_status_req), VMMDEVREQ_GET_MOUSE_STATUS, VBG_KERNEL_REQUEST); if (!gdev->mem_balloon.get_req || !gdev->mem_balloon.change_req || !gdev->cancel_req || !gdev->ack_events_req || !gdev->mouse_status_req) goto err_free_reqs; ret = vbg_query_host_version(gdev); if (ret) goto err_free_reqs; ret = vbg_report_guest_info(gdev); if (ret) { vbg_err("vboxguest: vbg_report_guest_info error: %d\n", ret); goto err_free_reqs; } ret = vbg_reset_host_event_filter(gdev, gdev->fixed_events); if (ret) { vbg_err("vboxguest: Error setting fixed event filter: %d\n", ret); goto err_free_reqs; } ret = vbg_reset_host_capabilities(gdev); if (ret) { vbg_err("vboxguest: Error clearing guest capabilities: %d\n", ret); goto err_free_reqs; } ret = vbg_core_set_mouse_status(gdev, 0); if (ret) { vbg_err("vboxguest: Error clearing mouse status: %d\n", ret); goto err_free_reqs; } /* These may fail without requiring the driver init to fail. */ vbg_guest_mappings_init(gdev); vbg_heartbeat_init(gdev); /* All Done! */ ret = vbg_report_driver_status(gdev, true); if (ret < 0) vbg_err("vboxguest: Error reporting driver status: %d\n", ret); return 0; err_free_reqs: vbg_req_free(gdev->mouse_status_req, sizeof(*gdev->mouse_status_req)); vbg_req_free(gdev->ack_events_req, sizeof(*gdev->ack_events_req)); vbg_req_free(gdev->cancel_req, sizeof(*gdev->cancel_req)); vbg_req_free(gdev->mem_balloon.change_req, sizeof(*gdev->mem_balloon.change_req)); vbg_req_free(gdev->mem_balloon.get_req, sizeof(*gdev->mem_balloon.get_req)); return ret; } /** * Call this on exit to clean-up vboxguest-core managed resources. * * The native code should call this before the driver is loaded, * but don't call this on shutdown. * @gdev: The Guest extension device. */ void vbg_core_exit(struct vbg_dev *gdev) { vbg_heartbeat_exit(gdev); vbg_guest_mappings_exit(gdev); /* Clear the host flags (mouse status etc). */ vbg_reset_host_event_filter(gdev, 0); vbg_reset_host_capabilities(gdev); vbg_core_set_mouse_status(gdev, 0); vbg_req_free(gdev->mouse_status_req, sizeof(*gdev->mouse_status_req)); vbg_req_free(gdev->ack_events_req, sizeof(*gdev->ack_events_req)); vbg_req_free(gdev->cancel_req, sizeof(*gdev->cancel_req)); vbg_req_free(gdev->mem_balloon.change_req, sizeof(*gdev->mem_balloon.change_req)); vbg_req_free(gdev->mem_balloon.get_req, sizeof(*gdev->mem_balloon.get_req)); } /** * Creates a VBoxGuest user session. * * vboxguest_linux.c calls this when userspace opens the char-device. * Return: A pointer to the new session or an ERR_PTR on error. * @gdev: The Guest extension device. * @requestor: VMMDEV_REQUESTOR_* flags */ struct vbg_session *vbg_core_open_session(struct vbg_dev *gdev, u32 requestor) { struct vbg_session *session; session = kzalloc(sizeof(*session), GFP_KERNEL); if (!session) return ERR_PTR(-ENOMEM); session->gdev = gdev; session->requestor = requestor; return session; } /** * Closes a VBoxGuest session. * @session: The session to close (and free). */ void vbg_core_close_session(struct vbg_session *session) { struct vbg_dev *gdev = session->gdev; int i, rc; vbg_acquire_session_capabilities(gdev, session, 0, U32_MAX, 0, true); vbg_set_session_capabilities(gdev, session, 0, U32_MAX, true); vbg_set_session_event_filter(gdev, session, 0, U32_MAX, true); for (i = 0; i < ARRAY_SIZE(session->hgcm_client_ids); i++) { if (!session->hgcm_client_ids[i]) continue; /* requestor is kernel here, as we're cleaning up. */ vbg_hgcm_disconnect(gdev, VBG_KERNEL_REQUEST, session->hgcm_client_ids[i], &rc); } kfree(session); } static int vbg_ioctl_chk(struct vbg_ioctl_hdr *hdr, size_t in_size, size_t out_size) { if (hdr->size_in != (sizeof(*hdr) + in_size) || hdr->size_out != (sizeof(*hdr) + out_size)) return -EINVAL; return 0; } static int vbg_ioctl_driver_version_info( struct vbg_ioctl_driver_version_info *info) { const u16 vbg_maj_version = VBG_IOC_VERSION >> 16; u16 min_maj_version, req_maj_version; if (vbg_ioctl_chk(&info->hdr, sizeof(info->u.in), sizeof(info->u.out))) return -EINVAL; req_maj_version = info->u.in.req_version >> 16; min_maj_version = info->u.in.min_version >> 16; if (info->u.in.min_version > info->u.in.req_version || min_maj_version != req_maj_version) return -EINVAL; if (info->u.in.min_version <= VBG_IOC_VERSION && min_maj_version == vbg_maj_version) { info->u.out.session_version = VBG_IOC_VERSION; } else { info->u.out.session_version = U32_MAX; info->hdr.rc = VERR_VERSION_MISMATCH; } info->u.out.driver_version = VBG_IOC_VERSION; info->u.out.driver_revision = 0; info->u.out.reserved1 = 0; info->u.out.reserved2 = 0; return 0; } /* Must be called with the event_lock held */ static u32 vbg_get_allowed_event_mask_for_session(struct vbg_dev *gdev, struct vbg_session *session) { u32 acquire_mode_caps = gdev->acquire_mode_guest_caps; u32 session_acquired_caps = session->acquired_guest_caps; u32 allowed_events = VMMDEV_EVENT_VALID_EVENT_MASK; if ((acquire_mode_caps & VMMDEV_GUEST_SUPPORTS_GRAPHICS) && !(session_acquired_caps & VMMDEV_GUEST_SUPPORTS_GRAPHICS)) allowed_events &= ~VMMDEV_EVENT_DISPLAY_CHANGE_REQUEST; if ((acquire_mode_caps & VMMDEV_GUEST_SUPPORTS_SEAMLESS) && !(session_acquired_caps & VMMDEV_GUEST_SUPPORTS_SEAMLESS)) allowed_events &= ~VMMDEV_EVENT_SEAMLESS_MODE_CHANGE_REQUEST; return allowed_events; } static bool vbg_wait_event_cond(struct vbg_dev *gdev, struct vbg_session *session, u32 event_mask) { unsigned long flags; bool wakeup; u32 events; spin_lock_irqsave(&gdev->event_spinlock, flags); events = gdev->pending_events & event_mask; events &= vbg_get_allowed_event_mask_for_session(gdev, session); wakeup = events || session->cancel_waiters; spin_unlock_irqrestore(&gdev->event_spinlock, flags); return wakeup; } /* Must be called with the event_lock held */ static u32 vbg_consume_events_locked(struct vbg_dev *gdev, struct vbg_session *session, u32 event_mask) { u32 events = gdev->pending_events & event_mask; events &= vbg_get_allowed_event_mask_for_session(gdev, session); gdev->pending_events &= ~events; return events; } static int vbg_ioctl_wait_for_events(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_wait_for_events *wait) { u32 timeout_ms = wait->u.in.timeout_ms; u32 event_mask = wait->u.in.events; unsigned long flags; long timeout; int ret = 0; if (vbg_ioctl_chk(&wait->hdr, sizeof(wait->u.in), sizeof(wait->u.out))) return -EINVAL; if (timeout_ms == U32_MAX) timeout = MAX_SCHEDULE_TIMEOUT; else timeout = msecs_to_jiffies(timeout_ms); wait->u.out.events = 0; do { timeout = wait_event_interruptible_timeout( gdev->event_wq, vbg_wait_event_cond(gdev, session, event_mask), timeout); spin_lock_irqsave(&gdev->event_spinlock, flags); if (timeout < 0 || session->cancel_waiters) { ret = -EINTR; } else if (timeout == 0) { ret = -ETIMEDOUT; } else { wait->u.out.events = vbg_consume_events_locked(gdev, session, event_mask); } spin_unlock_irqrestore(&gdev->event_spinlock, flags); /* * Someone else may have consumed the event(s) first, in * which case we go back to waiting. */ } while (ret == 0 && wait->u.out.events == 0); return ret; } static int vbg_ioctl_interrupt_all_wait_events(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_hdr *hdr) { unsigned long flags; if (hdr->size_in != sizeof(*hdr) || hdr->size_out != sizeof(*hdr)) return -EINVAL; spin_lock_irqsave(&gdev->event_spinlock, flags); session->cancel_waiters = true; spin_unlock_irqrestore(&gdev->event_spinlock, flags); wake_up(&gdev->event_wq); return 0; } /** * Checks if the VMM request is allowed in the context of the given session. * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @session: The calling session. * @req: The request. */ static int vbg_req_allowed(struct vbg_dev *gdev, struct vbg_session *session, const struct vmmdev_request_header *req) { const struct vmmdev_guest_status *guest_status; bool trusted_apps_only; switch (req->request_type) { /* Trusted users apps only. */ case VMMDEVREQ_QUERY_CREDENTIALS: case VMMDEVREQ_REPORT_CREDENTIALS_JUDGEMENT: case VMMDEVREQ_REGISTER_SHARED_MODULE: case VMMDEVREQ_UNREGISTER_SHARED_MODULE: case VMMDEVREQ_WRITE_COREDUMP: case VMMDEVREQ_GET_CPU_HOTPLUG_REQ: case VMMDEVREQ_SET_CPU_HOTPLUG_STATUS: case VMMDEVREQ_CHECK_SHARED_MODULES: case VMMDEVREQ_GET_PAGE_SHARING_STATUS: case VMMDEVREQ_DEBUG_IS_PAGE_SHARED: case VMMDEVREQ_REPORT_GUEST_STATS: case VMMDEVREQ_REPORT_GUEST_USER_STATE: case VMMDEVREQ_GET_STATISTICS_CHANGE_REQ: trusted_apps_only = true; break; /* Anyone. */ case VMMDEVREQ_GET_MOUSE_STATUS: case VMMDEVREQ_SET_MOUSE_STATUS: case VMMDEVREQ_SET_POINTER_SHAPE: case VMMDEVREQ_GET_HOST_VERSION: case VMMDEVREQ_IDLE: case VMMDEVREQ_GET_HOST_TIME: case VMMDEVREQ_SET_POWER_STATUS: case VMMDEVREQ_ACKNOWLEDGE_EVENTS: case VMMDEVREQ_CTL_GUEST_FILTER_MASK: case VMMDEVREQ_REPORT_GUEST_STATUS: case VMMDEVREQ_GET_DISPLAY_CHANGE_REQ: case VMMDEVREQ_VIDEMODE_SUPPORTED: case VMMDEVREQ_GET_HEIGHT_REDUCTION: case VMMDEVREQ_GET_DISPLAY_CHANGE_REQ2: case VMMDEVREQ_VIDEMODE_SUPPORTED2: case VMMDEVREQ_VIDEO_ACCEL_ENABLE: case VMMDEVREQ_VIDEO_ACCEL_FLUSH: case VMMDEVREQ_VIDEO_SET_VISIBLE_REGION: case VMMDEVREQ_VIDEO_UPDATE_MONITOR_POSITIONS: case VMMDEVREQ_GET_DISPLAY_CHANGE_REQEX: case VMMDEVREQ_GET_DISPLAY_CHANGE_REQ_MULTI: case VMMDEVREQ_GET_SEAMLESS_CHANGE_REQ: case VMMDEVREQ_GET_VRDPCHANGE_REQ: case VMMDEVREQ_LOG_STRING: case VMMDEVREQ_GET_SESSION_ID: trusted_apps_only = false; break; /* Depends on the request parameters... */ case VMMDEVREQ_REPORT_GUEST_CAPABILITIES: guest_status = (const struct vmmdev_guest_status *)req; switch (guest_status->facility) { case VBOXGUEST_FACILITY_TYPE_ALL: case VBOXGUEST_FACILITY_TYPE_VBOXGUEST_DRIVER: vbg_err("Denying userspace vmm report guest cap. call facility %#08x\n", guest_status->facility); return -EPERM; case VBOXGUEST_FACILITY_TYPE_VBOX_SERVICE: trusted_apps_only = true; break; case VBOXGUEST_FACILITY_TYPE_VBOX_TRAY_CLIENT: case VBOXGUEST_FACILITY_TYPE_SEAMLESS: case VBOXGUEST_FACILITY_TYPE_GRAPHICS: default: trusted_apps_only = false; break; } break; /* Anything else is not allowed. */ default: vbg_err("Denying userspace vmm call type %#08x\n", req->request_type); return -EPERM; } if (trusted_apps_only && (session->requestor & VMMDEV_REQUESTOR_USER_DEVICE)) { vbg_err("Denying userspace vmm call type %#08x through vboxuser device node\n", req->request_type); return -EPERM; } return 0; } static int vbg_ioctl_vmmrequest(struct vbg_dev *gdev, struct vbg_session *session, void *data) { struct vbg_ioctl_hdr *hdr = data; int ret; if (hdr->size_in != hdr->size_out) return -EINVAL; if (hdr->size_in > VMMDEV_MAX_VMMDEVREQ_SIZE) return -E2BIG; if (hdr->type == VBG_IOCTL_HDR_TYPE_DEFAULT) return -EINVAL; ret = vbg_req_allowed(gdev, session, data); if (ret < 0) return ret; vbg_req_perform(gdev, data); WARN_ON(hdr->rc == VINF_HGCM_ASYNC_EXECUTE); return 0; } static int vbg_ioctl_hgcm_connect(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_hgcm_connect *conn) { u32 client_id; int i, ret; if (vbg_ioctl_chk(&conn->hdr, sizeof(conn->u.in), sizeof(conn->u.out))) return -EINVAL; /* Find a free place in the sessions clients array and claim it */ mutex_lock(&gdev->session_mutex); for (i = 0; i < ARRAY_SIZE(session->hgcm_client_ids); i++) { if (!session->hgcm_client_ids[i]) { session->hgcm_client_ids[i] = U32_MAX; break; } } mutex_unlock(&gdev->session_mutex); if (i >= ARRAY_SIZE(session->hgcm_client_ids)) return -EMFILE; ret = vbg_hgcm_connect(gdev, session->requestor, &conn->u.in.loc, &client_id, &conn->hdr.rc); mutex_lock(&gdev->session_mutex); if (ret == 0 && conn->hdr.rc >= 0) { conn->u.out.client_id = client_id; session->hgcm_client_ids[i] = client_id; } else { conn->u.out.client_id = 0; session->hgcm_client_ids[i] = 0; } mutex_unlock(&gdev->session_mutex); return ret; } static int vbg_ioctl_hgcm_disconnect(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_hgcm_disconnect *disconn) { u32 client_id; int i, ret; if (vbg_ioctl_chk(&disconn->hdr, sizeof(disconn->u.in), 0)) return -EINVAL; client_id = disconn->u.in.client_id; if (client_id == 0 || client_id == U32_MAX) return -EINVAL; mutex_lock(&gdev->session_mutex); for (i = 0; i < ARRAY_SIZE(session->hgcm_client_ids); i++) { if (session->hgcm_client_ids[i] == client_id) { session->hgcm_client_ids[i] = U32_MAX; break; } } mutex_unlock(&gdev->session_mutex); if (i >= ARRAY_SIZE(session->hgcm_client_ids)) return -EINVAL; ret = vbg_hgcm_disconnect(gdev, session->requestor, client_id, &disconn->hdr.rc); mutex_lock(&gdev->session_mutex); if (ret == 0 && disconn->hdr.rc >= 0) session->hgcm_client_ids[i] = 0; else session->hgcm_client_ids[i] = client_id; mutex_unlock(&gdev->session_mutex); return ret; } static bool vbg_param_valid(enum vmmdev_hgcm_function_parameter_type type) { switch (type) { case VMMDEV_HGCM_PARM_TYPE_32BIT: case VMMDEV_HGCM_PARM_TYPE_64BIT: case VMMDEV_HGCM_PARM_TYPE_LINADDR: case VMMDEV_HGCM_PARM_TYPE_LINADDR_IN: case VMMDEV_HGCM_PARM_TYPE_LINADDR_OUT: return true; default: return false; } } static int vbg_ioctl_hgcm_call(struct vbg_dev *gdev, struct vbg_session *session, bool f32bit, struct vbg_ioctl_hgcm_call *call) { size_t actual_size; u32 client_id; int i, ret; if (call->hdr.size_in < sizeof(*call)) return -EINVAL; if (call->hdr.size_in != call->hdr.size_out) return -EINVAL; if (call->parm_count > VMMDEV_HGCM_MAX_PARMS) return -E2BIG; client_id = call->client_id; if (client_id == 0 || client_id == U32_MAX) return -EINVAL; actual_size = sizeof(*call); if (f32bit) actual_size += call->parm_count * sizeof(struct vmmdev_hgcm_function_parameter32); else actual_size += call->parm_count * sizeof(struct vmmdev_hgcm_function_parameter); if (call->hdr.size_in < actual_size) { vbg_debug("VBG_IOCTL_HGCM_CALL: hdr.size_in %d required size is %zd\n", call->hdr.size_in, actual_size); return -EINVAL; } call->hdr.size_out = actual_size; /* Validate parameter types */ if (f32bit) { struct vmmdev_hgcm_function_parameter32 *parm = VBG_IOCTL_HGCM_CALL_PARMS32(call); for (i = 0; i < call->parm_count; i++) if (!vbg_param_valid(parm[i].type)) return -EINVAL; } else { struct vmmdev_hgcm_function_parameter *parm = VBG_IOCTL_HGCM_CALL_PARMS(call); for (i = 0; i < call->parm_count; i++) if (!vbg_param_valid(parm[i].type)) return -EINVAL; } /* * Validate the client id. */ mutex_lock(&gdev->session_mutex); for (i = 0; i < ARRAY_SIZE(session->hgcm_client_ids); i++) if (session->hgcm_client_ids[i] == client_id) break; mutex_unlock(&gdev->session_mutex); if (i >= ARRAY_SIZE(session->hgcm_client_ids)) { vbg_debug("VBG_IOCTL_HGCM_CALL: INVALID handle. u32Client=%#08x\n", client_id); return -EINVAL; } if (IS_ENABLED(CONFIG_COMPAT) && f32bit) ret = vbg_hgcm_call32(gdev, session->requestor, client_id, call->function, call->timeout_ms, VBG_IOCTL_HGCM_CALL_PARMS32(call), call->parm_count, &call->hdr.rc); else ret = vbg_hgcm_call(gdev, session->requestor, client_id, call->function, call->timeout_ms, VBG_IOCTL_HGCM_CALL_PARMS(call), call->parm_count, &call->hdr.rc); if (ret == -E2BIG) { /* E2BIG needs to be reported through the hdr.rc field. */ call->hdr.rc = VERR_OUT_OF_RANGE; ret = 0; } if (ret && ret != -EINTR && ret != -ETIMEDOUT) vbg_err("VBG_IOCTL_HGCM_CALL error: %d\n", ret); return ret; } static int vbg_ioctl_log(struct vbg_ioctl_log *log) { if (log->hdr.size_out != sizeof(log->hdr)) return -EINVAL; vbg_info("%.*s", (int)(log->hdr.size_in - sizeof(log->hdr)), log->u.in.msg); return 0; } static int vbg_ioctl_change_filter_mask(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_change_filter *filter) { u32 or_mask, not_mask; if (vbg_ioctl_chk(&filter->hdr, sizeof(filter->u.in), 0)) return -EINVAL; or_mask = filter->u.in.or_mask; not_mask = filter->u.in.not_mask; if ((or_mask | not_mask) & ~VMMDEV_EVENT_VALID_EVENT_MASK) return -EINVAL; return vbg_set_session_event_filter(gdev, session, or_mask, not_mask, false); } static int vbg_ioctl_acquire_guest_capabilities(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_acquire_guest_caps *caps) { u32 flags, or_mask, not_mask; if (vbg_ioctl_chk(&caps->hdr, sizeof(caps->u.in), 0)) return -EINVAL; flags = caps->u.in.flags; or_mask = caps->u.in.or_mask; not_mask = caps->u.in.not_mask; if (flags & ~VBGL_IOC_AGC_FLAGS_VALID_MASK) return -EINVAL; if ((or_mask | not_mask) & ~VMMDEV_GUEST_CAPABILITIES_MASK) return -EINVAL; return vbg_acquire_session_capabilities(gdev, session, or_mask, not_mask, flags, false); } static int vbg_ioctl_change_guest_capabilities(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_set_guest_caps *caps) { u32 or_mask, not_mask; int ret; if (vbg_ioctl_chk(&caps->hdr, sizeof(caps->u.in), sizeof(caps->u.out))) return -EINVAL; or_mask = caps->u.in.or_mask; not_mask = caps->u.in.not_mask; if ((or_mask | not_mask) & ~VMMDEV_GUEST_CAPABILITIES_MASK) return -EINVAL; ret = vbg_set_session_capabilities(gdev, session, or_mask, not_mask, false); if (ret) return ret; caps->u.out.session_caps = session->set_guest_caps; caps->u.out.global_caps = gdev->guest_caps_host; return 0; } static int vbg_ioctl_check_balloon(struct vbg_dev *gdev, struct vbg_ioctl_check_balloon *balloon_info) { if (vbg_ioctl_chk(&balloon_info->hdr, 0, sizeof(balloon_info->u.out))) return -EINVAL; balloon_info->u.out.balloon_chunks = gdev->mem_balloon.chunks; /* * Under Linux we handle VMMDEV_EVENT_BALLOON_CHANGE_REQUEST * events entirely in the kernel, see vbg_core_isr(). */ balloon_info->u.out.handle_in_r3 = false; return 0; } static int vbg_ioctl_write_core_dump(struct vbg_dev *gdev, struct vbg_session *session, struct vbg_ioctl_write_coredump *dump) { struct vmmdev_write_core_dump *req; if (vbg_ioctl_chk(&dump->hdr, sizeof(dump->u.in), 0)) return -EINVAL; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_WRITE_COREDUMP, session->requestor); if (!req) return -ENOMEM; req->flags = dump->u.in.flags; dump->hdr.rc = vbg_req_perform(gdev, req); vbg_req_free(req, sizeof(*req)); return 0; } /** * Common IOCtl for user to kernel communication. * Return: 0 or negative errno value. * @session: The client session. * @req: The requested function. * @data: The i/o data buffer, minimum size sizeof(struct vbg_ioctl_hdr). */ int vbg_core_ioctl(struct vbg_session *session, unsigned int req, void *data) { unsigned int req_no_size = req & ~IOCSIZE_MASK; struct vbg_dev *gdev = session->gdev; struct vbg_ioctl_hdr *hdr = data; bool f32bit = false; hdr->rc = VINF_SUCCESS; if (!hdr->size_out) hdr->size_out = hdr->size_in; /* * hdr->version and hdr->size_in / hdr->size_out minimum size are * already checked by vbg_misc_device_ioctl(). */ /* For VMMDEV_REQUEST hdr->type != VBG_IOCTL_HDR_TYPE_DEFAULT */ if (req_no_size == VBG_IOCTL_VMMDEV_REQUEST(0) || req == VBG_IOCTL_VMMDEV_REQUEST_BIG || req == VBG_IOCTL_VMMDEV_REQUEST_BIG_ALT) return vbg_ioctl_vmmrequest(gdev, session, data); if (hdr->type != VBG_IOCTL_HDR_TYPE_DEFAULT) return -EINVAL; /* Fixed size requests. */ switch (req) { case VBG_IOCTL_DRIVER_VERSION_INFO: return vbg_ioctl_driver_version_info(data); case VBG_IOCTL_HGCM_CONNECT: return vbg_ioctl_hgcm_connect(gdev, session, data); case VBG_IOCTL_HGCM_DISCONNECT: return vbg_ioctl_hgcm_disconnect(gdev, session, data); case VBG_IOCTL_WAIT_FOR_EVENTS: return vbg_ioctl_wait_for_events(gdev, session, data); case VBG_IOCTL_INTERRUPT_ALL_WAIT_FOR_EVENTS: return vbg_ioctl_interrupt_all_wait_events(gdev, session, data); case VBG_IOCTL_CHANGE_FILTER_MASK: return vbg_ioctl_change_filter_mask(gdev, session, data); case VBG_IOCTL_ACQUIRE_GUEST_CAPABILITIES: return vbg_ioctl_acquire_guest_capabilities(gdev, session, data); case VBG_IOCTL_CHANGE_GUEST_CAPABILITIES: return vbg_ioctl_change_guest_capabilities(gdev, session, data); case VBG_IOCTL_CHECK_BALLOON: return vbg_ioctl_check_balloon(gdev, data); case VBG_IOCTL_WRITE_CORE_DUMP: return vbg_ioctl_write_core_dump(gdev, session, data); } /* Variable sized requests. */ switch (req_no_size) { #ifdef CONFIG_COMPAT case VBG_IOCTL_HGCM_CALL_32(0): f32bit = true; fallthrough; #endif case VBG_IOCTL_HGCM_CALL(0): return vbg_ioctl_hgcm_call(gdev, session, f32bit, data); case VBG_IOCTL_LOG(0): case VBG_IOCTL_LOG_ALT(0): return vbg_ioctl_log(data); } vbg_err_ratelimited("Userspace made an unknown ioctl req %#08x\n", req); return -ENOTTY; } /** * Report guest supported mouse-features to the host. * * Return: 0 or negative errno value. * @gdev: The Guest extension device. * @features: The set of features to report to the host. */ int vbg_core_set_mouse_status(struct vbg_dev *gdev, u32 features) { struct vmmdev_mouse_status *req; int rc; req = vbg_req_alloc(sizeof(*req), VMMDEVREQ_SET_MOUSE_STATUS, VBG_KERNEL_REQUEST); if (!req) return -ENOMEM; req->mouse_features = features; req->pointer_pos_x = 0; req->pointer_pos_y = 0; rc = vbg_req_perform(gdev, req); if (rc < 0) vbg_err("%s error, rc: %d\n", __func__, rc); vbg_req_free(req, sizeof(*req)); return vbg_status_code_to_errno(rc); } /** Core interrupt service routine. */ irqreturn_t vbg_core_isr(int irq, void *dev_id) { struct vbg_dev *gdev = dev_id; struct vmmdev_events *req = gdev->ack_events_req; bool mouse_position_changed = false; unsigned long flags; u32 events = 0; int rc; if (!gdev->mmio->V.V1_04.have_events) return IRQ_NONE; /* Get and acknowlegde events. */ req->header.rc = VERR_INTERNAL_ERROR; req->events = 0; rc = vbg_req_perform(gdev, req); if (rc < 0) { vbg_err("Error performing events req, rc: %d\n", rc); return IRQ_NONE; } events = req->events; if (events & VMMDEV_EVENT_MOUSE_POSITION_CHANGED) { mouse_position_changed = true; events &= ~VMMDEV_EVENT_MOUSE_POSITION_CHANGED; } if (events & VMMDEV_EVENT_HGCM) { wake_up(&gdev->hgcm_wq); events &= ~VMMDEV_EVENT_HGCM; } if (events & VMMDEV_EVENT_BALLOON_CHANGE_REQUEST) { schedule_work(&gdev->mem_balloon.work); events &= ~VMMDEV_EVENT_BALLOON_CHANGE_REQUEST; } if (events) { spin_lock_irqsave(&gdev->event_spinlock, flags); gdev->pending_events |= events; spin_unlock_irqrestore(&gdev->event_spinlock, flags); wake_up(&gdev->event_wq); } if (mouse_position_changed) vbg_linux_mouse_event(gdev); return IRQ_HANDLED; }
linux-master
drivers/virt/vboxguest/vboxguest_core.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN Hypervisor Service Module (HSM) * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Fengwei Yin <[email protected]> * Yakui Zhao <[email protected]> */ #include <linux/cpu.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/slab.h> #include <asm/acrn.h> #include <asm/hypervisor.h> #include "acrn_drv.h" /* * When /dev/acrn_hsm is opened, a 'struct acrn_vm' object is created to * represent a VM instance and continues to be associated with the opened file * descriptor. All ioctl operations on this file descriptor will be targeted to * the VM instance. Release of this file descriptor will destroy the object. */ static int acrn_dev_open(struct inode *inode, struct file *filp) { struct acrn_vm *vm; vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (!vm) return -ENOMEM; vm->vmid = ACRN_INVALID_VMID; filp->private_data = vm; return 0; } static int pmcmd_ioctl(u64 cmd, void __user *uptr) { struct acrn_pstate_data *px_data; struct acrn_cstate_data *cx_data; u64 *pm_info; int ret = 0; switch (cmd & PMCMD_TYPE_MASK) { case ACRN_PMCMD_GET_PX_CNT: case ACRN_PMCMD_GET_CX_CNT: pm_info = kmalloc(sizeof(u64), GFP_KERNEL); if (!pm_info) return -ENOMEM; ret = hcall_get_cpu_state(cmd, virt_to_phys(pm_info)); if (ret < 0) { kfree(pm_info); break; } if (copy_to_user(uptr, pm_info, sizeof(u64))) ret = -EFAULT; kfree(pm_info); break; case ACRN_PMCMD_GET_PX_DATA: px_data = kmalloc(sizeof(*px_data), GFP_KERNEL); if (!px_data) return -ENOMEM; ret = hcall_get_cpu_state(cmd, virt_to_phys(px_data)); if (ret < 0) { kfree(px_data); break; } if (copy_to_user(uptr, px_data, sizeof(*px_data))) ret = -EFAULT; kfree(px_data); break; case ACRN_PMCMD_GET_CX_DATA: cx_data = kmalloc(sizeof(*cx_data), GFP_KERNEL); if (!cx_data) return -ENOMEM; ret = hcall_get_cpu_state(cmd, virt_to_phys(cx_data)); if (ret < 0) { kfree(cx_data); break; } if (copy_to_user(uptr, cx_data, sizeof(*cx_data))) ret = -EFAULT; kfree(cx_data); break; default: break; } return ret; } /* * HSM relies on hypercall layer of the ACRN hypervisor to do the * sanity check against the input parameters. */ static long acrn_dev_ioctl(struct file *filp, unsigned int cmd, unsigned long ioctl_param) { struct acrn_vm *vm = filp->private_data; struct acrn_vm_creation *vm_param; struct acrn_vcpu_regs *cpu_regs; struct acrn_ioreq_notify notify; struct acrn_ptdev_irq *irq_info; struct acrn_ioeventfd ioeventfd; struct acrn_vm_memmap memmap; struct acrn_mmiodev *mmiodev; struct acrn_msi_entry *msi; struct acrn_pcidev *pcidev; struct acrn_irqfd irqfd; struct acrn_vdev *vdev; struct page *page; u64 cstate_cmd; int i, ret = 0; if (vm->vmid == ACRN_INVALID_VMID && cmd != ACRN_IOCTL_CREATE_VM) { dev_dbg(acrn_dev.this_device, "ioctl 0x%x: Invalid VM state!\n", cmd); return -EINVAL; } switch (cmd) { case ACRN_IOCTL_CREATE_VM: vm_param = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_vm_creation)); if (IS_ERR(vm_param)) return PTR_ERR(vm_param); if ((vm_param->reserved0 | vm_param->reserved1) != 0) { kfree(vm_param); return -EINVAL; } vm = acrn_vm_create(vm, vm_param); if (!vm) { ret = -EINVAL; kfree(vm_param); break; } if (copy_to_user((void __user *)ioctl_param, vm_param, sizeof(struct acrn_vm_creation))) { acrn_vm_destroy(vm); ret = -EFAULT; } kfree(vm_param); break; case ACRN_IOCTL_START_VM: ret = hcall_start_vm(vm->vmid); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to start VM %u!\n", vm->vmid); break; case ACRN_IOCTL_PAUSE_VM: ret = hcall_pause_vm(vm->vmid); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to pause VM %u!\n", vm->vmid); break; case ACRN_IOCTL_RESET_VM: ret = hcall_reset_vm(vm->vmid); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to restart VM %u!\n", vm->vmid); break; case ACRN_IOCTL_DESTROY_VM: ret = acrn_vm_destroy(vm); break; case ACRN_IOCTL_SET_VCPU_REGS: cpu_regs = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_vcpu_regs)); if (IS_ERR(cpu_regs)) return PTR_ERR(cpu_regs); for (i = 0; i < ARRAY_SIZE(cpu_regs->reserved); i++) if (cpu_regs->reserved[i]) { kfree(cpu_regs); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(cpu_regs->vcpu_regs.reserved_32); i++) if (cpu_regs->vcpu_regs.reserved_32[i]) { kfree(cpu_regs); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(cpu_regs->vcpu_regs.reserved_64); i++) if (cpu_regs->vcpu_regs.reserved_64[i]) { kfree(cpu_regs); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(cpu_regs->vcpu_regs.gdt.reserved); i++) if (cpu_regs->vcpu_regs.gdt.reserved[i] | cpu_regs->vcpu_regs.idt.reserved[i]) { kfree(cpu_regs); return -EINVAL; } ret = hcall_set_vcpu_regs(vm->vmid, virt_to_phys(cpu_regs)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to set regs state of VM%u!\n", vm->vmid); kfree(cpu_regs); break; case ACRN_IOCTL_SET_MEMSEG: if (copy_from_user(&memmap, (void __user *)ioctl_param, sizeof(memmap))) return -EFAULT; ret = acrn_vm_memseg_map(vm, &memmap); break; case ACRN_IOCTL_UNSET_MEMSEG: if (copy_from_user(&memmap, (void __user *)ioctl_param, sizeof(memmap))) return -EFAULT; ret = acrn_vm_memseg_unmap(vm, &memmap); break; case ACRN_IOCTL_ASSIGN_MMIODEV: mmiodev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_mmiodev)); if (IS_ERR(mmiodev)) return PTR_ERR(mmiodev); ret = hcall_assign_mmiodev(vm->vmid, virt_to_phys(mmiodev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to assign MMIO device!\n"); kfree(mmiodev); break; case ACRN_IOCTL_DEASSIGN_MMIODEV: mmiodev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_mmiodev)); if (IS_ERR(mmiodev)) return PTR_ERR(mmiodev); ret = hcall_deassign_mmiodev(vm->vmid, virt_to_phys(mmiodev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to deassign MMIO device!\n"); kfree(mmiodev); break; case ACRN_IOCTL_ASSIGN_PCIDEV: pcidev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_pcidev)); if (IS_ERR(pcidev)) return PTR_ERR(pcidev); ret = hcall_assign_pcidev(vm->vmid, virt_to_phys(pcidev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to assign pci device!\n"); kfree(pcidev); break; case ACRN_IOCTL_DEASSIGN_PCIDEV: pcidev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_pcidev)); if (IS_ERR(pcidev)) return PTR_ERR(pcidev); ret = hcall_deassign_pcidev(vm->vmid, virt_to_phys(pcidev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to deassign pci device!\n"); kfree(pcidev); break; case ACRN_IOCTL_CREATE_VDEV: vdev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_vdev)); if (IS_ERR(vdev)) return PTR_ERR(vdev); ret = hcall_create_vdev(vm->vmid, virt_to_phys(vdev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to create virtual device!\n"); kfree(vdev); break; case ACRN_IOCTL_DESTROY_VDEV: vdev = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_vdev)); if (IS_ERR(vdev)) return PTR_ERR(vdev); ret = hcall_destroy_vdev(vm->vmid, virt_to_phys(vdev)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to destroy virtual device!\n"); kfree(vdev); break; case ACRN_IOCTL_SET_PTDEV_INTR: irq_info = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_ptdev_irq)); if (IS_ERR(irq_info)) return PTR_ERR(irq_info); ret = hcall_set_ptdev_intr(vm->vmid, virt_to_phys(irq_info)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to configure intr for ptdev!\n"); kfree(irq_info); break; case ACRN_IOCTL_RESET_PTDEV_INTR: irq_info = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_ptdev_irq)); if (IS_ERR(irq_info)) return PTR_ERR(irq_info); ret = hcall_reset_ptdev_intr(vm->vmid, virt_to_phys(irq_info)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to reset intr for ptdev!\n"); kfree(irq_info); break; case ACRN_IOCTL_SET_IRQLINE: ret = hcall_set_irqline(vm->vmid, ioctl_param); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to set interrupt line!\n"); break; case ACRN_IOCTL_INJECT_MSI: msi = memdup_user((void __user *)ioctl_param, sizeof(struct acrn_msi_entry)); if (IS_ERR(msi)) return PTR_ERR(msi); ret = hcall_inject_msi(vm->vmid, virt_to_phys(msi)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to inject MSI!\n"); kfree(msi); break; case ACRN_IOCTL_VM_INTR_MONITOR: ret = pin_user_pages_fast(ioctl_param, 1, FOLL_WRITE | FOLL_LONGTERM, &page); if (unlikely(ret != 1)) { dev_dbg(acrn_dev.this_device, "Failed to pin intr hdr buffer!\n"); return -EFAULT; } ret = hcall_vm_intr_monitor(vm->vmid, page_to_phys(page)); if (ret < 0) { unpin_user_page(page); dev_dbg(acrn_dev.this_device, "Failed to monitor intr data!\n"); return ret; } if (vm->monitor_page) unpin_user_page(vm->monitor_page); vm->monitor_page = page; break; case ACRN_IOCTL_CREATE_IOREQ_CLIENT: if (vm->default_client) return -EEXIST; if (!acrn_ioreq_client_create(vm, NULL, NULL, true, "acrndm")) ret = -EINVAL; break; case ACRN_IOCTL_DESTROY_IOREQ_CLIENT: if (vm->default_client) acrn_ioreq_client_destroy(vm->default_client); break; case ACRN_IOCTL_ATTACH_IOREQ_CLIENT: if (vm->default_client) ret = acrn_ioreq_client_wait(vm->default_client); else ret = -ENODEV; break; case ACRN_IOCTL_NOTIFY_REQUEST_FINISH: if (copy_from_user(&notify, (void __user *)ioctl_param, sizeof(struct acrn_ioreq_notify))) return -EFAULT; if (notify.reserved != 0) return -EINVAL; ret = acrn_ioreq_request_default_complete(vm, notify.vcpu); break; case ACRN_IOCTL_CLEAR_VM_IOREQ: acrn_ioreq_request_clear(vm); break; case ACRN_IOCTL_PM_GET_CPU_STATE: if (copy_from_user(&cstate_cmd, (void __user *)ioctl_param, sizeof(cstate_cmd))) return -EFAULT; ret = pmcmd_ioctl(cstate_cmd, (void __user *)ioctl_param); break; case ACRN_IOCTL_IOEVENTFD: if (copy_from_user(&ioeventfd, (void __user *)ioctl_param, sizeof(ioeventfd))) return -EFAULT; if (ioeventfd.reserved != 0) return -EINVAL; ret = acrn_ioeventfd_config(vm, &ioeventfd); break; case ACRN_IOCTL_IRQFD: if (copy_from_user(&irqfd, (void __user *)ioctl_param, sizeof(irqfd))) return -EFAULT; ret = acrn_irqfd_config(vm, &irqfd); break; default: dev_dbg(acrn_dev.this_device, "Unknown IOCTL 0x%x!\n", cmd); ret = -ENOTTY; } return ret; } static int acrn_dev_release(struct inode *inode, struct file *filp) { struct acrn_vm *vm = filp->private_data; acrn_vm_destroy(vm); kfree(vm); return 0; } static ssize_t remove_cpu_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 cpu, lapicid; int ret; if (kstrtoull(buf, 0, &cpu) < 0) return -EINVAL; if (cpu >= num_possible_cpus() || cpu == 0 || !cpu_is_hotpluggable(cpu)) return -EINVAL; if (cpu_online(cpu)) remove_cpu(cpu); lapicid = cpu_data(cpu).apicid; dev_dbg(dev, "Try to remove cpu %lld with lapicid %lld\n", cpu, lapicid); ret = hcall_sos_remove_cpu(lapicid); if (ret < 0) { dev_err(dev, "Failed to remove cpu %lld!\n", cpu); goto fail_remove; } return count; fail_remove: add_cpu(cpu); return ret; } static DEVICE_ATTR_WO(remove_cpu); static umode_t acrn_attr_visible(struct kobject *kobj, struct attribute *a, int n) { if (a == &dev_attr_remove_cpu.attr) return IS_ENABLED(CONFIG_HOTPLUG_CPU) ? a->mode : 0; return a->mode; } static struct attribute *acrn_attrs[] = { &dev_attr_remove_cpu.attr, NULL }; static struct attribute_group acrn_attr_group = { .attrs = acrn_attrs, .is_visible = acrn_attr_visible, }; static const struct attribute_group *acrn_attr_groups[] = { &acrn_attr_group, NULL }; static const struct file_operations acrn_fops = { .owner = THIS_MODULE, .open = acrn_dev_open, .release = acrn_dev_release, .unlocked_ioctl = acrn_dev_ioctl, }; struct miscdevice acrn_dev = { .minor = MISC_DYNAMIC_MINOR, .name = "acrn_hsm", .fops = &acrn_fops, .groups = acrn_attr_groups, }; static int __init hsm_init(void) { int ret; if (x86_hyper_type != X86_HYPER_ACRN) return -ENODEV; if (!(cpuid_eax(ACRN_CPUID_FEATURES) & ACRN_FEATURE_PRIVILEGED_VM)) return -EPERM; ret = misc_register(&acrn_dev); if (ret) { pr_err("Create misc dev failed!\n"); return ret; } ret = acrn_ioreq_intr_setup(); if (ret) { pr_err("Setup I/O request handler failed!\n"); misc_deregister(&acrn_dev); return ret; } return 0; } static void __exit hsm_exit(void) { acrn_ioreq_intr_remove(); misc_deregister(&acrn_dev); } module_init(hsm_init); module_exit(hsm_exit); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ACRN Hypervisor Service Module (HSM)");
linux-master
drivers/virt/acrn/hsm.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN_HSM: Virtual Machine management * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Jason Chen CJ <[email protected]> * Yakui Zhao <[email protected]> */ #include <linux/io.h> #include <linux/mm.h> #include <linux/slab.h> #include "acrn_drv.h" /* List of VMs */ LIST_HEAD(acrn_vm_list); /* * acrn_vm_list is read in a worker thread which dispatch I/O requests and * is wrote in VM creation ioctl. Use the rwlock mechanism to protect it. */ DEFINE_RWLOCK(acrn_vm_list_lock); struct acrn_vm *acrn_vm_create(struct acrn_vm *vm, struct acrn_vm_creation *vm_param) { int ret; ret = hcall_create_vm(virt_to_phys(vm_param)); if (ret < 0 || vm_param->vmid == ACRN_INVALID_VMID) { dev_err(acrn_dev.this_device, "Failed to create VM! Error: %d\n", ret); return NULL; } mutex_init(&vm->regions_mapping_lock); INIT_LIST_HEAD(&vm->ioreq_clients); spin_lock_init(&vm->ioreq_clients_lock); vm->vmid = vm_param->vmid; vm->vcpu_num = vm_param->vcpu_num; if (acrn_ioreq_init(vm, vm_param->ioreq_buf) < 0) { hcall_destroy_vm(vm_param->vmid); vm->vmid = ACRN_INVALID_VMID; return NULL; } write_lock_bh(&acrn_vm_list_lock); list_add(&vm->list, &acrn_vm_list); write_unlock_bh(&acrn_vm_list_lock); acrn_ioeventfd_init(vm); acrn_irqfd_init(vm); dev_dbg(acrn_dev.this_device, "VM %u created.\n", vm->vmid); return vm; } int acrn_vm_destroy(struct acrn_vm *vm) { int ret; if (vm->vmid == ACRN_INVALID_VMID || test_and_set_bit(ACRN_VM_FLAG_DESTROYED, &vm->flags)) return 0; ret = hcall_destroy_vm(vm->vmid); if (ret < 0) { dev_err(acrn_dev.this_device, "Failed to destroy VM %u\n", vm->vmid); clear_bit(ACRN_VM_FLAG_DESTROYED, &vm->flags); return ret; } /* Remove from global VM list */ write_lock_bh(&acrn_vm_list_lock); list_del_init(&vm->list); write_unlock_bh(&acrn_vm_list_lock); acrn_ioeventfd_deinit(vm); acrn_irqfd_deinit(vm); acrn_ioreq_deinit(vm); if (vm->monitor_page) { put_page(vm->monitor_page); vm->monitor_page = NULL; } acrn_vm_all_ram_unmap(vm); dev_dbg(acrn_dev.this_device, "VM %u destroyed.\n", vm->vmid); vm->vmid = ACRN_INVALID_VMID; return 0; } /** * acrn_msi_inject() - Inject a MSI interrupt into a User VM * @vm: User VM * @msi_addr: The MSI address * @msi_data: The MSI data * * Return: 0 on success, <0 on error */ int acrn_msi_inject(struct acrn_vm *vm, u64 msi_addr, u64 msi_data) { struct acrn_msi_entry *msi; int ret; /* might be used in interrupt context, so use GFP_ATOMIC */ msi = kzalloc(sizeof(*msi), GFP_ATOMIC); if (!msi) return -ENOMEM; /* * msi_addr: addr[19:12] with dest vcpu id * msi_data: data[7:0] with vector */ msi->msi_addr = msi_addr; msi->msi_data = msi_data; ret = hcall_inject_msi(vm->vmid, virt_to_phys(msi)); if (ret < 0) dev_err(acrn_dev.this_device, "Failed to inject MSI to VM %u!\n", vm->vmid); kfree(msi); return ret; }
linux-master
drivers/virt/acrn/vm.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN HSM eventfd - use eventfd objects to signal expected I/O requests * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Shuo Liu <[email protected]> * Yakui Zhao <[email protected]> */ #include <linux/eventfd.h> #include <linux/slab.h> #include "acrn_drv.h" /** * struct hsm_ioeventfd - Properties of HSM ioeventfd * @list: Entry within &acrn_vm.ioeventfds of ioeventfds of a VM * @eventfd: Eventfd of the HSM ioeventfd * @addr: Address of I/O range * @data: Data for matching * @length: Length of I/O range * @type: Type of I/O range (ACRN_IOREQ_TYPE_MMIO/ACRN_IOREQ_TYPE_PORTIO) * @wildcard: Data matching or not */ struct hsm_ioeventfd { struct list_head list; struct eventfd_ctx *eventfd; u64 addr; u64 data; int length; int type; bool wildcard; }; static inline int ioreq_type_from_flags(int flags) { return flags & ACRN_IOEVENTFD_FLAG_PIO ? ACRN_IOREQ_TYPE_PORTIO : ACRN_IOREQ_TYPE_MMIO; } static void acrn_ioeventfd_shutdown(struct acrn_vm *vm, struct hsm_ioeventfd *p) { lockdep_assert_held(&vm->ioeventfds_lock); eventfd_ctx_put(p->eventfd); list_del(&p->list); kfree(p); } static bool hsm_ioeventfd_is_conflict(struct acrn_vm *vm, struct hsm_ioeventfd *ioeventfd) { struct hsm_ioeventfd *p; lockdep_assert_held(&vm->ioeventfds_lock); /* Either one is wildcard, the data matching will be skipped. */ list_for_each_entry(p, &vm->ioeventfds, list) if (p->eventfd == ioeventfd->eventfd && p->addr == ioeventfd->addr && p->type == ioeventfd->type && (p->wildcard || ioeventfd->wildcard || p->data == ioeventfd->data)) return true; return false; } /* * Assign an eventfd to a VM and create a HSM ioeventfd associated with the * eventfd. The properties of the HSM ioeventfd are built from a &struct * acrn_ioeventfd. */ static int acrn_ioeventfd_assign(struct acrn_vm *vm, struct acrn_ioeventfd *args) { struct eventfd_ctx *eventfd; struct hsm_ioeventfd *p; int ret; /* Check for range overflow */ if (args->addr + args->len < args->addr) return -EINVAL; /* * Currently, acrn_ioeventfd is used to support vhost. 1,2,4,8 width * accesses can cover vhost's requirements. */ if (!(args->len == 1 || args->len == 2 || args->len == 4 || args->len == 8)) return -EINVAL; eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { ret = -ENOMEM; goto fail; } INIT_LIST_HEAD(&p->list); p->addr = args->addr; p->length = args->len; p->eventfd = eventfd; p->type = ioreq_type_from_flags(args->flags); /* * ACRN_IOEVENTFD_FLAG_DATAMATCH flag is set in virtio 1.0 support, the * writing of notification register of each virtqueue may trigger the * notification. There is no data matching requirement. */ if (args->flags & ACRN_IOEVENTFD_FLAG_DATAMATCH) p->data = args->data; else p->wildcard = true; mutex_lock(&vm->ioeventfds_lock); if (hsm_ioeventfd_is_conflict(vm, p)) { ret = -EEXIST; goto unlock_fail; } /* register the I/O range into ioreq client */ ret = acrn_ioreq_range_add(vm->ioeventfd_client, p->type, p->addr, p->addr + p->length - 1); if (ret < 0) goto unlock_fail; list_add_tail(&p->list, &vm->ioeventfds); mutex_unlock(&vm->ioeventfds_lock); return 0; unlock_fail: mutex_unlock(&vm->ioeventfds_lock); kfree(p); fail: eventfd_ctx_put(eventfd); return ret; } static int acrn_ioeventfd_deassign(struct acrn_vm *vm, struct acrn_ioeventfd *args) { struct hsm_ioeventfd *p; struct eventfd_ctx *eventfd; eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); mutex_lock(&vm->ioeventfds_lock); list_for_each_entry(p, &vm->ioeventfds, list) { if (p->eventfd != eventfd) continue; acrn_ioreq_range_del(vm->ioeventfd_client, p->type, p->addr, p->addr + p->length - 1); acrn_ioeventfd_shutdown(vm, p); break; } mutex_unlock(&vm->ioeventfds_lock); eventfd_ctx_put(eventfd); return 0; } static struct hsm_ioeventfd *hsm_ioeventfd_match(struct acrn_vm *vm, u64 addr, u64 data, int len, int type) { struct hsm_ioeventfd *p = NULL; lockdep_assert_held(&vm->ioeventfds_lock); list_for_each_entry(p, &vm->ioeventfds, list) { if (p->type == type && p->addr == addr && p->length >= len && (p->wildcard || p->data == data)) return p; } return NULL; } static int acrn_ioeventfd_handler(struct acrn_ioreq_client *client, struct acrn_io_request *req) { struct hsm_ioeventfd *p; u64 addr, val; int size; if (req->type == ACRN_IOREQ_TYPE_MMIO) { /* * I/O requests are dispatched by range check only, so a * acrn_ioreq_client need process both READ and WRITE accesses * of same range. READ accesses are safe to be ignored here * because virtio PCI devices write the notify registers for * notification. */ if (req->reqs.mmio_request.direction == ACRN_IOREQ_DIR_READ) { /* reading does nothing and return 0 */ req->reqs.mmio_request.value = 0; return 0; } addr = req->reqs.mmio_request.address; size = req->reqs.mmio_request.size; val = req->reqs.mmio_request.value; } else { if (req->reqs.pio_request.direction == ACRN_IOREQ_DIR_READ) { /* reading does nothing and return 0 */ req->reqs.pio_request.value = 0; return 0; } addr = req->reqs.pio_request.address; size = req->reqs.pio_request.size; val = req->reqs.pio_request.value; } mutex_lock(&client->vm->ioeventfds_lock); p = hsm_ioeventfd_match(client->vm, addr, val, size, req->type); if (p) eventfd_signal(p->eventfd, 1); mutex_unlock(&client->vm->ioeventfds_lock); return 0; } int acrn_ioeventfd_config(struct acrn_vm *vm, struct acrn_ioeventfd *args) { int ret; if (args->flags & ACRN_IOEVENTFD_FLAG_DEASSIGN) ret = acrn_ioeventfd_deassign(vm, args); else ret = acrn_ioeventfd_assign(vm, args); return ret; } int acrn_ioeventfd_init(struct acrn_vm *vm) { char name[ACRN_NAME_LEN]; mutex_init(&vm->ioeventfds_lock); INIT_LIST_HEAD(&vm->ioeventfds); snprintf(name, sizeof(name), "ioeventfd-%u", vm->vmid); vm->ioeventfd_client = acrn_ioreq_client_create(vm, acrn_ioeventfd_handler, NULL, false, name); if (!vm->ioeventfd_client) { dev_err(acrn_dev.this_device, "Failed to create ioeventfd ioreq client!\n"); return -EINVAL; } dev_dbg(acrn_dev.this_device, "VM %u ioeventfd init.\n", vm->vmid); return 0; } void acrn_ioeventfd_deinit(struct acrn_vm *vm) { struct hsm_ioeventfd *p, *next; dev_dbg(acrn_dev.this_device, "VM %u ioeventfd deinit.\n", vm->vmid); acrn_ioreq_client_destroy(vm->ioeventfd_client); mutex_lock(&vm->ioeventfds_lock); list_for_each_entry_safe(p, next, &vm->ioeventfds, list) acrn_ioeventfd_shutdown(vm, p); mutex_unlock(&vm->ioeventfds_lock); }
linux-master
drivers/virt/acrn/ioeventfd.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN: Memory mapping management * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Fei Li <[email protected]> * Shuo Liu <[email protected]> */ #include <linux/io.h> #include <linux/mm.h> #include <linux/slab.h> #include "acrn_drv.h" static int modify_region(struct acrn_vm *vm, struct vm_memory_region_op *region) { struct vm_memory_region_batch *regions; int ret; regions = kzalloc(sizeof(*regions), GFP_KERNEL); if (!regions) return -ENOMEM; regions->vmid = vm->vmid; regions->regions_num = 1; regions->regions_gpa = virt_to_phys(region); ret = hcall_set_memory_regions(virt_to_phys(regions)); if (ret < 0) dev_dbg(acrn_dev.this_device, "Failed to set memory region for VM[%u]!\n", vm->vmid); kfree(regions); return ret; } /** * acrn_mm_region_add() - Set up the EPT mapping of a memory region. * @vm: User VM. * @user_gpa: A GPA of User VM. * @service_gpa: A GPA of Service VM. * @size: Size of the region. * @mem_type: Combination of ACRN_MEM_TYPE_*. * @mem_access_right: Combination of ACRN_MEM_ACCESS_*. * * Return: 0 on success, <0 on error. */ int acrn_mm_region_add(struct acrn_vm *vm, u64 user_gpa, u64 service_gpa, u64 size, u32 mem_type, u32 mem_access_right) { struct vm_memory_region_op *region; int ret = 0; region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = ACRN_MEM_REGION_ADD; region->user_vm_pa = user_gpa; region->service_vm_pa = service_gpa; region->size = size; region->attr = ((mem_type & ACRN_MEM_TYPE_MASK) | (mem_access_right & ACRN_MEM_ACCESS_RIGHT_MASK)); ret = modify_region(vm, region); dev_dbg(acrn_dev.this_device, "%s: user-GPA[%pK] service-GPA[%pK] size[0x%llx].\n", __func__, (void *)user_gpa, (void *)service_gpa, size); kfree(region); return ret; } /** * acrn_mm_region_del() - Del the EPT mapping of a memory region. * @vm: User VM. * @user_gpa: A GPA of the User VM. * @size: Size of the region. * * Return: 0 on success, <0 for error. */ int acrn_mm_region_del(struct acrn_vm *vm, u64 user_gpa, u64 size) { struct vm_memory_region_op *region; int ret = 0; region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; region->type = ACRN_MEM_REGION_DEL; region->user_vm_pa = user_gpa; region->service_vm_pa = 0UL; region->size = size; region->attr = 0U; ret = modify_region(vm, region); dev_dbg(acrn_dev.this_device, "%s: user-GPA[%pK] size[0x%llx].\n", __func__, (void *)user_gpa, size); kfree(region); return ret; } int acrn_vm_memseg_map(struct acrn_vm *vm, struct acrn_vm_memmap *memmap) { int ret; if (memmap->type == ACRN_MEMMAP_RAM) return acrn_vm_ram_map(vm, memmap); if (memmap->type != ACRN_MEMMAP_MMIO) { dev_dbg(acrn_dev.this_device, "Invalid memmap type: %u\n", memmap->type); return -EINVAL; } ret = acrn_mm_region_add(vm, memmap->user_vm_pa, memmap->service_vm_pa, memmap->len, ACRN_MEM_TYPE_UC, memmap->attr); if (ret < 0) dev_dbg(acrn_dev.this_device, "Add memory region failed, VM[%u]!\n", vm->vmid); return ret; } int acrn_vm_memseg_unmap(struct acrn_vm *vm, struct acrn_vm_memmap *memmap) { int ret; if (memmap->type != ACRN_MEMMAP_MMIO) { dev_dbg(acrn_dev.this_device, "Invalid memmap type: %u\n", memmap->type); return -EINVAL; } ret = acrn_mm_region_del(vm, memmap->user_vm_pa, memmap->len); if (ret < 0) dev_dbg(acrn_dev.this_device, "Del memory region failed, VM[%u]!\n", vm->vmid); return ret; } /** * acrn_vm_ram_map() - Create a RAM EPT mapping of User VM. * @vm: The User VM pointer * @memmap: Info of the EPT mapping * * Return: 0 on success, <0 for error. */ int acrn_vm_ram_map(struct acrn_vm *vm, struct acrn_vm_memmap *memmap) { struct vm_memory_region_batch *regions_info; int nr_pages, i = 0, order, nr_regions = 0; struct vm_memory_mapping *region_mapping; struct vm_memory_region_op *vm_region; struct page **pages = NULL, *page; void *remap_vaddr; int ret, pinned; u64 user_vm_pa; unsigned long pfn; struct vm_area_struct *vma; if (!vm || !memmap) return -EINVAL; mmap_read_lock(current->mm); vma = vma_lookup(current->mm, memmap->vma_base); if (vma && ((vma->vm_flags & VM_PFNMAP) != 0)) { if ((memmap->vma_base + memmap->len) > vma->vm_end) { mmap_read_unlock(current->mm); return -EINVAL; } ret = follow_pfn(vma, memmap->vma_base, &pfn); mmap_read_unlock(current->mm); if (ret < 0) { dev_dbg(acrn_dev.this_device, "Failed to lookup PFN at VMA:%pK.\n", (void *)memmap->vma_base); return ret; } return acrn_mm_region_add(vm, memmap->user_vm_pa, PFN_PHYS(pfn), memmap->len, ACRN_MEM_TYPE_WB, memmap->attr); } mmap_read_unlock(current->mm); /* Get the page number of the map region */ nr_pages = memmap->len >> PAGE_SHIFT; pages = vzalloc(array_size(nr_pages, sizeof(*pages))); if (!pages) return -ENOMEM; /* Lock the pages of user memory map region */ pinned = pin_user_pages_fast(memmap->vma_base, nr_pages, FOLL_WRITE | FOLL_LONGTERM, pages); if (pinned < 0) { ret = pinned; goto free_pages; } else if (pinned != nr_pages) { ret = -EFAULT; goto put_pages; } /* Create a kernel map for the map region */ remap_vaddr = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); if (!remap_vaddr) { ret = -ENOMEM; goto put_pages; } /* Record Service VM va <-> User VM pa mapping */ mutex_lock(&vm->regions_mapping_lock); region_mapping = &vm->regions_mapping[vm->regions_mapping_count]; if (vm->regions_mapping_count < ACRN_MEM_MAPPING_MAX) { region_mapping->pages = pages; region_mapping->npages = nr_pages; region_mapping->size = memmap->len; region_mapping->service_vm_va = remap_vaddr; region_mapping->user_vm_pa = memmap->user_vm_pa; vm->regions_mapping_count++; } else { dev_warn(acrn_dev.this_device, "Run out of memory mapping slots!\n"); ret = -ENOMEM; mutex_unlock(&vm->regions_mapping_lock); goto unmap_no_count; } mutex_unlock(&vm->regions_mapping_lock); /* Calculate count of vm_memory_region_op */ while (i < nr_pages) { page = pages[i]; VM_BUG_ON_PAGE(PageTail(page), page); order = compound_order(page); nr_regions++; i += 1 << order; } /* Prepare the vm_memory_region_batch */ regions_info = kzalloc(struct_size(regions_info, regions_op, nr_regions), GFP_KERNEL); if (!regions_info) { ret = -ENOMEM; goto unmap_kernel_map; } /* Fill each vm_memory_region_op */ vm_region = regions_info->regions_op; regions_info->vmid = vm->vmid; regions_info->regions_num = nr_regions; regions_info->regions_gpa = virt_to_phys(vm_region); user_vm_pa = memmap->user_vm_pa; i = 0; while (i < nr_pages) { u32 region_size; page = pages[i]; VM_BUG_ON_PAGE(PageTail(page), page); order = compound_order(page); region_size = PAGE_SIZE << order; vm_region->type = ACRN_MEM_REGION_ADD; vm_region->user_vm_pa = user_vm_pa; vm_region->service_vm_pa = page_to_phys(page); vm_region->size = region_size; vm_region->attr = (ACRN_MEM_TYPE_WB & ACRN_MEM_TYPE_MASK) | (memmap->attr & ACRN_MEM_ACCESS_RIGHT_MASK); vm_region++; user_vm_pa += region_size; i += 1 << order; } /* Inform the ACRN Hypervisor to set up EPT mappings */ ret = hcall_set_memory_regions(virt_to_phys(regions_info)); if (ret < 0) { dev_dbg(acrn_dev.this_device, "Failed to set regions, VM[%u]!\n", vm->vmid); goto unset_region; } kfree(regions_info); dev_dbg(acrn_dev.this_device, "%s: VM[%u] service-GVA[%pK] user-GPA[%pK] size[0x%llx]\n", __func__, vm->vmid, remap_vaddr, (void *)memmap->user_vm_pa, memmap->len); return ret; unset_region: kfree(regions_info); unmap_kernel_map: mutex_lock(&vm->regions_mapping_lock); vm->regions_mapping_count--; mutex_unlock(&vm->regions_mapping_lock); unmap_no_count: vunmap(remap_vaddr); put_pages: for (i = 0; i < pinned; i++) unpin_user_page(pages[i]); free_pages: vfree(pages); return ret; } /** * acrn_vm_all_ram_unmap() - Destroy a RAM EPT mapping of User VM. * @vm: The User VM */ void acrn_vm_all_ram_unmap(struct acrn_vm *vm) { struct vm_memory_mapping *region_mapping; int i, j; mutex_lock(&vm->regions_mapping_lock); for (i = 0; i < vm->regions_mapping_count; i++) { region_mapping = &vm->regions_mapping[i]; vunmap(region_mapping->service_vm_va); for (j = 0; j < region_mapping->npages; j++) unpin_user_page(region_mapping->pages[j]); vfree(region_mapping->pages); } mutex_unlock(&vm->regions_mapping_lock); }
linux-master
drivers/virt/acrn/mm.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN HSM irqfd: use eventfd objects to inject virtual interrupts * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Shuo Liu <[email protected]> * Yakui Zhao <[email protected]> */ #include <linux/eventfd.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/slab.h> #include "acrn_drv.h" static LIST_HEAD(acrn_irqfd_clients); /** * struct hsm_irqfd - Properties of HSM irqfd * @vm: Associated VM pointer * @wait: Entry of wait-queue * @shutdown: Async shutdown work * @eventfd: Associated eventfd * @list: Entry within &acrn_vm.irqfds of irqfds of a VM * @pt: Structure for select/poll on the associated eventfd * @msi: MSI data */ struct hsm_irqfd { struct acrn_vm *vm; wait_queue_entry_t wait; struct work_struct shutdown; struct eventfd_ctx *eventfd; struct list_head list; poll_table pt; struct acrn_msi_entry msi; }; static void acrn_irqfd_inject(struct hsm_irqfd *irqfd) { struct acrn_vm *vm = irqfd->vm; acrn_msi_inject(vm, irqfd->msi.msi_addr, irqfd->msi.msi_data); } static void hsm_irqfd_shutdown(struct hsm_irqfd *irqfd) { u64 cnt; lockdep_assert_held(&irqfd->vm->irqfds_lock); /* remove from wait queue */ list_del_init(&irqfd->list); eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); eventfd_ctx_put(irqfd->eventfd); kfree(irqfd); } static void hsm_irqfd_shutdown_work(struct work_struct *work) { struct hsm_irqfd *irqfd; struct acrn_vm *vm; irqfd = container_of(work, struct hsm_irqfd, shutdown); vm = irqfd->vm; mutex_lock(&vm->irqfds_lock); if (!list_empty(&irqfd->list)) hsm_irqfd_shutdown(irqfd); mutex_unlock(&vm->irqfds_lock); } /* Called with wqh->lock held and interrupts disabled */ static int hsm_irqfd_wakeup(wait_queue_entry_t *wait, unsigned int mode, int sync, void *key) { unsigned long poll_bits = (unsigned long)key; struct hsm_irqfd *irqfd; struct acrn_vm *vm; irqfd = container_of(wait, struct hsm_irqfd, wait); vm = irqfd->vm; if (poll_bits & POLLIN) /* An event has been signaled, inject an interrupt */ acrn_irqfd_inject(irqfd); if (poll_bits & POLLHUP) /* Do shutdown work in thread to hold wqh->lock */ queue_work(vm->irqfd_wq, &irqfd->shutdown); return 0; } static void hsm_irqfd_poll_func(struct file *file, wait_queue_head_t *wqh, poll_table *pt) { struct hsm_irqfd *irqfd; irqfd = container_of(pt, struct hsm_irqfd, pt); add_wait_queue(wqh, &irqfd->wait); } /* * Assign an eventfd to a VM and create a HSM irqfd associated with the * eventfd. The properties of the HSM irqfd are built from a &struct * acrn_irqfd. */ static int acrn_irqfd_assign(struct acrn_vm *vm, struct acrn_irqfd *args) { struct eventfd_ctx *eventfd = NULL; struct hsm_irqfd *irqfd, *tmp; __poll_t events; struct fd f; int ret = 0; irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); if (!irqfd) return -ENOMEM; irqfd->vm = vm; memcpy(&irqfd->msi, &args->msi, sizeof(args->msi)); INIT_LIST_HEAD(&irqfd->list); INIT_WORK(&irqfd->shutdown, hsm_irqfd_shutdown_work); f = fdget(args->fd); if (!f.file) { ret = -EBADF; goto out; } eventfd = eventfd_ctx_fileget(f.file); if (IS_ERR(eventfd)) { ret = PTR_ERR(eventfd); goto fail; } irqfd->eventfd = eventfd; /* * Install custom wake-up handling to be notified whenever underlying * eventfd is signaled. */ init_waitqueue_func_entry(&irqfd->wait, hsm_irqfd_wakeup); init_poll_funcptr(&irqfd->pt, hsm_irqfd_poll_func); mutex_lock(&vm->irqfds_lock); list_for_each_entry(tmp, &vm->irqfds, list) { if (irqfd->eventfd != tmp->eventfd) continue; ret = -EBUSY; mutex_unlock(&vm->irqfds_lock); goto fail; } list_add_tail(&irqfd->list, &vm->irqfds); mutex_unlock(&vm->irqfds_lock); /* Check the pending event in this stage */ events = vfs_poll(f.file, &irqfd->pt); if (events & EPOLLIN) acrn_irqfd_inject(irqfd); fdput(f); return 0; fail: if (eventfd && !IS_ERR(eventfd)) eventfd_ctx_put(eventfd); fdput(f); out: kfree(irqfd); return ret; } static int acrn_irqfd_deassign(struct acrn_vm *vm, struct acrn_irqfd *args) { struct hsm_irqfd *irqfd, *tmp; struct eventfd_ctx *eventfd; eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); mutex_lock(&vm->irqfds_lock); list_for_each_entry_safe(irqfd, tmp, &vm->irqfds, list) { if (irqfd->eventfd == eventfd) { hsm_irqfd_shutdown(irqfd); break; } } mutex_unlock(&vm->irqfds_lock); eventfd_ctx_put(eventfd); return 0; } int acrn_irqfd_config(struct acrn_vm *vm, struct acrn_irqfd *args) { int ret; if (args->flags & ACRN_IRQFD_FLAG_DEASSIGN) ret = acrn_irqfd_deassign(vm, args); else ret = acrn_irqfd_assign(vm, args); return ret; } int acrn_irqfd_init(struct acrn_vm *vm) { INIT_LIST_HEAD(&vm->irqfds); mutex_init(&vm->irqfds_lock); vm->irqfd_wq = alloc_workqueue("acrn_irqfd-%u", 0, 0, vm->vmid); if (!vm->irqfd_wq) return -ENOMEM; dev_dbg(acrn_dev.this_device, "VM %u irqfd init.\n", vm->vmid); return 0; } void acrn_irqfd_deinit(struct acrn_vm *vm) { struct hsm_irqfd *irqfd, *next; dev_dbg(acrn_dev.this_device, "VM %u irqfd deinit.\n", vm->vmid); destroy_workqueue(vm->irqfd_wq); mutex_lock(&vm->irqfds_lock); list_for_each_entry_safe(irqfd, next, &vm->irqfds, list) hsm_irqfd_shutdown(irqfd); mutex_unlock(&vm->irqfds_lock); }
linux-master
drivers/virt/acrn/irqfd.c
// SPDX-License-Identifier: GPL-2.0 /* * ACRN_HSM: Handle I/O requests * * Copyright (C) 2020 Intel Corporation. All rights reserved. * * Authors: * Jason Chen CJ <[email protected]> * Fengwei Yin <[email protected]> */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kthread.h> #include <linux/mm.h> #include <linux/slab.h> #include <asm/acrn.h> #include "acrn_drv.h" static void ioreq_pause(void); static void ioreq_resume(void); static void ioreq_dispatcher(struct work_struct *work); static struct workqueue_struct *ioreq_wq; static DECLARE_WORK(ioreq_work, ioreq_dispatcher); static inline bool has_pending_request(struct acrn_ioreq_client *client) { return !bitmap_empty(client->ioreqs_map, ACRN_IO_REQUEST_MAX); } static inline bool is_destroying(struct acrn_ioreq_client *client) { return test_bit(ACRN_IOREQ_CLIENT_DESTROYING, &client->flags); } static int ioreq_complete_request(struct acrn_vm *vm, u16 vcpu, struct acrn_io_request *acrn_req) { bool polling_mode; int ret = 0; polling_mode = acrn_req->completion_polling; /* Add barrier() to make sure the writes are done before completion */ smp_store_release(&acrn_req->processed, ACRN_IOREQ_STATE_COMPLETE); /* * To fulfill the requirement of real-time in several industry * scenarios, like automotive, ACRN can run under the partition mode, * in which User VMs and Service VM are bound to dedicated CPU cores. * Polling mode of handling the I/O request is introduced to achieve a * faster I/O request handling. In polling mode, the hypervisor polls * I/O request's completion. Once an I/O request is marked as * ACRN_IOREQ_STATE_COMPLETE, hypervisor resumes from the polling point * to continue the I/O request flow. Thus, the completion notification * from HSM of I/O request is not needed. Please note, * completion_polling needs to be read before the I/O request being * marked as ACRN_IOREQ_STATE_COMPLETE to avoid racing with the * hypervisor. */ if (!polling_mode) { ret = hcall_notify_req_finish(vm->vmid, vcpu); if (ret < 0) dev_err(acrn_dev.this_device, "Notify I/O request finished failed!\n"); } return ret; } static int acrn_ioreq_complete_request(struct acrn_ioreq_client *client, u16 vcpu, struct acrn_io_request *acrn_req) { int ret; if (vcpu >= client->vm->vcpu_num) return -EINVAL; clear_bit(vcpu, client->ioreqs_map); if (!acrn_req) { acrn_req = (struct acrn_io_request *)client->vm->ioreq_buf; acrn_req += vcpu; } ret = ioreq_complete_request(client->vm, vcpu, acrn_req); return ret; } int acrn_ioreq_request_default_complete(struct acrn_vm *vm, u16 vcpu) { int ret = 0; spin_lock_bh(&vm->ioreq_clients_lock); if (vm->default_client) ret = acrn_ioreq_complete_request(vm->default_client, vcpu, NULL); spin_unlock_bh(&vm->ioreq_clients_lock); return ret; } /** * acrn_ioreq_range_add() - Add an iorange monitored by an ioreq client * @client: The ioreq client * @type: Type (ACRN_IOREQ_TYPE_MMIO or ACRN_IOREQ_TYPE_PORTIO) * @start: Start address of iorange * @end: End address of iorange * * Return: 0 on success, <0 on error */ int acrn_ioreq_range_add(struct acrn_ioreq_client *client, u32 type, u64 start, u64 end) { struct acrn_ioreq_range *range; if (end < start) { dev_err(acrn_dev.this_device, "Invalid IO range [0x%llx,0x%llx]\n", start, end); return -EINVAL; } range = kzalloc(sizeof(*range), GFP_KERNEL); if (!range) return -ENOMEM; range->type = type; range->start = start; range->end = end; write_lock_bh(&client->range_lock); list_add(&range->list, &client->range_list); write_unlock_bh(&client->range_lock); return 0; } /** * acrn_ioreq_range_del() - Del an iorange monitored by an ioreq client * @client: The ioreq client * @type: Type (ACRN_IOREQ_TYPE_MMIO or ACRN_IOREQ_TYPE_PORTIO) * @start: Start address of iorange * @end: End address of iorange */ void acrn_ioreq_range_del(struct acrn_ioreq_client *client, u32 type, u64 start, u64 end) { struct acrn_ioreq_range *range; write_lock_bh(&client->range_lock); list_for_each_entry(range, &client->range_list, list) { if (type == range->type && start == range->start && end == range->end) { list_del(&range->list); kfree(range); break; } } write_unlock_bh(&client->range_lock); } /* * ioreq_task() is the execution entity of handler thread of an I/O client. * The handler callback of the I/O client is called within the handler thread. */ static int ioreq_task(void *data) { struct acrn_ioreq_client *client = data; struct acrn_io_request *req; unsigned long *ioreqs_map; int vcpu, ret; /* * Lockless access to ioreqs_map is safe, because * 1) set_bit() and clear_bit() are atomic operations. * 2) I/O requests arrives serialized. The access flow of ioreqs_map is: * set_bit() - in ioreq_work handler * Handler callback handles corresponding I/O request * clear_bit() - in handler thread (include ACRN userspace) * Mark corresponding I/O request completed * Loop again if a new I/O request occurs */ ioreqs_map = client->ioreqs_map; while (!kthread_should_stop()) { acrn_ioreq_client_wait(client); while (has_pending_request(client)) { vcpu = find_first_bit(ioreqs_map, client->vm->vcpu_num); req = client->vm->ioreq_buf->req_slot + vcpu; ret = client->handler(client, req); if (ret < 0) { dev_err(acrn_dev.this_device, "IO handle failure: %d\n", ret); break; } acrn_ioreq_complete_request(client, vcpu, req); } } return 0; } /* * For the non-default I/O clients, give them chance to complete the current * I/O requests if there are any. For the default I/O client, it is safe to * clear all pending I/O requests because the clearing request is from ACRN * userspace. */ void acrn_ioreq_request_clear(struct acrn_vm *vm) { struct acrn_ioreq_client *client; bool has_pending = false; unsigned long vcpu; int retry = 10; /* * IO requests of this VM will be completed directly in * acrn_ioreq_dispatch if ACRN_VM_FLAG_CLEARING_IOREQ flag is set. */ set_bit(ACRN_VM_FLAG_CLEARING_IOREQ, &vm->flags); /* * acrn_ioreq_request_clear is only called in VM reset case. Simply * wait 100ms in total for the IO requests' completion. */ do { spin_lock_bh(&vm->ioreq_clients_lock); list_for_each_entry(client, &vm->ioreq_clients, list) { has_pending = has_pending_request(client); if (has_pending) break; } spin_unlock_bh(&vm->ioreq_clients_lock); if (has_pending) schedule_timeout_interruptible(HZ / 100); } while (has_pending && --retry > 0); if (retry == 0) dev_warn(acrn_dev.this_device, "%s cannot flush pending request!\n", client->name); /* Clear all ioreqs belonging to the default client */ spin_lock_bh(&vm->ioreq_clients_lock); client = vm->default_client; if (client) { for_each_set_bit(vcpu, client->ioreqs_map, ACRN_IO_REQUEST_MAX) acrn_ioreq_complete_request(client, vcpu, NULL); } spin_unlock_bh(&vm->ioreq_clients_lock); /* Clear ACRN_VM_FLAG_CLEARING_IOREQ flag after the clearing */ clear_bit(ACRN_VM_FLAG_CLEARING_IOREQ, &vm->flags); } int acrn_ioreq_client_wait(struct acrn_ioreq_client *client) { if (client->is_default) { /* * In the default client, a user space thread waits on the * waitqueue. The is_destroying() check is used to notify user * space the client is going to be destroyed. */ wait_event_interruptible(client->wq, has_pending_request(client) || is_destroying(client)); if (is_destroying(client)) return -ENODEV; } else { wait_event_interruptible(client->wq, has_pending_request(client) || kthread_should_stop()); } return 0; } static bool is_cfg_addr(struct acrn_io_request *req) { return ((req->type == ACRN_IOREQ_TYPE_PORTIO) && (req->reqs.pio_request.address == 0xcf8)); } static bool is_cfg_data(struct acrn_io_request *req) { return ((req->type == ACRN_IOREQ_TYPE_PORTIO) && ((req->reqs.pio_request.address >= 0xcfc) && (req->reqs.pio_request.address < (0xcfc + 4)))); } /* The low 8-bit of supported pci_reg addr.*/ #define PCI_LOWREG_MASK 0xFC /* The high 4-bit of supported pci_reg addr */ #define PCI_HIGHREG_MASK 0xF00 /* Max number of supported functions */ #define PCI_FUNCMAX 7 /* Max number of supported slots */ #define PCI_SLOTMAX 31 /* Max number of supported buses */ #define PCI_BUSMAX 255 #define CONF1_ENABLE 0x80000000UL /* * A PCI configuration space access via PIO 0xCF8 and 0xCFC normally has two * following steps: * 1) writes address into 0xCF8 port * 2) accesses data in/from 0xCFC * This function combines such paired PCI configuration space I/O requests into * one ACRN_IOREQ_TYPE_PCICFG type I/O request and continues the processing. */ static bool handle_cf8cfc(struct acrn_vm *vm, struct acrn_io_request *req, u16 vcpu) { int offset, pci_cfg_addr, pci_reg; bool is_handled = false; if (is_cfg_addr(req)) { WARN_ON(req->reqs.pio_request.size != 4); if (req->reqs.pio_request.direction == ACRN_IOREQ_DIR_WRITE) vm->pci_conf_addr = req->reqs.pio_request.value; else req->reqs.pio_request.value = vm->pci_conf_addr; is_handled = true; } else if (is_cfg_data(req)) { if (!(vm->pci_conf_addr & CONF1_ENABLE)) { if (req->reqs.pio_request.direction == ACRN_IOREQ_DIR_READ) req->reqs.pio_request.value = 0xffffffff; is_handled = true; } else { offset = req->reqs.pio_request.address - 0xcfc; req->type = ACRN_IOREQ_TYPE_PCICFG; pci_cfg_addr = vm->pci_conf_addr; req->reqs.pci_request.bus = (pci_cfg_addr >> 16) & PCI_BUSMAX; req->reqs.pci_request.dev = (pci_cfg_addr >> 11) & PCI_SLOTMAX; req->reqs.pci_request.func = (pci_cfg_addr >> 8) & PCI_FUNCMAX; pci_reg = (pci_cfg_addr & PCI_LOWREG_MASK) + ((pci_cfg_addr >> 16) & PCI_HIGHREG_MASK); req->reqs.pci_request.reg = pci_reg + offset; } } if (is_handled) ioreq_complete_request(vm, vcpu, req); return is_handled; } static bool acrn_in_range(struct acrn_ioreq_range *range, struct acrn_io_request *req) { bool ret = false; if (range->type == req->type) { switch (req->type) { case ACRN_IOREQ_TYPE_MMIO: if (req->reqs.mmio_request.address >= range->start && (req->reqs.mmio_request.address + req->reqs.mmio_request.size - 1) <= range->end) ret = true; break; case ACRN_IOREQ_TYPE_PORTIO: if (req->reqs.pio_request.address >= range->start && (req->reqs.pio_request.address + req->reqs.pio_request.size - 1) <= range->end) ret = true; break; default: break; } } return ret; } static struct acrn_ioreq_client *find_ioreq_client(struct acrn_vm *vm, struct acrn_io_request *req) { struct acrn_ioreq_client *client, *found = NULL; struct acrn_ioreq_range *range; lockdep_assert_held(&vm->ioreq_clients_lock); list_for_each_entry(client, &vm->ioreq_clients, list) { read_lock_bh(&client->range_lock); list_for_each_entry(range, &client->range_list, list) { if (acrn_in_range(range, req)) { found = client; break; } } read_unlock_bh(&client->range_lock); if (found) break; } return found ? found : vm->default_client; } /** * acrn_ioreq_client_create() - Create an ioreq client * @vm: The VM that this client belongs to * @handler: The ioreq_handler of ioreq client acrn_hsm will create a kernel * thread and call the handler to handle I/O requests. * @priv: Private data for the handler * @is_default: If it is the default client * @name: The name of ioreq client * * Return: acrn_ioreq_client pointer on success, NULL on error */ struct acrn_ioreq_client *acrn_ioreq_client_create(struct acrn_vm *vm, ioreq_handler_t handler, void *priv, bool is_default, const char *name) { struct acrn_ioreq_client *client; if (!handler && !is_default) { dev_dbg(acrn_dev.this_device, "Cannot create non-default client w/o handler!\n"); return NULL; } client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return NULL; client->handler = handler; client->vm = vm; client->priv = priv; client->is_default = is_default; if (name) strncpy(client->name, name, sizeof(client->name) - 1); rwlock_init(&client->range_lock); INIT_LIST_HEAD(&client->range_list); init_waitqueue_head(&client->wq); if (client->handler) { client->thread = kthread_run(ioreq_task, client, "VM%u-%s", client->vm->vmid, client->name); if (IS_ERR(client->thread)) { kfree(client); return NULL; } } spin_lock_bh(&vm->ioreq_clients_lock); if (is_default) vm->default_client = client; else list_add(&client->list, &vm->ioreq_clients); spin_unlock_bh(&vm->ioreq_clients_lock); dev_dbg(acrn_dev.this_device, "Created ioreq client %s.\n", name); return client; } /** * acrn_ioreq_client_destroy() - Destroy an ioreq client * @client: The ioreq client */ void acrn_ioreq_client_destroy(struct acrn_ioreq_client *client) { struct acrn_ioreq_range *range, *next; struct acrn_vm *vm = client->vm; dev_dbg(acrn_dev.this_device, "Destroy ioreq client %s.\n", client->name); ioreq_pause(); set_bit(ACRN_IOREQ_CLIENT_DESTROYING, &client->flags); if (client->is_default) wake_up_interruptible(&client->wq); else kthread_stop(client->thread); spin_lock_bh(&vm->ioreq_clients_lock); if (client->is_default) vm->default_client = NULL; else list_del(&client->list); spin_unlock_bh(&vm->ioreq_clients_lock); write_lock_bh(&client->range_lock); list_for_each_entry_safe(range, next, &client->range_list, list) { list_del(&range->list); kfree(range); } write_unlock_bh(&client->range_lock); kfree(client); ioreq_resume(); } static int acrn_ioreq_dispatch(struct acrn_vm *vm) { struct acrn_ioreq_client *client; struct acrn_io_request *req; int i; for (i = 0; i < vm->vcpu_num; i++) { req = vm->ioreq_buf->req_slot + i; /* barrier the read of processed of acrn_io_request */ if (smp_load_acquire(&req->processed) == ACRN_IOREQ_STATE_PENDING) { /* Complete the IO request directly in clearing stage */ if (test_bit(ACRN_VM_FLAG_CLEARING_IOREQ, &vm->flags)) { ioreq_complete_request(vm, i, req); continue; } if (handle_cf8cfc(vm, req, i)) continue; spin_lock_bh(&vm->ioreq_clients_lock); client = find_ioreq_client(vm, req); if (!client) { dev_err(acrn_dev.this_device, "Failed to find ioreq client!\n"); spin_unlock_bh(&vm->ioreq_clients_lock); return -EINVAL; } if (!client->is_default) req->kernel_handled = 1; else req->kernel_handled = 0; /* * Add barrier() to make sure the writes are done * before setting ACRN_IOREQ_STATE_PROCESSING */ smp_store_release(&req->processed, ACRN_IOREQ_STATE_PROCESSING); set_bit(i, client->ioreqs_map); wake_up_interruptible(&client->wq); spin_unlock_bh(&vm->ioreq_clients_lock); } } return 0; } static void ioreq_dispatcher(struct work_struct *work) { struct acrn_vm *vm; read_lock(&acrn_vm_list_lock); list_for_each_entry(vm, &acrn_vm_list, list) { if (!vm->ioreq_buf) break; acrn_ioreq_dispatch(vm); } read_unlock(&acrn_vm_list_lock); } static void ioreq_intr_handler(void) { queue_work(ioreq_wq, &ioreq_work); } static void ioreq_pause(void) { /* Flush and unarm the handler to ensure no I/O requests pending */ acrn_remove_intr_handler(); drain_workqueue(ioreq_wq); } static void ioreq_resume(void) { /* Schedule after enabling in case other clients miss interrupt */ acrn_setup_intr_handler(ioreq_intr_handler); queue_work(ioreq_wq, &ioreq_work); } int acrn_ioreq_intr_setup(void) { acrn_setup_intr_handler(ioreq_intr_handler); ioreq_wq = alloc_ordered_workqueue("ioreq_wq", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!ioreq_wq) { dev_err(acrn_dev.this_device, "Failed to alloc workqueue!\n"); acrn_remove_intr_handler(); return -ENOMEM; } return 0; } void acrn_ioreq_intr_remove(void) { if (ioreq_wq) destroy_workqueue(ioreq_wq); acrn_remove_intr_handler(); } int acrn_ioreq_init(struct acrn_vm *vm, u64 buf_vma) { struct acrn_ioreq_buffer *set_buffer; struct page *page; int ret; if (vm->ioreq_buf) return -EEXIST; set_buffer = kzalloc(sizeof(*set_buffer), GFP_KERNEL); if (!set_buffer) return -ENOMEM; ret = pin_user_pages_fast(buf_vma, 1, FOLL_WRITE | FOLL_LONGTERM, &page); if (unlikely(ret != 1) || !page) { dev_err(acrn_dev.this_device, "Failed to pin ioreq page!\n"); ret = -EFAULT; goto free_buf; } vm->ioreq_buf = page_address(page); vm->ioreq_page = page; set_buffer->ioreq_buf = page_to_phys(page); ret = hcall_set_ioreq_buffer(vm->vmid, virt_to_phys(set_buffer)); if (ret < 0) { dev_err(acrn_dev.this_device, "Failed to init ioreq buffer!\n"); unpin_user_page(page); vm->ioreq_buf = NULL; goto free_buf; } dev_dbg(acrn_dev.this_device, "Init ioreq buffer %pK!\n", vm->ioreq_buf); ret = 0; free_buf: kfree(set_buffer); return ret; } void acrn_ioreq_deinit(struct acrn_vm *vm) { struct acrn_ioreq_client *client, *next; dev_dbg(acrn_dev.this_device, "Deinit ioreq buffer %pK!\n", vm->ioreq_buf); /* Destroy all clients belonging to this VM */ list_for_each_entry_safe(client, next, &vm->ioreq_clients, list) acrn_ioreq_client_destroy(client); if (vm->default_client) acrn_ioreq_client_destroy(vm->default_client); if (vm->ioreq_buf && vm->ioreq_page) { unpin_user_page(vm->ioreq_page); vm->ioreq_buf = NULL; } }
linux-master
drivers/virt/acrn/ioreq.c
/* * Runtime PM support code * * Copyright (C) 2009-2010 Magnus Damm * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/pm_runtime.h> #include <linux/pm_domain.h> #include <linux/pm_clock.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/sh_clk.h> #include <linux/bitmap.h> #include <linux/slab.h> static struct dev_pm_domain default_pm_domain = { .ops = { USE_PM_CLK_RUNTIME_OPS USE_PLATFORM_PM_SLEEP_OPS }, }; static struct pm_clk_notifier_block platform_bus_notifier = { .pm_domain = &default_pm_domain, .con_ids = { NULL, }, }; static int __init sh_pm_runtime_init(void) { pm_clk_add_notifier(&platform_bus_type, &platform_bus_notifier); return 0; } core_initcall(sh_pm_runtime_init);
linux-master
drivers/sh/pm_runtime.c
/* * Support for virtual IRQ subgroups. * * Copyright (C) 2010 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #define pr_fmt(fmt) "intc: " fmt #include <linux/slab.h> #include <linux/irq.h> #include <linux/list.h> #include <linux/radix-tree.h> #include <linux/spinlock.h> #include <linux/export.h> #include "internals.h" static struct intc_map_entry intc_irq_xlate[INTC_NR_IRQS]; struct intc_virq_list { unsigned int irq; struct intc_virq_list *next; }; #define for_each_virq(entry, head) \ for (entry = head; entry; entry = entry->next) /* * Tags for the radix tree */ #define INTC_TAG_VIRQ_NEEDS_ALLOC 0 void intc_irq_xlate_set(unsigned int irq, intc_enum id, struct intc_desc_int *d) { unsigned long flags; raw_spin_lock_irqsave(&intc_big_lock, flags); intc_irq_xlate[irq].enum_id = id; intc_irq_xlate[irq].desc = d; raw_spin_unlock_irqrestore(&intc_big_lock, flags); } struct intc_map_entry *intc_irq_xlate_get(unsigned int irq) { return intc_irq_xlate + irq; } int intc_irq_lookup(const char *chipname, intc_enum enum_id) { struct intc_map_entry *ptr; struct intc_desc_int *d; int irq = -1; list_for_each_entry(d, &intc_list, list) { int tagged; if (strcmp(d->chip.name, chipname) != 0) continue; /* * Catch early lookups for subgroup VIRQs that have not * yet been allocated an IRQ. This already includes a * fast-path out if the tree is untagged, so there is no * need to explicitly test the root tree. */ tagged = radix_tree_tag_get(&d->tree, enum_id, INTC_TAG_VIRQ_NEEDS_ALLOC); if (unlikely(tagged)) break; ptr = radix_tree_lookup(&d->tree, enum_id); if (ptr) { irq = ptr - intc_irq_xlate; break; } } return irq; } EXPORT_SYMBOL_GPL(intc_irq_lookup); static int add_virq_to_pirq(unsigned int irq, unsigned int virq) { struct intc_virq_list *entry; struct intc_virq_list **last = NULL; /* scan for duplicates */ for_each_virq(entry, irq_get_handler_data(irq)) { if (entry->irq == virq) return 0; last = &entry->next; } entry = kzalloc(sizeof(struct intc_virq_list), GFP_ATOMIC); if (!entry) return -ENOMEM; entry->irq = virq; if (last) *last = entry; else irq_set_handler_data(irq, entry); return 0; } static void intc_virq_handler(struct irq_desc *desc) { unsigned int irq = irq_desc_get_irq(desc); struct irq_data *data = irq_desc_get_irq_data(desc); struct irq_chip *chip = irq_data_get_irq_chip(data); struct intc_virq_list *entry, *vlist = irq_data_get_irq_handler_data(data); struct intc_desc_int *d = get_intc_desc(irq); chip->irq_mask_ack(data); for_each_virq(entry, vlist) { unsigned long addr, handle; struct irq_desc *vdesc = irq_to_desc(entry->irq); if (vdesc) { handle = (unsigned long)irq_desc_get_handler_data(vdesc); addr = INTC_REG(d, _INTC_ADDR_E(handle), 0); if (intc_reg_fns[_INTC_FN(handle)](addr, handle, 0)) generic_handle_irq_desc(vdesc); } } chip->irq_unmask(data); } static unsigned long __init intc_subgroup_data(struct intc_subgroup *subgroup, struct intc_desc_int *d, unsigned int index) { unsigned int fn = REG_FN_TEST_BASE + (subgroup->reg_width >> 3) - 1; return _INTC_MK(fn, MODE_ENABLE_REG, intc_get_reg(d, subgroup->reg), 0, 1, (subgroup->reg_width - 1) - index); } static void __init intc_subgroup_init_one(struct intc_desc *desc, struct intc_desc_int *d, struct intc_subgroup *subgroup) { struct intc_map_entry *mapped; unsigned int pirq; unsigned long flags; int i; mapped = radix_tree_lookup(&d->tree, subgroup->parent_id); if (!mapped) { WARN_ON(1); return; } pirq = mapped - intc_irq_xlate; raw_spin_lock_irqsave(&d->lock, flags); for (i = 0; i < ARRAY_SIZE(subgroup->enum_ids); i++) { struct intc_subgroup_entry *entry; int err; if (!subgroup->enum_ids[i]) continue; entry = kmalloc(sizeof(*entry), GFP_NOWAIT); if (!entry) break; entry->pirq = pirq; entry->enum_id = subgroup->enum_ids[i]; entry->handle = intc_subgroup_data(subgroup, d, i); err = radix_tree_insert(&d->tree, entry->enum_id, entry); if (unlikely(err < 0)) break; radix_tree_tag_set(&d->tree, entry->enum_id, INTC_TAG_VIRQ_NEEDS_ALLOC); } raw_spin_unlock_irqrestore(&d->lock, flags); } void __init intc_subgroup_init(struct intc_desc *desc, struct intc_desc_int *d) { int i; if (!desc->hw.subgroups) return; for (i = 0; i < desc->hw.nr_subgroups; i++) intc_subgroup_init_one(desc, d, desc->hw.subgroups + i); } static void __init intc_subgroup_map(struct intc_desc_int *d) { struct intc_subgroup_entry *entries[32]; unsigned long flags; unsigned int nr_found; int i; raw_spin_lock_irqsave(&d->lock, flags); restart: nr_found = radix_tree_gang_lookup_tag_slot(&d->tree, (void ***)entries, 0, ARRAY_SIZE(entries), INTC_TAG_VIRQ_NEEDS_ALLOC); for (i = 0; i < nr_found; i++) { struct intc_subgroup_entry *entry; int irq; entry = radix_tree_deref_slot((void **)entries[i]); if (unlikely(!entry)) continue; if (radix_tree_deref_retry(entry)) goto restart; irq = irq_alloc_desc(numa_node_id()); if (unlikely(irq < 0)) { pr_err("no more free IRQs, bailing..\n"); break; } activate_irq(irq); pr_info("Setting up a chained VIRQ from %d -> %d\n", irq, entry->pirq); intc_irq_xlate_set(irq, entry->enum_id, d); irq_set_chip_and_handler_name(irq, irq_get_chip(entry->pirq), handle_simple_irq, "virq"); irq_set_chip_data(irq, irq_get_chip_data(entry->pirq)); irq_set_handler_data(irq, (void *)entry->handle); /* * Set the virtual IRQ as non-threadable. */ irq_set_nothread(irq); /* Set handler data before installing the handler */ add_virq_to_pirq(entry->pirq, irq); irq_set_chained_handler(entry->pirq, intc_virq_handler); radix_tree_tag_clear(&d->tree, entry->enum_id, INTC_TAG_VIRQ_NEEDS_ALLOC); radix_tree_replace_slot(&d->tree, (void **)entries[i], &intc_irq_xlate[irq]); } raw_spin_unlock_irqrestore(&d->lock, flags); } void __init intc_finalize(void) { struct intc_desc_int *d; list_for_each_entry(d, &intc_list, list) if (radix_tree_tagged(&d->tree, INTC_TAG_VIRQ_NEEDS_ALLOC)) intc_subgroup_map(d); }
linux-master
drivers/sh/intc/virq.c
/* * IRQ domain support for SH INTC subsystem * * Copyright (C) 2012 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #define pr_fmt(fmt) "intc: " fmt #include <linux/irqdomain.h> #include <linux/sh_intc.h> #include <linux/export.h> #include "internals.h" /** * intc_irq_domain_evt_xlate() - Generic xlate for vectored IRQs. * * This takes care of exception vector to hwirq translation through * by way of evt2irq() translation. * * Note: For platforms that use a flat vector space without INTEVT this * basically just mimics irq_domain_xlate_onecell() by way of a nopped * out evt2irq() implementation. */ static int intc_evt_xlate(struct irq_domain *d, struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { if (WARN_ON(intsize < 1)) return -EINVAL; *out_hwirq = evt2irq(intspec[0]); *out_type = IRQ_TYPE_NONE; return 0; } static const struct irq_domain_ops intc_evt_ops = { .xlate = intc_evt_xlate, }; void __init intc_irq_domain_init(struct intc_desc_int *d, struct intc_hw_desc *hw) { unsigned int irq_base, irq_end; /* * Quick linear revmap check */ irq_base = evt2irq(hw->vectors[0].vect); irq_end = evt2irq(hw->vectors[hw->nr_vectors - 1].vect); /* * Linear domains have a hard-wired assertion that IRQs start at * 0 in order to make some performance optimizations. Lamely * restrict the linear case to these conditions here, taking the * tree penalty for linear cases with non-zero hwirq bases. */ if (irq_base == 0 && irq_end == (irq_base + hw->nr_vectors - 1)) d->domain = irq_domain_add_linear(NULL, hw->nr_vectors, &intc_evt_ops, NULL); else d->domain = irq_domain_add_tree(NULL, &intc_evt_ops, NULL); BUG_ON(!d->domain); }
linux-master
drivers/sh/intc/irqdomain.c
/* * IRQ chip definitions for INTC IRQs. * * Copyright (C) 2007, 2008 Magnus Damm * Copyright (C) 2009 - 2012 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/cpumask.h> #include <linux/bsearch.h> #include <linux/io.h> #include "internals.h" void _intc_enable(struct irq_data *data, unsigned long handle) { unsigned int irq = data->irq; struct intc_desc_int *d = get_intc_desc(irq); unsigned long addr; unsigned int cpu; for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_E(handle)); cpu++) { #ifdef CONFIG_SMP if (!cpumask_test_cpu(cpu, irq_data_get_affinity_mask(data))) continue; #endif addr = INTC_REG(d, _INTC_ADDR_E(handle), cpu); intc_enable_fns[_INTC_MODE(handle)](addr, handle, intc_reg_fns\ [_INTC_FN(handle)], irq); } intc_balancing_enable(irq); } static void intc_enable(struct irq_data *data) { _intc_enable(data, (unsigned long)irq_data_get_irq_chip_data(data)); } static void intc_disable(struct irq_data *data) { unsigned int irq = data->irq; struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = (unsigned long)irq_data_get_irq_chip_data(data); unsigned long addr; unsigned int cpu; intc_balancing_disable(irq); for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_D(handle)); cpu++) { #ifdef CONFIG_SMP if (!cpumask_test_cpu(cpu, irq_data_get_affinity_mask(data))) continue; #endif addr = INTC_REG(d, _INTC_ADDR_D(handle), cpu); intc_disable_fns[_INTC_MODE(handle)](addr, handle,intc_reg_fns\ [_INTC_FN(handle)], irq); } } #ifdef CONFIG_SMP /* * This is held with the irq desc lock held, so we don't require any * additional locking here at the intc desc level. The affinity mask is * later tested in the enable/disable paths. */ static int intc_set_affinity(struct irq_data *data, const struct cpumask *cpumask, bool force) { if (!cpumask_intersects(cpumask, cpu_online_mask)) return -1; irq_data_update_affinity(data, cpumask); return IRQ_SET_MASK_OK_NOCOPY; } #endif static void intc_mask_ack(struct irq_data *data) { unsigned int irq = data->irq; struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = intc_get_ack_handle(irq); void __iomem *addr; intc_disable(data); /* read register and write zero only to the associated bit */ if (handle) { unsigned int value; addr = (void __iomem *)INTC_REG(d, _INTC_ADDR_D(handle), 0); value = intc_set_field_from_handle(0, 1, handle); switch (_INTC_FN(handle)) { case REG_FN_MODIFY_BASE + 0: /* 8bit */ __raw_readb(addr); __raw_writeb(0xff ^ value, addr); break; case REG_FN_MODIFY_BASE + 1: /* 16bit */ __raw_readw(addr); __raw_writew(0xffff ^ value, addr); break; case REG_FN_MODIFY_BASE + 3: /* 32bit */ __raw_readl(addr); __raw_writel(0xffffffff ^ value, addr); break; default: BUG(); break; } } } static struct intc_handle_int *intc_find_irq(struct intc_handle_int *hp, unsigned int nr_hp, unsigned int irq) { struct intc_handle_int key; key.irq = irq; key.handle = 0; return bsearch(&key, hp, nr_hp, sizeof(*hp), intc_handle_int_cmp); } int intc_set_priority(unsigned int irq, unsigned int prio) { struct intc_desc_int *d = get_intc_desc(irq); struct irq_data *data = irq_get_irq_data(irq); struct intc_handle_int *ihp; if (!intc_get_prio_level(irq) || prio <= 1) return -EINVAL; ihp = intc_find_irq(d->prio, d->nr_prio, irq); if (ihp) { if (prio >= (1 << _INTC_WIDTH(ihp->handle))) return -EINVAL; intc_set_prio_level(irq, prio); /* * only set secondary masking method directly * primary masking method is using intc_prio_level[irq] * priority level will be set during next enable() */ if (_INTC_FN(ihp->handle) != REG_FN_ERR) _intc_enable(data, ihp->handle); } return 0; } #define SENSE_VALID_FLAG 0x80 #define VALID(x) (x | SENSE_VALID_FLAG) static unsigned char intc_irq_sense_table[IRQ_TYPE_SENSE_MASK + 1] = { [IRQ_TYPE_EDGE_FALLING] = VALID(0), [IRQ_TYPE_EDGE_RISING] = VALID(1), [IRQ_TYPE_LEVEL_LOW] = VALID(2), /* SH7706, SH7707 and SH7709 do not support high level triggered */ #if !defined(CONFIG_CPU_SUBTYPE_SH7706) && \ !defined(CONFIG_CPU_SUBTYPE_SH7707) && \ !defined(CONFIG_CPU_SUBTYPE_SH7709) [IRQ_TYPE_LEVEL_HIGH] = VALID(3), #endif #if defined(CONFIG_ARM) /* all recent SH-Mobile / R-Mobile ARM support this */ [IRQ_TYPE_EDGE_BOTH] = VALID(4), #endif }; static int intc_set_type(struct irq_data *data, unsigned int type) { unsigned int irq = data->irq; struct intc_desc_int *d = get_intc_desc(irq); unsigned char value = intc_irq_sense_table[type & IRQ_TYPE_SENSE_MASK]; struct intc_handle_int *ihp; unsigned long addr; if (!value) return -EINVAL; value &= ~SENSE_VALID_FLAG; ihp = intc_find_irq(d->sense, d->nr_sense, irq); if (ihp) { /* PINT has 2-bit sense registers, should fail on EDGE_BOTH */ if (value >= (1 << _INTC_WIDTH(ihp->handle))) return -EINVAL; addr = INTC_REG(d, _INTC_ADDR_E(ihp->handle), 0); intc_reg_fns[_INTC_FN(ihp->handle)](addr, ihp->handle, value); } return 0; } struct irq_chip intc_irq_chip = { .irq_mask = intc_disable, .irq_unmask = intc_enable, .irq_mask_ack = intc_mask_ack, .irq_enable = intc_enable, .irq_disable = intc_disable, .irq_set_type = intc_set_type, #ifdef CONFIG_SMP .irq_set_affinity = intc_set_affinity, #endif .flags = IRQCHIP_SKIP_SET_WAKE, };
linux-master
drivers/sh/intc/chip.c
/* * Shared interrupt handling code for IPR and INTC2 types of IRQs. * * Copyright (C) 2007, 2008 Magnus Damm * Copyright (C) 2009, 2010 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/irq.h> #include <linux/spinlock.h> #include "internals.h" static unsigned long ack_handle[INTC_NR_IRQS]; static intc_enum __init intc_grp_id(struct intc_desc *desc, intc_enum enum_id) { struct intc_group *g = desc->hw.groups; unsigned int i, j; for (i = 0; g && enum_id && i < desc->hw.nr_groups; i++) { g = desc->hw.groups + i; for (j = 0; g->enum_ids[j]; j++) { if (g->enum_ids[j] != enum_id) continue; return g->enum_id; } } return 0; } static unsigned int __init _intc_mask_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int *reg_idx, unsigned int *fld_idx) { struct intc_mask_reg *mr = desc->hw.mask_regs; unsigned int fn, mode; unsigned long reg_e, reg_d; while (mr && enum_id && *reg_idx < desc->hw.nr_mask_regs) { mr = desc->hw.mask_regs + *reg_idx; for (; *fld_idx < ARRAY_SIZE(mr->enum_ids); (*fld_idx)++) { if (mr->enum_ids[*fld_idx] != enum_id) continue; if (mr->set_reg && mr->clr_reg) { fn = REG_FN_WRITE_BASE; mode = MODE_DUAL_REG; reg_e = mr->clr_reg; reg_d = mr->set_reg; } else { fn = REG_FN_MODIFY_BASE; if (mr->set_reg) { mode = MODE_ENABLE_REG; reg_e = mr->set_reg; reg_d = mr->set_reg; } else { mode = MODE_MASK_REG; reg_e = mr->clr_reg; reg_d = mr->clr_reg; } } fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - *fld_idx); } *fld_idx = 0; (*reg_idx)++; } return 0; } unsigned int __init intc_get_mask_handle(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int do_grps) { unsigned int i = 0; unsigned int j = 0; unsigned int ret; ret = _intc_mask_data(desc, d, enum_id, &i, &j); if (ret) return ret; if (do_grps) return intc_get_mask_handle(desc, d, intc_grp_id(desc, enum_id), 0); return 0; } static unsigned int __init _intc_prio_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int *reg_idx, unsigned int *fld_idx) { struct intc_prio_reg *pr = desc->hw.prio_regs; unsigned int fn, n, mode, bit; unsigned long reg_e, reg_d; while (pr && enum_id && *reg_idx < desc->hw.nr_prio_regs) { pr = desc->hw.prio_regs + *reg_idx; for (; *fld_idx < ARRAY_SIZE(pr->enum_ids); (*fld_idx)++) { if (pr->enum_ids[*fld_idx] != enum_id) continue; if (pr->set_reg && pr->clr_reg) { fn = REG_FN_WRITE_BASE; mode = MODE_PCLR_REG; reg_e = pr->set_reg; reg_d = pr->clr_reg; } else { fn = REG_FN_MODIFY_BASE; mode = MODE_PRIO_REG; if (!pr->set_reg) BUG(); reg_e = pr->set_reg; reg_d = pr->set_reg; } fn += (pr->reg_width >> 3) - 1; n = *fld_idx + 1; BUG_ON(n * pr->field_width > pr->reg_width); bit = pr->reg_width - (n * pr->field_width); return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), pr->field_width, bit); } *fld_idx = 0; (*reg_idx)++; } return 0; } unsigned int __init intc_get_prio_handle(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int do_grps) { unsigned int i = 0; unsigned int j = 0; unsigned int ret; ret = _intc_prio_data(desc, d, enum_id, &i, &j); if (ret) return ret; if (do_grps) return intc_get_prio_handle(desc, d, intc_grp_id(desc, enum_id), 0); return 0; } static unsigned int intc_ack_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_mask_reg *mr = desc->hw.ack_regs; unsigned int i, j, fn, mode; unsigned long reg_e, reg_d; for (i = 0; mr && enum_id && i < desc->hw.nr_ack_regs; i++) { mr = desc->hw.ack_regs + i; for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) { if (mr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; mode = MODE_ENABLE_REG; reg_e = mr->set_reg; reg_d = mr->set_reg; fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - j); } } return 0; } static void intc_enable_disable(struct intc_desc_int *d, unsigned long handle, int do_enable) { unsigned long addr; unsigned int cpu; unsigned long (*fn)(unsigned long, unsigned long, unsigned long (*)(unsigned long, unsigned long, unsigned long), unsigned int); if (do_enable) { for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_E(handle)); cpu++) { addr = INTC_REG(d, _INTC_ADDR_E(handle), cpu); fn = intc_enable_noprio_fns[_INTC_MODE(handle)]; fn(addr, handle, intc_reg_fns[_INTC_FN(handle)], 0); } } else { for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_D(handle)); cpu++) { addr = INTC_REG(d, _INTC_ADDR_D(handle), cpu); fn = intc_disable_fns[_INTC_MODE(handle)]; fn(addr, handle, intc_reg_fns[_INTC_FN(handle)], 0); } } } void __init intc_enable_disable_enum(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int enable) { unsigned int i, j, data; /* go through and enable/disable all mask bits */ i = j = 0; do { data = _intc_mask_data(desc, d, enum_id, &i, &j); if (data) intc_enable_disable(d, data, enable); j++; } while (data); /* go through and enable/disable all priority fields */ i = j = 0; do { data = _intc_prio_data(desc, d, enum_id, &i, &j); if (data) intc_enable_disable(d, data, enable); j++; } while (data); } unsigned int __init intc_get_sense_handle(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_sense_reg *sr = desc->hw.sense_regs; unsigned int i, j, fn, bit; for (i = 0; sr && enum_id && i < desc->hw.nr_sense_regs; i++) { sr = desc->hw.sense_regs + i; for (j = 0; j < ARRAY_SIZE(sr->enum_ids); j++) { if (sr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; fn += (sr->reg_width >> 3) - 1; BUG_ON((j + 1) * sr->field_width > sr->reg_width); bit = sr->reg_width - ((j + 1) * sr->field_width); return _INTC_MK(fn, 0, intc_get_reg(d, sr->reg), 0, sr->field_width, bit); } } return 0; } void intc_set_ack_handle(unsigned int irq, struct intc_desc *desc, struct intc_desc_int *d, intc_enum id) { unsigned long flags; /* * Nothing to do for this IRQ. */ if (!desc->hw.ack_regs) return; raw_spin_lock_irqsave(&intc_big_lock, flags); ack_handle[irq] = intc_ack_data(desc, d, id); raw_spin_unlock_irqrestore(&intc_big_lock, flags); } unsigned long intc_get_ack_handle(unsigned int irq) { return ack_handle[irq]; }
linux-master
drivers/sh/intc/handle.c
/* * Common INTC2 register accessors * * Copyright (C) 2007, 2008 Magnus Damm * Copyright (C) 2009, 2010 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/io.h> #include "internals.h" unsigned long intc_phys_to_virt(struct intc_desc_int *d, unsigned long address) { struct intc_window *window; int k; /* scan through physical windows and convert address */ for (k = 0; k < d->nr_windows; k++) { window = d->window + k; if (address < window->phys) continue; if (address >= (window->phys + window->size)) continue; address -= window->phys; address += (unsigned long)window->virt; return address; } /* no windows defined, register must be 1:1 mapped virt:phys */ return address; } unsigned int intc_get_reg(struct intc_desc_int *d, unsigned long address) { unsigned int k; address = intc_phys_to_virt(d, address); for (k = 0; k < d->nr_reg; k++) { if (d->reg[k] == address) return k; } BUG(); return 0; } unsigned int intc_set_field_from_handle(unsigned int value, unsigned int field_value, unsigned int handle) { unsigned int width = _INTC_WIDTH(handle); unsigned int shift = _INTC_SHIFT(handle); value &= ~(((1 << width) - 1) << shift); value |= field_value << shift; return value; } unsigned long intc_get_field_from_handle(unsigned int value, unsigned int handle) { unsigned int width = _INTC_WIDTH(handle); unsigned int shift = _INTC_SHIFT(handle); unsigned int mask = ((1 << width) - 1) << shift; return (value & mask) >> shift; } static unsigned long test_8(unsigned long addr, unsigned long h, unsigned long ignore) { void __iomem *ptr = (void __iomem *)addr; return intc_get_field_from_handle(__raw_readb(ptr), h); } static unsigned long test_16(unsigned long addr, unsigned long h, unsigned long ignore) { void __iomem *ptr = (void __iomem *)addr; return intc_get_field_from_handle(__raw_readw(ptr), h); } static unsigned long test_32(unsigned long addr, unsigned long h, unsigned long ignore) { void __iomem *ptr = (void __iomem *)addr; return intc_get_field_from_handle(__raw_readl(ptr), h); } static unsigned long write_8(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; __raw_writeb(intc_set_field_from_handle(0, data, h), ptr); (void)__raw_readb(ptr); /* Defeat write posting */ return 0; } static unsigned long write_16(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; __raw_writew(intc_set_field_from_handle(0, data, h), ptr); (void)__raw_readw(ptr); /* Defeat write posting */ return 0; } static unsigned long write_32(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; __raw_writel(intc_set_field_from_handle(0, data, h), ptr); (void)__raw_readl(ptr); /* Defeat write posting */ return 0; } static unsigned long modify_8(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; unsigned long flags; unsigned int value; local_irq_save(flags); value = intc_set_field_from_handle(__raw_readb(ptr), data, h); __raw_writeb(value, ptr); (void)__raw_readb(ptr); /* Defeat write posting */ local_irq_restore(flags); return 0; } static unsigned long modify_16(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; unsigned long flags; unsigned int value; local_irq_save(flags); value = intc_set_field_from_handle(__raw_readw(ptr), data, h); __raw_writew(value, ptr); (void)__raw_readw(ptr); /* Defeat write posting */ local_irq_restore(flags); return 0; } static unsigned long modify_32(unsigned long addr, unsigned long h, unsigned long data) { void __iomem *ptr = (void __iomem *)addr; unsigned long flags; unsigned int value; local_irq_save(flags); value = intc_set_field_from_handle(__raw_readl(ptr), data, h); __raw_writel(value, ptr); (void)__raw_readl(ptr); /* Defeat write posting */ local_irq_restore(flags); return 0; } static unsigned long intc_mode_field(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { return fn(addr, handle, ((1 << _INTC_WIDTH(handle)) - 1)); } static unsigned long intc_mode_zero(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { return fn(addr, handle, 0); } static unsigned long intc_mode_prio(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { return fn(addr, handle, intc_get_prio_level(irq)); } unsigned long (*intc_reg_fns[])(unsigned long addr, unsigned long h, unsigned long data) = { [REG_FN_TEST_BASE + 0] = test_8, [REG_FN_TEST_BASE + 1] = test_16, [REG_FN_TEST_BASE + 3] = test_32, [REG_FN_WRITE_BASE + 0] = write_8, [REG_FN_WRITE_BASE + 1] = write_16, [REG_FN_WRITE_BASE + 3] = write_32, [REG_FN_MODIFY_BASE + 0] = modify_8, [REG_FN_MODIFY_BASE + 1] = modify_16, [REG_FN_MODIFY_BASE + 3] = modify_32, }; unsigned long (*intc_enable_fns[])(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_field, [MODE_MASK_REG] = intc_mode_zero, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_prio, [MODE_PCLR_REG] = intc_mode_prio, }; unsigned long (*intc_disable_fns[])(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_zero, [MODE_MASK_REG] = intc_mode_field, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_zero, [MODE_PCLR_REG] = intc_mode_field, }; unsigned long (*intc_enable_noprio_fns[])(unsigned long addr, unsigned long handle, unsigned long (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_field, [MODE_MASK_REG] = intc_mode_zero, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_field, [MODE_PCLR_REG] = intc_mode_field, };
linux-master
drivers/sh/intc/access.c
/* * Support for virtual IRQ subgroups debugfs mapping. * * Copyright (C) 2010 Paul Mundt * * Modelled after arch/powerpc/kernel/irq.c. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/seq_file.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/debugfs.h> #include "internals.h" static int intc_irq_xlate_show(struct seq_file *m, void *priv) { int i; seq_printf(m, "%-5s %-7s %-15s\n", "irq", "enum", "chip name"); for (i = 1; i < nr_irqs; i++) { struct intc_map_entry *entry = intc_irq_xlate_get(i); struct intc_desc_int *desc = entry->desc; if (!desc) continue; seq_printf(m, "%5d ", i); seq_printf(m, "0x%05x ", entry->enum_id); seq_printf(m, "%-15s\n", desc->chip.name); } return 0; } DEFINE_SHOW_ATTRIBUTE(intc_irq_xlate); static int __init intc_irq_xlate_init(void) { /* * XXX.. use arch_debugfs_dir here when all of the intc users are * converted. */ if (debugfs_create_file("intc_irq_xlate", S_IRUGO, NULL, NULL, &intc_irq_xlate_fops) == NULL) return -ENOMEM; return 0; } fs_initcall(intc_irq_xlate_init);
linux-master
drivers/sh/intc/virq-debugfs.c
/* * Support for hardware-managed IRQ auto-distribution. * * Copyright (C) 2010 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include "internals.h" static unsigned long dist_handle[INTC_NR_IRQS]; void intc_balancing_enable(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = dist_handle[irq]; unsigned long addr; if (irq_balancing_disabled(irq) || !handle) return; addr = INTC_REG(d, _INTC_ADDR_D(handle), 0); intc_reg_fns[_INTC_FN(handle)](addr, handle, 1); } void intc_balancing_disable(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = dist_handle[irq]; unsigned long addr; if (irq_balancing_disabled(irq) || !handle) return; addr = INTC_REG(d, _INTC_ADDR_D(handle), 0); intc_reg_fns[_INTC_FN(handle)](addr, handle, 0); } static unsigned int intc_dist_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_mask_reg *mr = desc->hw.mask_regs; unsigned int i, j, fn, mode; unsigned long reg_e, reg_d; for (i = 0; mr && enum_id && i < desc->hw.nr_mask_regs; i++) { mr = desc->hw.mask_regs + i; /* * Skip this entry if there's no auto-distribution * register associated with it. */ if (!mr->dist_reg) continue; for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) { if (mr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; mode = MODE_ENABLE_REG; reg_e = mr->dist_reg; reg_d = mr->dist_reg; fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - j); } } /* * It's possible we've gotten here with no distribution options * available for the IRQ in question, so we just skip over those. */ return 0; } void intc_set_dist_handle(unsigned int irq, struct intc_desc *desc, struct intc_desc_int *d, intc_enum id) { unsigned long flags; /* * Nothing to do for this IRQ. */ if (!desc->hw.mask_regs) return; raw_spin_lock_irqsave(&intc_big_lock, flags); dist_handle[irq] = intc_dist_data(desc, d, id); raw_spin_unlock_irqrestore(&intc_big_lock, flags); }
linux-master
drivers/sh/intc/balancing.c
/* * Shared interrupt handling code for IPR and INTC2 types of IRQs. * * Copyright (C) 2007, 2008 Magnus Damm * Copyright (C) 2009 - 2012 Paul Mundt * * Based on intc2.c and ipr.c * * Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi * Copyright (C) 2000 Kazumoto Kojima * Copyright (C) 2001 David J. Mckay ([email protected]) * Copyright (C) 2003 Takashi Kusuda <[email protected]> * Copyright (C) 2005, 2006 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #define pr_fmt(fmt) "intc: " fmt #include <linux/init.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/stat.h> #include <linux/interrupt.h> #include <linux/sh_intc.h> #include <linux/irqdomain.h> #include <linux/device.h> #include <linux/syscore_ops.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/radix-tree.h> #include <linux/export.h> #include <linux/sort.h> #include "internals.h" LIST_HEAD(intc_list); DEFINE_RAW_SPINLOCK(intc_big_lock); static unsigned int nr_intc_controllers; /* * Default priority level * - this needs to be at least 2 for 5-bit priorities on 7780 */ static unsigned int default_prio_level = 2; /* 2 - 16 */ static unsigned int intc_prio_level[INTC_NR_IRQS]; /* for now */ unsigned int intc_get_dfl_prio_level(void) { return default_prio_level; } unsigned int intc_get_prio_level(unsigned int irq) { return intc_prio_level[irq]; } void intc_set_prio_level(unsigned int irq, unsigned int level) { unsigned long flags; raw_spin_lock_irqsave(&intc_big_lock, flags); intc_prio_level[irq] = level; raw_spin_unlock_irqrestore(&intc_big_lock, flags); } static void intc_redirect_irq(struct irq_desc *desc) { generic_handle_irq((unsigned int)irq_desc_get_handler_data(desc)); } static void __init intc_register_irq(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int irq) { struct intc_handle_int *hp; struct irq_data *irq_data; unsigned int data[2], primary; unsigned long flags; raw_spin_lock_irqsave(&intc_big_lock, flags); radix_tree_insert(&d->tree, enum_id, intc_irq_xlate_get(irq)); raw_spin_unlock_irqrestore(&intc_big_lock, flags); /* * Prefer single interrupt source bitmap over other combinations: * * 1. bitmap, single interrupt source * 2. priority, single interrupt source * 3. bitmap, multiple interrupt sources (groups) * 4. priority, multiple interrupt sources (groups) */ data[0] = intc_get_mask_handle(desc, d, enum_id, 0); data[1] = intc_get_prio_handle(desc, d, enum_id, 0); primary = 0; if (!data[0] && data[1]) primary = 1; if (!data[0] && !data[1]) pr_warn("missing unique irq mask for irq %d (vect 0x%04x)\n", irq, irq2evt(irq)); data[0] = data[0] ? data[0] : intc_get_mask_handle(desc, d, enum_id, 1); data[1] = data[1] ? data[1] : intc_get_prio_handle(desc, d, enum_id, 1); if (!data[primary]) primary ^= 1; BUG_ON(!data[primary]); /* must have primary masking method */ irq_data = irq_get_irq_data(irq); disable_irq_nosync(irq); irq_set_chip_and_handler_name(irq, &d->chip, handle_level_irq, "level"); irq_set_chip_data(irq, (void *)data[primary]); /* * set priority level */ intc_set_prio_level(irq, intc_get_dfl_prio_level()); /* enable secondary masking method if present */ if (data[!primary]) _intc_enable(irq_data, data[!primary]); /* add irq to d->prio list if priority is available */ if (data[1]) { hp = d->prio + d->nr_prio; hp->irq = irq; hp->handle = data[1]; if (primary) { /* * only secondary priority should access registers, so * set _INTC_FN(h) = REG_FN_ERR for intc_set_priority() */ hp->handle &= ~_INTC_MK(0x0f, 0, 0, 0, 0, 0); hp->handle |= _INTC_MK(REG_FN_ERR, 0, 0, 0, 0, 0); } d->nr_prio++; } /* add irq to d->sense list if sense is available */ data[0] = intc_get_sense_handle(desc, d, enum_id); if (data[0]) { (d->sense + d->nr_sense)->irq = irq; (d->sense + d->nr_sense)->handle = data[0]; d->nr_sense++; } /* irq should be disabled by default */ d->chip.irq_mask(irq_data); intc_set_ack_handle(irq, desc, d, enum_id); intc_set_dist_handle(irq, desc, d, enum_id); activate_irq(irq); } static unsigned int __init save_reg(struct intc_desc_int *d, unsigned int cnt, unsigned long value, unsigned int smp) { if (value) { value = intc_phys_to_virt(d, value); d->reg[cnt] = value; #ifdef CONFIG_SMP d->smp[cnt] = smp; #endif return 1; } return 0; } static bool __init intc_map(struct irq_domain *domain, int irq) { if (!irq_to_desc(irq) && irq_alloc_desc_at(irq, NUMA_NO_NODE) != irq) { pr_err("uname to allocate IRQ %d\n", irq); return false; } if (irq_domain_associate(domain, irq, irq)) { pr_err("domain association failure\n"); return false; } return true; } int __init register_intc_controller(struct intc_desc *desc) { unsigned int i, k, smp; struct intc_hw_desc *hw = &desc->hw; struct intc_desc_int *d; struct resource *res; pr_info("Registered controller '%s' with %u IRQs\n", desc->name, hw->nr_vectors); d = kzalloc(sizeof(*d), GFP_NOWAIT); if (!d) goto err0; INIT_LIST_HEAD(&d->list); list_add_tail(&d->list, &intc_list); raw_spin_lock_init(&d->lock); INIT_RADIX_TREE(&d->tree, GFP_ATOMIC); d->index = nr_intc_controllers; if (desc->num_resources) { d->nr_windows = desc->num_resources; d->window = kcalloc(d->nr_windows, sizeof(*d->window), GFP_NOWAIT); if (!d->window) goto err1; for (k = 0; k < d->nr_windows; k++) { res = desc->resource + k; WARN_ON(resource_type(res) != IORESOURCE_MEM); d->window[k].phys = res->start; d->window[k].size = resource_size(res); d->window[k].virt = ioremap(res->start, resource_size(res)); if (!d->window[k].virt) goto err2; } } d->nr_reg = hw->mask_regs ? hw->nr_mask_regs * 2 : 0; #ifdef CONFIG_INTC_BALANCING if (d->nr_reg) d->nr_reg += hw->nr_mask_regs; #endif d->nr_reg += hw->prio_regs ? hw->nr_prio_regs * 2 : 0; d->nr_reg += hw->sense_regs ? hw->nr_sense_regs : 0; d->nr_reg += hw->ack_regs ? hw->nr_ack_regs : 0; d->nr_reg += hw->subgroups ? hw->nr_subgroups : 0; d->reg = kcalloc(d->nr_reg, sizeof(*d->reg), GFP_NOWAIT); if (!d->reg) goto err2; #ifdef CONFIG_SMP d->smp = kcalloc(d->nr_reg, sizeof(*d->smp), GFP_NOWAIT); if (!d->smp) goto err3; #endif k = 0; if (hw->mask_regs) { for (i = 0; i < hw->nr_mask_regs; i++) { smp = IS_SMP(hw->mask_regs[i]); k += save_reg(d, k, hw->mask_regs[i].set_reg, smp); k += save_reg(d, k, hw->mask_regs[i].clr_reg, smp); #ifdef CONFIG_INTC_BALANCING k += save_reg(d, k, hw->mask_regs[i].dist_reg, 0); #endif } } if (hw->prio_regs) { d->prio = kcalloc(hw->nr_vectors, sizeof(*d->prio), GFP_NOWAIT); if (!d->prio) goto err4; for (i = 0; i < hw->nr_prio_regs; i++) { smp = IS_SMP(hw->prio_regs[i]); k += save_reg(d, k, hw->prio_regs[i].set_reg, smp); k += save_reg(d, k, hw->prio_regs[i].clr_reg, smp); } sort(d->prio, hw->nr_prio_regs, sizeof(*d->prio), intc_handle_int_cmp, NULL); } if (hw->sense_regs) { d->sense = kcalloc(hw->nr_vectors, sizeof(*d->sense), GFP_NOWAIT); if (!d->sense) goto err5; for (i = 0; i < hw->nr_sense_regs; i++) k += save_reg(d, k, hw->sense_regs[i].reg, 0); sort(d->sense, hw->nr_sense_regs, sizeof(*d->sense), intc_handle_int_cmp, NULL); } if (hw->subgroups) for (i = 0; i < hw->nr_subgroups; i++) if (hw->subgroups[i].reg) k+= save_reg(d, k, hw->subgroups[i].reg, 0); memcpy(&d->chip, &intc_irq_chip, sizeof(struct irq_chip)); d->chip.name = desc->name; if (hw->ack_regs) for (i = 0; i < hw->nr_ack_regs; i++) k += save_reg(d, k, hw->ack_regs[i].set_reg, 0); else d->chip.irq_mask_ack = d->chip.irq_disable; /* disable bits matching force_disable before registering irqs */ if (desc->force_disable) intc_enable_disable_enum(desc, d, desc->force_disable, 0); /* disable bits matching force_enable before registering irqs */ if (desc->force_enable) intc_enable_disable_enum(desc, d, desc->force_enable, 0); BUG_ON(k > 256); /* _INTC_ADDR_E() and _INTC_ADDR_D() are 8 bits */ intc_irq_domain_init(d, hw); /* register the vectors one by one */ for (i = 0; i < hw->nr_vectors; i++) { struct intc_vect *vect = hw->vectors + i; unsigned int irq = evt2irq(vect->vect); if (!vect->enum_id) continue; if (!intc_map(d->domain, irq)) continue; intc_irq_xlate_set(irq, vect->enum_id, d); intc_register_irq(desc, d, vect->enum_id, irq); for (k = i + 1; k < hw->nr_vectors; k++) { struct intc_vect *vect2 = hw->vectors + k; unsigned int irq2 = evt2irq(vect2->vect); if (vect->enum_id != vect2->enum_id) continue; /* * In the case of multi-evt handling and sparse * IRQ support, each vector still needs to have * its own backing irq_desc. */ if (!intc_map(d->domain, irq2)) continue; vect2->enum_id = 0; /* redirect this interrupts to the first one */ irq_set_chip(irq2, &dummy_irq_chip); irq_set_chained_handler_and_data(irq2, intc_redirect_irq, (void *)irq); } } intc_subgroup_init(desc, d); /* enable bits matching force_enable after registering irqs */ if (desc->force_enable) intc_enable_disable_enum(desc, d, desc->force_enable, 1); d->skip_suspend = desc->skip_syscore_suspend; nr_intc_controllers++; return 0; err5: kfree(d->prio); err4: #ifdef CONFIG_SMP kfree(d->smp); err3: #endif kfree(d->reg); err2: for (k = 0; k < d->nr_windows; k++) if (d->window[k].virt) iounmap(d->window[k].virt); kfree(d->window); err1: kfree(d); err0: pr_err("unable to allocate INTC memory\n"); return -ENOMEM; } static int intc_suspend(void) { struct intc_desc_int *d; list_for_each_entry(d, &intc_list, list) { int irq; if (d->skip_suspend) continue; /* enable wakeup irqs belonging to this intc controller */ for_each_active_irq(irq) { struct irq_data *data; struct irq_chip *chip; data = irq_get_irq_data(irq); chip = irq_data_get_irq_chip(data); if (chip != &d->chip) continue; if (irqd_is_wakeup_set(data)) chip->irq_enable(data); } } return 0; } static void intc_resume(void) { struct intc_desc_int *d; list_for_each_entry(d, &intc_list, list) { int irq; if (d->skip_suspend) continue; for_each_active_irq(irq) { struct irq_data *data; struct irq_chip *chip; data = irq_get_irq_data(irq); chip = irq_data_get_irq_chip(data); /* * This will catch the redirect and VIRQ cases * due to the dummy_irq_chip being inserted. */ if (chip != &d->chip) continue; if (irqd_irq_disabled(data)) chip->irq_disable(data); else chip->irq_enable(data); } } } struct syscore_ops intc_syscore_ops = { .suspend = intc_suspend, .resume = intc_resume, }; struct bus_type intc_subsys = { .name = "intc", .dev_name = "intc", }; static ssize_t show_intc_name(struct device *dev, struct device_attribute *attr, char *buf) { struct intc_desc_int *d; d = container_of(dev, struct intc_desc_int, dev); return sprintf(buf, "%s\n", d->chip.name); } static DEVICE_ATTR(name, S_IRUGO, show_intc_name, NULL); static int __init register_intc_devs(void) { struct intc_desc_int *d; int error; register_syscore_ops(&intc_syscore_ops); error = subsys_system_register(&intc_subsys, NULL); if (!error) { list_for_each_entry(d, &intc_list, list) { d->dev.id = d->index; d->dev.bus = &intc_subsys; error = device_register(&d->dev); if (error == 0) error = device_create_file(&d->dev, &dev_attr_name); if (error) break; } } if (error) pr_err("device registration error\n"); return error; } device_initcall(register_intc_devs);
linux-master
drivers/sh/intc/core.c
/* * Support for hardware-assisted userspace interrupt masking. * * Copyright (C) 2010 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #define pr_fmt(fmt) "intc: " fmt #include <linux/errno.h> #include <linux/device.h> #include <linux/init.h> #include <linux/io.h> #include <linux/stat.h> #include <linux/sizes.h> #include "internals.h" static void __iomem *uimask; static ssize_t show_intc_userimask(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", (__raw_readl(uimask) >> 4) & 0xf); } static ssize_t store_intc_userimask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long level; level = simple_strtoul(buf, NULL, 10); /* * Minimal acceptable IRQ levels are in the 2 - 16 range, but * these are chomped so as to not interfere with normal IRQs. * * Level 1 is a special case on some CPUs in that it's not * directly settable, but given that USERIMASK cuts off below a * certain level, we don't care about this limitation here. * Level 0 on the other hand equates to user masking disabled. * * We use the default priority level as a cut off so that only * special case opt-in IRQs can be mangled. */ if (level >= intc_get_dfl_prio_level()) return -EINVAL; __raw_writel(0xa5 << 24 | level << 4, uimask); return count; } static DEVICE_ATTR(userimask, S_IRUSR | S_IWUSR, show_intc_userimask, store_intc_userimask); static int __init userimask_sysdev_init(void) { struct device *dev_root; int ret = 0; if (unlikely(!uimask)) return -ENXIO; dev_root = bus_get_dev_root(&intc_subsys); if (dev_root) { ret = device_create_file(dev_root, &dev_attr_userimask); put_device(dev_root); } return ret; } late_initcall(userimask_sysdev_init); int register_intc_userimask(unsigned long addr) { if (unlikely(uimask)) return -EBUSY; uimask = ioremap(addr, SZ_4K); if (unlikely(!uimask)) return -ENOMEM; pr_info("userimask support registered for levels 0 -> %d\n", intc_get_dfl_prio_level() - 1); return 0; }
linux-master
drivers/sh/intc/userimask.c
/* * drivers/sh/superhyway/superhyway-sysfs.c * * SuperHyway Bus sysfs interface * * Copyright (C) 2004, 2005 Paul Mundt <[email protected]> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/types.h> #include <linux/superhyway.h> #define superhyway_ro_attr(name, fmt, field) \ static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct superhyway_device *s = to_superhyway_device(dev); \ return sprintf(buf, fmt, s->field); \ } \ static DEVICE_ATTR_RO(name); /* VCR flags */ superhyway_ro_attr(perr_flags, "0x%02x\n", vcr.perr_flags); superhyway_ro_attr(merr_flags, "0x%02x\n", vcr.merr_flags); superhyway_ro_attr(mod_vers, "0x%04x\n", vcr.mod_vers); superhyway_ro_attr(mod_id, "0x%04x\n", vcr.mod_id); superhyway_ro_attr(bot_mb, "0x%02x\n", vcr.bot_mb); superhyway_ro_attr(top_mb, "0x%02x\n", vcr.top_mb); /* Misc */ superhyway_ro_attr(resource, "0x%08lx\n", resource[0].start); static struct attribute *superhyway_dev_attrs[] = { &dev_attr_perr_flags.attr, &dev_attr_merr_flags.attr, &dev_attr_mod_vers.attr, &dev_attr_mod_id.attr, &dev_attr_bot_mb.attr, &dev_attr_top_mb.attr, &dev_attr_resource.attr, NULL, }; static const struct attribute_group superhyway_dev_group = { .attrs = superhyway_dev_attrs, }; const struct attribute_group *superhyway_dev_groups[] = { &superhyway_dev_group, NULL, };
linux-master
drivers/sh/superhyway/superhyway-sysfs.c
/* * drivers/sh/superhyway/superhyway.c * * SuperHyway Bus Driver * * Copyright (C) 2004, 2005 Paul Mundt <[email protected]> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/init.h> #include <linux/module.h> #include <linux/types.h> #include <linux/list.h> #include <linux/superhyway.h> #include <linux/string.h> #include <linux/slab.h> static int superhyway_devices; static struct device superhyway_bus_device = { .init_name = "superhyway", }; static void superhyway_device_release(struct device *dev) { struct superhyway_device *sdev = to_superhyway_device(dev); kfree(sdev->resource); kfree(sdev); } /** * superhyway_add_device - Add a SuperHyway module * @base: Physical address where module is mapped. * @sdev: SuperHyway device to add, or NULL to allocate a new one. * @bus: Bus where SuperHyway module resides. * * This is responsible for adding a new SuperHyway module. This sets up a new * struct superhyway_device for the module being added if @sdev == NULL. * * Devices are initially added in the order that they are scanned (from the * top-down of the memory map), and are assigned an ID based on the order that * they are added. Any manual addition of a module will thus get the ID after * the devices already discovered regardless of where it resides in memory. * * Further work can and should be done in superhyway_scan_bus(), to be sure * that any new modules are properly discovered and subsequently registered. */ int superhyway_add_device(unsigned long base, struct superhyway_device *sdev, struct superhyway_bus *bus) { struct superhyway_device *dev = sdev; if (!dev) { dev = kzalloc(sizeof(struct superhyway_device), GFP_KERNEL); if (!dev) return -ENOMEM; } dev->bus = bus; superhyway_read_vcr(dev, base, &dev->vcr); if (!dev->resource) { dev->resource = kzalloc(sizeof(struct resource), GFP_KERNEL); if (!dev->resource) { kfree(dev); return -ENOMEM; } dev->resource->name = dev->name; dev->resource->start = base; dev->resource->end = dev->resource->start + 0x01000000; } dev->dev.parent = &superhyway_bus_device; dev->dev.bus = &superhyway_bus_type; dev->dev.release = superhyway_device_release; dev->id.id = dev->vcr.mod_id; sprintf(dev->name, "SuperHyway device %04x", dev->id.id); dev_set_name(&dev->dev, "%02x", superhyway_devices); superhyway_devices++; return device_register(&dev->dev); } int superhyway_add_devices(struct superhyway_bus *bus, struct superhyway_device **devices, int nr_devices) { int i, ret = 0; for (i = 0; i < nr_devices; i++) { struct superhyway_device *dev = devices[i]; ret |= superhyway_add_device(dev->resource[0].start, dev, bus); } return ret; } static int __init superhyway_init(void) { struct superhyway_bus *bus; int ret; ret = device_register(&superhyway_bus_device); if (unlikely(ret)) return ret; for (bus = superhyway_channels; bus->ops; bus++) ret |= superhyway_scan_bus(bus); return ret; } postcore_initcall(superhyway_init); static const struct superhyway_device_id * superhyway_match_id(const struct superhyway_device_id *ids, struct superhyway_device *dev) { while (ids->id) { if (ids->id == dev->id.id) return ids; ids++; } return NULL; } static int superhyway_device_probe(struct device *dev) { struct superhyway_device *shyway_dev = to_superhyway_device(dev); struct superhyway_driver *shyway_drv = to_superhyway_driver(dev->driver); if (shyway_drv && shyway_drv->probe) { const struct superhyway_device_id *id; id = superhyway_match_id(shyway_drv->id_table, shyway_dev); if (id) return shyway_drv->probe(shyway_dev, id); } return -ENODEV; } static void superhyway_device_remove(struct device *dev) { struct superhyway_device *shyway_dev = to_superhyway_device(dev); struct superhyway_driver *shyway_drv = to_superhyway_driver(dev->driver); if (shyway_drv->remove) shyway_drv->remove(shyway_dev); } /** * superhyway_register_driver - Register a new SuperHyway driver * @drv: SuperHyway driver to register. * * This registers the passed in @drv. Any devices matching the id table will * automatically be populated and handed off to the driver's specified probe * routine. */ int superhyway_register_driver(struct superhyway_driver *drv) { drv->drv.name = drv->name; drv->drv.bus = &superhyway_bus_type; return driver_register(&drv->drv); } /** * superhyway_unregister_driver - Unregister a SuperHyway driver * @drv: SuperHyway driver to unregister. * * This cleans up after superhyway_register_driver(), and should be invoked in * the exit path of any module drivers. */ void superhyway_unregister_driver(struct superhyway_driver *drv) { driver_unregister(&drv->drv); } static int superhyway_bus_match(struct device *dev, struct device_driver *drv) { struct superhyway_device *shyway_dev = to_superhyway_device(dev); struct superhyway_driver *shyway_drv = to_superhyway_driver(drv); const struct superhyway_device_id *ids = shyway_drv->id_table; if (!ids) return -EINVAL; if (superhyway_match_id(ids, shyway_dev)) return 1; return -ENODEV; } struct bus_type superhyway_bus_type = { .name = "superhyway", .match = superhyway_bus_match, #ifdef CONFIG_SYSFS .dev_groups = superhyway_dev_groups, #endif .probe = superhyway_device_probe, .remove = superhyway_device_remove, }; static int __init superhyway_bus_init(void) { return bus_register(&superhyway_bus_type); } static void __exit superhyway_bus_exit(void) { device_unregister(&superhyway_bus_device); bus_unregister(&superhyway_bus_type); } core_initcall(superhyway_bus_init); module_exit(superhyway_bus_exit); EXPORT_SYMBOL(superhyway_bus_type); EXPORT_SYMBOL(superhyway_add_device); EXPORT_SYMBOL(superhyway_add_devices); EXPORT_SYMBOL(superhyway_register_driver); EXPORT_SYMBOL(superhyway_unregister_driver); MODULE_LICENSE("GPL");
linux-master
drivers/sh/superhyway/superhyway.c
/* * Core maple bus functionality * * Copyright (C) 2007 - 2009 Adrian McMenamin * Copyright (C) 2001 - 2008 Paul Mundt * Copyright (C) 2000 - 2001 YAEGASHI Takeshi * Copyright (C) 2001 M. R. Brown * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/maple.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/module.h> #include <asm/cacheflush.h> #include <asm/dma.h> #include <asm/io.h> #include <mach/dma.h> #include <mach/sysasic.h> MODULE_AUTHOR("Adrian McMenamin <[email protected]>"); MODULE_DESCRIPTION("Maple bus driver for Dreamcast"); MODULE_LICENSE("GPL v2"); static void maple_dma_handler(struct work_struct *work); static void maple_vblank_handler(struct work_struct *work); static DECLARE_WORK(maple_dma_process, maple_dma_handler); static DECLARE_WORK(maple_vblank_process, maple_vblank_handler); static LIST_HEAD(maple_waitq); static LIST_HEAD(maple_sentq); /* mutex to protect queue of waiting packets */ static DEFINE_MUTEX(maple_wlist_lock); static struct maple_driver maple_unsupported_device; static struct device maple_bus; static int subdevice_map[MAPLE_PORTS]; static unsigned long *maple_sendbuf, *maple_sendptr, *maple_lastptr; static unsigned long maple_pnp_time; static int started, scanning, fullscan; static struct kmem_cache *maple_queue_cache; struct maple_device_specify { int port; int unit; }; static bool checked[MAPLE_PORTS]; static bool empty[MAPLE_PORTS]; static struct maple_device *baseunits[MAPLE_PORTS]; /** * maple_driver_register - register a maple driver * @drv: maple driver to be registered. * * Registers the passed in @drv, while updating the bus type. * Devices with matching function IDs will be automatically probed. */ int maple_driver_register(struct maple_driver *drv) { if (!drv) return -EINVAL; drv->drv.bus = &maple_bus_type; return driver_register(&drv->drv); } EXPORT_SYMBOL_GPL(maple_driver_register); /** * maple_driver_unregister - unregister a maple driver. * @drv: maple driver to unregister. * * Cleans up after maple_driver_register(). To be invoked in the exit * path of any module drivers. */ void maple_driver_unregister(struct maple_driver *drv) { driver_unregister(&drv->drv); } EXPORT_SYMBOL_GPL(maple_driver_unregister); /* set hardware registers to enable next round of dma */ static void maple_dma_reset(void) { __raw_writel(MAPLE_MAGIC, MAPLE_RESET); /* set trig type to 0 for software trigger, 1 for hardware (VBLANK) */ __raw_writel(1, MAPLE_TRIGTYPE); /* * Maple system register * bits 31 - 16 timeout in units of 20nsec * bit 12 hard trigger - set 0 to keep responding to VBLANK * bits 9 - 8 set 00 for 2 Mbps, 01 for 1 Mbps * bits 3 - 0 delay (in 1.3ms) between VBLANK and start of DMA * max delay is 11 */ __raw_writel(MAPLE_2MBPS | MAPLE_TIMEOUT(0xFFFF), MAPLE_SPEED); __raw_writel(virt_to_phys(maple_sendbuf), MAPLE_DMAADDR); __raw_writel(1, MAPLE_ENABLE); } /** * maple_getcond_callback - setup handling MAPLE_COMMAND_GETCOND * @dev: device responding * @callback: handler callback * @interval: interval in jiffies between callbacks * @function: the function code for the device */ void maple_getcond_callback(struct maple_device *dev, void (*callback) (struct mapleq *mq), unsigned long interval, unsigned long function) { dev->callback = callback; dev->interval = interval; dev->function = cpu_to_be32(function); dev->when = jiffies; } EXPORT_SYMBOL_GPL(maple_getcond_callback); static int maple_dma_done(void) { return (__raw_readl(MAPLE_STATE) & 1) == 0; } static void maple_release_device(struct device *dev) { struct maple_device *mdev; struct mapleq *mq; mdev = to_maple_dev(dev); mq = mdev->mq; kmem_cache_free(maple_queue_cache, mq->recvbuf); kfree(mq); kfree(mdev); } /** * maple_add_packet - add a single instruction to the maple bus queue * @mdev: maple device * @function: function on device being queried * @command: maple command to add * @length: length of command string (in 32 bit words) * @data: remainder of command string */ int maple_add_packet(struct maple_device *mdev, u32 function, u32 command, size_t length, void *data) { int ret = 0; void *sendbuf = NULL; if (length) { sendbuf = kcalloc(length, 4, GFP_KERNEL); if (!sendbuf) { ret = -ENOMEM; goto out; } ((__be32 *)sendbuf)[0] = cpu_to_be32(function); } mdev->mq->command = command; mdev->mq->length = length; if (length > 1) memcpy(sendbuf + 4, data, (length - 1) * 4); mdev->mq->sendbuf = sendbuf; mutex_lock(&maple_wlist_lock); list_add_tail(&mdev->mq->list, &maple_waitq); mutex_unlock(&maple_wlist_lock); out: return ret; } EXPORT_SYMBOL_GPL(maple_add_packet); static struct mapleq *maple_allocq(struct maple_device *mdev) { struct mapleq *mq; mq = kzalloc(sizeof(*mq), GFP_KERNEL); if (!mq) goto failed_nomem; INIT_LIST_HEAD(&mq->list); mq->dev = mdev; mq->recvbuf = kmem_cache_zalloc(maple_queue_cache, GFP_KERNEL); if (!mq->recvbuf) goto failed_p2; mq->recvbuf->buf = &((mq->recvbuf->bufx)[0]); return mq; failed_p2: kfree(mq); failed_nomem: dev_err(&mdev->dev, "could not allocate memory for device (%d, %d)\n", mdev->port, mdev->unit); return NULL; } static struct maple_device *maple_alloc_dev(int port, int unit) { struct maple_device *mdev; /* zero this out to avoid kobj subsystem * thinking it has already been registered */ mdev = kzalloc(sizeof(*mdev), GFP_KERNEL); if (!mdev) return NULL; mdev->port = port; mdev->unit = unit; mdev->mq = maple_allocq(mdev); if (!mdev->mq) { kfree(mdev); return NULL; } mdev->dev.bus = &maple_bus_type; mdev->dev.parent = &maple_bus; init_waitqueue_head(&mdev->maple_wait); return mdev; } static void maple_free_dev(struct maple_device *mdev) { kmem_cache_free(maple_queue_cache, mdev->mq->recvbuf); kfree(mdev->mq); kfree(mdev); } /* process the command queue into a maple command block * terminating command has bit 32 of first long set to 0 */ static void maple_build_block(struct mapleq *mq) { int port, unit, from, to, len; unsigned long *lsendbuf = mq->sendbuf; port = mq->dev->port & 3; unit = mq->dev->unit; len = mq->length; from = port << 6; to = (port << 6) | (unit > 0 ? (1 << (unit - 1)) & 0x1f : 0x20); *maple_lastptr &= 0x7fffffff; maple_lastptr = maple_sendptr; *maple_sendptr++ = (port << 16) | len | 0x80000000; *maple_sendptr++ = virt_to_phys(mq->recvbuf->buf); *maple_sendptr++ = mq->command | (to << 8) | (from << 16) | (len << 24); while (len-- > 0) *maple_sendptr++ = *lsendbuf++; } /* build up command queue */ static void maple_send(void) { int i, maple_packets = 0; struct mapleq *mq, *nmq; if (!maple_dma_done()) return; /* disable DMA */ __raw_writel(0, MAPLE_ENABLE); if (!list_empty(&maple_sentq)) goto finish; mutex_lock(&maple_wlist_lock); if (list_empty(&maple_waitq)) { mutex_unlock(&maple_wlist_lock); goto finish; } maple_lastptr = maple_sendbuf; maple_sendptr = maple_sendbuf; list_for_each_entry_safe(mq, nmq, &maple_waitq, list) { maple_build_block(mq); list_del_init(&mq->list); list_add_tail(&mq->list, &maple_sentq); if (maple_packets++ > MAPLE_MAXPACKETS) break; } mutex_unlock(&maple_wlist_lock); if (maple_packets > 0) { for (i = 0; i < (1 << MAPLE_DMA_PAGES); i++) __flush_purge_region(maple_sendbuf + i * PAGE_SIZE, PAGE_SIZE); } finish: maple_dma_reset(); } /* check if there is a driver registered likely to match this device */ static int maple_check_matching_driver(struct device_driver *driver, void *devptr) { struct maple_driver *maple_drv; struct maple_device *mdev; mdev = devptr; maple_drv = to_maple_driver(driver); if (mdev->devinfo.function & cpu_to_be32(maple_drv->function)) return 1; return 0; } static void maple_detach_driver(struct maple_device *mdev) { device_unregister(&mdev->dev); } /* process initial MAPLE_COMMAND_DEVINFO for each device or port */ static void maple_attach_driver(struct maple_device *mdev) { char *p, *recvbuf; unsigned long function; int matched, error; recvbuf = mdev->mq->recvbuf->buf; /* copy the data as individual elements in * case of memory optimisation */ memcpy(&mdev->devinfo.function, recvbuf + 4, 4); memcpy(&mdev->devinfo.function_data[0], recvbuf + 8, 12); memcpy(&mdev->devinfo.area_code, recvbuf + 20, 1); memcpy(&mdev->devinfo.connector_direction, recvbuf + 21, 1); memcpy(&mdev->devinfo.product_name[0], recvbuf + 22, 30); memcpy(&mdev->devinfo.standby_power, recvbuf + 112, 2); memcpy(&mdev->devinfo.max_power, recvbuf + 114, 2); memcpy(mdev->product_name, mdev->devinfo.product_name, 30); mdev->product_name[30] = '\0'; memcpy(mdev->product_licence, mdev->devinfo.product_licence, 60); mdev->product_licence[60] = '\0'; for (p = mdev->product_name + 29; mdev->product_name <= p; p--) if (*p == ' ') *p = '\0'; else break; for (p = mdev->product_licence + 59; mdev->product_licence <= p; p--) if (*p == ' ') *p = '\0'; else break; function = be32_to_cpu(mdev->devinfo.function); dev_info(&mdev->dev, "detected %s: function 0x%lX: at (%d, %d)\n", mdev->product_name, function, mdev->port, mdev->unit); if (function > 0x200) { /* Do this silently - as not a real device */ function = 0; mdev->driver = &maple_unsupported_device; dev_set_name(&mdev->dev, "%d:0.port", mdev->port); } else { matched = bus_for_each_drv(&maple_bus_type, NULL, mdev, maple_check_matching_driver); if (matched == 0) { /* Driver does not exist yet */ dev_info(&mdev->dev, "no driver found\n"); mdev->driver = &maple_unsupported_device; } dev_set_name(&mdev->dev, "%d:0%d.%lX", mdev->port, mdev->unit, function); } mdev->function = function; mdev->dev.release = &maple_release_device; atomic_set(&mdev->busy, 0); error = device_register(&mdev->dev); if (error) { dev_warn(&mdev->dev, "could not register device at" " (%d, %d), with error 0x%X\n", mdev->unit, mdev->port, error); maple_free_dev(mdev); mdev = NULL; return; } } /* * if device has been registered for the given * port and unit then return 1 - allows identification * of which devices need to be attached or detached */ static int check_maple_device(struct device *device, void *portptr) { struct maple_device_specify *ds; struct maple_device *mdev; ds = portptr; mdev = to_maple_dev(device); if (mdev->port == ds->port && mdev->unit == ds->unit) return 1; return 0; } static int setup_maple_commands(struct device *device, void *ignored) { int add; struct maple_device *mdev = to_maple_dev(device); if (mdev->interval > 0 && atomic_read(&mdev->busy) == 0 && time_after(jiffies, mdev->when)) { /* bounce if we cannot add */ add = maple_add_packet(mdev, be32_to_cpu(mdev->devinfo.function), MAPLE_COMMAND_GETCOND, 1, NULL); if (!add) mdev->when = jiffies + mdev->interval; } else { if (time_after(jiffies, maple_pnp_time)) /* Ensure we don't have block reads and devinfo * calls interfering with one another - so flag the * device as busy */ if (atomic_read(&mdev->busy) == 0) { atomic_set(&mdev->busy, 1); maple_add_packet(mdev, 0, MAPLE_COMMAND_DEVINFO, 0, NULL); } } return 0; } /* VBLANK bottom half - implemented via workqueue */ static void maple_vblank_handler(struct work_struct *work) { int x, locking; struct maple_device *mdev; if (!maple_dma_done()) return; __raw_writel(0, MAPLE_ENABLE); if (!list_empty(&maple_sentq)) goto finish; /* * Set up essential commands - to fetch data and * check devices are still present */ bus_for_each_dev(&maple_bus_type, NULL, NULL, setup_maple_commands); if (time_after(jiffies, maple_pnp_time)) { /* * Scan the empty ports - bus is flakey and may have * mis-reported emptyness */ for (x = 0; x < MAPLE_PORTS; x++) { if (checked[x] && empty[x]) { mdev = baseunits[x]; if (!mdev) break; atomic_set(&mdev->busy, 1); locking = maple_add_packet(mdev, 0, MAPLE_COMMAND_DEVINFO, 0, NULL); if (!locking) break; } } maple_pnp_time = jiffies + MAPLE_PNP_INTERVAL; } finish: maple_send(); } /* handle devices added via hotplugs - placing them on queue for DEVINFO */ static void maple_map_subunits(struct maple_device *mdev, int submask) { int retval, k, devcheck; struct maple_device *mdev_add; struct maple_device_specify ds; ds.port = mdev->port; for (k = 0; k < 5; k++) { ds.unit = k + 1; retval = bus_for_each_dev(&maple_bus_type, NULL, &ds, check_maple_device); if (retval) { submask = submask >> 1; continue; } devcheck = submask & 0x01; if (devcheck) { mdev_add = maple_alloc_dev(mdev->port, k + 1); if (!mdev_add) return; atomic_set(&mdev_add->busy, 1); maple_add_packet(mdev_add, 0, MAPLE_COMMAND_DEVINFO, 0, NULL); /* mark that we are checking sub devices */ scanning = 1; } submask = submask >> 1; } } /* mark a device as removed */ static void maple_clean_submap(struct maple_device *mdev) { int killbit; killbit = (mdev->unit > 0 ? (1 << (mdev->unit - 1)) & 0x1f : 0x20); killbit = ~killbit; killbit &= 0xFF; subdevice_map[mdev->port] = subdevice_map[mdev->port] & killbit; } /* handle empty port or hotplug removal */ static void maple_response_none(struct maple_device *mdev) { maple_clean_submap(mdev); if (likely(mdev->unit != 0)) { /* * Block devices play up * and give the impression they have * been removed even when still in place or * trip the mtd layer when they have * really gone - this code traps that eventuality * and ensures we aren't overloaded with useless * error messages */ if (mdev->can_unload) { if (!mdev->can_unload(mdev)) { atomic_set(&mdev->busy, 2); wake_up(&mdev->maple_wait); return; } } dev_info(&mdev->dev, "detaching device at (%d, %d)\n", mdev->port, mdev->unit); maple_detach_driver(mdev); return; } else { if (!started || !fullscan) { if (checked[mdev->port] == false) { checked[mdev->port] = true; empty[mdev->port] = true; dev_info(&mdev->dev, "no devices" " to port %d\n", mdev->port); } return; } } /* Some hardware devices generate false detach messages on unit 0 */ atomic_set(&mdev->busy, 0); } /* preprocess hotplugs or scans */ static void maple_response_devinfo(struct maple_device *mdev, char *recvbuf) { char submask; if (!started || (scanning == 2) || !fullscan) { if ((mdev->unit == 0) && (checked[mdev->port] == false)) { checked[mdev->port] = true; maple_attach_driver(mdev); } else { if (mdev->unit != 0) maple_attach_driver(mdev); if (mdev->unit == 0) { empty[mdev->port] = false; maple_attach_driver(mdev); } } } if (mdev->unit == 0) { submask = recvbuf[2] & 0x1F; if (submask ^ subdevice_map[mdev->port]) { maple_map_subunits(mdev, submask); subdevice_map[mdev->port] = submask; } } } static void maple_response_fileerr(struct maple_device *mdev, void *recvbuf) { if (mdev->fileerr_handler) { mdev->fileerr_handler(mdev, recvbuf); return; } else dev_warn(&mdev->dev, "device at (%d, %d) reports" "file error 0x%X\n", mdev->port, mdev->unit, ((int *)recvbuf)[1]); } static void maple_port_rescan(void) { int i; struct maple_device *mdev; fullscan = 1; for (i = 0; i < MAPLE_PORTS; i++) { if (checked[i] == false) { fullscan = 0; mdev = baseunits[i]; maple_add_packet(mdev, 0, MAPLE_COMMAND_DEVINFO, 0, NULL); } } } /* maple dma end bottom half - implemented via workqueue */ static void maple_dma_handler(struct work_struct *work) { struct mapleq *mq, *nmq; struct maple_device *mdev; char *recvbuf; enum maple_code code; if (!maple_dma_done()) return; __raw_writel(0, MAPLE_ENABLE); if (!list_empty(&maple_sentq)) { list_for_each_entry_safe(mq, nmq, &maple_sentq, list) { mdev = mq->dev; recvbuf = mq->recvbuf->buf; __flush_invalidate_region(sh_cacheop_vaddr(recvbuf), 0x400); code = recvbuf[0]; kfree(mq->sendbuf); list_del_init(&mq->list); switch (code) { case MAPLE_RESPONSE_NONE: maple_response_none(mdev); break; case MAPLE_RESPONSE_DEVINFO: maple_response_devinfo(mdev, recvbuf); atomic_set(&mdev->busy, 0); break; case MAPLE_RESPONSE_DATATRF: if (mdev->callback) mdev->callback(mq); atomic_set(&mdev->busy, 0); wake_up(&mdev->maple_wait); break; case MAPLE_RESPONSE_FILEERR: maple_response_fileerr(mdev, recvbuf); atomic_set(&mdev->busy, 0); wake_up(&mdev->maple_wait); break; case MAPLE_RESPONSE_AGAIN: case MAPLE_RESPONSE_BADCMD: case MAPLE_RESPONSE_BADFUNC: dev_warn(&mdev->dev, "non-fatal error" " 0x%X at (%d, %d)\n", code, mdev->port, mdev->unit); atomic_set(&mdev->busy, 0); break; case MAPLE_RESPONSE_ALLINFO: dev_notice(&mdev->dev, "extended" " device information request for (%d, %d)" " but call is not supported\n", mdev->port, mdev->unit); atomic_set(&mdev->busy, 0); break; case MAPLE_RESPONSE_OK: atomic_set(&mdev->busy, 0); wake_up(&mdev->maple_wait); break; default: break; } } /* if scanning is 1 then we have subdevices to check */ if (scanning == 1) { maple_send(); scanning = 2; } else scanning = 0; /*check if we have actually tested all ports yet */ if (!fullscan) maple_port_rescan(); /* mark that we have been through the first scan */ started = 1; } maple_send(); } static irqreturn_t maple_dma_interrupt(int irq, void *dev_id) { /* Load everything into the bottom half */ schedule_work(&maple_dma_process); return IRQ_HANDLED; } static irqreturn_t maple_vblank_interrupt(int irq, void *dev_id) { schedule_work(&maple_vblank_process); return IRQ_HANDLED; } static int maple_set_dma_interrupt_handler(void) { return request_irq(HW_EVENT_MAPLE_DMA, maple_dma_interrupt, IRQF_SHARED, "maple bus DMA", &maple_unsupported_device); } static int maple_set_vblank_interrupt_handler(void) { return request_irq(HW_EVENT_VSYNC, maple_vblank_interrupt, IRQF_SHARED, "maple bus VBLANK", &maple_unsupported_device); } static int maple_get_dma_buffer(void) { maple_sendbuf = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, MAPLE_DMA_PAGES); if (!maple_sendbuf) return -ENOMEM; return 0; } static int maple_match_bus_driver(struct device *devptr, struct device_driver *drvptr) { struct maple_driver *maple_drv = to_maple_driver(drvptr); struct maple_device *maple_dev = to_maple_dev(devptr); /* Trap empty port case */ if (maple_dev->devinfo.function == 0xFFFFFFFF) return 0; else if (maple_dev->devinfo.function & cpu_to_be32(maple_drv->function)) return 1; return 0; } static void maple_bus_release(struct device *dev) { } static struct maple_driver maple_unsupported_device = { .drv = { .name = "maple_unsupported_device", .bus = &maple_bus_type, }, }; /* * maple_bus_type - core maple bus structure */ struct bus_type maple_bus_type = { .name = "maple", .match = maple_match_bus_driver, }; EXPORT_SYMBOL_GPL(maple_bus_type); static struct device maple_bus = { .init_name = "maple", .release = maple_bus_release, }; static int __init maple_bus_init(void) { int retval, i; struct maple_device *mdev[MAPLE_PORTS]; __raw_writel(0, MAPLE_ENABLE); retval = device_register(&maple_bus); if (retval) goto cleanup; retval = bus_register(&maple_bus_type); if (retval) goto cleanup_device; retval = driver_register(&maple_unsupported_device.drv); if (retval) goto cleanup_bus; /* allocate memory for maple bus dma */ retval = maple_get_dma_buffer(); if (retval) { dev_err(&maple_bus, "failed to allocate DMA buffers\n"); goto cleanup_basic; } /* set up DMA interrupt handler */ retval = maple_set_dma_interrupt_handler(); if (retval) { dev_err(&maple_bus, "bus failed to grab maple " "DMA IRQ\n"); goto cleanup_dma; } /* set up VBLANK interrupt handler */ retval = maple_set_vblank_interrupt_handler(); if (retval) { dev_err(&maple_bus, "bus failed to grab VBLANK IRQ\n"); goto cleanup_irq; } maple_queue_cache = KMEM_CACHE(maple_buffer, SLAB_HWCACHE_ALIGN); if (!maple_queue_cache) { retval = -ENOMEM; goto cleanup_bothirqs; } INIT_LIST_HEAD(&maple_waitq); INIT_LIST_HEAD(&maple_sentq); /* setup maple ports */ for (i = 0; i < MAPLE_PORTS; i++) { checked[i] = false; empty[i] = false; mdev[i] = maple_alloc_dev(i, 0); if (!mdev[i]) { while (i-- > 0) maple_free_dev(mdev[i]); retval = -ENOMEM; goto cleanup_cache; } baseunits[i] = mdev[i]; atomic_set(&mdev[i]->busy, 1); maple_add_packet(mdev[i], 0, MAPLE_COMMAND_DEVINFO, 0, NULL); subdevice_map[i] = 0; } maple_pnp_time = jiffies + HZ; /* prepare initial queue */ maple_send(); dev_info(&maple_bus, "bus core now registered\n"); return 0; cleanup_cache: kmem_cache_destroy(maple_queue_cache); cleanup_bothirqs: free_irq(HW_EVENT_VSYNC, 0); cleanup_irq: free_irq(HW_EVENT_MAPLE_DMA, 0); cleanup_dma: free_pages((unsigned long) maple_sendbuf, MAPLE_DMA_PAGES); cleanup_basic: driver_unregister(&maple_unsupported_device.drv); cleanup_bus: bus_unregister(&maple_bus_type); cleanup_device: device_unregister(&maple_bus); cleanup: printk(KERN_ERR "Maple bus registration failed\n"); return retval; } /* Push init to later to ensure hardware gets detected */ fs_initcall(maple_bus_init);
linux-master
drivers/sh/maple/maple.c
/* * Helper routines for SuperH Clock Pulse Generator blocks (CPG). * * Copyright (C) 2010 Magnus Damm * Copyright (C) 2010 - 2012 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/clk.h> #include <linux/compiler.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/sh_clk.h> #define CPG_CKSTP_BIT BIT(8) static unsigned int sh_clk_read(struct clk *clk) { if (clk->flags & CLK_ENABLE_REG_8BIT) return ioread8(clk->mapped_reg); else if (clk->flags & CLK_ENABLE_REG_16BIT) return ioread16(clk->mapped_reg); return ioread32(clk->mapped_reg); } static void sh_clk_write(int value, struct clk *clk) { if (clk->flags & CLK_ENABLE_REG_8BIT) iowrite8(value, clk->mapped_reg); else if (clk->flags & CLK_ENABLE_REG_16BIT) iowrite16(value, clk->mapped_reg); else iowrite32(value, clk->mapped_reg); } static int sh_clk_mstp_enable(struct clk *clk) { sh_clk_write(sh_clk_read(clk) & ~(1 << clk->enable_bit), clk); if (clk->status_reg) { unsigned int (*read)(const void __iomem *addr); int i; void __iomem *mapped_status = (phys_addr_t)clk->status_reg - (phys_addr_t)clk->enable_reg + clk->mapped_reg; if (clk->flags & CLK_ENABLE_REG_8BIT) read = ioread8; else if (clk->flags & CLK_ENABLE_REG_16BIT) read = ioread16; else read = ioread32; for (i = 1000; (read(mapped_status) & (1 << clk->enable_bit)) && i; i--) cpu_relax(); if (!i) { pr_err("cpg: failed to enable %p[%d]\n", clk->enable_reg, clk->enable_bit); return -ETIMEDOUT; } } return 0; } static void sh_clk_mstp_disable(struct clk *clk) { sh_clk_write(sh_clk_read(clk) | (1 << clk->enable_bit), clk); } static struct sh_clk_ops sh_clk_mstp_clk_ops = { .enable = sh_clk_mstp_enable, .disable = sh_clk_mstp_disable, .recalc = followparent_recalc, }; int __init sh_clk_mstp_register(struct clk *clks, int nr) { struct clk *clkp; int ret = 0; int k; for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = &sh_clk_mstp_clk_ops; ret |= clk_register(clkp); } return ret; } /* * Div/mult table lookup helpers */ static inline struct clk_div_table *clk_to_div_table(struct clk *clk) { return clk->priv; } static inline struct clk_div_mult_table *clk_to_div_mult_table(struct clk *clk) { return clk_to_div_table(clk)->div_mult_table; } /* * Common div ops */ static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate) { return clk_rate_table_round(clk, clk->freq_table, rate); } static unsigned long sh_clk_div_recalc(struct clk *clk) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); unsigned int idx; clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, clk->arch_flags ? &clk->arch_flags : NULL); idx = (sh_clk_read(clk) >> clk->enable_bit) & clk->div_mask; return clk->freq_table[idx].frequency; } static int sh_clk_div_set_rate(struct clk *clk, unsigned long rate) { struct clk_div_table *dt = clk_to_div_table(clk); unsigned long value; int idx; idx = clk_rate_table_find(clk, clk->freq_table, rate); if (idx < 0) return idx; value = sh_clk_read(clk); value &= ~(clk->div_mask << clk->enable_bit); value |= (idx << clk->enable_bit); sh_clk_write(value, clk); /* XXX: Should use a post-change notifier */ if (dt->kick) dt->kick(clk); return 0; } static int sh_clk_div_enable(struct clk *clk) { if (clk->div_mask == SH_CLK_DIV6_MSK) { int ret = sh_clk_div_set_rate(clk, clk->rate); if (ret < 0) return ret; } sh_clk_write(sh_clk_read(clk) & ~CPG_CKSTP_BIT, clk); return 0; } static void sh_clk_div_disable(struct clk *clk) { unsigned int val; val = sh_clk_read(clk); val |= CPG_CKSTP_BIT; /* * div6 clocks require the divisor field to be non-zero or the * above CKSTP toggle silently fails. Ensure that the divisor * array is reset to its initial state on disable. */ if (clk->flags & CLK_MASK_DIV_ON_DISABLE) val |= clk->div_mask; sh_clk_write(val, clk); } static struct sh_clk_ops sh_clk_div_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, }; static struct sh_clk_ops sh_clk_div_enable_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, }; static int __init sh_clk_init_parent(struct clk *clk) { u32 val; if (clk->parent) return 0; if (!clk->parent_table || !clk->parent_num) return 0; if (!clk->src_width) { pr_err("sh_clk_init_parent: cannot select parent clock\n"); return -EINVAL; } val = (sh_clk_read(clk) >> clk->src_shift); val &= (1 << clk->src_width) - 1; if (val >= clk->parent_num) { pr_err("sh_clk_init_parent: parent table size failed\n"); return -EINVAL; } clk_reparent(clk, clk->parent_table[val]); if (!clk->parent) { pr_err("sh_clk_init_parent: unable to set parent"); return -EINVAL; } return 0; } static int __init sh_clk_div_register_ops(struct clk *clks, int nr, struct clk_div_table *table, struct sh_clk_ops *ops) { struct clk *clkp; void *freq_table; int nr_divs = table->div_mult_table->nr_divisors; int freq_table_size = sizeof(struct cpufreq_frequency_table); int ret = 0; int k; freq_table_size *= (nr_divs + 1); freq_table = kcalloc(nr, freq_table_size, GFP_KERNEL); if (!freq_table) { pr_err("%s: unable to alloc memory\n", __func__); return -ENOMEM; } for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = ops; clkp->priv = table; clkp->freq_table = freq_table + (k * freq_table_size); clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END; ret = clk_register(clkp); if (ret == 0) ret = sh_clk_init_parent(clkp); } return ret; } /* * div6 support */ static int sh_clk_div6_divisors[64] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 }; static struct clk_div_mult_table div6_div_mult_table = { .divisors = sh_clk_div6_divisors, .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors), }; static struct clk_div_table sh_clk_div6_table = { .div_mult_table = &div6_div_mult_table, }; static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); u32 value; int ret, i; if (!clk->parent_table || !clk->parent_num) return -EINVAL; /* Search the parent */ for (i = 0; i < clk->parent_num; i++) if (clk->parent_table[i] == parent) break; if (i == clk->parent_num) return -ENODEV; ret = clk_reparent(clk, parent); if (ret < 0) return ret; value = sh_clk_read(clk) & ~(((1 << clk->src_width) - 1) << clk->src_shift); sh_clk_write(value | (i << clk->src_shift), clk); /* Rebuild the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, NULL); return 0; } static struct sh_clk_ops sh_clk_div6_reparent_clk_ops = { .recalc = sh_clk_div_recalc, .round_rate = sh_clk_div_round_rate, .set_rate = sh_clk_div_set_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, .set_parent = sh_clk_div6_set_parent, }; int __init sh_clk_div6_register(struct clk *clks, int nr) { return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table, &sh_clk_div_enable_clk_ops); } int __init sh_clk_div6_reparent_register(struct clk *clks, int nr) { return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table, &sh_clk_div6_reparent_clk_ops); } /* * div4 support */ static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); u32 value; int ret; /* we really need a better way to determine parent index, but for * now assume internal parent comes with CLK_ENABLE_ON_INIT set, * no CLK_ENABLE_ON_INIT means external clock... */ if (parent->flags & CLK_ENABLE_ON_INIT) value = sh_clk_read(clk) & ~(1 << 7); else value = sh_clk_read(clk) | (1 << 7); ret = clk_reparent(clk, parent); if (ret < 0) return ret; sh_clk_write(value, clk); /* Rebiuld the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, &clk->arch_flags); return 0; } static struct sh_clk_ops sh_clk_div4_reparent_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, .set_parent = sh_clk_div4_set_parent, }; int __init sh_clk_div4_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div_clk_ops); } int __init sh_clk_div4_enable_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div_enable_clk_ops); } int __init sh_clk_div4_reparent_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div4_reparent_clk_ops); } /* FSI-DIV */ static unsigned long fsidiv_recalc(struct clk *clk) { u32 value; value = __raw_readl(clk->mapping->base); value >>= 16; if (value < 2) return clk->parent->rate; return clk->parent->rate / value; } static long fsidiv_round_rate(struct clk *clk, unsigned long rate) { return clk_rate_div_range_round(clk, 1, 0xffff, rate); } static void fsidiv_disable(struct clk *clk) { __raw_writel(0, clk->mapping->base); } static int fsidiv_enable(struct clk *clk) { u32 value; value = __raw_readl(clk->mapping->base) >> 16; if (value < 2) return 0; __raw_writel((value << 16) | 0x3, clk->mapping->base); return 0; } static int fsidiv_set_rate(struct clk *clk, unsigned long rate) { int idx; idx = (clk->parent->rate / rate) & 0xffff; if (idx < 2) __raw_writel(0, clk->mapping->base); else __raw_writel(idx << 16, clk->mapping->base); return 0; } static struct sh_clk_ops fsidiv_clk_ops = { .recalc = fsidiv_recalc, .round_rate = fsidiv_round_rate, .set_rate = fsidiv_set_rate, .enable = fsidiv_enable, .disable = fsidiv_disable, }; int __init sh_clk_fsidiv_register(struct clk *clks, int nr) { struct clk_mapping *map; int i; for (i = 0; i < nr; i++) { map = kzalloc(sizeof(struct clk_mapping), GFP_KERNEL); if (!map) { pr_err("%s: unable to alloc memory\n", __func__); return -ENOMEM; } /* clks[i].enable_reg came from SH_CLK_FSIDIV() */ map->phys = (phys_addr_t)clks[i].enable_reg; map->len = 8; clks[i].enable_reg = 0; /* remove .enable_reg */ clks[i].ops = &fsidiv_clk_ops; clks[i].mapping = map; clk_register(&clks[i]); } return 0; }
linux-master
drivers/sh/clk/cpg.c
/* * SuperH clock framework * * Copyright (C) 2005 - 2010 Paul Mundt * * This clock framework is derived from the OMAP version by: * * Copyright (C) 2004 - 2008 Nokia Corporation * Written by Tuukka Tikkanen <[email protected]> * * Modified for omap shared clock framework by Tony Lindgren <[email protected]> * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #define pr_fmt(fmt) "clock: " fmt #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/syscore_ops.h> #include <linux/seq_file.h> #include <linux/err.h> #include <linux/io.h> #include <linux/cpufreq.h> #include <linux/clk.h> #include <linux/sh_clk.h> static LIST_HEAD(clock_list); static DEFINE_SPINLOCK(clock_lock); static DEFINE_MUTEX(clock_list_sem); /* clock disable operations are not passed on to hardware during boot */ static int allow_disable; void clk_rate_table_build(struct clk *clk, struct cpufreq_frequency_table *freq_table, int nr_freqs, struct clk_div_mult_table *src_table, unsigned long *bitmap) { unsigned long mult, div; unsigned long freq; int i; clk->nr_freqs = nr_freqs; for (i = 0; i < nr_freqs; i++) { div = 1; mult = 1; if (src_table->divisors && i < src_table->nr_divisors) div = src_table->divisors[i]; if (src_table->multipliers && i < src_table->nr_multipliers) mult = src_table->multipliers[i]; if (!div || !mult || (bitmap && !test_bit(i, bitmap))) freq = CPUFREQ_ENTRY_INVALID; else freq = clk->parent->rate * mult / div; freq_table[i].driver_data = i; freq_table[i].frequency = freq; } /* Termination entry */ freq_table[i].driver_data = i; freq_table[i].frequency = CPUFREQ_TABLE_END; } struct clk_rate_round_data; struct clk_rate_round_data { unsigned long rate; unsigned int min, max; long (*func)(unsigned int, struct clk_rate_round_data *); void *arg; }; #define for_each_frequency(pos, r, freq) \ for (pos = r->min, freq = r->func(pos, r); \ pos <= r->max; pos++, freq = r->func(pos, r)) \ if (unlikely(freq == 0)) \ ; \ else static long clk_rate_round_helper(struct clk_rate_round_data *rounder) { unsigned long rate_error, rate_error_prev = ~0UL; unsigned long highest, lowest, freq; long rate_best_fit = -ENOENT; int i; highest = 0; lowest = ~0UL; for_each_frequency(i, rounder, freq) { if (freq > highest) highest = freq; if (freq < lowest) lowest = freq; rate_error = abs(freq - rounder->rate); if (rate_error < rate_error_prev) { rate_best_fit = freq; rate_error_prev = rate_error; } if (rate_error == 0) break; } if (rounder->rate >= highest) rate_best_fit = highest; if (rounder->rate <= lowest) rate_best_fit = lowest; return rate_best_fit; } static long clk_rate_table_iter(unsigned int pos, struct clk_rate_round_data *rounder) { struct cpufreq_frequency_table *freq_table = rounder->arg; unsigned long freq = freq_table[pos].frequency; if (freq == CPUFREQ_ENTRY_INVALID) freq = 0; return freq; } long clk_rate_table_round(struct clk *clk, struct cpufreq_frequency_table *freq_table, unsigned long rate) { struct clk_rate_round_data table_round = { .min = 0, .max = clk->nr_freqs - 1, .func = clk_rate_table_iter, .arg = freq_table, .rate = rate, }; if (clk->nr_freqs < 1) return -ENOSYS; return clk_rate_round_helper(&table_round); } static long clk_rate_div_range_iter(unsigned int pos, struct clk_rate_round_data *rounder) { return clk_get_rate(rounder->arg) / pos; } long clk_rate_div_range_round(struct clk *clk, unsigned int div_min, unsigned int div_max, unsigned long rate) { struct clk_rate_round_data div_range_round = { .min = div_min, .max = div_max, .func = clk_rate_div_range_iter, .arg = clk_get_parent(clk), .rate = rate, }; return clk_rate_round_helper(&div_range_round); } static long clk_rate_mult_range_iter(unsigned int pos, struct clk_rate_round_data *rounder) { return clk_get_rate(rounder->arg) * pos; } long clk_rate_mult_range_round(struct clk *clk, unsigned int mult_min, unsigned int mult_max, unsigned long rate) { struct clk_rate_round_data mult_range_round = { .min = mult_min, .max = mult_max, .func = clk_rate_mult_range_iter, .arg = clk_get_parent(clk), .rate = rate, }; return clk_rate_round_helper(&mult_range_round); } int clk_rate_table_find(struct clk *clk, struct cpufreq_frequency_table *freq_table, unsigned long rate) { struct cpufreq_frequency_table *pos; int idx; cpufreq_for_each_valid_entry_idx(pos, freq_table, idx) if (pos->frequency == rate) return idx; return -ENOENT; } /* Used for clocks that always have same value as the parent clock */ unsigned long followparent_recalc(struct clk *clk) { return clk->parent ? clk->parent->rate : 0; } int clk_reparent(struct clk *child, struct clk *parent) { list_del_init(&child->sibling); if (parent) list_add(&child->sibling, &parent->children); child->parent = parent; return 0; } /* Propagate rate to children */ void propagate_rate(struct clk *tclk) { struct clk *clkp; list_for_each_entry(clkp, &tclk->children, sibling) { if (clkp->ops && clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } static void __clk_disable(struct clk *clk) { if (WARN(!clk->usecount, "Trying to disable clock %p with 0 usecount\n", clk)) return; if (!(--clk->usecount)) { if (likely(allow_disable && clk->ops && clk->ops->disable)) clk->ops->disable(clk); if (likely(clk->parent)) __clk_disable(clk->parent); } } void clk_disable(struct clk *clk) { unsigned long flags; if (!clk) return; spin_lock_irqsave(&clock_lock, flags); __clk_disable(clk); spin_unlock_irqrestore(&clock_lock, flags); } EXPORT_SYMBOL_GPL(clk_disable); static int __clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (clk->parent) { ret = __clk_enable(clk->parent); if (unlikely(ret)) goto err; } if (clk->ops && clk->ops->enable) { ret = clk->ops->enable(clk); if (ret) { if (clk->parent) __clk_disable(clk->parent); goto err; } } } return ret; err: clk->usecount--; return ret; } int clk_enable(struct clk *clk) { unsigned long flags; int ret; if (!clk) return 0; spin_lock_irqsave(&clock_lock, flags); ret = __clk_enable(clk); spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_enable); static LIST_HEAD(root_clks); /** * recalculate_root_clocks - recalculate and propagate all root clocks * * Recalculates all root clocks (clocks with no parent), which if the * clock's .recalc is set correctly, should also propagate their rates. * Called at init. */ void recalculate_root_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &root_clks, sibling) { if (clkp->ops && clkp->ops->recalc) clkp->rate = clkp->ops->recalc(clkp); propagate_rate(clkp); } } static struct clk_mapping dummy_mapping; static struct clk *lookup_root_clock(struct clk *clk) { while (clk->parent) clk = clk->parent; return clk; } static int clk_establish_mapping(struct clk *clk) { struct clk_mapping *mapping = clk->mapping; /* * Propagate mappings. */ if (!mapping) { struct clk *clkp; /* * dummy mapping for root clocks with no specified ranges */ if (!clk->parent) { clk->mapping = &dummy_mapping; goto out; } /* * If we're on a child clock and it provides no mapping of its * own, inherit the mapping from its root clock. */ clkp = lookup_root_clock(clk); mapping = clkp->mapping; BUG_ON(!mapping); } /* * Establish initial mapping. */ if (!mapping->base && mapping->phys) { kref_init(&mapping->ref); mapping->base = ioremap(mapping->phys, mapping->len); if (unlikely(!mapping->base)) return -ENXIO; } else if (mapping->base) { /* * Bump the refcount for an existing mapping */ kref_get(&mapping->ref); } clk->mapping = mapping; out: clk->mapped_reg = clk->mapping->base; clk->mapped_reg += (phys_addr_t)clk->enable_reg - clk->mapping->phys; return 0; } static void clk_destroy_mapping(struct kref *kref) { struct clk_mapping *mapping; mapping = container_of(kref, struct clk_mapping, ref); iounmap(mapping->base); } static void clk_teardown_mapping(struct clk *clk) { struct clk_mapping *mapping = clk->mapping; /* Nothing to do */ if (mapping == &dummy_mapping) goto out; kref_put(&mapping->ref, clk_destroy_mapping); clk->mapping = NULL; out: clk->mapped_reg = NULL; } int clk_register(struct clk *clk) { int ret; if (IS_ERR_OR_NULL(clk)) return -EINVAL; /* * trap out already registered clocks */ if (clk->node.next || clk->node.prev) return 0; mutex_lock(&clock_list_sem); INIT_LIST_HEAD(&clk->children); clk->usecount = 0; ret = clk_establish_mapping(clk); if (unlikely(ret)) goto out_unlock; if (clk->parent) list_add(&clk->sibling, &clk->parent->children); else list_add(&clk->sibling, &root_clks); list_add(&clk->node, &clock_list); #ifdef CONFIG_SH_CLK_CPG_LEGACY if (clk->ops && clk->ops->init) clk->ops->init(clk); #endif out_unlock: mutex_unlock(&clock_list_sem); return ret; } EXPORT_SYMBOL_GPL(clk_register); void clk_unregister(struct clk *clk) { mutex_lock(&clock_list_sem); list_del(&clk->sibling); list_del(&clk->node); clk_teardown_mapping(clk); mutex_unlock(&clock_list_sem); } EXPORT_SYMBOL_GPL(clk_unregister); void clk_enable_init_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &clock_list, node) if (clkp->flags & CLK_ENABLE_ON_INIT) clk_enable(clkp); } unsigned long clk_get_rate(struct clk *clk) { if (!clk) return 0; return clk->rate; } EXPORT_SYMBOL_GPL(clk_get_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { int ret = -EOPNOTSUPP; unsigned long flags; if (!clk) return 0; spin_lock_irqsave(&clock_lock, flags); if (likely(clk->ops && clk->ops->set_rate)) { ret = clk->ops->set_rate(clk, rate); if (ret != 0) goto out_unlock; } else { clk->rate = rate; ret = 0; } if (clk->ops && clk->ops->recalc) clk->rate = clk->ops->recalc(clk); propagate_rate(clk); out_unlock: spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_set_rate); int clk_set_parent(struct clk *clk, struct clk *parent) { unsigned long flags; int ret = -EINVAL; if (!parent || !clk) return ret; if (clk->parent == parent) return 0; spin_lock_irqsave(&clock_lock, flags); if (clk->usecount == 0) { if (clk->ops->set_parent) ret = clk->ops->set_parent(clk, parent); else ret = clk_reparent(clk, parent); if (ret == 0) { if (clk->ops->recalc) clk->rate = clk->ops->recalc(clk); pr_debug("set parent of %p to %p (new rate %ld)\n", clk, clk->parent, clk->rate); propagate_rate(clk); } } else ret = -EBUSY; spin_unlock_irqrestore(&clock_lock, flags); return ret; } EXPORT_SYMBOL_GPL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { if (!clk) return NULL; return clk->parent; } EXPORT_SYMBOL_GPL(clk_get_parent); long clk_round_rate(struct clk *clk, unsigned long rate) { if (!clk) return 0; if (likely(clk->ops && clk->ops->round_rate)) { unsigned long flags, rounded; spin_lock_irqsave(&clock_lock, flags); rounded = clk->ops->round_rate(clk, rate); spin_unlock_irqrestore(&clock_lock, flags); return rounded; } return clk_get_rate(clk); } EXPORT_SYMBOL_GPL(clk_round_rate); #ifdef CONFIG_PM static void clks_core_resume(void) { struct clk *clkp; list_for_each_entry(clkp, &clock_list, node) { if (likely(clkp->usecount && clkp->ops)) { unsigned long rate = clkp->rate; if (likely(clkp->ops->set_parent)) clkp->ops->set_parent(clkp, clkp->parent); if (likely(clkp->ops->set_rate)) clkp->ops->set_rate(clkp, rate); else if (likely(clkp->ops->recalc)) clkp->rate = clkp->ops->recalc(clkp); } } } static struct syscore_ops clks_syscore_ops = { .resume = clks_core_resume, }; static int __init clk_syscore_init(void) { register_syscore_ops(&clks_syscore_ops); return 0; } subsys_initcall(clk_syscore_init); #endif static int __init clk_late_init(void) { unsigned long flags; struct clk *clk; /* disable all clocks with zero use count */ mutex_lock(&clock_list_sem); spin_lock_irqsave(&clock_lock, flags); list_for_each_entry(clk, &clock_list, node) if (!clk->usecount && clk->ops && clk->ops->disable) clk->ops->disable(clk); /* from now on allow clock disable operations */ allow_disable = 1; spin_unlock_irqrestore(&clock_lock, flags); mutex_unlock(&clock_list_sem); return 0; } late_initcall(clk_late_init);
linux-master
drivers/sh/clk/core.c
// SPDX-License-Identifier: GPL-2.0 /* * USB Skeleton driver - 2.2 * * Copyright (C) 2001-2004 Greg Kroah-Hartman ([email protected]) * * This driver is based on the 2.6.3 version of drivers/usb/usb-skeleton.c * but has been rewritten to be easier to read and use. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kref.h> #include <linux/uaccess.h> #include <linux/usb.h> #include <linux/mutex.h> /* Define these values to match your devices */ #define USB_SKEL_VENDOR_ID 0xfff0 #define USB_SKEL_PRODUCT_ID 0xfff0 /* table of devices that work with this driver */ static const struct usb_device_id skel_table[] = { { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, skel_table); /* Get a minor range for your devices from the usb maintainer */ #define USB_SKEL_MINOR_BASE 192 /* our private defines. if this grows any larger, use your own .h file */ #define MAX_TRANSFER (PAGE_SIZE - 512) /* * MAX_TRANSFER is chosen so that the VM is not stressed by * allocations > PAGE_SIZE and the number of packets in a page * is an integer 512 is the largest possible packet on EHCI */ #define WRITES_IN_FLIGHT 8 /* arbitrarily chosen */ /* Structure to hold all of our device specific stuff */ struct usb_skel { struct usb_device *udev; /* the usb device for this device */ struct usb_interface *interface; /* the interface for this device */ struct semaphore limit_sem; /* limiting the number of writes in progress */ struct usb_anchor submitted; /* in case we need to retract our submissions */ struct urb *bulk_in_urb; /* the urb to read data with */ unsigned char *bulk_in_buffer; /* the buffer to receive data */ size_t bulk_in_size; /* the size of the receive buffer */ size_t bulk_in_filled; /* number of bytes in the buffer */ size_t bulk_in_copied; /* already copied to user space */ __u8 bulk_in_endpointAddr; /* the address of the bulk in endpoint */ __u8 bulk_out_endpointAddr; /* the address of the bulk out endpoint */ int errors; /* the last request tanked */ bool ongoing_read; /* a read is going on */ spinlock_t err_lock; /* lock for errors */ struct kref kref; struct mutex io_mutex; /* synchronize I/O with disconnect */ unsigned long disconnected:1; wait_queue_head_t bulk_in_wait; /* to wait for an ongoing read */ }; #define to_skel_dev(d) container_of(d, struct usb_skel, kref) static struct usb_driver skel_driver; static void skel_draw_down(struct usb_skel *dev); static void skel_delete(struct kref *kref) { struct usb_skel *dev = to_skel_dev(kref); usb_free_urb(dev->bulk_in_urb); usb_put_intf(dev->interface); usb_put_dev(dev->udev); kfree(dev->bulk_in_buffer); kfree(dev); } static int skel_open(struct inode *inode, struct file *file) { struct usb_skel *dev; struct usb_interface *interface; int subminor; int retval = 0; subminor = iminor(inode); interface = usb_find_interface(&skel_driver, subminor); if (!interface) { pr_err("%s - error, can't find device for minor %d\n", __func__, subminor); retval = -ENODEV; goto exit; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit; } retval = usb_autopm_get_interface(interface); if (retval) goto exit; /* increment our usage count for the device */ kref_get(&dev->kref); /* save our object in the file's private structure */ file->private_data = dev; exit: return retval; } static int skel_release(struct inode *inode, struct file *file) { struct usb_skel *dev; dev = file->private_data; if (dev == NULL) return -ENODEV; /* allow the device to be autosuspended */ usb_autopm_put_interface(dev->interface); /* decrement the count on our device */ kref_put(&dev->kref, skel_delete); return 0; } static int skel_flush(struct file *file, fl_owner_t id) { struct usb_skel *dev; int res; dev = file->private_data; if (dev == NULL) return -ENODEV; /* wait for io to stop */ mutex_lock(&dev->io_mutex); skel_draw_down(dev); /* read out errors, leave subsequent opens a clean slate */ spin_lock_irq(&dev->err_lock); res = dev->errors ? (dev->errors == -EPIPE ? -EPIPE : -EIO) : 0; dev->errors = 0; spin_unlock_irq(&dev->err_lock); mutex_unlock(&dev->io_mutex); return res; } static void skel_read_bulk_callback(struct urb *urb) { struct usb_skel *dev; unsigned long flags; dev = urb->context; spin_lock_irqsave(&dev->err_lock, flags); /* sync/async unlink faults aren't errors */ if (urb->status) { if (!(urb->status == -ENOENT || urb->status == -ECONNRESET || urb->status == -ESHUTDOWN)) dev_err(&dev->interface->dev, "%s - nonzero write bulk status received: %d\n", __func__, urb->status); dev->errors = urb->status; } else { dev->bulk_in_filled = urb->actual_length; } dev->ongoing_read = 0; spin_unlock_irqrestore(&dev->err_lock, flags); wake_up_interruptible(&dev->bulk_in_wait); } static int skel_do_read_io(struct usb_skel *dev, size_t count) { int rv; /* prepare a read */ usb_fill_bulk_urb(dev->bulk_in_urb, dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr), dev->bulk_in_buffer, min(dev->bulk_in_size, count), skel_read_bulk_callback, dev); /* tell everybody to leave the URB alone */ spin_lock_irq(&dev->err_lock); dev->ongoing_read = 1; spin_unlock_irq(&dev->err_lock); /* submit bulk in urb, which means no data to deliver */ dev->bulk_in_filled = 0; dev->bulk_in_copied = 0; /* do it */ rv = usb_submit_urb(dev->bulk_in_urb, GFP_KERNEL); if (rv < 0) { dev_err(&dev->interface->dev, "%s - failed submitting read urb, error %d\n", __func__, rv); rv = (rv == -ENOMEM) ? rv : -EIO; spin_lock_irq(&dev->err_lock); dev->ongoing_read = 0; spin_unlock_irq(&dev->err_lock); } return rv; } static ssize_t skel_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct usb_skel *dev; int rv; bool ongoing_io; dev = file->private_data; if (!count) return 0; /* no concurrent readers */ rv = mutex_lock_interruptible(&dev->io_mutex); if (rv < 0) return rv; if (dev->disconnected) { /* disconnect() was called */ rv = -ENODEV; goto exit; } /* if IO is under way, we must not touch things */ retry: spin_lock_irq(&dev->err_lock); ongoing_io = dev->ongoing_read; spin_unlock_irq(&dev->err_lock); if (ongoing_io) { /* nonblocking IO shall not wait */ if (file->f_flags & O_NONBLOCK) { rv = -EAGAIN; goto exit; } /* * IO may take forever * hence wait in an interruptible state */ rv = wait_event_interruptible(dev->bulk_in_wait, (!dev->ongoing_read)); if (rv < 0) goto exit; } /* errors must be reported */ rv = dev->errors; if (rv < 0) { /* any error is reported once */ dev->errors = 0; /* to preserve notifications about reset */ rv = (rv == -EPIPE) ? rv : -EIO; /* report it */ goto exit; } /* * if the buffer is filled we may satisfy the read * else we need to start IO */ if (dev->bulk_in_filled) { /* we had read data */ size_t available = dev->bulk_in_filled - dev->bulk_in_copied; size_t chunk = min(available, count); if (!available) { /* * all data has been used * actual IO needs to be done */ rv = skel_do_read_io(dev, count); if (rv < 0) goto exit; else goto retry; } /* * data is available * chunk tells us how much shall be copied */ if (copy_to_user(buffer, dev->bulk_in_buffer + dev->bulk_in_copied, chunk)) rv = -EFAULT; else rv = chunk; dev->bulk_in_copied += chunk; /* * if we are asked for more than we have, * we start IO but don't wait */ if (available < count) skel_do_read_io(dev, count - chunk); } else { /* no data in the buffer */ rv = skel_do_read_io(dev, count); if (rv < 0) goto exit; else goto retry; } exit: mutex_unlock(&dev->io_mutex); return rv; } static void skel_write_bulk_callback(struct urb *urb) { struct usb_skel *dev; unsigned long flags; dev = urb->context; /* sync/async unlink faults aren't errors */ if (urb->status) { if (!(urb->status == -ENOENT || urb->status == -ECONNRESET || urb->status == -ESHUTDOWN)) dev_err(&dev->interface->dev, "%s - nonzero write bulk status received: %d\n", __func__, urb->status); spin_lock_irqsave(&dev->err_lock, flags); dev->errors = urb->status; spin_unlock_irqrestore(&dev->err_lock, flags); } /* free up our allocated buffer */ usb_free_coherent(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); up(&dev->limit_sem); } static ssize_t skel_write(struct file *file, const char *user_buffer, size_t count, loff_t *ppos) { struct usb_skel *dev; int retval = 0; struct urb *urb = NULL; char *buf = NULL; size_t writesize = min_t(size_t, count, MAX_TRANSFER); dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; /* * limit the number of URBs in flight to stop a user from using up all * RAM */ if (!(file->f_flags & O_NONBLOCK)) { if (down_interruptible(&dev->limit_sem)) { retval = -ERESTARTSYS; goto exit; } } else { if (down_trylock(&dev->limit_sem)) { retval = -EAGAIN; goto exit; } } spin_lock_irq(&dev->err_lock); retval = dev->errors; if (retval < 0) { /* any error is reported once */ dev->errors = 0; /* to preserve notifications about reset */ retval = (retval == -EPIPE) ? retval : -EIO; } spin_unlock_irq(&dev->err_lock); if (retval < 0) goto error; /* create a urb, and a buffer for it, and copy the data to the urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } buf = usb_alloc_coherent(dev->udev, writesize, GFP_KERNEL, &urb->transfer_dma); if (!buf) { retval = -ENOMEM; goto error; } if (copy_from_user(buf, user_buffer, writesize)) { retval = -EFAULT; goto error; } /* this lock makes sure we don't submit URBs to gone devices */ mutex_lock(&dev->io_mutex); if (dev->disconnected) { /* disconnect() was called */ mutex_unlock(&dev->io_mutex); retval = -ENODEV; goto error; } /* initialize the urb properly */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, writesize, skel_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->submitted); /* send the data out the bulk port */ retval = usb_submit_urb(urb, GFP_KERNEL); mutex_unlock(&dev->io_mutex); if (retval) { dev_err(&dev->interface->dev, "%s - failed submitting write urb, error %d\n", __func__, retval); goto error_unanchor; } /* * release our reference to this urb, the USB core will eventually free * it entirely */ usb_free_urb(urb); return writesize; error_unanchor: usb_unanchor_urb(urb); error: if (urb) { usb_free_coherent(dev->udev, writesize, buf, urb->transfer_dma); usb_free_urb(urb); } up(&dev->limit_sem); exit: return retval; } static const struct file_operations skel_fops = { .owner = THIS_MODULE, .read = skel_read, .write = skel_write, .open = skel_open, .release = skel_release, .flush = skel_flush, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver skel_class = { .name = "skel%d", .fops = &skel_fops, .minor_base = USB_SKEL_MINOR_BASE, }; static int skel_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_skel *dev; struct usb_endpoint_descriptor *bulk_in, *bulk_out; int retval; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; kref_init(&dev->kref); sema_init(&dev->limit_sem, WRITES_IN_FLIGHT); mutex_init(&dev->io_mutex); spin_lock_init(&dev->err_lock); init_usb_anchor(&dev->submitted); init_waitqueue_head(&dev->bulk_in_wait); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = usb_get_intf(interface); /* set up the endpoint information */ /* use only the first bulk-in and bulk-out endpoints */ retval = usb_find_common_endpoints(interface->cur_altsetting, &bulk_in, &bulk_out, NULL, NULL); if (retval) { dev_err(&interface->dev, "Could not find both bulk-in and bulk-out endpoints\n"); goto error; } dev->bulk_in_size = usb_endpoint_maxp(bulk_in); dev->bulk_in_endpointAddr = bulk_in->bEndpointAddress; dev->bulk_in_buffer = kmalloc(dev->bulk_in_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { retval = -ENOMEM; goto error; } dev->bulk_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->bulk_in_urb) { retval = -ENOMEM; goto error; } dev->bulk_out_endpointAddr = bulk_out->bEndpointAddress; /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &skel_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "USB Skeleton device now attached to USBSkel-%d", interface->minor); return 0; error: /* this frees allocated memory */ kref_put(&dev->kref, skel_delete); return retval; } static void skel_disconnect(struct usb_interface *interface) { struct usb_skel *dev; int minor = interface->minor; dev = usb_get_intfdata(interface); /* give back our minor */ usb_deregister_dev(interface, &skel_class); /* prevent more I/O from starting */ mutex_lock(&dev->io_mutex); dev->disconnected = 1; mutex_unlock(&dev->io_mutex); usb_kill_urb(dev->bulk_in_urb); usb_kill_anchored_urbs(&dev->submitted); /* decrement our usage count */ kref_put(&dev->kref, skel_delete); dev_info(&interface->dev, "USB Skeleton #%d now disconnected", minor); } static void skel_draw_down(struct usb_skel *dev) { int time; time = usb_wait_anchor_empty_timeout(&dev->submitted, 1000); if (!time) usb_kill_anchored_urbs(&dev->submitted); usb_kill_urb(dev->bulk_in_urb); } static int skel_suspend(struct usb_interface *intf, pm_message_t message) { struct usb_skel *dev = usb_get_intfdata(intf); if (!dev) return 0; skel_draw_down(dev); return 0; } static int skel_resume(struct usb_interface *intf) { return 0; } static int skel_pre_reset(struct usb_interface *intf) { struct usb_skel *dev = usb_get_intfdata(intf); mutex_lock(&dev->io_mutex); skel_draw_down(dev); return 0; } static int skel_post_reset(struct usb_interface *intf) { struct usb_skel *dev = usb_get_intfdata(intf); /* we are sure no URBs are active - no locking needed */ dev->errors = -EPIPE; mutex_unlock(&dev->io_mutex); return 0; } static struct usb_driver skel_driver = { .name = "skeleton", .probe = skel_probe, .disconnect = skel_disconnect, .suspend = skel_suspend, .resume = skel_resume, .pre_reset = skel_pre_reset, .post_reset = skel_post_reset, .id_table = skel_table, .supports_autosuspend = 1, }; module_usb_driver(skel_driver); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/usb-skeleton.c
// SPDX-License-Identifier: GPL-2.0-only /* * API for creating and destroying USB onboard hub platform devices * * Copyright (c) 2022, Google LLC */ #include <linux/device.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/of.h> #include <linux/usb/onboard_hub.h> #include "onboard_usb_hub.h" struct pdev_list_entry { struct platform_device *pdev; struct list_head node; }; static bool of_is_onboard_usb_hub(const struct device_node *np) { return !!of_match_node(onboard_hub_match, np); } /** * onboard_hub_create_pdevs -- create platform devices for onboard USB hubs * @parent_hub : parent hub to scan for connected onboard hubs * @pdev_list : list of onboard hub platform devices owned by the parent hub * * Creates a platform device for each supported onboard hub that is connected to * the given parent hub. The platform device is in charge of initializing the * hub (enable regulators, take the hub out of reset, ...) and can optionally * control whether the hub remains powered during system suspend or not. * * To keep track of the platform devices they are added to a list that is owned * by the parent hub. * * Some background about the logic in this function, which can be a bit hard * to follow: * * Root hubs don't have dedicated device tree nodes, but use the node of their * HCD. The primary and secondary HCD are usually represented by a single DT * node. That means the root hubs of the primary and secondary HCD share the * same device tree node (the HCD node). As a result this function can be called * twice with the same DT node for root hubs. We only want to create a single * platform device for each physical onboard hub, hence for root hubs the loop * is only executed for the root hub of the primary HCD. Since the function * scans through all child nodes it still creates pdevs for onboard hubs * connected to the root hub of the secondary HCD if needed. * * Further there must be only one platform device for onboard hubs with a peer * hub (the hub is a single physical device). To achieve this two measures are * taken: pdevs for onboard hubs with a peer are only created when the function * is called on behalf of the parent hub that is connected to the primary HCD * (directly or through other hubs). For onboard hubs connected to root hubs * the function processes the nodes of both peers. A platform device is only * created if the peer hub doesn't have one already. */ void onboard_hub_create_pdevs(struct usb_device *parent_hub, struct list_head *pdev_list) { int i; struct usb_hcd *hcd = bus_to_hcd(parent_hub->bus); struct device_node *np, *npc; struct platform_device *pdev; struct pdev_list_entry *pdle; if (!parent_hub->dev.of_node) return; if (!parent_hub->parent && !usb_hcd_is_primary_hcd(hcd)) return; for (i = 1; i <= parent_hub->maxchild; i++) { np = usb_of_get_device_node(parent_hub, i); if (!np) continue; if (!of_is_onboard_usb_hub(np)) goto node_put; npc = of_parse_phandle(np, "peer-hub", 0); if (npc) { if (!usb_hcd_is_primary_hcd(hcd)) { of_node_put(npc); goto node_put; } pdev = of_find_device_by_node(npc); of_node_put(npc); if (pdev) { put_device(&pdev->dev); goto node_put; } } pdev = of_platform_device_create(np, NULL, &parent_hub->dev); if (!pdev) { dev_err(&parent_hub->dev, "failed to create platform device for onboard hub '%pOF'\n", np); goto node_put; } pdle = kzalloc(sizeof(*pdle), GFP_KERNEL); if (!pdle) { of_platform_device_destroy(&pdev->dev, NULL); goto node_put; } pdle->pdev = pdev; list_add(&pdle->node, pdev_list); node_put: of_node_put(np); } } EXPORT_SYMBOL_GPL(onboard_hub_create_pdevs); /** * onboard_hub_destroy_pdevs -- free resources of onboard hub platform devices * @pdev_list : list of onboard hub platform devices * * Destroys the platform devices in the given list and frees the memory associated * with the list entry. */ void onboard_hub_destroy_pdevs(struct list_head *pdev_list) { struct pdev_list_entry *pdle, *tmp; list_for_each_entry_safe(pdle, tmp, pdev_list, node) { list_del(&pdle->node); of_platform_device_destroy(&pdle->pdev->dev, NULL); kfree(pdle); } } EXPORT_SYMBOL_GPL(onboard_hub_destroy_pdevs);
linux-master
drivers/usb/misc/onboard_usb_hub_pdevs.c
// SPDX-License-Identifier: GPL-2.0 /* * chaoskey - driver for ChaosKey device from Altus Metrum. * * This device provides true random numbers using a noise source based * on a reverse-biased p-n junction in avalanche breakdown. More * details can be found at http://chaoskey.org * * The driver connects to the kernel hardware RNG interface to provide * entropy for /dev/random and other kernel activities. It also offers * a separate /dev/ entry to allow for direct access to the random * bit stream. * * Copyright © 2015 Keith Packard <[email protected]> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/wait.h> #include <linux/hw_random.h> #include <linux/mutex.h> #include <linux/uaccess.h> static struct usb_driver chaoskey_driver; static struct usb_class_driver chaoskey_class; static int chaoskey_rng_read(struct hwrng *rng, void *data, size_t max, bool wait); #define usb_dbg(usb_if, format, arg...) \ dev_dbg(&(usb_if)->dev, format, ## arg) #define usb_err(usb_if, format, arg...) \ dev_err(&(usb_if)->dev, format, ## arg) /* Version Information */ #define DRIVER_AUTHOR "Keith Packard, [email protected]" #define DRIVER_DESC "Altus Metrum ChaosKey driver" #define DRIVER_SHORT "chaoskey" MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); #define CHAOSKEY_VENDOR_ID 0x1d50 /* OpenMoko */ #define CHAOSKEY_PRODUCT_ID 0x60c6 /* ChaosKey */ #define ALEA_VENDOR_ID 0x12d8 /* Araneus */ #define ALEA_PRODUCT_ID 0x0001 /* Alea I */ #define CHAOSKEY_BUF_LEN 64 /* max size of USB full speed packet */ #define NAK_TIMEOUT (HZ) /* normal stall/wait timeout */ #define ALEA_FIRST_TIMEOUT (HZ*3) /* first stall/wait timeout for Alea */ #ifdef CONFIG_USB_DYNAMIC_MINORS #define USB_CHAOSKEY_MINOR_BASE 0 #else /* IOWARRIOR_MINOR_BASE + 16, not official yet */ #define USB_CHAOSKEY_MINOR_BASE 224 #endif static const struct usb_device_id chaoskey_table[] = { { USB_DEVICE(CHAOSKEY_VENDOR_ID, CHAOSKEY_PRODUCT_ID) }, { USB_DEVICE(ALEA_VENDOR_ID, ALEA_PRODUCT_ID) }, { }, }; MODULE_DEVICE_TABLE(usb, chaoskey_table); static void chaos_read_callback(struct urb *urb); /* Driver-local specific stuff */ struct chaoskey { struct usb_interface *interface; char in_ep; struct mutex lock; struct mutex rng_lock; int open; /* open count */ bool present; /* device not disconnected */ bool reading; /* ongoing IO */ bool reads_started; /* track first read for Alea */ int size; /* size of buf */ int valid; /* bytes of buf read */ int used; /* bytes of buf consumed */ char *name; /* product + serial */ struct hwrng hwrng; /* Embedded struct for hwrng */ int hwrng_registered; /* registered with hwrng API */ wait_queue_head_t wait_q; /* for timeouts */ struct urb *urb; /* for performing IO */ char *buf; }; static void chaoskey_free(struct chaoskey *dev) { if (dev) { usb_dbg(dev->interface, "free"); usb_free_urb(dev->urb); kfree(dev->name); kfree(dev->buf); usb_put_intf(dev->interface); kfree(dev); } } static int chaoskey_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_host_interface *altsetting = interface->cur_altsetting; struct usb_endpoint_descriptor *epd; int in_ep; struct chaoskey *dev; int result = -ENOMEM; int size; int res; usb_dbg(interface, "probe %s-%s", udev->product, udev->serial); /* Find the first bulk IN endpoint and its packet size */ res = usb_find_bulk_in_endpoint(altsetting, &epd); if (res) { usb_dbg(interface, "no IN endpoint found"); return res; } in_ep = usb_endpoint_num(epd); size = usb_endpoint_maxp(epd); /* Validate endpoint and size */ if (size <= 0) { usb_dbg(interface, "invalid size (%d)", size); return -ENODEV; } if (size > CHAOSKEY_BUF_LEN) { usb_dbg(interface, "size reduced from %d to %d\n", size, CHAOSKEY_BUF_LEN); size = CHAOSKEY_BUF_LEN; } /* Looks good, allocate and initialize */ dev = kzalloc(sizeof(struct chaoskey), GFP_KERNEL); if (dev == NULL) goto out; dev->interface = usb_get_intf(interface); dev->buf = kmalloc(size, GFP_KERNEL); if (dev->buf == NULL) goto out; dev->urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb) goto out; usb_fill_bulk_urb(dev->urb, udev, usb_rcvbulkpipe(udev, in_ep), dev->buf, size, chaos_read_callback, dev); /* Construct a name using the product and serial values. Each * device needs a unique name for the hwrng code */ if (udev->product && udev->serial) { dev->name = kasprintf(GFP_KERNEL, "%s-%s", udev->product, udev->serial); if (dev->name == NULL) goto out; } dev->in_ep = in_ep; if (le16_to_cpu(udev->descriptor.idVendor) != ALEA_VENDOR_ID) dev->reads_started = true; dev->size = size; dev->present = true; init_waitqueue_head(&dev->wait_q); mutex_init(&dev->lock); mutex_init(&dev->rng_lock); usb_set_intfdata(interface, dev); result = usb_register_dev(interface, &chaoskey_class); if (result) { usb_err(interface, "Unable to allocate minor number."); goto out; } dev->hwrng.name = dev->name ? dev->name : chaoskey_driver.name; dev->hwrng.read = chaoskey_rng_read; dev->hwrng_registered = (hwrng_register(&dev->hwrng) == 0); if (!dev->hwrng_registered) usb_err(interface, "Unable to register with hwrng"); usb_enable_autosuspend(udev); usb_dbg(interface, "chaoskey probe success, size %d", dev->size); return 0; out: usb_set_intfdata(interface, NULL); chaoskey_free(dev); return result; } static void chaoskey_disconnect(struct usb_interface *interface) { struct chaoskey *dev; usb_dbg(interface, "disconnect"); dev = usb_get_intfdata(interface); if (!dev) { usb_dbg(interface, "disconnect failed - no dev"); return; } if (dev->hwrng_registered) hwrng_unregister(&dev->hwrng); usb_deregister_dev(interface, &chaoskey_class); usb_set_intfdata(interface, NULL); mutex_lock(&dev->lock); dev->present = false; usb_poison_urb(dev->urb); if (!dev->open) { mutex_unlock(&dev->lock); chaoskey_free(dev); } else mutex_unlock(&dev->lock); usb_dbg(interface, "disconnect done"); } static int chaoskey_open(struct inode *inode, struct file *file) { struct chaoskey *dev; struct usb_interface *interface; /* get the interface from minor number and driver information */ interface = usb_find_interface(&chaoskey_driver, iminor(inode)); if (!interface) return -ENODEV; usb_dbg(interface, "open"); dev = usb_get_intfdata(interface); if (!dev) { usb_dbg(interface, "open (dev)"); return -ENODEV; } file->private_data = dev; mutex_lock(&dev->lock); ++dev->open; mutex_unlock(&dev->lock); usb_dbg(interface, "open success"); return 0; } static int chaoskey_release(struct inode *inode, struct file *file) { struct chaoskey *dev = file->private_data; struct usb_interface *interface; if (dev == NULL) return -ENODEV; interface = dev->interface; usb_dbg(interface, "release"); mutex_lock(&dev->lock); usb_dbg(interface, "open count at release is %d", dev->open); if (dev->open <= 0) { usb_dbg(interface, "invalid open count (%d)", dev->open); mutex_unlock(&dev->lock); return -ENODEV; } --dev->open; if (!dev->present) { if (dev->open == 0) { mutex_unlock(&dev->lock); chaoskey_free(dev); } else mutex_unlock(&dev->lock); } else mutex_unlock(&dev->lock); usb_dbg(interface, "release success"); return 0; } static void chaos_read_callback(struct urb *urb) { struct chaoskey *dev = urb->context; int status = urb->status; usb_dbg(dev->interface, "callback status (%d)", status); if (status == 0) dev->valid = urb->actual_length; else dev->valid = 0; dev->used = 0; /* must be seen first before validity is announced */ smp_wmb(); dev->reading = false; wake_up(&dev->wait_q); } /* Fill the buffer. Called with dev->lock held */ static int _chaoskey_fill(struct chaoskey *dev) { DEFINE_WAIT(wait); int result; bool started; usb_dbg(dev->interface, "fill"); /* Return immediately if someone called before the buffer was * empty */ if (dev->valid != dev->used) { usb_dbg(dev->interface, "not empty yet (valid %d used %d)", dev->valid, dev->used); return 0; } /* Bail if the device has been removed */ if (!dev->present) { usb_dbg(dev->interface, "device not present"); return -ENODEV; } /* Make sure the device is awake */ result = usb_autopm_get_interface(dev->interface); if (result) { usb_dbg(dev->interface, "wakeup failed (result %d)", result); return result; } dev->reading = true; result = usb_submit_urb(dev->urb, GFP_KERNEL); if (result < 0) { result = usb_translate_errors(result); dev->reading = false; goto out; } /* The first read on the Alea takes a little under 2 seconds. * Reads after the first read take only a few microseconds * though. Presumably the entropy-generating circuit needs * time to ramp up. So, we wait longer on the first read. */ started = dev->reads_started; dev->reads_started = true; result = wait_event_interruptible_timeout( dev->wait_q, !dev->reading, (started ? NAK_TIMEOUT : ALEA_FIRST_TIMEOUT) ); if (result < 0) { usb_kill_urb(dev->urb); goto out; } if (result == 0) { result = -ETIMEDOUT; usb_kill_urb(dev->urb); } else { result = dev->valid; } out: /* Let the device go back to sleep eventually */ usb_autopm_put_interface(dev->interface); usb_dbg(dev->interface, "read %d bytes", dev->valid); return result; } static ssize_t chaoskey_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct chaoskey *dev; ssize_t read_count = 0; int this_time; int result = 0; unsigned long remain; dev = file->private_data; if (dev == NULL || !dev->present) return -ENODEV; usb_dbg(dev->interface, "read %zu", count); while (count > 0) { /* Grab the rng_lock briefly to ensure that the hwrng interface * gets priority over other user access */ result = mutex_lock_interruptible(&dev->rng_lock); if (result) goto bail; mutex_unlock(&dev->rng_lock); result = mutex_lock_interruptible(&dev->lock); if (result) goto bail; if (dev->valid == dev->used) { result = _chaoskey_fill(dev); if (result < 0) { mutex_unlock(&dev->lock); goto bail; } } this_time = dev->valid - dev->used; if (this_time > count) this_time = count; remain = copy_to_user(buffer, dev->buf + dev->used, this_time); if (remain) { result = -EFAULT; /* Consume the bytes that were copied so we don't leak * data to user space */ dev->used += this_time - remain; mutex_unlock(&dev->lock); goto bail; } count -= this_time; read_count += this_time; buffer += this_time; dev->used += this_time; mutex_unlock(&dev->lock); } bail: if (read_count) { usb_dbg(dev->interface, "read %zu bytes", read_count); return read_count; } usb_dbg(dev->interface, "empty read, result %d", result); if (result == -ETIMEDOUT) result = -EAGAIN; return result; } static int chaoskey_rng_read(struct hwrng *rng, void *data, size_t max, bool wait) { struct chaoskey *dev = container_of(rng, struct chaoskey, hwrng); int this_time; usb_dbg(dev->interface, "rng_read max %zu wait %d", max, wait); if (!dev->present) { usb_dbg(dev->interface, "device not present"); return 0; } /* Hold the rng_lock until we acquire the device lock so that * this operation gets priority over other user access to the * device */ mutex_lock(&dev->rng_lock); mutex_lock(&dev->lock); mutex_unlock(&dev->rng_lock); /* Try to fill the buffer if empty. It doesn't actually matter * if _chaoskey_fill works; we'll just return zero bytes as * the buffer will still be empty */ if (dev->valid == dev->used) (void) _chaoskey_fill(dev); this_time = dev->valid - dev->used; if (this_time > max) this_time = max; memcpy(data, dev->buf + dev->used, this_time); dev->used += this_time; mutex_unlock(&dev->lock); usb_dbg(dev->interface, "rng_read this_time %d\n", this_time); return this_time; } #ifdef CONFIG_PM static int chaoskey_suspend(struct usb_interface *interface, pm_message_t message) { usb_dbg(interface, "suspend"); return 0; } static int chaoskey_resume(struct usb_interface *interface) { struct chaoskey *dev; struct usb_device *udev = interface_to_usbdev(interface); usb_dbg(interface, "resume"); dev = usb_get_intfdata(interface); /* * We may have lost power. * In that case the device that needs a long time * for the first requests needs an extended timeout * again */ if (le16_to_cpu(udev->descriptor.idVendor) == ALEA_VENDOR_ID) dev->reads_started = false; return 0; } #else #define chaoskey_suspend NULL #define chaoskey_resume NULL #endif /* file operation pointers */ static const struct file_operations chaoskey_fops = { .owner = THIS_MODULE, .read = chaoskey_read, .open = chaoskey_open, .release = chaoskey_release, .llseek = default_llseek, }; /* class driver information */ static struct usb_class_driver chaoskey_class = { .name = "chaoskey%d", .fops = &chaoskey_fops, .minor_base = USB_CHAOSKEY_MINOR_BASE, }; /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver chaoskey_driver = { .name = DRIVER_SHORT, .probe = chaoskey_probe, .disconnect = chaoskey_disconnect, .suspend = chaoskey_suspend, .resume = chaoskey_resume, .reset_resume = chaoskey_resume, .id_table = chaoskey_table, .supports_autosuspend = 1, }; module_usb_driver(chaoskey_driver);
linux-master
drivers/usb/misc/chaoskey.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for onboard USB hubs * * Copyright (c) 2022, Google LLC */ #include <linux/device.h> #include <linux/export.h> #include <linux/gpio/consumer.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/suspend.h> #include <linux/sysfs.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/onboard_hub.h> #include <linux/workqueue.h> #include "onboard_usb_hub.h" /* * Use generic names, as the actual names might differ between hubs. If a new * hub requires more than the currently supported supplies, add a new one here. */ static const char * const supply_names[] = { "vdd", "vdd2", }; #define MAX_SUPPLIES ARRAY_SIZE(supply_names) static void onboard_hub_attach_usb_driver(struct work_struct *work); static struct usb_device_driver onboard_hub_usbdev_driver; static DECLARE_WORK(attach_usb_driver_work, onboard_hub_attach_usb_driver); /************************** Platform driver **************************/ struct usbdev_node { struct usb_device *udev; struct list_head list; }; struct onboard_hub { struct regulator_bulk_data supplies[MAX_SUPPLIES]; struct device *dev; const struct onboard_hub_pdata *pdata; struct gpio_desc *reset_gpio; bool always_powered_in_suspend; bool is_powered_on; bool going_away; struct list_head udev_list; struct mutex lock; }; static int onboard_hub_power_on(struct onboard_hub *hub) { int err; err = regulator_bulk_enable(hub->pdata->num_supplies, hub->supplies); if (err) { dev_err(hub->dev, "failed to enable supplies: %d\n", err); return err; } fsleep(hub->pdata->reset_us); gpiod_set_value_cansleep(hub->reset_gpio, 0); hub->is_powered_on = true; return 0; } static int onboard_hub_power_off(struct onboard_hub *hub) { int err; gpiod_set_value_cansleep(hub->reset_gpio, 1); err = regulator_bulk_disable(hub->pdata->num_supplies, hub->supplies); if (err) { dev_err(hub->dev, "failed to disable supplies: %d\n", err); return err; } hub->is_powered_on = false; return 0; } static int __maybe_unused onboard_hub_suspend(struct device *dev) { struct onboard_hub *hub = dev_get_drvdata(dev); struct usbdev_node *node; bool power_off = true; if (hub->always_powered_in_suspend) return 0; mutex_lock(&hub->lock); list_for_each_entry(node, &hub->udev_list, list) { if (!device_may_wakeup(node->udev->bus->controller)) continue; if (usb_wakeup_enabled_descendants(node->udev)) { power_off = false; break; } } mutex_unlock(&hub->lock); if (!power_off) return 0; return onboard_hub_power_off(hub); } static int __maybe_unused onboard_hub_resume(struct device *dev) { struct onboard_hub *hub = dev_get_drvdata(dev); if (hub->is_powered_on) return 0; return onboard_hub_power_on(hub); } static inline void get_udev_link_name(const struct usb_device *udev, char *buf, size_t size) { snprintf(buf, size, "usb_dev.%s", dev_name(&udev->dev)); } static int onboard_hub_add_usbdev(struct onboard_hub *hub, struct usb_device *udev) { struct usbdev_node *node; char link_name[64]; int err; mutex_lock(&hub->lock); if (hub->going_away) { err = -EINVAL; goto error; } node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) { err = -ENOMEM; goto error; } node->udev = udev; list_add(&node->list, &hub->udev_list); mutex_unlock(&hub->lock); get_udev_link_name(udev, link_name, sizeof(link_name)); WARN_ON(sysfs_create_link(&hub->dev->kobj, &udev->dev.kobj, link_name)); return 0; error: mutex_unlock(&hub->lock); return err; } static void onboard_hub_remove_usbdev(struct onboard_hub *hub, const struct usb_device *udev) { struct usbdev_node *node; char link_name[64]; get_udev_link_name(udev, link_name, sizeof(link_name)); sysfs_remove_link(&hub->dev->kobj, link_name); mutex_lock(&hub->lock); list_for_each_entry(node, &hub->udev_list, list) { if (node->udev == udev) { list_del(&node->list); kfree(node); break; } } mutex_unlock(&hub->lock); } static ssize_t always_powered_in_suspend_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct onboard_hub *hub = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hub->always_powered_in_suspend); } static ssize_t always_powered_in_suspend_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct onboard_hub *hub = dev_get_drvdata(dev); bool val; int ret; ret = kstrtobool(buf, &val); if (ret < 0) return ret; hub->always_powered_in_suspend = val; return count; } static DEVICE_ATTR_RW(always_powered_in_suspend); static struct attribute *onboard_hub_attrs[] = { &dev_attr_always_powered_in_suspend.attr, NULL, }; ATTRIBUTE_GROUPS(onboard_hub); static void onboard_hub_attach_usb_driver(struct work_struct *work) { int err; err = driver_attach(&onboard_hub_usbdev_driver.drvwrap.driver); if (err) pr_err("Failed to attach USB driver: %d\n", err); } static int onboard_hub_probe(struct platform_device *pdev) { const struct of_device_id *of_id; struct device *dev = &pdev->dev; struct onboard_hub *hub; unsigned int i; int err; hub = devm_kzalloc(dev, sizeof(*hub), GFP_KERNEL); if (!hub) return -ENOMEM; of_id = of_match_device(onboard_hub_match, &pdev->dev); if (!of_id) return -ENODEV; hub->pdata = of_id->data; if (!hub->pdata) return -EINVAL; if (hub->pdata->num_supplies > MAX_SUPPLIES) return dev_err_probe(dev, -EINVAL, "max %zu supplies supported!\n", MAX_SUPPLIES); for (i = 0; i < hub->pdata->num_supplies; i++) hub->supplies[i].supply = supply_names[i]; err = devm_regulator_bulk_get(dev, hub->pdata->num_supplies, hub->supplies); if (err) { dev_err(dev, "Failed to get regulator supplies: %d\n", err); return err; } hub->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(hub->reset_gpio)) return dev_err_probe(dev, PTR_ERR(hub->reset_gpio), "failed to get reset GPIO\n"); hub->dev = dev; mutex_init(&hub->lock); INIT_LIST_HEAD(&hub->udev_list); dev_set_drvdata(dev, hub); err = onboard_hub_power_on(hub); if (err) return err; /* * The USB driver might have been detached from the USB devices by * onboard_hub_remove() (e.g. through an 'unbind' by userspace), * make sure to re-attach it if needed. * * This needs to be done deferred to avoid self-deadlocks on systems * with nested onboard hubs. */ schedule_work(&attach_usb_driver_work); return 0; } static void onboard_hub_remove(struct platform_device *pdev) { struct onboard_hub *hub = dev_get_drvdata(&pdev->dev); struct usbdev_node *node; struct usb_device *udev; hub->going_away = true; mutex_lock(&hub->lock); /* unbind the USB devices to avoid dangling references to this device */ while (!list_empty(&hub->udev_list)) { node = list_first_entry(&hub->udev_list, struct usbdev_node, list); udev = node->udev; /* * Unbinding the driver will call onboard_hub_remove_usbdev(), * which acquires hub->lock. We must release the lock first. */ get_device(&udev->dev); mutex_unlock(&hub->lock); device_release_driver(&udev->dev); put_device(&udev->dev); mutex_lock(&hub->lock); } mutex_unlock(&hub->lock); onboard_hub_power_off(hub); } MODULE_DEVICE_TABLE(of, onboard_hub_match); static const struct dev_pm_ops __maybe_unused onboard_hub_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(onboard_hub_suspend, onboard_hub_resume) }; static struct platform_driver onboard_hub_driver = { .probe = onboard_hub_probe, .remove_new = onboard_hub_remove, .driver = { .name = "onboard-usb-hub", .of_match_table = onboard_hub_match, .pm = pm_ptr(&onboard_hub_pm_ops), .dev_groups = onboard_hub_groups, }, }; /************************** USB driver **************************/ #define VENDOR_ID_CYPRESS 0x04b4 #define VENDOR_ID_GENESYS 0x05e3 #define VENDOR_ID_MICROCHIP 0x0424 #define VENDOR_ID_REALTEK 0x0bda #define VENDOR_ID_TI 0x0451 #define VENDOR_ID_VIA 0x2109 /* * Returns the onboard_hub platform device that is associated with the USB * device passed as parameter. */ static struct onboard_hub *_find_onboard_hub(struct device *dev) { struct platform_device *pdev; struct device_node *np; struct onboard_hub *hub; pdev = of_find_device_by_node(dev->of_node); if (!pdev) { np = of_parse_phandle(dev->of_node, "peer-hub", 0); if (!np) { dev_err(dev, "failed to find device node for peer hub\n"); return ERR_PTR(-EINVAL); } pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) return ERR_PTR(-ENODEV); } hub = dev_get_drvdata(&pdev->dev); put_device(&pdev->dev); /* * The presence of drvdata ('hub') indicates that the platform driver * finished probing. This handles the case where (conceivably) we could * be running at the exact same time as the platform driver's probe. If * we detect the race we request probe deferral and we'll come back and * try again. */ if (!hub) return ERR_PTR(-EPROBE_DEFER); return hub; } static int onboard_hub_usbdev_probe(struct usb_device *udev) { struct device *dev = &udev->dev; struct onboard_hub *hub; int err; /* ignore supported hubs without device tree node */ if (!dev->of_node) return -ENODEV; hub = _find_onboard_hub(dev); if (IS_ERR(hub)) return PTR_ERR(hub); dev_set_drvdata(dev, hub); err = onboard_hub_add_usbdev(hub, udev); if (err) return err; return 0; } static void onboard_hub_usbdev_disconnect(struct usb_device *udev) { struct onboard_hub *hub = dev_get_drvdata(&udev->dev); onboard_hub_remove_usbdev(hub, udev); } static const struct usb_device_id onboard_hub_id_table[] = { { USB_DEVICE(VENDOR_ID_CYPRESS, 0x6504) }, /* CYUSB33{0,1,2}x/CYUSB230x 3.0 */ { USB_DEVICE(VENDOR_ID_CYPRESS, 0x6506) }, /* CYUSB33{0,1,2}x/CYUSB230x 2.0 */ { USB_DEVICE(VENDOR_ID_GENESYS, 0x0608) }, /* Genesys Logic GL850G USB 2.0 */ { USB_DEVICE(VENDOR_ID_GENESYS, 0x0610) }, /* Genesys Logic GL852G USB 2.0 */ { USB_DEVICE(VENDOR_ID_GENESYS, 0x0620) }, /* Genesys Logic GL3523 USB 3.1 */ { USB_DEVICE(VENDOR_ID_MICROCHIP, 0x2514) }, /* USB2514B USB 2.0 */ { USB_DEVICE(VENDOR_ID_MICROCHIP, 0x2517) }, /* USB2517 USB 2.0 */ { USB_DEVICE(VENDOR_ID_REALTEK, 0x0411) }, /* RTS5411 USB 3.1 */ { USB_DEVICE(VENDOR_ID_REALTEK, 0x5411) }, /* RTS5411 USB 2.1 */ { USB_DEVICE(VENDOR_ID_REALTEK, 0x0414) }, /* RTS5414 USB 3.2 */ { USB_DEVICE(VENDOR_ID_REALTEK, 0x5414) }, /* RTS5414 USB 2.1 */ { USB_DEVICE(VENDOR_ID_TI, 0x8140) }, /* TI USB8041 3.0 */ { USB_DEVICE(VENDOR_ID_TI, 0x8142) }, /* TI USB8041 2.0 */ { USB_DEVICE(VENDOR_ID_VIA, 0x0817) }, /* VIA VL817 3.1 */ { USB_DEVICE(VENDOR_ID_VIA, 0x2817) }, /* VIA VL817 2.0 */ {} }; MODULE_DEVICE_TABLE(usb, onboard_hub_id_table); static struct usb_device_driver onboard_hub_usbdev_driver = { .name = "onboard-usb-hub", .probe = onboard_hub_usbdev_probe, .disconnect = onboard_hub_usbdev_disconnect, .generic_subclass = 1, .supports_autosuspend = 1, .id_table = onboard_hub_id_table, }; static int __init onboard_hub_init(void) { int ret; ret = usb_register_device_driver(&onboard_hub_usbdev_driver, THIS_MODULE); if (ret) return ret; ret = platform_driver_register(&onboard_hub_driver); if (ret) usb_deregister_device_driver(&onboard_hub_usbdev_driver); return ret; } module_init(onboard_hub_init); static void __exit onboard_hub_exit(void) { usb_deregister_device_driver(&onboard_hub_usbdev_driver); platform_driver_unregister(&onboard_hub_driver); cancel_work_sync(&attach_usb_driver_work); } module_exit(onboard_hub_exit); MODULE_AUTHOR("Matthias Kaehlcke <[email protected]>"); MODULE_DESCRIPTION("Driver for discrete onboard USB hubs"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/misc/onboard_usb_hub.c
// SPDX-License-Identifier: GPL-2.0 /***************************************************************************** * USBLCD Kernel Driver * * Version 1.05 * * (C) 2005 Georges Toth <[email protected]> * * * * This file is licensed under the GPL. See COPYING in the package. * * Based on usb-skeleton.c 2.0 by Greg Kroah-Hartman ([email protected]) * * * * * * 28.02.05 Complete rewrite of the original usblcd.c driver, * * based on usb_skeleton.c. * * This new driver allows more than one USB-LCD to be connected * * and controlled, at once * *****************************************************************************/ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/uaccess.h> #include <linux/usb.h> #define DRIVER_VERSION "USBLCD Driver Version 1.05" #define USBLCD_MINOR 144 #define IOCTL_GET_HARD_VERSION 1 #define IOCTL_GET_DRV_VERSION 2 static const struct usb_device_id id_table[] = { { .idVendor = 0x10D2, .match_flags = USB_DEVICE_ID_MATCH_VENDOR, }, { }, }; MODULE_DEVICE_TABLE(usb, id_table); struct usb_lcd { struct usb_device *udev; /* init: probe_lcd */ struct usb_interface *interface; /* the interface for this device */ unsigned char *bulk_in_buffer; /* the buffer to receive data */ size_t bulk_in_size; /* the size of the receive buffer */ __u8 bulk_in_endpointAddr; /* the address of the bulk in endpoint */ __u8 bulk_out_endpointAddr; /* the address of the bulk out endpoint */ struct kref kref; struct semaphore limit_sem; /* to stop writes at full throttle from using up all RAM */ struct usb_anchor submitted; /* URBs to wait for before suspend */ struct rw_semaphore io_rwsem; unsigned long disconnected:1; }; #define to_lcd_dev(d) container_of(d, struct usb_lcd, kref) #define USB_LCD_CONCURRENT_WRITES 5 static struct usb_driver lcd_driver; static void lcd_delete(struct kref *kref) { struct usb_lcd *dev = to_lcd_dev(kref); usb_put_dev(dev->udev); kfree(dev->bulk_in_buffer); kfree(dev); } static int lcd_open(struct inode *inode, struct file *file) { struct usb_lcd *dev; struct usb_interface *interface; int subminor, r; subminor = iminor(inode); interface = usb_find_interface(&lcd_driver, subminor); if (!interface) { pr_err("USBLCD: %s - error, can't find device for minor %d\n", __func__, subminor); return -ENODEV; } dev = usb_get_intfdata(interface); /* increment our usage count for the device */ kref_get(&dev->kref); /* grab a power reference */ r = usb_autopm_get_interface(interface); if (r < 0) { kref_put(&dev->kref, lcd_delete); return r; } /* save our object in the file's private structure */ file->private_data = dev; return 0; } static int lcd_release(struct inode *inode, struct file *file) { struct usb_lcd *dev; dev = file->private_data; if (dev == NULL) return -ENODEV; /* decrement the count on our device */ usb_autopm_put_interface(dev->interface); kref_put(&dev->kref, lcd_delete); return 0; } static ssize_t lcd_read(struct file *file, char __user * buffer, size_t count, loff_t *ppos) { struct usb_lcd *dev; int retval = 0; int bytes_read; dev = file->private_data; down_read(&dev->io_rwsem); if (dev->disconnected) { retval = -ENODEV; goto out_up_io; } /* do a blocking bulk read to get data from the device */ retval = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr), dev->bulk_in_buffer, min(dev->bulk_in_size, count), &bytes_read, 10000); /* if the read was successful, copy the data to userspace */ if (!retval) { if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read)) retval = -EFAULT; else retval = bytes_read; } out_up_io: up_read(&dev->io_rwsem); return retval; } static long lcd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct usb_lcd *dev; u16 bcdDevice; char buf[30]; dev = file->private_data; if (dev == NULL) return -ENODEV; switch (cmd) { case IOCTL_GET_HARD_VERSION: bcdDevice = le16_to_cpu((dev->udev)->descriptor.bcdDevice); sprintf(buf, "%1d%1d.%1d%1d", (bcdDevice & 0xF000)>>12, (bcdDevice & 0xF00)>>8, (bcdDevice & 0xF0)>>4, (bcdDevice & 0xF)); if (copy_to_user((void __user *)arg, buf, strlen(buf)) != 0) return -EFAULT; break; case IOCTL_GET_DRV_VERSION: sprintf(buf, DRIVER_VERSION); if (copy_to_user((void __user *)arg, buf, strlen(buf)) != 0) return -EFAULT; break; default: return -ENOTTY; } return 0; } static void lcd_write_bulk_callback(struct urb *urb) { struct usb_lcd *dev; int status = urb->status; dev = urb->context; /* sync/async unlink faults aren't errors */ if (status && !(status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN)) { dev_dbg(&dev->interface->dev, "nonzero write bulk status received: %d\n", status); } /* free up our allocated buffer */ usb_free_coherent(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); up(&dev->limit_sem); } static ssize_t lcd_write(struct file *file, const char __user * user_buffer, size_t count, loff_t *ppos) { struct usb_lcd *dev; int retval = 0, r; struct urb *urb = NULL; char *buf = NULL; dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; r = down_interruptible(&dev->limit_sem); if (r < 0) return -EINTR; down_read(&dev->io_rwsem); if (dev->disconnected) { retval = -ENODEV; goto err_up_io; } /* create a urb, and a buffer for it, and copy the data to the urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto err_up_io; } buf = usb_alloc_coherent(dev->udev, count, GFP_KERNEL, &urb->transfer_dma); if (!buf) { retval = -ENOMEM; goto error; } if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; goto error; } /* initialize the urb properly */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, count, lcd_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->submitted); /* send the data out the bulk port */ retval = usb_submit_urb(urb, GFP_KERNEL); if (retval) { dev_err(&dev->udev->dev, "%s - failed submitting write urb, error %d\n", __func__, retval); goto error_unanchor; } /* release our reference to this urb, the USB core will eventually free it entirely */ usb_free_urb(urb); up_read(&dev->io_rwsem); exit: return count; error_unanchor: usb_unanchor_urb(urb); error: usb_free_coherent(dev->udev, count, buf, urb->transfer_dma); usb_free_urb(urb); err_up_io: up_read(&dev->io_rwsem); up(&dev->limit_sem); return retval; } static const struct file_operations lcd_fops = { .owner = THIS_MODULE, .read = lcd_read, .write = lcd_write, .open = lcd_open, .unlocked_ioctl = lcd_ioctl, .release = lcd_release, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver lcd_class = { .name = "lcd%d", .fops = &lcd_fops, .minor_base = USBLCD_MINOR, }; static int lcd_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_lcd *dev = NULL; struct usb_endpoint_descriptor *bulk_in, *bulk_out; int i; int retval; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; kref_init(&dev->kref); sema_init(&dev->limit_sem, USB_LCD_CONCURRENT_WRITES); init_rwsem(&dev->io_rwsem); init_usb_anchor(&dev->submitted); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = interface; if (le16_to_cpu(dev->udev->descriptor.idProduct) != 0x0001) { dev_warn(&interface->dev, "USBLCD model not supported.\n"); retval = -ENODEV; goto error; } /* set up the endpoint information */ /* use only the first bulk-in and bulk-out endpoints */ retval = usb_find_common_endpoints(interface->cur_altsetting, &bulk_in, &bulk_out, NULL, NULL); if (retval) { dev_err(&interface->dev, "Could not find both bulk-in and bulk-out endpoints\n"); goto error; } dev->bulk_in_size = usb_endpoint_maxp(bulk_in); dev->bulk_in_endpointAddr = bulk_in->bEndpointAddress; dev->bulk_in_buffer = kmalloc(dev->bulk_in_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { retval = -ENOMEM; goto error; } dev->bulk_out_endpointAddr = bulk_out->bEndpointAddress; /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &lcd_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); goto error; } i = le16_to_cpu(dev->udev->descriptor.bcdDevice); dev_info(&interface->dev, "USBLCD Version %1d%1d.%1d%1d found " "at address %d\n", (i & 0xF000)>>12, (i & 0xF00)>>8, (i & 0xF0)>>4, (i & 0xF), dev->udev->devnum); /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "USB LCD device now attached to USBLCD-%d\n", interface->minor); return 0; error: kref_put(&dev->kref, lcd_delete); return retval; } static void lcd_draw_down(struct usb_lcd *dev) { int time; time = usb_wait_anchor_empty_timeout(&dev->submitted, 1000); if (!time) usb_kill_anchored_urbs(&dev->submitted); } static int lcd_suspend(struct usb_interface *intf, pm_message_t message) { struct usb_lcd *dev = usb_get_intfdata(intf); if (!dev) return 0; lcd_draw_down(dev); return 0; } static int lcd_resume(struct usb_interface *intf) { return 0; } static void lcd_disconnect(struct usb_interface *interface) { struct usb_lcd *dev = usb_get_intfdata(interface); int minor = interface->minor; /* give back our minor */ usb_deregister_dev(interface, &lcd_class); down_write(&dev->io_rwsem); dev->disconnected = 1; up_write(&dev->io_rwsem); usb_kill_anchored_urbs(&dev->submitted); /* decrement our usage count */ kref_put(&dev->kref, lcd_delete); dev_info(&interface->dev, "USB LCD #%d now disconnected\n", minor); } static struct usb_driver lcd_driver = { .name = "usblcd", .probe = lcd_probe, .disconnect = lcd_disconnect, .suspend = lcd_suspend, .resume = lcd_resume, .id_table = id_table, .supports_autosuspend = 1, }; module_usb_driver(lcd_driver); MODULE_AUTHOR("Georges Toth <[email protected]>"); MODULE_DESCRIPTION(DRIVER_VERSION); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/usblcd.c
// SPDX-License-Identifier: GPL-2.0+ /* * PlayStation 2 Trance Vibrator driver * * Copyright (C) 2006 Sam Hocevar <[email protected]> */ /* Standard include files */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #define DRIVER_AUTHOR "Sam Hocevar, [email protected]" #define DRIVER_DESC "PlayStation 2 Trance Vibrator driver" #define TRANCEVIBRATOR_VENDOR_ID 0x0b49 /* ASCII Corporation */ #define TRANCEVIBRATOR_PRODUCT_ID 0x064f /* Trance Vibrator */ static const struct usb_device_id id_table[] = { { USB_DEVICE(TRANCEVIBRATOR_VENDOR_ID, TRANCEVIBRATOR_PRODUCT_ID) }, { }, }; MODULE_DEVICE_TABLE (usb, id_table); /* Driver-local specific stuff */ struct trancevibrator { struct usb_device *udev; unsigned int speed; }; static ssize_t speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct trancevibrator *tv = usb_get_intfdata(intf); return sprintf(buf, "%d\n", tv->speed); } static ssize_t speed_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct trancevibrator *tv = usb_get_intfdata(intf); int temp, retval, old; retval = kstrtoint(buf, 10, &temp); if (retval) return retval; if (temp > 255) temp = 255; else if (temp < 0) temp = 0; old = tv->speed; tv->speed = temp; dev_dbg(&tv->udev->dev, "speed = %d\n", tv->speed); /* Set speed */ retval = usb_control_msg(tv->udev, usb_sndctrlpipe(tv->udev, 0), 0x01, /* vendor request: set speed */ USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, tv->speed, /* speed value */ 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval) { tv->speed = old; dev_dbg(&tv->udev->dev, "retval = %d\n", retval); return retval; } return count; } static DEVICE_ATTR_RW(speed); static struct attribute *tv_attrs[] = { &dev_attr_speed.attr, NULL, }; ATTRIBUTE_GROUPS(tv); static int tv_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct trancevibrator *dev; int retval; dev = kzalloc(sizeof(struct trancevibrator), GFP_KERNEL); if (!dev) { retval = -ENOMEM; goto error; } dev->udev = usb_get_dev(udev); usb_set_intfdata(interface, dev); return 0; error: kfree(dev); return retval; } static void tv_disconnect(struct usb_interface *interface) { struct trancevibrator *dev; dev = usb_get_intfdata (interface); usb_set_intfdata(interface, NULL); usb_put_dev(dev->udev); kfree(dev); } /* USB subsystem object */ static struct usb_driver tv_driver = { .name = "trancevibrator", .probe = tv_probe, .disconnect = tv_disconnect, .id_table = id_table, .dev_groups = tv_groups, }; module_usb_driver(tv_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/trancevibrator.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020, Broadcom */ #include <linux/init.h> #include <linux/types.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/device.h> #include <linux/of.h> #include <linux/kernel.h> #include <linux/kdebug.h> #include <linux/gpio/consumer.h> struct out_pin { u32 enable_mask; u32 value_mask; u32 changed_mask; u32 clr_changed_mask; struct gpio_desc *gpiod; const char *name; }; struct in_pin { u32 enable_mask; u32 value_mask; struct gpio_desc *gpiod; const char *name; struct brcmstb_usb_pinmap_data *pdata; }; struct brcmstb_usb_pinmap_data { void __iomem *regs; int in_count; struct in_pin *in_pins; int out_count; struct out_pin *out_pins; }; static void pinmap_set(void __iomem *reg, u32 mask) { u32 val; val = readl(reg); val |= mask; writel(val, reg); } static void pinmap_unset(void __iomem *reg, u32 mask) { u32 val; val = readl(reg); val &= ~mask; writel(val, reg); } static void sync_in_pin(struct in_pin *pin) { u32 val; val = gpiod_get_value(pin->gpiod); if (val) pinmap_set(pin->pdata->regs, pin->value_mask); else pinmap_unset(pin->pdata->regs, pin->value_mask); } /* * Interrupt from override register, propagate from override bit * to GPIO. */ static irqreturn_t brcmstb_usb_pinmap_ovr_isr(int irq, void *dev_id) { struct brcmstb_usb_pinmap_data *pdata = dev_id; struct out_pin *pout; u32 val; u32 bit; int x; pr_debug("%s: reg: 0x%x\n", __func__, readl(pdata->regs)); pout = pdata->out_pins; for (x = 0; x < pdata->out_count; x++) { val = readl(pdata->regs); if (val & pout->changed_mask) { pinmap_set(pdata->regs, pout->clr_changed_mask); pinmap_unset(pdata->regs, pout->clr_changed_mask); bit = val & pout->value_mask; gpiod_set_value(pout->gpiod, bit ? 1 : 0); pr_debug("%s: %s bit changed state to %d\n", __func__, pout->name, bit ? 1 : 0); } } return IRQ_HANDLED; } /* * Interrupt from GPIO, propagate from GPIO to override bit. */ static irqreturn_t brcmstb_usb_pinmap_gpio_isr(int irq, void *dev_id) { struct in_pin *pin = dev_id; pr_debug("%s: %s pin changed state\n", __func__, pin->name); sync_in_pin(pin); return IRQ_HANDLED; } static void get_pin_counts(struct device_node *dn, int *in_count, int *out_count) { int in; int out; *in_count = 0; *out_count = 0; in = of_property_count_strings(dn, "brcm,in-functions"); if (in < 0) return; out = of_property_count_strings(dn, "brcm,out-functions"); if (out < 0) return; *in_count = in; *out_count = out; } static int parse_pins(struct device *dev, struct device_node *dn, struct brcmstb_usb_pinmap_data *pdata) { struct out_pin *pout; struct in_pin *pin; int index; int res; int x; pin = pdata->in_pins; for (x = 0, index = 0; x < pdata->in_count; x++) { pin->gpiod = devm_gpiod_get_index(dev, "in", x, GPIOD_IN); if (IS_ERR(pin->gpiod)) { dev_err(dev, "Error getting gpio %s\n", pin->name); return PTR_ERR(pin->gpiod); } res = of_property_read_string_index(dn, "brcm,in-functions", x, &pin->name); if (res < 0) { dev_err(dev, "Error getting brcm,in-functions for %s\n", pin->name); return res; } res = of_property_read_u32_index(dn, "brcm,in-masks", index++, &pin->enable_mask); if (res < 0) { dev_err(dev, "Error getting 1st brcm,in-masks for %s\n", pin->name); return res; } res = of_property_read_u32_index(dn, "brcm,in-masks", index++, &pin->value_mask); if (res < 0) { dev_err(dev, "Error getting 2nd brcm,in-masks for %s\n", pin->name); return res; } pin->pdata = pdata; pin++; } pout = pdata->out_pins; for (x = 0, index = 0; x < pdata->out_count; x++) { pout->gpiod = devm_gpiod_get_index(dev, "out", x, GPIOD_OUT_HIGH); if (IS_ERR(pout->gpiod)) { dev_err(dev, "Error getting gpio %s\n", pin->name); return PTR_ERR(pout->gpiod); } res = of_property_read_string_index(dn, "brcm,out-functions", x, &pout->name); if (res < 0) { dev_err(dev, "Error getting brcm,out-functions for %s\n", pout->name); return res; } res = of_property_read_u32_index(dn, "brcm,out-masks", index++, &pout->enable_mask); if (res < 0) { dev_err(dev, "Error getting 1st brcm,out-masks for %s\n", pout->name); return res; } res = of_property_read_u32_index(dn, "brcm,out-masks", index++, &pout->value_mask); if (res < 0) { dev_err(dev, "Error getting 2nd brcm,out-masks for %s\n", pout->name); return res; } res = of_property_read_u32_index(dn, "brcm,out-masks", index++, &pout->changed_mask); if (res < 0) { dev_err(dev, "Error getting 3rd brcm,out-masks for %s\n", pout->name); return res; } res = of_property_read_u32_index(dn, "brcm,out-masks", index++, &pout->clr_changed_mask); if (res < 0) { dev_err(dev, "Error getting 4th out-masks for %s\n", pout->name); return res; } pout++; } return 0; } static void sync_all_pins(struct brcmstb_usb_pinmap_data *pdata) { struct out_pin *pout; struct in_pin *pin; int val; int x; /* * Enable the override, clear any changed condition and * propagate the state to the GPIO for all out pins. */ pout = pdata->out_pins; for (x = 0; x < pdata->out_count; x++) { pinmap_set(pdata->regs, pout->enable_mask); pinmap_set(pdata->regs, pout->clr_changed_mask); pinmap_unset(pdata->regs, pout->clr_changed_mask); val = readl(pdata->regs) & pout->value_mask; gpiod_set_value(pout->gpiod, val ? 1 : 0); pout++; } /* sync and enable all in pins. */ pin = pdata->in_pins; for (x = 0; x < pdata->in_count; x++) { sync_in_pin(pin); pinmap_set(pdata->regs, pin->enable_mask); pin++; } } static int __init brcmstb_usb_pinmap_probe(struct platform_device *pdev) { struct device_node *dn = pdev->dev.of_node; struct brcmstb_usb_pinmap_data *pdata; struct in_pin *pin; struct resource *r; int out_count; int in_count; int err; int irq; int x; get_pin_counts(dn, &in_count, &out_count); if ((in_count + out_count) == 0) return -EINVAL; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) return -EINVAL; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata) + (sizeof(struct in_pin) * in_count) + (sizeof(struct out_pin) * out_count), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->in_count = in_count; pdata->out_count = out_count; pdata->in_pins = (struct in_pin *)(pdata + 1); pdata->out_pins = (struct out_pin *)(pdata->in_pins + in_count); pdata->regs = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (!pdata->regs) return -ENOMEM; platform_set_drvdata(pdev, pdata); err = parse_pins(&pdev->dev, dn, pdata); if (err) return err; sync_all_pins(pdata); if (out_count) { /* Enable interrupt for out pins */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; err = devm_request_irq(&pdev->dev, irq, brcmstb_usb_pinmap_ovr_isr, IRQF_TRIGGER_RISING, pdev->name, pdata); if (err < 0) { dev_err(&pdev->dev, "Error requesting IRQ\n"); return err; } } for (x = 0, pin = pdata->in_pins; x < pdata->in_count; x++, pin++) { irq = gpiod_to_irq(pin->gpiod); if (irq < 0) { dev_err(&pdev->dev, "Error getting IRQ for %s pin\n", pin->name); return irq; } err = devm_request_irq(&pdev->dev, irq, brcmstb_usb_pinmap_gpio_isr, IRQF_SHARED | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, pdev->name, pin); if (err < 0) { dev_err(&pdev->dev, "Error requesting IRQ for %s pin\n", pin->name); return err; } } dev_dbg(&pdev->dev, "Driver probe succeeded\n"); dev_dbg(&pdev->dev, "In pin count: %d, out pin count: %d\n", pdata->in_count, pdata->out_count); return 0; } static const struct of_device_id brcmstb_usb_pinmap_of_match[] = { { .compatible = "brcm,usb-pinmap" }, { }, }; static struct platform_driver brcmstb_usb_pinmap_driver = { .driver = { .name = "brcm-usb-pinmap", .of_match_table = brcmstb_usb_pinmap_of_match, }, }; static int __init brcmstb_usb_pinmap_init(void) { return platform_driver_probe(&brcmstb_usb_pinmap_driver, brcmstb_usb_pinmap_probe); } module_init(brcmstb_usb_pinmap_init); MODULE_AUTHOR("Al Cooper <[email protected]>"); MODULE_DESCRIPTION("Broadcom USB Pinmap Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/brcmstb-usb-pinmap.c
// SPDX-License-Identifier: GPL-2.0+ /* * Fast-charge control for Apple "MFi" devices * * Copyright (C) 2019 Bastien Nocera <[email protected]> */ /* Standard include files */ #include <linux/module.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/usb.h> MODULE_AUTHOR("Bastien Nocera <[email protected]>"); MODULE_DESCRIPTION("Fast-charge control for Apple \"MFi\" devices"); MODULE_LICENSE("GPL"); #define TRICKLE_CURRENT_MA 0 #define FAST_CURRENT_MA 2500 #define APPLE_VENDOR_ID 0x05ac /* Apple */ /* The product ID is defined as starting with 0x12nn, as per the * "Choosing an Apple Device USB Configuration" section in * release R9 (2012) of the "MFi Accessory Hardware Specification" * * To distinguish an Apple device, a USB host can check the device * descriptor of attached USB devices for the following fields: * ■ Vendor ID: 0x05AC * ■ Product ID: 0x12nn * * Those checks will be done in .match() and .probe(). */ static const struct usb_device_id mfi_fc_id_table[] = { { .idVendor = APPLE_VENDOR_ID, .match_flags = USB_DEVICE_ID_MATCH_VENDOR }, {}, }; MODULE_DEVICE_TABLE(usb, mfi_fc_id_table); /* Driver-local specific stuff */ struct mfi_device { struct usb_device *udev; struct power_supply *battery; int charge_type; }; static int apple_mfi_fc_set_charge_type(struct mfi_device *mfi, const union power_supply_propval *val) { int current_ma; int retval; __u8 request_type; if (mfi->charge_type == val->intval) { dev_dbg(&mfi->udev->dev, "charge type %d already set\n", mfi->charge_type); return 0; } switch (val->intval) { case POWER_SUPPLY_CHARGE_TYPE_TRICKLE: current_ma = TRICKLE_CURRENT_MA; break; case POWER_SUPPLY_CHARGE_TYPE_FAST: current_ma = FAST_CURRENT_MA; break; default: return -EINVAL; } request_type = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE; retval = usb_control_msg(mfi->udev, usb_sndctrlpipe(mfi->udev, 0), 0x40, /* Vendor‐defined power request */ request_type, current_ma, /* wValue, current offset */ current_ma, /* wIndex, current offset */ NULL, 0, USB_CTRL_GET_TIMEOUT); if (retval) { dev_dbg(&mfi->udev->dev, "retval = %d\n", retval); return retval; } mfi->charge_type = val->intval; return 0; } static int apple_mfi_fc_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mfi_device *mfi = power_supply_get_drvdata(psy); dev_dbg(&mfi->udev->dev, "prop: %d\n", psp); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = mfi->charge_type; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_DEVICE; break; default: return -ENODATA; } return 0; } static int apple_mfi_fc_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mfi_device *mfi = power_supply_get_drvdata(psy); int ret; dev_dbg(&mfi->udev->dev, "prop: %d\n", psp); ret = pm_runtime_get_sync(&mfi->udev->dev); if (ret < 0) { pm_runtime_put_noidle(&mfi->udev->dev); return ret; } switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = apple_mfi_fc_set_charge_type(mfi, val); break; default: ret = -EINVAL; } pm_runtime_mark_last_busy(&mfi->udev->dev); pm_runtime_put_autosuspend(&mfi->udev->dev); return ret; } static int apple_mfi_fc_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: return 1; default: return 0; } } static enum power_supply_property apple_mfi_fc_properties[] = { POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_SCOPE }; static const struct power_supply_desc apple_mfi_fc_desc = { .name = "apple_mfi_fastcharge", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = apple_mfi_fc_properties, .num_properties = ARRAY_SIZE(apple_mfi_fc_properties), .get_property = apple_mfi_fc_get_property, .set_property = apple_mfi_fc_set_property, .property_is_writeable = apple_mfi_fc_property_is_writeable }; static bool mfi_fc_match(struct usb_device *udev) { int idProduct; idProduct = le16_to_cpu(udev->descriptor.idProduct); /* See comment above mfi_fc_id_table[] */ return (idProduct >= 0x1200 && idProduct <= 0x12ff); } static int mfi_fc_probe(struct usb_device *udev) { struct power_supply_config battery_cfg = {}; struct mfi_device *mfi = NULL; int err; if (!mfi_fc_match(udev)) return -ENODEV; mfi = kzalloc(sizeof(struct mfi_device), GFP_KERNEL); if (!mfi) return -ENOMEM; battery_cfg.drv_data = mfi; mfi->charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; mfi->battery = power_supply_register(&udev->dev, &apple_mfi_fc_desc, &battery_cfg); if (IS_ERR(mfi->battery)) { dev_err(&udev->dev, "Can't register battery\n"); err = PTR_ERR(mfi->battery); kfree(mfi); return err; } mfi->udev = usb_get_dev(udev); dev_set_drvdata(&udev->dev, mfi); return 0; } static void mfi_fc_disconnect(struct usb_device *udev) { struct mfi_device *mfi; mfi = dev_get_drvdata(&udev->dev); if (mfi->battery) power_supply_unregister(mfi->battery); dev_set_drvdata(&udev->dev, NULL); usb_put_dev(mfi->udev); kfree(mfi); } static struct usb_device_driver mfi_fc_driver = { .name = "apple-mfi-fastcharge", .probe = mfi_fc_probe, .disconnect = mfi_fc_disconnect, .id_table = mfi_fc_id_table, .match = mfi_fc_match, .generic_subclass = 1, }; static int __init mfi_fc_driver_init(void) { return usb_register_device_driver(&mfi_fc_driver, THIS_MODULE); } static void __exit mfi_fc_driver_exit(void) { usb_deregister_device_driver(&mfi_fc_driver); } module_init(mfi_fc_driver_init); module_exit(mfi_fc_driver_exit);
linux-master
drivers/usb/misc/apple-mfi-fastcharge.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for loading USB isight firmware * * Copyright (C) 2008 Matthew Garrett <[email protected]> * * The USB isight cameras in recent Apples are roughly compatible with the USB * video class specification, and can be driven by uvcvideo. However, they * need firmware to be loaded beforehand. After firmware loading, the device * detaches from the USB bus and reattaches with a new device ID. It can then * be claimed by the uvc driver. * * The firmware is non-free and must be extracted by the user. Tools to do this * are available at http://bersace03.free.fr/ift/ * * The isight firmware loading was reverse engineered by Johannes Berg * <[email protected]>, and this driver is based on code by Ronald * Bultje <[email protected]> */ #include <linux/usb.h> #include <linux/firmware.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/slab.h> static const struct usb_device_id id_table[] = { {USB_DEVICE(0x05ac, 0x8300)}, {}, }; MODULE_DEVICE_TABLE(usb, id_table); static int isight_firmware_load(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); int llen, len, req, ret = 0; const struct firmware *firmware; unsigned char *buf = kmalloc(50, GFP_KERNEL); unsigned char data[4]; const u8 *ptr; if (!buf) return -ENOMEM; if (request_firmware(&firmware, "isight.fw", &dev->dev) != 0) { printk(KERN_ERR "Unable to load isight firmware\n"); ret = -ENODEV; goto out; } ptr = firmware->data; buf[0] = 0x01; if (usb_control_msg (dev, usb_sndctrlpipe(dev, 0), 0xa0, 0x40, 0xe600, 0, buf, 1, 300) != 1) { printk(KERN_ERR "Failed to initialise isight firmware loader\n"); ret = -ENODEV; goto out; } while (ptr+4 <= firmware->data+firmware->size) { memcpy(data, ptr, 4); len = (data[0] << 8 | data[1]); req = (data[2] << 8 | data[3]); ptr += 4; if (len == 0x8001) break; /* success */ else if (len == 0) continue; for (; len > 0; req += 50) { llen = min(len, 50); len -= llen; if (ptr+llen > firmware->data+firmware->size) { printk(KERN_ERR "Malformed isight firmware"); ret = -ENODEV; goto out; } memcpy(buf, ptr, llen); ptr += llen; if (usb_control_msg (dev, usb_sndctrlpipe(dev, 0), 0xa0, 0x40, req, 0, buf, llen, 300) != llen) { printk(KERN_ERR "Failed to load isight firmware\n"); ret = -ENODEV; goto out; } } } buf[0] = 0x00; if (usb_control_msg (dev, usb_sndctrlpipe(dev, 0), 0xa0, 0x40, 0xe600, 0, buf, 1, 300) != 1) { printk(KERN_ERR "isight firmware loading completion failed\n"); ret = -ENODEV; } out: kfree(buf); release_firmware(firmware); return ret; } MODULE_FIRMWARE("isight.fw"); static void isight_firmware_disconnect(struct usb_interface *intf) { } static struct usb_driver isight_firmware_driver = { .name = "isight_firmware", .probe = isight_firmware_load, .disconnect = isight_firmware_disconnect, .id_table = id_table, }; module_usb_driver(isight_firmware_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Matthew Garrett <[email protected]>");
linux-master
drivers/usb/misc/isight_firmware.c
// SPDX-License-Identifier: GPL-2.0+ /* * Generic USB driver for report based interrupt in/out devices * like LD Didactic's USB devices. LD Didactic's USB devices are * HID devices which do not use HID report definitons (they use * raw interrupt in and our reports only for communication). * * This driver uses a ring buffer for time critical reading of * interrupt in reports and provides read and write methods for * raw interrupt reports (similar to the Windows HID driver). * Devices based on the book USB COMPLETE by Jan Axelson may need * such a compatibility to the Windows HID driver. * * Copyright (C) 2005 Michael Hund <[email protected]> * * Derived from Lego USB Tower driver * Copyright (C) 2003 David Glance <[email protected]> * 2001-2004 Juergen Stuber <[email protected]> */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/input.h> #include <linux/usb.h> #include <linux/poll.h> /* Define these values to match your devices */ #define USB_VENDOR_ID_LD 0x0f11 /* USB Vendor ID of LD Didactic GmbH */ #define USB_DEVICE_ID_LD_CASSY 0x1000 /* USB Product ID of CASSY-S modules with 8 bytes endpoint size */ #define USB_DEVICE_ID_LD_CASSY2 0x1001 /* USB Product ID of CASSY-S modules with 64 bytes endpoint size */ #define USB_DEVICE_ID_LD_POCKETCASSY 0x1010 /* USB Product ID of Pocket-CASSY */ #define USB_DEVICE_ID_LD_POCKETCASSY2 0x1011 /* USB Product ID of Pocket-CASSY 2 (reserved) */ #define USB_DEVICE_ID_LD_MOBILECASSY 0x1020 /* USB Product ID of Mobile-CASSY */ #define USB_DEVICE_ID_LD_MOBILECASSY2 0x1021 /* USB Product ID of Mobile-CASSY 2 (reserved) */ #define USB_DEVICE_ID_LD_MICROCASSYVOLTAGE 0x1031 /* USB Product ID of Micro-CASSY Voltage */ #define USB_DEVICE_ID_LD_MICROCASSYCURRENT 0x1032 /* USB Product ID of Micro-CASSY Current */ #define USB_DEVICE_ID_LD_MICROCASSYTIME 0x1033 /* USB Product ID of Micro-CASSY Time (reserved) */ #define USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE 0x1035 /* USB Product ID of Micro-CASSY Temperature */ #define USB_DEVICE_ID_LD_MICROCASSYPH 0x1038 /* USB Product ID of Micro-CASSY pH */ #define USB_DEVICE_ID_LD_POWERANALYSERCASSY 0x1040 /* USB Product ID of Power Analyser CASSY */ #define USB_DEVICE_ID_LD_CONVERTERCONTROLLERCASSY 0x1042 /* USB Product ID of Converter Controller CASSY */ #define USB_DEVICE_ID_LD_MACHINETESTCASSY 0x1043 /* USB Product ID of Machine Test CASSY */ #define USB_DEVICE_ID_LD_JWM 0x1080 /* USB Product ID of Joule and Wattmeter */ #define USB_DEVICE_ID_LD_DMMP 0x1081 /* USB Product ID of Digital Multimeter P (reserved) */ #define USB_DEVICE_ID_LD_UMIP 0x1090 /* USB Product ID of UMI P */ #define USB_DEVICE_ID_LD_UMIC 0x10A0 /* USB Product ID of UMI C */ #define USB_DEVICE_ID_LD_UMIB 0x10B0 /* USB Product ID of UMI B */ #define USB_DEVICE_ID_LD_XRAY 0x1100 /* USB Product ID of X-Ray Apparatus 55481 */ #define USB_DEVICE_ID_LD_XRAY2 0x1101 /* USB Product ID of X-Ray Apparatus 554800 */ #define USB_DEVICE_ID_LD_XRAYCT 0x1110 /* USB Product ID of X-Ray Apparatus CT 554821*/ #define USB_DEVICE_ID_LD_VIDEOCOM 0x1200 /* USB Product ID of VideoCom */ #define USB_DEVICE_ID_LD_MOTOR 0x1210 /* USB Product ID of Motor (reserved) */ #define USB_DEVICE_ID_LD_COM3LAB 0x2000 /* USB Product ID of COM3LAB */ #define USB_DEVICE_ID_LD_TELEPORT 0x2010 /* USB Product ID of Terminal Adapter */ #define USB_DEVICE_ID_LD_NETWORKANALYSER 0x2020 /* USB Product ID of Network Analyser */ #define USB_DEVICE_ID_LD_POWERCONTROL 0x2030 /* USB Product ID of Converter Control Unit */ #define USB_DEVICE_ID_LD_MACHINETEST 0x2040 /* USB Product ID of Machine Test System */ #define USB_DEVICE_ID_LD_MOSTANALYSER 0x2050 /* USB Product ID of MOST Protocol Analyser */ #define USB_DEVICE_ID_LD_MOSTANALYSER2 0x2051 /* USB Product ID of MOST Protocol Analyser 2 */ #define USB_DEVICE_ID_LD_ABSESP 0x2060 /* USB Product ID of ABS ESP */ #define USB_DEVICE_ID_LD_AUTODATABUS 0x2070 /* USB Product ID of Automotive Data Buses */ #define USB_DEVICE_ID_LD_MCT 0x2080 /* USB Product ID of Microcontroller technique */ #define USB_DEVICE_ID_LD_HYBRID 0x2090 /* USB Product ID of Automotive Hybrid */ #define USB_DEVICE_ID_LD_HEATCONTROL 0x20A0 /* USB Product ID of Heat control */ #ifdef CONFIG_USB_DYNAMIC_MINORS #define USB_LD_MINOR_BASE 0 #else #define USB_LD_MINOR_BASE 176 #endif /* table of devices that work with this driver */ static const struct usb_device_id ld_usb_table[] = { { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERANALYSERCASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CONVERTERCONTROLLERCASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETESTCASSY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) }, { USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, ld_usb_table); MODULE_AUTHOR("Michael Hund <[email protected]>"); MODULE_DESCRIPTION("LD USB Driver"); MODULE_LICENSE("GPL"); /* All interrupt in transfers are collected in a ring buffer to * avoid racing conditions and get better performance of the driver. */ static int ring_buffer_size = 128; module_param(ring_buffer_size, int, 0000); MODULE_PARM_DESC(ring_buffer_size, "Read ring buffer size in reports"); /* The write_buffer can contain more than one interrupt out transfer. */ static int write_buffer_size = 10; module_param(write_buffer_size, int, 0000); MODULE_PARM_DESC(write_buffer_size, "Write buffer size in reports"); /* As of kernel version 2.6.4 ehci-hcd uses an * "only one interrupt transfer per frame" shortcut * to simplify the scheduling of periodic transfers. * This conflicts with our standard 1ms intervals for in and out URBs. * We use default intervals of 2ms for in and 2ms for out transfers, * which should be fast enough. * Increase the interval to allow more devices that do interrupt transfers, * or set to 1 to use the standard interval from the endpoint descriptors. */ static int min_interrupt_in_interval = 2; module_param(min_interrupt_in_interval, int, 0000); MODULE_PARM_DESC(min_interrupt_in_interval, "Minimum interrupt in interval in ms"); static int min_interrupt_out_interval = 2; module_param(min_interrupt_out_interval, int, 0000); MODULE_PARM_DESC(min_interrupt_out_interval, "Minimum interrupt out interval in ms"); /* Structure to hold all of our device specific stuff */ struct ld_usb { struct mutex mutex; /* locks this structure */ struct usb_interface *intf; /* save off the usb interface pointer */ unsigned long disconnected:1; int open_count; /* number of times this port has been opened */ char *ring_buffer; unsigned int ring_head; unsigned int ring_tail; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char *interrupt_in_buffer; struct usb_endpoint_descriptor *interrupt_in_endpoint; struct urb *interrupt_in_urb; int interrupt_in_interval; size_t interrupt_in_endpoint_size; int interrupt_in_running; int interrupt_in_done; int buffer_overflow; spinlock_t rbsl; char *interrupt_out_buffer; struct usb_endpoint_descriptor *interrupt_out_endpoint; struct urb *interrupt_out_urb; int interrupt_out_interval; size_t interrupt_out_endpoint_size; int interrupt_out_busy; }; static struct usb_driver ld_usb_driver; /* * ld_usb_abort_transfers * aborts transfers and frees associated data structures */ static void ld_usb_abort_transfers(struct ld_usb *dev) { /* shutdown transfer */ if (dev->interrupt_in_running) { dev->interrupt_in_running = 0; usb_kill_urb(dev->interrupt_in_urb); } if (dev->interrupt_out_busy) usb_kill_urb(dev->interrupt_out_urb); } /* * ld_usb_delete */ static void ld_usb_delete(struct ld_usb *dev) { /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->ring_buffer); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); kfree(dev); } /* * ld_usb_interrupt_in_callback */ static void ld_usb_interrupt_in_callback(struct urb *urb) { struct ld_usb *dev = urb->context; size_t *actual_buffer; unsigned int next_ring_head; int status = urb->status; unsigned long flags; int retval; if (status) { if (status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN) { goto exit; } else { dev_dbg(&dev->intf->dev, "%s: nonzero status received: %d\n", __func__, status); spin_lock_irqsave(&dev->rbsl, flags); goto resubmit; /* maybe we can recover */ } } spin_lock_irqsave(&dev->rbsl, flags); if (urb->actual_length > 0) { next_ring_head = (dev->ring_head+1) % ring_buffer_size; if (next_ring_head != dev->ring_tail) { actual_buffer = (size_t *)(dev->ring_buffer + dev->ring_head * (sizeof(size_t)+dev->interrupt_in_endpoint_size)); /* actual_buffer gets urb->actual_length + interrupt_in_buffer */ *actual_buffer = urb->actual_length; memcpy(actual_buffer+1, dev->interrupt_in_buffer, urb->actual_length); dev->ring_head = next_ring_head; dev_dbg(&dev->intf->dev, "%s: received %d bytes\n", __func__, urb->actual_length); } else { dev_warn(&dev->intf->dev, "Ring buffer overflow, %d bytes dropped\n", urb->actual_length); dev->buffer_overflow = 1; } } resubmit: /* resubmit if we're still running */ if (dev->interrupt_in_running && !dev->buffer_overflow) { retval = usb_submit_urb(dev->interrupt_in_urb, GFP_ATOMIC); if (retval) { dev_err(&dev->intf->dev, "usb_submit_urb failed (%d)\n", retval); dev->buffer_overflow = 1; } } spin_unlock_irqrestore(&dev->rbsl, flags); exit: dev->interrupt_in_done = 1; wake_up_interruptible(&dev->read_wait); } /* * ld_usb_interrupt_out_callback */ static void ld_usb_interrupt_out_callback(struct urb *urb) { struct ld_usb *dev = urb->context; int status = urb->status; /* sync/async unlink faults aren't errors */ if (status && !(status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN)) dev_dbg(&dev->intf->dev, "%s - nonzero write interrupt status received: %d\n", __func__, status); dev->interrupt_out_busy = 0; wake_up_interruptible(&dev->write_wait); } /* * ld_usb_open */ static int ld_usb_open(struct inode *inode, struct file *file) { struct ld_usb *dev; int subminor; int retval; struct usb_interface *interface; stream_open(inode, file); subminor = iminor(inode); interface = usb_find_interface(&ld_usb_driver, subminor); if (!interface) { printk(KERN_ERR "%s - error, can't find device for minor %d\n", __func__, subminor); return -ENODEV; } dev = usb_get_intfdata(interface); if (!dev) return -ENODEV; /* lock this device */ if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; /* allow opening only once */ if (dev->open_count) { retval = -EBUSY; goto unlock_exit; } dev->open_count = 1; /* initialize in direction */ dev->ring_head = 0; dev->ring_tail = 0; dev->buffer_overflow = 0; usb_fill_int_urb(dev->interrupt_in_urb, interface_to_usbdev(interface), usb_rcvintpipe(interface_to_usbdev(interface), dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, dev->interrupt_in_endpoint_size, ld_usb_interrupt_in_callback, dev, dev->interrupt_in_interval); dev->interrupt_in_running = 1; dev->interrupt_in_done = 0; retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev_err(&interface->dev, "Couldn't submit interrupt_in_urb %d\n", retval); dev->interrupt_in_running = 0; dev->open_count = 0; goto unlock_exit; } /* save device in the file's private structure */ file->private_data = dev; unlock_exit: mutex_unlock(&dev->mutex); return retval; } /* * ld_usb_release */ static int ld_usb_release(struct inode *inode, struct file *file) { struct ld_usb *dev; int retval = 0; dev = file->private_data; if (dev == NULL) { retval = -ENODEV; goto exit; } mutex_lock(&dev->mutex); if (dev->open_count != 1) { retval = -ENODEV; goto unlock_exit; } if (dev->disconnected) { /* the device was unplugged before the file was released */ mutex_unlock(&dev->mutex); /* unlock here as ld_usb_delete frees dev */ ld_usb_delete(dev); goto exit; } /* wait until write transfer is finished */ if (dev->interrupt_out_busy) wait_event_interruptible_timeout(dev->write_wait, !dev->interrupt_out_busy, 2 * HZ); ld_usb_abort_transfers(dev); dev->open_count = 0; unlock_exit: mutex_unlock(&dev->mutex); exit: return retval; } /* * ld_usb_poll */ static __poll_t ld_usb_poll(struct file *file, poll_table *wait) { struct ld_usb *dev; __poll_t mask = 0; dev = file->private_data; if (dev->disconnected) return EPOLLERR | EPOLLHUP; poll_wait(file, &dev->read_wait, wait); poll_wait(file, &dev->write_wait, wait); if (dev->ring_head != dev->ring_tail) mask |= EPOLLIN | EPOLLRDNORM; if (!dev->interrupt_out_busy) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } /* * ld_usb_read */ static ssize_t ld_usb_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct ld_usb *dev; size_t *actual_buffer; size_t bytes_to_read; int retval = 0; int rv; dev = file->private_data; /* verify that we actually have some data to read */ if (count == 0) goto exit; /* lock this object */ if (mutex_lock_interruptible(&dev->mutex)) { retval = -ERESTARTSYS; goto exit; } /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; printk(KERN_ERR "ldusb: No device or device unplugged %d\n", retval); goto unlock_exit; } /* wait for data */ spin_lock_irq(&dev->rbsl); while (dev->ring_head == dev->ring_tail) { dev->interrupt_in_done = 0; spin_unlock_irq(&dev->rbsl); if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto unlock_exit; } retval = wait_event_interruptible(dev->read_wait, dev->interrupt_in_done); if (retval < 0) goto unlock_exit; spin_lock_irq(&dev->rbsl); } spin_unlock_irq(&dev->rbsl); /* actual_buffer contains actual_length + interrupt_in_buffer */ actual_buffer = (size_t *)(dev->ring_buffer + dev->ring_tail * (sizeof(size_t)+dev->interrupt_in_endpoint_size)); if (*actual_buffer > dev->interrupt_in_endpoint_size) { retval = -EIO; goto unlock_exit; } bytes_to_read = min(count, *actual_buffer); if (bytes_to_read < *actual_buffer) dev_warn(&dev->intf->dev, "Read buffer overflow, %zu bytes dropped\n", *actual_buffer-bytes_to_read); /* copy one interrupt_in_buffer from ring_buffer into userspace */ if (copy_to_user(buffer, actual_buffer+1, bytes_to_read)) { retval = -EFAULT; goto unlock_exit; } retval = bytes_to_read; spin_lock_irq(&dev->rbsl); dev->ring_tail = (dev->ring_tail + 1) % ring_buffer_size; if (dev->buffer_overflow) { dev->buffer_overflow = 0; spin_unlock_irq(&dev->rbsl); rv = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (rv < 0) dev->buffer_overflow = 1; } else { spin_unlock_irq(&dev->rbsl); } unlock_exit: /* unlock the device */ mutex_unlock(&dev->mutex); exit: return retval; } /* * ld_usb_write */ static ssize_t ld_usb_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct ld_usb *dev; size_t bytes_to_write; int retval = 0; dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; /* lock this object */ if (mutex_lock_interruptible(&dev->mutex)) { retval = -ERESTARTSYS; goto exit; } /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; printk(KERN_ERR "ldusb: No device or device unplugged %d\n", retval); goto unlock_exit; } /* wait until previous transfer is finished */ if (dev->interrupt_out_busy) { if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto unlock_exit; } retval = wait_event_interruptible(dev->write_wait, !dev->interrupt_out_busy); if (retval < 0) { goto unlock_exit; } } /* write the data into interrupt_out_buffer from userspace */ bytes_to_write = min(count, write_buffer_size*dev->interrupt_out_endpoint_size); if (bytes_to_write < count) dev_warn(&dev->intf->dev, "Write buffer overflow, %zu bytes dropped\n", count - bytes_to_write); dev_dbg(&dev->intf->dev, "%s: count = %zu, bytes_to_write = %zu\n", __func__, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write)) { retval = -EFAULT; goto unlock_exit; } if (dev->interrupt_out_endpoint == NULL) { /* try HID_REQ_SET_REPORT=9 on control_endpoint instead of interrupt_out_endpoint */ retval = usb_control_msg(interface_to_usbdev(dev->intf), usb_sndctrlpipe(interface_to_usbdev(dev->intf), 0), 9, USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 1 << 8, 0, dev->interrupt_out_buffer, bytes_to_write, USB_CTRL_SET_TIMEOUT); if (retval < 0) dev_err(&dev->intf->dev, "Couldn't submit HID_REQ_SET_REPORT %d\n", retval); goto unlock_exit; } /* send off the urb */ usb_fill_int_urb(dev->interrupt_out_urb, interface_to_usbdev(dev->intf), usb_sndintpipe(interface_to_usbdev(dev->intf), dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, ld_usb_interrupt_out_callback, dev, dev->interrupt_out_interval); dev->interrupt_out_busy = 1; wmb(); retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval) { dev->interrupt_out_busy = 0; dev_err(&dev->intf->dev, "Couldn't submit interrupt_out_urb %d\n", retval); goto unlock_exit; } retval = bytes_to_write; unlock_exit: /* unlock the device */ mutex_unlock(&dev->mutex); exit: return retval; } /* file operations needed when we register this driver */ static const struct file_operations ld_usb_fops = { .owner = THIS_MODULE, .read = ld_usb_read, .write = ld_usb_write, .open = ld_usb_open, .release = ld_usb_release, .poll = ld_usb_poll, .llseek = no_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver ld_usb_class = { .name = "ldusb%d", .fops = &ld_usb_fops, .minor_base = USB_LD_MINOR_BASE, }; /* * ld_usb_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int ld_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct ld_usb *dev = NULL; struct usb_host_interface *iface_desc; char *buffer; int retval = -ENOMEM; int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) goto exit; mutex_init(&dev->mutex); spin_lock_init(&dev->rbsl); dev->intf = intf; init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); /* workaround for early firmware versions on fast computers */ if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VENDOR_ID_LD) && ((le16_to_cpu(udev->descriptor.idProduct) == USB_DEVICE_ID_LD_CASSY) || (le16_to_cpu(udev->descriptor.idProduct) == USB_DEVICE_ID_LD_COM3LAB)) && (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x103)) { buffer = kmalloc(256, GFP_KERNEL); if (!buffer) goto error; /* usb_string makes SETUP+STALL to leave always ControlReadLoop */ usb_string(udev, 255, buffer, 256); kfree(buffer); } iface_desc = intf->cur_altsetting; res = usb_find_last_int_in_endpoint(iface_desc, &dev->interrupt_in_endpoint); if (res) { dev_err(&intf->dev, "Interrupt in endpoint not found\n"); retval = res; goto error; } res = usb_find_last_int_out_endpoint(iface_desc, &dev->interrupt_out_endpoint); if (res) dev_warn(&intf->dev, "Interrupt out endpoint not found (using control endpoint instead)\n"); dev->interrupt_in_endpoint_size = usb_endpoint_maxp(dev->interrupt_in_endpoint); dev->ring_buffer = kcalloc(ring_buffer_size, sizeof(size_t) + dev->interrupt_in_endpoint_size, GFP_KERNEL); if (!dev->ring_buffer) goto error; dev->interrupt_in_buffer = kmalloc(dev->interrupt_in_endpoint_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_endpoint_size = dev->interrupt_out_endpoint ? usb_endpoint_maxp(dev->interrupt_out_endpoint) : udev->descriptor.bMaxPacketSize0; dev->interrupt_out_buffer = kmalloc_array(write_buffer_size, dev->interrupt_out_endpoint_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; dev->interrupt_in_interval = max_t(int, min_interrupt_in_interval, dev->interrupt_in_endpoint->bInterval); if (dev->interrupt_out_endpoint) dev->interrupt_out_interval = max_t(int, min_interrupt_out_interval, dev->interrupt_out_endpoint->bInterval); /* we can register the device now, as it is ready */ usb_set_intfdata(intf, dev); retval = usb_register_dev(intf, &ld_usb_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&intf->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(intf, NULL); goto error; } /* let the user know what node this device is now attached to */ dev_info(&intf->dev, "LD USB Device #%d now attached to major %d minor %d\n", (intf->minor - USB_LD_MINOR_BASE), USB_MAJOR, intf->minor); exit: return retval; error: ld_usb_delete(dev); return retval; } /* * ld_usb_disconnect * * Called by the usb core when the device is removed from the system. */ static void ld_usb_disconnect(struct usb_interface *intf) { struct ld_usb *dev; int minor; dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); minor = intf->minor; /* give back our minor */ usb_deregister_dev(intf, &ld_usb_class); usb_poison_urb(dev->interrupt_in_urb); usb_poison_urb(dev->interrupt_out_urb); mutex_lock(&dev->mutex); /* if the device is not opened, then we clean up right now */ if (!dev->open_count) { mutex_unlock(&dev->mutex); ld_usb_delete(dev); } else { dev->disconnected = 1; /* wake up pollers */ wake_up_interruptible_all(&dev->read_wait); wake_up_interruptible_all(&dev->write_wait); mutex_unlock(&dev->mutex); } dev_info(&intf->dev, "LD USB Device #%d now disconnected\n", (minor - USB_LD_MINOR_BASE)); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver ld_usb_driver = { .name = "ldusb", .probe = ld_usb_probe, .disconnect = ld_usb_disconnect, .id_table = ld_usb_table, }; module_usb_driver(ld_usb_driver);
linux-master
drivers/usb/misc/ldusb.c
// SPDX-License-Identifier: GPL-2.0 /* * USB 7 Segment Driver * * Copyright (C) 2008 Harrison Metzger <[email protected]> * Based on usbled.c by Greg Kroah-Hartman ([email protected]) */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/string.h> #include <linux/usb.h> #define DRIVER_AUTHOR "Harrison Metzger <[email protected]>" #define DRIVER_DESC "USB 7 Segment Driver" #define VENDOR_ID 0x0fc5 #define PRODUCT_ID 0x1227 #define MAXLEN 8 /* table of devices that work with this driver */ static const struct usb_device_id id_table[] = { { USB_DEVICE(VENDOR_ID, PRODUCT_ID) }, { }, }; MODULE_DEVICE_TABLE(usb, id_table); /* the different text display modes the device is capable of */ static const char *display_textmodes[] = {"raw", "hex", "ascii"}; struct usb_sevsegdev { struct usb_device *udev; struct usb_interface *intf; u8 powered; u8 mode_msb; u8 mode_lsb; u8 decimals[MAXLEN]; u8 textmode; u8 text[MAXLEN]; u16 textlength; u8 shadow_power; /* for PM */ u8 has_interface_pm; }; /* sysfs_streq can't replace this completely * If the device was in hex mode, and the user wanted a 0, * if str commands are used, we would assume the end of string * so mem commands are used. */ static inline size_t my_memlen(const char *buf, size_t count) { if (count > 0 && buf[count-1] == '\n') return count - 1; else return count; } static void update_display_powered(struct usb_sevsegdev *mydev) { int rc; if (mydev->powered && !mydev->has_interface_pm) { rc = usb_autopm_get_interface(mydev->intf); if (rc < 0) return; mydev->has_interface_pm = 1; } if (mydev->shadow_power != 1) return; rc = usb_control_msg_send(mydev->udev, 0, 0x12, 0x48, (80 * 0x100) + 10, /* (power mode) */ (0x00 * 0x100) + (mydev->powered ? 1 : 0), NULL, 0, 2000, GFP_KERNEL); if (rc < 0) dev_dbg(&mydev->udev->dev, "power retval = %d\n", rc); if (!mydev->powered && mydev->has_interface_pm) { usb_autopm_put_interface(mydev->intf); mydev->has_interface_pm = 0; } } static void update_display_mode(struct usb_sevsegdev *mydev) { int rc; if(mydev->shadow_power != 1) return; rc = usb_control_msg_send(mydev->udev, 0, 0x12, 0x48, (82 * 0x100) + 10, /* (set mode) */ (mydev->mode_msb * 0x100) + mydev->mode_lsb, NULL, 0, 2000, GFP_NOIO); if (rc < 0) dev_dbg(&mydev->udev->dev, "mode retval = %d\n", rc); } static void update_display_visual(struct usb_sevsegdev *mydev, gfp_t mf) { int rc; int i; unsigned char buffer[MAXLEN] = {0}; u8 decimals = 0; if(mydev->shadow_power != 1) return; /* The device is right to left, where as you write left to right */ for (i = 0; i < mydev->textlength; i++) buffer[i] = mydev->text[mydev->textlength-1-i]; rc = usb_control_msg_send(mydev->udev, 0, 0x12, 0x48, (85 * 0x100) + 10, /* (write text) */ (0 * 0x100) + mydev->textmode, /* mode */ &buffer, mydev->textlength, 2000, mf); if (rc < 0) dev_dbg(&mydev->udev->dev, "write retval = %d\n", rc); /* The device is right to left, where as you write left to right */ for (i = 0; i < sizeof(mydev->decimals); i++) decimals |= mydev->decimals[i] << i; rc = usb_control_msg_send(mydev->udev, 0, 0x12, 0x48, (86 * 0x100) + 10, /* (set decimal) */ (0 * 0x100) + decimals, /* decimals */ NULL, 0, 2000, mf); if (rc < 0) dev_dbg(&mydev->udev->dev, "decimal retval = %d\n", rc); } #define MYDEV_ATTR_SIMPLE_UNSIGNED(name, update_fcn) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct usb_interface *intf = to_usb_interface(dev); \ struct usb_sevsegdev *mydev = usb_get_intfdata(intf); \ \ return sprintf(buf, "%u\n", mydev->name); \ } \ \ static ssize_t name##_store(struct device *dev, \ struct device_attribute *attr, const char *buf, size_t count) \ { \ struct usb_interface *intf = to_usb_interface(dev); \ struct usb_sevsegdev *mydev = usb_get_intfdata(intf); \ \ mydev->name = simple_strtoul(buf, NULL, 10); \ update_fcn(mydev); \ \ return count; \ } \ static DEVICE_ATTR_RW(name); static ssize_t text_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); return sysfs_emit(buf, "%s\n", mydev->text); } static ssize_t text_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); size_t end = my_memlen(buf, count); if (end > sizeof(mydev->text)) return -EINVAL; memset(mydev->text, 0, sizeof(mydev->text)); mydev->textlength = end; if (end > 0) memcpy(mydev->text, buf, end); update_display_visual(mydev, GFP_KERNEL); return count; } static DEVICE_ATTR_RW(text); static ssize_t decimals_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); int i; int pos; for (i = 0; i < sizeof(mydev->decimals); i++) { pos = sizeof(mydev->decimals) - 1 - i; if (mydev->decimals[i] == 0) buf[pos] = '0'; else if (mydev->decimals[i] == 1) buf[pos] = '1'; else buf[pos] = 'x'; } buf[sizeof(mydev->decimals)] = '\n'; return sizeof(mydev->decimals) + 1; } static ssize_t decimals_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); size_t end = my_memlen(buf, count); int i; if (end > sizeof(mydev->decimals)) return -EINVAL; for (i = 0; i < end; i++) if (buf[i] != '0' && buf[i] != '1') return -EINVAL; memset(mydev->decimals, 0, sizeof(mydev->decimals)); for (i = 0; i < end; i++) if (buf[i] == '1') mydev->decimals[end-1-i] = 1; update_display_visual(mydev, GFP_KERNEL); return count; } static DEVICE_ATTR_RW(decimals); static ssize_t textmode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); int i; buf[0] = 0; for (i = 0; i < ARRAY_SIZE(display_textmodes); i++) { if (mydev->textmode == i) { strcat(buf, " ["); strcat(buf, display_textmodes[i]); strcat(buf, "] "); } else { strcat(buf, " "); strcat(buf, display_textmodes[i]); strcat(buf, " "); } } strcat(buf, "\n"); return strlen(buf); } static ssize_t textmode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_sevsegdev *mydev = usb_get_intfdata(intf); int i; i = sysfs_match_string(display_textmodes, buf); if (i < 0) return i; mydev->textmode = i; update_display_visual(mydev, GFP_KERNEL); return count; } static DEVICE_ATTR_RW(textmode); MYDEV_ATTR_SIMPLE_UNSIGNED(powered, update_display_powered); MYDEV_ATTR_SIMPLE_UNSIGNED(mode_msb, update_display_mode); MYDEV_ATTR_SIMPLE_UNSIGNED(mode_lsb, update_display_mode); static struct attribute *sevseg_attrs[] = { &dev_attr_powered.attr, &dev_attr_text.attr, &dev_attr_textmode.attr, &dev_attr_decimals.attr, &dev_attr_mode_msb.attr, &dev_attr_mode_lsb.attr, NULL }; ATTRIBUTE_GROUPS(sevseg); static int sevseg_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_sevsegdev *mydev; int rc = -ENOMEM; mydev = kzalloc(sizeof(struct usb_sevsegdev), GFP_KERNEL); if (!mydev) goto error_mem; mydev->udev = usb_get_dev(udev); mydev->intf = interface; usb_set_intfdata(interface, mydev); /* PM */ mydev->shadow_power = 1; /* currently active */ mydev->has_interface_pm = 0; /* have not issued autopm_get */ /*set defaults */ mydev->textmode = 0x02; /* ascii mode */ mydev->mode_msb = 0x06; /* 6 characters */ mydev->mode_lsb = 0x3f; /* scanmode for 6 chars */ dev_info(&interface->dev, "USB 7 Segment device now attached\n"); return 0; error_mem: return rc; } static void sevseg_disconnect(struct usb_interface *interface) { struct usb_sevsegdev *mydev; mydev = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); usb_put_dev(mydev->udev); kfree(mydev); dev_info(&interface->dev, "USB 7 Segment now disconnected\n"); } static int sevseg_suspend(struct usb_interface *intf, pm_message_t message) { struct usb_sevsegdev *mydev; mydev = usb_get_intfdata(intf); mydev->shadow_power = 0; return 0; } static int sevseg_resume(struct usb_interface *intf) { struct usb_sevsegdev *mydev; mydev = usb_get_intfdata(intf); mydev->shadow_power = 1; update_display_mode(mydev); update_display_visual(mydev, GFP_NOIO); return 0; } static int sevseg_reset_resume(struct usb_interface *intf) { struct usb_sevsegdev *mydev; mydev = usb_get_intfdata(intf); mydev->shadow_power = 1; update_display_mode(mydev); update_display_visual(mydev, GFP_NOIO); return 0; } static struct usb_driver sevseg_driver = { .name = "usbsevseg", .probe = sevseg_probe, .disconnect = sevseg_disconnect, .suspend = sevseg_suspend, .resume = sevseg_resume, .reset_resume = sevseg_reset_resume, .id_table = id_table, .dev_groups = sevseg_groups, .supports_autosuspend = 1, }; module_usb_driver(sevseg_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/usbsevseg.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/scatterlist.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/usb.h> #define SIMPLE_IO_TIMEOUT 10000 /* in milliseconds */ /*-------------------------------------------------------------------------*/ static int override_alt = -1; module_param_named(alt, override_alt, int, 0644); MODULE_PARM_DESC(alt, ">= 0 to override altsetting selection"); static void complicated_callback(struct urb *urb); /*-------------------------------------------------------------------------*/ /* FIXME make these public somewhere; usbdevfs.h? */ /* Parameter for usbtest driver. */ struct usbtest_param_32 { /* inputs */ __u32 test_num; /* 0..(TEST_CASES-1) */ __u32 iterations; __u32 length; __u32 vary; __u32 sglen; /* outputs */ __s32 duration_sec; __s32 duration_usec; }; /* * Compat parameter to the usbtest driver. * This supports older user space binaries compiled with 64 bit compiler. */ struct usbtest_param_64 { /* inputs */ __u32 test_num; /* 0..(TEST_CASES-1) */ __u32 iterations; __u32 length; __u32 vary; __u32 sglen; /* outputs */ __s64 duration_sec; __s64 duration_usec; }; /* IOCTL interface to the driver. */ #define USBTEST_REQUEST_32 _IOWR('U', 100, struct usbtest_param_32) /* COMPAT IOCTL interface to the driver. */ #define USBTEST_REQUEST_64 _IOWR('U', 100, struct usbtest_param_64) /*-------------------------------------------------------------------------*/ #define GENERIC /* let probe() bind using module params */ /* Some devices that can be used for testing will have "real" drivers. * Entries for those need to be enabled here by hand, after disabling * that "real" driver. */ //#define IBOT2 /* grab iBOT2 webcams */ //#define KEYSPAN_19Qi /* grab un-renumerated serial adapter */ /*-------------------------------------------------------------------------*/ struct usbtest_info { const char *name; u8 ep_in; /* bulk/intr source */ u8 ep_out; /* bulk/intr sink */ unsigned autoconf:1; unsigned ctrl_out:1; unsigned iso:1; /* try iso in/out */ unsigned intr:1; /* try interrupt in/out */ int alt; }; /* this is accessed only through usbfs ioctl calls. * one ioctl to issue a test ... one lock per device. * tests create other threads if they need them. * urbs and buffers are allocated dynamically, * and data generated deterministically. */ struct usbtest_dev { struct usb_interface *intf; struct usbtest_info *info; int in_pipe; int out_pipe; int in_iso_pipe; int out_iso_pipe; int in_int_pipe; int out_int_pipe; struct usb_endpoint_descriptor *iso_in, *iso_out; struct usb_endpoint_descriptor *int_in, *int_out; struct mutex lock; #define TBUF_SIZE 256 u8 *buf; }; static struct usb_device *testdev_to_usbdev(struct usbtest_dev *test) { return interface_to_usbdev(test->intf); } /* set up all urbs so they can be used with either bulk or interrupt */ #define INTERRUPT_RATE 1 /* msec/transfer */ #define ERROR(tdev, fmt, args...) \ dev_err(&(tdev)->intf->dev , fmt , ## args) #define WARNING(tdev, fmt, args...) \ dev_warn(&(tdev)->intf->dev , fmt , ## args) #define GUARD_BYTE 0xA5 #define MAX_SGLEN 128 /*-------------------------------------------------------------------------*/ static inline void endpoint_update(int edi, struct usb_host_endpoint **in, struct usb_host_endpoint **out, struct usb_host_endpoint *e) { if (edi) { if (!*in) *in = e; } else { if (!*out) *out = e; } } static int get_endpoints(struct usbtest_dev *dev, struct usb_interface *intf) { int tmp; struct usb_host_interface *alt; struct usb_host_endpoint *in, *out; struct usb_host_endpoint *iso_in, *iso_out; struct usb_host_endpoint *int_in, *int_out; struct usb_device *udev; for (tmp = 0; tmp < intf->num_altsetting; tmp++) { unsigned ep; in = out = NULL; iso_in = iso_out = NULL; int_in = int_out = NULL; alt = intf->altsetting + tmp; if (override_alt >= 0 && override_alt != alt->desc.bAlternateSetting) continue; /* take the first altsetting with in-bulk + out-bulk; * ignore other endpoints and altsettings. */ for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) { struct usb_host_endpoint *e; int edi; e = alt->endpoint + ep; edi = usb_endpoint_dir_in(&e->desc); switch (usb_endpoint_type(&e->desc)) { case USB_ENDPOINT_XFER_BULK: endpoint_update(edi, &in, &out, e); continue; case USB_ENDPOINT_XFER_INT: if (dev->info->intr) endpoint_update(edi, &int_in, &int_out, e); continue; case USB_ENDPOINT_XFER_ISOC: if (dev->info->iso) endpoint_update(edi, &iso_in, &iso_out, e); fallthrough; default: continue; } } if ((in && out) || iso_in || iso_out || int_in || int_out) goto found; } return -EINVAL; found: udev = testdev_to_usbdev(dev); dev->info->alt = alt->desc.bAlternateSetting; if (alt->desc.bAlternateSetting != 0) { tmp = usb_set_interface(udev, alt->desc.bInterfaceNumber, alt->desc.bAlternateSetting); if (tmp < 0) return tmp; } if (in) dev->in_pipe = usb_rcvbulkpipe(udev, in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); if (out) dev->out_pipe = usb_sndbulkpipe(udev, out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); if (iso_in) { dev->iso_in = &iso_in->desc; dev->in_iso_pipe = usb_rcvisocpipe(udev, iso_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } if (iso_out) { dev->iso_out = &iso_out->desc; dev->out_iso_pipe = usb_sndisocpipe(udev, iso_out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } if (int_in) { dev->int_in = &int_in->desc; dev->in_int_pipe = usb_rcvintpipe(udev, int_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } if (int_out) { dev->int_out = &int_out->desc; dev->out_int_pipe = usb_sndintpipe(udev, int_out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); } return 0; } /*-------------------------------------------------------------------------*/ /* Support for testing basic non-queued I/O streams. * * These just package urbs as requests that can be easily canceled. * Each urb's data buffer is dynamically allocated; callers can fill * them with non-zero test data (or test for it) when appropriate. */ static void simple_callback(struct urb *urb) { complete(urb->context); } static struct urb *usbtest_alloc_urb( struct usb_device *udev, int pipe, unsigned long bytes, unsigned transfer_flags, unsigned offset, u8 bInterval, usb_complete_t complete_fn) { struct urb *urb; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return urb; if (bInterval) usb_fill_int_urb(urb, udev, pipe, NULL, bytes, complete_fn, NULL, bInterval); else usb_fill_bulk_urb(urb, udev, pipe, NULL, bytes, complete_fn, NULL); urb->interval = (udev->speed == USB_SPEED_HIGH) ? (INTERRUPT_RATE << 3) : INTERRUPT_RATE; urb->transfer_flags = transfer_flags; if (usb_pipein(pipe)) urb->transfer_flags |= URB_SHORT_NOT_OK; if ((bytes + offset) == 0) return urb; if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset, GFP_KERNEL, &urb->transfer_dma); else urb->transfer_buffer = kmalloc(bytes + offset, GFP_KERNEL); if (!urb->transfer_buffer) { usb_free_urb(urb); return NULL; } /* To test unaligned transfers add an offset and fill the unused memory with a guard value */ if (offset) { memset(urb->transfer_buffer, GUARD_BYTE, offset); urb->transfer_buffer += offset; if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) urb->transfer_dma += offset; } /* For inbound transfers use guard byte so that test fails if data not correctly copied */ memset(urb->transfer_buffer, usb_pipein(urb->pipe) ? GUARD_BYTE : 0, bytes); return urb; } static struct urb *simple_alloc_urb( struct usb_device *udev, int pipe, unsigned long bytes, u8 bInterval) { return usbtest_alloc_urb(udev, pipe, bytes, URB_NO_TRANSFER_DMA_MAP, 0, bInterval, simple_callback); } static struct urb *complicated_alloc_urb( struct usb_device *udev, int pipe, unsigned long bytes, u8 bInterval) { return usbtest_alloc_urb(udev, pipe, bytes, URB_NO_TRANSFER_DMA_MAP, 0, bInterval, complicated_callback); } static unsigned pattern; static unsigned mod_pattern; module_param_named(pattern, mod_pattern, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(mod_pattern, "i/o pattern (0 == zeroes)"); static unsigned get_maxpacket(struct usb_device *udev, int pipe) { struct usb_host_endpoint *ep; ep = usb_pipe_endpoint(udev, pipe); return le16_to_cpup(&ep->desc.wMaxPacketSize); } static int ss_isoc_get_packet_num(struct usb_device *udev, int pipe) { struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); return USB_SS_MULT(ep->ss_ep_comp.bmAttributes) * (1 + ep->ss_ep_comp.bMaxBurst); } static void simple_fill_buf(struct urb *urb) { unsigned i; u8 *buf = urb->transfer_buffer; unsigned len = urb->transfer_buffer_length; unsigned maxpacket; switch (pattern) { default: fallthrough; case 0: memset(buf, 0, len); break; case 1: /* mod63 */ maxpacket = get_maxpacket(urb->dev, urb->pipe); for (i = 0; i < len; i++) *buf++ = (u8) ((i % maxpacket) % 63); break; } } static inline unsigned long buffer_offset(void *buf) { return (unsigned long)buf & (ARCH_KMALLOC_MINALIGN - 1); } static int check_guard_bytes(struct usbtest_dev *tdev, struct urb *urb) { u8 *buf = urb->transfer_buffer; u8 *guard = buf - buffer_offset(buf); unsigned i; for (i = 0; guard < buf; i++, guard++) { if (*guard != GUARD_BYTE) { ERROR(tdev, "guard byte[%d] %d (not %d)\n", i, *guard, GUARD_BYTE); return -EINVAL; } } return 0; } static int simple_check_buf(struct usbtest_dev *tdev, struct urb *urb) { unsigned i; u8 expected; u8 *buf = urb->transfer_buffer; unsigned len = urb->actual_length; unsigned maxpacket = get_maxpacket(urb->dev, urb->pipe); int ret = check_guard_bytes(tdev, urb); if (ret) return ret; for (i = 0; i < len; i++, buf++) { switch (pattern) { /* all-zeroes has no synchronization issues */ case 0: expected = 0; break; /* mod63 stays in sync with short-terminated transfers, * or otherwise when host and gadget agree on how large * each usb transfer request should be. resync is done * with set_interface or set_config. */ case 1: /* mod63 */ expected = (i % maxpacket) % 63; break; /* always fail unsupported patterns */ default: expected = !*buf; break; } if (*buf == expected) continue; ERROR(tdev, "buf[%d] = %d (not %d)\n", i, *buf, expected); return -EINVAL; } return 0; } static void simple_free_urb(struct urb *urb) { unsigned long offset = buffer_offset(urb->transfer_buffer); if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) usb_free_coherent( urb->dev, urb->transfer_buffer_length + offset, urb->transfer_buffer - offset, urb->transfer_dma - offset); else kfree(urb->transfer_buffer - offset); usb_free_urb(urb); } static int simple_io( struct usbtest_dev *tdev, struct urb *urb, int iterations, int vary, int expected, const char *label ) { struct usb_device *udev = urb->dev; int max = urb->transfer_buffer_length; struct completion completion; int retval = 0; unsigned long expire; urb->context = &completion; while (retval == 0 && iterations-- > 0) { init_completion(&completion); if (usb_pipeout(urb->pipe)) { simple_fill_buf(urb); urb->transfer_flags |= URB_ZERO_PACKET; } retval = usb_submit_urb(urb, GFP_KERNEL); if (retval != 0) break; expire = msecs_to_jiffies(SIMPLE_IO_TIMEOUT); if (!wait_for_completion_timeout(&completion, expire)) { usb_kill_urb(urb); retval = (urb->status == -ENOENT ? -ETIMEDOUT : urb->status); } else { retval = urb->status; } urb->dev = udev; if (retval == 0 && usb_pipein(urb->pipe)) retval = simple_check_buf(tdev, urb); if (vary) { int len = urb->transfer_buffer_length; len += vary; len %= max; if (len == 0) len = (vary < max) ? vary : max; urb->transfer_buffer_length = len; } /* FIXME if endpoint halted, clear halt (and log) */ } urb->transfer_buffer_length = max; if (expected != retval) dev_err(&udev->dev, "%s failed, iterations left %d, status %d (not %d)\n", label, iterations, retval, expected); return retval; } /*-------------------------------------------------------------------------*/ /* We use scatterlist primitives to test queued I/O. * Yes, this also tests the scatterlist primitives. */ static void free_sglist(struct scatterlist *sg, int nents) { unsigned i; if (!sg) return; for (i = 0; i < nents; i++) { if (!sg_page(&sg[i])) continue; kfree(sg_virt(&sg[i])); } kfree(sg); } static struct scatterlist * alloc_sglist(int nents, int max, int vary, struct usbtest_dev *dev, int pipe) { struct scatterlist *sg; unsigned int n_size = 0; unsigned i; unsigned size = max; unsigned maxpacket = get_maxpacket(interface_to_usbdev(dev->intf), pipe); if (max == 0) return NULL; sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL); if (!sg) return NULL; sg_init_table(sg, nents); for (i = 0; i < nents; i++) { char *buf; unsigned j; buf = kzalloc(size, GFP_KERNEL); if (!buf) { free_sglist(sg, i); return NULL; } /* kmalloc pages are always physically contiguous! */ sg_set_buf(&sg[i], buf, size); switch (pattern) { case 0: /* already zeroed */ break; case 1: for (j = 0; j < size; j++) *buf++ = (u8) (((j + n_size) % maxpacket) % 63); n_size += size; break; } if (vary) { size += vary; size %= max; if (size == 0) size = (vary < max) ? vary : max; } } return sg; } struct sg_timeout { struct timer_list timer; struct usb_sg_request *req; }; static void sg_timeout(struct timer_list *t) { struct sg_timeout *timeout = from_timer(timeout, t, timer); usb_sg_cancel(timeout->req); } static int perform_sglist( struct usbtest_dev *tdev, unsigned iterations, int pipe, struct usb_sg_request *req, struct scatterlist *sg, int nents ) { struct usb_device *udev = testdev_to_usbdev(tdev); int retval = 0; struct sg_timeout timeout = { .req = req, }; timer_setup_on_stack(&timeout.timer, sg_timeout, 0); while (retval == 0 && iterations-- > 0) { retval = usb_sg_init(req, udev, pipe, (udev->speed == USB_SPEED_HIGH) ? (INTERRUPT_RATE << 3) : INTERRUPT_RATE, sg, nents, 0, GFP_KERNEL); if (retval) break; mod_timer(&timeout.timer, jiffies + msecs_to_jiffies(SIMPLE_IO_TIMEOUT)); usb_sg_wait(req); if (!del_timer_sync(&timeout.timer)) retval = -ETIMEDOUT; else retval = req->status; destroy_timer_on_stack(&timeout.timer); /* FIXME check resulting data pattern */ /* FIXME if endpoint halted, clear halt (and log) */ } /* FIXME for unlink or fault handling tests, don't report * failure if retval is as we expected ... */ if (retval) ERROR(tdev, "perform_sglist failed, " "iterations left %d, status %d\n", iterations, retval); return retval; } /*-------------------------------------------------------------------------*/ /* unqueued control message testing * * there's a nice set of device functional requirements in chapter 9 of the * usb 2.0 spec, which we can apply to ANY device, even ones that don't use * special test firmware. * * we know the device is configured (or suspended) by the time it's visible * through usbfs. we can't change that, so we won't test enumeration (which * worked 'well enough' to get here, this time), power management (ditto), * or remote wakeup (which needs human interaction). */ static unsigned realworld = 1; module_param(realworld, uint, 0); MODULE_PARM_DESC(realworld, "clear to demand stricter spec compliance"); static int get_altsetting(struct usbtest_dev *dev) { struct usb_interface *iface = dev->intf; struct usb_device *udev = interface_to_usbdev(iface); int retval; retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), USB_REQ_GET_INTERFACE, USB_DIR_IN|USB_RECIP_INTERFACE, 0, iface->altsetting[0].desc.bInterfaceNumber, dev->buf, 1, USB_CTRL_GET_TIMEOUT); switch (retval) { case 1: return dev->buf[0]; case 0: retval = -ERANGE; fallthrough; default: return retval; } } static int set_altsetting(struct usbtest_dev *dev, int alternate) { struct usb_interface *iface = dev->intf; struct usb_device *udev; if (alternate < 0 || alternate >= 256) return -EINVAL; udev = interface_to_usbdev(iface); return usb_set_interface(udev, iface->altsetting[0].desc.bInterfaceNumber, alternate); } static int is_good_config(struct usbtest_dev *tdev, int len) { struct usb_config_descriptor *config; if (len < sizeof(*config)) return 0; config = (struct usb_config_descriptor *) tdev->buf; switch (config->bDescriptorType) { case USB_DT_CONFIG: case USB_DT_OTHER_SPEED_CONFIG: if (config->bLength != 9) { ERROR(tdev, "bogus config descriptor length\n"); return 0; } /* this bit 'must be 1' but often isn't */ if (!realworld && !(config->bmAttributes & 0x80)) { ERROR(tdev, "high bit of config attributes not set\n"); return 0; } if (config->bmAttributes & 0x1f) { /* reserved == 0 */ ERROR(tdev, "reserved config bits set\n"); return 0; } break; default: return 0; } if (le16_to_cpu(config->wTotalLength) == len) /* read it all */ return 1; if (le16_to_cpu(config->wTotalLength) >= TBUF_SIZE) /* max partial read */ return 1; ERROR(tdev, "bogus config descriptor read size\n"); return 0; } static int is_good_ext(struct usbtest_dev *tdev, u8 *buf) { struct usb_ext_cap_descriptor *ext; u32 attr; ext = (struct usb_ext_cap_descriptor *) buf; if (ext->bLength != USB_DT_USB_EXT_CAP_SIZE) { ERROR(tdev, "bogus usb 2.0 extension descriptor length\n"); return 0; } attr = le32_to_cpu(ext->bmAttributes); /* bits[1:15] is used and others are reserved */ if (attr & ~0xfffe) { /* reserved == 0 */ ERROR(tdev, "reserved bits set\n"); return 0; } return 1; } static int is_good_ss_cap(struct usbtest_dev *tdev, u8 *buf) { struct usb_ss_cap_descriptor *ss; ss = (struct usb_ss_cap_descriptor *) buf; if (ss->bLength != USB_DT_USB_SS_CAP_SIZE) { ERROR(tdev, "bogus superspeed device capability descriptor length\n"); return 0; } /* * only bit[1] of bmAttributes is used for LTM and others are * reserved */ if (ss->bmAttributes & ~0x02) { /* reserved == 0 */ ERROR(tdev, "reserved bits set in bmAttributes\n"); return 0; } /* bits[0:3] of wSpeedSupported is used and others are reserved */ if (le16_to_cpu(ss->wSpeedSupported) & ~0x0f) { /* reserved == 0 */ ERROR(tdev, "reserved bits set in wSpeedSupported\n"); return 0; } return 1; } static int is_good_con_id(struct usbtest_dev *tdev, u8 *buf) { struct usb_ss_container_id_descriptor *con_id; con_id = (struct usb_ss_container_id_descriptor *) buf; if (con_id->bLength != USB_DT_USB_SS_CONTN_ID_SIZE) { ERROR(tdev, "bogus container id descriptor length\n"); return 0; } if (con_id->bReserved) { /* reserved == 0 */ ERROR(tdev, "reserved bits set\n"); return 0; } return 1; } /* sanity test for standard requests working with usb_control_mesg() and some * of the utility functions which use it. * * this doesn't test how endpoint halts behave or data toggles get set, since * we won't do I/O to bulk/interrupt endpoints here (which is how to change * halt or toggle). toggle testing is impractical without support from hcds. * * this avoids failing devices linux would normally work with, by not testing * config/altsetting operations for devices that only support their defaults. * such devices rarely support those needless operations. * * NOTE that since this is a sanity test, it's not examining boundary cases * to see if usbcore, hcd, and device all behave right. such testing would * involve varied read sizes and other operation sequences. */ static int ch9_postconfig(struct usbtest_dev *dev) { struct usb_interface *iface = dev->intf; struct usb_device *udev = interface_to_usbdev(iface); int i, alt, retval; /* [9.2.3] if there's more than one altsetting, we need to be able to * set and get each one. mostly trusts the descriptors from usbcore. */ for (i = 0; i < iface->num_altsetting; i++) { /* 9.2.3 constrains the range here */ alt = iface->altsetting[i].desc.bAlternateSetting; if (alt < 0 || alt >= iface->num_altsetting) { dev_err(&iface->dev, "invalid alt [%d].bAltSetting = %d\n", i, alt); } /* [real world] get/set unimplemented if there's only one */ if (realworld && iface->num_altsetting == 1) continue; /* [9.4.10] set_interface */ retval = set_altsetting(dev, alt); if (retval) { dev_err(&iface->dev, "can't set_interface = %d, %d\n", alt, retval); return retval; } /* [9.4.4] get_interface always works */ retval = get_altsetting(dev); if (retval != alt) { dev_err(&iface->dev, "get alt should be %d, was %d\n", alt, retval); return (retval < 0) ? retval : -EDOM; } } /* [real world] get_config unimplemented if there's only one */ if (!realworld || udev->descriptor.bNumConfigurations != 1) { int expected = udev->actconfig->desc.bConfigurationValue; /* [9.4.2] get_configuration always works * ... although some cheap devices (like one TI Hub I've got) * won't return config descriptors except before set_config. */ retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), USB_REQ_GET_CONFIGURATION, USB_DIR_IN | USB_RECIP_DEVICE, 0, 0, dev->buf, 1, USB_CTRL_GET_TIMEOUT); if (retval != 1 || dev->buf[0] != expected) { dev_err(&iface->dev, "get config --> %d %d (1 %d)\n", retval, dev->buf[0], expected); return (retval < 0) ? retval : -EDOM; } } /* there's always [9.4.3] a device descriptor [9.6.1] */ retval = usb_get_descriptor(udev, USB_DT_DEVICE, 0, dev->buf, sizeof(udev->descriptor)); if (retval != sizeof(udev->descriptor)) { dev_err(&iface->dev, "dev descriptor --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } /* * there's always [9.4.3] a bos device descriptor [9.6.2] in USB * 3.0 spec */ if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0210) { struct usb_bos_descriptor *bos = NULL; struct usb_dev_cap_header *header = NULL; unsigned total, num, length; u8 *buf; retval = usb_get_descriptor(udev, USB_DT_BOS, 0, dev->buf, sizeof(*udev->bos->desc)); if (retval != sizeof(*udev->bos->desc)) { dev_err(&iface->dev, "bos descriptor --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } bos = (struct usb_bos_descriptor *)dev->buf; total = le16_to_cpu(bos->wTotalLength); num = bos->bNumDeviceCaps; if (total > TBUF_SIZE) total = TBUF_SIZE; /* * get generic device-level capability descriptors [9.6.2] * in USB 3.0 spec */ retval = usb_get_descriptor(udev, USB_DT_BOS, 0, dev->buf, total); if (retval != total) { dev_err(&iface->dev, "bos descriptor set --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } length = sizeof(*udev->bos->desc); buf = dev->buf; for (i = 0; i < num; i++) { buf += length; if (buf + sizeof(struct usb_dev_cap_header) > dev->buf + total) break; header = (struct usb_dev_cap_header *)buf; length = header->bLength; if (header->bDescriptorType != USB_DT_DEVICE_CAPABILITY) { dev_warn(&udev->dev, "not device capability descriptor, skip\n"); continue; } switch (header->bDevCapabilityType) { case USB_CAP_TYPE_EXT: if (buf + USB_DT_USB_EXT_CAP_SIZE > dev->buf + total || !is_good_ext(dev, buf)) { dev_err(&iface->dev, "bogus usb 2.0 extension descriptor\n"); return -EDOM; } break; case USB_SS_CAP_TYPE: if (buf + USB_DT_USB_SS_CAP_SIZE > dev->buf + total || !is_good_ss_cap(dev, buf)) { dev_err(&iface->dev, "bogus superspeed device capability descriptor\n"); return -EDOM; } break; case CONTAINER_ID_TYPE: if (buf + USB_DT_USB_SS_CONTN_ID_SIZE > dev->buf + total || !is_good_con_id(dev, buf)) { dev_err(&iface->dev, "bogus container id descriptor\n"); return -EDOM; } break; default: break; } } } /* there's always [9.4.3] at least one config descriptor [9.6.3] */ for (i = 0; i < udev->descriptor.bNumConfigurations; i++) { retval = usb_get_descriptor(udev, USB_DT_CONFIG, i, dev->buf, TBUF_SIZE); if (!is_good_config(dev, retval)) { dev_err(&iface->dev, "config [%d] descriptor --> %d\n", i, retval); return (retval < 0) ? retval : -EDOM; } /* FIXME cross-checking udev->config[i] to make sure usbcore * parsed it right (etc) would be good testing paranoia */ } /* and sometimes [9.2.6.6] speed dependent descriptors */ if (le16_to_cpu(udev->descriptor.bcdUSB) == 0x0200) { struct usb_qualifier_descriptor *d = NULL; /* device qualifier [9.6.2] */ retval = usb_get_descriptor(udev, USB_DT_DEVICE_QUALIFIER, 0, dev->buf, sizeof(struct usb_qualifier_descriptor)); if (retval == -EPIPE) { if (udev->speed == USB_SPEED_HIGH) { dev_err(&iface->dev, "hs dev qualifier --> %d\n", retval); return retval; } /* usb2.0 but not high-speed capable; fine */ } else if (retval != sizeof(struct usb_qualifier_descriptor)) { dev_err(&iface->dev, "dev qualifier --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } else d = (struct usb_qualifier_descriptor *) dev->buf; /* might not have [9.6.2] any other-speed configs [9.6.4] */ if (d) { unsigned max = d->bNumConfigurations; for (i = 0; i < max; i++) { retval = usb_get_descriptor(udev, USB_DT_OTHER_SPEED_CONFIG, i, dev->buf, TBUF_SIZE); if (!is_good_config(dev, retval)) { dev_err(&iface->dev, "other speed config --> %d\n", retval); return (retval < 0) ? retval : -EDOM; } } } } /* FIXME fetch strings from at least the device descriptor */ /* [9.4.5] get_status always works */ retval = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, dev->buf); if (retval) { dev_err(&iface->dev, "get dev status --> %d\n", retval); return retval; } /* FIXME configuration.bmAttributes says if we could try to set/clear * the device's remote wakeup feature ... if we can, test that here */ retval = usb_get_std_status(udev, USB_RECIP_INTERFACE, iface->altsetting[0].desc.bInterfaceNumber, dev->buf); if (retval) { dev_err(&iface->dev, "get interface status --> %d\n", retval); return retval; } /* FIXME get status for each endpoint in the interface */ return 0; } /*-------------------------------------------------------------------------*/ /* use ch9 requests to test whether: * (a) queues work for control, keeping N subtests queued and * active (auto-resubmit) for M loops through the queue. * (b) protocol stalls (control-only) will autorecover. * it's not like bulk/intr; no halt clearing. * (c) short control reads are reported and handled. * (d) queues are always processed in-order */ struct ctrl_ctx { spinlock_t lock; struct usbtest_dev *dev; struct completion complete; unsigned count; unsigned pending; int status; struct urb **urb; struct usbtest_param_32 *param; int last; }; #define NUM_SUBCASES 16 /* how many test subcases here? */ struct subcase { struct usb_ctrlrequest setup; int number; int expected; }; static void ctrl_complete(struct urb *urb) { struct ctrl_ctx *ctx = urb->context; struct usb_ctrlrequest *reqp; struct subcase *subcase; int status = urb->status; unsigned long flags; reqp = (struct usb_ctrlrequest *)urb->setup_packet; subcase = container_of(reqp, struct subcase, setup); spin_lock_irqsave(&ctx->lock, flags); ctx->count--; ctx->pending--; /* queue must transfer and complete in fifo order, unless * usb_unlink_urb() is used to unlink something not at the * physical queue head (not tested). */ if (subcase->number > 0) { if ((subcase->number - ctx->last) != 1) { ERROR(ctx->dev, "subcase %d completed out of order, last %d\n", subcase->number, ctx->last); status = -EDOM; ctx->last = subcase->number; goto error; } } ctx->last = subcase->number; /* succeed or fault in only one way? */ if (status == subcase->expected) status = 0; /* async unlink for cleanup? */ else if (status != -ECONNRESET) { /* some faults are allowed, not required */ if (subcase->expected > 0 && ( ((status == -subcase->expected /* happened */ || status == 0)))) /* didn't */ status = 0; /* sometimes more than one fault is allowed */ else if (subcase->number == 12 && status == -EPIPE) status = 0; else ERROR(ctx->dev, "subtest %d error, status %d\n", subcase->number, status); } /* unexpected status codes mean errors; ideally, in hardware */ if (status) { error: if (ctx->status == 0) { int i; ctx->status = status; ERROR(ctx->dev, "control queue %02x.%02x, err %d, " "%d left, subcase %d, len %d/%d\n", reqp->bRequestType, reqp->bRequest, status, ctx->count, subcase->number, urb->actual_length, urb->transfer_buffer_length); /* FIXME this "unlink everything" exit route should * be a separate test case. */ /* unlink whatever's still pending */ for (i = 1; i < ctx->param->sglen; i++) { struct urb *u = ctx->urb[ (i + subcase->number) % ctx->param->sglen]; if (u == urb || !u->dev) continue; spin_unlock(&ctx->lock); status = usb_unlink_urb(u); spin_lock(&ctx->lock); switch (status) { case -EINPROGRESS: case -EBUSY: case -EIDRM: continue; default: ERROR(ctx->dev, "urb unlink --> %d\n", status); } } status = ctx->status; } } /* resubmit if we need to, else mark this as done */ if ((status == 0) && (ctx->pending < ctx->count)) { status = usb_submit_urb(urb, GFP_ATOMIC); if (status != 0) { ERROR(ctx->dev, "can't resubmit ctrl %02x.%02x, err %d\n", reqp->bRequestType, reqp->bRequest, status); urb->dev = NULL; } else ctx->pending++; } else urb->dev = NULL; /* signal completion when nothing's queued */ if (ctx->pending == 0) complete(&ctx->complete); spin_unlock_irqrestore(&ctx->lock, flags); } static int test_ctrl_queue(struct usbtest_dev *dev, struct usbtest_param_32 *param) { struct usb_device *udev = testdev_to_usbdev(dev); struct urb **urb; struct ctrl_ctx context; int i; if (param->sglen == 0 || param->iterations > UINT_MAX / param->sglen) return -EOPNOTSUPP; spin_lock_init(&context.lock); context.dev = dev; init_completion(&context.complete); context.count = param->sglen * param->iterations; context.pending = 0; context.status = -ENOMEM; context.param = param; context.last = -1; /* allocate and init the urbs we'll queue. * as with bulk/intr sglists, sglen is the queue depth; it also * controls which subtests run (more tests than sglen) or rerun. */ urb = kcalloc(param->sglen, sizeof(struct urb *), GFP_KERNEL); if (!urb) return -ENOMEM; for (i = 0; i < param->sglen; i++) { int pipe = usb_rcvctrlpipe(udev, 0); unsigned len; struct urb *u; struct usb_ctrlrequest req; struct subcase *reqp; /* sign of this variable means: * -: tested code must return this (negative) error code * +: tested code may return this (negative too) error code */ int expected = 0; /* requests here are mostly expected to succeed on any * device, but some are chosen to trigger protocol stalls * or short reads. */ memset(&req, 0, sizeof(req)); req.bRequest = USB_REQ_GET_DESCRIPTOR; req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE; switch (i % NUM_SUBCASES) { case 0: /* get device descriptor */ req.wValue = cpu_to_le16(USB_DT_DEVICE << 8); len = sizeof(struct usb_device_descriptor); break; case 1: /* get first config descriptor (only) */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = sizeof(struct usb_config_descriptor); break; case 2: /* get altsetting (OFTEN STALLS) */ req.bRequest = USB_REQ_GET_INTERFACE; req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE; /* index = 0 means first interface */ len = 1; expected = EPIPE; break; case 3: /* get interface status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE; /* interface 0 */ len = 2; break; case 4: /* get device status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE; len = 2; break; case 5: /* get device qualifier (MAY STALL) */ req.wValue = cpu_to_le16 (USB_DT_DEVICE_QUALIFIER << 8); len = sizeof(struct usb_qualifier_descriptor); if (udev->speed != USB_SPEED_HIGH) expected = EPIPE; break; case 6: /* get first config descriptor, plus interface */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = sizeof(struct usb_config_descriptor); len += sizeof(struct usb_interface_descriptor); break; case 7: /* get interface descriptor (ALWAYS STALLS) */ req.wValue = cpu_to_le16 (USB_DT_INTERFACE << 8); /* interface == 0 */ len = sizeof(struct usb_interface_descriptor); expected = -EPIPE; break; /* NOTE: two consecutive stalls in the queue here. * that tests fault recovery a bit more aggressively. */ case 8: /* clear endpoint halt (MAY STALL) */ req.bRequest = USB_REQ_CLEAR_FEATURE; req.bRequestType = USB_RECIP_ENDPOINT; /* wValue 0 == ep halt */ /* wIndex 0 == ep0 (shouldn't halt!) */ len = 0; pipe = usb_sndctrlpipe(udev, 0); expected = EPIPE; break; case 9: /* get endpoint status */ req.bRequest = USB_REQ_GET_STATUS; req.bRequestType = USB_DIR_IN|USB_RECIP_ENDPOINT; /* endpoint 0 */ len = 2; break; case 10: /* trigger short read (EREMOTEIO) */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); len = 1024; expected = -EREMOTEIO; break; /* NOTE: two consecutive _different_ faults in the queue. */ case 11: /* get endpoint descriptor (ALWAYS STALLS) */ req.wValue = cpu_to_le16(USB_DT_ENDPOINT << 8); /* endpoint == 0 */ len = sizeof(struct usb_interface_descriptor); expected = EPIPE; break; /* NOTE: sometimes even a third fault in the queue! */ case 12: /* get string 0 descriptor (MAY STALL) */ req.wValue = cpu_to_le16(USB_DT_STRING << 8); /* string == 0, for language IDs */ len = sizeof(struct usb_interface_descriptor); /* may succeed when > 4 languages */ expected = EREMOTEIO; /* or EPIPE, if no strings */ break; case 13: /* short read, resembling case 10 */ req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0); /* last data packet "should" be DATA1, not DATA0 */ if (udev->speed == USB_SPEED_SUPER) len = 1024 - 512; else len = 1024 - udev->descriptor.bMaxPacketSize0; expected = -EREMOTEIO; break; case 14: /* short read; try to fill the last packet */ req.wValue = cpu_to_le16((USB_DT_DEVICE << 8) | 0); /* device descriptor size == 18 bytes */ len = udev->descriptor.bMaxPacketSize0; if (udev->speed == USB_SPEED_SUPER) len = 512; switch (len) { case 8: len = 24; break; case 16: len = 32; break; } expected = -EREMOTEIO; break; case 15: req.wValue = cpu_to_le16(USB_DT_BOS << 8); if (udev->bos) len = le16_to_cpu(udev->bos->desc->wTotalLength); else len = sizeof(struct usb_bos_descriptor); if (le16_to_cpu(udev->descriptor.bcdUSB) < 0x0201) expected = -EPIPE; break; default: ERROR(dev, "bogus number of ctrl queue testcases!\n"); context.status = -EINVAL; goto cleanup; } req.wLength = cpu_to_le16(len); urb[i] = u = simple_alloc_urb(udev, pipe, len, 0); if (!u) goto cleanup; reqp = kmalloc(sizeof(*reqp), GFP_KERNEL); if (!reqp) goto cleanup; reqp->setup = req; reqp->number = i % NUM_SUBCASES; reqp->expected = expected; u->setup_packet = (char *) &reqp->setup; u->context = &context; u->complete = ctrl_complete; } /* queue the urbs */ context.urb = urb; spin_lock_irq(&context.lock); for (i = 0; i < param->sglen; i++) { context.status = usb_submit_urb(urb[i], GFP_ATOMIC); if (context.status != 0) { ERROR(dev, "can't submit urb[%d], status %d\n", i, context.status); context.count = context.pending; break; } context.pending++; } spin_unlock_irq(&context.lock); /* FIXME set timer and time out; provide a disconnect hook */ /* wait for the last one to complete */ if (context.pending > 0) wait_for_completion(&context.complete); cleanup: for (i = 0; i < param->sglen; i++) { if (!urb[i]) continue; urb[i]->dev = udev; kfree(urb[i]->setup_packet); simple_free_urb(urb[i]); } kfree(urb); return context.status; } #undef NUM_SUBCASES /*-------------------------------------------------------------------------*/ static void unlink1_callback(struct urb *urb) { int status = urb->status; /* we "know" -EPIPE (stall) never happens */ if (!status) status = usb_submit_urb(urb, GFP_ATOMIC); if (status) { urb->status = status; complete(urb->context); } } static int unlink1(struct usbtest_dev *dev, int pipe, int size, int async) { struct urb *urb; struct completion completion; int retval = 0; init_completion(&completion); urb = simple_alloc_urb(testdev_to_usbdev(dev), pipe, size, 0); if (!urb) return -ENOMEM; urb->context = &completion; urb->complete = unlink1_callback; if (usb_pipeout(urb->pipe)) { simple_fill_buf(urb); urb->transfer_flags |= URB_ZERO_PACKET; } /* keep the endpoint busy. there are lots of hc/hcd-internal * states, and testing should get to all of them over time. * * FIXME want additional tests for when endpoint is STALLing * due to errors, or is just NAKing requests. */ retval = usb_submit_urb(urb, GFP_KERNEL); if (retval != 0) { dev_err(&dev->intf->dev, "submit fail %d\n", retval); return retval; } /* unlinking that should always work. variable delay tests more * hcd states and code paths, even with little other system load. */ msleep(jiffies % (2 * INTERRUPT_RATE)); if (async) { while (!completion_done(&completion)) { retval = usb_unlink_urb(urb); if (retval == 0 && usb_pipein(urb->pipe)) retval = simple_check_buf(dev, urb); switch (retval) { case -EBUSY: case -EIDRM: /* we can't unlink urbs while they're completing * or if they've completed, and we haven't * resubmitted. "normal" drivers would prevent * resubmission, but since we're testing unlink * paths, we can't. */ ERROR(dev, "unlink retry\n"); continue; case 0: case -EINPROGRESS: break; default: dev_err(&dev->intf->dev, "unlink fail %d\n", retval); return retval; } break; } } else usb_kill_urb(urb); wait_for_completion(&completion); retval = urb->status; simple_free_urb(urb); if (async) return (retval == -ECONNRESET) ? 0 : retval - 1000; else return (retval == -ENOENT || retval == -EPERM) ? 0 : retval - 2000; } static int unlink_simple(struct usbtest_dev *dev, int pipe, int len) { int retval = 0; /* test sync and async paths */ retval = unlink1(dev, pipe, len, 1); if (!retval) retval = unlink1(dev, pipe, len, 0); return retval; } /*-------------------------------------------------------------------------*/ struct queued_ctx { struct completion complete; atomic_t pending; unsigned num; int status; struct urb **urbs; }; static void unlink_queued_callback(struct urb *urb) { int status = urb->status; struct queued_ctx *ctx = urb->context; if (ctx->status) goto done; if (urb == ctx->urbs[ctx->num - 4] || urb == ctx->urbs[ctx->num - 2]) { if (status == -ECONNRESET) goto done; /* What error should we report if the URB completed normally? */ } if (status != 0) ctx->status = status; done: if (atomic_dec_and_test(&ctx->pending)) complete(&ctx->complete); } static int unlink_queued(struct usbtest_dev *dev, int pipe, unsigned num, unsigned size) { struct queued_ctx ctx; struct usb_device *udev = testdev_to_usbdev(dev); void *buf; dma_addr_t buf_dma; int i; int retval = -ENOMEM; init_completion(&ctx.complete); atomic_set(&ctx.pending, 1); /* One more than the actual value */ ctx.num = num; ctx.status = 0; buf = usb_alloc_coherent(udev, size, GFP_KERNEL, &buf_dma); if (!buf) return retval; memset(buf, 0, size); /* Allocate and init the urbs we'll queue */ ctx.urbs = kcalloc(num, sizeof(struct urb *), GFP_KERNEL); if (!ctx.urbs) goto free_buf; for (i = 0; i < num; i++) { ctx.urbs[i] = usb_alloc_urb(0, GFP_KERNEL); if (!ctx.urbs[i]) goto free_urbs; usb_fill_bulk_urb(ctx.urbs[i], udev, pipe, buf, size, unlink_queued_callback, &ctx); ctx.urbs[i]->transfer_dma = buf_dma; ctx.urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; if (usb_pipeout(ctx.urbs[i]->pipe)) { simple_fill_buf(ctx.urbs[i]); ctx.urbs[i]->transfer_flags |= URB_ZERO_PACKET; } } /* Submit all the URBs and then unlink URBs num - 4 and num - 2. */ for (i = 0; i < num; i++) { atomic_inc(&ctx.pending); retval = usb_submit_urb(ctx.urbs[i], GFP_KERNEL); if (retval != 0) { dev_err(&dev->intf->dev, "submit urbs[%d] fail %d\n", i, retval); atomic_dec(&ctx.pending); ctx.status = retval; break; } } if (i == num) { usb_unlink_urb(ctx.urbs[num - 4]); usb_unlink_urb(ctx.urbs[num - 2]); } else { while (--i >= 0) usb_unlink_urb(ctx.urbs[i]); } if (atomic_dec_and_test(&ctx.pending)) /* The extra count */ complete(&ctx.complete); wait_for_completion(&ctx.complete); retval = ctx.status; free_urbs: for (i = 0; i < num; i++) usb_free_urb(ctx.urbs[i]); kfree(ctx.urbs); free_buf: usb_free_coherent(udev, size, buf, buf_dma); return retval; } /*-------------------------------------------------------------------------*/ static int verify_not_halted(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; u16 status; /* shouldn't look or act halted */ retval = usb_get_std_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status); if (retval < 0) { ERROR(tdev, "ep %02x couldn't get no-halt status, %d\n", ep, retval); return retval; } if (status != 0) { ERROR(tdev, "ep %02x bogus status: %04x != 0\n", ep, status); return -EINVAL; } retval = simple_io(tdev, urb, 1, 0, 0, __func__); if (retval != 0) return -EINVAL; return 0; } static int verify_halted(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; u16 status; /* should look and act halted */ retval = usb_get_std_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status); if (retval < 0) { ERROR(tdev, "ep %02x couldn't get halt status, %d\n", ep, retval); return retval; } if (status != 1) { ERROR(tdev, "ep %02x bogus status: %04x != 1\n", ep, status); return -EINVAL; } retval = simple_io(tdev, urb, 1, 0, -EPIPE, __func__); if (retval != -EPIPE) return -EINVAL; retval = simple_io(tdev, urb, 1, 0, -EPIPE, "verify_still_halted"); if (retval != -EPIPE) return -EINVAL; return 0; } static int test_halt(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; /* shouldn't look or act halted now */ retval = verify_not_halted(tdev, ep, urb); if (retval < 0) return retval; /* set halt (protocol test only), verify it worked */ retval = usb_control_msg(urb->dev, usb_sndctrlpipe(urb->dev, 0), USB_REQ_SET_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, ep, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval < 0) { ERROR(tdev, "ep %02x couldn't set halt, %d\n", ep, retval); return retval; } retval = verify_halted(tdev, ep, urb); if (retval < 0) { int ret; /* clear halt anyways, else further tests will fail */ ret = usb_clear_halt(urb->dev, urb->pipe); if (ret) ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, ret); return retval; } /* clear halt (tests API + protocol), verify it worked */ retval = usb_clear_halt(urb->dev, urb->pipe); if (retval < 0) { ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval); return retval; } retval = verify_not_halted(tdev, ep, urb); if (retval < 0) return retval; /* NOTE: could also verify SET_INTERFACE clear halts ... */ return 0; } static int test_toggle_sync(struct usbtest_dev *tdev, int ep, struct urb *urb) { int retval; /* clear initial data toggle to DATA0 */ retval = usb_clear_halt(urb->dev, urb->pipe); if (retval < 0) { ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval); return retval; } /* transfer 3 data packets, should be DATA0, DATA1, DATA0 */ retval = simple_io(tdev, urb, 1, 0, 0, __func__); if (retval != 0) return -EINVAL; /* clear halt resets device side data toggle, host should react to it */ retval = usb_clear_halt(urb->dev, urb->pipe); if (retval < 0) { ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval); return retval; } /* host should use DATA0 again after clear halt */ retval = simple_io(tdev, urb, 1, 0, 0, __func__); return retval; } static int halt_simple(struct usbtest_dev *dev) { int ep; int retval = 0; struct urb *urb; struct usb_device *udev = testdev_to_usbdev(dev); if (udev->speed == USB_SPEED_SUPER) urb = simple_alloc_urb(udev, 0, 1024, 0); else urb = simple_alloc_urb(udev, 0, 512, 0); if (urb == NULL) return -ENOMEM; if (dev->in_pipe) { ep = usb_pipeendpoint(dev->in_pipe) | USB_DIR_IN; urb->pipe = dev->in_pipe; retval = test_halt(dev, ep, urb); if (retval < 0) goto done; } if (dev->out_pipe) { ep = usb_pipeendpoint(dev->out_pipe); urb->pipe = dev->out_pipe; retval = test_halt(dev, ep, urb); } done: simple_free_urb(urb); return retval; } static int toggle_sync_simple(struct usbtest_dev *dev) { int ep; int retval = 0; struct urb *urb; struct usb_device *udev = testdev_to_usbdev(dev); unsigned maxp = get_maxpacket(udev, dev->out_pipe); /* * Create a URB that causes a transfer of uneven amount of data packets * This way the clear toggle has an impact on the data toggle sequence. * Use 2 maxpacket length packets and one zero packet. */ urb = simple_alloc_urb(udev, 0, 2 * maxp, 0); if (urb == NULL) return -ENOMEM; urb->transfer_flags |= URB_ZERO_PACKET; ep = usb_pipeendpoint(dev->out_pipe); urb->pipe = dev->out_pipe; retval = test_toggle_sync(dev, ep, urb); simple_free_urb(urb); return retval; } /*-------------------------------------------------------------------------*/ /* Control OUT tests use the vendor control requests from Intel's * USB 2.0 compliance test device: write a buffer, read it back. * * Intel's spec only _requires_ that it work for one packet, which * is pretty weak. Some HCDs place limits here; most devices will * need to be able to handle more than one OUT data packet. We'll * try whatever we're told to try. */ static int ctrl_out(struct usbtest_dev *dev, unsigned count, unsigned length, unsigned vary, unsigned offset) { unsigned i, j, len; int retval; u8 *buf; char *what = "?"; struct usb_device *udev; if (length < 1 || length > 0xffff || vary >= length) return -EINVAL; buf = kmalloc(length + offset, GFP_KERNEL); if (!buf) return -ENOMEM; buf += offset; udev = testdev_to_usbdev(dev); len = length; retval = 0; /* NOTE: hardware might well act differently if we pushed it * with lots back-to-back queued requests. */ for (i = 0; i < count; i++) { /* write patterned data */ for (j = 0; j < len; j++) buf[j] = (u8)(i + j); retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x5b, USB_DIR_OUT|USB_TYPE_VENDOR, 0, 0, buf, len, USB_CTRL_SET_TIMEOUT); if (retval != len) { what = "write"; if (retval >= 0) { ERROR(dev, "ctrl_out, wlen %d (expected %d)\n", retval, len); retval = -EBADMSG; } break; } /* read it back -- assuming nothing intervened!! */ retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x5c, USB_DIR_IN|USB_TYPE_VENDOR, 0, 0, buf, len, USB_CTRL_GET_TIMEOUT); if (retval != len) { what = "read"; if (retval >= 0) { ERROR(dev, "ctrl_out, rlen %d (expected %d)\n", retval, len); retval = -EBADMSG; } break; } /* fail if we can't verify */ for (j = 0; j < len; j++) { if (buf[j] != (u8)(i + j)) { ERROR(dev, "ctrl_out, byte %d is %d not %d\n", j, buf[j], (u8)(i + j)); retval = -EBADMSG; break; } } if (retval < 0) { what = "verify"; break; } len += vary; /* [real world] the "zero bytes IN" case isn't really used. * hardware can easily trip up in this weird case, since its * status stage is IN, not OUT like other ep0in transfers. */ if (len > length) len = realworld ? 1 : 0; } if (retval < 0) ERROR(dev, "ctrl_out %s failed, code %d, count %d\n", what, retval, i); kfree(buf - offset); return retval; } /*-------------------------------------------------------------------------*/ /* ISO/BULK tests ... mimics common usage * - buffer length is split into N packets (mostly maxpacket sized) * - multi-buffers according to sglen */ struct transfer_context { unsigned count; unsigned pending; spinlock_t lock; struct completion done; int submit_error; unsigned long errors; unsigned long packet_count; struct usbtest_dev *dev; bool is_iso; }; static void complicated_callback(struct urb *urb) { struct transfer_context *ctx = urb->context; unsigned long flags; spin_lock_irqsave(&ctx->lock, flags); ctx->count--; ctx->packet_count += urb->number_of_packets; if (urb->error_count > 0) ctx->errors += urb->error_count; else if (urb->status != 0) ctx->errors += (ctx->is_iso ? urb->number_of_packets : 1); else if (urb->actual_length != urb->transfer_buffer_length) ctx->errors++; else if (check_guard_bytes(ctx->dev, urb) != 0) ctx->errors++; if (urb->status == 0 && ctx->count > (ctx->pending - 1) && !ctx->submit_error) { int status = usb_submit_urb(urb, GFP_ATOMIC); switch (status) { case 0: goto done; default: dev_err(&ctx->dev->intf->dev, "resubmit err %d\n", status); fallthrough; case -ENODEV: /* disconnected */ case -ESHUTDOWN: /* endpoint disabled */ ctx->submit_error = 1; break; } } ctx->pending--; if (ctx->pending == 0) { if (ctx->errors) dev_err(&ctx->dev->intf->dev, "during the test, %lu errors out of %lu\n", ctx->errors, ctx->packet_count); complete(&ctx->done); } done: spin_unlock_irqrestore(&ctx->lock, flags); } static struct urb *iso_alloc_urb( struct usb_device *udev, int pipe, struct usb_endpoint_descriptor *desc, long bytes, unsigned offset ) { struct urb *urb; unsigned i, maxp, packets; if (bytes < 0 || !desc) return NULL; maxp = usb_endpoint_maxp(desc); if (udev->speed >= USB_SPEED_SUPER) maxp *= ss_isoc_get_packet_num(udev, pipe); else maxp *= usb_endpoint_maxp_mult(desc); packets = DIV_ROUND_UP(bytes, maxp); urb = usb_alloc_urb(packets, GFP_KERNEL); if (!urb) return urb; urb->dev = udev; urb->pipe = pipe; urb->number_of_packets = packets; urb->transfer_buffer_length = bytes; urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset, GFP_KERNEL, &urb->transfer_dma); if (!urb->transfer_buffer) { usb_free_urb(urb); return NULL; } if (offset) { memset(urb->transfer_buffer, GUARD_BYTE, offset); urb->transfer_buffer += offset; urb->transfer_dma += offset; } /* For inbound transfers use guard byte so that test fails if data not correctly copied */ memset(urb->transfer_buffer, usb_pipein(urb->pipe) ? GUARD_BYTE : 0, bytes); for (i = 0; i < packets; i++) { /* here, only the last packet will be short */ urb->iso_frame_desc[i].length = min((unsigned) bytes, maxp); bytes -= urb->iso_frame_desc[i].length; urb->iso_frame_desc[i].offset = maxp * i; } urb->complete = complicated_callback; /* urb->context = SET BY CALLER */ urb->interval = 1 << (desc->bInterval - 1); urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; return urb; } static int test_queue(struct usbtest_dev *dev, struct usbtest_param_32 *param, int pipe, struct usb_endpoint_descriptor *desc, unsigned offset) { struct transfer_context context; struct usb_device *udev; unsigned i; unsigned long packets = 0; int status = 0; struct urb **urbs; if (!param->sglen || param->iterations > UINT_MAX / param->sglen) return -EINVAL; if (param->sglen > MAX_SGLEN) return -EINVAL; urbs = kcalloc(param->sglen, sizeof(*urbs), GFP_KERNEL); if (!urbs) return -ENOMEM; memset(&context, 0, sizeof(context)); context.count = param->iterations * param->sglen; context.dev = dev; context.is_iso = !!desc; init_completion(&context.done); spin_lock_init(&context.lock); udev = testdev_to_usbdev(dev); for (i = 0; i < param->sglen; i++) { if (context.is_iso) urbs[i] = iso_alloc_urb(udev, pipe, desc, param->length, offset); else urbs[i] = complicated_alloc_urb(udev, pipe, param->length, 0); if (!urbs[i]) { status = -ENOMEM; goto fail; } packets += urbs[i]->number_of_packets; urbs[i]->context = &context; } packets *= param->iterations; if (context.is_iso) { int transaction_num; if (udev->speed >= USB_SPEED_SUPER) transaction_num = ss_isoc_get_packet_num(udev, pipe); else transaction_num = usb_endpoint_maxp_mult(desc); dev_info(&dev->intf->dev, "iso period %d %sframes, wMaxPacket %d, transactions: %d\n", 1 << (desc->bInterval - 1), (udev->speed >= USB_SPEED_HIGH) ? "micro" : "", usb_endpoint_maxp(desc), transaction_num); dev_info(&dev->intf->dev, "total %lu msec (%lu packets)\n", (packets * (1 << (desc->bInterval - 1))) / ((udev->speed >= USB_SPEED_HIGH) ? 8 : 1), packets); } spin_lock_irq(&context.lock); for (i = 0; i < param->sglen; i++) { ++context.pending; status = usb_submit_urb(urbs[i], GFP_ATOMIC); if (status < 0) { ERROR(dev, "submit iso[%d], error %d\n", i, status); if (i == 0) { spin_unlock_irq(&context.lock); goto fail; } simple_free_urb(urbs[i]); urbs[i] = NULL; context.pending--; context.submit_error = 1; break; } } spin_unlock_irq(&context.lock); wait_for_completion(&context.done); for (i = 0; i < param->sglen; i++) { if (urbs[i]) simple_free_urb(urbs[i]); } /* * Isochronous transfers are expected to fail sometimes. As an * arbitrary limit, we will report an error if any submissions * fail or if the transfer failure rate is > 10%. */ if (status != 0) ; else if (context.submit_error) status = -EACCES; else if (context.errors > (context.is_iso ? context.packet_count / 10 : 0)) status = -EIO; kfree(urbs); return status; fail: for (i = 0; i < param->sglen; i++) { if (urbs[i]) simple_free_urb(urbs[i]); } kfree(urbs); return status; } static int test_unaligned_bulk( struct usbtest_dev *tdev, int pipe, unsigned length, int iterations, unsigned transfer_flags, const char *label) { int retval; struct urb *urb = usbtest_alloc_urb(testdev_to_usbdev(tdev), pipe, length, transfer_flags, 1, 0, simple_callback); if (!urb) return -ENOMEM; retval = simple_io(tdev, urb, iterations, 0, 0, label); simple_free_urb(urb); return retval; } /* Run tests. */ static int usbtest_do_ioctl(struct usb_interface *intf, struct usbtest_param_32 *param) { struct usbtest_dev *dev = usb_get_intfdata(intf); struct usb_device *udev = testdev_to_usbdev(dev); struct urb *urb; struct scatterlist *sg; struct usb_sg_request req; unsigned i; int retval = -EOPNOTSUPP; if (param->iterations <= 0) return -EINVAL; if (param->sglen > MAX_SGLEN) return -EINVAL; /* * Just a bunch of test cases that every HCD is expected to handle. * * Some may need specific firmware, though it'd be good to have * one firmware image to handle all the test cases. * * FIXME add more tests! cancel requests, verify the data, control * queueing, concurrent read+write threads, and so on. */ switch (param->test_num) { case 0: dev_info(&intf->dev, "TEST 0: NOP\n"); retval = 0; break; /* Simple non-queued bulk I/O tests */ case 1: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 1: write %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->out_pipe, param->length, 0); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test1"); simple_free_urb(urb); break; case 2: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 2: read %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->in_pipe, param->length, 0); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test2"); simple_free_urb(urb); break; case 3: if (dev->out_pipe == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 3: write/%d 0..%d bytes %u times\n", param->vary, param->length, param->iterations); urb = simple_alloc_urb(udev, dev->out_pipe, param->length, 0); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = simple_io(dev, urb, param->iterations, param->vary, 0, "test3"); simple_free_urb(urb); break; case 4: if (dev->in_pipe == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 4: read/%d 0..%d bytes %u times\n", param->vary, param->length, param->iterations); urb = simple_alloc_urb(udev, dev->in_pipe, param->length, 0); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = simple_io(dev, urb, param->iterations, param->vary, 0, "test4"); simple_free_urb(urb); break; /* Queued bulk I/O tests */ case 5: if (dev->out_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 5: write %d sglists %d entries of %d bytes\n", param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, 0, dev, dev->out_pipe); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = perform_sglist(dev, param->iterations, dev->out_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 6: if (dev->in_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 6: read %d sglists %d entries of %d bytes\n", param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, 0, dev, dev->in_pipe); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = perform_sglist(dev, param->iterations, dev->in_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 7: if (dev->out_pipe == 0 || param->sglen == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 7: write/%d %d sglists %d entries 0..%d bytes\n", param->vary, param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, param->vary, dev, dev->out_pipe); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk sink (maybe accepts short writes) */ retval = perform_sglist(dev, param->iterations, dev->out_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; case 8: if (dev->in_pipe == 0 || param->sglen == 0 || param->vary == 0) break; dev_info(&intf->dev, "TEST 8: read/%d %d sglists %d entries 0..%d bytes\n", param->vary, param->iterations, param->sglen, param->length); sg = alloc_sglist(param->sglen, param->length, param->vary, dev, dev->in_pipe); if (!sg) { retval = -ENOMEM; break; } /* FIRMWARE: bulk source (maybe generates short writes) */ retval = perform_sglist(dev, param->iterations, dev->in_pipe, &req, sg, param->sglen); free_sglist(sg, param->sglen); break; /* non-queued sanity tests for control (chapter 9 subset) */ case 9: retval = 0; dev_info(&intf->dev, "TEST 9: ch9 (subset) control tests, %d times\n", param->iterations); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = ch9_postconfig(dev); if (retval) dev_err(&intf->dev, "ch9 subset failed, " "iterations left %d\n", i); break; /* queued control messaging */ case 10: retval = 0; dev_info(&intf->dev, "TEST 10: queue %d control calls, %d times\n", param->sglen, param->iterations); retval = test_ctrl_queue(dev, param); break; /* simple non-queued unlinks (ring with one urb) */ case 11: if (dev->in_pipe == 0 || !param->length) break; retval = 0; dev_info(&intf->dev, "TEST 11: unlink %d reads of %d\n", param->iterations, param->length); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = unlink_simple(dev, dev->in_pipe, param->length); if (retval) dev_err(&intf->dev, "unlink reads failed %d, " "iterations left %d\n", retval, i); break; case 12: if (dev->out_pipe == 0 || !param->length) break; retval = 0; dev_info(&intf->dev, "TEST 12: unlink %d writes of %d\n", param->iterations, param->length); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = unlink_simple(dev, dev->out_pipe, param->length); if (retval) dev_err(&intf->dev, "unlink writes failed %d, " "iterations left %d\n", retval, i); break; /* ep halt tests */ case 13: if (dev->out_pipe == 0 && dev->in_pipe == 0) break; retval = 0; dev_info(&intf->dev, "TEST 13: set/clear %d halts\n", param->iterations); for (i = param->iterations; retval == 0 && i--; /* NOP */) retval = halt_simple(dev); if (retval) ERROR(dev, "halts failed, iterations left %d\n", i); break; /* control write tests */ case 14: if (!dev->info->ctrl_out) break; dev_info(&intf->dev, "TEST 14: %d ep0out, %d..%d vary %d\n", param->iterations, realworld ? 1 : 0, param->length, param->vary); retval = ctrl_out(dev, param->iterations, param->length, param->vary, 0); break; /* iso write tests */ case 15: if (dev->out_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 15: write %d iso, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); /* FIRMWARE: iso sink */ retval = test_queue(dev, param, dev->out_iso_pipe, dev->iso_out, 0); break; /* iso read tests */ case 16: if (dev->in_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 16: read %d iso, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); /* FIRMWARE: iso source */ retval = test_queue(dev, param, dev->in_iso_pipe, dev->iso_in, 0); break; /* FIXME scatterlist cancel (needs helper thread) */ /* Tests for bulk I/O using DMA mapping by core and odd address */ case 17: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 17: write odd addr %d bytes %u times core map\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->out_pipe, param->length, param->iterations, 0, "test17"); break; case 18: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 18: read odd addr %d bytes %u times core map\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->in_pipe, param->length, param->iterations, 0, "test18"); break; /* Tests for bulk I/O using premapped coherent buffer and odd address */ case 19: if (dev->out_pipe == 0) break; dev_info(&intf->dev, "TEST 19: write odd addr %d bytes %u times premapped\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->out_pipe, param->length, param->iterations, URB_NO_TRANSFER_DMA_MAP, "test19"); break; case 20: if (dev->in_pipe == 0) break; dev_info(&intf->dev, "TEST 20: read odd addr %d bytes %u times premapped\n", param->length, param->iterations); retval = test_unaligned_bulk( dev, dev->in_pipe, param->length, param->iterations, URB_NO_TRANSFER_DMA_MAP, "test20"); break; /* control write tests with unaligned buffer */ case 21: if (!dev->info->ctrl_out) break; dev_info(&intf->dev, "TEST 21: %d ep0out odd addr, %d..%d vary %d\n", param->iterations, realworld ? 1 : 0, param->length, param->vary); retval = ctrl_out(dev, param->iterations, param->length, param->vary, 1); break; /* unaligned iso tests */ case 22: if (dev->out_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 22: write %d iso odd, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); retval = test_queue(dev, param, dev->out_iso_pipe, dev->iso_out, 1); break; case 23: if (dev->in_iso_pipe == 0 || param->sglen == 0) break; dev_info(&intf->dev, "TEST 23: read %d iso odd, %d entries of %d bytes\n", param->iterations, param->sglen, param->length); retval = test_queue(dev, param, dev->in_iso_pipe, dev->iso_in, 1); break; /* unlink URBs from a bulk-OUT queue */ case 24: if (dev->out_pipe == 0 || !param->length || param->sglen < 4) break; retval = 0; dev_info(&intf->dev, "TEST 24: unlink from %d queues of " "%d %d-byte writes\n", param->iterations, param->sglen, param->length); for (i = param->iterations; retval == 0 && i > 0; --i) { retval = unlink_queued(dev, dev->out_pipe, param->sglen, param->length); if (retval) { dev_err(&intf->dev, "unlink queued writes failed %d, " "iterations left %d\n", retval, i); break; } } break; /* Simple non-queued interrupt I/O tests */ case 25: if (dev->out_int_pipe == 0) break; dev_info(&intf->dev, "TEST 25: write %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->out_int_pipe, param->length, dev->int_out->bInterval); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: interrupt sink (maybe accepts short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test25"); simple_free_urb(urb); break; case 26: if (dev->in_int_pipe == 0) break; dev_info(&intf->dev, "TEST 26: read %d bytes %u times\n", param->length, param->iterations); urb = simple_alloc_urb(udev, dev->in_int_pipe, param->length, dev->int_in->bInterval); if (!urb) { retval = -ENOMEM; break; } /* FIRMWARE: interrupt source (maybe generates short writes) */ retval = simple_io(dev, urb, param->iterations, 0, 0, "test26"); simple_free_urb(urb); break; case 27: /* We do performance test, so ignore data compare */ if (dev->out_pipe == 0 || param->sglen == 0 || pattern != 0) break; dev_info(&intf->dev, "TEST 27: bulk write %dMbytes\n", (param->iterations * param->sglen * param->length) / (1024 * 1024)); retval = test_queue(dev, param, dev->out_pipe, NULL, 0); break; case 28: if (dev->in_pipe == 0 || param->sglen == 0 || pattern != 0) break; dev_info(&intf->dev, "TEST 28: bulk read %dMbytes\n", (param->iterations * param->sglen * param->length) / (1024 * 1024)); retval = test_queue(dev, param, dev->in_pipe, NULL, 0); break; /* Test data Toggle/seq_nr clear between bulk out transfers */ case 29: if (dev->out_pipe == 0) break; retval = 0; dev_info(&intf->dev, "TEST 29: Clear toggle between bulk writes %d times\n", param->iterations); for (i = param->iterations; retval == 0 && i > 0; --i) retval = toggle_sync_simple(dev); if (retval) ERROR(dev, "toggle sync failed, iterations left %d\n", i); break; } return retval; } /*-------------------------------------------------------------------------*/ /* We only have this one interface to user space, through usbfs. * User mode code can scan usbfs to find N different devices (maybe on * different busses) to use when testing, and allocate one thread per * test. So discovery is simplified, and we have no device naming issues. * * Don't use these only as stress/load tests. Use them along with * other USB bus activity: plugging, unplugging, mousing, mp3 playback, * video capture, and so on. Run different tests at different times, in * different sequences. Nothing here should interact with other devices, * except indirectly by consuming USB bandwidth and CPU resources for test * threads and request completion. But the only way to know that for sure * is to test when HC queues are in use by many devices. * * WARNING: Because usbfs grabs udev->dev.sem before calling this ioctl(), * it locks out usbcore in certain code paths. Notably, if you disconnect * the device-under-test, hub_wq will wait block forever waiting for the * ioctl to complete ... so that usb_disconnect() can abort the pending * urbs and then call usbtest_disconnect(). To abort a test, you're best * off just killing the userspace task and waiting for it to exit. */ static int usbtest_ioctl(struct usb_interface *intf, unsigned int code, void *buf) { struct usbtest_dev *dev = usb_get_intfdata(intf); struct usbtest_param_64 *param_64 = buf; struct usbtest_param_32 temp; struct usbtest_param_32 *param_32 = buf; struct timespec64 start; struct timespec64 end; struct timespec64 duration; int retval = -EOPNOTSUPP; /* FIXME USBDEVFS_CONNECTINFO doesn't say how fast the device is. */ pattern = mod_pattern; if (mutex_lock_interruptible(&dev->lock)) return -ERESTARTSYS; /* FIXME: What if a system sleep starts while a test is running? */ /* some devices, like ez-usb default devices, need a non-default * altsetting to have any active endpoints. some tests change * altsettings; force a default so most tests don't need to check. */ if (dev->info->alt >= 0) { if (intf->altsetting->desc.bInterfaceNumber) { retval = -ENODEV; goto free_mutex; } retval = set_altsetting(dev, dev->info->alt); if (retval) { dev_err(&intf->dev, "set altsetting to %d failed, %d\n", dev->info->alt, retval); goto free_mutex; } } switch (code) { case USBTEST_REQUEST_64: temp.test_num = param_64->test_num; temp.iterations = param_64->iterations; temp.length = param_64->length; temp.sglen = param_64->sglen; temp.vary = param_64->vary; param_32 = &temp; break; case USBTEST_REQUEST_32: break; default: retval = -EOPNOTSUPP; goto free_mutex; } ktime_get_ts64(&start); retval = usbtest_do_ioctl(intf, param_32); if (retval < 0) goto free_mutex; ktime_get_ts64(&end); duration = timespec64_sub(end, start); temp.duration_sec = duration.tv_sec; temp.duration_usec = duration.tv_nsec/NSEC_PER_USEC; switch (code) { case USBTEST_REQUEST_32: param_32->duration_sec = temp.duration_sec; param_32->duration_usec = temp.duration_usec; break; case USBTEST_REQUEST_64: param_64->duration_sec = temp.duration_sec; param_64->duration_usec = temp.duration_usec; break; } free_mutex: mutex_unlock(&dev->lock); return retval; } /*-------------------------------------------------------------------------*/ static unsigned force_interrupt; module_param(force_interrupt, uint, 0); MODULE_PARM_DESC(force_interrupt, "0 = test default; else interrupt"); #ifdef GENERIC static unsigned short vendor; module_param(vendor, ushort, 0); MODULE_PARM_DESC(vendor, "vendor code (from usb-if)"); static unsigned short product; module_param(product, ushort, 0); MODULE_PARM_DESC(product, "product code (from vendor)"); #endif static int usbtest_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev; struct usbtest_dev *dev; struct usbtest_info *info; char *rtest, *wtest; char *irtest, *iwtest; char *intrtest, *intwtest; udev = interface_to_usbdev(intf); #ifdef GENERIC /* specify devices by module parameters? */ if (id->match_flags == 0) { /* vendor match required, product match optional */ if (!vendor || le16_to_cpu(udev->descriptor.idVendor) != (u16)vendor) return -ENODEV; if (product && le16_to_cpu(udev->descriptor.idProduct) != (u16)product) return -ENODEV; dev_info(&intf->dev, "matched module params, " "vend=0x%04x prod=0x%04x\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); } #endif dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; info = (struct usbtest_info *) id->driver_info; dev->info = info; mutex_init(&dev->lock); dev->intf = intf; /* cacheline-aligned scratch for i/o */ dev->buf = kmalloc(TBUF_SIZE, GFP_KERNEL); if (dev->buf == NULL) { kfree(dev); return -ENOMEM; } /* NOTE this doesn't yet test the handful of difference that are * visible with high speed interrupts: bigger maxpacket (1K) and * "high bandwidth" modes (up to 3 packets/uframe). */ rtest = wtest = ""; irtest = iwtest = ""; intrtest = intwtest = ""; if (force_interrupt || udev->speed == USB_SPEED_LOW) { if (info->ep_in) { dev->in_pipe = usb_rcvintpipe(udev, info->ep_in); rtest = " intr-in"; } if (info->ep_out) { dev->out_pipe = usb_sndintpipe(udev, info->ep_out); wtest = " intr-out"; } } else { if (override_alt >= 0 || info->autoconf) { int status; status = get_endpoints(dev, intf); if (status < 0) { WARNING(dev, "couldn't get endpoints, %d\n", status); kfree(dev->buf); kfree(dev); return status; } /* may find bulk or ISO pipes */ } else { if (info->ep_in) dev->in_pipe = usb_rcvbulkpipe(udev, info->ep_in); if (info->ep_out) dev->out_pipe = usb_sndbulkpipe(udev, info->ep_out); } if (dev->in_pipe) rtest = " bulk-in"; if (dev->out_pipe) wtest = " bulk-out"; if (dev->in_iso_pipe) irtest = " iso-in"; if (dev->out_iso_pipe) iwtest = " iso-out"; if (dev->in_int_pipe) intrtest = " int-in"; if (dev->out_int_pipe) intwtest = " int-out"; } usb_set_intfdata(intf, dev); dev_info(&intf->dev, "%s\n", info->name); dev_info(&intf->dev, "%s {control%s%s%s%s%s%s%s} tests%s\n", usb_speed_string(udev->speed), info->ctrl_out ? " in/out" : "", rtest, wtest, irtest, iwtest, intrtest, intwtest, info->alt >= 0 ? " (+alt)" : ""); return 0; } static int usbtest_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int usbtest_resume(struct usb_interface *intf) { return 0; } static void usbtest_disconnect(struct usb_interface *intf) { struct usbtest_dev *dev = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); dev_dbg(&intf->dev, "disconnect\n"); kfree(dev->buf); kfree(dev); } /* Basic testing only needs a device that can source or sink bulk traffic. * Any device can test control transfers (default with GENERIC binding). * * Several entries work with the default EP0 implementation that's built * into EZ-USB chips. There's a default vendor ID which can be overridden * by (very) small config EEPROMS, but otherwise all these devices act * identically until firmware is loaded: only EP0 works. It turns out * to be easy to make other endpoints work, without modifying that EP0 * behavior. For now, we expect that kind of firmware. */ /* an21xx or fx versions of ez-usb */ static struct usbtest_info ez1_info = { .name = "EZ-USB device", .ep_in = 2, .ep_out = 2, .alt = 1, }; /* fx2 version of ez-usb */ static struct usbtest_info ez2_info = { .name = "FX2 device", .ep_in = 6, .ep_out = 2, .alt = 1, }; /* ezusb family device with dedicated usb test firmware, */ static struct usbtest_info fw_info = { .name = "usb test device", .ep_in = 2, .ep_out = 2, .alt = 1, .autoconf = 1, /* iso and ctrl_out need autoconf */ .ctrl_out = 1, .iso = 1, /* iso_ep's are #8 in/out */ }; /* peripheral running Linux and 'zero.c' test firmware, or * its user-mode cousin. different versions of this use * different hardware with the same vendor/product codes. * host side MUST rely on the endpoint descriptors. */ static struct usbtest_info gz_info = { .name = "Linux gadget zero", .autoconf = 1, .ctrl_out = 1, .iso = 1, .intr = 1, .alt = 0, }; static struct usbtest_info um_info = { .name = "Linux user mode test driver", .autoconf = 1, .alt = -1, }; static struct usbtest_info um2_info = { .name = "Linux user mode ISO test driver", .autoconf = 1, .iso = 1, .alt = -1, }; #ifdef IBOT2 /* this is a nice source of high speed bulk data; * uses an FX2, with firmware provided in the device */ static struct usbtest_info ibot2_info = { .name = "iBOT2 webcam", .ep_in = 2, .alt = -1, }; #endif #ifdef GENERIC /* we can use any device to test control traffic */ static struct usbtest_info generic_info = { .name = "Generic USB device", .alt = -1, }; #endif static const struct usb_device_id id_table[] = { /*-------------------------------------------------------------*/ /* EZ-USB devices which download firmware to replace (or in our * case augment) the default device implementation. */ /* generic EZ-USB FX controller */ { USB_DEVICE(0x0547, 0x2235), .driver_info = (unsigned long) &ez1_info, }, /* CY3671 development board with EZ-USB FX */ { USB_DEVICE(0x0547, 0x0080), .driver_info = (unsigned long) &ez1_info, }, /* generic EZ-USB FX2 controller (or development board) */ { USB_DEVICE(0x04b4, 0x8613), .driver_info = (unsigned long) &ez2_info, }, /* re-enumerated usb test device firmware */ { USB_DEVICE(0xfff0, 0xfff0), .driver_info = (unsigned long) &fw_info, }, /* "Gadget Zero" firmware runs under Linux */ { USB_DEVICE(0x0525, 0xa4a0), .driver_info = (unsigned long) &gz_info, }, /* so does a user-mode variant */ { USB_DEVICE(0x0525, 0xa4a4), .driver_info = (unsigned long) &um_info, }, /* ... and a user-mode variant that talks iso */ { USB_DEVICE(0x0525, 0xa4a3), .driver_info = (unsigned long) &um2_info, }, #ifdef KEYSPAN_19Qi /* Keyspan 19qi uses an21xx (original EZ-USB) */ /* this does not coexist with the real Keyspan 19qi driver! */ { USB_DEVICE(0x06cd, 0x010b), .driver_info = (unsigned long) &ez1_info, }, #endif /*-------------------------------------------------------------*/ #ifdef IBOT2 /* iBOT2 makes a nice source of high speed bulk-in data */ /* this does not coexist with a real iBOT2 driver! */ { USB_DEVICE(0x0b62, 0x0059), .driver_info = (unsigned long) &ibot2_info, }, #endif /*-------------------------------------------------------------*/ #ifdef GENERIC /* module params can specify devices to use for control tests */ { .driver_info = (unsigned long) &generic_info, }, #endif /*-------------------------------------------------------------*/ { } }; MODULE_DEVICE_TABLE(usb, id_table); static struct usb_driver usbtest_driver = { .name = "usbtest", .id_table = id_table, .probe = usbtest_probe, .unlocked_ioctl = usbtest_ioctl, .disconnect = usbtest_disconnect, .suspend = usbtest_suspend, .resume = usbtest_resume, }; /*-------------------------------------------------------------------------*/ static int __init usbtest_init(void) { #ifdef GENERIC if (vendor) pr_debug("params: vend=0x%04x prod=0x%04x\n", vendor, product); #endif return usb_register(&usbtest_driver); } module_init(usbtest_init); static void __exit usbtest_exit(void) { usb_deregister(&usbtest_driver); } module_exit(usbtest_exit); MODULE_DESCRIPTION("USB Core/HCD Testing Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/usbtest.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved. */ #include <linux/bitops.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/usb/role.h> #define EUD_REG_INT1_EN_MASK 0x0024 #define EUD_REG_INT_STATUS_1 0x0044 #define EUD_REG_CTL_OUT_1 0x0074 #define EUD_REG_VBUS_INT_CLR 0x0080 #define EUD_REG_CSR_EUD_EN 0x1014 #define EUD_REG_SW_ATTACH_DET 0x1018 #define EUD_REG_EUD_EN2 0x0000 #define EUD_ENABLE BIT(0) #define EUD_INT_PET_EUD BIT(0) #define EUD_INT_VBUS BIT(2) #define EUD_INT_SAFE_MODE BIT(4) #define EUD_INT_ALL (EUD_INT_VBUS | EUD_INT_SAFE_MODE) struct eud_chip { struct device *dev; struct usb_role_switch *role_sw; void __iomem *base; void __iomem *mode_mgr; unsigned int int_status; int irq; bool enabled; bool usb_attached; }; static int enable_eud(struct eud_chip *priv) { writel(EUD_ENABLE, priv->base + EUD_REG_CSR_EUD_EN); writel(EUD_INT_VBUS | EUD_INT_SAFE_MODE, priv->base + EUD_REG_INT1_EN_MASK); writel(1, priv->mode_mgr + EUD_REG_EUD_EN2); return usb_role_switch_set_role(priv->role_sw, USB_ROLE_DEVICE); } static void disable_eud(struct eud_chip *priv) { writel(0, priv->base + EUD_REG_CSR_EUD_EN); writel(0, priv->mode_mgr + EUD_REG_EUD_EN2); } static ssize_t enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct eud_chip *chip = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", chip->enabled); } static ssize_t enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct eud_chip *chip = dev_get_drvdata(dev); bool enable; int ret; if (kstrtobool(buf, &enable)) return -EINVAL; if (enable) { ret = enable_eud(chip); if (!ret) chip->enabled = enable; else disable_eud(chip); } else { disable_eud(chip); } return count; } static DEVICE_ATTR_RW(enable); static struct attribute *eud_attrs[] = { &dev_attr_enable.attr, NULL, }; ATTRIBUTE_GROUPS(eud); static void usb_attach_detach(struct eud_chip *chip) { u32 reg; /* read ctl_out_1[4] to find USB attach or detach event */ reg = readl(chip->base + EUD_REG_CTL_OUT_1); chip->usb_attached = reg & EUD_INT_SAFE_MODE; } static void pet_eud(struct eud_chip *chip) { u32 reg; int ret; /* When the EUD_INT_PET_EUD in SW_ATTACH_DET is set, the cable has been * disconnected and we need to detach the pet to check if EUD is in safe * mode before attaching again. */ reg = readl(chip->base + EUD_REG_SW_ATTACH_DET); if (reg & EUD_INT_PET_EUD) { /* Detach & Attach pet for EUD */ writel(0, chip->base + EUD_REG_SW_ATTACH_DET); /* Delay to make sure detach pet is done before attach pet */ ret = readl_poll_timeout(chip->base + EUD_REG_SW_ATTACH_DET, reg, (reg == 0), 1, 100); if (ret) { dev_err(chip->dev, "Detach pet failed\n"); return; } } /* Attach pet for EUD */ writel(EUD_INT_PET_EUD, chip->base + EUD_REG_SW_ATTACH_DET); } static irqreturn_t handle_eud_irq(int irq, void *data) { struct eud_chip *chip = data; u32 reg; reg = readl(chip->base + EUD_REG_INT_STATUS_1); switch (reg & EUD_INT_ALL) { case EUD_INT_VBUS: usb_attach_detach(chip); return IRQ_WAKE_THREAD; case EUD_INT_SAFE_MODE: pet_eud(chip); return IRQ_HANDLED; default: return IRQ_NONE; } } static irqreturn_t handle_eud_irq_thread(int irq, void *data) { struct eud_chip *chip = data; int ret; if (chip->usb_attached) ret = usb_role_switch_set_role(chip->role_sw, USB_ROLE_DEVICE); else ret = usb_role_switch_set_role(chip->role_sw, USB_ROLE_HOST); if (ret) dev_err(chip->dev, "failed to set role switch\n"); /* set and clear vbus_int_clr[0] to clear interrupt */ writel(BIT(0), chip->base + EUD_REG_VBUS_INT_CLR); writel(0, chip->base + EUD_REG_VBUS_INT_CLR); return IRQ_HANDLED; } static void eud_role_switch_release(void *data) { struct eud_chip *chip = data; usb_role_switch_put(chip->role_sw); } static int eud_probe(struct platform_device *pdev) { struct eud_chip *chip; int ret; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = &pdev->dev; chip->role_sw = usb_role_switch_get(&pdev->dev); if (IS_ERR(chip->role_sw)) return dev_err_probe(chip->dev, PTR_ERR(chip->role_sw), "failed to get role switch\n"); ret = devm_add_action_or_reset(chip->dev, eud_role_switch_release, chip); if (ret) return dev_err_probe(chip->dev, ret, "failed to add role switch release action\n"); chip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(chip->base)) return PTR_ERR(chip->base); chip->mode_mgr = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(chip->mode_mgr)) return PTR_ERR(chip->mode_mgr); chip->irq = platform_get_irq(pdev, 0); ret = devm_request_threaded_irq(&pdev->dev, chip->irq, handle_eud_irq, handle_eud_irq_thread, IRQF_ONESHOT, NULL, chip); if (ret) return dev_err_probe(chip->dev, ret, "failed to allocate irq\n"); enable_irq_wake(chip->irq); platform_set_drvdata(pdev, chip); return 0; } static void eud_remove(struct platform_device *pdev) { struct eud_chip *chip = platform_get_drvdata(pdev); if (chip->enabled) disable_eud(chip); device_init_wakeup(&pdev->dev, false); disable_irq_wake(chip->irq); } static const struct of_device_id eud_dt_match[] = { { .compatible = "qcom,sc7280-eud" }, { } }; MODULE_DEVICE_TABLE(of, eud_dt_match); static struct platform_driver eud_driver = { .probe = eud_probe, .remove_new = eud_remove, .driver = { .name = "qcom_eud", .dev_groups = eud_groups, .of_match_table = eud_dt_match, }, }; module_platform_driver(eud_driver); MODULE_DESCRIPTION("QTI EUD driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/misc/qcom_eud.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for SMSC USB4604 USB HSIC 4-port 2.0 hub controller driver * Based on usb3503 driver * * Copyright (c) 2012-2013 Dongjin Kim ([email protected]) * Copyright (c) 2016 Linaro Ltd. */ #include <linux/i2c.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/gpio/consumer.h> enum usb4604_mode { USB4604_MODE_UNKNOWN, USB4604_MODE_HUB, USB4604_MODE_STANDBY, }; struct usb4604 { enum usb4604_mode mode; struct device *dev; struct gpio_desc *gpio_reset; }; static void usb4604_reset(struct usb4604 *hub, int state) { gpiod_set_value_cansleep(hub->gpio_reset, state); /* Wait for i2c logic to come up */ if (state) msleep(250); } static int usb4604_connect(struct usb4604 *hub) { struct device *dev = hub->dev; struct i2c_client *client = to_i2c_client(dev); int err; u8 connect_cmd[] = { 0xaa, 0x55, 0x00 }; usb4604_reset(hub, 1); err = i2c_master_send(client, connect_cmd, ARRAY_SIZE(connect_cmd)); if (err < 0) { usb4604_reset(hub, 0); return err; } hub->mode = USB4604_MODE_HUB; dev_dbg(dev, "switched to HUB mode\n"); return 0; } static int usb4604_switch_mode(struct usb4604 *hub, enum usb4604_mode mode) { struct device *dev = hub->dev; int err = 0; switch (mode) { case USB4604_MODE_HUB: err = usb4604_connect(hub); break; case USB4604_MODE_STANDBY: usb4604_reset(hub, 0); dev_dbg(dev, "switched to STANDBY mode\n"); break; default: dev_err(dev, "unknown mode is requested\n"); err = -EINVAL; break; } return err; } static int usb4604_probe(struct usb4604 *hub) { struct device *dev = hub->dev; struct device_node *np = dev->of_node; struct gpio_desc *gpio; u32 mode = USB4604_MODE_HUB; gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(gpio)) return PTR_ERR(gpio); hub->gpio_reset = gpio; if (of_property_read_u32(np, "initial-mode", &hub->mode)) hub->mode = mode; return usb4604_switch_mode(hub, hub->mode); } static int usb4604_i2c_probe(struct i2c_client *i2c) { struct usb4604 *hub; hub = devm_kzalloc(&i2c->dev, sizeof(*hub), GFP_KERNEL); if (!hub) return -ENOMEM; i2c_set_clientdata(i2c, hub); hub->dev = &i2c->dev; return usb4604_probe(hub); } static int __maybe_unused usb4604_i2c_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct usb4604 *hub = i2c_get_clientdata(client); usb4604_switch_mode(hub, USB4604_MODE_STANDBY); return 0; } static int __maybe_unused usb4604_i2c_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct usb4604 *hub = i2c_get_clientdata(client); usb4604_switch_mode(hub, hub->mode); return 0; } static SIMPLE_DEV_PM_OPS(usb4604_i2c_pm_ops, usb4604_i2c_suspend, usb4604_i2c_resume); static const struct i2c_device_id usb4604_id[] = { { "usb4604", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, usb4604_id); #ifdef CONFIG_OF static const struct of_device_id usb4604_of_match[] = { { .compatible = "smsc,usb4604" }, {} }; MODULE_DEVICE_TABLE(of, usb4604_of_match); #endif static struct i2c_driver usb4604_i2c_driver = { .driver = { .name = "usb4604", .pm = pm_ptr(&usb4604_i2c_pm_ops), .of_match_table = of_match_ptr(usb4604_of_match), }, .probe = usb4604_i2c_probe, .id_table = usb4604_id, }; module_i2c_driver(usb4604_i2c_driver); MODULE_DESCRIPTION("USB4604 USB HUB driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/misc/usb4604.c
// SPDX-License-Identifier: GPL-2.0 /* * EZ-USB specific functions used by some of the USB to Serial drivers. * * Copyright (C) 1999 - 2002 Greg Kroah-Hartman ([email protected]) */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/firmware.h> #include <linux/ihex.h> #include <linux/usb/ezusb.h> struct ezusb_fx_type { /* EZ-USB Control and Status Register. Bit 0 controls 8051 reset */ unsigned short cpucs_reg; unsigned short max_internal_adress; }; static const struct ezusb_fx_type ezusb_fx1 = { .cpucs_reg = 0x7F92, .max_internal_adress = 0x1B3F, }; /* Commands for writing to memory */ #define WRITE_INT_RAM 0xA0 #define WRITE_EXT_RAM 0xA3 static int ezusb_writememory(struct usb_device *dev, int address, unsigned char *data, int length, __u8 request) { if (!dev) return -ENODEV; return usb_control_msg_send(dev, 0, request, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, address, 0, data, length, 3000, GFP_KERNEL); } static int ezusb_set_reset(struct usb_device *dev, unsigned short cpucs_reg, unsigned char reset_bit) { int response = ezusb_writememory(dev, cpucs_reg, &reset_bit, 1, WRITE_INT_RAM); if (response < 0) dev_err(&dev->dev, "%s-%d failed: %d\n", __func__, reset_bit, response); return response; } int ezusb_fx1_set_reset(struct usb_device *dev, unsigned char reset_bit) { return ezusb_set_reset(dev, ezusb_fx1.cpucs_reg, reset_bit); } EXPORT_SYMBOL_GPL(ezusb_fx1_set_reset); static int ezusb_ihex_firmware_download(struct usb_device *dev, struct ezusb_fx_type fx, const char *firmware_path) { int ret = -ENOENT; const struct firmware *firmware = NULL; const struct ihex_binrec *record; if (request_ihex_firmware(&firmware, firmware_path, &dev->dev)) { dev_err(&dev->dev, "%s - request \"%s\" failed\n", __func__, firmware_path); goto out; } ret = ezusb_set_reset(dev, fx.cpucs_reg, 0); if (ret < 0) goto out; record = (const struct ihex_binrec *)firmware->data; for (; record; record = ihex_next_binrec(record)) { if (be32_to_cpu(record->addr) > fx.max_internal_adress) { ret = ezusb_writememory(dev, be32_to_cpu(record->addr), (unsigned char *)record->data, be16_to_cpu(record->len), WRITE_EXT_RAM); if (ret < 0) { dev_err(&dev->dev, "%s - ezusb_writememory " "failed writing internal memory " "(%d %04X %p %d)\n", __func__, ret, be32_to_cpu(record->addr), record->data, be16_to_cpu(record->len)); goto out; } } } ret = ezusb_set_reset(dev, fx.cpucs_reg, 1); if (ret < 0) goto out; record = (const struct ihex_binrec *)firmware->data; for (; record; record = ihex_next_binrec(record)) { if (be32_to_cpu(record->addr) <= fx.max_internal_adress) { ret = ezusb_writememory(dev, be32_to_cpu(record->addr), (unsigned char *)record->data, be16_to_cpu(record->len), WRITE_INT_RAM); if (ret < 0) { dev_err(&dev->dev, "%s - ezusb_writememory " "failed writing external memory " "(%d %04X %p %d)\n", __func__, ret, be32_to_cpu(record->addr), record->data, be16_to_cpu(record->len)); goto out; } } } ret = ezusb_set_reset(dev, fx.cpucs_reg, 0); out: release_firmware(firmware); return ret; } int ezusb_fx1_ihex_firmware_download(struct usb_device *dev, const char *firmware_path) { return ezusb_ihex_firmware_download(dev, ezusb_fx1, firmware_path); } EXPORT_SYMBOL_GPL(ezusb_fx1_ihex_firmware_download); #if 0 /* * Once someone one needs these fx2 functions, uncomment them * and add them to ezusb.h and all should be good. */ static struct ezusb_fx_type ezusb_fx2 = { .cpucs_reg = 0xE600, .max_internal_adress = 0x3FFF, }; int ezusb_fx2_set_reset(struct usb_device *dev, unsigned char reset_bit) { return ezusb_set_reset(dev, ezusb_fx2.cpucs_reg, reset_bit); } EXPORT_SYMBOL_GPL(ezusb_fx2_set_reset); int ezusb_fx2_ihex_firmware_download(struct usb_device *dev, const char *firmware_path) { return ezusb_ihex_firmware_download(dev, ezusb_fx2, firmware_path); } EXPORT_SYMBOL_GPL(ezusb_fx2_ihex_firmware_download); #endif MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/ezusb.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Microchip USB251xB USB 2.0 Hi-Speed Hub Controller * Configuration via SMBus. * * Copyright (c) 2017 SKIDATA AG * * This work is based on the USB3503 driver by Dongjin Kim and * a not-accepted patch by Fabien Lahoudere, see: * https://patchwork.kernel.org/patch/9257715/ */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/nls.h> #include <linux/of.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> /* Internal Register Set Addresses & Default Values acc. to DS00001692C */ #define USB251XB_ADDR_VENDOR_ID_LSB 0x00 #define USB251XB_ADDR_VENDOR_ID_MSB 0x01 #define USB251XB_DEF_VENDOR_ID 0x0424 #define USB251XB_ADDR_PRODUCT_ID_LSB 0x02 #define USB251XB_ADDR_PRODUCT_ID_MSB 0x03 #define USB251XB_ADDR_DEVICE_ID_LSB 0x04 #define USB251XB_ADDR_DEVICE_ID_MSB 0x05 #define USB251XB_DEF_DEVICE_ID 0x0BB3 #define USB251XB_ADDR_CONFIG_DATA_1 0x06 #define USB251XB_DEF_CONFIG_DATA_1 0x9B #define USB251XB_ADDR_CONFIG_DATA_2 0x07 #define USB251XB_DEF_CONFIG_DATA_2 0x20 #define USB251XB_ADDR_CONFIG_DATA_3 0x08 #define USB251XB_DEF_CONFIG_DATA_3 0x02 #define USB251XB_ADDR_NON_REMOVABLE_DEVICES 0x09 #define USB251XB_DEF_NON_REMOVABLE_DEVICES 0x00 #define USB251XB_ADDR_PORT_DISABLE_SELF 0x0A #define USB251XB_DEF_PORT_DISABLE_SELF 0x00 #define USB251XB_ADDR_PORT_DISABLE_BUS 0x0B #define USB251XB_DEF_PORT_DISABLE_BUS 0x00 #define USB251XB_ADDR_MAX_POWER_SELF 0x0C #define USB251XB_DEF_MAX_POWER_SELF 0x01 #define USB251XB_ADDR_MAX_POWER_BUS 0x0D #define USB251XB_DEF_MAX_POWER_BUS 0x32 #define USB251XB_ADDR_MAX_CURRENT_SELF 0x0E #define USB251XB_DEF_MAX_CURRENT_SELF 0x01 #define USB251XB_ADDR_MAX_CURRENT_BUS 0x0F #define USB251XB_DEF_MAX_CURRENT_BUS 0x32 #define USB251XB_ADDR_POWER_ON_TIME 0x10 #define USB251XB_DEF_POWER_ON_TIME 0x32 #define USB251XB_ADDR_LANGUAGE_ID_HIGH 0x11 #define USB251XB_ADDR_LANGUAGE_ID_LOW 0x12 #define USB251XB_DEF_LANGUAGE_ID 0x0000 #define USB251XB_STRING_BUFSIZE 62 #define USB251XB_ADDR_MANUFACTURER_STRING_LEN 0x13 #define USB251XB_ADDR_MANUFACTURER_STRING 0x16 #define USB251XB_DEF_MANUFACTURER_STRING "Microchip" #define USB251XB_ADDR_PRODUCT_STRING_LEN 0x14 #define USB251XB_ADDR_PRODUCT_STRING 0x54 #define USB251XB_ADDR_SERIAL_STRING_LEN 0x15 #define USB251XB_ADDR_SERIAL_STRING 0x92 #define USB251XB_DEF_SERIAL_STRING "" #define USB251XB_ADDR_BATTERY_CHARGING_ENABLE 0xD0 #define USB251XB_DEF_BATTERY_CHARGING_ENABLE 0x00 #define USB251XB_ADDR_BOOST_UP 0xF6 #define USB251XB_DEF_BOOST_UP 0x00 #define USB251XB_ADDR_BOOST_57 0xF7 #define USB251XB_DEF_BOOST_57 0x00 #define USB251XB_ADDR_BOOST_14 0xF8 #define USB251XB_DEF_BOOST_14 0x00 #define USB251XB_ADDR_PORT_SWAP 0xFA #define USB251XB_DEF_PORT_SWAP 0x00 #define USB251XB_ADDR_PORT_MAP_12 0xFB #define USB251XB_DEF_PORT_MAP_12 0x00 #define USB251XB_ADDR_PORT_MAP_34 0xFC #define USB251XB_DEF_PORT_MAP_34 0x00 /* USB251{3B/i,4B/i,7/i} only */ #define USB251XB_ADDR_PORT_MAP_56 0xFD #define USB251XB_DEF_PORT_MAP_56 0x00 /* USB2517/i only */ #define USB251XB_ADDR_PORT_MAP_7 0xFE #define USB251XB_DEF_PORT_MAP_7 0x00 /* USB2517/i only */ #define USB251XB_ADDR_STATUS_COMMAND 0xFF #define USB251XB_STATUS_COMMAND_SMBUS_DOWN 0x04 #define USB251XB_STATUS_COMMAND_RESET 0x02 #define USB251XB_STATUS_COMMAND_ATTACH 0x01 #define USB251XB_I2C_REG_SZ 0x100 #define USB251XB_I2C_WRITE_SZ 0x10 #define DRIVER_NAME "usb251xb" #define DRIVER_DESC "Microchip USB 2.0 Hi-Speed Hub Controller" struct usb251xb { struct device *dev; struct i2c_client *i2c; struct regulator *vdd; u8 skip_config; struct gpio_desc *gpio_reset; u16 vendor_id; u16 product_id; u16 device_id; u8 conf_data1; u8 conf_data2; u8 conf_data3; u8 non_rem_dev; u8 port_disable_sp; u8 port_disable_bp; u8 max_power_sp; u8 max_power_bp; u8 max_current_sp; u8 max_current_bp; u8 power_on_time; u16 lang_id; u8 manufacturer_len; u8 product_len; u8 serial_len; char manufacturer[USB251XB_STRING_BUFSIZE]; char product[USB251XB_STRING_BUFSIZE]; char serial[USB251XB_STRING_BUFSIZE]; u8 bat_charge_en; u8 boost_up; u8 boost_57; u8 boost_14; u8 port_swap; u8 port_map12; u8 port_map34; u8 port_map56; u8 port_map7; u8 status; }; struct usb251xb_data { u16 product_id; u8 port_cnt; bool led_support; bool bat_support; char product_str[USB251XB_STRING_BUFSIZE / 2]; /* ASCII string */ }; static const struct usb251xb_data usb2422_data = { .product_id = 0x2422, .port_cnt = 2, .led_support = false, .bat_support = true, .product_str = "USB2422", }; static const struct usb251xb_data usb2512b_data = { .product_id = 0x2512, .port_cnt = 2, .led_support = false, .bat_support = true, .product_str = "USB2512B", }; static const struct usb251xb_data usb2512bi_data = { .product_id = 0x2512, .port_cnt = 2, .led_support = false, .bat_support = true, .product_str = "USB2512Bi", }; static const struct usb251xb_data usb2513b_data = { .product_id = 0x2513, .port_cnt = 3, .led_support = false, .bat_support = true, .product_str = "USB2513B", }; static const struct usb251xb_data usb2513bi_data = { .product_id = 0x2513, .port_cnt = 3, .led_support = false, .bat_support = true, .product_str = "USB2513Bi", }; static const struct usb251xb_data usb2514b_data = { .product_id = 0x2514, .port_cnt = 4, .led_support = false, .bat_support = true, .product_str = "USB2514B", }; static const struct usb251xb_data usb2514bi_data = { .product_id = 0x2514, .port_cnt = 4, .led_support = false, .bat_support = true, .product_str = "USB2514Bi", }; static const struct usb251xb_data usb2517_data = { .product_id = 0x2517, .port_cnt = 7, .led_support = true, .bat_support = false, .product_str = "USB2517", }; static const struct usb251xb_data usb2517i_data = { .product_id = 0x2517, .port_cnt = 7, .led_support = true, .bat_support = false, .product_str = "USB2517i", }; #ifdef CONFIG_GPIOLIB static int usb251xb_check_dev_children(struct device *dev, void *child) { if (dev->type == &i2c_adapter_type) { return device_for_each_child(dev, child, usb251xb_check_dev_children); } return (dev == child); } static int usb251x_check_gpio_chip(struct usb251xb *hub) { struct gpio_chip *gc = gpiod_to_chip(hub->gpio_reset); struct i2c_adapter *adap = hub->i2c->adapter; int ret; if (!hub->gpio_reset) return 0; if (!gc) return -EINVAL; ret = usb251xb_check_dev_children(&adap->dev, gc->parent); if (ret) { dev_err(hub->dev, "Reset GPIO chip is at the same i2c-bus\n"); return -EINVAL; } return 0; } #else static int usb251x_check_gpio_chip(struct usb251xb *hub) { return 0; } #endif static void usb251xb_reset(struct usb251xb *hub) { if (!hub->gpio_reset) return; i2c_lock_bus(hub->i2c->adapter, I2C_LOCK_SEGMENT); gpiod_set_value_cansleep(hub->gpio_reset, 1); usleep_range(1, 10); /* >=1us RESET_N asserted */ gpiod_set_value_cansleep(hub->gpio_reset, 0); /* wait for hub recovery/stabilization */ usleep_range(500, 750); /* >=500us after RESET_N deasserted */ i2c_unlock_bus(hub->i2c->adapter, I2C_LOCK_SEGMENT); } static int usb251xb_connect(struct usb251xb *hub) { struct device *dev = hub->dev; int err, i; char i2c_wb[USB251XB_I2C_REG_SZ]; memset(i2c_wb, 0, USB251XB_I2C_REG_SZ); if (hub->skip_config) { dev_info(dev, "Skip hub configuration, only attach.\n"); i2c_wb[0] = 0x01; i2c_wb[1] = USB251XB_STATUS_COMMAND_ATTACH; usb251xb_reset(hub); err = i2c_smbus_write_i2c_block_data(hub->i2c, USB251XB_ADDR_STATUS_COMMAND, 2, i2c_wb); if (err) { dev_err(dev, "attaching hub failed: %d\n", err); return err; } return 0; } i2c_wb[USB251XB_ADDR_VENDOR_ID_MSB] = (hub->vendor_id >> 8) & 0xFF; i2c_wb[USB251XB_ADDR_VENDOR_ID_LSB] = hub->vendor_id & 0xFF; i2c_wb[USB251XB_ADDR_PRODUCT_ID_MSB] = (hub->product_id >> 8) & 0xFF; i2c_wb[USB251XB_ADDR_PRODUCT_ID_LSB] = hub->product_id & 0xFF; i2c_wb[USB251XB_ADDR_DEVICE_ID_MSB] = (hub->device_id >> 8) & 0xFF; i2c_wb[USB251XB_ADDR_DEVICE_ID_LSB] = hub->device_id & 0xFF; i2c_wb[USB251XB_ADDR_CONFIG_DATA_1] = hub->conf_data1; i2c_wb[USB251XB_ADDR_CONFIG_DATA_2] = hub->conf_data2; i2c_wb[USB251XB_ADDR_CONFIG_DATA_3] = hub->conf_data3; i2c_wb[USB251XB_ADDR_NON_REMOVABLE_DEVICES] = hub->non_rem_dev; i2c_wb[USB251XB_ADDR_PORT_DISABLE_SELF] = hub->port_disable_sp; i2c_wb[USB251XB_ADDR_PORT_DISABLE_BUS] = hub->port_disable_bp; i2c_wb[USB251XB_ADDR_MAX_POWER_SELF] = hub->max_power_sp; i2c_wb[USB251XB_ADDR_MAX_POWER_BUS] = hub->max_power_bp; i2c_wb[USB251XB_ADDR_MAX_CURRENT_SELF] = hub->max_current_sp; i2c_wb[USB251XB_ADDR_MAX_CURRENT_BUS] = hub->max_current_bp; i2c_wb[USB251XB_ADDR_POWER_ON_TIME] = hub->power_on_time; i2c_wb[USB251XB_ADDR_LANGUAGE_ID_HIGH] = (hub->lang_id >> 8) & 0xFF; i2c_wb[USB251XB_ADDR_LANGUAGE_ID_LOW] = hub->lang_id & 0xFF; i2c_wb[USB251XB_ADDR_MANUFACTURER_STRING_LEN] = hub->manufacturer_len; i2c_wb[USB251XB_ADDR_PRODUCT_STRING_LEN] = hub->product_len; i2c_wb[USB251XB_ADDR_SERIAL_STRING_LEN] = hub->serial_len; memcpy(&i2c_wb[USB251XB_ADDR_MANUFACTURER_STRING], hub->manufacturer, USB251XB_STRING_BUFSIZE); memcpy(&i2c_wb[USB251XB_ADDR_SERIAL_STRING], hub->serial, USB251XB_STRING_BUFSIZE); memcpy(&i2c_wb[USB251XB_ADDR_PRODUCT_STRING], hub->product, USB251XB_STRING_BUFSIZE); i2c_wb[USB251XB_ADDR_BATTERY_CHARGING_ENABLE] = hub->bat_charge_en; i2c_wb[USB251XB_ADDR_BOOST_UP] = hub->boost_up; i2c_wb[USB251XB_ADDR_BOOST_57] = hub->boost_57; i2c_wb[USB251XB_ADDR_BOOST_14] = hub->boost_14; i2c_wb[USB251XB_ADDR_PORT_SWAP] = hub->port_swap; i2c_wb[USB251XB_ADDR_PORT_MAP_12] = hub->port_map12; i2c_wb[USB251XB_ADDR_PORT_MAP_34] = hub->port_map34; i2c_wb[USB251XB_ADDR_PORT_MAP_56] = hub->port_map56; i2c_wb[USB251XB_ADDR_PORT_MAP_7] = hub->port_map7; i2c_wb[USB251XB_ADDR_STATUS_COMMAND] = USB251XB_STATUS_COMMAND_ATTACH; usb251xb_reset(hub); /* write registers */ for (i = 0; i < (USB251XB_I2C_REG_SZ / USB251XB_I2C_WRITE_SZ); i++) { int offset = i * USB251XB_I2C_WRITE_SZ; char wbuf[USB251XB_I2C_WRITE_SZ + 1]; /* The first data byte transferred tells the hub how many data * bytes will follow (byte count). */ wbuf[0] = USB251XB_I2C_WRITE_SZ; memcpy(&wbuf[1], &i2c_wb[offset], USB251XB_I2C_WRITE_SZ); dev_dbg(dev, "writing %d byte block %d to 0x%02X\n", USB251XB_I2C_WRITE_SZ, i, offset); err = i2c_smbus_write_i2c_block_data(hub->i2c, offset, USB251XB_I2C_WRITE_SZ + 1, wbuf); if (err) goto out_err; } dev_info(dev, "Hub configuration was successful.\n"); return 0; out_err: dev_err(dev, "configuring block %d failed: %d\n", i, err); return err; } static void usb251xb_get_ports_field(struct usb251xb *hub, const char *prop_name, u8 port_cnt, bool ds_only, u8 *fld) { struct device *dev = hub->dev; struct property *prop; const __be32 *p; u32 port; of_property_for_each_u32(dev->of_node, prop_name, prop, p, port) { if ((port >= ds_only ? 1 : 0) && (port <= port_cnt)) *fld |= BIT(port); else dev_warn(dev, "port %u doesn't exist\n", port); } } static int usb251xb_get_ofdata(struct usb251xb *hub, const struct usb251xb_data *data) { struct device *dev = hub->dev; struct device_node *np = dev->of_node; int len; u32 property_u32 = 0; const char *cproperty_char; char str[USB251XB_STRING_BUFSIZE / 2]; if (!np) { dev_err(dev, "failed to get ofdata\n"); return -ENODEV; } hub->skip_config = of_property_read_bool(np, "skip-config"); hub->gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(hub->gpio_reset)) return dev_err_probe(dev, PTR_ERR(hub->gpio_reset), "unable to request GPIO reset pin\n"); if (of_property_read_u16(np, "vendor-id", &hub->vendor_id)) hub->vendor_id = USB251XB_DEF_VENDOR_ID; if (of_property_read_u16(np, "product-id", &hub->product_id)) hub->product_id = data->product_id; if (of_property_read_u16(np, "device-id", &hub->device_id)) hub->device_id = USB251XB_DEF_DEVICE_ID; hub->conf_data1 = USB251XB_DEF_CONFIG_DATA_1; if (of_property_read_bool(np, "self-powered")) { hub->conf_data1 |= BIT(7); /* Configure Over-Current sens when self-powered */ hub->conf_data1 &= ~BIT(2); if (of_property_read_bool(np, "ganged-sensing")) hub->conf_data1 &= ~BIT(1); else if (of_property_read_bool(np, "individual-sensing")) hub->conf_data1 |= BIT(1); } else if (of_property_read_bool(np, "bus-powered")) { hub->conf_data1 &= ~BIT(7); /* Disable Over-Current sense when bus-powered */ hub->conf_data1 |= BIT(2); } if (of_property_read_bool(np, "disable-hi-speed")) hub->conf_data1 |= BIT(5); if (of_property_read_bool(np, "multi-tt")) hub->conf_data1 |= BIT(4); else if (of_property_read_bool(np, "single-tt")) hub->conf_data1 &= ~BIT(4); if (of_property_read_bool(np, "disable-eop")) hub->conf_data1 |= BIT(3); if (of_property_read_bool(np, "individual-port-switching")) hub->conf_data1 |= BIT(0); else if (of_property_read_bool(np, "ganged-port-switching")) hub->conf_data1 &= ~BIT(0); hub->conf_data2 = USB251XB_DEF_CONFIG_DATA_2; if (of_property_read_bool(np, "dynamic-power-switching")) hub->conf_data2 |= BIT(7); if (!of_property_read_u32(np, "oc-delay-us", &property_u32)) { if (property_u32 == 100) { /* 100 us*/ hub->conf_data2 &= ~BIT(5); hub->conf_data2 &= ~BIT(4); } else if (property_u32 == 4000) { /* 4 ms */ hub->conf_data2 &= ~BIT(5); hub->conf_data2 |= BIT(4); } else if (property_u32 == 16000) { /* 16 ms */ hub->conf_data2 |= BIT(5); hub->conf_data2 |= BIT(4); } else { /* 8 ms (DEFAULT) */ hub->conf_data2 |= BIT(5); hub->conf_data2 &= ~BIT(4); } } if (of_property_read_bool(np, "compound-device")) hub->conf_data2 |= BIT(3); hub->conf_data3 = USB251XB_DEF_CONFIG_DATA_3; if (of_property_read_bool(np, "port-mapping-mode")) hub->conf_data3 |= BIT(3); if (data->led_support && of_get_property(np, "led-usb-mode", NULL)) hub->conf_data3 &= ~BIT(1); if (of_property_read_bool(np, "string-support")) hub->conf_data3 |= BIT(0); hub->non_rem_dev = USB251XB_DEF_NON_REMOVABLE_DEVICES; usb251xb_get_ports_field(hub, "non-removable-ports", data->port_cnt, true, &hub->non_rem_dev); hub->port_disable_sp = USB251XB_DEF_PORT_DISABLE_SELF; usb251xb_get_ports_field(hub, "sp-disabled-ports", data->port_cnt, true, &hub->port_disable_sp); hub->port_disable_bp = USB251XB_DEF_PORT_DISABLE_BUS; usb251xb_get_ports_field(hub, "bp-disabled-ports", data->port_cnt, true, &hub->port_disable_bp); hub->max_power_sp = USB251XB_DEF_MAX_POWER_SELF; if (!of_property_read_u32(np, "sp-max-total-current-microamp", &property_u32)) hub->max_power_sp = min_t(u8, property_u32 / 2000, 50); hub->max_power_bp = USB251XB_DEF_MAX_POWER_BUS; if (!of_property_read_u32(np, "bp-max-total-current-microamp", &property_u32)) hub->max_power_bp = min_t(u8, property_u32 / 2000, 255); hub->max_current_sp = USB251XB_DEF_MAX_CURRENT_SELF; if (!of_property_read_u32(np, "sp-max-removable-current-microamp", &property_u32)) hub->max_current_sp = min_t(u8, property_u32 / 2000, 50); hub->max_current_bp = USB251XB_DEF_MAX_CURRENT_BUS; if (!of_property_read_u32(np, "bp-max-removable-current-microamp", &property_u32)) hub->max_current_bp = min_t(u8, property_u32 / 2000, 255); hub->power_on_time = USB251XB_DEF_POWER_ON_TIME; if (!of_property_read_u32(np, "power-on-time-ms", &property_u32)) hub->power_on_time = min_t(u8, property_u32 / 2, 255); if (of_property_read_u16(np, "language-id", &hub->lang_id)) hub->lang_id = USB251XB_DEF_LANGUAGE_ID; if (of_property_read_u8(np, "boost-up", &hub->boost_up)) hub->boost_up = USB251XB_DEF_BOOST_UP; cproperty_char = of_get_property(np, "manufacturer", NULL); strscpy(str, cproperty_char ? : USB251XB_DEF_MANUFACTURER_STRING, sizeof(str)); hub->manufacturer_len = strlen(str) & 0xFF; memset(hub->manufacturer, 0, USB251XB_STRING_BUFSIZE); len = min_t(size_t, USB251XB_STRING_BUFSIZE / 2, strlen(str)); len = utf8s_to_utf16s(str, len, UTF16_LITTLE_ENDIAN, (wchar_t *)hub->manufacturer, USB251XB_STRING_BUFSIZE); cproperty_char = of_get_property(np, "product", NULL); strscpy(str, cproperty_char ? : data->product_str, sizeof(str)); hub->product_len = strlen(str) & 0xFF; memset(hub->product, 0, USB251XB_STRING_BUFSIZE); len = min_t(size_t, USB251XB_STRING_BUFSIZE / 2, strlen(str)); len = utf8s_to_utf16s(str, len, UTF16_LITTLE_ENDIAN, (wchar_t *)hub->product, USB251XB_STRING_BUFSIZE); cproperty_char = of_get_property(np, "serial", NULL); strscpy(str, cproperty_char ? : USB251XB_DEF_SERIAL_STRING, sizeof(str)); hub->serial_len = strlen(str) & 0xFF; memset(hub->serial, 0, USB251XB_STRING_BUFSIZE); len = min_t(size_t, USB251XB_STRING_BUFSIZE / 2, strlen(str)); len = utf8s_to_utf16s(str, len, UTF16_LITTLE_ENDIAN, (wchar_t *)hub->serial, USB251XB_STRING_BUFSIZE); /* * The datasheet documents the register as 'Port Swap' but in real the * register controls the USB DP/DM signal swapping for each port. */ hub->port_swap = USB251XB_DEF_PORT_SWAP; usb251xb_get_ports_field(hub, "swap-dx-lanes", data->port_cnt, false, &hub->port_swap); /* The following parameters are currently not exposed to devicetree, but * may be as soon as needed. */ hub->bat_charge_en = USB251XB_DEF_BATTERY_CHARGING_ENABLE; hub->boost_57 = USB251XB_DEF_BOOST_57; hub->boost_14 = USB251XB_DEF_BOOST_14; hub->port_map12 = USB251XB_DEF_PORT_MAP_12; hub->port_map34 = USB251XB_DEF_PORT_MAP_34; hub->port_map56 = USB251XB_DEF_PORT_MAP_56; hub->port_map7 = USB251XB_DEF_PORT_MAP_7; return 0; } static const struct of_device_id usb251xb_of_match[] = { { .compatible = "microchip,usb2422", .data = &usb2422_data, }, { .compatible = "microchip,usb2512b", .data = &usb2512b_data, }, { .compatible = "microchip,usb2512bi", .data = &usb2512bi_data, }, { .compatible = "microchip,usb2513b", .data = &usb2513b_data, }, { .compatible = "microchip,usb2513bi", .data = &usb2513bi_data, }, { .compatible = "microchip,usb2514b", .data = &usb2514b_data, }, { .compatible = "microchip,usb2514bi", .data = &usb2514bi_data, }, { .compatible = "microchip,usb2517", .data = &usb2517_data, }, { .compatible = "microchip,usb2517i", .data = &usb2517i_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, usb251xb_of_match); static void usb251xb_regulator_disable_action(void *data) { struct usb251xb *hub = data; regulator_disable(hub->vdd); } static int usb251xb_probe(struct usb251xb *hub) { struct device *dev = hub->dev; struct device_node *np = dev->of_node; const struct usb251xb_data *usb_data = of_device_get_match_data(dev); int err; if (np && usb_data) { err = usb251xb_get_ofdata(hub, usb_data); if (err) { dev_err(dev, "failed to get ofdata: %d\n", err); return err; } } /* * usb251x SMBus-slave SCL lane is muxed with CFG_SEL0 pin. So if anyone * tries to work with the bus at the moment the hub reset is released, * it may cause an invalid config being latched by usb251x. Particularly * one of the config modes makes the hub loading a default registers * value without SMBus-slave interface activation. If the hub * accidentally gets this mode, this will cause the driver SMBus- * functions failure. Normally we could just lock the SMBus-segment the * hub i2c-interface resides for the device-specific reset timing. But * the GPIO controller, which is used to handle the hub reset, might be * placed at the same i2c-bus segment. In this case an error should be * returned since we can't safely use the GPIO controller to clear the * reset state (it may affect the hub configuration) and we can't lock * the i2c-bus segment (it will cause a deadlock). */ err = usb251x_check_gpio_chip(hub); if (err) return err; hub->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(hub->vdd)) return PTR_ERR(hub->vdd); err = regulator_enable(hub->vdd); if (err) return err; err = devm_add_action_or_reset(dev, usb251xb_regulator_disable_action, hub); if (err) return err; err = usb251xb_connect(hub); if (err) { dev_err(dev, "Failed to connect hub (%d)\n", err); return err; } dev_info(dev, "Hub probed successfully\n"); return 0; } static int usb251xb_i2c_probe(struct i2c_client *i2c) { struct usb251xb *hub; hub = devm_kzalloc(&i2c->dev, sizeof(struct usb251xb), GFP_KERNEL); if (!hub) return -ENOMEM; i2c_set_clientdata(i2c, hub); hub->dev = &i2c->dev; hub->i2c = i2c; return usb251xb_probe(hub); } static int __maybe_unused usb251xb_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct usb251xb *hub = i2c_get_clientdata(client); return regulator_disable(hub->vdd); } static int __maybe_unused usb251xb_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct usb251xb *hub = i2c_get_clientdata(client); int err; err = regulator_enable(hub->vdd); if (err) return err; return usb251xb_connect(hub); } static SIMPLE_DEV_PM_OPS(usb251xb_pm_ops, usb251xb_suspend, usb251xb_resume); static const struct i2c_device_id usb251xb_id[] = { { "usb2422", 0 }, { "usb2512b", 0 }, { "usb2512bi", 0 }, { "usb2513b", 0 }, { "usb2513bi", 0 }, { "usb2514b", 0 }, { "usb2514bi", 0 }, { "usb2517", 0 }, { "usb2517i", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, usb251xb_id); static struct i2c_driver usb251xb_i2c_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = usb251xb_of_match, .pm = &usb251xb_pm_ops, }, .probe = usb251xb_i2c_probe, .id_table = usb251xb_id, }; module_i2c_driver(usb251xb_i2c_driver); MODULE_AUTHOR("Richard Leitner <[email protected]>"); MODULE_DESCRIPTION("USB251x/xBi USB 2.0 Hub Controller Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/usb251xb.c
// SPDX-License-Identifier: GPL-2.0+ /* * adutux - driver for ADU devices from Ontrak Control Systems * This is an experimental driver. Use at your own risk. * This driver is not supported by Ontrak Control Systems. * * Copyright (c) 2003 John Homppi (SCO, leave this notice here) * * derived from the Lego USB Tower driver 0.56: * Copyright (c) 2003 David Glance <[email protected]> * 2001 Juergen Stuber <[email protected]> * that was derived from USB Skeleton driver - 0.5 * Copyright (c) 2001 Greg Kroah-Hartman ([email protected]) * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/uaccess.h> #define DRIVER_AUTHOR "John Homppi" #define DRIVER_DESC "adutux (see www.ontrak.net)" /* Define these values to match your device */ #define ADU_VENDOR_ID 0x0a07 #define ADU_PRODUCT_ID 0x0064 /* table of devices that work with this driver */ static const struct usb_device_id device_table[] = { { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */ { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, device_table); #ifdef CONFIG_USB_DYNAMIC_MINORS #define ADU_MINOR_BASE 0 #else #define ADU_MINOR_BASE 67 #endif /* we can have up to this number of device plugged in at once */ #define MAX_DEVICES 16 #define COMMAND_TIMEOUT (2*HZ) /* * The locking scheme is a vanilla 3-lock: * adu_device.buflock: A spinlock, covers what IRQs touch. * adutux_mutex: A Static lock to cover open_count. It would also cover * any globals, but we don't have them in 2.6. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user. * It covers all of adu_device, except the open_count * and what .buflock covers. */ /* Structure to hold all of our device specific stuff */ struct adu_device { struct mutex mtx; struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; unsigned int minor; /* the starting minor number for this device */ char serial_number[8]; int open_count; /* number of times this port has been opened */ unsigned long disconnected:1; char *read_buffer_primary; int read_buffer_length; char *read_buffer_secondary; int secondary_head; int secondary_tail; spinlock_t buflock; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char *interrupt_in_buffer; struct usb_endpoint_descriptor *interrupt_in_endpoint; struct urb *interrupt_in_urb; int read_urb_finished; char *interrupt_out_buffer; struct usb_endpoint_descriptor *interrupt_out_endpoint; struct urb *interrupt_out_urb; int out_urb_finished; }; static DEFINE_MUTEX(adutux_mutex); static struct usb_driver adu_driver; static inline void adu_debug_data(struct device *dev, const char *function, int size, const unsigned char *data) { dev_dbg(dev, "%s - length = %d, data = %*ph\n", function, size, size, data); } /* * adu_abort_transfers * aborts transfers and frees associated data structures */ static void adu_abort_transfers(struct adu_device *dev) { unsigned long flags; if (dev->disconnected) return; /* shutdown transfer */ /* XXX Anchor these instead */ spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); usb_kill_urb(dev->interrupt_in_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); wait_event_timeout(dev->write_wait, dev->out_urb_finished, COMMAND_TIMEOUT); usb_kill_urb(dev->interrupt_out_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); } static void adu_delete(struct adu_device *dev) { /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->read_buffer_primary); kfree(dev->read_buffer_secondary); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); usb_put_dev(dev->udev); kfree(dev); } static void adu_interrupt_in_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); spin_lock_irqsave(&dev->buflock, flags); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET) && (status != -ESHUTDOWN)) { dev_dbg(&dev->udev->dev, "%s : nonzero status received: %d\n", __func__, status); } goto exit; } if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) { if (dev->read_buffer_length < (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) - (urb->actual_length)) { memcpy (dev->read_buffer_primary + dev->read_buffer_length, dev->interrupt_in_buffer, urb->actual_length); dev->read_buffer_length += urb->actual_length; dev_dbg(&dev->udev->dev, "%s reading %d\n", __func__, urb->actual_length); } else { dev_dbg(&dev->udev->dev, "%s : read_buffer overflow\n", __func__); } } exit: dev->read_urb_finished = 1; spin_unlock_irqrestore(&dev->buflock, flags); /* always wake up so we recover from errors */ wake_up_interruptible(&dev->read_wait); } static void adu_interrupt_out_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); if (status != 0) { if ((status != -ENOENT) && (status != -ESHUTDOWN) && (status != -ECONNRESET)) { dev_dbg(&dev->udev->dev, "%s :nonzero status received: %d\n", __func__, status); } return; } spin_lock_irqsave(&dev->buflock, flags); dev->out_urb_finished = 1; wake_up(&dev->write_wait); spin_unlock_irqrestore(&dev->buflock, flags); } static int adu_open(struct inode *inode, struct file *file) { struct adu_device *dev = NULL; struct usb_interface *interface; int subminor; int retval; subminor = iminor(inode); retval = mutex_lock_interruptible(&adutux_mutex); if (retval) goto exit_no_lock; interface = usb_find_interface(&adu_driver, subminor); if (!interface) { pr_err("%s - error, can't find device for minor %d\n", __func__, subminor); retval = -ENODEV; goto exit_no_device; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit_no_device; } /* check that nobody else is using the device */ if (dev->open_count) { retval = -EBUSY; goto exit_no_device; } ++dev->open_count; dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__, dev->open_count); /* save device in the file's private structure */ file->private_data = dev; /* initialize in direction */ dev->read_buffer_length = 0; /* fixup first read by having urb waiting for it */ usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); dev->read_urb_finished = 0; if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL)) dev->read_urb_finished = 1; /* we ignore failure */ /* end of fixup for first read */ /* initialize out direction */ dev->out_urb_finished = 1; retval = 0; exit_no_device: mutex_unlock(&adutux_mutex); exit_no_lock: return retval; } static void adu_release_internal(struct adu_device *dev) { /* decrement our usage count for the device */ --dev->open_count; dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__, dev->open_count); if (dev->open_count <= 0) { adu_abort_transfers(dev); dev->open_count = 0; } } static int adu_release(struct inode *inode, struct file *file) { struct adu_device *dev; int retval = 0; if (file == NULL) { retval = -ENODEV; goto exit; } dev = file->private_data; if (dev == NULL) { retval = -ENODEV; goto exit; } mutex_lock(&adutux_mutex); /* not interruptible */ if (dev->open_count <= 0) { dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__); retval = -ENODEV; goto unlock; } adu_release_internal(dev); if (dev->disconnected) { /* the device was unplugged before the file was released */ if (!dev->open_count) /* ... and we're the last user */ adu_delete(dev); } unlock: mutex_unlock(&adutux_mutex); exit: return retval; } static ssize_t adu_read(struct file *file, __user char *buffer, size_t count, loff_t *ppos) { struct adu_device *dev; size_t bytes_read = 0; size_t bytes_to_read = count; int retval = 0; int timeout = 0; int should_submit = 0; unsigned long flags; DECLARE_WAITQUEUE(wait, current); dev = file->private_data; if (mutex_lock_interruptible(&dev->mtx)) return -ERESTARTSYS; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that some data was requested */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n", __func__); goto exit; } timeout = COMMAND_TIMEOUT; dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__); while (bytes_to_read) { size_t data_in_secondary = dev->secondary_tail - dev->secondary_head; dev_dbg(&dev->udev->dev, "%s : while, data_in_secondary=%zu, status=%d\n", __func__, data_in_secondary, dev->interrupt_in_urb->status); if (data_in_secondary) { /* drain secondary buffer */ size_t amount = min(bytes_to_read, data_in_secondary); if (copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount)) { retval = -EFAULT; goto exit; } dev->secondary_head += amount; bytes_read += amount; bytes_to_read -= amount; } else { /* we check the primary buffer */ spin_lock_irqsave (&dev->buflock, flags); if (dev->read_buffer_length) { /* we secure access to the primary */ dev_dbg(&dev->udev->dev, "%s : swap, read_buffer_length = %d\n", __func__, dev->read_buffer_length); swap(dev->read_buffer_primary, dev->read_buffer_secondary); dev->secondary_head = 0; dev->secondary_tail = dev->read_buffer_length; dev->read_buffer_length = 0; spin_unlock_irqrestore(&dev->buflock, flags); /* we have a free buffer so use it */ should_submit = 1; } else { /* even the primary was empty - we may need to do IO */ if (!dev->read_urb_finished) { /* somebody is doing IO */ spin_unlock_irqrestore(&dev->buflock, flags); dev_dbg(&dev->udev->dev, "%s : submitted already\n", __func__); } else { /* we must initiate input */ dev_dbg(&dev->udev->dev, "%s : initiate input\n", __func__); dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev->read_urb_finished = 1; if (retval == -ENOMEM) { retval = bytes_read ? bytes_read : -ENOMEM; } dev_dbg(&dev->udev->dev, "%s : submit failed\n", __func__); goto exit; } } /* we wait for I/O to complete */ set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&dev->read_wait, &wait); spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); timeout = schedule_timeout(COMMAND_TIMEOUT); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); } remove_wait_queue(&dev->read_wait, &wait); if (timeout <= 0) { dev_dbg(&dev->udev->dev, "%s : timeout\n", __func__); retval = bytes_read ? bytes_read : -ETIMEDOUT; goto exit; } if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : signal pending\n", __func__); retval = bytes_read ? bytes_read : -EINTR; goto exit; } } } } retval = bytes_read; /* if the primary buffer is empty then use it */ spin_lock_irqsave(&dev->buflock, flags); if (should_submit && dev->read_urb_finished) { dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0) dev->read_urb_finished = 1; /* we ignore failure */ } else { spin_unlock_irqrestore(&dev->buflock, flags); } exit: /* unlock the device */ mutex_unlock(&dev->mtx); return retval; } static ssize_t adu_write(struct file *file, const __user char *buffer, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(waita, current); struct adu_device *dev; size_t bytes_written = 0; size_t bytes_to_write; size_t buffer_size; unsigned long flags; int retval; dev = file->private_data; retval = mutex_lock_interruptible(&dev->mtx); if (retval) goto exit_nolock; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that we actually have some data to write */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n", __func__); goto exit; } while (count > 0) { add_wait_queue(&dev->write_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); mutex_unlock(&dev->mtx); if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : interrupted\n", __func__); set_current_state(TASK_RUNNING); retval = -EINTR; goto exit_onqueue; } if (schedule_timeout(COMMAND_TIMEOUT) == 0) { dev_dbg(&dev->udev->dev, "%s - command timed out.\n", __func__); retval = -ETIMEDOUT; goto exit_onqueue; } remove_wait_queue(&dev->write_wait, &waita); retval = mutex_lock_interruptible(&dev->mtx); if (retval) { retval = bytes_written ? bytes_written : retval; goto exit_nolock; } dev_dbg(&dev->udev->dev, "%s : in progress, count = %zd\n", __func__, count); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&dev->write_wait, &waita); dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n", __func__, count); /* write the data into interrupt_out_buffer from userspace */ buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); bytes_to_write = count > buffer_size ? buffer_size : count; dev_dbg(&dev->udev->dev, "%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n", __func__, buffer_size, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) { retval = -EFAULT; goto exit; } /* send off the urb */ usb_fill_int_urb( dev->interrupt_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, adu_interrupt_out_callback, dev, dev->interrupt_out_endpoint->bInterval); dev->interrupt_out_urb->actual_length = bytes_to_write; dev->out_urb_finished = 0; retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval < 0) { dev->out_urb_finished = 1; dev_err(&dev->udev->dev, "Couldn't submit " "interrupt_out_urb %d\n", retval); goto exit; } buffer += bytes_to_write; count -= bytes_to_write; bytes_written += bytes_to_write; } } mutex_unlock(&dev->mtx); return bytes_written; exit: mutex_unlock(&dev->mtx); exit_nolock: return retval; exit_onqueue: remove_wait_queue(&dev->write_wait, &waita); return retval; } /* file operations needed when we register this driver */ static const struct file_operations adu_fops = { .owner = THIS_MODULE, .read = adu_read, .write = adu_write, .open = adu_open, .release = adu_release, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with devfs and the driver core */ static struct usb_class_driver adu_class = { .name = "usb/adutux%d", .fops = &adu_fops, .minor_base = ADU_MINOR_BASE, }; /* * adu_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int adu_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct adu_device *dev = NULL; int retval = -ENOMEM; int in_end_size; int out_end_size; int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->mtx); spin_lock_init(&dev->buflock); dev->udev = usb_get_dev(udev); init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); res = usb_find_common_endpoints_reverse(interface->cur_altsetting, NULL, NULL, &dev->interrupt_in_endpoint, &dev->interrupt_out_endpoint); if (res) { dev_err(&interface->dev, "interrupt endpoints not found\n"); retval = res; goto error; } in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint); out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_primary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_primary, 'a', in_end_size); memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size); memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size); memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size); dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_secondary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_secondary, 'e', in_end_size); memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size); memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size); memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size); dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; /* debug code prime the buffer */ memset(dev->interrupt_in_buffer, 'i', in_end_size); dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number, sizeof(dev->serial_number))) { dev_err(&interface->dev, "Could not retrieve serial number\n"); retval = -EIO; goto error; } dev_dbg(&interface->dev, "serial_number=%s", dev->serial_number); /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &adu_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n", le16_to_cpu(udev->descriptor.idProduct), dev->serial_number, (dev->minor - ADU_MINOR_BASE)); return 0; error: adu_delete(dev); return retval; } /* * adu_disconnect * * Called by the usb core when the device is removed from the system. */ static void adu_disconnect(struct usb_interface *interface) { struct adu_device *dev; dev = usb_get_intfdata(interface); usb_deregister_dev(interface, &adu_class); usb_poison_urb(dev->interrupt_in_urb); usb_poison_urb(dev->interrupt_out_urb); mutex_lock(&adutux_mutex); usb_set_intfdata(interface, NULL); mutex_lock(&dev->mtx); /* not interruptible */ dev->disconnected = 1; mutex_unlock(&dev->mtx); /* if the device is not opened, then we clean up right now */ if (!dev->open_count) adu_delete(dev); mutex_unlock(&adutux_mutex); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver adu_driver = { .name = "adutux", .probe = adu_probe, .disconnect = adu_disconnect, .id_table = device_table, }; module_usb_driver(adu_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/adutux.c
// SPDX-License-Identifier: GPL-2.0 /* * cypress_cy7c63.c * * Copyright (c) 2006-2007 Oliver Bock ([email protected]) * * This driver is based on the Cypress USB Driver by Marcus Maul * (cyport) and the 2.0 version of Greg Kroah-Hartman's * USB Skeleton driver. * * This is a generic driver for the Cypress CY7C63xxx family. * For the time being it enables you to read from and write to * the single I/O ports of the device. * * Supported vendors: AK Modul-Bus Computer GmbH * (Firmware "Port-Chip") * * Supported devices: CY7C63001A-PC * CY7C63001C-PXC * CY7C63001C-SXC * * Supported functions: Read/Write Ports * * * For up-to-date information please visit: * http://www.obock.de/kernel/cypress */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/usb.h> #define DRIVER_AUTHOR "Oliver Bock ([email protected])" #define DRIVER_DESC "Cypress CY7C63xxx USB driver" #define CYPRESS_VENDOR_ID 0xa2c #define CYPRESS_PRODUCT_ID 0x8 #define CYPRESS_READ_PORT 0x4 #define CYPRESS_WRITE_PORT 0x5 #define CYPRESS_READ_RAM 0x2 #define CYPRESS_WRITE_RAM 0x3 #define CYPRESS_READ_ROM 0x1 #define CYPRESS_READ_PORT_ID0 0 #define CYPRESS_WRITE_PORT_ID0 0 #define CYPRESS_READ_PORT_ID1 0x2 #define CYPRESS_WRITE_PORT_ID1 1 #define CYPRESS_MAX_REQSIZE 8 /* table of devices that work with this driver */ static const struct usb_device_id cypress_table[] = { { USB_DEVICE(CYPRESS_VENDOR_ID, CYPRESS_PRODUCT_ID) }, { } }; MODULE_DEVICE_TABLE(usb, cypress_table); /* structure to hold all of our device specific stuff */ struct cypress { struct usb_device * udev; unsigned char port[2]; }; /* used to send usb control messages to device */ static int vendor_command(struct cypress *dev, unsigned char request, unsigned char address, unsigned char data) { int retval = 0; unsigned int pipe; unsigned char *iobuf; /* allocate some memory for the i/o buffer*/ iobuf = kzalloc(CYPRESS_MAX_REQSIZE, GFP_KERNEL); if (!iobuf) { retval = -ENOMEM; goto error; } dev_dbg(&dev->udev->dev, "Sending usb_control_msg (data: %d)\n", data); /* prepare usb control message and send it upstream */ pipe = usb_rcvctrlpipe(dev->udev, 0); retval = usb_control_msg(dev->udev, pipe, request, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER, address, data, iobuf, CYPRESS_MAX_REQSIZE, USB_CTRL_GET_TIMEOUT); /* store returned data (more READs to be added) */ switch (request) { case CYPRESS_READ_PORT: if (address == CYPRESS_READ_PORT_ID0) { dev->port[0] = iobuf[1]; dev_dbg(&dev->udev->dev, "READ_PORT0 returned: %d\n", dev->port[0]); } else if (address == CYPRESS_READ_PORT_ID1) { dev->port[1] = iobuf[1]; dev_dbg(&dev->udev->dev, "READ_PORT1 returned: %d\n", dev->port[1]); } break; } kfree(iobuf); error: return retval; } /* write port value */ static ssize_t write_port(struct device *dev, struct device_attribute *attr, const char *buf, size_t count, int port_num, int write_id) { int value = -1; int result = 0; struct usb_interface *intf = to_usb_interface(dev); struct cypress *cyp = usb_get_intfdata(intf); dev_dbg(&cyp->udev->dev, "WRITE_PORT%d called\n", port_num); /* validate input data */ if (sscanf(buf, "%d", &value) < 1) { result = -EINVAL; goto error; } if (value < 0 || value > 255) { result = -EINVAL; goto error; } result = vendor_command(cyp, CYPRESS_WRITE_PORT, write_id, (unsigned char)value); dev_dbg(&cyp->udev->dev, "Result of vendor_command: %d\n\n", result); error: return result < 0 ? result : count; } /* attribute callback handler (write) */ static ssize_t port0_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return write_port(dev, attr, buf, count, 0, CYPRESS_WRITE_PORT_ID0); } /* attribute callback handler (write) */ static ssize_t port1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return write_port(dev, attr, buf, count, 1, CYPRESS_WRITE_PORT_ID1); } /* read port value */ static ssize_t read_port(struct device *dev, struct device_attribute *attr, char *buf, int port_num, int read_id) { int result = 0; struct usb_interface *intf = to_usb_interface(dev); struct cypress *cyp = usb_get_intfdata(intf); dev_dbg(&cyp->udev->dev, "READ_PORT%d called\n", port_num); result = vendor_command(cyp, CYPRESS_READ_PORT, read_id, 0); dev_dbg(&cyp->udev->dev, "Result of vendor_command: %d\n\n", result); return sprintf(buf, "%d", cyp->port[port_num]); } /* attribute callback handler (read) */ static ssize_t port0_show(struct device *dev, struct device_attribute *attr, char *buf) { return read_port(dev, attr, buf, 0, CYPRESS_READ_PORT_ID0); } static DEVICE_ATTR_RW(port0); /* attribute callback handler (read) */ static ssize_t port1_show(struct device *dev, struct device_attribute *attr, char *buf) { return read_port(dev, attr, buf, 1, CYPRESS_READ_PORT_ID1); } static DEVICE_ATTR_RW(port1); static struct attribute *cypress_attrs[] = { &dev_attr_port0.attr, &dev_attr_port1.attr, NULL, }; ATTRIBUTE_GROUPS(cypress); static int cypress_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct cypress *dev; int retval = -ENOMEM; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) goto error_mem; dev->udev = usb_get_dev(interface_to_usbdev(interface)); /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); /* let the user know that the device is now attached */ dev_info(&interface->dev, "Cypress CY7C63xxx device now attached\n"); return 0; error_mem: return retval; } static void cypress_disconnect(struct usb_interface *interface) { struct cypress *dev; dev = usb_get_intfdata(interface); /* the intfdata can be set to NULL only after the * device files have been removed */ usb_set_intfdata(interface, NULL); usb_put_dev(dev->udev); dev_info(&interface->dev, "Cypress CY7C63xxx device now disconnected\n"); kfree(dev); } static struct usb_driver cypress_driver = { .name = "cypress_cy7c63", .probe = cypress_probe, .disconnect = cypress_disconnect, .id_table = cypress_table, .dev_groups = cypress_groups, }; module_usb_driver(cypress_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/cypress_cy7c63.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/ch11.h> #define TEST_SE0_NAK_PID 0x0101 #define TEST_J_PID 0x0102 #define TEST_K_PID 0x0103 #define TEST_PACKET_PID 0x0104 #define TEST_HS_HOST_PORT_SUSPEND_RESUME 0x0106 #define TEST_SINGLE_STEP_GET_DEV_DESC 0x0107 #define TEST_SINGLE_STEP_SET_FEATURE 0x0108 extern const struct usb_device_id *usb_device_match_id(struct usb_device *udev, const struct usb_device_id *id); /* * A list of USB hubs which requires to disable the power * to the port before starting the testing procedures. */ static const struct usb_device_id ehset_hub_list[] = { { USB_DEVICE(0x0424, 0x4502) }, { USB_DEVICE(0x0424, 0x4913) }, { USB_DEVICE(0x0451, 0x8027) }, { } }; static int ehset_prepare_port_for_testing(struct usb_device *hub_udev, u16 portnum) { int ret = 0; /* * The USB2.0 spec chapter 11.24.2.13 says that the USB port which is * going under test needs to be put in suspend before sending the * test command. Most hubs don't enforce this precondition, but there * are some hubs which needs to disable the power to the port before * starting the test. */ if (usb_device_match_id(hub_udev, ehset_hub_list)) { ret = usb_control_msg_send(hub_udev, 0, USB_REQ_CLEAR_FEATURE, USB_RT_PORT, USB_PORT_FEAT_ENABLE, portnum, NULL, 0, 1000, GFP_KERNEL); /* * Wait for the port to be disabled. It's an arbitrary value * which worked every time. */ msleep(100); } else { /* * For the hubs which are compliant with the spec, * put the port in SUSPEND. */ ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); } return ret; } static int ehset_probe(struct usb_interface *intf, const struct usb_device_id *id) { int ret = -EINVAL; struct usb_device *dev = interface_to_usbdev(intf); struct usb_device *hub_udev = dev->parent; struct usb_device_descriptor buf; u8 portnum = dev->portnum; u16 test_pid = le16_to_cpu(dev->descriptor.idProduct); switch (test_pid) { case TEST_SE0_NAK_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_SE0_NAK << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_J_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_J << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_K_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_K << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_PACKET_PID: ret = ehset_prepare_port_for_testing(hub_udev, portnum); if (ret < 0) break; ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (USB_TEST_PACKET << 8) | portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_HS_HOST_PORT_SUSPEND_RESUME: /* Test: wait for 15secs -> suspend -> 15secs delay -> resume */ msleep(15 * 1000); ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); if (ret < 0) break; msleep(15 * 1000); ret = usb_control_msg_send(hub_udev, 0, USB_REQ_CLEAR_FEATURE, USB_RT_PORT, USB_PORT_FEAT_SUSPEND, portnum, NULL, 0, 1000, GFP_KERNEL); break; case TEST_SINGLE_STEP_GET_DEV_DESC: /* Test: wait for 15secs -> GetDescriptor request */ msleep(15 * 1000); ret = usb_control_msg_recv(dev, 0, USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, USB_DT_DEVICE << 8, 0, &buf, USB_DT_DEVICE_SIZE, USB_CTRL_GET_TIMEOUT, GFP_KERNEL); break; case TEST_SINGLE_STEP_SET_FEATURE: /* * GetDescriptor SETUP request -> 15secs delay -> IN & STATUS * * Note, this test is only supported on root hubs since the * SetPortFeature handling can only be done inside the HCD's * hub_control callback function. */ if (hub_udev != dev->bus->root_hub) { dev_err(&intf->dev, "SINGLE_STEP_SET_FEATURE test only supported on root hub\n"); break; } ret = usb_control_msg_send(hub_udev, 0, USB_REQ_SET_FEATURE, USB_RT_PORT, USB_PORT_FEAT_TEST, (6 << 8) | portnum, NULL, 0, 60 * 1000, GFP_KERNEL); break; default: dev_err(&intf->dev, "%s: unsupported PID: 0x%x\n", __func__, test_pid); } return ret; } static void ehset_disconnect(struct usb_interface *intf) { } static const struct usb_device_id ehset_id_table[] = { { USB_DEVICE(0x1a0a, TEST_SE0_NAK_PID) }, { USB_DEVICE(0x1a0a, TEST_J_PID) }, { USB_DEVICE(0x1a0a, TEST_K_PID) }, { USB_DEVICE(0x1a0a, TEST_PACKET_PID) }, { USB_DEVICE(0x1a0a, TEST_HS_HOST_PORT_SUSPEND_RESUME) }, { USB_DEVICE(0x1a0a, TEST_SINGLE_STEP_GET_DEV_DESC) }, { USB_DEVICE(0x1a0a, TEST_SINGLE_STEP_SET_FEATURE) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, ehset_id_table); static struct usb_driver ehset_driver = { .name = "usb_ehset_test", .probe = ehset_probe, .disconnect = ehset_disconnect, .id_table = ehset_id_table, }; module_usb_driver(ehset_driver); MODULE_DESCRIPTION("USB Driver for EHSET Test Fixture"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/misc/ehset.c
// SPDX-License-Identifier: GPL-2.0 /* * Native support for the I/O-Warrior USB devices * * Copyright (c) 2003-2005, 2020 Code Mercenaries GmbH * written by Christian Lucht <[email protected]> and * Christoph Jung <[email protected]> * * based on * usb-skeleton.c by Greg Kroah-Hartman <[email protected]> * brlvger.c by Stephane Dalton <[email protected]> * and Stephane Doyon <[email protected]> * * Released under the GPLv2. */ #include <linux/module.h> #include <linux/usb.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/mutex.h> #include <linux/poll.h> #include <linux/usb/iowarrior.h> #define DRIVER_AUTHOR "Christian Lucht <[email protected]>" #define DRIVER_DESC "USB IO-Warrior driver" #define USB_VENDOR_ID_CODEMERCS 1984 /* low speed iowarrior */ #define USB_DEVICE_ID_CODEMERCS_IOW40 0x1500 #define USB_DEVICE_ID_CODEMERCS_IOW24 0x1501 #define USB_DEVICE_ID_CODEMERCS_IOWPV1 0x1511 #define USB_DEVICE_ID_CODEMERCS_IOWPV2 0x1512 /* full speed iowarrior */ #define USB_DEVICE_ID_CODEMERCS_IOW56 0x1503 /* fuller speed iowarrior */ #define USB_DEVICE_ID_CODEMERCS_IOW28 0x1504 #define USB_DEVICE_ID_CODEMERCS_IOW28L 0x1505 #define USB_DEVICE_ID_CODEMERCS_IOW100 0x1506 /* OEMed devices */ #define USB_DEVICE_ID_CODEMERCS_IOW24SAG 0x158a #define USB_DEVICE_ID_CODEMERCS_IOW56AM 0x158b /* Get a minor range for your devices from the usb maintainer */ #ifdef CONFIG_USB_DYNAMIC_MINORS #define IOWARRIOR_MINOR_BASE 0 #else #define IOWARRIOR_MINOR_BASE 208 // SKELETON_MINOR_BASE 192 + 16, not official yet #endif /* interrupt input queue size */ #define MAX_INTERRUPT_BUFFER 16 /* maximum number of urbs that are submitted for writes at the same time, this applies to the IOWarrior56 only! IOWarrior24 and IOWarrior40 use synchronous usb_control_msg calls. */ #define MAX_WRITES_IN_FLIGHT 4 MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); static struct usb_driver iowarrior_driver; /*--------------*/ /* data */ /*--------------*/ /* Structure to hold all of our device specific stuff */ struct iowarrior { struct mutex mutex; /* locks this structure */ struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; /* the interface for this device */ unsigned char minor; /* the starting minor number for this device */ struct usb_endpoint_descriptor *int_out_endpoint; /* endpoint for reading (needed for IOW56 only) */ struct usb_endpoint_descriptor *int_in_endpoint; /* endpoint for reading */ struct urb *int_in_urb; /* the urb for reading data */ unsigned char *int_in_buffer; /* buffer for data to be read */ unsigned char serial_number; /* to detect lost packages */ unsigned char *read_queue; /* size is MAX_INTERRUPT_BUFFER * packet size */ wait_queue_head_t read_wait; wait_queue_head_t write_wait; /* wait-queue for writing to the device */ atomic_t write_busy; /* number of write-urbs submitted */ atomic_t read_idx; atomic_t intr_idx; atomic_t overflow_flag; /* signals an index 'rollover' */ int present; /* this is 1 as long as the device is connected */ int opened; /* this is 1 if the device is currently open */ char chip_serial[9]; /* the serial number string of the chip connected */ int report_size; /* number of bytes in a report */ u16 product_id; struct usb_anchor submitted; }; /*--------------*/ /* globals */ /*--------------*/ #define USB_REQ_GET_REPORT 0x01 //#if 0 static int usb_get_report(struct usb_device *dev, struct usb_host_interface *inter, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_REPORT, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, (type << 8) + id, inter->desc.bInterfaceNumber, buf, size, USB_CTRL_GET_TIMEOUT); } //#endif #define USB_REQ_SET_REPORT 0x09 static int usb_set_report(struct usb_interface *intf, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(interface_to_usbdev(intf), usb_sndctrlpipe(interface_to_usbdev(intf), 0), USB_REQ_SET_REPORT, USB_TYPE_CLASS | USB_RECIP_INTERFACE, (type << 8) + id, intf->cur_altsetting->desc.bInterfaceNumber, buf, size, 1000); } /*---------------------*/ /* driver registration */ /*---------------------*/ /* table of devices that work with this driver */ static const struct usb_device_id iowarrior_ids[] = { {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW40)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW24)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOWPV1)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOWPV2)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW56)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW24SAG)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW56AM)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW28)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW28L)}, {USB_DEVICE(USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW100)}, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, iowarrior_ids); /* * USB callback handler for reading data */ static void iowarrior_callback(struct urb *urb) { struct iowarrior *dev = urb->context; int intr_idx; int read_idx; int aux_idx; int offset; int status = urb->status; int retval; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: return; default: goto exit; } intr_idx = atomic_read(&dev->intr_idx); /* aux_idx become previous intr_idx */ aux_idx = (intr_idx == 0) ? (MAX_INTERRUPT_BUFFER - 1) : (intr_idx - 1); read_idx = atomic_read(&dev->read_idx); /* queue is not empty and it's interface 0 */ if ((intr_idx != read_idx) && (dev->interface->cur_altsetting->desc.bInterfaceNumber == 0)) { /* + 1 for serial number */ offset = aux_idx * (dev->report_size + 1); if (!memcmp (dev->read_queue + offset, urb->transfer_buffer, dev->report_size)) { /* equal values on interface 0 will be ignored */ goto exit; } } /* aux_idx become next intr_idx */ aux_idx = (intr_idx == (MAX_INTERRUPT_BUFFER - 1)) ? 0 : (intr_idx + 1); if (read_idx == aux_idx) { /* queue full, dropping oldest input */ read_idx = (++read_idx == MAX_INTERRUPT_BUFFER) ? 0 : read_idx; atomic_set(&dev->read_idx, read_idx); atomic_set(&dev->overflow_flag, 1); } /* +1 for serial number */ offset = intr_idx * (dev->report_size + 1); memcpy(dev->read_queue + offset, urb->transfer_buffer, dev->report_size); *(dev->read_queue + offset + (dev->report_size)) = dev->serial_number++; atomic_set(&dev->intr_idx, aux_idx); /* tell the blocking read about the new data */ wake_up_interruptible(&dev->read_wait); exit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) dev_err(&dev->interface->dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); } /* * USB Callback handler for write-ops */ static void iowarrior_write_callback(struct urb *urb) { struct iowarrior *dev; int status = urb->status; dev = urb->context; /* sync/async unlink faults aren't errors */ if (status && !(status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN)) { dev_dbg(&dev->interface->dev, "nonzero write bulk status received: %d\n", status); } /* free up our allocated buffer */ usb_free_coherent(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); /* tell a waiting writer the interrupt-out-pipe is available again */ atomic_dec(&dev->write_busy); wake_up_interruptible(&dev->write_wait); } /* * iowarrior_delete */ static inline void iowarrior_delete(struct iowarrior *dev) { dev_dbg(&dev->interface->dev, "minor %d\n", dev->minor); kfree(dev->int_in_buffer); usb_free_urb(dev->int_in_urb); kfree(dev->read_queue); usb_put_intf(dev->interface); kfree(dev); } /*---------------------*/ /* fops implementation */ /*---------------------*/ static int read_index(struct iowarrior *dev) { int intr_idx, read_idx; read_idx = atomic_read(&dev->read_idx); intr_idx = atomic_read(&dev->intr_idx); return (read_idx == intr_idx ? -1 : read_idx); } /* * iowarrior_read */ static ssize_t iowarrior_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct iowarrior *dev; int read_idx; int offset; dev = file->private_data; /* verify that the device wasn't unplugged */ if (!dev || !dev->present) return -ENODEV; dev_dbg(&dev->interface->dev, "minor %d, count = %zd\n", dev->minor, count); /* read count must be packet size (+ time stamp) */ if ((count != dev->report_size) && (count != (dev->report_size + 1))) return -EINVAL; /* repeat until no buffer overrun in callback handler occur */ do { atomic_set(&dev->overflow_flag, 0); if ((read_idx = read_index(dev)) == -1) { /* queue empty */ if (file->f_flags & O_NONBLOCK) return -EAGAIN; else { //next line will return when there is either new data, or the device is unplugged int r = wait_event_interruptible(dev->read_wait, (!dev->present || (read_idx = read_index (dev)) != -1)); if (r) { //we were interrupted by a signal return -ERESTART; } if (!dev->present) { //The device was unplugged return -ENODEV; } if (read_idx == -1) { // Can this happen ??? return 0; } } } offset = read_idx * (dev->report_size + 1); if (copy_to_user(buffer, dev->read_queue + offset, count)) { return -EFAULT; } } while (atomic_read(&dev->overflow_flag)); read_idx = ++read_idx == MAX_INTERRUPT_BUFFER ? 0 : read_idx; atomic_set(&dev->read_idx, read_idx); return count; } /* * iowarrior_write */ static ssize_t iowarrior_write(struct file *file, const char __user *user_buffer, size_t count, loff_t *ppos) { struct iowarrior *dev; int retval = 0; char *buf = NULL; /* for IOW24 and IOW56 we need a buffer */ struct urb *int_out_urb = NULL; dev = file->private_data; mutex_lock(&dev->mutex); /* verify that the device wasn't unplugged */ if (!dev->present) { retval = -ENODEV; goto exit; } dev_dbg(&dev->interface->dev, "minor %d, count = %zd\n", dev->minor, count); /* if count is 0 we're already done */ if (count == 0) { retval = 0; goto exit; } /* We only accept full reports */ if (count != dev->report_size) { retval = -EINVAL; goto exit; } switch (dev->product_id) { case USB_DEVICE_ID_CODEMERCS_IOW24: case USB_DEVICE_ID_CODEMERCS_IOW24SAG: case USB_DEVICE_ID_CODEMERCS_IOWPV1: case USB_DEVICE_ID_CODEMERCS_IOWPV2: case USB_DEVICE_ID_CODEMERCS_IOW40: /* IOW24 and IOW40 use a synchronous call */ buf = memdup_user(user_buffer, count); if (IS_ERR(buf)) { retval = PTR_ERR(buf); goto exit; } retval = usb_set_report(dev->interface, 2, 0, buf, count); kfree(buf); goto exit; case USB_DEVICE_ID_CODEMERCS_IOW56: case USB_DEVICE_ID_CODEMERCS_IOW56AM: case USB_DEVICE_ID_CODEMERCS_IOW28: case USB_DEVICE_ID_CODEMERCS_IOW28L: case USB_DEVICE_ID_CODEMERCS_IOW100: /* The IOW56 uses asynchronous IO and more urbs */ if (atomic_read(&dev->write_busy) == MAX_WRITES_IN_FLIGHT) { /* Wait until we are below the limit for submitted urbs */ if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto exit; } else { retval = wait_event_interruptible(dev->write_wait, (!dev->present || (atomic_read (&dev-> write_busy) < MAX_WRITES_IN_FLIGHT))); if (retval) { /* we were interrupted by a signal */ retval = -ERESTART; goto exit; } if (!dev->present) { /* The device was unplugged */ retval = -ENODEV; goto exit; } if (!dev->opened) { /* We were closed while waiting for an URB */ retval = -ENODEV; goto exit; } } } atomic_inc(&dev->write_busy); int_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!int_out_urb) { retval = -ENOMEM; goto error_no_urb; } buf = usb_alloc_coherent(dev->udev, dev->report_size, GFP_KERNEL, &int_out_urb->transfer_dma); if (!buf) { retval = -ENOMEM; dev_dbg(&dev->interface->dev, "Unable to allocate buffer\n"); goto error_no_buffer; } usb_fill_int_urb(int_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->int_out_endpoint->bEndpointAddress), buf, dev->report_size, iowarrior_write_callback, dev, dev->int_out_endpoint->bInterval); int_out_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; goto error; } usb_anchor_urb(int_out_urb, &dev->submitted); retval = usb_submit_urb(int_out_urb, GFP_KERNEL); if (retval) { dev_dbg(&dev->interface->dev, "submit error %d for urb nr.%d\n", retval, atomic_read(&dev->write_busy)); usb_unanchor_urb(int_out_urb); goto error; } /* submit was ok */ retval = count; usb_free_urb(int_out_urb); goto exit; default: /* what do we have here ? An unsupported Product-ID ? */ dev_err(&dev->interface->dev, "%s - not supported for product=0x%x\n", __func__, dev->product_id); retval = -EFAULT; goto exit; } error: usb_free_coherent(dev->udev, dev->report_size, buf, int_out_urb->transfer_dma); error_no_buffer: usb_free_urb(int_out_urb); error_no_urb: atomic_dec(&dev->write_busy); wake_up_interruptible(&dev->write_wait); exit: mutex_unlock(&dev->mutex); return retval; } /* * iowarrior_ioctl */ static long iowarrior_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct iowarrior *dev = NULL; __u8 *buffer; __u8 __user *user_buffer; int retval; int io_res; /* checks for bytes read/written and copy_to/from_user results */ dev = file->private_data; if (!dev) return -ENODEV; buffer = kzalloc(dev->report_size, GFP_KERNEL); if (!buffer) return -ENOMEM; mutex_lock(&dev->mutex); /* verify that the device wasn't unplugged */ if (!dev->present) { retval = -ENODEV; goto error_out; } dev_dbg(&dev->interface->dev, "minor %d, cmd 0x%.4x, arg %ld\n", dev->minor, cmd, arg); retval = 0; io_res = 0; switch (cmd) { case IOW_WRITE: if (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW24 || dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW24SAG || dev->product_id == USB_DEVICE_ID_CODEMERCS_IOWPV1 || dev->product_id == USB_DEVICE_ID_CODEMERCS_IOWPV2 || dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW40) { user_buffer = (__u8 __user *)arg; io_res = copy_from_user(buffer, user_buffer, dev->report_size); if (io_res) { retval = -EFAULT; } else { io_res = usb_set_report(dev->interface, 2, 0, buffer, dev->report_size); if (io_res < 0) retval = io_res; } } else { retval = -EINVAL; dev_err(&dev->interface->dev, "ioctl 'IOW_WRITE' is not supported for product=0x%x.\n", dev->product_id); } break; case IOW_READ: user_buffer = (__u8 __user *)arg; io_res = usb_get_report(dev->udev, dev->interface->cur_altsetting, 1, 0, buffer, dev->report_size); if (io_res < 0) retval = io_res; else { io_res = copy_to_user(user_buffer, buffer, dev->report_size); if (io_res) retval = -EFAULT; } break; case IOW_GETINFO: { /* Report available information for the device */ struct iowarrior_info info; /* needed for power consumption */ struct usb_config_descriptor *cfg_descriptor = &dev->udev->actconfig->desc; memset(&info, 0, sizeof(info)); /* directly from the descriptor */ info.vendor = le16_to_cpu(dev->udev->descriptor.idVendor); info.product = dev->product_id; info.revision = le16_to_cpu(dev->udev->descriptor.bcdDevice); /* 0==UNKNOWN, 1==LOW(usb1.1) ,2=FULL(usb1.1), 3=HIGH(usb2.0) */ info.speed = dev->udev->speed; info.if_num = dev->interface->cur_altsetting->desc.bInterfaceNumber; info.report_size = dev->report_size; /* serial number string has been read earlier 8 chars or empty string */ memcpy(info.serial, dev->chip_serial, sizeof(dev->chip_serial)); if (cfg_descriptor == NULL) { info.power = -1; /* no information available */ } else { /* the MaxPower is stored in units of 2mA to make it fit into a byte-value */ info.power = cfg_descriptor->bMaxPower * 2; } io_res = copy_to_user((struct iowarrior_info __user *)arg, &info, sizeof(struct iowarrior_info)); if (io_res) retval = -EFAULT; break; } default: /* return that we did not understand this ioctl call */ retval = -ENOTTY; break; } error_out: /* unlock the device */ mutex_unlock(&dev->mutex); kfree(buffer); return retval; } /* * iowarrior_open */ static int iowarrior_open(struct inode *inode, struct file *file) { struct iowarrior *dev = NULL; struct usb_interface *interface; int subminor; int retval = 0; subminor = iminor(inode); interface = usb_find_interface(&iowarrior_driver, subminor); if (!interface) { pr_err("%s - error, can't find device for minor %d\n", __func__, subminor); return -ENODEV; } dev = usb_get_intfdata(interface); if (!dev) return -ENODEV; mutex_lock(&dev->mutex); /* Only one process can open each device, no sharing. */ if (dev->opened) { retval = -EBUSY; goto out; } /* setup interrupt handler for receiving values */ if ((retval = usb_submit_urb(dev->int_in_urb, GFP_KERNEL)) < 0) { dev_err(&interface->dev, "Error %d while submitting URB\n", retval); retval = -EFAULT; goto out; } /* increment our usage count for the driver */ ++dev->opened; /* save our object in the file's private structure */ file->private_data = dev; retval = 0; out: mutex_unlock(&dev->mutex); return retval; } /* * iowarrior_release */ static int iowarrior_release(struct inode *inode, struct file *file) { struct iowarrior *dev; int retval = 0; dev = file->private_data; if (!dev) return -ENODEV; dev_dbg(&dev->interface->dev, "minor %d\n", dev->minor); /* lock our device */ mutex_lock(&dev->mutex); if (dev->opened <= 0) { retval = -ENODEV; /* close called more than once */ mutex_unlock(&dev->mutex); } else { dev->opened = 0; /* we're closing now */ retval = 0; if (dev->present) { /* The device is still connected so we only shutdown pending read-/write-ops. */ usb_kill_urb(dev->int_in_urb); wake_up_interruptible(&dev->read_wait); wake_up_interruptible(&dev->write_wait); mutex_unlock(&dev->mutex); } else { /* The device was unplugged, cleanup resources */ mutex_unlock(&dev->mutex); iowarrior_delete(dev); } } return retval; } static __poll_t iowarrior_poll(struct file *file, poll_table * wait) { struct iowarrior *dev = file->private_data; __poll_t mask = 0; if (!dev->present) return EPOLLERR | EPOLLHUP; poll_wait(file, &dev->read_wait, wait); poll_wait(file, &dev->write_wait, wait); if (!dev->present) return EPOLLERR | EPOLLHUP; if (read_index(dev) != -1) mask |= EPOLLIN | EPOLLRDNORM; if (atomic_read(&dev->write_busy) < MAX_WRITES_IN_FLIGHT) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } /* * File operations needed when we register this driver. * This assumes that this driver NEEDS file operations, * of course, which means that the driver is expected * to have a node in the /dev directory. If the USB * device were for a network interface then the driver * would use "struct net_driver" instead, and a serial * device would use "struct tty_driver". */ static const struct file_operations iowarrior_fops = { .owner = THIS_MODULE, .write = iowarrior_write, .read = iowarrior_read, .unlocked_ioctl = iowarrior_ioctl, .open = iowarrior_open, .release = iowarrior_release, .poll = iowarrior_poll, .llseek = noop_llseek, }; static char *iowarrior_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "usb/%s", dev_name(dev)); } /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with devfs and the driver core */ static struct usb_class_driver iowarrior_class = { .name = "iowarrior%d", .devnode = iowarrior_devnode, .fops = &iowarrior_fops, .minor_base = IOWARRIOR_MINOR_BASE, }; /*---------------------------------*/ /* probe and disconnect functions */ /*---------------------------------*/ /* * iowarrior_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int iowarrior_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct iowarrior *dev = NULL; struct usb_host_interface *iface_desc; int retval = -ENOMEM; int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct iowarrior), GFP_KERNEL); if (!dev) return retval; mutex_init(&dev->mutex); atomic_set(&dev->intr_idx, 0); atomic_set(&dev->read_idx, 0); atomic_set(&dev->overflow_flag, 0); init_waitqueue_head(&dev->read_wait); atomic_set(&dev->write_busy, 0); init_waitqueue_head(&dev->write_wait); dev->udev = udev; dev->interface = usb_get_intf(interface); iface_desc = interface->cur_altsetting; dev->product_id = le16_to_cpu(udev->descriptor.idProduct); init_usb_anchor(&dev->submitted); res = usb_find_last_int_in_endpoint(iface_desc, &dev->int_in_endpoint); if (res) { dev_err(&interface->dev, "no interrupt-in endpoint found\n"); retval = res; goto error; } if ((dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW56) || (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW56AM) || (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW28) || (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW28L) || (dev->product_id == USB_DEVICE_ID_CODEMERCS_IOW100)) { res = usb_find_last_int_out_endpoint(iface_desc, &dev->int_out_endpoint); if (res) { dev_err(&interface->dev, "no interrupt-out endpoint found\n"); retval = res; goto error; } } /* we have to check the report_size often, so remember it in the endianness suitable for our machine */ dev->report_size = usb_endpoint_maxp(dev->int_in_endpoint); /* * Some devices need the report size to be different than the * endpoint size. */ if (dev->interface->cur_altsetting->desc.bInterfaceNumber == 0) { switch (dev->product_id) { case USB_DEVICE_ID_CODEMERCS_IOW56: case USB_DEVICE_ID_CODEMERCS_IOW56AM: dev->report_size = 7; break; case USB_DEVICE_ID_CODEMERCS_IOW28: case USB_DEVICE_ID_CODEMERCS_IOW28L: dev->report_size = 4; break; case USB_DEVICE_ID_CODEMERCS_IOW100: dev->report_size = 12; break; } } /* create the urb and buffer for reading */ dev->int_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->int_in_urb) goto error; dev->int_in_buffer = kmalloc(dev->report_size, GFP_KERNEL); if (!dev->int_in_buffer) goto error; usb_fill_int_urb(dev->int_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->int_in_endpoint->bEndpointAddress), dev->int_in_buffer, dev->report_size, iowarrior_callback, dev, dev->int_in_endpoint->bInterval); /* create an internal buffer for interrupt data from the device */ dev->read_queue = kmalloc_array(dev->report_size + 1, MAX_INTERRUPT_BUFFER, GFP_KERNEL); if (!dev->read_queue) goto error; /* Get the serial-number of the chip */ memset(dev->chip_serial, 0x00, sizeof(dev->chip_serial)); usb_string(udev, udev->descriptor.iSerialNumber, dev->chip_serial, sizeof(dev->chip_serial)); if (strlen(dev->chip_serial) != 8) memset(dev->chip_serial, 0x00, sizeof(dev->chip_serial)); /* Set the idle timeout to 0, if this is interface 0 */ if (dev->interface->cur_altsetting->desc.bInterfaceNumber == 0) { usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x0A, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* allow device read and ioctl */ dev->present = 1; /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &iowarrior_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "IOWarrior product=0x%x, serial=%s interface=%d " "now attached to iowarrior%d\n", dev->product_id, dev->chip_serial, iface_desc->desc.bInterfaceNumber, dev->minor - IOWARRIOR_MINOR_BASE); return retval; error: iowarrior_delete(dev); return retval; } /* * iowarrior_disconnect * * Called by the usb core when the device is removed from the system. */ static void iowarrior_disconnect(struct usb_interface *interface) { struct iowarrior *dev = usb_get_intfdata(interface); int minor = dev->minor; usb_deregister_dev(interface, &iowarrior_class); mutex_lock(&dev->mutex); /* prevent device read, write and ioctl */ dev->present = 0; if (dev->opened) { /* There is a process that holds a filedescriptor to the device , so we only shutdown read-/write-ops going on. Deleting the device is postponed until close() was called. */ usb_kill_urb(dev->int_in_urb); usb_kill_anchored_urbs(&dev->submitted); wake_up_interruptible(&dev->read_wait); wake_up_interruptible(&dev->write_wait); mutex_unlock(&dev->mutex); } else { /* no process is using the device, cleanup now */ mutex_unlock(&dev->mutex); iowarrior_delete(dev); } dev_info(&interface->dev, "I/O-Warror #%d now disconnected\n", minor - IOWARRIOR_MINOR_BASE); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver iowarrior_driver = { .name = "iowarrior", .probe = iowarrior_probe, .disconnect = iowarrior_disconnect, .id_table = iowarrior_ids, }; module_usb_driver(iowarrior_driver);
linux-master
drivers/usb/misc/iowarrior.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for SMSC USB3503 USB 2.0 hub controller driver * * Copyright (c) 2012-2013 Dongjin Kim ([email protected]) */ #include <linux/clk.h> #include <linux/i2c.h> #include <linux/gpio/consumer.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/platform_data/usb3503.h> #include <linux/regmap.h> #define USB3503_VIDL 0x00 #define USB3503_VIDM 0x01 #define USB3503_PIDL 0x02 #define USB3503_PIDM 0x03 #define USB3503_DIDL 0x04 #define USB3503_DIDM 0x05 #define USB3503_CFG1 0x06 #define USB3503_SELF_BUS_PWR (1 << 7) #define USB3503_CFG2 0x07 #define USB3503_CFG3 0x08 #define USB3503_NRD 0x09 #define USB3503_PDS 0x0a #define USB3503_SP_ILOCK 0xe7 #define USB3503_SPILOCK_CONNECT (1 << 1) #define USB3503_SPILOCK_CONFIG (1 << 0) #define USB3503_CFGP 0xee #define USB3503_CLKSUSP (1 << 7) #define USB3503_RESET 0xff struct usb3503 { enum usb3503_mode mode; struct regmap *regmap; struct device *dev; struct clk *clk; u8 port_off_mask; struct gpio_desc *bypass; struct gpio_desc *intn; struct gpio_desc *reset; struct gpio_desc *connect; bool secondary_ref_clk; }; static int usb3503_connect(struct usb3503 *hub) { struct device *dev = hub->dev; int err; if (hub->regmap) { /* SP_ILOCK: set connect_n, config_n for config */ err = regmap_write(hub->regmap, USB3503_SP_ILOCK, (USB3503_SPILOCK_CONNECT | USB3503_SPILOCK_CONFIG)); if (err < 0) { dev_err(dev, "SP_ILOCK failed (%d)\n", err); return err; } /* PDS : Set the ports which are disabled in self-powered mode. */ if (hub->port_off_mask) { err = regmap_update_bits(hub->regmap, USB3503_PDS, hub->port_off_mask, hub->port_off_mask); if (err < 0) { dev_err(dev, "PDS failed (%d)\n", err); return err; } } /* CFG1 : Set SELF_BUS_PWR, this enables self-powered operation. */ err = regmap_update_bits(hub->regmap, USB3503_CFG1, USB3503_SELF_BUS_PWR, USB3503_SELF_BUS_PWR); if (err < 0) { dev_err(dev, "CFG1 failed (%d)\n", err); return err; } /* SP_LOCK: clear connect_n, config_n for hub connect */ err = regmap_update_bits(hub->regmap, USB3503_SP_ILOCK, (USB3503_SPILOCK_CONNECT | USB3503_SPILOCK_CONFIG), 0); if (err < 0) { dev_err(dev, "SP_ILOCK failed (%d)\n", err); return err; } } if (hub->connect) gpiod_set_value_cansleep(hub->connect, 1); hub->mode = USB3503_MODE_HUB; dev_info(dev, "switched to HUB mode\n"); return 0; } static int usb3503_switch_mode(struct usb3503 *hub, enum usb3503_mode mode) { struct device *dev = hub->dev; int rst, bypass, conn; switch (mode) { case USB3503_MODE_HUB: conn = 1; rst = 0; bypass = 0; break; case USB3503_MODE_STANDBY: conn = 0; rst = 1; bypass = 1; dev_info(dev, "switched to STANDBY mode\n"); break; case USB3503_MODE_BYPASS: conn = 0; rst = 0; bypass = 1; break; default: dev_err(dev, "unknown mode is requested\n"); return -EINVAL; } if (!conn && hub->connect) gpiod_set_value_cansleep(hub->connect, 0); if (hub->reset) gpiod_set_value_cansleep(hub->reset, rst); if (hub->bypass) gpiod_set_value_cansleep(hub->bypass, bypass); if (conn) { /* Wait T_HUBINIT == 4ms for hub logic to stabilize */ usleep_range(4000, 10000); return usb3503_connect(hub); } return 0; } static const struct regmap_config usb3503_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = USB3503_RESET, }; static int usb3503_probe(struct usb3503 *hub) { struct device *dev = hub->dev; struct usb3503_platform_data *pdata = dev_get_platdata(dev); struct device_node *np = dev->of_node; int err; bool is_clk_enabled = false; u32 mode = USB3503_MODE_HUB; const u32 *property; enum gpiod_flags flags; int len; if (pdata) { hub->port_off_mask = pdata->port_off_mask; hub->mode = pdata->initial_mode; } else if (np) { u32 rate = 0; hub->port_off_mask = 0; if (!of_property_read_u32(np, "refclk-frequency", &rate)) { switch (rate) { case 38400000: case 26000000: case 19200000: case 12000000: hub->secondary_ref_clk = 0; break; case 24000000: case 27000000: case 25000000: case 50000000: hub->secondary_ref_clk = 1; break; default: dev_err(dev, "unsupported reference clock rate (%d)\n", (int) rate); return -EINVAL; } } hub->clk = devm_clk_get_optional(dev, "refclk"); if (IS_ERR(hub->clk)) { dev_err(dev, "unable to request refclk (%ld)\n", PTR_ERR(hub->clk)); return PTR_ERR(hub->clk); } if (rate != 0) { err = clk_set_rate(hub->clk, rate); if (err) { dev_err(dev, "unable to set reference clock rate to %d\n", (int)rate); return err; } } err = clk_prepare_enable(hub->clk); if (err) { dev_err(dev, "unable to enable reference clock\n"); return err; } is_clk_enabled = true; property = of_get_property(np, "disabled-ports", &len); if (property && (len / sizeof(u32)) > 0) { int i; for (i = 0; i < len / sizeof(u32); i++) { u32 port = be32_to_cpu(property[i]); if ((1 <= port) && (port <= 3)) hub->port_off_mask |= (1 << port); } } of_property_read_u32(np, "initial-mode", &mode); hub->mode = mode; } if (hub->secondary_ref_clk) flags = GPIOD_OUT_LOW; else flags = GPIOD_OUT_HIGH; hub->intn = devm_gpiod_get_optional(dev, "intn", flags); if (IS_ERR(hub->intn)) { err = PTR_ERR(hub->intn); goto err_clk; } if (hub->intn) gpiod_set_consumer_name(hub->intn, "usb3503 intn"); hub->connect = devm_gpiod_get_optional(dev, "connect", GPIOD_OUT_LOW); if (IS_ERR(hub->connect)) { err = PTR_ERR(hub->connect); goto err_clk; } if (hub->connect) gpiod_set_consumer_name(hub->connect, "usb3503 connect"); hub->bypass = devm_gpiod_get_optional(dev, "bypass", GPIOD_OUT_HIGH); if (IS_ERR(hub->bypass)) { err = PTR_ERR(hub->bypass); goto err_clk; } if (hub->bypass) gpiod_set_consumer_name(hub->bypass, "usb3503 bypass"); hub->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(hub->reset)) { err = PTR_ERR(hub->reset); goto err_clk; } if (hub->reset) { /* Datasheet defines a hardware reset to be at least 100us */ usleep_range(100, 10000); gpiod_set_consumer_name(hub->reset, "usb3503 reset"); } if (hub->port_off_mask && !hub->regmap) dev_err(dev, "Ports disabled with no control interface\n"); usb3503_switch_mode(hub, hub->mode); dev_info(dev, "%s: probed in %s mode\n", __func__, (hub->mode == USB3503_MODE_HUB) ? "hub" : "standby"); return 0; err_clk: if (is_clk_enabled) clk_disable_unprepare(hub->clk); return err; } static int usb3503_i2c_probe(struct i2c_client *i2c) { struct usb3503 *hub; int err; hub = devm_kzalloc(&i2c->dev, sizeof(struct usb3503), GFP_KERNEL); if (!hub) return -ENOMEM; i2c_set_clientdata(i2c, hub); hub->regmap = devm_regmap_init_i2c(i2c, &usb3503_regmap_config); if (IS_ERR(hub->regmap)) { err = PTR_ERR(hub->regmap); dev_err(&i2c->dev, "Failed to initialise regmap: %d\n", err); return err; } hub->dev = &i2c->dev; return usb3503_probe(hub); } static void usb3503_i2c_remove(struct i2c_client *i2c) { struct usb3503 *hub; hub = i2c_get_clientdata(i2c); clk_disable_unprepare(hub->clk); } static int usb3503_platform_probe(struct platform_device *pdev) { struct usb3503 *hub; hub = devm_kzalloc(&pdev->dev, sizeof(struct usb3503), GFP_KERNEL); if (!hub) return -ENOMEM; hub->dev = &pdev->dev; platform_set_drvdata(pdev, hub); return usb3503_probe(hub); } static void usb3503_platform_remove(struct platform_device *pdev) { struct usb3503 *hub; hub = platform_get_drvdata(pdev); clk_disable_unprepare(hub->clk); } static int __maybe_unused usb3503_suspend(struct usb3503 *hub) { usb3503_switch_mode(hub, USB3503_MODE_STANDBY); clk_disable_unprepare(hub->clk); return 0; } static int __maybe_unused usb3503_resume(struct usb3503 *hub) { clk_prepare_enable(hub->clk); usb3503_switch_mode(hub, hub->mode); return 0; } static int __maybe_unused usb3503_i2c_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); return usb3503_suspend(i2c_get_clientdata(client)); } static int __maybe_unused usb3503_i2c_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); return usb3503_resume(i2c_get_clientdata(client)); } static int __maybe_unused usb3503_platform_suspend(struct device *dev) { return usb3503_suspend(dev_get_drvdata(dev)); } static int __maybe_unused usb3503_platform_resume(struct device *dev) { return usb3503_resume(dev_get_drvdata(dev)); } static SIMPLE_DEV_PM_OPS(usb3503_i2c_pm_ops, usb3503_i2c_suspend, usb3503_i2c_resume); static SIMPLE_DEV_PM_OPS(usb3503_platform_pm_ops, usb3503_platform_suspend, usb3503_platform_resume); static const struct i2c_device_id usb3503_id[] = { { USB3503_I2C_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(i2c, usb3503_id); #ifdef CONFIG_OF static const struct of_device_id usb3503_of_match[] = { { .compatible = "smsc,usb3503", }, { .compatible = "smsc,usb3503a", }, { .compatible = "smsc,usb3803", }, {}, }; MODULE_DEVICE_TABLE(of, usb3503_of_match); #endif static struct i2c_driver usb3503_i2c_driver = { .driver = { .name = USB3503_I2C_NAME, .pm = pm_ptr(&usb3503_i2c_pm_ops), .of_match_table = of_match_ptr(usb3503_of_match), }, .probe = usb3503_i2c_probe, .remove = usb3503_i2c_remove, .id_table = usb3503_id, }; static struct platform_driver usb3503_platform_driver = { .driver = { .name = USB3503_I2C_NAME, .of_match_table = of_match_ptr(usb3503_of_match), .pm = pm_ptr(&usb3503_platform_pm_ops), }, .probe = usb3503_platform_probe, .remove_new = usb3503_platform_remove, }; static int __init usb3503_init(void) { int err; err = i2c_add_driver(&usb3503_i2c_driver); if (err) { pr_err("usb3503: Failed to register I2C driver: %d\n", err); return err; } err = platform_driver_register(&usb3503_platform_driver); if (err) { pr_err("usb3503: Failed to register platform driver: %d\n", err); i2c_del_driver(&usb3503_i2c_driver); return err; } return 0; } module_init(usb3503_init); static void __exit usb3503_exit(void) { platform_driver_unregister(&usb3503_platform_driver); i2c_del_driver(&usb3503_i2c_driver); } module_exit(usb3503_exit); MODULE_AUTHOR("Dongjin Kim <[email protected]>"); MODULE_DESCRIPTION("USB3503 USB HUB driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/usb3503.c
// SPDX-License-Identifier: GPL-2.0+ /*****************************************************************************/ /* * uss720.c -- USS720 USB Parport Cable. * * Copyright (C) 1999, 2005, 2010 * Thomas Sailer ([email protected]) * * Based on parport_pc.c * * History: * 0.1 04.08.1999 Created * 0.2 07.08.1999 Some fixes mainly suggested by Tim Waugh * Interrupt handling currently disabled because * usb_request_irq crashes somewhere within ohci.c * for no apparent reason (that is for me, anyway) * ECP currently untested * 0.3 10.08.1999 fixing merge errors * 0.4 13.08.1999 Added Vendor/Product ID of Brad Hard's cable * 0.5 20.09.1999 usb_control_msg wrapper used * Nov01.2000 usb_device_table support by Adam J. Richter * 08.04.2001 Identify version on module load. gb * 0.6 02.09.2005 Fix "scheduling in interrupt" problem by making save/restore * context asynchronous * */ /*****************************************************************************/ #include <linux/module.h> #include <linux/socket.h> #include <linux/parport.h> #include <linux/init.h> #include <linux/usb.h> #include <linux/delay.h> #include <linux/completion.h> #include <linux/kref.h> #include <linux/slab.h> #include <linux/sched/signal.h> #define DRIVER_AUTHOR "Thomas M. Sailer, [email protected]" #define DRIVER_DESC "USB Parport Cable driver for Cables using the Lucent Technologies USS720 Chip" /* --------------------------------------------------------------------- */ struct parport_uss720_private { struct usb_device *usbdev; struct parport *pp; struct kref ref_count; __u8 reg[7]; /* USB registers */ struct list_head asynclist; spinlock_t asynclock; }; struct uss720_async_request { struct parport_uss720_private *priv; struct kref ref_count; struct list_head asynclist; struct completion compl; struct urb *urb; struct usb_ctrlrequest *dr; __u8 reg[7]; }; /* --------------------------------------------------------------------- */ static void destroy_priv(struct kref *kref) { struct parport_uss720_private *priv = container_of(kref, struct parport_uss720_private, ref_count); dev_dbg(&priv->usbdev->dev, "destroying priv datastructure\n"); usb_put_dev(priv->usbdev); priv->usbdev = NULL; kfree(priv); } static void destroy_async(struct kref *kref) { struct uss720_async_request *rq = container_of(kref, struct uss720_async_request, ref_count); struct parport_uss720_private *priv = rq->priv; unsigned long flags; if (likely(rq->urb)) usb_free_urb(rq->urb); kfree(rq->dr); spin_lock_irqsave(&priv->asynclock, flags); list_del_init(&rq->asynclist); spin_unlock_irqrestore(&priv->asynclock, flags); kfree(rq); kref_put(&priv->ref_count, destroy_priv); } /* --------------------------------------------------------------------- */ static void async_complete(struct urb *urb) { struct uss720_async_request *rq; struct parport *pp; struct parport_uss720_private *priv; int status = urb->status; rq = urb->context; priv = rq->priv; pp = priv->pp; if (status) { dev_err(&urb->dev->dev, "async_complete: urb error %d\n", status); } else if (rq->dr->bRequest == 3) { memcpy(priv->reg, rq->reg, sizeof(priv->reg)); #if 0 dev_dbg(&priv->usbdev->dev, "async_complete regs %7ph\n", priv->reg); #endif /* if nAck interrupts are enabled and we have an interrupt, call the interrupt procedure */ if (rq->reg[2] & rq->reg[1] & 0x10 && pp) parport_generic_irq(pp); } complete(&rq->compl); kref_put(&rq->ref_count, destroy_async); } static struct uss720_async_request *submit_async_request(struct parport_uss720_private *priv, __u8 request, __u8 requesttype, __u16 value, __u16 index, gfp_t mem_flags) { struct usb_device *usbdev; struct uss720_async_request *rq; unsigned long flags; int ret; if (!priv) return NULL; usbdev = priv->usbdev; if (!usbdev) return NULL; rq = kzalloc(sizeof(struct uss720_async_request), mem_flags); if (!rq) return NULL; kref_init(&rq->ref_count); INIT_LIST_HEAD(&rq->asynclist); init_completion(&rq->compl); kref_get(&priv->ref_count); rq->priv = priv; rq->urb = usb_alloc_urb(0, mem_flags); if (!rq->urb) { kref_put(&rq->ref_count, destroy_async); return NULL; } rq->dr = kmalloc(sizeof(*rq->dr), mem_flags); if (!rq->dr) { kref_put(&rq->ref_count, destroy_async); return NULL; } rq->dr->bRequestType = requesttype; rq->dr->bRequest = request; rq->dr->wValue = cpu_to_le16(value); rq->dr->wIndex = cpu_to_le16(index); rq->dr->wLength = cpu_to_le16((request == 3) ? sizeof(rq->reg) : 0); usb_fill_control_urb(rq->urb, usbdev, (requesttype & 0x80) ? usb_rcvctrlpipe(usbdev, 0) : usb_sndctrlpipe(usbdev, 0), (unsigned char *)rq->dr, (request == 3) ? rq->reg : NULL, (request == 3) ? sizeof(rq->reg) : 0, async_complete, rq); /* rq->urb->transfer_flags |= URB_ASYNC_UNLINK; */ spin_lock_irqsave(&priv->asynclock, flags); list_add_tail(&rq->asynclist, &priv->asynclist); spin_unlock_irqrestore(&priv->asynclock, flags); kref_get(&rq->ref_count); ret = usb_submit_urb(rq->urb, mem_flags); if (!ret) return rq; destroy_async(&rq->ref_count); dev_err(&usbdev->dev, "submit_async_request submit_urb failed with %d\n", ret); return NULL; } static unsigned int kill_all_async_requests_priv(struct parport_uss720_private *priv) { struct uss720_async_request *rq; unsigned long flags; unsigned int ret = 0; spin_lock_irqsave(&priv->asynclock, flags); list_for_each_entry(rq, &priv->asynclist, asynclist) { usb_unlink_urb(rq->urb); ret++; } spin_unlock_irqrestore(&priv->asynclock, flags); return ret; } /* --------------------------------------------------------------------- */ static int get_1284_register(struct parport *pp, unsigned char reg, unsigned char *val, gfp_t mem_flags) { struct parport_uss720_private *priv; struct uss720_async_request *rq; static const unsigned char regindex[9] = { 4, 0, 1, 5, 5, 0, 2, 3, 6 }; int ret; if (!pp) return -EIO; priv = pp->private_data; rq = submit_async_request(priv, 3, 0xc0, ((unsigned int)reg) << 8, 0, mem_flags); if (!rq) { dev_err(&priv->usbdev->dev, "get_1284_register(%u) failed", (unsigned int)reg); return -EIO; } if (!val) { kref_put(&rq->ref_count, destroy_async); return 0; } if (wait_for_completion_timeout(&rq->compl, HZ)) { ret = rq->urb->status; *val = priv->reg[(reg >= 9) ? 0 : regindex[reg]]; if (ret) printk(KERN_WARNING "get_1284_register: " "usb error %d\n", ret); kref_put(&rq->ref_count, destroy_async); return ret; } printk(KERN_WARNING "get_1284_register timeout\n"); kill_all_async_requests_priv(priv); return -EIO; } static int set_1284_register(struct parport *pp, unsigned char reg, unsigned char val, gfp_t mem_flags) { struct parport_uss720_private *priv; struct uss720_async_request *rq; if (!pp) return -EIO; priv = pp->private_data; rq = submit_async_request(priv, 4, 0x40, (((unsigned int)reg) << 8) | val, 0, mem_flags); if (!rq) { dev_err(&priv->usbdev->dev, "set_1284_register(%u,%u) failed", (unsigned int)reg, (unsigned int)val); return -EIO; } kref_put(&rq->ref_count, destroy_async); return 0; } /* --------------------------------------------------------------------- */ /* ECR modes */ #define ECR_SPP 00 #define ECR_PS2 01 #define ECR_PPF 02 #define ECR_ECP 03 #define ECR_EPP 04 /* Safely change the mode bits in the ECR */ static int change_mode(struct parport *pp, int m) { struct parport_uss720_private *priv = pp->private_data; int mode; __u8 reg; if (get_1284_register(pp, 6, &reg, GFP_KERNEL)) return -EIO; /* Bits <7:5> contain the mode. */ mode = (priv->reg[2] >> 5) & 0x7; if (mode == m) return 0; /* We have to go through mode 000 or 001 */ if (mode > ECR_PS2 && m > ECR_PS2) if (change_mode(pp, ECR_PS2)) return -EIO; if (m <= ECR_PS2 && !(priv->reg[1] & 0x20)) { /* This mode resets the FIFO, so we may * have to wait for it to drain first. */ unsigned long expire = jiffies + pp->physport->cad->timeout; switch (mode) { case ECR_PPF: /* Parallel Port FIFO mode */ case ECR_ECP: /* ECP Parallel Port mode */ /* Poll slowly. */ for (;;) { if (get_1284_register(pp, 6, &reg, GFP_KERNEL)) return -EIO; if (priv->reg[2] & 0x01) break; if (time_after_eq (jiffies, expire)) /* The FIFO is stuck. */ return -EBUSY; msleep_interruptible(10); if (signal_pending (current)) break; } } } /* Set the mode. */ if (set_1284_register(pp, 6, m << 5, GFP_KERNEL)) return -EIO; if (get_1284_register(pp, 6, &reg, GFP_KERNEL)) return -EIO; return 0; } /* * Clear TIMEOUT BIT in EPP MODE */ static int clear_epp_timeout(struct parport *pp) { unsigned char stat; if (get_1284_register(pp, 1, &stat, GFP_KERNEL)) return 1; return stat & 1; } /* * Access functions. */ #if 0 static int uss720_irq(int usbstatus, void *buffer, int len, void *dev_id) { struct parport *pp = (struct parport *)dev_id; struct parport_uss720_private *priv = pp->private_data; if (usbstatus != 0 || len < 4 || !buffer) return 1; memcpy(priv->reg, buffer, 4); /* if nAck interrupts are enabled and we have an interrupt, call the interrupt procedure */ if (priv->reg[2] & priv->reg[1] & 0x10) parport_generic_irq(pp); return 1; } #endif static void parport_uss720_write_data(struct parport *pp, unsigned char d) { set_1284_register(pp, 0, d, GFP_KERNEL); } static unsigned char parport_uss720_read_data(struct parport *pp) { unsigned char ret; if (get_1284_register(pp, 0, &ret, GFP_KERNEL)) return 0; return ret; } static void parport_uss720_write_control(struct parport *pp, unsigned char d) { struct parport_uss720_private *priv = pp->private_data; d = (d & 0xf) | (priv->reg[1] & 0xf0); if (set_1284_register(pp, 2, d, GFP_KERNEL)) return; priv->reg[1] = d; } static unsigned char parport_uss720_read_control(struct parport *pp) { struct parport_uss720_private *priv = pp->private_data; return priv->reg[1] & 0xf; /* Use soft copy */ } static unsigned char parport_uss720_frob_control(struct parport *pp, unsigned char mask, unsigned char val) { struct parport_uss720_private *priv = pp->private_data; unsigned char d; mask &= 0x0f; val &= 0x0f; d = (priv->reg[1] & (~mask)) ^ val; if (set_1284_register(pp, 2, d, GFP_ATOMIC)) return 0; priv->reg[1] = d; return d & 0xf; } static unsigned char parport_uss720_read_status(struct parport *pp) { unsigned char ret; if (get_1284_register(pp, 1, &ret, GFP_ATOMIC)) return 0; return ret & 0xf8; } static void parport_uss720_disable_irq(struct parport *pp) { struct parport_uss720_private *priv = pp->private_data; unsigned char d; d = priv->reg[1] & ~0x10; if (set_1284_register(pp, 2, d, GFP_KERNEL)) return; priv->reg[1] = d; } static void parport_uss720_enable_irq(struct parport *pp) { struct parport_uss720_private *priv = pp->private_data; unsigned char d; d = priv->reg[1] | 0x10; if (set_1284_register(pp, 2, d, GFP_KERNEL)) return; priv->reg[1] = d; } static void parport_uss720_data_forward (struct parport *pp) { struct parport_uss720_private *priv = pp->private_data; unsigned char d; d = priv->reg[1] & ~0x20; if (set_1284_register(pp, 2, d, GFP_KERNEL)) return; priv->reg[1] = d; } static void parport_uss720_data_reverse (struct parport *pp) { struct parport_uss720_private *priv = pp->private_data; unsigned char d; d = priv->reg[1] | 0x20; if (set_1284_register(pp, 2, d, GFP_KERNEL)) return; priv->reg[1] = d; } static void parport_uss720_init_state(struct pardevice *dev, struct parport_state *s) { s->u.pc.ctr = 0xc | (dev->irq_func ? 0x10 : 0x0); s->u.pc.ecr = 0x24; } static void parport_uss720_save_state(struct parport *pp, struct parport_state *s) { struct parport_uss720_private *priv = pp->private_data; #if 0 if (get_1284_register(pp, 2, NULL, GFP_ATOMIC)) return; #endif s->u.pc.ctr = priv->reg[1]; s->u.pc.ecr = priv->reg[2]; } static void parport_uss720_restore_state(struct parport *pp, struct parport_state *s) { struct parport_uss720_private *priv = pp->private_data; set_1284_register(pp, 2, s->u.pc.ctr, GFP_ATOMIC); set_1284_register(pp, 6, s->u.pc.ecr, GFP_ATOMIC); get_1284_register(pp, 2, NULL, GFP_ATOMIC); priv->reg[1] = s->u.pc.ctr; priv->reg[2] = s->u.pc.ecr; } static size_t parport_uss720_epp_read_data(struct parport *pp, void *buf, size_t length, int flags) { struct parport_uss720_private *priv = pp->private_data; size_t got = 0; if (change_mode(pp, ECR_EPP)) return 0; for (; got < length; got++) { if (get_1284_register(pp, 4, (char *)buf, GFP_KERNEL)) break; buf++; if (priv->reg[0] & 0x01) { clear_epp_timeout(pp); break; } } change_mode(pp, ECR_PS2); return got; } static size_t parport_uss720_epp_write_data(struct parport *pp, const void *buf, size_t length, int flags) { #if 0 struct parport_uss720_private *priv = pp->private_data; size_t written = 0; if (change_mode(pp, ECR_EPP)) return 0; for (; written < length; written++) { if (set_1284_register(pp, 4, (char *)buf, GFP_KERNEL)) break; ((char*)buf)++; if (get_1284_register(pp, 1, NULL, GFP_KERNEL)) break; if (priv->reg[0] & 0x01) { clear_epp_timeout(pp); break; } } change_mode(pp, ECR_PS2); return written; #else struct parport_uss720_private *priv = pp->private_data; struct usb_device *usbdev = priv->usbdev; int rlen = 0; int i; if (!usbdev) return 0; if (change_mode(pp, ECR_EPP)) return 0; i = usb_bulk_msg(usbdev, usb_sndbulkpipe(usbdev, 1), (void *)buf, length, &rlen, 20000); if (i) printk(KERN_ERR "uss720: sendbulk ep 1 buf %p len %zu rlen %u\n", buf, length, rlen); change_mode(pp, ECR_PS2); return rlen; #endif } static size_t parport_uss720_epp_read_addr(struct parport *pp, void *buf, size_t length, int flags) { struct parport_uss720_private *priv = pp->private_data; size_t got = 0; if (change_mode(pp, ECR_EPP)) return 0; for (; got < length; got++) { if (get_1284_register(pp, 3, (char *)buf, GFP_KERNEL)) break; buf++; if (priv->reg[0] & 0x01) { clear_epp_timeout(pp); break; } } change_mode(pp, ECR_PS2); return got; } static size_t parport_uss720_epp_write_addr(struct parport *pp, const void *buf, size_t length, int flags) { struct parport_uss720_private *priv = pp->private_data; size_t written = 0; if (change_mode(pp, ECR_EPP)) return 0; for (; written < length; written++) { if (set_1284_register(pp, 3, *(char *)buf, GFP_KERNEL)) break; buf++; if (get_1284_register(pp, 1, NULL, GFP_KERNEL)) break; if (priv->reg[0] & 0x01) { clear_epp_timeout(pp); break; } } change_mode(pp, ECR_PS2); return written; } static size_t parport_uss720_ecp_write_data(struct parport *pp, const void *buffer, size_t len, int flags) { struct parport_uss720_private *priv = pp->private_data; struct usb_device *usbdev = priv->usbdev; int rlen = 0; int i; if (!usbdev) return 0; if (change_mode(pp, ECR_ECP)) return 0; i = usb_bulk_msg(usbdev, usb_sndbulkpipe(usbdev, 1), (void *)buffer, len, &rlen, 20000); if (i) printk(KERN_ERR "uss720: sendbulk ep 1 buf %p len %zu rlen %u\n", buffer, len, rlen); change_mode(pp, ECR_PS2); return rlen; } static size_t parport_uss720_ecp_read_data(struct parport *pp, void *buffer, size_t len, int flags) { struct parport_uss720_private *priv = pp->private_data; struct usb_device *usbdev = priv->usbdev; int rlen = 0; int i; if (!usbdev) return 0; if (change_mode(pp, ECR_ECP)) return 0; i = usb_bulk_msg(usbdev, usb_rcvbulkpipe(usbdev, 2), buffer, len, &rlen, 20000); if (i) printk(KERN_ERR "uss720: recvbulk ep 2 buf %p len %zu rlen %u\n", buffer, len, rlen); change_mode(pp, ECR_PS2); return rlen; } static size_t parport_uss720_ecp_write_addr(struct parport *pp, const void *buffer, size_t len, int flags) { size_t written = 0; if (change_mode(pp, ECR_ECP)) return 0; for (; written < len; written++) { if (set_1284_register(pp, 5, *(char *)buffer, GFP_KERNEL)) break; buffer++; } change_mode(pp, ECR_PS2); return written; } static size_t parport_uss720_write_compat(struct parport *pp, const void *buffer, size_t len, int flags) { struct parport_uss720_private *priv = pp->private_data; struct usb_device *usbdev = priv->usbdev; int rlen = 0; int i; if (!usbdev) return 0; if (change_mode(pp, ECR_PPF)) return 0; i = usb_bulk_msg(usbdev, usb_sndbulkpipe(usbdev, 1), (void *)buffer, len, &rlen, 20000); if (i) printk(KERN_ERR "uss720: sendbulk ep 1 buf %p len %zu rlen %u\n", buffer, len, rlen); change_mode(pp, ECR_PS2); return rlen; } /* --------------------------------------------------------------------- */ static struct parport_operations parport_uss720_ops = { .owner = THIS_MODULE, .write_data = parport_uss720_write_data, .read_data = parport_uss720_read_data, .write_control = parport_uss720_write_control, .read_control = parport_uss720_read_control, .frob_control = parport_uss720_frob_control, .read_status = parport_uss720_read_status, .enable_irq = parport_uss720_enable_irq, .disable_irq = parport_uss720_disable_irq, .data_forward = parport_uss720_data_forward, .data_reverse = parport_uss720_data_reverse, .init_state = parport_uss720_init_state, .save_state = parport_uss720_save_state, .restore_state = parport_uss720_restore_state, .epp_write_data = parport_uss720_epp_write_data, .epp_read_data = parport_uss720_epp_read_data, .epp_write_addr = parport_uss720_epp_write_addr, .epp_read_addr = parport_uss720_epp_read_addr, .ecp_write_data = parport_uss720_ecp_write_data, .ecp_read_data = parport_uss720_ecp_read_data, .ecp_write_addr = parport_uss720_ecp_write_addr, .compat_write_data = parport_uss720_write_compat, .nibble_read_data = parport_ieee1284_read_nibble, .byte_read_data = parport_ieee1284_read_byte, }; /* --------------------------------------------------------------------- */ static int uss720_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *usbdev = usb_get_dev(interface_to_usbdev(intf)); struct usb_host_interface *interface; struct usb_endpoint_descriptor *epd; struct parport_uss720_private *priv; struct parport *pp; unsigned char reg; int i; dev_dbg(&intf->dev, "probe: vendor id 0x%x, device id 0x%x\n", le16_to_cpu(usbdev->descriptor.idVendor), le16_to_cpu(usbdev->descriptor.idProduct)); /* our known interfaces have 3 alternate settings */ if (intf->num_altsetting != 3) { usb_put_dev(usbdev); return -ENODEV; } i = usb_set_interface(usbdev, intf->altsetting->desc.bInterfaceNumber, 2); dev_dbg(&intf->dev, "set interface result %d\n", i); interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints < 3) { usb_put_dev(usbdev); return -ENODEV; } /* * Allocate parport interface */ priv = kzalloc(sizeof(struct parport_uss720_private), GFP_KERNEL); if (!priv) { usb_put_dev(usbdev); return -ENOMEM; } priv->pp = NULL; priv->usbdev = usbdev; kref_init(&priv->ref_count); spin_lock_init(&priv->asynclock); INIT_LIST_HEAD(&priv->asynclist); pp = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, &parport_uss720_ops); if (!pp) { printk(KERN_WARNING "uss720: could not register parport\n"); goto probe_abort; } priv->pp = pp; pp->private_data = priv; pp->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_TRISTATE | PARPORT_MODE_EPP | PARPORT_MODE_ECP | PARPORT_MODE_COMPAT; /* set the USS720 control register to manual mode, no ECP compression, enable all ints */ set_1284_register(pp, 7, 0x00, GFP_KERNEL); set_1284_register(pp, 6, 0x30, GFP_KERNEL); /* PS/2 mode */ set_1284_register(pp, 2, 0x0c, GFP_KERNEL); /* debugging */ get_1284_register(pp, 0, &reg, GFP_KERNEL); dev_dbg(&intf->dev, "reg: %7ph\n", priv->reg); i = usb_find_last_int_in_endpoint(interface, &epd); if (!i) { dev_dbg(&intf->dev, "epaddr %d interval %d\n", epd->bEndpointAddress, epd->bInterval); } parport_announce_port(pp); usb_set_intfdata(intf, pp); return 0; probe_abort: kill_all_async_requests_priv(priv); kref_put(&priv->ref_count, destroy_priv); return -ENODEV; } static void uss720_disconnect(struct usb_interface *intf) { struct parport *pp = usb_get_intfdata(intf); struct parport_uss720_private *priv; dev_dbg(&intf->dev, "disconnect\n"); usb_set_intfdata(intf, NULL); if (pp) { priv = pp->private_data; priv->pp = NULL; dev_dbg(&intf->dev, "parport_remove_port\n"); parport_remove_port(pp); parport_put_port(pp); kill_all_async_requests_priv(priv); kref_put(&priv->ref_count, destroy_priv); } dev_dbg(&intf->dev, "disconnect done\n"); } /* table of cables that work through this driver */ static const struct usb_device_id uss720_table[] = { { USB_DEVICE(0x047e, 0x1001) }, { USB_DEVICE(0x04b8, 0x0002) }, { USB_DEVICE(0x04b8, 0x0003) }, { USB_DEVICE(0x050d, 0x0002) }, { USB_DEVICE(0x050d, 0x1202) }, { USB_DEVICE(0x0557, 0x2001) }, { USB_DEVICE(0x05ab, 0x0002) }, { USB_DEVICE(0x06c6, 0x0100) }, { USB_DEVICE(0x0729, 0x1284) }, { USB_DEVICE(0x1293, 0x0002) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, uss720_table); static struct usb_driver uss720_driver = { .name = "uss720", .probe = uss720_probe, .disconnect = uss720_disconnect, .id_table = uss720_table, }; /* --------------------------------------------------------------------- */ MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); static int __init uss720_init(void) { int retval; retval = usb_register(&uss720_driver); if (retval) goto out; printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_DESC "\n"); printk(KERN_INFO KBUILD_MODNAME ": NOTE: this is a special purpose " "driver to allow nonstandard\n"); printk(KERN_INFO KBUILD_MODNAME ": protocols (eg. bitbang) over " "USS720 usb to parallel cables\n"); printk(KERN_INFO KBUILD_MODNAME ": If you just want to connect to a " "printer, use usblp instead\n"); out: return retval; } static void __exit uss720_cleanup(void) { usb_deregister(&uss720_driver); } module_init(uss720_init); module_exit(uss720_cleanup); /* --------------------------------------------------------------------- */
linux-master
drivers/usb/misc/uss720.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/misc/lvstest.c * * Test pattern generation for Link Layer Validation System Tests * * Copyright (C) 2014 ST Microelectronics * Pratyush Anand <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/ch11.h> #include <linux/usb/hcd.h> #include <linux/usb/phy.h> struct lvs_rh { /* root hub interface */ struct usb_interface *intf; /* if lvs device connected */ bool present; /* port no at which lvs device is present */ int portnum; /* urb buffer */ u8 buffer[8]; /* class descriptor */ struct usb_hub_descriptor descriptor; /* urb for polling interrupt pipe */ struct urb *urb; /* LVH RH work */ struct work_struct rh_work; /* RH port status */ struct usb_port_status port_status; }; static struct usb_device *create_lvs_device(struct usb_interface *intf) { struct usb_device *udev, *hdev; struct usb_hcd *hcd; struct lvs_rh *lvs = usb_get_intfdata(intf); if (!lvs->present) { dev_err(&intf->dev, "No LVS device is present\n"); return NULL; } hdev = interface_to_usbdev(intf); hcd = bus_to_hcd(hdev->bus); udev = usb_alloc_dev(hdev, hdev->bus, lvs->portnum); if (!udev) { dev_err(&intf->dev, "Could not allocate lvs udev\n"); return NULL; } udev->speed = USB_SPEED_SUPER; udev->ep0.desc.wMaxPacketSize = cpu_to_le16(512); usb_set_device_state(udev, USB_STATE_DEFAULT); if (hcd->driver->enable_device) { if (hcd->driver->enable_device(hcd, udev) < 0) { dev_err(&intf->dev, "Failed to enable\n"); usb_put_dev(udev); return NULL; } } return udev; } static void destroy_lvs_device(struct usb_device *udev) { struct usb_device *hdev = udev->parent; struct usb_hcd *hcd = bus_to_hcd(hdev->bus); if (hcd->driver->free_dev) hcd->driver->free_dev(hcd, udev); usb_put_dev(udev); } static int lvs_rh_clear_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } static int lvs_rh_set_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_SET_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } static ssize_t u3_entry_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); struct usb_device *udev; int ret; udev = create_lvs_device(intf); if (!udev) { dev_err(dev, "failed to create lvs device\n"); return -ENOMEM; } ret = lvs_rh_set_port_feature(hdev, lvs->portnum, USB_PORT_FEAT_SUSPEND); if (ret < 0) dev_err(dev, "can't issue U3 entry %d\n", ret); destroy_lvs_device(udev); if (ret < 0) return ret; return count; } static DEVICE_ATTR_WO(u3_entry); static ssize_t u3_exit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); struct usb_device *udev; int ret; udev = create_lvs_device(intf); if (!udev) { dev_err(dev, "failed to create lvs device\n"); return -ENOMEM; } ret = lvs_rh_clear_port_feature(hdev, lvs->portnum, USB_PORT_FEAT_SUSPEND); if (ret < 0) dev_err(dev, "can't issue U3 exit %d\n", ret); destroy_lvs_device(udev); if (ret < 0) return ret; return count; } static DEVICE_ATTR_WO(u3_exit); static ssize_t hot_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); int ret; ret = lvs_rh_set_port_feature(hdev, lvs->portnum, USB_PORT_FEAT_RESET); if (ret < 0) { dev_err(dev, "can't issue hot reset %d\n", ret); return ret; } return count; } static DEVICE_ATTR_WO(hot_reset); static ssize_t warm_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); int ret; ret = lvs_rh_set_port_feature(hdev, lvs->portnum, USB_PORT_FEAT_BH_PORT_RESET); if (ret < 0) { dev_err(dev, "can't issue warm reset %d\n", ret); return ret; } return count; } static DEVICE_ATTR_WO(warm_reset); static ssize_t u2_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); unsigned long val; int ret; ret = kstrtoul(buf, 10, &val); if (ret < 0) { dev_err(dev, "couldn't parse string %d\n", ret); return ret; } if (val > 127) return -EINVAL; ret = lvs_rh_set_port_feature(hdev, lvs->portnum | (val << 8), USB_PORT_FEAT_U2_TIMEOUT); if (ret < 0) { dev_err(dev, "Error %d while setting U2 timeout %ld\n", ret, val); return ret; } return count; } static DEVICE_ATTR_WO(u2_timeout); static ssize_t u1_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); unsigned long val; int ret; ret = kstrtoul(buf, 10, &val); if (ret < 0) { dev_err(dev, "couldn't parse string %d\n", ret); return ret; } if (val > 127) return -EINVAL; ret = lvs_rh_set_port_feature(hdev, lvs->portnum | (val << 8), USB_PORT_FEAT_U1_TIMEOUT); if (ret < 0) { dev_err(dev, "Error %d while setting U1 timeout %ld\n", ret, val); return ret; } return count; } static DEVICE_ATTR_WO(u1_timeout); static ssize_t get_dev_desc_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *udev; struct usb_device_descriptor *descriptor; int ret; descriptor = kmalloc(sizeof(*descriptor), GFP_KERNEL); if (!descriptor) return -ENOMEM; udev = create_lvs_device(intf); if (!udev) { dev_err(dev, "failed to create lvs device\n"); ret = -ENOMEM; goto free_desc; } ret = usb_control_msg(udev, (PIPE_CONTROL << 30) | USB_DIR_IN, USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, USB_DT_DEVICE << 8, 0, descriptor, sizeof(*descriptor), USB_CTRL_GET_TIMEOUT); if (ret < 0) dev_err(dev, "can't read device descriptor %d\n", ret); destroy_lvs_device(udev); free_desc: kfree(descriptor); if (ret < 0) return ret; return count; } static DEVICE_ATTR_WO(get_dev_desc); static ssize_t enable_compliance_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_device *hdev = interface_to_usbdev(intf); struct lvs_rh *lvs = usb_get_intfdata(intf); int ret; ret = lvs_rh_set_port_feature(hdev, lvs->portnum | USB_SS_PORT_LS_COMP_MOD << 3, USB_PORT_FEAT_LINK_STATE); if (ret < 0) { dev_err(dev, "can't enable compliance mode %d\n", ret); return ret; } return count; } static DEVICE_ATTR_WO(enable_compliance); static struct attribute *lvs_attrs[] = { &dev_attr_get_dev_desc.attr, &dev_attr_u1_timeout.attr, &dev_attr_u2_timeout.attr, &dev_attr_hot_reset.attr, &dev_attr_warm_reset.attr, &dev_attr_u3_entry.attr, &dev_attr_u3_exit.attr, &dev_attr_enable_compliance.attr, NULL }; ATTRIBUTE_GROUPS(lvs); static void lvs_rh_work(struct work_struct *work) { struct lvs_rh *lvs = container_of(work, struct lvs_rh, rh_work); struct usb_interface *intf = lvs->intf; struct usb_device *hdev = interface_to_usbdev(intf); struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_hub_descriptor *descriptor = &lvs->descriptor; struct usb_port_status *port_status = &lvs->port_status; int i, ret = 0; u16 portchange; /* Examine each root port */ for (i = 1; i <= descriptor->bNbrPorts; i++) { ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, 0, i, port_status, sizeof(*port_status), 1000); if (ret < 4) continue; portchange = le16_to_cpu(port_status->wPortChange); if (portchange & USB_PORT_STAT_C_LINK_STATE) lvs_rh_clear_port_feature(hdev, i, USB_PORT_FEAT_C_PORT_LINK_STATE); if (portchange & USB_PORT_STAT_C_ENABLE) lvs_rh_clear_port_feature(hdev, i, USB_PORT_FEAT_C_ENABLE); if (portchange & USB_PORT_STAT_C_RESET) lvs_rh_clear_port_feature(hdev, i, USB_PORT_FEAT_C_RESET); if (portchange & USB_PORT_STAT_C_BH_RESET) lvs_rh_clear_port_feature(hdev, i, USB_PORT_FEAT_C_BH_PORT_RESET); if (portchange & USB_PORT_STAT_C_CONNECTION) { lvs_rh_clear_port_feature(hdev, i, USB_PORT_FEAT_C_CONNECTION); if (le16_to_cpu(port_status->wPortStatus) & USB_PORT_STAT_CONNECTION) { lvs->present = true; lvs->portnum = i; if (hcd->usb_phy) usb_phy_notify_connect(hcd->usb_phy, USB_SPEED_SUPER); } else { lvs->present = false; if (hcd->usb_phy) usb_phy_notify_disconnect(hcd->usb_phy, USB_SPEED_SUPER); } break; } } ret = usb_submit_urb(lvs->urb, GFP_KERNEL); if (ret != 0 && ret != -ENODEV && ret != -EPERM) dev_err(&intf->dev, "urb resubmit error %d\n", ret); } static void lvs_rh_irq(struct urb *urb) { struct lvs_rh *lvs = urb->context; schedule_work(&lvs->rh_work); } static int lvs_rh_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *hdev; struct usb_host_interface *desc; struct usb_endpoint_descriptor *endpoint; struct lvs_rh *lvs; unsigned int pipe; int ret, maxp; hdev = interface_to_usbdev(intf); desc = intf->cur_altsetting; ret = usb_find_int_in_endpoint(desc, &endpoint); if (ret) return ret; /* valid only for SS root hub */ if (hdev->descriptor.bDeviceProtocol != USB_HUB_PR_SS || hdev->parent) { dev_err(&intf->dev, "Bind LVS driver with SS root Hub only\n"); return -EINVAL; } lvs = devm_kzalloc(&intf->dev, sizeof(*lvs), GFP_KERNEL); if (!lvs) return -ENOMEM; lvs->intf = intf; usb_set_intfdata(intf, lvs); /* how many number of ports this root hub has */ ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB, USB_DT_SS_HUB << 8, 0, &lvs->descriptor, USB_DT_SS_HUB_SIZE, USB_CTRL_GET_TIMEOUT); if (ret < (USB_DT_HUB_NONVAR_SIZE + 2)) { dev_err(&hdev->dev, "wrong root hub descriptor read %d\n", ret); return ret < 0 ? ret : -EINVAL; } /* submit urb to poll interrupt endpoint */ lvs->urb = usb_alloc_urb(0, GFP_KERNEL); if (!lvs->urb) return -ENOMEM; INIT_WORK(&lvs->rh_work, lvs_rh_work); pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress); maxp = usb_maxpacket(hdev, pipe); usb_fill_int_urb(lvs->urb, hdev, pipe, &lvs->buffer[0], maxp, lvs_rh_irq, lvs, endpoint->bInterval); ret = usb_submit_urb(lvs->urb, GFP_KERNEL); if (ret < 0) { dev_err(&intf->dev, "couldn't submit lvs urb %d\n", ret); goto free_urb; } return ret; free_urb: usb_free_urb(lvs->urb); return ret; } static void lvs_rh_disconnect(struct usb_interface *intf) { struct lvs_rh *lvs = usb_get_intfdata(intf); usb_poison_urb(lvs->urb); /* used in scheduled work */ flush_work(&lvs->rh_work); usb_free_urb(lvs->urb); } static struct usb_driver lvs_driver = { .name = "lvs", .probe = lvs_rh_probe, .disconnect = lvs_rh_disconnect, .dev_groups = lvs_groups, }; module_usb_driver(lvs_driver); MODULE_DESCRIPTION("Link Layer Validation System Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/lvstest.c
// SPDX-License-Identifier: GPL-2.0 /* -*- linux-c -*- * Cypress USB Thermometer driver * * Copyright (c) 2004 Erik Rigtorp <[email protected]> <[email protected]> * * This driver works with Elektor magazine USB Interface as published in * issue #291. It should also work with the original starter kit/demo board * from Cypress. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #define DRIVER_AUTHOR "Erik Rigtorp" #define DRIVER_DESC "Cypress USB Thermometer driver" #define USB_SKEL_VENDOR_ID 0x04b4 #define USB_SKEL_PRODUCT_ID 0x0002 static const struct usb_device_id id_table[] = { { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) }, { } }; MODULE_DEVICE_TABLE (usb, id_table); /* Structure to hold all of our device specific stuff */ struct usb_cytherm { struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; /* the interface for this device */ int brightness; }; /* Vendor requests */ /* They all operate on one byte at a time */ #define PING 0x00 #define READ_ROM 0x01 /* Reads form ROM, value = address */ #define READ_RAM 0x02 /* Reads form RAM, value = address */ #define WRITE_RAM 0x03 /* Write to RAM, value = address, index = data */ #define READ_PORT 0x04 /* Reads from port, value = address */ #define WRITE_PORT 0x05 /* Write to port, value = address, index = data */ /* Send a vendor command to device */ static int vendor_command(struct usb_device *dev, unsigned char request, unsigned char value, unsigned char index, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), request, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER, value, index, buf, size, USB_CTRL_GET_TIMEOUT); } #define BRIGHTNESS 0x2c /* RAM location for brightness value */ #define BRIGHTNESS_SEM 0x2b /* RAM location for brightness semaphore */ static ssize_t brightness_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); return sprintf(buf, "%i", cytherm->brightness); } static ssize_t brightness_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); unsigned char *buffer; int retval; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; cytherm->brightness = simple_strtoul(buf, NULL, 10); if (cytherm->brightness > 0xFF) cytherm->brightness = 0xFF; else if (cytherm->brightness < 0) cytherm->brightness = 0; /* Set brightness */ retval = vendor_command(cytherm->udev, WRITE_RAM, BRIGHTNESS, cytherm->brightness, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); /* Inform µC that we have changed the brightness setting */ retval = vendor_command(cytherm->udev, WRITE_RAM, BRIGHTNESS_SEM, 0x01, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); kfree(buffer); return count; } static DEVICE_ATTR_RW(brightness); #define TEMP 0x33 /* RAM location for temperature */ #define SIGN 0x34 /* RAM location for temperature sign */ static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); int retval; unsigned char *buffer; int temp, sign; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; /* read temperature */ retval = vendor_command(cytherm->udev, READ_RAM, TEMP, 0, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); temp = buffer[1]; /* read sign */ retval = vendor_command(cytherm->udev, READ_RAM, SIGN, 0, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); sign = buffer[1]; kfree(buffer); return sprintf(buf, "%c%i.%i", sign ? '-' : '+', temp >> 1, 5*(temp - ((temp >> 1) << 1))); } static DEVICE_ATTR_RO(temp); #define BUTTON 0x7a static ssize_t button_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); int retval; unsigned char *buffer; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; /* check button */ retval = vendor_command(cytherm->udev, READ_RAM, BUTTON, 0, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); retval = buffer[1]; kfree(buffer); if (retval) return sprintf(buf, "1"); else return sprintf(buf, "0"); } static DEVICE_ATTR_RO(button); static ssize_t port0_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); int retval; unsigned char *buffer; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; retval = vendor_command(cytherm->udev, READ_PORT, 0, 0, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); retval = buffer[1]; kfree(buffer); return sprintf(buf, "%d", retval); } static ssize_t port0_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); unsigned char *buffer; int retval; int tmp; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; tmp = simple_strtoul(buf, NULL, 10); if (tmp > 0xFF) tmp = 0xFF; else if (tmp < 0) tmp = 0; retval = vendor_command(cytherm->udev, WRITE_PORT, 0, tmp, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); kfree(buffer); return count; } static DEVICE_ATTR_RW(port0); static ssize_t port1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); int retval; unsigned char *buffer; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; retval = vendor_command(cytherm->udev, READ_PORT, 1, 0, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); retval = buffer[1]; kfree(buffer); return sprintf(buf, "%d", retval); } static ssize_t port1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct usb_cytherm *cytherm = usb_get_intfdata(intf); unsigned char *buffer; int retval; int tmp; buffer = kmalloc(8, GFP_KERNEL); if (!buffer) return 0; tmp = simple_strtoul(buf, NULL, 10); if (tmp > 0xFF) tmp = 0xFF; else if (tmp < 0) tmp = 0; retval = vendor_command(cytherm->udev, WRITE_PORT, 1, tmp, buffer, 8); if (retval) dev_dbg(&cytherm->udev->dev, "retval = %d\n", retval); kfree(buffer); return count; } static DEVICE_ATTR_RW(port1); static struct attribute *cytherm_attrs[] = { &dev_attr_brightness.attr, &dev_attr_temp.attr, &dev_attr_button.attr, &dev_attr_port0.attr, &dev_attr_port1.attr, NULL, }; ATTRIBUTE_GROUPS(cytherm); static int cytherm_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_cytherm *dev; int retval = -ENOMEM; dev = kzalloc(sizeof(struct usb_cytherm), GFP_KERNEL); if (!dev) goto error_mem; dev->udev = usb_get_dev(udev); usb_set_intfdata(interface, dev); dev->brightness = 0xFF; dev_info(&interface->dev, "Cypress thermometer device now attached\n"); return 0; error_mem: return retval; } static void cytherm_disconnect(struct usb_interface *interface) { struct usb_cytherm *dev; dev = usb_get_intfdata(interface); /* first remove the files, then NULL the pointer */ usb_set_intfdata(interface, NULL); usb_put_dev(dev->udev); kfree(dev); dev_info(&interface->dev, "Cypress thermometer now disconnected\n"); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver cytherm_driver = { .name = "cytherm", .probe = cytherm_probe, .disconnect = cytherm_disconnect, .id_table = id_table, .dev_groups = cytherm_groups, }; module_usb_driver(cytherm_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/cytherm.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for Meywa-Denki & KAYAC YUREX * * Copyright (C) 2010 Tomoki Sekiyama ([email protected]) */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kref.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/usb.h> #include <linux/hid.h> #define DRIVER_AUTHOR "Tomoki Sekiyama" #define DRIVER_DESC "Driver for Meywa-Denki & KAYAC YUREX" #define YUREX_VENDOR_ID 0x0c45 #define YUREX_PRODUCT_ID 0x1010 #define CMD_ACK '!' #define CMD_ANIMATE 'A' #define CMD_COUNT 'C' #define CMD_LED 'L' #define CMD_READ 'R' #define CMD_SET 'S' #define CMD_VERSION 'V' #define CMD_EOF 0x0d #define CMD_PADDING 0xff #define YUREX_BUF_SIZE 8 #define YUREX_WRITE_TIMEOUT (HZ*2) /* table of devices that work with this driver */ static struct usb_device_id yurex_table[] = { { USB_DEVICE(YUREX_VENDOR_ID, YUREX_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, yurex_table); #ifdef CONFIG_USB_DYNAMIC_MINORS #define YUREX_MINOR_BASE 0 #else #define YUREX_MINOR_BASE 192 #endif /* Structure to hold all of our device specific stuff */ struct usb_yurex { struct usb_device *udev; struct usb_interface *interface; __u8 int_in_endpointAddr; struct urb *urb; /* URB for interrupt in */ unsigned char *int_buffer; /* buffer for intterupt in */ struct urb *cntl_urb; /* URB for control msg */ struct usb_ctrlrequest *cntl_req; /* req for control msg */ unsigned char *cntl_buffer; /* buffer for control msg */ struct kref kref; struct mutex io_mutex; unsigned long disconnected:1; struct fasync_struct *async_queue; wait_queue_head_t waitq; spinlock_t lock; __s64 bbu; /* BBU from device */ }; #define to_yurex_dev(d) container_of(d, struct usb_yurex, kref) static struct usb_driver yurex_driver; static const struct file_operations yurex_fops; static void yurex_control_callback(struct urb *urb) { struct usb_yurex *dev = urb->context; int status = urb->status; if (status) { dev_err(&urb->dev->dev, "%s - control failed: %d\n", __func__, status); wake_up_interruptible(&dev->waitq); return; } /* on success, sender woken up by CMD_ACK int in, or timeout */ } static void yurex_delete(struct kref *kref) { struct usb_yurex *dev = to_yurex_dev(kref); dev_dbg(&dev->interface->dev, "%s\n", __func__); if (dev->cntl_urb) { usb_kill_urb(dev->cntl_urb); kfree(dev->cntl_req); usb_free_coherent(dev->udev, YUREX_BUF_SIZE, dev->cntl_buffer, dev->cntl_urb->transfer_dma); usb_free_urb(dev->cntl_urb); } if (dev->urb) { usb_kill_urb(dev->urb); usb_free_coherent(dev->udev, YUREX_BUF_SIZE, dev->int_buffer, dev->urb->transfer_dma); usb_free_urb(dev->urb); } usb_put_intf(dev->interface); usb_put_dev(dev->udev); kfree(dev); } /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver yurex_class = { .name = "yurex%d", .fops = &yurex_fops, .minor_base = YUREX_MINOR_BASE, }; static void yurex_interrupt(struct urb *urb) { struct usb_yurex *dev = urb->context; unsigned char *buf = dev->int_buffer; int status = urb->status; unsigned long flags; int retval, i; switch (status) { case 0: /*success*/ break; /* The device is terminated or messed up, give up */ case -EOVERFLOW: dev_err(&dev->interface->dev, "%s - overflow with length %d, actual length is %d\n", __func__, YUREX_BUF_SIZE, dev->urb->actual_length); return; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: case -EILSEQ: case -EPROTO: case -ETIME: return; default: dev_err(&dev->interface->dev, "%s - unknown status received: %d\n", __func__, status); return; } /* handle received message */ switch (buf[0]) { case CMD_COUNT: case CMD_READ: if (buf[6] == CMD_EOF) { spin_lock_irqsave(&dev->lock, flags); dev->bbu = 0; for (i = 1; i < 6; i++) { dev->bbu += buf[i]; if (i != 5) dev->bbu <<= 8; } dev_dbg(&dev->interface->dev, "%s count: %lld\n", __func__, dev->bbu); spin_unlock_irqrestore(&dev->lock, flags); kill_fasync(&dev->async_queue, SIGIO, POLL_IN); } else dev_dbg(&dev->interface->dev, "data format error - no EOF\n"); break; case CMD_ACK: dev_dbg(&dev->interface->dev, "%s ack: %c\n", __func__, buf[1]); wake_up_interruptible(&dev->waitq); break; } retval = usb_submit_urb(dev->urb, GFP_ATOMIC); if (retval) { dev_err(&dev->interface->dev, "%s - usb_submit_urb failed: %d\n", __func__, retval); } } static int yurex_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_yurex *dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int retval = -ENOMEM; DEFINE_WAIT(wait); int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) goto error; kref_init(&dev->kref); mutex_init(&dev->io_mutex); spin_lock_init(&dev->lock); init_waitqueue_head(&dev->waitq); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = usb_get_intf(interface); /* set up the endpoint information */ iface_desc = interface->cur_altsetting; res = usb_find_int_in_endpoint(iface_desc, &endpoint); if (res) { dev_err(&interface->dev, "Could not find endpoints\n"); retval = res; goto error; } dev->int_in_endpointAddr = endpoint->bEndpointAddress; /* allocate control URB */ dev->cntl_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->cntl_urb) goto error; /* allocate buffer for control req */ dev->cntl_req = kmalloc(YUREX_BUF_SIZE, GFP_KERNEL); if (!dev->cntl_req) goto error; /* allocate buffer for control msg */ dev->cntl_buffer = usb_alloc_coherent(dev->udev, YUREX_BUF_SIZE, GFP_KERNEL, &dev->cntl_urb->transfer_dma); if (!dev->cntl_buffer) { dev_err(&interface->dev, "Could not allocate cntl_buffer\n"); goto error; } /* configure control URB */ dev->cntl_req->bRequestType = USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE; dev->cntl_req->bRequest = HID_REQ_SET_REPORT; dev->cntl_req->wValue = cpu_to_le16((HID_OUTPUT_REPORT + 1) << 8); dev->cntl_req->wIndex = cpu_to_le16(iface_desc->desc.bInterfaceNumber); dev->cntl_req->wLength = cpu_to_le16(YUREX_BUF_SIZE); usb_fill_control_urb(dev->cntl_urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (void *)dev->cntl_req, dev->cntl_buffer, YUREX_BUF_SIZE, yurex_control_callback, dev); dev->cntl_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* allocate interrupt URB */ dev->urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->urb) goto error; /* allocate buffer for interrupt in */ dev->int_buffer = usb_alloc_coherent(dev->udev, YUREX_BUF_SIZE, GFP_KERNEL, &dev->urb->transfer_dma); if (!dev->int_buffer) { dev_err(&interface->dev, "Could not allocate int_buffer\n"); goto error; } /* configure interrupt URB */ usb_fill_int_urb(dev->urb, dev->udev, usb_rcvintpipe(dev->udev, dev->int_in_endpointAddr), dev->int_buffer, YUREX_BUF_SIZE, yurex_interrupt, dev, 1); dev->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; if (usb_submit_urb(dev->urb, GFP_KERNEL)) { retval = -EIO; dev_err(&interface->dev, "Could not submitting URB\n"); goto error; } /* save our data pointer in this interface device */ usb_set_intfdata(interface, dev); dev->bbu = -1; /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &yurex_class); if (retval) { dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev_info(&interface->dev, "USB YUREX device now attached to Yurex #%d\n", interface->minor); return 0; error: if (dev) /* this frees allocated memory */ kref_put(&dev->kref, yurex_delete); return retval; } static void yurex_disconnect(struct usb_interface *interface) { struct usb_yurex *dev; int minor = interface->minor; dev = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); /* give back our minor */ usb_deregister_dev(interface, &yurex_class); /* prevent more I/O from starting */ usb_poison_urb(dev->urb); usb_poison_urb(dev->cntl_urb); mutex_lock(&dev->io_mutex); dev->disconnected = 1; mutex_unlock(&dev->io_mutex); /* wakeup waiters */ kill_fasync(&dev->async_queue, SIGIO, POLL_IN); wake_up_interruptible(&dev->waitq); /* decrement our usage count */ kref_put(&dev->kref, yurex_delete); dev_info(&interface->dev, "USB YUREX #%d now disconnected\n", minor); } static struct usb_driver yurex_driver = { .name = "yurex", .probe = yurex_probe, .disconnect = yurex_disconnect, .id_table = yurex_table, }; static int yurex_fasync(int fd, struct file *file, int on) { struct usb_yurex *dev; dev = file->private_data; return fasync_helper(fd, file, on, &dev->async_queue); } static int yurex_open(struct inode *inode, struct file *file) { struct usb_yurex *dev; struct usb_interface *interface; int subminor; int retval = 0; subminor = iminor(inode); interface = usb_find_interface(&yurex_driver, subminor); if (!interface) { printk(KERN_ERR "%s - error, can't find device for minor %d", __func__, subminor); retval = -ENODEV; goto exit; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit; } /* increment our usage count for the device */ kref_get(&dev->kref); /* save our object in the file's private structure */ mutex_lock(&dev->io_mutex); file->private_data = dev; mutex_unlock(&dev->io_mutex); exit: return retval; } static int yurex_release(struct inode *inode, struct file *file) { struct usb_yurex *dev; dev = file->private_data; if (dev == NULL) return -ENODEV; /* decrement the count on our device */ kref_put(&dev->kref, yurex_delete); return 0; } static ssize_t yurex_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct usb_yurex *dev; int len = 0; char in_buffer[20]; unsigned long flags; dev = file->private_data; mutex_lock(&dev->io_mutex); if (dev->disconnected) { /* already disconnected */ mutex_unlock(&dev->io_mutex); return -ENODEV; } spin_lock_irqsave(&dev->lock, flags); len = snprintf(in_buffer, 20, "%lld\n", dev->bbu); spin_unlock_irqrestore(&dev->lock, flags); mutex_unlock(&dev->io_mutex); if (WARN_ON_ONCE(len >= sizeof(in_buffer))) return -EIO; return simple_read_from_buffer(buffer, count, ppos, in_buffer, len); } static ssize_t yurex_write(struct file *file, const char __user *user_buffer, size_t count, loff_t *ppos) { struct usb_yurex *dev; int i, set = 0, retval = 0; char buffer[16 + 1]; char *data = buffer; unsigned long long c, c2 = 0; signed long timeout = 0; DEFINE_WAIT(wait); count = min(sizeof(buffer) - 1, count); dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto error; mutex_lock(&dev->io_mutex); if (dev->disconnected) { /* already disconnected */ mutex_unlock(&dev->io_mutex); retval = -ENODEV; goto error; } if (copy_from_user(buffer, user_buffer, count)) { mutex_unlock(&dev->io_mutex); retval = -EFAULT; goto error; } buffer[count] = 0; memset(dev->cntl_buffer, CMD_PADDING, YUREX_BUF_SIZE); switch (buffer[0]) { case CMD_ANIMATE: case CMD_LED: dev->cntl_buffer[0] = buffer[0]; dev->cntl_buffer[1] = buffer[1]; dev->cntl_buffer[2] = CMD_EOF; break; case CMD_READ: case CMD_VERSION: dev->cntl_buffer[0] = buffer[0]; dev->cntl_buffer[1] = 0x00; dev->cntl_buffer[2] = CMD_EOF; break; case CMD_SET: data++; fallthrough; case '0' ... '9': set = 1; c = c2 = simple_strtoull(data, NULL, 0); dev->cntl_buffer[0] = CMD_SET; for (i = 1; i < 6; i++) { dev->cntl_buffer[i] = (c>>32) & 0xff; c <<= 8; } buffer[6] = CMD_EOF; break; default: mutex_unlock(&dev->io_mutex); return -EINVAL; } /* send the data as the control msg */ prepare_to_wait(&dev->waitq, &wait, TASK_INTERRUPTIBLE); dev_dbg(&dev->interface->dev, "%s - submit %c\n", __func__, dev->cntl_buffer[0]); retval = usb_submit_urb(dev->cntl_urb, GFP_ATOMIC); if (retval >= 0) timeout = schedule_timeout(YUREX_WRITE_TIMEOUT); finish_wait(&dev->waitq, &wait); /* make sure URB is idle after timeout or (spurious) CMD_ACK */ usb_kill_urb(dev->cntl_urb); mutex_unlock(&dev->io_mutex); if (retval < 0) { dev_err(&dev->interface->dev, "%s - failed to send bulk msg, error %d\n", __func__, retval); goto error; } if (set && timeout) dev->bbu = c2; return timeout ? count : -EIO; error: return retval; } static const struct file_operations yurex_fops = { .owner = THIS_MODULE, .read = yurex_read, .write = yurex_write, .open = yurex_open, .release = yurex_release, .fasync = yurex_fasync, .llseek = default_llseek, }; module_usb_driver(yurex_driver); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/yurex.c
// SPDX-License-Identifier: GPL-2.0+ /* * Apple Cinema Display driver * * Copyright (C) 2006 Michael Hanselmann ([email protected]) * * Thanks to Caskey L. Dickson for his work with acdctl. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/backlight.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/atomic.h> #define APPLE_VENDOR_ID 0x05AC #define USB_REQ_GET_REPORT 0x01 #define USB_REQ_SET_REPORT 0x09 #define ACD_USB_TIMEOUT 250 #define ACD_USB_EDID 0x0302 #define ACD_USB_BRIGHTNESS 0x0310 #define ACD_BTN_NONE 0 #define ACD_BTN_BRIGHT_UP 3 #define ACD_BTN_BRIGHT_DOWN 4 #define ACD_URB_BUFFER_LEN 2 #define ACD_MSG_BUFFER_LEN 2 #define APPLEDISPLAY_DEVICE(prod) \ .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ USB_DEVICE_ID_MATCH_INT_CLASS | \ USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ .idVendor = APPLE_VENDOR_ID, \ .idProduct = (prod), \ .bInterfaceClass = USB_CLASS_HID, \ .bInterfaceProtocol = 0x00 /* table of devices that work with this driver */ static const struct usb_device_id appledisplay_table[] = { { APPLEDISPLAY_DEVICE(0x9218) }, { APPLEDISPLAY_DEVICE(0x9219) }, { APPLEDISPLAY_DEVICE(0x921c) }, { APPLEDISPLAY_DEVICE(0x921d) }, { APPLEDISPLAY_DEVICE(0x9222) }, { APPLEDISPLAY_DEVICE(0x9226) }, { APPLEDISPLAY_DEVICE(0x9236) }, /* Terminating entry */ { } }; MODULE_DEVICE_TABLE(usb, appledisplay_table); /* Structure to hold all of our device specific stuff */ struct appledisplay { struct usb_device *udev; /* usb device */ struct urb *urb; /* usb request block */ struct backlight_device *bd; /* backlight device */ u8 *urbdata; /* interrupt URB data buffer */ u8 *msgdata; /* control message data buffer */ struct delayed_work work; int button_pressed; struct mutex sysfslock; /* concurrent read and write */ }; static atomic_t count_displays = ATOMIC_INIT(0); static void appledisplay_complete(struct urb *urb) { struct appledisplay *pdata = urb->context; struct device *dev = &pdata->udev->dev; int status = urb->status; int retval; switch (status) { case 0: /* success */ break; case -EOVERFLOW: dev_err(dev, "OVERFLOW with data length %d, actual length is %d\n", ACD_URB_BUFFER_LEN, pdata->urb->actual_length); fallthrough; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* This urb is terminated, clean up */ dev_dbg(dev, "%s - urb shuttingdown with status: %d\n", __func__, status); return; default: dev_dbg(dev, "%s - nonzero urb status received: %d\n", __func__, status); goto exit; } switch(pdata->urbdata[1]) { case ACD_BTN_BRIGHT_UP: case ACD_BTN_BRIGHT_DOWN: pdata->button_pressed = 1; schedule_delayed_work(&pdata->work, 0); break; case ACD_BTN_NONE: default: pdata->button_pressed = 0; break; } exit: retval = usb_submit_urb(pdata->urb, GFP_ATOMIC); if (retval) { dev_err(dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); } } static int appledisplay_bl_update_status(struct backlight_device *bd) { struct appledisplay *pdata = bl_get_data(bd); int retval; mutex_lock(&pdata->sysfslock); pdata->msgdata[0] = 0x10; pdata->msgdata[1] = bd->props.brightness; retval = usb_control_msg( pdata->udev, usb_sndctrlpipe(pdata->udev, 0), USB_REQ_SET_REPORT, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE, ACD_USB_BRIGHTNESS, 0, pdata->msgdata, 2, ACD_USB_TIMEOUT); mutex_unlock(&pdata->sysfslock); if (retval < 0) return retval; else return 0; } static int appledisplay_bl_get_brightness(struct backlight_device *bd) { struct appledisplay *pdata = bl_get_data(bd); int retval, brightness; mutex_lock(&pdata->sysfslock); retval = usb_control_msg( pdata->udev, usb_rcvctrlpipe(pdata->udev, 0), USB_REQ_GET_REPORT, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, ACD_USB_BRIGHTNESS, 0, pdata->msgdata, 2, ACD_USB_TIMEOUT); if (retval < 2) { if (retval >= 0) retval = -EMSGSIZE; } else { brightness = pdata->msgdata[1]; } mutex_unlock(&pdata->sysfslock); if (retval < 0) return retval; else return brightness; } static const struct backlight_ops appledisplay_bl_data = { .get_brightness = appledisplay_bl_get_brightness, .update_status = appledisplay_bl_update_status, }; static void appledisplay_work(struct work_struct *work) { struct appledisplay *pdata = container_of(work, struct appledisplay, work.work); int retval; retval = appledisplay_bl_get_brightness(pdata->bd); if (retval >= 0) pdata->bd->props.brightness = retval; /* Poll again in about 125ms if there's still a button pressed */ if (pdata->button_pressed) schedule_delayed_work(&pdata->work, HZ / 8); } static int appledisplay_probe(struct usb_interface *iface, const struct usb_device_id *id) { struct backlight_properties props; struct appledisplay *pdata; struct usb_device *udev = interface_to_usbdev(iface); struct usb_endpoint_descriptor *endpoint; int int_in_endpointAddr = 0; int retval, brightness; char bl_name[20]; /* set up the endpoint information */ /* use only the first interrupt-in endpoint */ retval = usb_find_int_in_endpoint(iface->cur_altsetting, &endpoint); if (retval) { dev_err(&iface->dev, "Could not find int-in endpoint\n"); return retval; } int_in_endpointAddr = endpoint->bEndpointAddress; /* allocate memory for our device state and initialize it */ pdata = kzalloc(sizeof(struct appledisplay), GFP_KERNEL); if (!pdata) { retval = -ENOMEM; goto error; } pdata->udev = udev; INIT_DELAYED_WORK(&pdata->work, appledisplay_work); mutex_init(&pdata->sysfslock); /* Allocate buffer for control messages */ pdata->msgdata = kmalloc(ACD_MSG_BUFFER_LEN, GFP_KERNEL); if (!pdata->msgdata) { retval = -ENOMEM; goto error; } /* Allocate interrupt URB */ pdata->urb = usb_alloc_urb(0, GFP_KERNEL); if (!pdata->urb) { retval = -ENOMEM; goto error; } /* Allocate buffer for interrupt data */ pdata->urbdata = usb_alloc_coherent(pdata->udev, ACD_URB_BUFFER_LEN, GFP_KERNEL, &pdata->urb->transfer_dma); if (!pdata->urbdata) { retval = -ENOMEM; dev_err(&iface->dev, "Allocating URB buffer failed\n"); goto error; } /* Configure interrupt URB */ usb_fill_int_urb(pdata->urb, udev, usb_rcvintpipe(udev, int_in_endpointAddr), pdata->urbdata, ACD_URB_BUFFER_LEN, appledisplay_complete, pdata, 1); pdata->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; if (usb_submit_urb(pdata->urb, GFP_KERNEL)) { retval = -EIO; dev_err(&iface->dev, "Submitting URB failed\n"); goto error; } /* Register backlight device */ snprintf(bl_name, sizeof(bl_name), "appledisplay%d", atomic_inc_return(&count_displays) - 1); memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; props.max_brightness = 0xff; pdata->bd = backlight_device_register(bl_name, NULL, pdata, &appledisplay_bl_data, &props); if (IS_ERR(pdata->bd)) { dev_err(&iface->dev, "Backlight registration failed\n"); retval = PTR_ERR(pdata->bd); goto error; } /* Try to get brightness */ brightness = appledisplay_bl_get_brightness(pdata->bd); if (brightness < 0) { retval = brightness; dev_err(&iface->dev, "Error while getting initial brightness: %d\n", retval); goto error; } /* Set brightness in backlight device */ pdata->bd->props.brightness = brightness; /* save our data pointer in the interface device */ usb_set_intfdata(iface, pdata); printk(KERN_INFO "appledisplay: Apple Cinema Display connected\n"); return 0; error: if (pdata) { if (pdata->urb) { usb_kill_urb(pdata->urb); cancel_delayed_work_sync(&pdata->work); usb_free_coherent(pdata->udev, ACD_URB_BUFFER_LEN, pdata->urbdata, pdata->urb->transfer_dma); usb_free_urb(pdata->urb); } if (!IS_ERR(pdata->bd)) backlight_device_unregister(pdata->bd); kfree(pdata->msgdata); } usb_set_intfdata(iface, NULL); kfree(pdata); return retval; } static void appledisplay_disconnect(struct usb_interface *iface) { struct appledisplay *pdata = usb_get_intfdata(iface); if (pdata) { usb_kill_urb(pdata->urb); cancel_delayed_work_sync(&pdata->work); backlight_device_unregister(pdata->bd); usb_free_coherent(pdata->udev, ACD_URB_BUFFER_LEN, pdata->urbdata, pdata->urb->transfer_dma); usb_free_urb(pdata->urb); kfree(pdata->msgdata); kfree(pdata); } printk(KERN_INFO "appledisplay: Apple Cinema Display disconnected\n"); } static struct usb_driver appledisplay_driver = { .name = "appledisplay", .probe = appledisplay_probe, .disconnect = appledisplay_disconnect, .id_table = appledisplay_table, }; module_usb_driver(appledisplay_driver); MODULE_AUTHOR("Michael Hanselmann"); MODULE_DESCRIPTION("Apple Cinema Display driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/appledisplay.c
// SPDX-License-Identifier: GPL-2.0+ /* * LEGO USB Tower driver * * Copyright (C) 2003 David Glance <[email protected]> * 2001-2004 Juergen Stuber <[email protected]> * * derived from USB Skeleton driver - 0.5 * Copyright (C) 2001 Greg Kroah-Hartman ([email protected]) * * History: * * 2001-10-13 - 0.1 js * - first version * 2001-11-03 - 0.2 js * - simplified buffering, one-shot URBs for writing * 2001-11-10 - 0.3 js * - removed IOCTL (setting power/mode is more complicated, postponed) * 2001-11-28 - 0.4 js * - added vendor commands for mode of operation and power level in open * 2001-12-04 - 0.5 js * - set IR mode by default (by oversight 0.4 set VLL mode) * 2002-01-11 - 0.5? pcchan * - make read buffer reusable and work around bytes_to_write issue between * uhci and legusbtower * 2002-09-23 - 0.52 david ([email protected]) * - imported into lejos project * - changed wake_up to wake_up_interruptible * - changed to use lego0 rather than tower0 * - changed dbg() to use __func__ rather than deprecated __func__ * 2003-01-12 - 0.53 david ([email protected]) * - changed read and write to write everything or * timeout (from a patch by Chris Riesen and Brett Thaeler driver) * - added ioctl functionality to set timeouts * 2003-07-18 - 0.54 davidgsf ([email protected]) * - initial import into LegoUSB project * - merge of existing LegoUSB.c driver * 2003-07-18 - 0.56 davidgsf ([email protected]) * - port to 2.6 style driver * 2004-02-29 - 0.6 Juergen Stuber <[email protected]> * - fix locking * - unlink read URBs which are no longer needed * - allow increased buffer size, eliminates need for timeout on write * - have read URB running continuously * - added poll * - forbid seeking * - added nonblocking I/O * - changed back __func__ to __func__ * - read and log tower firmware version * - reset tower on probe, avoids failure of first write * 2004-03-09 - 0.7 Juergen Stuber <[email protected]> * - timeout read now only after inactivity, shorten default accordingly * 2004-03-11 - 0.8 Juergen Stuber <[email protected]> * - log major, minor instead of possibly confusing device filename * - whitespace cleanup * 2004-03-12 - 0.9 Juergen Stuber <[email protected]> * - normalize whitespace in debug messages * - take care about endianness in control message responses * 2004-03-13 - 0.91 Juergen Stuber <[email protected]> * - make default intervals longer to accommodate current EHCI driver * 2004-03-19 - 0.92 Juergen Stuber <[email protected]> * - replaced atomic_t by memory barriers * 2004-04-21 - 0.93 Juergen Stuber <[email protected]> * - wait for completion of write urb in release (needed for remotecontrol) * - corrected poll for write direction (missing negation) * 2004-04-22 - 0.94 Juergen Stuber <[email protected]> * - make device locking interruptible * 2004-04-30 - 0.95 Juergen Stuber <[email protected]> * - check for valid udev on resubmitting and unlinking urbs * 2004-08-03 - 0.96 Juergen Stuber <[email protected]> * - move reset into open to clean out spurious data */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/usb.h> #include <linux/poll.h> #define DRIVER_AUTHOR "Juergen Stuber <[email protected]>" #define DRIVER_DESC "LEGO USB Tower Driver" /* The defaults are chosen to work with the latest versions of leJOS and NQC. */ /* Some legacy software likes to receive packets in one piece. * In this case read_buffer_size should exceed the maximal packet length * (417 for datalog uploads), and packet_timeout should be set. */ static int read_buffer_size = 480; module_param(read_buffer_size, int, 0); MODULE_PARM_DESC(read_buffer_size, "Read buffer size"); /* Some legacy software likes to send packets in one piece. * In this case write_buffer_size should exceed the maximal packet length * (417 for firmware and program downloads). * A problem with long writes is that the following read may time out * if the software is not prepared to wait long enough. */ static int write_buffer_size = 480; module_param(write_buffer_size, int, 0); MODULE_PARM_DESC(write_buffer_size, "Write buffer size"); /* Some legacy software expects reads to contain whole LASM packets. * To achieve this, characters which arrive before a packet timeout * occurs will be returned in a single read operation. * A problem with long reads is that the software may time out * if it is not prepared to wait long enough. * The packet timeout should be greater than the time between the * reception of subsequent characters, which should arrive about * every 5ms for the standard 2400 baud. * Set it to 0 to disable. */ static int packet_timeout = 50; module_param(packet_timeout, int, 0); MODULE_PARM_DESC(packet_timeout, "Packet timeout in ms"); /* Some legacy software expects blocking reads to time out. * Timeout occurs after the specified time of read and write inactivity. * Set it to 0 to disable. */ static int read_timeout = 200; module_param(read_timeout, int, 0); MODULE_PARM_DESC(read_timeout, "Read timeout in ms"); /* As of kernel version 2.6.4 ehci-hcd uses an * "only one interrupt transfer per frame" shortcut * to simplify the scheduling of periodic transfers. * This conflicts with our standard 1ms intervals for in and out URBs. * We use default intervals of 2ms for in and 8ms for out transfers, * which is fast enough for 2400 baud and allows a small additional load. * Increase the interval to allow more devices that do interrupt transfers, * or set to 0 to use the standard interval from the endpoint descriptors. */ static int interrupt_in_interval = 2; module_param(interrupt_in_interval, int, 0); MODULE_PARM_DESC(interrupt_in_interval, "Interrupt in interval in ms"); static int interrupt_out_interval = 8; module_param(interrupt_out_interval, int, 0); MODULE_PARM_DESC(interrupt_out_interval, "Interrupt out interval in ms"); /* Define these values to match your device */ #define LEGO_USB_TOWER_VENDOR_ID 0x0694 #define LEGO_USB_TOWER_PRODUCT_ID 0x0001 /* Vendor requests */ #define LEGO_USB_TOWER_REQUEST_RESET 0x04 #define LEGO_USB_TOWER_REQUEST_GET_VERSION 0xFD struct tower_reset_reply { __le16 size; __u8 err_code; __u8 spare; }; struct tower_get_version_reply { __le16 size; __u8 err_code; __u8 spare; __u8 major; __u8 minor; __le16 build_no; }; /* table of devices that work with this driver */ static const struct usb_device_id tower_table[] = { { USB_DEVICE(LEGO_USB_TOWER_VENDOR_ID, LEGO_USB_TOWER_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, tower_table); #define LEGO_USB_TOWER_MINOR_BASE 160 /* Structure to hold all of our device specific stuff */ struct lego_usb_tower { struct mutex lock; /* locks this structure */ struct usb_device *udev; /* save off the usb device pointer */ unsigned char minor; /* the starting minor number for this device */ int open_count; /* number of times this port has been opened */ unsigned long disconnected:1; char *read_buffer; size_t read_buffer_length; /* this much came in */ size_t read_packet_length; /* this much will be returned on read */ spinlock_t read_buffer_lock; int packet_timeout_jiffies; unsigned long read_last_arrival; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char *interrupt_in_buffer; struct usb_endpoint_descriptor *interrupt_in_endpoint; struct urb *interrupt_in_urb; int interrupt_in_interval; int interrupt_in_done; char *interrupt_out_buffer; struct usb_endpoint_descriptor *interrupt_out_endpoint; struct urb *interrupt_out_urb; int interrupt_out_interval; int interrupt_out_busy; }; /* local function prototypes */ static ssize_t tower_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos); static ssize_t tower_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos); static inline void tower_delete(struct lego_usb_tower *dev); static int tower_open(struct inode *inode, struct file *file); static int tower_release(struct inode *inode, struct file *file); static __poll_t tower_poll(struct file *file, poll_table *wait); static loff_t tower_llseek(struct file *file, loff_t off, int whence); static void tower_check_for_read_packet(struct lego_usb_tower *dev); static void tower_interrupt_in_callback(struct urb *urb); static void tower_interrupt_out_callback(struct urb *urb); static int tower_probe(struct usb_interface *interface, const struct usb_device_id *id); static void tower_disconnect(struct usb_interface *interface); /* file operations needed when we register this driver */ static const struct file_operations tower_fops = { .owner = THIS_MODULE, .read = tower_read, .write = tower_write, .open = tower_open, .release = tower_release, .poll = tower_poll, .llseek = tower_llseek, }; static char *legousbtower_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "usb/%s", dev_name(dev)); } /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver tower_class = { .name = "legousbtower%d", .devnode = legousbtower_devnode, .fops = &tower_fops, .minor_base = LEGO_USB_TOWER_MINOR_BASE, }; /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver tower_driver = { .name = "legousbtower", .probe = tower_probe, .disconnect = tower_disconnect, .id_table = tower_table, }; /* * lego_usb_tower_debug_data */ static inline void lego_usb_tower_debug_data(struct device *dev, const char *function, int size, const unsigned char *data) { dev_dbg(dev, "%s - length = %d, data = %*ph\n", function, size, size, data); } /* * tower_delete */ static inline void tower_delete(struct lego_usb_tower *dev) { /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->read_buffer); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); usb_put_dev(dev->udev); kfree(dev); } /* * tower_open */ static int tower_open(struct inode *inode, struct file *file) { struct lego_usb_tower *dev = NULL; int subminor; int retval = 0; struct usb_interface *interface; struct tower_reset_reply reset_reply; int result; nonseekable_open(inode, file); subminor = iminor(inode); interface = usb_find_interface(&tower_driver, subminor); if (!interface) { pr_err("error, can't find device for minor %d\n", subminor); retval = -ENODEV; goto exit; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit; } /* lock this device */ if (mutex_lock_interruptible(&dev->lock)) { retval = -ERESTARTSYS; goto exit; } /* allow opening only once */ if (dev->open_count) { retval = -EBUSY; goto unlock_exit; } /* reset the tower */ result = usb_control_msg_recv(dev->udev, 0, LEGO_USB_TOWER_REQUEST_RESET, USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE, 0, 0, &reset_reply, sizeof(reset_reply), 1000, GFP_KERNEL); if (result < 0) { dev_err(&dev->udev->dev, "LEGO USB Tower reset control request failed\n"); retval = result; goto unlock_exit; } /* initialize in direction */ dev->read_buffer_length = 0; dev->read_packet_length = 0; usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), tower_interrupt_in_callback, dev, dev->interrupt_in_interval); dev->interrupt_in_done = 0; mb(); retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev_err(&dev->udev->dev, "Couldn't submit interrupt_in_urb %d\n", retval); goto unlock_exit; } /* save device in the file's private structure */ file->private_data = dev; dev->open_count = 1; unlock_exit: mutex_unlock(&dev->lock); exit: return retval; } /* * tower_release */ static int tower_release(struct inode *inode, struct file *file) { struct lego_usb_tower *dev; int retval = 0; dev = file->private_data; if (dev == NULL) { retval = -ENODEV; goto exit; } mutex_lock(&dev->lock); if (dev->disconnected) { /* the device was unplugged before the file was released */ /* unlock here as tower_delete frees dev */ mutex_unlock(&dev->lock); tower_delete(dev); goto exit; } /* wait until write transfer is finished */ if (dev->interrupt_out_busy) { wait_event_interruptible_timeout(dev->write_wait, !dev->interrupt_out_busy, 2 * HZ); } /* shutdown transfers */ usb_kill_urb(dev->interrupt_in_urb); usb_kill_urb(dev->interrupt_out_urb); dev->open_count = 0; mutex_unlock(&dev->lock); exit: return retval; } /* * tower_check_for_read_packet * * To get correct semantics for signals and non-blocking I/O * with packetizing we pretend not to see any data in the read buffer * until it has been there unchanged for at least * dev->packet_timeout_jiffies, or until the buffer is full. */ static void tower_check_for_read_packet(struct lego_usb_tower *dev) { spin_lock_irq(&dev->read_buffer_lock); if (!packet_timeout || time_after(jiffies, dev->read_last_arrival + dev->packet_timeout_jiffies) || dev->read_buffer_length == read_buffer_size) { dev->read_packet_length = dev->read_buffer_length; } dev->interrupt_in_done = 0; spin_unlock_irq(&dev->read_buffer_lock); } /* * tower_poll */ static __poll_t tower_poll(struct file *file, poll_table *wait) { struct lego_usb_tower *dev; __poll_t mask = 0; dev = file->private_data; if (dev->disconnected) return EPOLLERR | EPOLLHUP; poll_wait(file, &dev->read_wait, wait); poll_wait(file, &dev->write_wait, wait); tower_check_for_read_packet(dev); if (dev->read_packet_length > 0) mask |= EPOLLIN | EPOLLRDNORM; if (!dev->interrupt_out_busy) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } /* * tower_llseek */ static loff_t tower_llseek(struct file *file, loff_t off, int whence) { return -ESPIPE; /* unseekable */ } /* * tower_read */ static ssize_t tower_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct lego_usb_tower *dev; size_t bytes_to_read; int i; int retval = 0; unsigned long timeout = 0; dev = file->private_data; /* lock this object */ if (mutex_lock_interruptible(&dev->lock)) { retval = -ERESTARTSYS; goto exit; } /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; goto unlock_exit; } /* verify that we actually have some data to read */ if (count == 0) { dev_dbg(&dev->udev->dev, "read request of 0 bytes\n"); goto unlock_exit; } if (read_timeout) timeout = jiffies + msecs_to_jiffies(read_timeout); /* wait for data */ tower_check_for_read_packet(dev); while (dev->read_packet_length == 0) { if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto unlock_exit; } retval = wait_event_interruptible_timeout(dev->read_wait, dev->interrupt_in_done, dev->packet_timeout_jiffies); if (retval < 0) goto unlock_exit; /* reset read timeout during read or write activity */ if (read_timeout && (dev->read_buffer_length || dev->interrupt_out_busy)) { timeout = jiffies + msecs_to_jiffies(read_timeout); } /* check for read timeout */ if (read_timeout && time_after(jiffies, timeout)) { retval = -ETIMEDOUT; goto unlock_exit; } tower_check_for_read_packet(dev); } /* copy the data from read_buffer into userspace */ bytes_to_read = min(count, dev->read_packet_length); if (copy_to_user(buffer, dev->read_buffer, bytes_to_read)) { retval = -EFAULT; goto unlock_exit; } spin_lock_irq(&dev->read_buffer_lock); dev->read_buffer_length -= bytes_to_read; dev->read_packet_length -= bytes_to_read; for (i = 0; i < dev->read_buffer_length; i++) dev->read_buffer[i] = dev->read_buffer[i+bytes_to_read]; spin_unlock_irq(&dev->read_buffer_lock); retval = bytes_to_read; unlock_exit: /* unlock the device */ mutex_unlock(&dev->lock); exit: return retval; } /* * tower_write */ static ssize_t tower_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct lego_usb_tower *dev; size_t bytes_to_write; int retval = 0; dev = file->private_data; /* lock this object */ if (mutex_lock_interruptible(&dev->lock)) { retval = -ERESTARTSYS; goto exit; } /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; goto unlock_exit; } /* verify that we actually have some data to write */ if (count == 0) { dev_dbg(&dev->udev->dev, "write request of 0 bytes\n"); goto unlock_exit; } /* wait until previous transfer is finished */ while (dev->interrupt_out_busy) { if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto unlock_exit; } retval = wait_event_interruptible(dev->write_wait, !dev->interrupt_out_busy); if (retval) goto unlock_exit; } /* write the data into interrupt_out_buffer from userspace */ bytes_to_write = min_t(int, count, write_buffer_size); dev_dbg(&dev->udev->dev, "%s: count = %zd, bytes_to_write = %zd\n", __func__, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write)) { retval = -EFAULT; goto unlock_exit; } /* send off the urb */ usb_fill_int_urb(dev->interrupt_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, tower_interrupt_out_callback, dev, dev->interrupt_out_interval); dev->interrupt_out_busy = 1; wmb(); retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval) { dev->interrupt_out_busy = 0; dev_err(&dev->udev->dev, "Couldn't submit interrupt_out_urb %d\n", retval); goto unlock_exit; } retval = bytes_to_write; unlock_exit: /* unlock the device */ mutex_unlock(&dev->lock); exit: return retval; } /* * tower_interrupt_in_callback */ static void tower_interrupt_in_callback(struct urb *urb) { struct lego_usb_tower *dev = urb->context; int status = urb->status; int retval; unsigned long flags; lego_usb_tower_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); if (status) { if (status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN) { goto exit; } else { dev_dbg(&dev->udev->dev, "%s: nonzero status received: %d\n", __func__, status); goto resubmit; /* maybe we can recover */ } } if (urb->actual_length > 0) { spin_lock_irqsave(&dev->read_buffer_lock, flags); if (dev->read_buffer_length + urb->actual_length < read_buffer_size) { memcpy(dev->read_buffer + dev->read_buffer_length, dev->interrupt_in_buffer, urb->actual_length); dev->read_buffer_length += urb->actual_length; dev->read_last_arrival = jiffies; dev_dbg(&dev->udev->dev, "%s: received %d bytes\n", __func__, urb->actual_length); } else { pr_warn("read_buffer overflow, %d bytes dropped\n", urb->actual_length); } spin_unlock_irqrestore(&dev->read_buffer_lock, flags); } resubmit: retval = usb_submit_urb(dev->interrupt_in_urb, GFP_ATOMIC); if (retval) { dev_err(&dev->udev->dev, "%s: usb_submit_urb failed (%d)\n", __func__, retval); } exit: dev->interrupt_in_done = 1; wake_up_interruptible(&dev->read_wait); } /* * tower_interrupt_out_callback */ static void tower_interrupt_out_callback(struct urb *urb) { struct lego_usb_tower *dev = urb->context; int status = urb->status; lego_usb_tower_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); /* sync/async unlink faults aren't errors */ if (status && !(status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN)) { dev_dbg(&dev->udev->dev, "%s: nonzero write bulk status received: %d\n", __func__, status); } dev->interrupt_out_busy = 0; wake_up_interruptible(&dev->write_wait); } /* * tower_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int tower_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct device *idev = &interface->dev; struct usb_device *udev = interface_to_usbdev(interface); struct lego_usb_tower *dev; struct tower_get_version_reply get_version_reply; int retval = -ENOMEM; int result; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) goto exit; mutex_init(&dev->lock); dev->udev = usb_get_dev(udev); spin_lock_init(&dev->read_buffer_lock); dev->packet_timeout_jiffies = msecs_to_jiffies(packet_timeout); dev->read_last_arrival = jiffies; init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); result = usb_find_common_endpoints_reverse(interface->cur_altsetting, NULL, NULL, &dev->interrupt_in_endpoint, &dev->interrupt_out_endpoint); if (result) { dev_err(idev, "interrupt endpoints not found\n"); retval = result; goto error; } dev->read_buffer = kmalloc(read_buffer_size, GFP_KERNEL); if (!dev->read_buffer) goto error; dev->interrupt_in_buffer = kmalloc(usb_endpoint_maxp(dev->interrupt_in_endpoint), GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_buffer = kmalloc(write_buffer_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; dev->interrupt_in_interval = interrupt_in_interval ? interrupt_in_interval : dev->interrupt_in_endpoint->bInterval; dev->interrupt_out_interval = interrupt_out_interval ? interrupt_out_interval : dev->interrupt_out_endpoint->bInterval; /* get the firmware version and log it */ result = usb_control_msg_recv(udev, 0, LEGO_USB_TOWER_REQUEST_GET_VERSION, USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE, 0, 0, &get_version_reply, sizeof(get_version_reply), 1000, GFP_KERNEL); if (result) { dev_err(idev, "get version request failed: %d\n", result); retval = result; goto error; } dev_info(&interface->dev, "LEGO USB Tower firmware version is %d.%d build %d\n", get_version_reply.major, get_version_reply.minor, le16_to_cpu(get_version_reply.build_no)); /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &tower_class); if (retval) { /* something prevented us from registering this driver */ dev_err(idev, "Not able to get a minor for this device.\n"); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "LEGO USB Tower #%d now attached to major " "%d minor %d\n", (dev->minor - LEGO_USB_TOWER_MINOR_BASE), USB_MAJOR, dev->minor); exit: return retval; error: tower_delete(dev); return retval; } /* * tower_disconnect * * Called by the usb core when the device is removed from the system. */ static void tower_disconnect(struct usb_interface *interface) { struct lego_usb_tower *dev; int minor; dev = usb_get_intfdata(interface); minor = dev->minor; /* give back our minor and prevent further open() */ usb_deregister_dev(interface, &tower_class); /* stop I/O */ usb_poison_urb(dev->interrupt_in_urb); usb_poison_urb(dev->interrupt_out_urb); mutex_lock(&dev->lock); /* if the device is not opened, then we clean up right now */ if (!dev->open_count) { mutex_unlock(&dev->lock); tower_delete(dev); } else { dev->disconnected = 1; /* wake up pollers */ wake_up_interruptible_all(&dev->read_wait); wake_up_interruptible_all(&dev->write_wait); mutex_unlock(&dev->lock); } dev_info(&interface->dev, "LEGO USB Tower #%d now disconnected\n", (minor - LEGO_USB_TOWER_MINOR_BASE)); } module_usb_driver(tower_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/legousbtower.c
// SPDX-License-Identifier: GPL-2.0+ /* Siemens ID Mouse driver v0.6 Copyright (C) 2004-5 by Florian 'Floe' Echtler <[email protected]> and Andreas 'ad' Deresch <[email protected]> Derived from the USB Skeleton driver 1.1, Copyright (C) 2003 Greg Kroah-Hartman ([email protected]) Additional information provided by Martin Reising <[email protected]> */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/usb.h> /* image constants */ #define WIDTH 225 #define HEIGHT 289 #define HEADER "P5 225 289 255 " #define IMGSIZE ((WIDTH * HEIGHT) + sizeof(HEADER)-1) #define DRIVER_SHORT "idmouse" #define DRIVER_AUTHOR "Florian 'Floe' Echtler <[email protected]>" #define DRIVER_DESC "Siemens ID Mouse FingerTIP Sensor Driver" /* minor number for misc USB devices */ #define USB_IDMOUSE_MINOR_BASE 132 /* vendor and device IDs */ #define ID_SIEMENS 0x0681 #define ID_IDMOUSE 0x0005 #define ID_CHERRY 0x0010 /* device ID table */ static const struct usb_device_id idmouse_table[] = { {USB_DEVICE(ID_SIEMENS, ID_IDMOUSE)}, /* Siemens ID Mouse (Professional) */ {USB_DEVICE(ID_SIEMENS, ID_CHERRY )}, /* Cherry FingerTIP ID Board */ {} /* terminating null entry */ }; /* sensor commands */ #define FTIP_RESET 0x20 #define FTIP_ACQUIRE 0x21 #define FTIP_RELEASE 0x22 #define FTIP_BLINK 0x23 /* LSB of value = blink pulse width */ #define FTIP_SCROLL 0x24 #define ftip_command(dev, command, value, index) \ usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), command, \ USB_TYPE_VENDOR | USB_RECIP_ENDPOINT | USB_DIR_OUT, value, index, NULL, 0, 1000) MODULE_DEVICE_TABLE(usb, idmouse_table); /* structure to hold all of our device specific stuff */ struct usb_idmouse { struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; /* the interface for this device */ unsigned char *bulk_in_buffer; /* the buffer to receive data */ size_t bulk_in_size; /* the maximum bulk packet size */ size_t orig_bi_size; /* same as above, but reported by the device */ __u8 bulk_in_endpointAddr; /* the address of the bulk in endpoint */ int open; /* if the port is open or not */ int present; /* if the device is not disconnected */ struct mutex lock; /* locks this structure */ }; /* local function prototypes */ static ssize_t idmouse_read(struct file *file, char __user *buffer, size_t count, loff_t * ppos); static int idmouse_open(struct inode *inode, struct file *file); static int idmouse_release(struct inode *inode, struct file *file); static int idmouse_probe(struct usb_interface *interface, const struct usb_device_id *id); static void idmouse_disconnect(struct usb_interface *interface); static int idmouse_suspend(struct usb_interface *intf, pm_message_t message); static int idmouse_resume(struct usb_interface *intf); /* file operation pointers */ static const struct file_operations idmouse_fops = { .owner = THIS_MODULE, .read = idmouse_read, .open = idmouse_open, .release = idmouse_release, .llseek = default_llseek, }; /* class driver information */ static struct usb_class_driver idmouse_class = { .name = "idmouse%d", .fops = &idmouse_fops, .minor_base = USB_IDMOUSE_MINOR_BASE, }; /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver idmouse_driver = { .name = DRIVER_SHORT, .probe = idmouse_probe, .disconnect = idmouse_disconnect, .suspend = idmouse_suspend, .resume = idmouse_resume, .reset_resume = idmouse_resume, .id_table = idmouse_table, .supports_autosuspend = 1, }; static int idmouse_create_image(struct usb_idmouse *dev) { int bytes_read; int bulk_read; int result; memcpy(dev->bulk_in_buffer, HEADER, sizeof(HEADER)-1); bytes_read = sizeof(HEADER)-1; /* reset the device and set a fast blink rate */ result = ftip_command(dev, FTIP_RELEASE, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_BLINK, 1, 0); if (result < 0) goto reset; /* initialize the sensor - sending this command twice */ /* significantly reduces the rate of failed reads */ result = ftip_command(dev, FTIP_ACQUIRE, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_ACQUIRE, 0, 0); if (result < 0) goto reset; /* start the readout - sending this command twice */ /* presumably enables the high dynamic range mode */ result = ftip_command(dev, FTIP_RESET, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_RESET, 0, 0); if (result < 0) goto reset; /* loop over a blocking bulk read to get data from the device */ while (bytes_read < IMGSIZE) { result = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr), dev->bulk_in_buffer + bytes_read, dev->bulk_in_size, &bulk_read, 5000); if (result < 0) { /* Maybe this error was caused by the increased packet size? */ /* Reset to the original value and tell userspace to retry. */ if (dev->bulk_in_size != dev->orig_bi_size) { dev->bulk_in_size = dev->orig_bi_size; result = -EAGAIN; } break; } if (signal_pending(current)) { result = -EINTR; break; } bytes_read += bulk_read; } /* check for valid image */ /* right border should be black (0x00) */ for (bytes_read = sizeof(HEADER)-1 + WIDTH-1; bytes_read < IMGSIZE; bytes_read += WIDTH) if (dev->bulk_in_buffer[bytes_read] != 0x00) return -EAGAIN; /* lower border should be white (0xFF) */ for (bytes_read = IMGSIZE-WIDTH; bytes_read < IMGSIZE-1; bytes_read++) if (dev->bulk_in_buffer[bytes_read] != 0xFF) return -EAGAIN; /* reset the device */ reset: ftip_command(dev, FTIP_RELEASE, 0, 0); /* should be IMGSIZE == 65040 */ dev_dbg(&dev->interface->dev, "read %d bytes fingerprint data\n", bytes_read); return result; } /* PM operations are nops as this driver does IO only during open() */ static int idmouse_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int idmouse_resume(struct usb_interface *intf) { return 0; } static inline void idmouse_delete(struct usb_idmouse *dev) { kfree(dev->bulk_in_buffer); kfree(dev); } static int idmouse_open(struct inode *inode, struct file *file) { struct usb_idmouse *dev; struct usb_interface *interface; int result; /* get the interface from minor number and driver information */ interface = usb_find_interface(&idmouse_driver, iminor(inode)); if (!interface) return -ENODEV; /* get the device information block from the interface */ dev = usb_get_intfdata(interface); if (!dev) return -ENODEV; /* lock this device */ mutex_lock(&dev->lock); /* check if already open */ if (dev->open) { /* already open, so fail */ result = -EBUSY; } else { /* create a new image and check for success */ result = usb_autopm_get_interface(interface); if (result) goto error; result = idmouse_create_image(dev); usb_autopm_put_interface(interface); if (result) goto error; /* increment our usage count for the driver */ ++dev->open; /* save our object in the file's private structure */ file->private_data = dev; } error: /* unlock this device */ mutex_unlock(&dev->lock); return result; } static int idmouse_release(struct inode *inode, struct file *file) { struct usb_idmouse *dev; dev = file->private_data; if (dev == NULL) return -ENODEV; /* lock our device */ mutex_lock(&dev->lock); --dev->open; if (!dev->present) { /* the device was unplugged before the file was released */ mutex_unlock(&dev->lock); idmouse_delete(dev); } else { mutex_unlock(&dev->lock); } return 0; } static ssize_t idmouse_read(struct file *file, char __user *buffer, size_t count, loff_t * ppos) { struct usb_idmouse *dev = file->private_data; int result; /* lock this object */ mutex_lock(&dev->lock); /* verify that the device wasn't unplugged */ if (!dev->present) { mutex_unlock(&dev->lock); return -ENODEV; } result = simple_read_from_buffer(buffer, count, ppos, dev->bulk_in_buffer, IMGSIZE); /* unlock the device */ mutex_unlock(&dev->lock); return result; } static int idmouse_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_idmouse *dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int result; /* check if we have gotten the data or the hid interface */ iface_desc = interface->cur_altsetting; if (iface_desc->desc.bInterfaceClass != 0x0A) return -ENODEV; if (iface_desc->desc.bNumEndpoints < 1) return -ENODEV; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) return -ENOMEM; mutex_init(&dev->lock); dev->udev = udev; dev->interface = interface; /* set up the endpoint information - use only the first bulk-in endpoint */ result = usb_find_bulk_in_endpoint(iface_desc, &endpoint); if (result) { dev_err(&interface->dev, "Unable to find bulk-in endpoint.\n"); idmouse_delete(dev); return result; } dev->orig_bi_size = usb_endpoint_maxp(endpoint); dev->bulk_in_size = 0x200; /* works _much_ faster */ dev->bulk_in_endpointAddr = endpoint->bEndpointAddress; dev->bulk_in_buffer = kmalloc(IMGSIZE + dev->bulk_in_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { idmouse_delete(dev); return -ENOMEM; } /* allow device read, write and ioctl */ dev->present = 1; /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); result = usb_register_dev(interface, &idmouse_class); if (result) { /* something prevented us from registering this device */ dev_err(&interface->dev, "Unable to allocate minor number.\n"); idmouse_delete(dev); return result; } /* be noisy */ dev_info(&interface->dev,"%s now attached\n",DRIVER_DESC); return 0; } static void idmouse_disconnect(struct usb_interface *interface) { struct usb_idmouse *dev = usb_get_intfdata(interface); /* give back our minor */ usb_deregister_dev(interface, &idmouse_class); /* lock the device */ mutex_lock(&dev->lock); /* prevent device read, write and ioctl */ dev->present = 0; /* if the device is opened, idmouse_release will clean this up */ if (!dev->open) { mutex_unlock(&dev->lock); idmouse_delete(dev); } else { /* unlock */ mutex_unlock(&dev->lock); } dev_info(&interface->dev, "disconnected\n"); } module_usb_driver(idmouse_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/idmouse.c
// SPDX-License-Identifier: GPL-2.0 /* * Emagic EMI 2|6 usb audio interface firmware loader. * Copyright (C) 2002 * Tapio Laxström ([email protected]) */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/ihex.h> /* include firmware (variables)*/ /* FIXME: This is quick and dirty solution! */ #define SPDIF /* if you want SPDIF comment next line */ //#undef SPDIF /* if you want MIDI uncomment this line */ #ifdef SPDIF #define FIRMWARE_FW "emi62/spdif.fw" #else #define FIRMWARE_FW "emi62/midi.fw" #endif #define EMI62_VENDOR_ID 0x086a /* Emagic Soft-und Hardware GmBH */ #define EMI62_PRODUCT_ID 0x0110 /* EMI 6|2m without firmware */ #define ANCHOR_LOAD_INTERNAL 0xA0 /* Vendor specific request code for Anchor Upload/Download (This one is implemented in the core) */ #define ANCHOR_LOAD_EXTERNAL 0xA3 /* This command is not implemented in the core. Requires firmware */ #define ANCHOR_LOAD_FPGA 0xA5 /* This command is not implemented in the core. Requires firmware. Emagic extension */ #define MAX_INTERNAL_ADDRESS 0x1B3F /* This is the highest internal RAM address for the AN2131Q */ #define CPUCS_REG 0x7F92 /* EZ-USB Control and Status Register. Bit 0 controls 8051 reset */ #define INTERNAL_RAM(address) (address <= MAX_INTERNAL_ADDRESS) static int emi62_writememory(struct usb_device *dev, int address, const unsigned char *data, int length, __u8 bRequest); static int emi62_set_reset(struct usb_device *dev, unsigned char reset_bit); static int emi62_load_firmware (struct usb_device *dev); static int emi62_probe(struct usb_interface *intf, const struct usb_device_id *id); static void emi62_disconnect(struct usb_interface *intf); /* thanks to drivers/usb/serial/keyspan_pda.c code */ static int emi62_writememory(struct usb_device *dev, int address, const unsigned char *data, int length, __u8 request) { int result; unsigned char *buffer = kmemdup(data, length, GFP_KERNEL); if (!buffer) { dev_err(&dev->dev, "kmalloc(%d) failed.\n", length); return -ENOMEM; } /* Note: usb_control_msg returns negative value on error or length of the * data that was written! */ result = usb_control_msg (dev, usb_sndctrlpipe(dev, 0), request, 0x40, address, 0, buffer, length, 300); kfree (buffer); return result; } /* thanks to drivers/usb/serial/keyspan_pda.c code */ static int emi62_set_reset (struct usb_device *dev, unsigned char reset_bit) { int response; dev_info(&dev->dev, "%s - %d\n", __func__, reset_bit); response = emi62_writememory (dev, CPUCS_REG, &reset_bit, 1, 0xa0); if (response < 0) dev_err(&dev->dev, "set_reset (%d) failed\n", reset_bit); return response; } #define FW_LOAD_SIZE 1023 static int emi62_load_firmware (struct usb_device *dev) { const struct firmware *loader_fw = NULL; const struct firmware *bitstream_fw = NULL; const struct firmware *firmware_fw = NULL; const struct ihex_binrec *rec; int err = -ENOMEM; int i; __u32 addr; /* Address to write */ __u8 *buf; dev_dbg(&dev->dev, "load_firmware\n"); buf = kmalloc(FW_LOAD_SIZE, GFP_KERNEL); if (!buf) goto wraperr; err = request_ihex_firmware(&loader_fw, "emi62/loader.fw", &dev->dev); if (err) goto nofw; err = request_ihex_firmware(&bitstream_fw, "emi62/bitstream.fw", &dev->dev); if (err) goto nofw; err = request_ihex_firmware(&firmware_fw, FIRMWARE_FW, &dev->dev); if (err) { nofw: goto wraperr; } /* Assert reset (stop the CPU in the EMI) */ err = emi62_set_reset(dev,1); if (err < 0) goto wraperr; rec = (const struct ihex_binrec *)loader_fw->data; /* 1. We need to put the loader for the FPGA into the EZ-USB */ while (rec) { err = emi62_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_INTERNAL); if (err < 0) goto wraperr; rec = ihex_next_binrec(rec); } /* De-assert reset (let the CPU run) */ err = emi62_set_reset(dev,0); if (err < 0) goto wraperr; msleep(250); /* let device settle */ /* 2. We upload the FPGA firmware into the EMI * Note: collect up to 1023 (yes!) bytes and send them with * a single request. This is _much_ faster! */ rec = (const struct ihex_binrec *)bitstream_fw->data; do { i = 0; addr = be32_to_cpu(rec->addr); /* intel hex records are terminated with type 0 element */ while (rec && (i + be16_to_cpu(rec->len) < FW_LOAD_SIZE)) { memcpy(buf + i, rec->data, be16_to_cpu(rec->len)); i += be16_to_cpu(rec->len); rec = ihex_next_binrec(rec); } err = emi62_writememory(dev, addr, buf, i, ANCHOR_LOAD_FPGA); if (err < 0) goto wraperr; } while (rec); /* Assert reset (stop the CPU in the EMI) */ err = emi62_set_reset(dev,1); if (err < 0) goto wraperr; /* 3. We need to put the loader for the firmware into the EZ-USB (again...) */ for (rec = (const struct ihex_binrec *)loader_fw->data; rec; rec = ihex_next_binrec(rec)) { err = emi62_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_INTERNAL); if (err < 0) goto wraperr; } /* De-assert reset (let the CPU run) */ err = emi62_set_reset(dev,0); if (err < 0) goto wraperr; msleep(250); /* let device settle */ /* 4. We put the part of the firmware that lies in the external RAM into the EZ-USB */ for (rec = (const struct ihex_binrec *)firmware_fw->data; rec; rec = ihex_next_binrec(rec)) { if (!INTERNAL_RAM(be32_to_cpu(rec->addr))) { err = emi62_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_EXTERNAL); if (err < 0) goto wraperr; } } /* Assert reset (stop the CPU in the EMI) */ err = emi62_set_reset(dev,1); if (err < 0) goto wraperr; for (rec = (const struct ihex_binrec *)firmware_fw->data; rec; rec = ihex_next_binrec(rec)) { if (INTERNAL_RAM(be32_to_cpu(rec->addr))) { err = emi62_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_EXTERNAL); if (err < 0) goto wraperr; } } /* De-assert reset (let the CPU run) */ err = emi62_set_reset(dev,0); if (err < 0) goto wraperr; msleep(250); /* let device settle */ release_firmware(loader_fw); release_firmware(bitstream_fw); release_firmware(firmware_fw); kfree(buf); /* return 1 to fail the driver inialization * and give real driver change to load */ return 1; wraperr: if (err < 0) dev_err(&dev->dev,"%s - error loading firmware: error = %d\n", __func__, err); release_firmware(loader_fw); release_firmware(bitstream_fw); release_firmware(firmware_fw); kfree(buf); dev_err(&dev->dev, "Error\n"); return err; } static const struct usb_device_id id_table[] = { { USB_DEVICE(EMI62_VENDOR_ID, EMI62_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, id_table); static int emi62_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); dev_dbg(&intf->dev, "emi62_probe\n"); dev_info(&intf->dev, "%s start\n", __func__); emi62_load_firmware(dev); /* do not return the driver context, let real audio driver do that */ return -EIO; } static void emi62_disconnect(struct usb_interface *intf) { } static struct usb_driver emi62_driver = { .name = "emi62 - firmware loader", .probe = emi62_probe, .disconnect = emi62_disconnect, .id_table = id_table, }; module_usb_driver(emi62_driver); MODULE_AUTHOR("Tapio Laxström"); MODULE_DESCRIPTION("Emagic EMI 6|2m firmware loader."); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("emi62/loader.fw"); MODULE_FIRMWARE("emi62/bitstream.fw"); MODULE_FIRMWARE(FIRMWARE_FW); /* vi:ai:syntax=c:sw=8:ts=8:tw=80 */
linux-master
drivers/usb/misc/emi62.c
// SPDX-License-Identifier: GPL-2.0 /* * Emagic EMI 2|6 usb audio interface firmware loader. * Copyright (C) 2002 * Tapio Laxström ([email protected]) * * emi26.c,v 1.13 2002/03/08 13:10:26 tapio Exp */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/ihex.h> #define EMI26_VENDOR_ID 0x086a /* Emagic Soft-und Hardware GmBH */ #define EMI26_PRODUCT_ID 0x0100 /* EMI 2|6 without firmware */ #define EMI26B_PRODUCT_ID 0x0102 /* EMI 2|6 without firmware */ #define ANCHOR_LOAD_INTERNAL 0xA0 /* Vendor specific request code for Anchor Upload/Download (This one is implemented in the core) */ #define ANCHOR_LOAD_EXTERNAL 0xA3 /* This command is not implemented in the core. Requires firmware */ #define ANCHOR_LOAD_FPGA 0xA5 /* This command is not implemented in the core. Requires firmware. Emagic extension */ #define MAX_INTERNAL_ADDRESS 0x1B3F /* This is the highest internal RAM address for the AN2131Q */ #define CPUCS_REG 0x7F92 /* EZ-USB Control and Status Register. Bit 0 controls 8051 reset */ #define INTERNAL_RAM(address) (address <= MAX_INTERNAL_ADDRESS) static int emi26_writememory( struct usb_device *dev, int address, const unsigned char *data, int length, __u8 bRequest); static int emi26_set_reset(struct usb_device *dev, unsigned char reset_bit); static int emi26_load_firmware (struct usb_device *dev); static int emi26_probe(struct usb_interface *intf, const struct usb_device_id *id); static void emi26_disconnect(struct usb_interface *intf); /* thanks to drivers/usb/serial/keyspan_pda.c code */ static int emi26_writememory (struct usb_device *dev, int address, const unsigned char *data, int length, __u8 request) { int result; unsigned char *buffer = kmemdup(data, length, GFP_KERNEL); if (!buffer) { dev_err(&dev->dev, "kmalloc(%d) failed.\n", length); return -ENOMEM; } /* Note: usb_control_msg returns negative value on error or length of the * data that was written! */ result = usb_control_msg (dev, usb_sndctrlpipe(dev, 0), request, 0x40, address, 0, buffer, length, 300); kfree (buffer); return result; } /* thanks to drivers/usb/serial/keyspan_pda.c code */ static int emi26_set_reset (struct usb_device *dev, unsigned char reset_bit) { int response; dev_info(&dev->dev, "%s - %d\n", __func__, reset_bit); /* printk(KERN_DEBUG "%s - %d", __func__, reset_bit); */ response = emi26_writememory (dev, CPUCS_REG, &reset_bit, 1, 0xa0); if (response < 0) { dev_err(&dev->dev, "set_reset (%d) failed\n", reset_bit); } return response; } #define FW_LOAD_SIZE 1023 static int emi26_load_firmware (struct usb_device *dev) { const struct firmware *loader_fw = NULL; const struct firmware *bitstream_fw = NULL; const struct firmware *firmware_fw = NULL; const struct ihex_binrec *rec; int err = -ENOMEM; int i; __u32 addr; /* Address to write */ __u8 *buf; buf = kmalloc(FW_LOAD_SIZE, GFP_KERNEL); if (!buf) goto wraperr; err = request_ihex_firmware(&loader_fw, "emi26/loader.fw", &dev->dev); if (err) goto nofw; err = request_ihex_firmware(&bitstream_fw, "emi26/bitstream.fw", &dev->dev); if (err) goto nofw; err = request_ihex_firmware(&firmware_fw, "emi26/firmware.fw", &dev->dev); if (err) { nofw: dev_err(&dev->dev, "%s - request_firmware() failed\n", __func__); goto wraperr; } /* Assert reset (stop the CPU in the EMI) */ err = emi26_set_reset(dev,1); if (err < 0) goto wraperr; rec = (const struct ihex_binrec *)loader_fw->data; /* 1. We need to put the loader for the FPGA into the EZ-USB */ while (rec) { err = emi26_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_INTERNAL); if (err < 0) goto wraperr; rec = ihex_next_binrec(rec); } /* De-assert reset (let the CPU run) */ err = emi26_set_reset(dev,0); if (err < 0) goto wraperr; msleep(250); /* let device settle */ /* 2. We upload the FPGA firmware into the EMI * Note: collect up to 1023 (yes!) bytes and send them with * a single request. This is _much_ faster! */ rec = (const struct ihex_binrec *)bitstream_fw->data; do { i = 0; addr = be32_to_cpu(rec->addr); /* intel hex records are terminated with type 0 element */ while (rec && (i + be16_to_cpu(rec->len) < FW_LOAD_SIZE)) { memcpy(buf + i, rec->data, be16_to_cpu(rec->len)); i += be16_to_cpu(rec->len); rec = ihex_next_binrec(rec); } err = emi26_writememory(dev, addr, buf, i, ANCHOR_LOAD_FPGA); if (err < 0) goto wraperr; } while (rec); /* Assert reset (stop the CPU in the EMI) */ err = emi26_set_reset(dev,1); if (err < 0) goto wraperr; /* 3. We need to put the loader for the firmware into the EZ-USB (again...) */ for (rec = (const struct ihex_binrec *)loader_fw->data; rec; rec = ihex_next_binrec(rec)) { err = emi26_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_INTERNAL); if (err < 0) goto wraperr; } msleep(250); /* let device settle */ /* De-assert reset (let the CPU run) */ err = emi26_set_reset(dev,0); if (err < 0) goto wraperr; /* 4. We put the part of the firmware that lies in the external RAM into the EZ-USB */ for (rec = (const struct ihex_binrec *)firmware_fw->data; rec; rec = ihex_next_binrec(rec)) { if (!INTERNAL_RAM(be32_to_cpu(rec->addr))) { err = emi26_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_EXTERNAL); if (err < 0) goto wraperr; } } /* Assert reset (stop the CPU in the EMI) */ err = emi26_set_reset(dev,1); if (err < 0) goto wraperr; for (rec = (const struct ihex_binrec *)firmware_fw->data; rec; rec = ihex_next_binrec(rec)) { if (INTERNAL_RAM(be32_to_cpu(rec->addr))) { err = emi26_writememory(dev, be32_to_cpu(rec->addr), rec->data, be16_to_cpu(rec->len), ANCHOR_LOAD_INTERNAL); if (err < 0) goto wraperr; } } /* De-assert reset (let the CPU run) */ err = emi26_set_reset(dev,0); if (err < 0) goto wraperr; msleep(250); /* let device settle */ /* return 1 to fail the driver inialization * and give real driver change to load */ err = 1; wraperr: if (err < 0) dev_err(&dev->dev,"%s - error loading firmware: error = %d\n", __func__, err); release_firmware(loader_fw); release_firmware(bitstream_fw); release_firmware(firmware_fw); kfree(buf); return err; } static const struct usb_device_id id_table[] = { { USB_DEVICE(EMI26_VENDOR_ID, EMI26_PRODUCT_ID) }, { USB_DEVICE(EMI26_VENDOR_ID, EMI26B_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, id_table); static int emi26_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); dev_info(&intf->dev, "%s start\n", __func__); emi26_load_firmware(dev); /* do not return the driver context, let real audio driver do that */ return -EIO; } static void emi26_disconnect(struct usb_interface *intf) { } static struct usb_driver emi26_driver = { .name = "emi26 - firmware loader", .probe = emi26_probe, .disconnect = emi26_disconnect, .id_table = id_table, }; module_usb_driver(emi26_driver); MODULE_AUTHOR("Tapio Laxström"); MODULE_DESCRIPTION("Emagic EMI 2|6 firmware loader."); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("emi26/loader.fw"); MODULE_FIRMWARE("emi26/bitstream.fw"); MODULE_FIRMWARE("emi26/firmware.fw"); /* vi:ai:syntax=c:sw=8:ts=8:tw=80 */
linux-master
drivers/usb/misc/emi26.c
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* * sisusb - usb kernel driver for SiS315(E) based USB2VGA dongles * * Main part * * Copyright (C) 2005 by Thomas Winischhofer, Vienna, Austria * * If distributed as part of the Linux kernel, this code is licensed under the * terms of the GPL v2. * * Otherwise, the following license terms apply: * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * 1) Redistributions of source code must retain the above copyright * * notice, this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * 3) The name of the author may not be used to endorse or promote products * * derived from this software without specific psisusbr written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESSED OR * * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Thomas Winischhofer <[email protected]> * */ #include <linux/mutex.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/signal.h> #include <linux/errno.h> #include <linux/poll.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <linux/usb.h> #include <linux/vmalloc.h> #include "sisusb.h" #define SISUSB_DONTSYNC /* Forward declarations / clean-up routines */ static struct usb_driver sisusb_driver; static void sisusb_free_buffers(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < NUMOBUFS; i++) { kfree(sisusb->obuf[i]); sisusb->obuf[i] = NULL; } kfree(sisusb->ibuf); sisusb->ibuf = NULL; } static void sisusb_free_urbs(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < NUMOBUFS; i++) { usb_free_urb(sisusb->sisurbout[i]); sisusb->sisurbout[i] = NULL; } usb_free_urb(sisusb->sisurbin); sisusb->sisurbin = NULL; } /* Level 0: USB transport layer */ /* 1. out-bulks */ /* out-urb management */ /* Return 1 if all free, 0 otherwise */ static int sisusb_all_free(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < sisusb->numobufs; i++) { if (sisusb->urbstatus[i] & SU_URB_BUSY) return 0; } return 1; } /* Kill all busy URBs */ static void sisusb_kill_all_busy(struct sisusb_usb_data *sisusb) { int i; if (sisusb_all_free(sisusb)) return; for (i = 0; i < sisusb->numobufs; i++) { if (sisusb->urbstatus[i] & SU_URB_BUSY) usb_kill_urb(sisusb->sisurbout[i]); } } /* Return 1 if ok, 0 if error (not all complete within timeout) */ static int sisusb_wait_all_out_complete(struct sisusb_usb_data *sisusb) { int timeout = 5 * HZ, i = 1; wait_event_timeout(sisusb->wait_q, (i = sisusb_all_free(sisusb)), timeout); return i; } static int sisusb_outurb_available(struct sisusb_usb_data *sisusb) { int i; for (i = 0; i < sisusb->numobufs; i++) { if ((sisusb->urbstatus[i] & (SU_URB_BUSY|SU_URB_ALLOC)) == 0) return i; } return -1; } static int sisusb_get_free_outbuf(struct sisusb_usb_data *sisusb) { int i, timeout = 5 * HZ; wait_event_timeout(sisusb->wait_q, ((i = sisusb_outurb_available(sisusb)) >= 0), timeout); return i; } static int sisusb_alloc_outbuf(struct sisusb_usb_data *sisusb) { int i; i = sisusb_outurb_available(sisusb); if (i >= 0) sisusb->urbstatus[i] |= SU_URB_ALLOC; return i; } static void sisusb_free_outbuf(struct sisusb_usb_data *sisusb, int index) { if ((index >= 0) && (index < sisusb->numobufs)) sisusb->urbstatus[index] &= ~SU_URB_ALLOC; } /* completion callback */ static void sisusb_bulk_completeout(struct urb *urb) { struct sisusb_urb_context *context = urb->context; struct sisusb_usb_data *sisusb; if (!context) return; sisusb = context->sisusb; if (!sisusb || !sisusb->sisusb_dev || !sisusb->present) return; #ifndef SISUSB_DONTSYNC if (context->actual_length) *(context->actual_length) += urb->actual_length; #endif sisusb->urbstatus[context->urbindex] &= ~SU_URB_BUSY; wake_up(&sisusb->wait_q); } static int sisusb_bulkout_msg(struct sisusb_usb_data *sisusb, int index, unsigned int pipe, void *data, int len, int *actual_length, int timeout, unsigned int tflags) { struct urb *urb = sisusb->sisurbout[index]; int retval, byteswritten = 0; /* Set up URB */ urb->transfer_flags = 0; usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len, sisusb_bulk_completeout, &sisusb->urbout_context[index]); urb->transfer_flags |= tflags; urb->actual_length = 0; /* Set up context */ sisusb->urbout_context[index].actual_length = (timeout) ? NULL : actual_length; /* Declare this urb/buffer in use */ sisusb->urbstatus[index] |= SU_URB_BUSY; /* Submit URB */ retval = usb_submit_urb(urb, GFP_KERNEL); /* If OK, and if timeout > 0, wait for completion */ if ((retval == 0) && timeout) { wait_event_timeout(sisusb->wait_q, (!(sisusb->urbstatus[index] & SU_URB_BUSY)), timeout); if (sisusb->urbstatus[index] & SU_URB_BUSY) { /* URB timed out... kill it and report error */ usb_kill_urb(urb); retval = -ETIMEDOUT; } else { /* Otherwise, report urb status */ retval = urb->status; byteswritten = urb->actual_length; } } if (actual_length) *actual_length = byteswritten; return retval; } /* 2. in-bulks */ /* completion callback */ static void sisusb_bulk_completein(struct urb *urb) { struct sisusb_usb_data *sisusb = urb->context; if (!sisusb || !sisusb->sisusb_dev || !sisusb->present) return; sisusb->completein = 1; wake_up(&sisusb->wait_q); } static int sisusb_bulkin_msg(struct sisusb_usb_data *sisusb, unsigned int pipe, void *data, int len, int *actual_length, int timeout, unsigned int tflags) { struct urb *urb = sisusb->sisurbin; int retval, readbytes = 0; urb->transfer_flags = 0; usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len, sisusb_bulk_completein, sisusb); urb->transfer_flags |= tflags; urb->actual_length = 0; sisusb->completein = 0; retval = usb_submit_urb(urb, GFP_KERNEL); if (retval == 0) { wait_event_timeout(sisusb->wait_q, sisusb->completein, timeout); if (!sisusb->completein) { /* URB timed out... kill it and report error */ usb_kill_urb(urb); retval = -ETIMEDOUT; } else { /* URB completed within timeout */ retval = urb->status; readbytes = urb->actual_length; } } if (actual_length) *actual_length = readbytes; return retval; } /* Level 1: */ /* Send a bulk message of variable size * * To copy the data from userspace, give pointer to "userbuffer", * to copy from (non-DMA) kernel memory, give "kernbuffer". If * both of these are NULL, it is assumed, that the transfer * buffer "sisusb->obuf[index]" is set up with the data to send. * Index is ignored if either kernbuffer or userbuffer is set. * If async is nonzero, URBs will be sent without waiting for * completion of the previous URB. * * (return 0 on success) */ static int sisusb_send_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len, char *kernbuffer, const char __user *userbuffer, int index, ssize_t *bytes_written, unsigned int tflags, int async) { int result = 0, retry, count = len; int passsize, thispass, transferred_len = 0; int fromuser = (userbuffer != NULL) ? 1 : 0; int fromkern = (kernbuffer != NULL) ? 1 : 0; unsigned int pipe; char *buffer; (*bytes_written) = 0; /* Sanity check */ if (!sisusb || !sisusb->present || !sisusb->sisusb_dev) return -ENODEV; /* If we copy data from kernel or userspace, force the * allocation of a buffer/urb. If we have the data in * the transfer buffer[index] already, reuse the buffer/URB * if the length is > buffer size. (So, transmitting * large data amounts directly from the transfer buffer * treats the buffer as a ring buffer. However, we need * to sync in this case.) */ if (fromuser || fromkern) index = -1; else if (len > sisusb->obufsize) async = 0; pipe = usb_sndbulkpipe(sisusb->sisusb_dev, ep); do { passsize = thispass = (sisusb->obufsize < count) ? sisusb->obufsize : count; if (index < 0) index = sisusb_get_free_outbuf(sisusb); if (index < 0) return -EIO; buffer = sisusb->obuf[index]; if (fromuser) { if (copy_from_user(buffer, userbuffer, passsize)) return -EFAULT; userbuffer += passsize; } else if (fromkern) { memcpy(buffer, kernbuffer, passsize); kernbuffer += passsize; } retry = 5; while (thispass) { if (!sisusb->sisusb_dev) return -ENODEV; result = sisusb_bulkout_msg(sisusb, index, pipe, buffer, thispass, &transferred_len, async ? 0 : 5 * HZ, tflags); if (result == -ETIMEDOUT) { /* Will not happen if async */ if (!retry--) return -ETIME; continue; } if ((result == 0) && !async && transferred_len) { thispass -= transferred_len; buffer += transferred_len; } else break; } if (result) return result; (*bytes_written) += passsize; count -= passsize; /* Force new allocation in next iteration */ if (fromuser || fromkern) index = -1; } while (count > 0); if (async) { #ifdef SISUSB_DONTSYNC (*bytes_written) = len; /* Some URBs/buffers might be busy */ #else sisusb_wait_all_out_complete(sisusb); (*bytes_written) = transferred_len; /* All URBs and all buffers are available */ #endif } return ((*bytes_written) == len) ? 0 : -EIO; } /* Receive a bulk message of variable size * * To copy the data to userspace, give pointer to "userbuffer", * to copy to kernel memory, give "kernbuffer". One of them * MUST be set. (There is no technique for letting the caller * read directly from the ibuf.) * */ static int sisusb_recv_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len, void *kernbuffer, char __user *userbuffer, ssize_t *bytes_read, unsigned int tflags) { int result = 0, retry, count = len; int bufsize, thispass, transferred_len; unsigned int pipe; char *buffer; (*bytes_read) = 0; /* Sanity check */ if (!sisusb || !sisusb->present || !sisusb->sisusb_dev) return -ENODEV; pipe = usb_rcvbulkpipe(sisusb->sisusb_dev, ep); buffer = sisusb->ibuf; bufsize = sisusb->ibufsize; retry = 5; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return -EIO; #endif while (count > 0) { if (!sisusb->sisusb_dev) return -ENODEV; thispass = (bufsize < count) ? bufsize : count; result = sisusb_bulkin_msg(sisusb, pipe, buffer, thispass, &transferred_len, 5 * HZ, tflags); if (transferred_len) thispass = transferred_len; else if (result == -ETIMEDOUT) { if (!retry--) return -ETIME; continue; } else return -EIO; if (thispass) { (*bytes_read) += thispass; count -= thispass; if (userbuffer) { if (copy_to_user(userbuffer, buffer, thispass)) return -EFAULT; userbuffer += thispass; } else { memcpy(kernbuffer, buffer, thispass); kernbuffer += thispass; } } } return ((*bytes_read) == len) ? 0 : -EIO; } static int sisusb_send_packet(struct sisusb_usb_data *sisusb, int len, struct sisusb_packet *packet) { int ret; ssize_t bytes_transferred = 0; __le32 tmp; if (len == 6) packet->data = 0; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return 1; #endif /* Eventually correct endianness */ SISUSB_CORRECT_ENDIANNESS_PACKET(packet); /* 1. send the packet */ ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_OUT, len, (char *)packet, NULL, 0, &bytes_transferred, 0, 0); if ((ret == 0) && (len == 6)) { /* 2. if packet len == 6, it means we read, so wait for 32bit * return value and write it to packet->data */ ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_GFX_IN, 4, (char *)&tmp, NULL, &bytes_transferred, 0); packet->data = le32_to_cpu(tmp); } return ret; } static int sisusb_send_bridge_packet(struct sisusb_usb_data *sisusb, int len, struct sisusb_packet *packet, unsigned int tflags) { int ret; ssize_t bytes_transferred = 0; __le32 tmp; if (len == 6) packet->data = 0; #ifdef SISUSB_DONTSYNC if (!(sisusb_wait_all_out_complete(sisusb))) return 1; #endif /* Eventually correct endianness */ SISUSB_CORRECT_ENDIANNESS_PACKET(packet); /* 1. send the packet */ ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_BRIDGE_OUT, len, (char *)packet, NULL, 0, &bytes_transferred, tflags, 0); if ((ret == 0) && (len == 6)) { /* 2. if packet len == 6, it means we read, so wait for 32bit * return value and write it to packet->data */ ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_BRIDGE_IN, 4, (char *)&tmp, NULL, &bytes_transferred, 0); packet->data = le32_to_cpu(tmp); } return ret; } /* access video memory and mmio (return 0 on success) */ /* Low level */ /* The following routines assume being used to transfer byte, word, * long etc. * This means that * - the write routines expect "data" in machine endianness format. * The data will be converted to leXX in sisusb_xxx_packet. * - the read routines can expect read data in machine-endianess. */ static int sisusb_write_memio_byte(struct sisusb_usb_data *sisusb, int type, u32 addr, u8 data) { struct sisusb_packet packet; packet.header = (1 << (addr & 3)) | (type << 6); packet.address = addr & ~3; packet.data = data << ((addr & 3) << 3); return sisusb_send_packet(sisusb, 10, &packet); } static int sisusb_write_memio_word(struct sisusb_usb_data *sisusb, int type, u32 addr, u16 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0003; packet.data = (u32)data; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x0006; packet.data = (u32)data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = (u32)data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = (u32)data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = (u32)data >> 8; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } static int sisusb_write_memio_24bit(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0007; packet.data = data & 0x00ffffff; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x000e; packet.data = data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = (data >> 16) & 0x00ff; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; packet.data = (data >> 8) & 0xffff; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } static int sisusb_write_memio_long(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x000f; packet.data = data; ret = sisusb_send_packet(sisusb, 10, &packet); break; case 1: packet.header = (type << 6) | 0x000e; packet.data = data << 8; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; packet.data = data >> 24; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 2: packet.header = (type << 6) | 0x000c; packet.data = data << 16; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; packet.data = data >> 16; ret |= sisusb_send_packet(sisusb, 10, &packet); break; case 3: packet.header = (type << 6) | 0x0008; packet.data = data << 24; ret = sisusb_send_packet(sisusb, 10, &packet); packet.header = (type << 6) | 0x0007; packet.address = (addr & ~3) + 4; packet.data = data >> 8; ret |= sisusb_send_packet(sisusb, 10, &packet); } return ret; } /* The xxx_bulk routines copy a buffer of variable size. They treat the * buffer as chars, therefore lsb/msb has to be corrected if using the * byte/word/long/etc routines for speed-up * * If data is from userland, set "userbuffer" (and clear "kernbuffer"), * if data is in kernel space, set "kernbuffer" (and clear "userbuffer"); * if neither "kernbuffer" nor "userbuffer" are given, it is assumed * that the data already is in the transfer buffer "sisusb->obuf[index]". */ static int sisusb_write_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr, char *kernbuffer, int length, const char __user *userbuffer, int index, ssize_t *bytes_written) { struct sisusb_packet packet; int ret = 0; static int msgcount; u8 swap8, fromkern = kernbuffer ? 1 : 0; u16 swap16; u32 swap32, flag = (length >> 28) & 1; u8 buf[4]; /* if neither kernbuffer not userbuffer are given, assume * data in obuf */ if (!fromkern && !userbuffer) kernbuffer = sisusb->obuf[index]; (*bytes_written = 0); length &= 0x00ffffff; while (length) { switch (length) { case 1: if (userbuffer) { if (get_user(swap8, (u8 __user *)userbuffer)) return -EFAULT; } else swap8 = kernbuffer[0]; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, addr, swap8); if (!ret) (*bytes_written)++; return ret; case 2: if (userbuffer) { if (get_user(swap16, (u16 __user *)userbuffer)) return -EFAULT; } else swap16 = *((u16 *)kernbuffer); ret = sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, addr, swap16); if (!ret) (*bytes_written) += 2; return ret; case 3: if (userbuffer) { if (copy_from_user(&buf, userbuffer, 3)) return -EFAULT; #ifdef __BIG_ENDIAN swap32 = (buf[0] << 16) | (buf[1] << 8) | buf[2]; #else swap32 = (buf[2] << 16) | (buf[1] << 8) | buf[0]; #endif } else #ifdef __BIG_ENDIAN swap32 = (kernbuffer[0] << 16) | (kernbuffer[1] << 8) | kernbuffer[2]; #else swap32 = (kernbuffer[2] << 16) | (kernbuffer[1] << 8) | kernbuffer[0]; #endif ret = sisusb_write_memio_24bit(sisusb, SISUSB_TYPE_MEM, addr, swap32); if (!ret) (*bytes_written) += 3; return ret; case 4: if (userbuffer) { if (get_user(swap32, (u32 __user *)userbuffer)) return -EFAULT; } else swap32 = *((u32 *)kernbuffer); ret = sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, addr, swap32); if (!ret) (*bytes_written) += 4; return ret; default: if ((length & ~3) > 0x10000) { packet.header = 0x001f; packet.address = 0x000001d4; packet.data = addr; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x000001d0; packet.data = (length & ~3); ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x000001c0; packet.data = flag | 0x16; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); if (userbuffer) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), NULL, userbuffer, 0, bytes_written, 0, 1); userbuffer += (*bytes_written); } else if (fromkern) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), kernbuffer, NULL, 0, bytes_written, 0, 1); kernbuffer += (*bytes_written); } else { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_LBULK_OUT, (length & ~3), NULL, NULL, index, bytes_written, 0, 1); kernbuffer += ((*bytes_written) & (sisusb->obufsize-1)); } } else { packet.header = 0x001f; packet.address = 0x00000194; packet.data = addr; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000190; packet.data = (length & ~3); ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); if (sisusb->flagb0 != 0x16) { packet.header = 0x001f; packet.address = 0x00000180; packet.data = flag | 0x16; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); sisusb->flagb0 = 0x16; } if (userbuffer) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), NULL, userbuffer, 0, bytes_written, 0, 1); userbuffer += (*bytes_written); } else if (fromkern) { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), kernbuffer, NULL, 0, bytes_written, 0, 1); kernbuffer += (*bytes_written); } else { ret |= sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_BULK_OUT, (length & ~3), NULL, NULL, index, bytes_written, 0, 1); kernbuffer += ((*bytes_written) & (sisusb->obufsize-1)); } } if (ret) { msgcount++; if (msgcount < 500) dev_err(&sisusb->sisusb_dev->dev, "Wrote %zd of %d bytes, error %d\n", *bytes_written, length, ret); else if (msgcount == 500) dev_err(&sisusb->sisusb_dev->dev, "Too many errors, logging stopped\n"); } addr += (*bytes_written); length -= (*bytes_written); } if (ret) break; } return ret ? -EIO : 0; } /* Remember: Read data in packet is in machine-endianess! So for * byte, word, 24bit, long no endian correction is necessary. */ static int sisusb_read_memio_byte(struct sisusb_usb_data *sisusb, int type, u32 addr, u8 *data) { struct sisusb_packet packet; int ret; CLEARPACKET(&packet); packet.header = (1 << (addr & 3)) | (type << 6); packet.address = addr & ~3; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u8)(packet.data >> ((addr & 3) << 3)); return ret; } static int sisusb_read_memio_word(struct sisusb_usb_data *sisusb, int type, u32 addr, u16 *data) { struct sisusb_packet packet; int ret = 0; CLEARPACKET(&packet); packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0003; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data); break; case 1: packet.header = (type << 6) | 0x0006; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 8); break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = (u16)(packet.data >> 24); packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (u16)(packet.data << 8); } return ret; } static int sisusb_read_memio_24bit(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 *data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x0007; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data & 0x00ffffff; break; case 1: packet.header = (type << 6) | 0x000e; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 8; break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 16; packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= ((packet.data & 0xff) << 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 24; packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= ((packet.data & 0xffff) << 8); } return ret; } static int sisusb_read_memio_long(struct sisusb_usb_data *sisusb, int type, u32 addr, u32 *data) { struct sisusb_packet packet; int ret = 0; packet.address = addr & ~3; switch (addr & 3) { case 0: packet.header = (type << 6) | 0x000f; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data; break; case 1: packet.header = (type << 6) | 0x000e; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 8; packet.header = (type << 6) | 0x0001; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 24); break; case 2: packet.header = (type << 6) | 0x000c; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 16; packet.header = (type << 6) | 0x0003; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 16); break; case 3: packet.header = (type << 6) | 0x0008; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data >> 24; packet.header = (type << 6) | 0x0007; packet.address = (addr & ~3) + 4; ret |= sisusb_send_packet(sisusb, 6, &packet); *data |= (packet.data << 8); } return ret; } static int sisusb_read_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr, char *kernbuffer, int length, char __user *userbuffer, ssize_t *bytes_read) { int ret = 0; char buf[4]; u16 swap16; u32 swap32; (*bytes_read = 0); length &= 0x00ffffff; while (length) { switch (length) { case 1: ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, addr, &buf[0]); if (!ret) { (*bytes_read)++; if (userbuffer) { if (put_user(buf[0], (u8 __user *)userbuffer)) return -EFAULT; } else kernbuffer[0] = buf[0]; } return ret; case 2: ret |= sisusb_read_memio_word(sisusb, SISUSB_TYPE_MEM, addr, &swap16); if (!ret) { (*bytes_read) += 2; if (userbuffer) { if (put_user(swap16, (u16 __user *)userbuffer)) return -EFAULT; } else { *((u16 *)kernbuffer) = swap16; } } return ret; case 3: ret |= sisusb_read_memio_24bit(sisusb, SISUSB_TYPE_MEM, addr, &swap32); if (!ret) { (*bytes_read) += 3; #ifdef __BIG_ENDIAN buf[0] = (swap32 >> 16) & 0xff; buf[1] = (swap32 >> 8) & 0xff; buf[2] = swap32 & 0xff; #else buf[2] = (swap32 >> 16) & 0xff; buf[1] = (swap32 >> 8) & 0xff; buf[0] = swap32 & 0xff; #endif if (userbuffer) { if (copy_to_user(userbuffer, &buf[0], 3)) return -EFAULT; } else { kernbuffer[0] = buf[0]; kernbuffer[1] = buf[1]; kernbuffer[2] = buf[2]; } } return ret; default: ret |= sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, addr, &swap32); if (!ret) { (*bytes_read) += 4; if (userbuffer) { if (put_user(swap32, (u32 __user *)userbuffer)) return -EFAULT; userbuffer += 4; } else { *((u32 *)kernbuffer) = swap32; kernbuffer += 4; } addr += 4; length -= 4; } } if (ret) break; } return ret; } /* High level: Gfx (indexed) register access */ static int sisusb_setidxreg(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 data) { int ret; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index); ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data); return ret; } static int sisusb_getidxreg(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 *data) { int ret; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data); return ret; } static int sisusb_setidxregandor(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 myand, u8 myor) { int ret; u8 tmp; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp); tmp &= myand; tmp |= myor; ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp); return ret; } static int sisusb_setidxregmask(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 data, u8 mask) { int ret; u8 tmp; ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx); ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp); tmp &= ~(mask); tmp |= (data & mask); ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp); return ret; } static int sisusb_setidxregor(struct sisusb_usb_data *sisusb, u32 port, u8 index, u8 myor) { return sisusb_setidxregandor(sisusb, port, index, 0xff, myor); } static int sisusb_setidxregand(struct sisusb_usb_data *sisusb, u32 port, u8 idx, u8 myand) { return sisusb_setidxregandor(sisusb, port, idx, myand, 0x00); } /* Write/read video ram */ #ifdef SISUSBENDIANTEST static void sisusb_testreadwrite(struct sisusb_usb_data *sisusb) { static u8 srcbuffer[] = { 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; char destbuffer[10]; int i, j; sisusb_copy_memory(sisusb, srcbuffer, sisusb->vrambase, 7); for (i = 1; i <= 7; i++) { dev_dbg(&sisusb->sisusb_dev->dev, "sisusb: rwtest %d bytes\n", i); sisusb_read_memory(sisusb, destbuffer, sisusb->vrambase, i); for (j = 0; j < i; j++) { dev_dbg(&sisusb->sisusb_dev->dev, "rwtest read[%d] = %x\n", j, destbuffer[j]); } } } #endif /* access pci config registers (reg numbers 0, 4, 8, etc) */ static int sisusb_write_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 data) { struct sisusb_packet packet; packet.header = 0x008f; packet.address = regnum | 0x10000; packet.data = data; return sisusb_send_packet(sisusb, 10, &packet); } static int sisusb_read_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 *data) { struct sisusb_packet packet; int ret; packet.header = 0x008f; packet.address = (u32)regnum | 0x10000; ret = sisusb_send_packet(sisusb, 6, &packet); *data = packet.data; return ret; } /* Clear video RAM */ static int sisusb_clear_vram(struct sisusb_usb_data *sisusb, u32 address, int length) { int ret, i; ssize_t j; if (address < sisusb->vrambase) return 1; if (address >= sisusb->vrambase + sisusb->vramsize) return 1; if (address + length > sisusb->vrambase + sisusb->vramsize) length = sisusb->vrambase + sisusb->vramsize - address; if (length <= 0) return 0; /* allocate free buffer/urb and clear the buffer */ i = sisusb_alloc_outbuf(sisusb); if (i < 0) return -EBUSY; memset(sisusb->obuf[i], 0, sisusb->obufsize); /* We can write a length > buffer size here. The buffer * data will simply be re-used (like a ring-buffer). */ ret = sisusb_write_mem_bulk(sisusb, address, NULL, length, NULL, i, &j); /* Free the buffer/urb */ sisusb_free_outbuf(sisusb, i); return ret; } /* Initialize the graphics core (return 0 on success) * This resets the graphics hardware and puts it into * a defined mode (640x480@60Hz) */ #define GETREG(r, d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, r, d) #define SETREG(r, d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, r, d) #define SETIREG(r, i, d) sisusb_setidxreg(sisusb, r, i, d) #define GETIREG(r, i, d) sisusb_getidxreg(sisusb, r, i, d) #define SETIREGOR(r, i, o) sisusb_setidxregor(sisusb, r, i, o) #define SETIREGAND(r, i, a) sisusb_setidxregand(sisusb, r, i, a) #define SETIREGANDOR(r, i, a, o) sisusb_setidxregandor(sisusb, r, i, a, o) #define READL(a, d) sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, a, d) #define WRITEL(a, d) sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, a, d) #define READB(a, d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d) #define WRITEB(a, d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d) static int sisusb_triggersr16(struct sisusb_usb_data *sisusb, u8 ramtype) { int ret; u8 tmp8; ret = GETIREG(SISSR, 0x16, &tmp8); if (ramtype <= 1) { tmp8 &= 0x3f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0x80; ret |= SETIREG(SISSR, 0x16, tmp8); } else { tmp8 |= 0xc0; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0x80; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0xd0; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 &= 0x0f; ret |= SETIREG(SISSR, 0x16, tmp8); tmp8 |= 0xa0; ret |= SETIREG(SISSR, 0x16, tmp8); } return ret; } static int sisusb_getbuswidth(struct sisusb_usb_data *sisusb, int *bw, int *chab) { int ret; u8 ramtype, done = 0; u32 t0, t1, t2, t3; u32 ramptr = SISUSB_PCI_MEMBASE; ret = GETIREG(SISSR, 0x3a, &ramtype); ramtype &= 3; ret |= SETIREG(SISSR, 0x13, 0x00); if (ramtype <= 1) { ret |= SETIREG(SISSR, 0x14, 0x12); ret |= SETIREGAND(SISSR, 0x15, 0xef); } else { ret |= SETIREG(SISSR, 0x14, 0x02); } ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x01234567); ret |= WRITEL(ramptr + 4, 0x456789ab); ret |= WRITEL(ramptr + 8, 0x89abcdef); ret |= WRITEL(ramptr + 12, 0xcdef0123); ret |= WRITEL(ramptr + 16, 0x55555555); ret |= WRITEL(ramptr + 20, 0x55555555); ret |= WRITEL(ramptr + 24, 0xffffffff); ret |= WRITEL(ramptr + 28, 0xffffffff); ret |= READL(ramptr + 0, &t0); ret |= READL(ramptr + 4, &t1); ret |= READL(ramptr + 8, &t2); ret |= READL(ramptr + 12, &t3); if (ramtype <= 1) { *chab = 0; *bw = 64; if ((t3 != 0xcdef0123) || (t2 != 0x89abcdef)) { if ((t1 == 0x456789ab) && (t0 == 0x01234567)) { *chab = 0; *bw = 64; ret |= SETIREGAND(SISSR, 0x14, 0xfd); } } if ((t1 != 0x456789ab) || (t0 != 0x01234567)) { *chab = 1; *bw = 64; ret |= SETIREGANDOR(SISSR, 0x14, 0xfc, 0x01); ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x89abcdef); ret |= WRITEL(ramptr + 4, 0xcdef0123); ret |= WRITEL(ramptr + 8, 0x55555555); ret |= WRITEL(ramptr + 12, 0x55555555); ret |= WRITEL(ramptr + 16, 0xaaaaaaaa); ret |= WRITEL(ramptr + 20, 0xaaaaaaaa); ret |= READL(ramptr + 4, &t1); if (t1 != 0xcdef0123) { *bw = 32; ret |= SETIREGOR(SISSR, 0x15, 0x10); } } } else { *chab = 0; *bw = 64; /* default: cha, bw = 64 */ done = 0; if (t1 == 0x456789ab) { if (t0 == 0x01234567) { *chab = 0; *bw = 64; done = 1; } } else { if (t0 == 0x01234567) { *chab = 0; *bw = 32; ret |= SETIREG(SISSR, 0x14, 0x00); done = 1; } } if (!done) { ret |= SETIREG(SISSR, 0x14, 0x03); ret |= sisusb_triggersr16(sisusb, ramtype); ret |= WRITEL(ramptr + 0, 0x01234567); ret |= WRITEL(ramptr + 4, 0x456789ab); ret |= WRITEL(ramptr + 8, 0x89abcdef); ret |= WRITEL(ramptr + 12, 0xcdef0123); ret |= WRITEL(ramptr + 16, 0x55555555); ret |= WRITEL(ramptr + 20, 0x55555555); ret |= WRITEL(ramptr + 24, 0xffffffff); ret |= WRITEL(ramptr + 28, 0xffffffff); ret |= READL(ramptr + 0, &t0); ret |= READL(ramptr + 4, &t1); if (t1 == 0x456789ab) { if (t0 == 0x01234567) { *chab = 1; *bw = 64; return ret; } /* else error */ } else { if (t0 == 0x01234567) { *chab = 1; *bw = 32; ret |= SETIREG(SISSR, 0x14, 0x01); } /* else error */ } } } return ret; } static int sisusb_verify_mclk(struct sisusb_usb_data *sisusb) { int ret = 0; u32 ramptr = SISUSB_PCI_MEMBASE; u8 tmp1, tmp2, i, j; ret |= WRITEB(ramptr, 0xaa); ret |= WRITEB(ramptr + 16, 0x55); ret |= READB(ramptr, &tmp1); ret |= READB(ramptr + 16, &tmp2); if ((tmp1 != 0xaa) || (tmp2 != 0x55)) { for (i = 0, j = 16; i < 2; i++, j += 16) { ret |= GETIREG(SISSR, 0x21, &tmp1); ret |= SETIREGAND(SISSR, 0x21, (tmp1 & 0xfb)); ret |= SETIREGOR(SISSR, 0x3c, 0x01); /* not on 330 */ ret |= SETIREGAND(SISSR, 0x3c, 0xfe); /* not on 330 */ ret |= SETIREG(SISSR, 0x21, tmp1); ret |= WRITEB(ramptr + 16 + j, j); ret |= READB(ramptr + 16 + j, &tmp1); if (tmp1 == j) { ret |= WRITEB(ramptr + j, j); break; } } } return ret; } static int sisusb_set_rank(struct sisusb_usb_data *sisusb, int *iret, int index, u8 rankno, u8 chab, const u8 dramtype[][5], int bw) { int ret = 0, ranksize; u8 tmp; *iret = 0; if ((rankno == 2) && (dramtype[index][0] == 2)) return ret; ranksize = dramtype[index][3] / 2 * bw / 32; if ((ranksize * rankno) > 128) return ret; tmp = 0; while ((ranksize >>= 1) > 0) tmp += 0x10; tmp |= ((rankno - 1) << 2); tmp |= ((bw / 64) & 0x02); tmp |= (chab & 0x01); ret = SETIREG(SISSR, 0x14, tmp); ret |= sisusb_triggersr16(sisusb, 0); /* sic! */ *iret = 1; return ret; } static int sisusb_check_rbc(struct sisusb_usb_data *sisusb, int *iret, u32 inc, int testn) { int ret = 0, i; u32 j, tmp; *iret = 0; for (i = 0, j = 0; i < testn; i++) { ret |= WRITEL(sisusb->vrambase + j, j); j += inc; } for (i = 0, j = 0; i < testn; i++) { ret |= READL(sisusb->vrambase + j, &tmp); if (tmp != j) return ret; j += inc; } *iret = 1; return ret; } static int sisusb_check_ranks(struct sisusb_usb_data *sisusb, int *iret, int rankno, int idx, int bw, const u8 rtype[][5]) { int ret = 0, i, i2ret; u32 inc; *iret = 0; for (i = rankno; i >= 1; i--) { inc = 1 << (rtype[idx][2] + rtype[idx][1] + rtype[idx][0] + bw / 64 + i); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2); if (!i2ret) return ret; } inc = 1 << (rtype[idx][2] + bw / 64 + 2); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 4); if (!i2ret) return ret; inc = 1 << (10 + bw / 64); ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2); if (!i2ret) return ret; *iret = 1; return ret; } static int sisusb_get_sdram_size(struct sisusb_usb_data *sisusb, int *iret, int bw, int chab) { int ret = 0, i2ret = 0, i, j; static const u8 sdramtype[13][5] = { { 2, 12, 9, 64, 0x35 }, { 1, 13, 9, 64, 0x44 }, { 2, 12, 8, 32, 0x31 }, { 2, 11, 9, 32, 0x25 }, { 1, 12, 9, 32, 0x34 }, { 1, 13, 8, 32, 0x40 }, { 2, 11, 8, 16, 0x21 }, { 1, 12, 8, 16, 0x30 }, { 1, 11, 9, 16, 0x24 }, { 1, 11, 8, 8, 0x20 }, { 2, 9, 8, 4, 0x01 }, { 1, 10, 8, 4, 0x10 }, { 1, 9, 8, 2, 0x00 } }; *iret = 1; /* error */ for (i = 0; i < 13; i++) { ret |= SETIREGANDOR(SISSR, 0x13, 0x80, sdramtype[i][4]); for (j = 2; j > 0; j--) { ret |= sisusb_set_rank(sisusb, &i2ret, i, j, chab, sdramtype, bw); if (!i2ret) continue; ret |= sisusb_check_ranks(sisusb, &i2ret, j, i, bw, sdramtype); if (i2ret) { *iret = 0; /* ram size found */ return ret; } } } return ret; } static int sisusb_setup_screen(struct sisusb_usb_data *sisusb, int clrall, int drwfr) { int ret = 0; u32 address; int i, length, modex, modey, bpp; modex = 640; modey = 480; bpp = 2; address = sisusb->vrambase; /* Clear video ram */ if (clrall) length = sisusb->vramsize; else length = modex * bpp * modey; ret = sisusb_clear_vram(sisusb, address, length); if (!ret && drwfr) { for (i = 0; i < modex; i++) { address = sisusb->vrambase + (i * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); address += (modex * (modey-1) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); } for (i = 0; i < modey; i++) { address = sisusb->vrambase + ((i * modex) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); address += ((modex - 1) * bpp); ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM, address, 0xf100); } } return ret; } static void sisusb_set_default_mode(struct sisusb_usb_data *sisusb, int touchengines) { int i, j, modex, bpp, du; u8 sr31, cr63, tmp8; static const char attrdata[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x01, 0x00, 0x00, 0x00 }; static const char crtcrdata[] = { 0x5f, 0x4f, 0x50, 0x82, 0x54, 0x80, 0x0b, 0x3e, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xea, 0x8c, 0xdf, 0x28, 0x40, 0xe7, 0x04, 0xa3, 0xff }; static const char grcdata[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x05, 0x0f, 0xff }; static const char crtcdata[] = { 0x5f, 0x4f, 0x4f, 0x83, 0x55, 0x81, 0x0b, 0x3e, 0xe9, 0x8b, 0xdf, 0xe8, 0x0c, 0x00, 0x00, 0x05, 0x00 }; modex = 640; bpp = 2; GETIREG(SISSR, 0x31, &sr31); GETIREG(SISCR, 0x63, &cr63); SETIREGOR(SISSR, 0x01, 0x20); SETIREG(SISCR, 0x63, cr63 & 0xbf); SETIREGOR(SISCR, 0x17, 0x80); SETIREGOR(SISSR, 0x1f, 0x04); SETIREGAND(SISSR, 0x07, 0xfb); SETIREG(SISSR, 0x00, 0x03); /* seq */ SETIREG(SISSR, 0x01, 0x21); SETIREG(SISSR, 0x02, 0x0f); SETIREG(SISSR, 0x03, 0x00); SETIREG(SISSR, 0x04, 0x0e); SETREG(SISMISCW, 0x23); /* misc */ for (i = 0; i <= 0x18; i++) { /* crtc */ SETIREG(SISCR, i, crtcrdata[i]); } for (i = 0; i <= 0x13; i++) { /* att */ GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, i); SETREG(SISAR, attrdata[i]); } GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, 0x14); SETREG(SISAR, 0x00); GETREG(SISINPSTAT, &tmp8); SETREG(SISAR, 0x20); GETREG(SISINPSTAT, &tmp8); for (i = 0; i <= 0x08; i++) { /* grc */ SETIREG(SISGR, i, grcdata[i]); } SETIREGAND(SISGR, 0x05, 0xbf); for (i = 0x0A; i <= 0x0E; i++) { /* clr ext */ SETIREG(SISSR, i, 0x00); } SETIREGAND(SISSR, 0x37, 0xfe); SETREG(SISMISCW, 0xef); /* sync */ SETIREG(SISCR, 0x11, 0x00); /* crtc */ for (j = 0x00, i = 0; i <= 7; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x10; i <= 10; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x15; i <= 12; i++, j++) SETIREG(SISCR, j, crtcdata[i]); for (j = 0x0A; i <= 15; i++, j++) SETIREG(SISSR, j, crtcdata[i]); SETIREG(SISSR, 0x0E, (crtcdata[16] & 0xE0)); SETIREGANDOR(SISCR, 0x09, 0x5f, ((crtcdata[16] & 0x01) << 5)); SETIREG(SISCR, 0x14, 0x4f); du = (modex / 16) * (bpp * 2); /* offset/pitch */ SETIREGANDOR(SISSR, 0x0e, 0xf0, ((du >> 8) & 0x0f)); SETIREG(SISCR, 0x13, (du & 0xff)); du <<= 5; tmp8 = du >> 8; SETIREG(SISSR, 0x10, tmp8); SETIREG(SISSR, 0x31, 0x00); /* VCLK */ SETIREG(SISSR, 0x2b, 0x1b); SETIREG(SISSR, 0x2c, 0xe1); SETIREG(SISSR, 0x2d, 0x01); SETIREGAND(SISSR, 0x3d, 0xfe); /* FIFO */ SETIREG(SISSR, 0x08, 0xae); SETIREGAND(SISSR, 0x09, 0xf0); SETIREG(SISSR, 0x08, 0x34); SETIREGOR(SISSR, 0x3d, 0x01); SETIREGAND(SISSR, 0x1f, 0x3f); /* mode regs */ SETIREGANDOR(SISSR, 0x06, 0xc0, 0x0a); SETIREG(SISCR, 0x19, 0x00); SETIREGAND(SISCR, 0x1a, 0xfc); SETIREGAND(SISSR, 0x0f, 0xb7); SETIREGAND(SISSR, 0x31, 0xfb); SETIREGANDOR(SISSR, 0x21, 0x1f, 0xa0); SETIREGAND(SISSR, 0x32, 0xf3); SETIREGANDOR(SISSR, 0x07, 0xf8, 0x03); SETIREG(SISCR, 0x52, 0x6c); SETIREG(SISCR, 0x0d, 0x00); /* adjust frame */ SETIREG(SISCR, 0x0c, 0x00); SETIREG(SISSR, 0x0d, 0x00); SETIREGAND(SISSR, 0x37, 0xfe); SETIREG(SISCR, 0x32, 0x20); SETIREGAND(SISSR, 0x01, 0xdf); /* enable display */ SETIREG(SISCR, 0x63, (cr63 & 0xbf)); SETIREG(SISSR, 0x31, (sr31 & 0xfb)); if (touchengines) { SETIREG(SISSR, 0x20, 0xa1); /* enable engines */ SETIREGOR(SISSR, 0x1e, 0x5a); SETIREG(SISSR, 0x26, 0x01); /* disable cmdqueue */ SETIREG(SISSR, 0x27, 0x1f); SETIREG(SISSR, 0x26, 0x00); } SETIREG(SISCR, 0x34, 0x44); /* we just set std mode #44 */ } static int sisusb_init_gfxcore(struct sisusb_usb_data *sisusb) { int ret = 0, i, j, bw, chab, iret, retry = 3; u8 tmp8, ramtype; u32 tmp32; static const char mclktable[] = { 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143 }; static const char eclktable[] = { 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143, 0x3b, 0x22, 0x01, 143 }; static const char ramtypetable1[] = { 0x00, 0x04, 0x60, 0x60, 0x0f, 0x0f, 0x1f, 0x1f, 0xba, 0xba, 0xba, 0xba, 0xa9, 0xa9, 0xac, 0xac, 0xa0, 0xa0, 0xa0, 0xa8, 0x00, 0x00, 0x02, 0x02, 0x30, 0x30, 0x40, 0x40 }; static const char ramtypetable2[] = { 0x77, 0x77, 0x44, 0x44, 0x77, 0x77, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x5b, 0x5b, 0xab, 0xab, 0x00, 0x00, 0xf0, 0xf8 }; while (retry--) { /* Enable VGA */ ret = GETREG(SISVGAEN, &tmp8); ret |= SETREG(SISVGAEN, (tmp8 | 0x01)); /* Enable GPU access to VRAM */ ret |= GETREG(SISMISCR, &tmp8); ret |= SETREG(SISMISCW, (tmp8 | 0x01)); if (ret) continue; /* Reset registers */ ret |= SETIREGAND(SISCR, 0x5b, 0xdf); ret |= SETIREG(SISSR, 0x05, 0x86); ret |= SETIREGOR(SISSR, 0x20, 0x01); ret |= SETREG(SISMISCW, 0x67); for (i = 0x06; i <= 0x1f; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x21; i <= 0x27; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x31; i <= 0x3d; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x12; i <= 0x1b; i++) ret |= SETIREG(SISSR, i, 0x00); for (i = 0x79; i <= 0x7c; i++) ret |= SETIREG(SISCR, i, 0x00); if (ret) continue; ret |= SETIREG(SISCR, 0x63, 0x80); ret |= GETIREG(SISSR, 0x3a, &ramtype); ramtype &= 0x03; ret |= SETIREG(SISSR, 0x28, mclktable[ramtype * 4]); ret |= SETIREG(SISSR, 0x29, mclktable[(ramtype * 4) + 1]); ret |= SETIREG(SISSR, 0x2a, mclktable[(ramtype * 4) + 2]); ret |= SETIREG(SISSR, 0x2e, eclktable[ramtype * 4]); ret |= SETIREG(SISSR, 0x2f, eclktable[(ramtype * 4) + 1]); ret |= SETIREG(SISSR, 0x30, eclktable[(ramtype * 4) + 2]); ret |= SETIREG(SISSR, 0x07, 0x18); ret |= SETIREG(SISSR, 0x11, 0x0f); if (ret) continue; for (i = 0x15, j = 0; i <= 0x1b; i++, j++) { ret |= SETIREG(SISSR, i, ramtypetable1[(j*4) + ramtype]); } for (i = 0x40, j = 0; i <= 0x44; i++, j++) { ret |= SETIREG(SISCR, i, ramtypetable2[(j*4) + ramtype]); } ret |= SETIREG(SISCR, 0x49, 0xaa); ret |= SETIREG(SISSR, 0x1f, 0x00); ret |= SETIREG(SISSR, 0x20, 0xa0); ret |= SETIREG(SISSR, 0x23, 0xf6); ret |= SETIREG(SISSR, 0x24, 0x0d); ret |= SETIREG(SISSR, 0x25, 0x33); ret |= SETIREG(SISSR, 0x11, 0x0f); ret |= SETIREGOR(SISPART1, 0x2f, 0x01); ret |= SETIREGAND(SISCAP, 0x3f, 0xef); if (ret) continue; ret |= SETIREG(SISPART1, 0x00, 0x00); ret |= GETIREG(SISSR, 0x13, &tmp8); tmp8 >>= 4; ret |= SETIREG(SISPART1, 0x02, 0x00); ret |= SETIREG(SISPART1, 0x2e, 0x08); ret |= sisusb_read_pci_config(sisusb, 0x50, &tmp32); tmp32 &= 0x00f00000; tmp8 = (tmp32 == 0x100000) ? 0x33 : 0x03; ret |= SETIREG(SISSR, 0x25, tmp8); tmp8 = (tmp32 == 0x100000) ? 0xaa : 0x88; ret |= SETIREG(SISCR, 0x49, tmp8); ret |= SETIREG(SISSR, 0x27, 0x1f); ret |= SETIREG(SISSR, 0x31, 0x00); ret |= SETIREG(SISSR, 0x32, 0x11); ret |= SETIREG(SISSR, 0x33, 0x00); if (ret) continue; ret |= SETIREG(SISCR, 0x83, 0x00); sisusb_set_default_mode(sisusb, 0); ret |= SETIREGAND(SISSR, 0x21, 0xdf); ret |= SETIREGOR(SISSR, 0x01, 0x20); ret |= SETIREGOR(SISSR, 0x16, 0x0f); ret |= sisusb_triggersr16(sisusb, ramtype); /* Disable refresh */ ret |= SETIREGAND(SISSR, 0x17, 0xf8); ret |= SETIREGOR(SISSR, 0x19, 0x03); ret |= sisusb_getbuswidth(sisusb, &bw, &chab); ret |= sisusb_verify_mclk(sisusb); if (ramtype <= 1) { ret |= sisusb_get_sdram_size(sisusb, &iret, bw, chab); if (iret) { dev_err(&sisusb->sisusb_dev->dev, "RAM size detection failed, assuming 8MB video RAM\n"); ret |= SETIREG(SISSR, 0x14, 0x31); /* TODO */ } } else { dev_err(&sisusb->sisusb_dev->dev, "DDR RAM device found, assuming 8MB video RAM\n"); ret |= SETIREG(SISSR, 0x14, 0x31); /* *** TODO *** */ } /* Enable refresh */ ret |= SETIREG(SISSR, 0x16, ramtypetable1[4 + ramtype]); ret |= SETIREG(SISSR, 0x17, ramtypetable1[8 + ramtype]); ret |= SETIREG(SISSR, 0x19, ramtypetable1[16 + ramtype]); ret |= SETIREGOR(SISSR, 0x21, 0x20); ret |= SETIREG(SISSR, 0x22, 0xfb); ret |= SETIREG(SISSR, 0x21, 0xa5); if (ret == 0) break; } return ret; } #undef SETREG #undef GETREG #undef SETIREG #undef GETIREG #undef SETIREGOR #undef SETIREGAND #undef SETIREGANDOR #undef READL #undef WRITEL static void sisusb_get_ramconfig(struct sisusb_usb_data *sisusb) { u8 tmp8, tmp82, ramtype; int bw = 0; char *ramtypetext1 = NULL; static const char ram_datarate[4] = {'S', 'S', 'D', 'D'}; static const char ram_dynamictype[4] = {'D', 'G', 'D', 'G'}; static const int busSDR[4] = {64, 64, 128, 128}; static const int busDDR[4] = {32, 32, 64, 64}; static const int busDDRA[4] = {64+32, 64+32, (64+32)*2, (64+32)*2}; sisusb_getidxreg(sisusb, SISSR, 0x14, &tmp8); sisusb_getidxreg(sisusb, SISSR, 0x15, &tmp82); sisusb_getidxreg(sisusb, SISSR, 0x3a, &ramtype); sisusb->vramsize = (1 << ((tmp8 & 0xf0) >> 4)) * 1024 * 1024; ramtype &= 0x03; switch ((tmp8 >> 2) & 0x03) { case 0: ramtypetext1 = "1 ch/1 r"; if (tmp82 & 0x10) bw = 32; else bw = busSDR[(tmp8 & 0x03)]; break; case 1: ramtypetext1 = "1 ch/2 r"; sisusb->vramsize <<= 1; bw = busSDR[(tmp8 & 0x03)]; break; case 2: ramtypetext1 = "asymmetric"; sisusb->vramsize += sisusb->vramsize/2; bw = busDDRA[(tmp8 & 0x03)]; break; case 3: ramtypetext1 = "2 channel"; sisusb->vramsize <<= 1; bw = busDDR[(tmp8 & 0x03)]; break; } dev_info(&sisusb->sisusb_dev->dev, "%dMB %s %cDR S%cRAM, bus width %d\n", sisusb->vramsize >> 20, ramtypetext1, ram_datarate[ramtype], ram_dynamictype[ramtype], bw); } static int sisusb_do_init_gfxdevice(struct sisusb_usb_data *sisusb) { struct sisusb_packet packet; int ret; u32 tmp32; /* Do some magic */ packet.header = 0x001f; packet.address = 0x00000324; packet.data = 0x00000004; ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000364; packet.data = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000384; packet.data = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x001f; packet.address = 0x00000100; packet.data = 0x00000700; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); packet.header = 0x000f; packet.address = 0x00000004; ret |= sisusb_send_bridge_packet(sisusb, 6, &packet, 0); packet.data |= 0x17; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); /* Init BAR 0 (VRAM) */ ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x10, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_MEMBASE; ret |= sisusb_write_pci_config(sisusb, 0x10, tmp32); /* Init BAR 1 (MMIO) */ ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x14, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_MMIOBASE; ret |= sisusb_write_pci_config(sisusb, 0x14, tmp32); /* Init BAR 2 (i/o ports) */ ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); ret |= sisusb_write_pci_config(sisusb, 0x18, 0xfffffff0); ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); tmp32 &= 0x0f; tmp32 |= SISUSB_PCI_IOPORTBASE; ret |= sisusb_write_pci_config(sisusb, 0x18, tmp32); /* Enable memory and i/o access */ ret |= sisusb_read_pci_config(sisusb, 0x04, &tmp32); tmp32 |= 0x3; ret |= sisusb_write_pci_config(sisusb, 0x04, tmp32); if (ret == 0) { /* Some further magic */ packet.header = 0x001f; packet.address = 0x00000050; packet.data = 0x000000ff; ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0); } return ret; } /* Initialize the graphics device (return 0 on success) * This initializes the net2280 as well as the PCI registers * of the graphics board. */ static int sisusb_init_gfxdevice(struct sisusb_usb_data *sisusb, int initscreen) { int ret = 0, test = 0; u32 tmp32; if (sisusb->devinit == 1) { /* Read PCI BARs and see if they have been set up */ ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MEMBASE) test++; ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MMIOBASE) test++; ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32); if (ret) return ret; if ((tmp32 & 0xfffffff0) == SISUSB_PCI_IOPORTBASE) test++; } /* No? So reset the device */ if ((sisusb->devinit == 0) || (test != 3)) { ret |= sisusb_do_init_gfxdevice(sisusb); if (ret == 0) sisusb->devinit = 1; } if (sisusb->devinit) { /* Initialize the graphics core */ if (sisusb_init_gfxcore(sisusb) == 0) { sisusb->gfxinit = 1; sisusb_get_ramconfig(sisusb); sisusb_set_default_mode(sisusb, 1); ret |= sisusb_setup_screen(sisusb, 1, initscreen); } } return ret; } /* fops */ static int sisusb_open(struct inode *inode, struct file *file) { struct sisusb_usb_data *sisusb; struct usb_interface *interface; int subminor = iminor(inode); interface = usb_find_interface(&sisusb_driver, subminor); if (!interface) return -ENODEV; sisusb = usb_get_intfdata(interface); if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); if (!sisusb->present || !sisusb->ready) { mutex_unlock(&sisusb->lock); return -ENODEV; } if (sisusb->isopen) { mutex_unlock(&sisusb->lock); return -EBUSY; } if (!sisusb->devinit) { if (sisusb->sisusb_dev->speed == USB_SPEED_HIGH || sisusb->sisusb_dev->speed >= USB_SPEED_SUPER) { if (sisusb_init_gfxdevice(sisusb, 0)) { mutex_unlock(&sisusb->lock); dev_err(&sisusb->sisusb_dev->dev, "Failed to initialize device\n"); return -EIO; } } else { mutex_unlock(&sisusb->lock); dev_err(&sisusb->sisusb_dev->dev, "Device not attached to USB 2.0 hub\n"); return -EIO; } } /* Increment usage count for our sisusb */ kref_get(&sisusb->kref); sisusb->isopen = 1; file->private_data = sisusb; mutex_unlock(&sisusb->lock); return 0; } static void sisusb_delete(struct kref *kref) { struct sisusb_usb_data *sisusb = to_sisusb_dev(kref); if (!sisusb) return; usb_put_dev(sisusb->sisusb_dev); sisusb->sisusb_dev = NULL; sisusb_free_buffers(sisusb); sisusb_free_urbs(sisusb); kfree(sisusb); } static int sisusb_release(struct inode *inode, struct file *file) { struct sisusb_usb_data *sisusb; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); if (sisusb->present) { /* Wait for all URBs to finish if device still present */ if (!sisusb_wait_all_out_complete(sisusb)) sisusb_kill_all_busy(sisusb); } sisusb->isopen = 0; file->private_data = NULL; mutex_unlock(&sisusb->lock); /* decrement the usage count on our device */ kref_put(&sisusb->kref, sisusb_delete); return 0; } static ssize_t sisusb_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct sisusb_usb_data *sisusb; ssize_t bytes_read = 0; int errno = 0; u8 buf8; u16 buf16; u32 buf32, address; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE && (*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) { address = (*ppos) - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; /* Read i/o ports * Byte, word and long(32) can be read. As this * emulates inX instructions, the data returned is * in machine-endianness. */ switch (count) { case 1: if (sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, address, &buf8)) errno = -EIO; else if (put_user(buf8, (u8 __user *)buffer)) errno = -EFAULT; else bytes_read = 1; break; case 2: if (sisusb_read_memio_word(sisusb, SISUSB_TYPE_IO, address, &buf16)) errno = -EIO; else if (put_user(buf16, (u16 __user *)buffer)) errno = -EFAULT; else bytes_read = 2; break; case 4: if (sisusb_read_memio_long(sisusb, SISUSB_TYPE_IO, address, &buf32)) errno = -EIO; else if (put_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else bytes_read = 4; break; default: errno = -EIO; } } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE && (*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) { address = (*ppos) - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; /* Read video ram * Remember: Data delivered is never endian-corrected */ errno = sisusb_read_mem_bulk(sisusb, address, NULL, count, buffer, &bytes_read); if (bytes_read) errno = bytes_read; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE && (*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) { address = (*ppos) - SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOBASE; /* Read MMIO * Remember: Data delivered is never endian-corrected */ errno = sisusb_read_mem_bulk(sisusb, address, NULL, count, buffer, &bytes_read); if (bytes_read) errno = bytes_read; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE && (*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + 0x5c) { if (count != 4) { mutex_unlock(&sisusb->lock); return -EINVAL; } address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE; /* Read PCI config register * Return value delivered in machine endianness. */ if (sisusb_read_pci_config(sisusb, address, &buf32)) errno = -EIO; else if (put_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else bytes_read = 4; } else { errno = -EBADFD; } (*ppos) += bytes_read; mutex_unlock(&sisusb->lock); return errno ? errno : bytes_read; } static ssize_t sisusb_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct sisusb_usb_data *sisusb; int errno = 0; ssize_t bytes_written = 0; u8 buf8; u16 buf16; u32 buf32, address; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE && (*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) { address = (*ppos) - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; /* Write i/o ports * Byte, word and long(32) can be written. As this * emulates outX instructions, the data is expected * in machine-endianness. */ switch (count) { case 1: if (get_user(buf8, (u8 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, address, buf8)) errno = -EIO; else bytes_written = 1; break; case 2: if (get_user(buf16, (u16 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_word(sisusb, SISUSB_TYPE_IO, address, buf16)) errno = -EIO; else bytes_written = 2; break; case 4: if (get_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_memio_long(sisusb, SISUSB_TYPE_IO, address, buf32)) errno = -EIO; else bytes_written = 4; break; default: errno = -EIO; } } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE && (*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) { address = (*ppos) - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; /* Write video ram. * Buffer is copied 1:1, therefore, on big-endian * machines, the data must be swapped by userland * in advance (if applicable; no swapping in 8bpp * mode or if YUV data is being transferred). */ errno = sisusb_write_mem_bulk(sisusb, address, NULL, count, buffer, 0, &bytes_written); if (bytes_written) errno = bytes_written; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE && (*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) { address = (*ppos) - SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOBASE; /* Write MMIO. * Buffer is copied 1:1, therefore, on big-endian * machines, the data must be swapped by userland * in advance. */ errno = sisusb_write_mem_bulk(sisusb, address, NULL, count, buffer, 0, &bytes_written); if (bytes_written) errno = bytes_written; } else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE && (*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + SISUSB_PCI_PCONFSIZE) { if (count != 4) { mutex_unlock(&sisusb->lock); return -EINVAL; } address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE; /* Write PCI config register. * Given value expected in machine endianness. */ if (get_user(buf32, (u32 __user *)buffer)) errno = -EFAULT; else if (sisusb_write_pci_config(sisusb, address, buf32)) errno = -EIO; else bytes_written = 4; } else { /* Error */ errno = -EBADFD; } (*ppos) += bytes_written; mutex_unlock(&sisusb->lock); return errno ? errno : bytes_written; } static loff_t sisusb_lseek(struct file *file, loff_t offset, int orig) { struct sisusb_usb_data *sisusb; loff_t ret; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { mutex_unlock(&sisusb->lock); return -ENODEV; } ret = no_seek_end_llseek(file, offset, orig); mutex_unlock(&sisusb->lock); return ret; } static int sisusb_handle_command(struct sisusb_usb_data *sisusb, struct sisusb_command *y, unsigned long arg) { int retval, length; u32 port, address; /* All our commands require the device * to be initialized. */ if (!sisusb->devinit) return -ENODEV; port = y->data3 - SISUSB_PCI_PSEUDO_IOPORTBASE + SISUSB_PCI_IOPORTBASE; switch (y->operation) { case SUCMD_GET: retval = sisusb_getidxreg(sisusb, port, y->data0, &y->data1); if (!retval) { if (copy_to_user((void __user *)arg, y, sizeof(*y))) retval = -EFAULT; } break; case SUCMD_SET: retval = sisusb_setidxreg(sisusb, port, y->data0, y->data1); break; case SUCMD_SETOR: retval = sisusb_setidxregor(sisusb, port, y->data0, y->data1); break; case SUCMD_SETAND: retval = sisusb_setidxregand(sisusb, port, y->data0, y->data1); break; case SUCMD_SETANDOR: retval = sisusb_setidxregandor(sisusb, port, y->data0, y->data1, y->data2); break; case SUCMD_SETMASK: retval = sisusb_setidxregmask(sisusb, port, y->data0, y->data1, y->data2); break; case SUCMD_CLRSCR: /* Gfx core must be initialized */ if (!sisusb->gfxinit) return -ENODEV; length = (y->data0 << 16) | (y->data1 << 8) | y->data2; address = y->data3 - SISUSB_PCI_PSEUDO_MEMBASE + SISUSB_PCI_MEMBASE; retval = sisusb_clear_vram(sisusb, address, length); break; case SUCMD_HANDLETEXTMODE: retval = 0; break; default: retval = -EINVAL; } if (retval > 0) retval = -EIO; return retval; } static long sisusb_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct sisusb_usb_data *sisusb; struct sisusb_info x; struct sisusb_command y; long retval = 0; u32 __user *argp = (u32 __user *)arg; sisusb = file->private_data; if (!sisusb) return -ENODEV; mutex_lock(&sisusb->lock); /* Sanity check */ if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) { retval = -ENODEV; goto err_out; } switch (cmd) { case SISUSB_GET_CONFIG_SIZE: if (put_user(sizeof(x), argp)) retval = -EFAULT; break; case SISUSB_GET_CONFIG: x.sisusb_id = SISUSB_ID; x.sisusb_version = SISUSB_VERSION; x.sisusb_revision = SISUSB_REVISION; x.sisusb_patchlevel = SISUSB_PATCHLEVEL; x.sisusb_gfxinit = sisusb->gfxinit; x.sisusb_vrambase = SISUSB_PCI_PSEUDO_MEMBASE; x.sisusb_mmiobase = SISUSB_PCI_PSEUDO_MMIOBASE; x.sisusb_iobase = SISUSB_PCI_PSEUDO_IOPORTBASE; x.sisusb_pcibase = SISUSB_PCI_PSEUDO_PCIBASE; x.sisusb_vramsize = sisusb->vramsize; x.sisusb_minor = sisusb->minor; x.sisusb_fbdevactive = 0; x.sisusb_conactive = 0; memset(x.sisusb_reserved, 0, sizeof(x.sisusb_reserved)); if (copy_to_user((void __user *)arg, &x, sizeof(x))) retval = -EFAULT; break; case SISUSB_COMMAND: if (copy_from_user(&y, (void __user *)arg, sizeof(y))) retval = -EFAULT; else retval = sisusb_handle_command(sisusb, &y, arg); break; default: retval = -ENOTTY; break; } err_out: mutex_unlock(&sisusb->lock); return retval; } #ifdef CONFIG_COMPAT static long sisusb_compat_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { switch (cmd) { case SISUSB_GET_CONFIG_SIZE: case SISUSB_GET_CONFIG: case SISUSB_COMMAND: return sisusb_ioctl(f, cmd, arg); default: return -ENOIOCTLCMD; } } #endif static const struct file_operations usb_sisusb_fops = { .owner = THIS_MODULE, .open = sisusb_open, .release = sisusb_release, .read = sisusb_read, .write = sisusb_write, .llseek = sisusb_lseek, #ifdef CONFIG_COMPAT .compat_ioctl = sisusb_compat_ioctl, #endif .unlocked_ioctl = sisusb_ioctl }; static struct usb_class_driver usb_sisusb_class = { .name = "sisusbvga%d", .fops = &usb_sisusb_fops, .minor_base = SISUSB_MINOR }; static int sisusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct sisusb_usb_data *sisusb; int retval = 0, i; static const u8 ep_addresses[] = { SISUSB_EP_GFX_IN | USB_DIR_IN, SISUSB_EP_GFX_OUT | USB_DIR_OUT, SISUSB_EP_GFX_BULK_OUT | USB_DIR_OUT, SISUSB_EP_GFX_LBULK_OUT | USB_DIR_OUT, SISUSB_EP_BRIDGE_IN | USB_DIR_IN, SISUSB_EP_BRIDGE_OUT | USB_DIR_OUT, 0}; /* Are the expected endpoints present? */ if (!usb_check_bulk_endpoints(intf, ep_addresses)) { dev_err(&intf->dev, "Invalid USB2VGA device\n"); return -EINVAL; } dev_info(&dev->dev, "USB2VGA dongle found at address %d\n", dev->devnum); /* Allocate memory for our private */ sisusb = kzalloc(sizeof(*sisusb), GFP_KERNEL); if (!sisusb) return -ENOMEM; kref_init(&sisusb->kref); mutex_init(&(sisusb->lock)); sisusb->sisusb_dev = dev; sisusb->vrambase = SISUSB_PCI_MEMBASE; sisusb->mmiobase = SISUSB_PCI_MMIOBASE; sisusb->mmiosize = SISUSB_PCI_MMIOSIZE; sisusb->ioportbase = SISUSB_PCI_IOPORTBASE; /* Everything else is zero */ /* Register device */ retval = usb_register_dev(intf, &usb_sisusb_class); if (retval) { dev_err(&sisusb->sisusb_dev->dev, "Failed to get a minor for device %d\n", dev->devnum); retval = -ENODEV; goto error_1; } sisusb->minor = intf->minor; /* Allocate buffers */ sisusb->ibufsize = SISUSB_IBUF_SIZE; sisusb->ibuf = kmalloc(SISUSB_IBUF_SIZE, GFP_KERNEL); if (!sisusb->ibuf) { retval = -ENOMEM; goto error_2; } sisusb->numobufs = 0; sisusb->obufsize = SISUSB_OBUF_SIZE; for (i = 0; i < NUMOBUFS; i++) { sisusb->obuf[i] = kmalloc(SISUSB_OBUF_SIZE, GFP_KERNEL); if (!sisusb->obuf[i]) { if (i == 0) { retval = -ENOMEM; goto error_3; } break; } sisusb->numobufs++; } /* Allocate URBs */ sisusb->sisurbin = usb_alloc_urb(0, GFP_KERNEL); if (!sisusb->sisurbin) { retval = -ENOMEM; goto error_3; } sisusb->completein = 1; for (i = 0; i < sisusb->numobufs; i++) { sisusb->sisurbout[i] = usb_alloc_urb(0, GFP_KERNEL); if (!sisusb->sisurbout[i]) { retval = -ENOMEM; goto error_4; } sisusb->urbout_context[i].sisusb = (void *)sisusb; sisusb->urbout_context[i].urbindex = i; sisusb->urbstatus[i] = 0; } dev_info(&sisusb->sisusb_dev->dev, "Allocated %d output buffers\n", sisusb->numobufs); /* Do remaining init stuff */ init_waitqueue_head(&sisusb->wait_q); usb_set_intfdata(intf, sisusb); usb_get_dev(sisusb->sisusb_dev); sisusb->present = 1; if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { int initscreen = 1; if (sisusb_init_gfxdevice(sisusb, initscreen)) dev_err(&sisusb->sisusb_dev->dev, "Failed to early initialize device\n"); } else dev_info(&sisusb->sisusb_dev->dev, "Not attached to USB 2.0 hub, deferring init\n"); sisusb->ready = 1; #ifdef SISUSBENDIANTEST dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST ***\n"); sisusb_testreadwrite(sisusb); dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST END ***\n"); #endif return 0; error_4: sisusb_free_urbs(sisusb); error_3: sisusb_free_buffers(sisusb); error_2: usb_deregister_dev(intf, &usb_sisusb_class); error_1: kfree(sisusb); return retval; } static void sisusb_disconnect(struct usb_interface *intf) { struct sisusb_usb_data *sisusb; /* This should *not* happen */ sisusb = usb_get_intfdata(intf); if (!sisusb) return; usb_deregister_dev(intf, &usb_sisusb_class); mutex_lock(&sisusb->lock); /* Wait for all URBs to complete and kill them in case (MUST do) */ if (!sisusb_wait_all_out_complete(sisusb)) sisusb_kill_all_busy(sisusb); usb_set_intfdata(intf, NULL); sisusb->present = 0; sisusb->ready = 0; mutex_unlock(&sisusb->lock); /* decrement our usage count */ kref_put(&sisusb->kref, sisusb_delete); } static const struct usb_device_id sisusb_table[] = { { USB_DEVICE(0x0711, 0x0550) }, { USB_DEVICE(0x0711, 0x0900) }, { USB_DEVICE(0x0711, 0x0901) }, { USB_DEVICE(0x0711, 0x0902) }, { USB_DEVICE(0x0711, 0x0903) }, { USB_DEVICE(0x0711, 0x0918) }, { USB_DEVICE(0x0711, 0x0920) }, { USB_DEVICE(0x0711, 0x0950) }, { USB_DEVICE(0x0711, 0x5200) }, { USB_DEVICE(0x182d, 0x021c) }, { USB_DEVICE(0x182d, 0x0269) }, { } }; MODULE_DEVICE_TABLE(usb, sisusb_table); static struct usb_driver sisusb_driver = { .name = "sisusb", .probe = sisusb_probe, .disconnect = sisusb_disconnect, .id_table = sisusb_table, }; module_usb_driver(sisusb_driver); MODULE_AUTHOR("Thomas Winischhofer <[email protected]>"); MODULE_DESCRIPTION("sisusbvga - Driver for Net2280/SiS315-based USB2VGA dongles"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/misc/sisusbvga/sisusbvga.c
// SPDX-License-Identifier: GPL-2.0 /* * Standalone EHCI usb debug driver * * Originally written by: * Eric W. Biederman" <[email protected]> and * Yinghai Lu <[email protected]> * * Changes for early/late printk and HW errata: * Jason Wessel <[email protected]> * Copyright (C) 2009 Wind River Systems, Inc. * */ #include <linux/console.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/iopoll.h> #include <linux/pci_regs.h> #include <linux/pci_ids.h> #include <linux/usb/ch9.h> #include <linux/usb/ehci_def.h> #include <linux/delay.h> #include <linux/serial_core.h> #include <linux/kgdb.h> #include <linux/kthread.h> #include <asm/io.h> #include <asm/pci-direct.h> #include <asm/fixmap.h> /* The code here is intended to talk directly to the EHCI debug port * and does not require that you have any kind of USB host controller * drivers or USB device drivers compiled into the kernel. * * If you make a change to anything in here, the following test cases * need to pass where a USB debug device works in the following * configurations. * * 1. boot args: earlyprintk=dbgp * o kernel compiled with # CONFIG_USB_EHCI_HCD is not set * o kernel compiled with CONFIG_USB_EHCI_HCD=y * 2. boot args: earlyprintk=dbgp,keep * o kernel compiled with # CONFIG_USB_EHCI_HCD is not set * o kernel compiled with CONFIG_USB_EHCI_HCD=y * 3. boot args: earlyprintk=dbgp console=ttyUSB0 * o kernel has CONFIG_USB_EHCI_HCD=y and * CONFIG_USB_SERIAL_DEBUG=y * 4. boot args: earlyprintk=vga,dbgp * o kernel compiled with # CONFIG_USB_EHCI_HCD is not set * o kernel compiled with CONFIG_USB_EHCI_HCD=y * * For the 4th configuration you can turn on or off the DBGP_DEBUG * such that you can debug the dbgp device's driver code. */ static int dbgp_phys_port = 1; static struct ehci_caps __iomem *ehci_caps; static struct ehci_regs __iomem *ehci_regs; static struct ehci_dbg_port __iomem *ehci_debug; static int dbgp_not_safe; /* Cannot use debug device during ehci reset */ static unsigned int dbgp_endpoint_out; static unsigned int dbgp_endpoint_in; struct ehci_dev { u32 bus; u32 slot; u32 func; }; static struct ehci_dev ehci_dev; #define USB_DEBUG_DEVNUM 127 #ifdef DBGP_DEBUG #define dbgp_printk printk static void dbgp_ehci_status(char *str) { if (!ehci_debug) return; dbgp_printk("dbgp: %s\n", str); dbgp_printk(" Debug control: %08x", readl(&ehci_debug->control)); dbgp_printk(" ehci cmd : %08x", readl(&ehci_regs->command)); dbgp_printk(" ehci conf flg: %08x\n", readl(&ehci_regs->configured_flag)); dbgp_printk(" ehci status : %08x", readl(&ehci_regs->status)); dbgp_printk(" ehci portsc : %08x\n", readl(&ehci_regs->port_status[dbgp_phys_port - 1])); } #else static inline void dbgp_ehci_status(char *str) { } static inline void dbgp_printk(const char *fmt, ...) { } #endif static inline u32 dbgp_len_update(u32 x, u32 len) { return (x & ~0x0f) | (len & 0x0f); } #ifdef CONFIG_KGDB static struct kgdb_io kgdbdbgp_io_ops; #define dbgp_kgdb_mode (dbg_io_ops == &kgdbdbgp_io_ops) #else #define dbgp_kgdb_mode (0) #endif /* Local version of HC_LENGTH macro as ehci struct is not available here */ #define EARLY_HC_LENGTH(p) (0x00ff & (p)) /* bits 7 : 0 */ /* * USB Packet IDs (PIDs) */ /* token */ #define USB_PID_OUT 0xe1 #define USB_PID_IN 0x69 #define USB_PID_SOF 0xa5 #define USB_PID_SETUP 0x2d /* handshake */ #define USB_PID_ACK 0xd2 #define USB_PID_NAK 0x5a #define USB_PID_STALL 0x1e #define USB_PID_NYET 0x96 /* data */ #define USB_PID_DATA0 0xc3 #define USB_PID_DATA1 0x4b #define USB_PID_DATA2 0x87 #define USB_PID_MDATA 0x0f /* Special */ #define USB_PID_PREAMBLE 0x3c #define USB_PID_ERR 0x3c #define USB_PID_SPLIT 0x78 #define USB_PID_PING 0xb4 #define USB_PID_UNDEF_0 0xf0 #define USB_PID_DATA_TOGGLE 0x88 #define DBGP_CLAIM (DBGP_OWNER | DBGP_ENABLED | DBGP_INUSE) #define PCI_CAP_ID_EHCI_DEBUG 0xa #define HUB_ROOT_RESET_TIME 50 /* times are in msec */ #define HUB_SHORT_RESET_TIME 10 #define HUB_LONG_RESET_TIME 200 #define HUB_RESET_TIMEOUT 500 #define DBGP_MAX_PACKET 8 #define DBGP_TIMEOUT (250 * 1000) #define DBGP_LOOPS 1000 static inline u32 dbgp_pid_write_update(u32 x, u32 tok) { static int data0 = USB_PID_DATA1; data0 ^= USB_PID_DATA_TOGGLE; return (x & 0xffff0000) | (data0 << 8) | (tok & 0xff); } static inline u32 dbgp_pid_read_update(u32 x, u32 tok) { return (x & 0xffff0000) | (USB_PID_DATA0 << 8) | (tok & 0xff); } static int dbgp_wait_until_complete(void) { u32 ctrl; int ret; ret = readl_poll_timeout_atomic(&ehci_debug->control, ctrl, (ctrl & DBGP_DONE), 1, DBGP_TIMEOUT); if (ret) return -DBGP_TIMEOUT; /* * Now that we have observed the completed transaction, * clear the done bit. */ writel(ctrl | DBGP_DONE, &ehci_debug->control); return (ctrl & DBGP_ERROR) ? -DBGP_ERRCODE(ctrl) : DBGP_LEN(ctrl); } static inline void dbgp_mdelay(int ms) { int i; while (ms--) { for (i = 0; i < 1000; i++) outb(0x1, 0x80); } } static void dbgp_breath(void) { /* Sleep to give the debug port a chance to breathe */ } static int dbgp_wait_until_done(unsigned ctrl, int loop) { u32 pids, lpid; int ret; retry: writel(ctrl | DBGP_GO, &ehci_debug->control); ret = dbgp_wait_until_complete(); pids = readl(&ehci_debug->pids); lpid = DBGP_PID_GET(pids); if (ret < 0) { /* A -DBGP_TIMEOUT failure here means the device has * failed, perhaps because it was unplugged, in which * case we do not want to hang the system so the dbgp * will be marked as unsafe to use. EHCI reset is the * only way to recover if you unplug the dbgp device. */ if (ret == -DBGP_TIMEOUT && !dbgp_not_safe) dbgp_not_safe = 1; if (ret == -DBGP_ERR_BAD && --loop > 0) goto retry; return ret; } /* * If the port is getting full or it has dropped data * start pacing ourselves, not necessary but it's friendly. */ if ((lpid == USB_PID_NAK) || (lpid == USB_PID_NYET)) dbgp_breath(); /* If I get a NACK reissue the transmission */ if (lpid == USB_PID_NAK) { if (--loop > 0) goto retry; } return ret; } static inline void dbgp_set_data(const void *buf, int size) { const unsigned char *bytes = buf; u32 lo, hi; int i; lo = hi = 0; for (i = 0; i < 4 && i < size; i++) lo |= bytes[i] << (8*i); for (; i < 8 && i < size; i++) hi |= bytes[i] << (8*(i - 4)); writel(lo, &ehci_debug->data03); writel(hi, &ehci_debug->data47); } static inline void dbgp_get_data(void *buf, int size) { unsigned char *bytes = buf; u32 lo, hi; int i; lo = readl(&ehci_debug->data03); hi = readl(&ehci_debug->data47); for (i = 0; i < 4 && i < size; i++) bytes[i] = (lo >> (8*i)) & 0xff; for (; i < 8 && i < size; i++) bytes[i] = (hi >> (8*(i - 4))) & 0xff; } static int dbgp_bulk_write(unsigned devnum, unsigned endpoint, const char *bytes, int size) { int ret; u32 addr; u32 pids, ctrl; if (size > DBGP_MAX_PACKET) return -1; addr = DBGP_EPADDR(devnum, endpoint); pids = readl(&ehci_debug->pids); pids = dbgp_pid_write_update(pids, USB_PID_OUT); ctrl = readl(&ehci_debug->control); ctrl = dbgp_len_update(ctrl, size); ctrl |= DBGP_OUT; ctrl |= DBGP_GO; dbgp_set_data(bytes, size); writel(addr, &ehci_debug->address); writel(pids, &ehci_debug->pids); ret = dbgp_wait_until_done(ctrl, DBGP_LOOPS); return ret; } static int dbgp_bulk_read(unsigned devnum, unsigned endpoint, void *data, int size, int loops) { u32 pids, addr, ctrl; int ret; if (size > DBGP_MAX_PACKET) return -1; addr = DBGP_EPADDR(devnum, endpoint); pids = readl(&ehci_debug->pids); pids = dbgp_pid_read_update(pids, USB_PID_IN); ctrl = readl(&ehci_debug->control); ctrl = dbgp_len_update(ctrl, size); ctrl &= ~DBGP_OUT; ctrl |= DBGP_GO; writel(addr, &ehci_debug->address); writel(pids, &ehci_debug->pids); ret = dbgp_wait_until_done(ctrl, loops); if (ret < 0) return ret; if (size > ret) size = ret; dbgp_get_data(data, size); return ret; } static int dbgp_control_msg(unsigned devnum, int requesttype, int request, int value, int index, void *data, int size) { u32 pids, addr, ctrl; struct usb_ctrlrequest req; int read; int ret; read = (requesttype & USB_DIR_IN) != 0; if (size > (read ? DBGP_MAX_PACKET : 0)) return -1; /* Compute the control message */ req.bRequestType = requesttype; req.bRequest = request; req.wValue = cpu_to_le16(value); req.wIndex = cpu_to_le16(index); req.wLength = cpu_to_le16(size); pids = DBGP_PID_SET(USB_PID_DATA0, USB_PID_SETUP); addr = DBGP_EPADDR(devnum, 0); ctrl = readl(&ehci_debug->control); ctrl = dbgp_len_update(ctrl, sizeof(req)); ctrl |= DBGP_OUT; ctrl |= DBGP_GO; /* Send the setup message */ dbgp_set_data(&req, sizeof(req)); writel(addr, &ehci_debug->address); writel(pids, &ehci_debug->pids); ret = dbgp_wait_until_done(ctrl, DBGP_LOOPS); if (ret < 0) return ret; /* Read the result */ return dbgp_bulk_read(devnum, 0, data, size, DBGP_LOOPS); } /* Find a PCI capability */ static u32 __init find_cap(u32 num, u32 slot, u32 func, int cap) { u8 pos; int bytes; if (!(read_pci_config_16(num, slot, func, PCI_STATUS) & PCI_STATUS_CAP_LIST)) return 0; pos = read_pci_config_byte(num, slot, func, PCI_CAPABILITY_LIST); for (bytes = 0; bytes < 48 && pos >= 0x40; bytes++) { u8 id; pos &= ~3; id = read_pci_config_byte(num, slot, func, pos+PCI_CAP_LIST_ID); if (id == 0xff) break; if (id == cap) return pos; pos = read_pci_config_byte(num, slot, func, pos+PCI_CAP_LIST_NEXT); } return 0; } static u32 __init __find_dbgp(u32 bus, u32 slot, u32 func) { u32 class; class = read_pci_config(bus, slot, func, PCI_CLASS_REVISION); if ((class >> 8) != PCI_CLASS_SERIAL_USB_EHCI) return 0; return find_cap(bus, slot, func, PCI_CAP_ID_EHCI_DEBUG); } static u32 __init find_dbgp(int ehci_num, u32 *rbus, u32 *rslot, u32 *rfunc) { u32 bus, slot, func; for (bus = 0; bus < 256; bus++) { for (slot = 0; slot < 32; slot++) { for (func = 0; func < 8; func++) { unsigned cap; cap = __find_dbgp(bus, slot, func); if (!cap) continue; if (ehci_num-- != 0) continue; *rbus = bus; *rslot = slot; *rfunc = func; return cap; } } } return 0; } static int dbgp_ehci_startup(void) { u32 ctrl, cmd, status; int loop; /* Claim ownership, but do not enable yet */ ctrl = readl(&ehci_debug->control); ctrl |= DBGP_OWNER; ctrl &= ~(DBGP_ENABLED | DBGP_INUSE); writel(ctrl, &ehci_debug->control); udelay(1); dbgp_ehci_status("EHCI startup"); /* Start the ehci running */ cmd = readl(&ehci_regs->command); cmd &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | CMD_ASE | CMD_RESET); cmd |= CMD_RUN; writel(cmd, &ehci_regs->command); /* Ensure everything is routed to the EHCI */ writel(FLAG_CF, &ehci_regs->configured_flag); /* Wait until the controller is no longer halted */ loop = 1000; do { status = readl(&ehci_regs->status); if (!(status & STS_HALT)) break; udelay(1); } while (--loop > 0); if (!loop) { dbgp_printk("ehci can not be started\n"); return -ENODEV; } dbgp_printk("ehci started\n"); return 0; } static int dbgp_ehci_controller_reset(void) { int loop = 250 * 1000; u32 cmd; /* Reset the EHCI controller */ cmd = readl(&ehci_regs->command); cmd |= CMD_RESET; writel(cmd, &ehci_regs->command); do { cmd = readl(&ehci_regs->command); } while ((cmd & CMD_RESET) && (--loop > 0)); if (!loop) { dbgp_printk("can not reset ehci\n"); return -1; } dbgp_ehci_status("ehci reset done"); return 0; } static int ehci_wait_for_port(int port); /* Return 0 on success * Return -ENODEV for any general failure * Return -EIO if wait for port fails */ static int _dbgp_external_startup(void) { int devnum; struct usb_debug_descriptor dbgp_desc; int ret; u32 ctrl, portsc, cmd; int dbg_port = dbgp_phys_port; int tries = 3; int reset_port_tries = 1; int try_hard_once = 1; try_port_reset_again: ret = dbgp_ehci_startup(); if (ret) return ret; /* Wait for a device to show up in the debug port */ ret = ehci_wait_for_port(dbg_port); if (ret < 0) { portsc = readl(&ehci_regs->port_status[dbg_port - 1]); if (!(portsc & PORT_CONNECT) && try_hard_once) { /* Last ditch effort to try to force enable * the debug device by using the packet test * ehci command to try and wake it up. */ try_hard_once = 0; cmd = readl(&ehci_regs->command); cmd &= ~CMD_RUN; writel(cmd, &ehci_regs->command); portsc = readl(&ehci_regs->port_status[dbg_port - 1]); portsc |= PORT_TEST_PKT; writel(portsc, &ehci_regs->port_status[dbg_port - 1]); dbgp_ehci_status("Trying to force debug port online"); mdelay(50); dbgp_ehci_controller_reset(); goto try_port_reset_again; } else if (reset_port_tries--) { goto try_port_reset_again; } dbgp_printk("No device found in debug port\n"); return -EIO; } dbgp_ehci_status("wait for port done"); /* Enable the debug port */ ctrl = readl(&ehci_debug->control); ctrl |= DBGP_CLAIM; writel(ctrl, &ehci_debug->control); ctrl = readl(&ehci_debug->control); if ((ctrl & DBGP_CLAIM) != DBGP_CLAIM) { dbgp_printk("No device in debug port\n"); writel(ctrl & ~DBGP_CLAIM, &ehci_debug->control); return -ENODEV; } dbgp_ehci_status("debug ported enabled"); /* Completely transfer the debug device to the debug controller */ portsc = readl(&ehci_regs->port_status[dbg_port - 1]); portsc &= ~PORT_PE; writel(portsc, &ehci_regs->port_status[dbg_port - 1]); dbgp_mdelay(100); try_again: /* Find the debug device and make it device number 127 */ for (devnum = 0; devnum <= 127; devnum++) { ret = dbgp_control_msg(devnum, USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE, USB_REQ_GET_DESCRIPTOR, (USB_DT_DEBUG << 8), 0, &dbgp_desc, sizeof(dbgp_desc)); if (ret > 0) break; } if (devnum > 127) { dbgp_printk("Could not find attached debug device\n"); goto err; } dbgp_endpoint_out = dbgp_desc.bDebugOutEndpoint; dbgp_endpoint_in = dbgp_desc.bDebugInEndpoint; /* Move the device to 127 if it isn't already there */ if (devnum != USB_DEBUG_DEVNUM) { ret = dbgp_control_msg(devnum, USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS, USB_DEBUG_DEVNUM, 0, NULL, 0); if (ret < 0) { dbgp_printk("Could not move attached device to %d\n", USB_DEBUG_DEVNUM); goto err; } dbgp_printk("debug device renamed to 127\n"); } /* Enable the debug interface */ ret = dbgp_control_msg(USB_DEBUG_DEVNUM, USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, USB_REQ_SET_FEATURE, USB_DEVICE_DEBUG_MODE, 0, NULL, 0); if (ret < 0) { dbgp_printk(" Could not enable the debug device\n"); goto err; } dbgp_printk("debug interface enabled\n"); /* Perform a small write to get the even/odd data state in sync */ ret = dbgp_bulk_write(USB_DEBUG_DEVNUM, dbgp_endpoint_out, " ", 1); if (ret < 0) { dbgp_printk("dbgp_bulk_write failed: %d\n", ret); goto err; } dbgp_printk("small write done\n"); dbgp_not_safe = 0; return 0; err: if (tries--) goto try_again; return -ENODEV; } static int ehci_reset_port(int port) { u32 portsc; u32 delay_time, delay; int loop; dbgp_ehci_status("reset port"); /* Reset the usb debug port */ portsc = readl(&ehci_regs->port_status[port - 1]); portsc &= ~PORT_PE; portsc |= PORT_RESET; writel(portsc, &ehci_regs->port_status[port - 1]); delay = HUB_ROOT_RESET_TIME; for (delay_time = 0; delay_time < HUB_RESET_TIMEOUT; delay_time += delay) { dbgp_mdelay(delay); portsc = readl(&ehci_regs->port_status[port - 1]); if (!(portsc & PORT_RESET)) break; } if (portsc & PORT_RESET) { /* force reset to complete */ loop = 100 * 1000; writel(portsc & ~(PORT_RWC_BITS | PORT_RESET), &ehci_regs->port_status[port - 1]); do { udelay(1); portsc = readl(&ehci_regs->port_status[port-1]); } while ((portsc & PORT_RESET) && (--loop > 0)); } /* Device went away? */ if (!(portsc & PORT_CONNECT)) return -ENOTCONN; /* bomb out completely if something weird happened */ if ((portsc & PORT_CSC)) return -EINVAL; /* If we've finished resetting, then break out of the loop */ if (!(portsc & PORT_RESET) && (portsc & PORT_PE)) return 0; return -EBUSY; } static int ehci_wait_for_port(int port) { u32 status; int ret, reps; for (reps = 0; reps < 300; reps++) { status = readl(&ehci_regs->status); if (status & STS_PCD) break; dbgp_mdelay(1); } ret = ehci_reset_port(port); if (ret == 0) return 0; return -ENOTCONN; } typedef void (*set_debug_port_t)(int port); static void __init default_set_debug_port(int port) { } static set_debug_port_t __initdata set_debug_port = default_set_debug_port; static void __init nvidia_set_debug_port(int port) { u32 dword; dword = read_pci_config(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, 0x74); dword &= ~(0x0f<<12); dword |= ((port & 0x0f)<<12); write_pci_config(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, 0x74, dword); dbgp_printk("set debug port to %d\n", port); } static void __init detect_set_debug_port(void) { u32 vendorid; vendorid = read_pci_config(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, 0x00); if ((vendorid & 0xffff) == 0x10de) { dbgp_printk("using nvidia set_debug_port\n"); set_debug_port = nvidia_set_debug_port; } } /* The code in early_ehci_bios_handoff() is derived from the usb pci * quirk initialization, but altered so as to use the early PCI * routines. */ #define EHCI_USBLEGSUP_BIOS (1 << 16) /* BIOS semaphore */ #define EHCI_USBLEGCTLSTS 4 /* legacy control/status */ static void __init early_ehci_bios_handoff(void) { u32 hcc_params = readl(&ehci_caps->hcc_params); int offset = (hcc_params >> 8) & 0xff; u32 cap; int msec; if (!offset) return; cap = read_pci_config(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, offset); dbgp_printk("dbgp: ehci BIOS state %08x\n", cap); if ((cap & 0xff) == 1 && (cap & EHCI_USBLEGSUP_BIOS)) { dbgp_printk("dbgp: BIOS handoff\n"); write_pci_config_byte(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, offset + 3, 1); } /* if boot firmware now owns EHCI, spin till it hands it over. */ msec = 1000; while ((cap & EHCI_USBLEGSUP_BIOS) && (msec > 0)) { mdelay(10); msec -= 10; cap = read_pci_config(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, offset); } if (cap & EHCI_USBLEGSUP_BIOS) { /* well, possibly buggy BIOS... try to shut it down, * and hope nothing goes too wrong */ dbgp_printk("dbgp: BIOS handoff failed: %08x\n", cap); write_pci_config_byte(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, offset + 2, 0); } /* just in case, always disable EHCI SMIs */ write_pci_config_byte(ehci_dev.bus, ehci_dev.slot, ehci_dev.func, offset + EHCI_USBLEGCTLSTS, 0); } static int __init ehci_setup(void) { u32 ctrl, portsc, hcs_params; u32 debug_port, new_debug_port = 0, n_ports; int ret, i; int port_map_tried; int playtimes = 3; early_ehci_bios_handoff(); try_next_time: port_map_tried = 0; try_next_port: hcs_params = readl(&ehci_caps->hcs_params); debug_port = HCS_DEBUG_PORT(hcs_params); dbgp_phys_port = debug_port; n_ports = HCS_N_PORTS(hcs_params); dbgp_printk("debug_port: %d\n", debug_port); dbgp_printk("n_ports: %d\n", n_ports); dbgp_ehci_status(""); for (i = 1; i <= n_ports; i++) { portsc = readl(&ehci_regs->port_status[i-1]); dbgp_printk("portstatus%d: %08x\n", i, portsc); } if (port_map_tried && (new_debug_port != debug_port)) { if (--playtimes) { set_debug_port(new_debug_port); goto try_next_time; } return -1; } /* Only reset the controller if it is not already in the * configured state */ if (!(readl(&ehci_regs->configured_flag) & FLAG_CF)) { if (dbgp_ehci_controller_reset() != 0) return -1; } else { dbgp_ehci_status("ehci skip - already configured"); } ret = _dbgp_external_startup(); if (ret == -EIO) goto next_debug_port; if (ret < 0) { /* Things didn't work so remove my claim */ ctrl = readl(&ehci_debug->control); ctrl &= ~(DBGP_CLAIM | DBGP_OUT); writel(ctrl, &ehci_debug->control); return -1; } return 0; next_debug_port: port_map_tried |= (1<<(debug_port - 1)); new_debug_port = ((debug_port-1+1)%n_ports) + 1; if (port_map_tried != ((1<<n_ports) - 1)) { set_debug_port(new_debug_port); goto try_next_port; } if (--playtimes) { set_debug_port(new_debug_port); goto try_next_time; } return -1; } int __init early_dbgp_init(char *s) { u32 debug_port, bar, offset; u32 bus, slot, func, cap; void __iomem *ehci_bar; u32 dbgp_num; u32 bar_val; char *e; int ret; u8 byte; if (!early_pci_allowed()) return -1; dbgp_num = 0; if (*s) dbgp_num = simple_strtoul(s, &e, 10); dbgp_printk("dbgp_num: %d\n", dbgp_num); cap = find_dbgp(dbgp_num, &bus, &slot, &func); if (!cap) return -1; dbgp_printk("Found EHCI debug port on %02x:%02x.%1x\n", bus, slot, func); debug_port = read_pci_config(bus, slot, func, cap); bar = (debug_port >> 29) & 0x7; bar = (bar * 4) + 0xc; offset = (debug_port >> 16) & 0xfff; dbgp_printk("bar: %02x offset: %03x\n", bar, offset); if (bar != PCI_BASE_ADDRESS_0) { dbgp_printk("only debug ports on bar 1 handled.\n"); return -1; } bar_val = read_pci_config(bus, slot, func, PCI_BASE_ADDRESS_0); dbgp_printk("bar_val: %02x offset: %03x\n", bar_val, offset); if (bar_val & ~PCI_BASE_ADDRESS_MEM_MASK) { dbgp_printk("only simple 32bit mmio bars supported\n"); return -1; } /* double check if the mem space is enabled */ byte = read_pci_config_byte(bus, slot, func, 0x04); if (!(byte & 0x2)) { byte |= 0x02; write_pci_config_byte(bus, slot, func, 0x04, byte); dbgp_printk("mmio for ehci enabled\n"); } /* * FIXME I don't have the bar size so just guess PAGE_SIZE is more * than enough. 1K is the biggest I have seen. */ set_fixmap_nocache(FIX_DBGP_BASE, bar_val & PAGE_MASK); ehci_bar = (void __iomem *)__fix_to_virt(FIX_DBGP_BASE); ehci_bar += bar_val & ~PAGE_MASK; dbgp_printk("ehci_bar: %p\n", ehci_bar); ehci_caps = ehci_bar; ehci_regs = ehci_bar + EARLY_HC_LENGTH(readl(&ehci_caps->hc_capbase)); ehci_debug = ehci_bar + offset; ehci_dev.bus = bus; ehci_dev.slot = slot; ehci_dev.func = func; detect_set_debug_port(); ret = ehci_setup(); if (ret < 0) { dbgp_printk("ehci_setup failed\n"); ehci_debug = NULL; return -1; } dbgp_ehci_status("early_init_complete"); return 0; } static void early_dbgp_write(struct console *con, const char *str, u32 n) { int chunk; char buf[DBGP_MAX_PACKET]; int use_cr = 0; u32 cmd, ctrl; int reset_run = 0; if (!ehci_debug || dbgp_not_safe) return; cmd = readl(&ehci_regs->command); if (unlikely(!(cmd & CMD_RUN))) { /* If the ehci controller is not in the run state do extended * checks to see if the acpi or some other initialization also * reset the ehci debug port */ ctrl = readl(&ehci_debug->control); if (!(ctrl & DBGP_ENABLED)) { dbgp_not_safe = 1; _dbgp_external_startup(); } else { cmd |= CMD_RUN; writel(cmd, &ehci_regs->command); reset_run = 1; } } while (n > 0) { for (chunk = 0; chunk < DBGP_MAX_PACKET && n > 0; str++, chunk++, n--) { if (!use_cr && *str == '\n') { use_cr = 1; buf[chunk] = '\r'; str--; n++; continue; } if (use_cr) use_cr = 0; buf[chunk] = *str; } if (chunk > 0) { dbgp_bulk_write(USB_DEBUG_DEVNUM, dbgp_endpoint_out, buf, chunk); } } if (unlikely(reset_run)) { cmd = readl(&ehci_regs->command); cmd &= ~CMD_RUN; writel(cmd, &ehci_regs->command); } } struct console early_dbgp_console = { .name = "earlydbg", .write = early_dbgp_write, .flags = CON_PRINTBUFFER, .index = -1, }; #if IS_ENABLED(CONFIG_USB) int dbgp_reset_prep(struct usb_hcd *hcd) { int ret = xen_dbgp_reset_prep(hcd); u32 ctrl; if (ret) return ret; dbgp_not_safe = 1; if (!ehci_debug) return 0; if ((early_dbgp_console.index != -1 && !(early_dbgp_console.flags & CON_BOOT)) || dbgp_kgdb_mode) return 1; /* This means the console is not initialized, or should get * shutdown so as to allow for reuse of the usb device, which * means it is time to shutdown the usb debug port. */ ctrl = readl(&ehci_debug->control); if (ctrl & DBGP_ENABLED) { ctrl &= ~(DBGP_CLAIM); writel(ctrl, &ehci_debug->control); } return 0; } EXPORT_SYMBOL_GPL(dbgp_reset_prep); int dbgp_external_startup(struct usb_hcd *hcd) { return xen_dbgp_external_startup(hcd) ?: _dbgp_external_startup(); } EXPORT_SYMBOL_GPL(dbgp_external_startup); #endif /* USB */ #ifdef CONFIG_KGDB static char kgdbdbgp_buf[DBGP_MAX_PACKET]; static int kgdbdbgp_buf_sz; static int kgdbdbgp_buf_idx; static int kgdbdbgp_loop_cnt = DBGP_LOOPS; static int kgdbdbgp_read_char(void) { int ret; if (kgdbdbgp_buf_idx < kgdbdbgp_buf_sz) { char ch = kgdbdbgp_buf[kgdbdbgp_buf_idx++]; return ch; } ret = dbgp_bulk_read(USB_DEBUG_DEVNUM, dbgp_endpoint_in, &kgdbdbgp_buf, DBGP_MAX_PACKET, kgdbdbgp_loop_cnt); if (ret <= 0) return NO_POLL_CHAR; kgdbdbgp_buf_sz = ret; kgdbdbgp_buf_idx = 1; return kgdbdbgp_buf[0]; } static void kgdbdbgp_write_char(u8 chr) { early_dbgp_write(NULL, &chr, 1); } static struct kgdb_io kgdbdbgp_io_ops = { .name = "kgdbdbgp", .read_char = kgdbdbgp_read_char, .write_char = kgdbdbgp_write_char, }; static int kgdbdbgp_wait_time; static int __init kgdbdbgp_parse_config(char *str) { char *ptr; if (!ehci_debug) { if (early_dbgp_init(str)) return -1; } ptr = strchr(str, ','); if (ptr) { ptr++; kgdbdbgp_wait_time = simple_strtoul(ptr, &ptr, 10); } kgdb_register_io_module(&kgdbdbgp_io_ops); if (early_dbgp_console.index != -1) kgdbdbgp_io_ops.cons = &early_dbgp_console; return 0; } early_param("kgdbdbgp", kgdbdbgp_parse_config); static int kgdbdbgp_reader_thread(void *ptr) { int ret; while (readl(&ehci_debug->control) & DBGP_ENABLED) { kgdbdbgp_loop_cnt = 1; ret = kgdbdbgp_read_char(); kgdbdbgp_loop_cnt = DBGP_LOOPS; if (ret != NO_POLL_CHAR) { if (ret == 0x3 || ret == '$') { if (ret == '$') kgdbdbgp_buf_idx--; kgdb_breakpoint(); } continue; } schedule_timeout_interruptible(kgdbdbgp_wait_time * HZ); } return 0; } static int __init kgdbdbgp_start_thread(void) { if (dbgp_kgdb_mode && kgdbdbgp_wait_time) kthread_run(kgdbdbgp_reader_thread, NULL, "%s", "dbgp"); return 0; } device_initcall(kgdbdbgp_start_thread); #endif /* CONFIG_KGDB */
linux-master
drivers/usb/early/ehci-dbgp.c
// SPDX-License-Identifier: GPL-2.0 /* * xhci-dbc.c - xHCI debug capability early driver * * Copyright (C) 2016 Intel Corporation * * Author: Lu Baolu <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__ #include <linux/console.h> #include <linux/pci_regs.h> #include <linux/pci_ids.h> #include <linux/memblock.h> #include <linux/io.h> #include <asm/pci-direct.h> #include <asm/fixmap.h> #include <linux/bcd.h> #include <linux/export.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/usb/xhci-dbgp.h> #include "../host/xhci.h" #include "xhci-dbc.h" static struct xdbc_state xdbc; static bool early_console_keep; #ifdef XDBC_TRACE #define xdbc_trace trace_printk #else static inline void xdbc_trace(const char *fmt, ...) { } #endif /* XDBC_TRACE */ static void __iomem * __init xdbc_map_pci_mmio(u32 bus, u32 dev, u32 func) { u64 val64, sz64, mask64; void __iomem *base; u32 val, sz; u8 byte; val = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0); write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0, ~0); sz = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0); write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0, val); if (val == 0xffffffff || sz == 0xffffffff) { pr_notice("invalid mmio bar\n"); return NULL; } val64 = val & PCI_BASE_ADDRESS_MEM_MASK; sz64 = sz & PCI_BASE_ADDRESS_MEM_MASK; mask64 = PCI_BASE_ADDRESS_MEM_MASK; if ((val & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) { val = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4); write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4, ~0); sz = read_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4); write_pci_config(bus, dev, func, PCI_BASE_ADDRESS_0 + 4, val); val64 |= (u64)val << 32; sz64 |= (u64)sz << 32; mask64 |= ~0ULL << 32; } sz64 &= mask64; if (!sz64) { pr_notice("invalid mmio address\n"); return NULL; } sz64 = 1ULL << __ffs64(sz64); /* Check if the mem space is enabled: */ byte = read_pci_config_byte(bus, dev, func, PCI_COMMAND); if (!(byte & PCI_COMMAND_MEMORY)) { byte |= PCI_COMMAND_MEMORY; write_pci_config_byte(bus, dev, func, PCI_COMMAND, byte); } xdbc.xhci_start = val64; xdbc.xhci_length = sz64; base = early_ioremap(val64, sz64); return base; } static void * __init xdbc_get_page(dma_addr_t *dma_addr) { void *virt; virt = memblock_alloc(PAGE_SIZE, PAGE_SIZE); if (!virt) return NULL; if (dma_addr) *dma_addr = (dma_addr_t)__pa(virt); return virt; } static u32 __init xdbc_find_dbgp(int xdbc_num, u32 *b, u32 *d, u32 *f) { u32 bus, dev, func, class; for (bus = 0; bus < XDBC_PCI_MAX_BUSES; bus++) { for (dev = 0; dev < XDBC_PCI_MAX_DEVICES; dev++) { for (func = 0; func < XDBC_PCI_MAX_FUNCTION; func++) { class = read_pci_config(bus, dev, func, PCI_CLASS_REVISION); if ((class >> 8) != PCI_CLASS_SERIAL_USB_XHCI) continue; if (xdbc_num-- != 0) continue; *b = bus; *d = dev; *f = func; return 0; } } } return -1; } static int handshake(void __iomem *ptr, u32 mask, u32 done, int wait, int delay) { u32 result; /* Can not use readl_poll_timeout_atomic() for early boot things */ do { result = readl(ptr); result &= mask; if (result == done) return 0; udelay(delay); wait -= delay; } while (wait > 0); return -ETIMEDOUT; } static void __init xdbc_bios_handoff(void) { int offset, timeout; u32 val; offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_LEGACY); val = readl(xdbc.xhci_base + offset); if (val & XHCI_HC_BIOS_OWNED) { writel(val | XHCI_HC_OS_OWNED, xdbc.xhci_base + offset); timeout = handshake(xdbc.xhci_base + offset, XHCI_HC_BIOS_OWNED, 0, 5000, 10); if (timeout) { pr_notice("failed to hand over xHCI control from BIOS\n"); writel(val & ~XHCI_HC_BIOS_OWNED, xdbc.xhci_base + offset); } } /* Disable BIOS SMIs and clear all SMI events: */ val = readl(xdbc.xhci_base + offset + XHCI_LEGACY_CONTROL_OFFSET); val &= XHCI_LEGACY_DISABLE_SMI; val |= XHCI_LEGACY_SMI_EVENTS; writel(val, xdbc.xhci_base + offset + XHCI_LEGACY_CONTROL_OFFSET); } static int __init xdbc_alloc_ring(struct xdbc_segment *seg, struct xdbc_ring *ring) { seg->trbs = xdbc_get_page(&seg->dma); if (!seg->trbs) return -ENOMEM; ring->segment = seg; return 0; } static void __init xdbc_free_ring(struct xdbc_ring *ring) { struct xdbc_segment *seg = ring->segment; if (!seg) return; memblock_phys_free(seg->dma, PAGE_SIZE); ring->segment = NULL; } static void xdbc_reset_ring(struct xdbc_ring *ring) { struct xdbc_segment *seg = ring->segment; struct xdbc_trb *link_trb; memset(seg->trbs, 0, PAGE_SIZE); ring->enqueue = seg->trbs; ring->dequeue = seg->trbs; ring->cycle_state = 1; if (ring != &xdbc.evt_ring) { link_trb = &seg->trbs[XDBC_TRBS_PER_SEGMENT - 1]; link_trb->field[0] = cpu_to_le32(lower_32_bits(seg->dma)); link_trb->field[1] = cpu_to_le32(upper_32_bits(seg->dma)); link_trb->field[3] = cpu_to_le32(TRB_TYPE(TRB_LINK)) | cpu_to_le32(LINK_TOGGLE); } } static inline void xdbc_put_utf16(u16 *s, const char *c, size_t size) { int i; for (i = 0; i < size; i++) s[i] = cpu_to_le16(c[i]); } static void xdbc_mem_init(void) { struct xdbc_ep_context *ep_in, *ep_out; struct usb_string_descriptor *s_desc; struct xdbc_erst_entry *entry; struct xdbc_strings *strings; struct xdbc_context *ctx; unsigned int max_burst; u32 string_length; int index = 0; u32 dev_info; xdbc_reset_ring(&xdbc.evt_ring); xdbc_reset_ring(&xdbc.in_ring); xdbc_reset_ring(&xdbc.out_ring); memset(xdbc.table_base, 0, PAGE_SIZE); memset(xdbc.out_buf, 0, PAGE_SIZE); /* Initialize event ring segment table: */ xdbc.erst_size = 16; xdbc.erst_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE; xdbc.erst_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE; index += XDBC_ERST_ENTRY_NUM; entry = (struct xdbc_erst_entry *)xdbc.erst_base; entry->seg_addr = cpu_to_le64(xdbc.evt_seg.dma); entry->seg_size = cpu_to_le32(XDBC_TRBS_PER_SEGMENT); entry->__reserved_0 = 0; /* Initialize ERST registers: */ writel(1, &xdbc.xdbc_reg->ersts); xdbc_write64(xdbc.erst_dma, &xdbc.xdbc_reg->erstba); xdbc_write64(xdbc.evt_seg.dma, &xdbc.xdbc_reg->erdp); /* Debug capability contexts: */ xdbc.dbcc_size = 64 * 3; xdbc.dbcc_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE; xdbc.dbcc_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE; index += XDBC_DBCC_ENTRY_NUM; /* Popluate the strings: */ xdbc.string_size = sizeof(struct xdbc_strings); xdbc.string_base = xdbc.table_base + index * XDBC_TABLE_ENTRY_SIZE; xdbc.string_dma = xdbc.table_dma + index * XDBC_TABLE_ENTRY_SIZE; strings = (struct xdbc_strings *)xdbc.string_base; index += XDBC_STRING_ENTRY_NUM; /* Serial string: */ s_desc = (struct usb_string_descriptor *)strings->serial; s_desc->bLength = (strlen(XDBC_STRING_SERIAL) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; xdbc_put_utf16(s_desc->wData, XDBC_STRING_SERIAL, strlen(XDBC_STRING_SERIAL)); string_length = s_desc->bLength; string_length <<= 8; /* Product string: */ s_desc = (struct usb_string_descriptor *)strings->product; s_desc->bLength = (strlen(XDBC_STRING_PRODUCT) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; xdbc_put_utf16(s_desc->wData, XDBC_STRING_PRODUCT, strlen(XDBC_STRING_PRODUCT)); string_length += s_desc->bLength; string_length <<= 8; /* Manufacture string: */ s_desc = (struct usb_string_descriptor *)strings->manufacturer; s_desc->bLength = (strlen(XDBC_STRING_MANUFACTURER) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; xdbc_put_utf16(s_desc->wData, XDBC_STRING_MANUFACTURER, strlen(XDBC_STRING_MANUFACTURER)); string_length += s_desc->bLength; string_length <<= 8; /* String0: */ strings->string0[0] = 4; strings->string0[1] = USB_DT_STRING; strings->string0[2] = 0x09; strings->string0[3] = 0x04; string_length += 4; /* Populate info Context: */ ctx = (struct xdbc_context *)xdbc.dbcc_base; ctx->info.string0 = cpu_to_le64(xdbc.string_dma); ctx->info.manufacturer = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH); ctx->info.product = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH * 2); ctx->info.serial = cpu_to_le64(xdbc.string_dma + XDBC_MAX_STRING_LENGTH * 3); ctx->info.length = cpu_to_le32(string_length); /* Populate bulk out endpoint context: */ max_burst = DEBUG_MAX_BURST(readl(&xdbc.xdbc_reg->control)); ep_out = (struct xdbc_ep_context *)&ctx->out; ep_out->ep_info1 = 0; ep_out->ep_info2 = cpu_to_le32(EP_TYPE(BULK_OUT_EP) | MAX_PACKET(1024) | MAX_BURST(max_burst)); ep_out->deq = cpu_to_le64(xdbc.out_seg.dma | xdbc.out_ring.cycle_state); /* Populate bulk in endpoint context: */ ep_in = (struct xdbc_ep_context *)&ctx->in; ep_in->ep_info1 = 0; ep_in->ep_info2 = cpu_to_le32(EP_TYPE(BULK_IN_EP) | MAX_PACKET(1024) | MAX_BURST(max_burst)); ep_in->deq = cpu_to_le64(xdbc.in_seg.dma | xdbc.in_ring.cycle_state); /* Set DbC context and info registers: */ xdbc_write64(xdbc.dbcc_dma, &xdbc.xdbc_reg->dccp); dev_info = cpu_to_le32((XDBC_VENDOR_ID << 16) | XDBC_PROTOCOL); writel(dev_info, &xdbc.xdbc_reg->devinfo1); dev_info = cpu_to_le32((XDBC_DEVICE_REV << 16) | XDBC_PRODUCT_ID); writel(dev_info, &xdbc.xdbc_reg->devinfo2); xdbc.in_buf = xdbc.out_buf + XDBC_MAX_PACKET; xdbc.in_dma = xdbc.out_dma + XDBC_MAX_PACKET; } static void xdbc_do_reset_debug_port(u32 id, u32 count) { void __iomem *ops_reg; void __iomem *portsc; u32 val, cap_length; int i; cap_length = readl(xdbc.xhci_base) & 0xff; ops_reg = xdbc.xhci_base + cap_length; id--; for (i = id; i < (id + count); i++) { portsc = ops_reg + 0x400 + i * 0x10; val = readl(portsc); if (!(val & PORT_CONNECT)) writel(val | PORT_RESET, portsc); } } static void xdbc_reset_debug_port(void) { u32 val, port_offset, port_count; int offset = 0; do { offset = xhci_find_next_ext_cap(xdbc.xhci_base, offset, XHCI_EXT_CAPS_PROTOCOL); if (!offset) break; val = readl(xdbc.xhci_base + offset); if (XHCI_EXT_PORT_MAJOR(val) != 0x3) continue; val = readl(xdbc.xhci_base + offset + 8); port_offset = XHCI_EXT_PORT_OFF(val); port_count = XHCI_EXT_PORT_COUNT(val); xdbc_do_reset_debug_port(port_offset, port_count); } while (1); } static void xdbc_queue_trb(struct xdbc_ring *ring, u32 field1, u32 field2, u32 field3, u32 field4) { struct xdbc_trb *trb, *link_trb; trb = ring->enqueue; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); trb->field[3] = cpu_to_le32(field4); ++(ring->enqueue); if (ring->enqueue >= &ring->segment->trbs[TRBS_PER_SEGMENT - 1]) { link_trb = ring->enqueue; if (ring->cycle_state) link_trb->field[3] |= cpu_to_le32(TRB_CYCLE); else link_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); ring->enqueue = ring->segment->trbs; ring->cycle_state ^= 1; } } static void xdbc_ring_doorbell(int target) { writel(DOOR_BELL_TARGET(target), &xdbc.xdbc_reg->doorbell); } static int xdbc_start(void) { u32 ctrl, status; int ret; ctrl = readl(&xdbc.xdbc_reg->control); writel(ctrl | CTRL_DBC_ENABLE | CTRL_PORT_ENABLE, &xdbc.xdbc_reg->control); ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, CTRL_DBC_ENABLE, 100000, 100); if (ret) { xdbc_trace("failed to initialize hardware\n"); return ret; } /* Reset port to avoid bus hang: */ if (xdbc.vendor == PCI_VENDOR_ID_INTEL) xdbc_reset_debug_port(); /* Wait for port connection: */ ret = handshake(&xdbc.xdbc_reg->portsc, PORTSC_CONN_STATUS, PORTSC_CONN_STATUS, 5000000, 100); if (ret) { xdbc_trace("waiting for connection timed out\n"); return ret; } /* Wait for debug device to be configured: */ ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_RUN, CTRL_DBC_RUN, 5000000, 100); if (ret) { xdbc_trace("waiting for device configuration timed out\n"); return ret; } /* Check port number: */ status = readl(&xdbc.xdbc_reg->status); if (!DCST_DEBUG_PORT(status)) { xdbc_trace("invalid root hub port number\n"); return -ENODEV; } xdbc.port_number = DCST_DEBUG_PORT(status); xdbc_trace("DbC is running now, control 0x%08x port ID %d\n", readl(&xdbc.xdbc_reg->control), xdbc.port_number); return 0; } static int xdbc_bulk_transfer(void *data, int size, bool read) { struct xdbc_ring *ring; struct xdbc_trb *trb; u32 length, control; u32 cycle; u64 addr; if (size > XDBC_MAX_PACKET) { xdbc_trace("bad parameter, size %d\n", size); return -EINVAL; } if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED) || !(xdbc.flags & XDBC_FLAGS_CONFIGURED) || (!read && (xdbc.flags & XDBC_FLAGS_OUT_STALL)) || (read && (xdbc.flags & XDBC_FLAGS_IN_STALL))) { xdbc_trace("connection not ready, flags %08x\n", xdbc.flags); return -EIO; } ring = (read ? &xdbc.in_ring : &xdbc.out_ring); trb = ring->enqueue; cycle = ring->cycle_state; length = TRB_LEN(size); control = TRB_TYPE(TRB_NORMAL) | TRB_IOC; if (cycle) control &= cpu_to_le32(~TRB_CYCLE); else control |= cpu_to_le32(TRB_CYCLE); if (read) { memset(xdbc.in_buf, 0, XDBC_MAX_PACKET); addr = xdbc.in_dma; xdbc.flags |= XDBC_FLAGS_IN_PROCESS; } else { memcpy_and_pad(xdbc.out_buf, XDBC_MAX_PACKET, data, size, 0); addr = xdbc.out_dma; xdbc.flags |= XDBC_FLAGS_OUT_PROCESS; } xdbc_queue_trb(ring, lower_32_bits(addr), upper_32_bits(addr), length, control); /* * Add a barrier between writes of trb fields and flipping * the cycle bit: */ wmb(); if (cycle) trb->field[3] |= cpu_to_le32(cycle); else trb->field[3] &= cpu_to_le32(~TRB_CYCLE); xdbc_ring_doorbell(read ? IN_EP_DOORBELL : OUT_EP_DOORBELL); return size; } static int xdbc_handle_external_reset(void) { int ret = 0; xdbc.flags = 0; writel(0, &xdbc.xdbc_reg->control); ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, 0, 100000, 10); if (ret) goto reset_out; xdbc_mem_init(); ret = xdbc_start(); if (ret < 0) goto reset_out; xdbc_trace("dbc recovered\n"); xdbc.flags |= XDBC_FLAGS_INITIALIZED | XDBC_FLAGS_CONFIGURED; xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true); return 0; reset_out: xdbc_trace("failed to recover from external reset\n"); return ret; } static int __init xdbc_early_setup(void) { int ret; writel(0, &xdbc.xdbc_reg->control); ret = handshake(&xdbc.xdbc_reg->control, CTRL_DBC_ENABLE, 0, 100000, 100); if (ret) return ret; /* Allocate the table page: */ xdbc.table_base = xdbc_get_page(&xdbc.table_dma); if (!xdbc.table_base) return -ENOMEM; /* Get and store the transfer buffer: */ xdbc.out_buf = xdbc_get_page(&xdbc.out_dma); if (!xdbc.out_buf) return -ENOMEM; /* Allocate the event ring: */ ret = xdbc_alloc_ring(&xdbc.evt_seg, &xdbc.evt_ring); if (ret < 0) return ret; /* Allocate IN/OUT endpoint transfer rings: */ ret = xdbc_alloc_ring(&xdbc.in_seg, &xdbc.in_ring); if (ret < 0) return ret; ret = xdbc_alloc_ring(&xdbc.out_seg, &xdbc.out_ring); if (ret < 0) return ret; xdbc_mem_init(); ret = xdbc_start(); if (ret < 0) { writel(0, &xdbc.xdbc_reg->control); return ret; } xdbc.flags |= XDBC_FLAGS_INITIALIZED | XDBC_FLAGS_CONFIGURED; xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true); return 0; } int __init early_xdbc_parse_parameter(char *s, int keep_early) { unsigned long dbgp_num = 0; u32 bus, dev, func, offset; char *e; int ret; if (!early_pci_allowed()) return -EPERM; early_console_keep = keep_early; if (xdbc.xdbc_reg) return 0; if (*s) { dbgp_num = simple_strtoul(s, &e, 10); if (s == e) dbgp_num = 0; } pr_notice("dbgp_num: %lu\n", dbgp_num); /* Locate the host controller: */ ret = xdbc_find_dbgp(dbgp_num, &bus, &dev, &func); if (ret) { pr_notice("failed to locate xhci host\n"); return -ENODEV; } xdbc.vendor = read_pci_config_16(bus, dev, func, PCI_VENDOR_ID); xdbc.device = read_pci_config_16(bus, dev, func, PCI_DEVICE_ID); xdbc.bus = bus; xdbc.dev = dev; xdbc.func = func; /* Map the IO memory: */ xdbc.xhci_base = xdbc_map_pci_mmio(bus, dev, func); if (!xdbc.xhci_base) return -EINVAL; /* Locate DbC registers: */ offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_DEBUG); if (!offset) { pr_notice("xhci host doesn't support debug capability\n"); early_iounmap(xdbc.xhci_base, xdbc.xhci_length); xdbc.xhci_base = NULL; xdbc.xhci_length = 0; return -ENODEV; } xdbc.xdbc_reg = (struct xdbc_regs __iomem *)(xdbc.xhci_base + offset); return 0; } int __init early_xdbc_setup_hardware(void) { int ret; if (!xdbc.xdbc_reg) return -ENODEV; xdbc_bios_handoff(); raw_spin_lock_init(&xdbc.lock); ret = xdbc_early_setup(); if (ret) { pr_notice("failed to setup the connection to host\n"); xdbc_free_ring(&xdbc.evt_ring); xdbc_free_ring(&xdbc.out_ring); xdbc_free_ring(&xdbc.in_ring); if (xdbc.table_dma) memblock_phys_free(xdbc.table_dma, PAGE_SIZE); if (xdbc.out_dma) memblock_phys_free(xdbc.out_dma, PAGE_SIZE); xdbc.table_base = NULL; xdbc.out_buf = NULL; } return ret; } static void xdbc_handle_port_status(struct xdbc_trb *evt_trb) { u32 port_reg; port_reg = readl(&xdbc.xdbc_reg->portsc); if (port_reg & PORTSC_CONN_CHANGE) { xdbc_trace("connect status change event\n"); /* Check whether cable unplugged: */ if (!(port_reg & PORTSC_CONN_STATUS)) { xdbc.flags = 0; xdbc_trace("cable unplugged\n"); } } if (port_reg & PORTSC_RESET_CHANGE) xdbc_trace("port reset change event\n"); if (port_reg & PORTSC_LINK_CHANGE) xdbc_trace("port link status change event\n"); if (port_reg & PORTSC_CONFIG_CHANGE) xdbc_trace("config error change\n"); /* Write back the value to clear RW1C bits: */ writel(port_reg, &xdbc.xdbc_reg->portsc); } static void xdbc_handle_tx_event(struct xdbc_trb *evt_trb) { u32 comp_code; int ep_id; comp_code = GET_COMP_CODE(le32_to_cpu(evt_trb->field[2])); ep_id = TRB_TO_EP_ID(le32_to_cpu(evt_trb->field[3])); switch (comp_code) { case COMP_SUCCESS: case COMP_SHORT_PACKET: break; case COMP_TRB_ERROR: case COMP_BABBLE_DETECTED_ERROR: case COMP_USB_TRANSACTION_ERROR: case COMP_STALL_ERROR: default: if (ep_id == XDBC_EPID_OUT || ep_id == XDBC_EPID_OUT_INTEL) xdbc.flags |= XDBC_FLAGS_OUT_STALL; if (ep_id == XDBC_EPID_IN || ep_id == XDBC_EPID_IN_INTEL) xdbc.flags |= XDBC_FLAGS_IN_STALL; xdbc_trace("endpoint %d stalled\n", ep_id); break; } if (ep_id == XDBC_EPID_IN || ep_id == XDBC_EPID_IN_INTEL) { xdbc.flags &= ~XDBC_FLAGS_IN_PROCESS; xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true); } else if (ep_id == XDBC_EPID_OUT || ep_id == XDBC_EPID_OUT_INTEL) { xdbc.flags &= ~XDBC_FLAGS_OUT_PROCESS; } else { xdbc_trace("invalid endpoint id %d\n", ep_id); } } static void xdbc_handle_events(void) { struct xdbc_trb *evt_trb; bool update_erdp = false; u32 reg; u8 cmd; cmd = read_pci_config_byte(xdbc.bus, xdbc.dev, xdbc.func, PCI_COMMAND); if (!(cmd & PCI_COMMAND_MASTER)) { cmd |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY; write_pci_config_byte(xdbc.bus, xdbc.dev, xdbc.func, PCI_COMMAND, cmd); } if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED)) return; /* Handle external reset events: */ reg = readl(&xdbc.xdbc_reg->control); if (!(reg & CTRL_DBC_ENABLE)) { if (xdbc_handle_external_reset()) { xdbc_trace("failed to recover connection\n"); return; } } /* Handle configure-exit event: */ reg = readl(&xdbc.xdbc_reg->control); if (reg & CTRL_DBC_RUN_CHANGE) { writel(reg, &xdbc.xdbc_reg->control); if (reg & CTRL_DBC_RUN) xdbc.flags |= XDBC_FLAGS_CONFIGURED; else xdbc.flags &= ~XDBC_FLAGS_CONFIGURED; } /* Handle endpoint stall event: */ reg = readl(&xdbc.xdbc_reg->control); if (reg & CTRL_HALT_IN_TR) { xdbc.flags |= XDBC_FLAGS_IN_STALL; } else { xdbc.flags &= ~XDBC_FLAGS_IN_STALL; if (!(xdbc.flags & XDBC_FLAGS_IN_PROCESS)) xdbc_bulk_transfer(NULL, XDBC_MAX_PACKET, true); } if (reg & CTRL_HALT_OUT_TR) xdbc.flags |= XDBC_FLAGS_OUT_STALL; else xdbc.flags &= ~XDBC_FLAGS_OUT_STALL; /* Handle the events in the event ring: */ evt_trb = xdbc.evt_ring.dequeue; while ((le32_to_cpu(evt_trb->field[3]) & TRB_CYCLE) == xdbc.evt_ring.cycle_state) { /* * Add a barrier between reading the cycle flag and any * reads of the event's flags/data below: */ rmb(); switch ((le32_to_cpu(evt_trb->field[3]) & TRB_TYPE_BITMASK)) { case TRB_TYPE(TRB_PORT_STATUS): xdbc_handle_port_status(evt_trb); break; case TRB_TYPE(TRB_TRANSFER): xdbc_handle_tx_event(evt_trb); break; default: break; } ++(xdbc.evt_ring.dequeue); if (xdbc.evt_ring.dequeue == &xdbc.evt_seg.trbs[TRBS_PER_SEGMENT]) { xdbc.evt_ring.dequeue = xdbc.evt_seg.trbs; xdbc.evt_ring.cycle_state ^= 1; } evt_trb = xdbc.evt_ring.dequeue; update_erdp = true; } /* Update event ring dequeue pointer: */ if (update_erdp) xdbc_write64(__pa(xdbc.evt_ring.dequeue), &xdbc.xdbc_reg->erdp); } static int xdbc_bulk_write(const char *bytes, int size) { int ret, timeout = 0; unsigned long flags; retry: if (in_nmi()) { if (!raw_spin_trylock_irqsave(&xdbc.lock, flags)) return -EAGAIN; } else { raw_spin_lock_irqsave(&xdbc.lock, flags); } xdbc_handle_events(); /* Check completion of the previous request: */ if ((xdbc.flags & XDBC_FLAGS_OUT_PROCESS) && (timeout < 2000000)) { raw_spin_unlock_irqrestore(&xdbc.lock, flags); udelay(100); timeout += 100; goto retry; } if (xdbc.flags & XDBC_FLAGS_OUT_PROCESS) { raw_spin_unlock_irqrestore(&xdbc.lock, flags); xdbc_trace("previous transfer not completed yet\n"); return -ETIMEDOUT; } ret = xdbc_bulk_transfer((void *)bytes, size, false); raw_spin_unlock_irqrestore(&xdbc.lock, flags); return ret; } static void early_xdbc_write(struct console *con, const char *str, u32 n) { /* static variables are zeroed, so buf is always NULL terminated */ static char buf[XDBC_MAX_PACKET + 1]; int chunk, ret; int use_cr = 0; if (!xdbc.xdbc_reg) return; while (n > 0) { for (chunk = 0; chunk < XDBC_MAX_PACKET && n > 0; str++, chunk++, n--) { if (!use_cr && *str == '\n') { use_cr = 1; buf[chunk] = '\r'; str--; n++; continue; } if (use_cr) use_cr = 0; buf[chunk] = *str; } if (chunk > 0) { ret = xdbc_bulk_write(buf, chunk); if (ret < 0) xdbc_trace("missed message {%s}\n", buf); } } } static struct console early_xdbc_console = { .name = "earlyxdbc", .write = early_xdbc_write, .flags = CON_PRINTBUFFER, .index = -1, }; void __init early_xdbc_register_console(void) { if (early_console) return; early_console = &early_xdbc_console; if (early_console_keep) early_console->flags &= ~CON_BOOT; else early_console->flags |= CON_BOOT; register_console(early_console); } static void xdbc_unregister_console(void) { if (console_is_registered(&early_xdbc_console)) unregister_console(&early_xdbc_console); } static int xdbc_scrub_function(void *ptr) { unsigned long flags; while (true) { raw_spin_lock_irqsave(&xdbc.lock, flags); xdbc_handle_events(); if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED)) { raw_spin_unlock_irqrestore(&xdbc.lock, flags); break; } raw_spin_unlock_irqrestore(&xdbc.lock, flags); schedule_timeout_interruptible(1); } xdbc_unregister_console(); writel(0, &xdbc.xdbc_reg->control); xdbc_trace("dbc scrub function exits\n"); return 0; } static int __init xdbc_init(void) { unsigned long flags; void __iomem *base; int ret = 0; u32 offset; if (!(xdbc.flags & XDBC_FLAGS_INITIALIZED)) return 0; /* * It's time to shut down the DbC, so that the debug * port can be reused by the host controller: */ if (early_xdbc_console.index == -1 || (early_xdbc_console.flags & CON_BOOT)) { xdbc_trace("hardware not used anymore\n"); goto free_and_quit; } base = ioremap(xdbc.xhci_start, xdbc.xhci_length); if (!base) { xdbc_trace("failed to remap the io address\n"); ret = -ENOMEM; goto free_and_quit; } raw_spin_lock_irqsave(&xdbc.lock, flags); early_iounmap(xdbc.xhci_base, xdbc.xhci_length); xdbc.xhci_base = base; offset = xhci_find_next_ext_cap(xdbc.xhci_base, 0, XHCI_EXT_CAPS_DEBUG); xdbc.xdbc_reg = (struct xdbc_regs __iomem *)(xdbc.xhci_base + offset); raw_spin_unlock_irqrestore(&xdbc.lock, flags); kthread_run(xdbc_scrub_function, NULL, "%s", "xdbc"); return 0; free_and_quit: xdbc_free_ring(&xdbc.evt_ring); xdbc_free_ring(&xdbc.out_ring); xdbc_free_ring(&xdbc.in_ring); memblock_phys_free(xdbc.table_dma, PAGE_SIZE); memblock_phys_free(xdbc.out_dma, PAGE_SIZE); writel(0, &xdbc.xdbc_reg->control); early_iounmap(xdbc.xhci_base, xdbc.xhci_length); return ret; } subsys_initcall(xdbc_init);
linux-master
drivers/usb/early/xhci-dbc.c
// SPDX-License-Identifier: GPL-2.0 /* * Glue code for the ISP1760 driver and bus * Currently there is support for * - OpenFirmware * - PCI * - PDEV (generic platform device centralized driver model) * * (c) 2007 Sebastian Siewior <[email protected]> * Copyright 2021 Linaro, Rui Miguel Silva <[email protected]> * */ #include <linux/usb.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/usb/hcd.h> #include <linux/usb/otg.h> #include "isp1760-core.h" #include "isp1760-regs.h" #ifdef CONFIG_USB_PCI #include <linux/pci.h> #endif #ifdef CONFIG_USB_PCI static int isp1761_pci_init(struct pci_dev *dev) { resource_size_t mem_start; resource_size_t mem_length; u8 __iomem *iobase; u8 latency, limit; int retry_count; u32 reg_data; /* Grab the PLX PCI shared memory of the ISP 1761 we need */ mem_start = pci_resource_start(dev, 3); mem_length = pci_resource_len(dev, 3); if (mem_length < 0xffff) { printk(KERN_ERR "memory length for this resource is wrong\n"); return -ENOMEM; } if (!request_mem_region(mem_start, mem_length, "ISP-PCI")) { printk(KERN_ERR "host controller already in use\n"); return -EBUSY; } /* map available memory */ iobase = ioremap(mem_start, mem_length); if (!iobase) { printk(KERN_ERR "Error ioremap failed\n"); release_mem_region(mem_start, mem_length); return -ENOMEM; } /* bad pci latencies can contribute to overruns */ pci_read_config_byte(dev, PCI_LATENCY_TIMER, &latency); if (latency) { pci_read_config_byte(dev, PCI_MAX_LAT, &limit); if (limit && limit < latency) pci_write_config_byte(dev, PCI_LATENCY_TIMER, limit); } /* Try to check whether we can access Scratch Register of * Host Controller or not. The initial PCI access is retried until * local init for the PCI bridge is completed */ retry_count = 20; reg_data = 0; while ((reg_data != 0xFACE) && retry_count) { /*by default host is in 16bit mode, so * io operations at this stage must be 16 bit * */ writel(0xface, iobase + ISP176x_HC_SCRATCH); udelay(100); reg_data = readl(iobase + ISP176x_HC_SCRATCH) & 0x0000ffff; retry_count--; } iounmap(iobase); release_mem_region(mem_start, mem_length); /* Host Controller presence is detected by writing to scratch register * and reading back and checking the contents are same or not */ if (reg_data != 0xFACE) { dev_err(&dev->dev, "scratch register mismatch %x\n", reg_data); return -ENOMEM; } /* Grab the PLX PCI mem maped port start address we need */ mem_start = pci_resource_start(dev, 0); mem_length = pci_resource_len(dev, 0); if (!request_mem_region(mem_start, mem_length, "ISP1761 IO MEM")) { printk(KERN_ERR "request region #1\n"); return -EBUSY; } iobase = ioremap(mem_start, mem_length); if (!iobase) { printk(KERN_ERR "ioremap #1\n"); release_mem_region(mem_start, mem_length); return -ENOMEM; } /* configure PLX PCI chip to pass interrupts */ #define PLX_INT_CSR_REG 0x68 reg_data = readl(iobase + PLX_INT_CSR_REG); reg_data |= 0x900; writel(reg_data, iobase + PLX_INT_CSR_REG); /* done with PLX IO access */ iounmap(iobase); release_mem_region(mem_start, mem_length); return 0; } static int isp1761_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { unsigned int devflags = 0; int ret; if (!dev->irq) return -ENODEV; if (pci_enable_device(dev) < 0) return -ENODEV; ret = isp1761_pci_init(dev); if (ret < 0) goto error; pci_set_master(dev); ret = isp1760_register(&dev->resource[3], dev->irq, 0, &dev->dev, devflags); if (ret < 0) goto error; return 0; error: pci_disable_device(dev); return ret; } static void isp1761_pci_remove(struct pci_dev *dev) { isp1760_unregister(&dev->dev); pci_disable_device(dev); } static void isp1761_pci_shutdown(struct pci_dev *dev) { printk(KERN_ERR "ips1761_pci_shutdown\n"); } static const struct pci_device_id isp1760_plx[] = { { .class = PCI_CLASS_BRIDGE_OTHER << 8, .class_mask = ~0, .vendor = PCI_VENDOR_ID_PLX, .device = 0x5406, .subvendor = PCI_VENDOR_ID_PLX, .subdevice = 0x9054, }, { } }; MODULE_DEVICE_TABLE(pci, isp1760_plx); static struct pci_driver isp1761_pci_driver = { .name = "isp1760", .id_table = isp1760_plx, .probe = isp1761_pci_probe, .remove = isp1761_pci_remove, .shutdown = isp1761_pci_shutdown, }; #endif static int isp1760_plat_probe(struct platform_device *pdev) { unsigned long irqflags; unsigned int devflags = 0; struct resource *mem_res; int irq; int ret; mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; irqflags = irq_get_trigger_type(irq); if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { struct device_node *dp = pdev->dev.of_node; u32 bus_width = 0; if (of_device_is_compatible(dp, "nxp,usb-isp1761")) devflags |= ISP1760_FLAG_ISP1761; if (of_device_is_compatible(dp, "nxp,usb-isp1763")) devflags |= ISP1760_FLAG_ISP1763; /* * Some systems wire up only 8 of 16 data lines or * 16 of the 32 data lines */ of_property_read_u32(dp, "bus-width", &bus_width); if (bus_width == 16) devflags |= ISP1760_FLAG_BUS_WIDTH_16; else if (bus_width == 8) devflags |= ISP1760_FLAG_BUS_WIDTH_8; if (usb_get_dr_mode(&pdev->dev) == USB_DR_MODE_PERIPHERAL) devflags |= ISP1760_FLAG_PERIPHERAL_EN; if (of_property_read_bool(dp, "analog-oc")) devflags |= ISP1760_FLAG_ANALOG_OC; if (of_property_read_bool(dp, "dack-polarity")) devflags |= ISP1760_FLAG_DACK_POL_HIGH; if (of_property_read_bool(dp, "dreq-polarity")) devflags |= ISP1760_FLAG_DREQ_POL_HIGH; } else { pr_err("isp1760: no platform data\n"); return -ENXIO; } ret = isp1760_register(mem_res, irq, irqflags, &pdev->dev, devflags); if (ret < 0) return ret; pr_info("ISP1760 USB device initialised\n"); return 0; } static void isp1760_plat_remove(struct platform_device *pdev) { isp1760_unregister(&pdev->dev); } #ifdef CONFIG_OF static const struct of_device_id isp1760_of_match[] = { { .compatible = "nxp,usb-isp1760", }, { .compatible = "nxp,usb-isp1761", }, { .compatible = "nxp,usb-isp1763", }, { }, }; MODULE_DEVICE_TABLE(of, isp1760_of_match); #endif static struct platform_driver isp1760_plat_driver = { .probe = isp1760_plat_probe, .remove_new = isp1760_plat_remove, .driver = { .name = "isp1760", .of_match_table = of_match_ptr(isp1760_of_match), }, }; static int __init isp1760_init(void) { int ret, any_ret = -ENODEV; isp1760_init_kmem_once(); ret = platform_driver_register(&isp1760_plat_driver); if (!ret) any_ret = 0; #ifdef CONFIG_USB_PCI ret = pci_register_driver(&isp1761_pci_driver); if (!ret) any_ret = 0; #endif if (any_ret) isp1760_deinit_kmem_cache(); return any_ret; } module_init(isp1760_init); static void __exit isp1760_exit(void) { platform_driver_unregister(&isp1760_plat_driver); #ifdef CONFIG_USB_PCI pci_unregister_driver(&isp1761_pci_driver); #endif isp1760_deinit_kmem_cache(); } module_exit(isp1760_exit);
linux-master
drivers/usb/isp1760/isp1760-if.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the NXP ISP1761 device controller * * Copyright 2021 Linaro, Rui Miguel Silva * Copyright 2014 Ideas on Board Oy * * Contacts: * Laurent Pinchart <[email protected]> * Rui Miguel Silva <[email protected]> */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/usb.h> #include "isp1760-core.h" #include "isp1760-regs.h" #include "isp1760-udc.h" #define ISP1760_VBUS_POLL_INTERVAL msecs_to_jiffies(500) struct isp1760_request { struct usb_request req; struct list_head queue; struct isp1760_ep *ep; unsigned int packet_size; }; static inline struct isp1760_udc *gadget_to_udc(struct usb_gadget *gadget) { return container_of(gadget, struct isp1760_udc, gadget); } static inline struct isp1760_ep *ep_to_udc_ep(struct usb_ep *ep) { return container_of(ep, struct isp1760_ep, ep); } static inline struct isp1760_request *req_to_udc_req(struct usb_request *req) { return container_of(req, struct isp1760_request, req); } static u32 isp1760_udc_read(struct isp1760_udc *udc, u16 field) { return isp1760_field_read(udc->fields, field); } static void isp1760_udc_write(struct isp1760_udc *udc, u16 field, u32 val) { isp1760_field_write(udc->fields, field, val); } static u32 isp1760_udc_read_raw(struct isp1760_udc *udc, u16 reg) { __le32 val; regmap_raw_read(udc->regs, reg, &val, 4); return le32_to_cpu(val); } static u16 isp1760_udc_read_raw16(struct isp1760_udc *udc, u16 reg) { __le16 val; regmap_raw_read(udc->regs, reg, &val, 2); return le16_to_cpu(val); } static void isp1760_udc_write_raw(struct isp1760_udc *udc, u16 reg, u32 val) { __le32 val_le = cpu_to_le32(val); regmap_raw_write(udc->regs, reg, &val_le, 4); } static void isp1760_udc_write_raw16(struct isp1760_udc *udc, u16 reg, u16 val) { __le16 val_le = cpu_to_le16(val); regmap_raw_write(udc->regs, reg, &val_le, 2); } static void isp1760_udc_set(struct isp1760_udc *udc, u32 field) { isp1760_udc_write(udc, field, 0xFFFFFFFF); } static void isp1760_udc_clear(struct isp1760_udc *udc, u32 field) { isp1760_udc_write(udc, field, 0); } static bool isp1760_udc_is_set(struct isp1760_udc *udc, u32 field) { return !!isp1760_udc_read(udc, field); } /* ----------------------------------------------------------------------------- * Endpoint Management */ static struct isp1760_ep *isp1760_udc_find_ep(struct isp1760_udc *udc, u16 index) { unsigned int i; if (index == 0) return &udc->ep[0]; for (i = 1; i < ARRAY_SIZE(udc->ep); ++i) { if (udc->ep[i].addr == index) return udc->ep[i].desc ? &udc->ep[i] : NULL; } return NULL; } static void __isp1760_udc_select_ep(struct isp1760_udc *udc, struct isp1760_ep *ep, int dir) { isp1760_udc_write(udc, DC_ENDPIDX, ep->addr & USB_ENDPOINT_NUMBER_MASK); if (dir == USB_DIR_IN) isp1760_udc_set(udc, DC_EPDIR); else isp1760_udc_clear(udc, DC_EPDIR); } /** * isp1760_udc_select_ep - Select an endpoint for register access * @ep: The endpoint * @udc: Reference to the device controller * * The ISP1761 endpoint registers are banked. This function selects the target * endpoint for banked register access. The selection remains valid until the * next call to this function, the next direct access to the EPINDEX register * or the next reset, whichever comes first. * * Called with the UDC spinlock held. */ static void isp1760_udc_select_ep(struct isp1760_udc *udc, struct isp1760_ep *ep) { __isp1760_udc_select_ep(udc, ep, ep->addr & USB_ENDPOINT_DIR_MASK); } /* Called with the UDC spinlock held. */ static void isp1760_udc_ctrl_send_status(struct isp1760_ep *ep, int dir) { struct isp1760_udc *udc = ep->udc; /* * Proceed to the status stage. The status stage data packet flows in * the direction opposite to the data stage data packets, we thus need * to select the OUT/IN endpoint for IN/OUT transfers. */ if (dir == USB_DIR_IN) isp1760_udc_clear(udc, DC_EPDIR); else isp1760_udc_set(udc, DC_EPDIR); isp1760_udc_write(udc, DC_ENDPIDX, 1); isp1760_udc_set(udc, DC_STATUS); /* * The hardware will terminate the request automatically and go back to * the setup stage without notifying us. */ udc->ep0_state = ISP1760_CTRL_SETUP; } /* Called without the UDC spinlock held. */ static void isp1760_udc_request_complete(struct isp1760_ep *ep, struct isp1760_request *req, int status) { struct isp1760_udc *udc = ep->udc; unsigned long flags; dev_dbg(ep->udc->isp->dev, "completing request %p with status %d\n", req, status); req->ep = NULL; req->req.status = status; req->req.complete(&ep->ep, &req->req); spin_lock_irqsave(&udc->lock, flags); /* * When completing control OUT requests, move to the status stage after * calling the request complete callback. This gives the gadget an * opportunity to stall the control transfer if needed. */ if (status == 0 && ep->addr == 0 && udc->ep0_dir == USB_DIR_OUT) isp1760_udc_ctrl_send_status(ep, USB_DIR_OUT); spin_unlock_irqrestore(&udc->lock, flags); } static void isp1760_udc_ctrl_send_stall(struct isp1760_ep *ep) { struct isp1760_udc *udc = ep->udc; unsigned long flags; dev_dbg(ep->udc->isp->dev, "%s(ep%02x)\n", __func__, ep->addr); spin_lock_irqsave(&udc->lock, flags); /* Stall both the IN and OUT endpoints. */ __isp1760_udc_select_ep(udc, ep, USB_DIR_OUT); isp1760_udc_set(udc, DC_STALL); __isp1760_udc_select_ep(udc, ep, USB_DIR_IN); isp1760_udc_set(udc, DC_STALL); /* A protocol stall completes the control transaction. */ udc->ep0_state = ISP1760_CTRL_SETUP; spin_unlock_irqrestore(&udc->lock, flags); } /* ----------------------------------------------------------------------------- * Data Endpoints */ /* Called with the UDC spinlock held. */ static bool isp1760_udc_receive(struct isp1760_ep *ep, struct isp1760_request *req) { struct isp1760_udc *udc = ep->udc; unsigned int len; u32 *buf; int i; isp1760_udc_select_ep(udc, ep); len = isp1760_udc_read(udc, DC_BUFLEN); dev_dbg(udc->isp->dev, "%s: received %u bytes (%u/%u done)\n", __func__, len, req->req.actual, req->req.length); len = min(len, req->req.length - req->req.actual); if (!len) { /* * There's no data to be read from the FIFO, acknowledge the RX * interrupt by clearing the buffer. * * TODO: What if another packet arrives in the meantime ? The * datasheet doesn't clearly document how this should be * handled. */ isp1760_udc_set(udc, DC_CLBUF); return false; } buf = req->req.buf + req->req.actual; /* * Make sure not to read more than one extra byte, otherwise data from * the next packet might be removed from the FIFO. */ for (i = len; i > 2; i -= 4, ++buf) *buf = isp1760_udc_read_raw(udc, ISP176x_DC_DATAPORT); if (i > 0) *(u16 *)buf = isp1760_udc_read_raw16(udc, ISP176x_DC_DATAPORT); req->req.actual += len; /* * TODO: The short_not_ok flag isn't supported yet, but isn't used by * any gadget driver either. */ dev_dbg(udc->isp->dev, "%s: req %p actual/length %u/%u maxpacket %u packet size %u\n", __func__, req, req->req.actual, req->req.length, ep->maxpacket, len); ep->rx_pending = false; /* * Complete the request if all data has been received or if a short * packet has been received. */ if (req->req.actual == req->req.length || len < ep->maxpacket) { list_del(&req->queue); return true; } return false; } static void isp1760_udc_transmit(struct isp1760_ep *ep, struct isp1760_request *req) { struct isp1760_udc *udc = ep->udc; u32 *buf = req->req.buf + req->req.actual; int i; req->packet_size = min(req->req.length - req->req.actual, ep->maxpacket); dev_dbg(udc->isp->dev, "%s: transferring %u bytes (%u/%u done)\n", __func__, req->packet_size, req->req.actual, req->req.length); __isp1760_udc_select_ep(udc, ep, USB_DIR_IN); if (req->packet_size) isp1760_udc_write(udc, DC_BUFLEN, req->packet_size); /* * Make sure not to write more than one extra byte, otherwise extra data * will stay in the FIFO and will be transmitted during the next control * request. The endpoint control CLBUF bit is supposed to allow flushing * the FIFO for this kind of conditions, but doesn't seem to work. */ for (i = req->packet_size; i > 2; i -= 4, ++buf) isp1760_udc_write_raw(udc, ISP176x_DC_DATAPORT, *buf); if (i > 0) isp1760_udc_write_raw16(udc, ISP176x_DC_DATAPORT, *(u16 *)buf); if (ep->addr == 0) isp1760_udc_set(udc, DC_DSEN); if (!req->packet_size) isp1760_udc_set(udc, DC_VENDP); } static void isp1760_ep_rx_ready(struct isp1760_ep *ep) { struct isp1760_udc *udc = ep->udc; struct isp1760_request *req; bool complete; spin_lock(&udc->lock); if (ep->addr == 0 && udc->ep0_state != ISP1760_CTRL_DATA_OUT) { spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "%s: invalid ep0 state %u\n", __func__, udc->ep0_state); return; } if (ep->addr != 0 && !ep->desc) { spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "%s: ep%02x is disabled\n", __func__, ep->addr); return; } if (list_empty(&ep->queue)) { ep->rx_pending = true; spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "%s: ep%02x (%p) has no request queued\n", __func__, ep->addr, ep); return; } req = list_first_entry(&ep->queue, struct isp1760_request, queue); complete = isp1760_udc_receive(ep, req); spin_unlock(&udc->lock); if (complete) isp1760_udc_request_complete(ep, req, 0); } static void isp1760_ep_tx_complete(struct isp1760_ep *ep) { struct isp1760_udc *udc = ep->udc; struct isp1760_request *complete = NULL; struct isp1760_request *req; bool need_zlp; spin_lock(&udc->lock); if (ep->addr == 0 && udc->ep0_state != ISP1760_CTRL_DATA_IN) { spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "TX IRQ: invalid endpoint state %u\n", udc->ep0_state); return; } if (list_empty(&ep->queue)) { /* * This can happen for the control endpoint when the reply to * the GET_STATUS IN control request is sent directly by the * setup IRQ handler. Just proceed to the status stage. */ if (ep->addr == 0) { isp1760_udc_ctrl_send_status(ep, USB_DIR_IN); spin_unlock(&udc->lock); return; } spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "%s: ep%02x has no request queued\n", __func__, ep->addr); return; } req = list_first_entry(&ep->queue, struct isp1760_request, queue); req->req.actual += req->packet_size; need_zlp = req->req.actual == req->req.length && !(req->req.length % ep->maxpacket) && req->packet_size && req->req.zero; dev_dbg(udc->isp->dev, "TX IRQ: req %p actual/length %u/%u maxpacket %u packet size %u zero %u need zlp %u\n", req, req->req.actual, req->req.length, ep->maxpacket, req->packet_size, req->req.zero, need_zlp); /* * Complete the request if all data has been sent and we don't need to * transmit a zero length packet. */ if (req->req.actual == req->req.length && !need_zlp) { complete = req; list_del(&req->queue); if (ep->addr == 0) isp1760_udc_ctrl_send_status(ep, USB_DIR_IN); if (!list_empty(&ep->queue)) req = list_first_entry(&ep->queue, struct isp1760_request, queue); else req = NULL; } /* * Transmit the next packet or start the next request, if any. * * TODO: If the endpoint is stalled the next request shouldn't be * started, but what about the next packet ? */ if (req) isp1760_udc_transmit(ep, req); spin_unlock(&udc->lock); if (complete) isp1760_udc_request_complete(ep, complete, 0); } static int __isp1760_udc_set_halt(struct isp1760_ep *ep, bool halt) { struct isp1760_udc *udc = ep->udc; dev_dbg(udc->isp->dev, "%s: %s halt on ep%02x\n", __func__, halt ? "set" : "clear", ep->addr); if (ep->desc && usb_endpoint_xfer_isoc(ep->desc)) { dev_dbg(udc->isp->dev, "%s: ep%02x is isochronous\n", __func__, ep->addr); return -EINVAL; } isp1760_udc_select_ep(udc, ep); if (halt) isp1760_udc_set(udc, DC_STALL); else isp1760_udc_clear(udc, DC_STALL); if (ep->addr == 0) { /* When halting the control endpoint, stall both IN and OUT. */ __isp1760_udc_select_ep(udc, ep, USB_DIR_IN); if (halt) isp1760_udc_set(udc, DC_STALL); else isp1760_udc_clear(udc, DC_STALL); } else if (!halt) { /* Reset the data PID by cycling the endpoint enable bit. */ isp1760_udc_clear(udc, DC_EPENABLE); isp1760_udc_set(udc, DC_EPENABLE); /* * Disabling the endpoint emptied the transmit FIFO, fill it * again if a request is pending. * * TODO: Does the gadget framework require synchronizatino with * the TX IRQ handler ? */ if ((ep->addr & USB_DIR_IN) && !list_empty(&ep->queue)) { struct isp1760_request *req; req = list_first_entry(&ep->queue, struct isp1760_request, queue); isp1760_udc_transmit(ep, req); } } ep->halted = halt; return 0; } /* ----------------------------------------------------------------------------- * Control Endpoint */ static int isp1760_udc_get_status(struct isp1760_udc *udc, const struct usb_ctrlrequest *req) { struct isp1760_ep *ep; u16 status; if (req->wLength != cpu_to_le16(2) || req->wValue != cpu_to_le16(0)) return -EINVAL; switch (req->bRequestType) { case USB_DIR_IN | USB_RECIP_DEVICE: status = udc->devstatus; break; case USB_DIR_IN | USB_RECIP_INTERFACE: status = 0; break; case USB_DIR_IN | USB_RECIP_ENDPOINT: ep = isp1760_udc_find_ep(udc, le16_to_cpu(req->wIndex)); if (!ep) return -EINVAL; status = 0; if (ep->halted) status |= 1 << USB_ENDPOINT_HALT; break; default: return -EINVAL; } isp1760_udc_set(udc, DC_EPDIR); isp1760_udc_write(udc, DC_ENDPIDX, 1); isp1760_udc_write(udc, DC_BUFLEN, 2); isp1760_udc_write_raw16(udc, ISP176x_DC_DATAPORT, status); isp1760_udc_set(udc, DC_DSEN); dev_dbg(udc->isp->dev, "%s: status 0x%04x\n", __func__, status); return 0; } static int isp1760_udc_set_address(struct isp1760_udc *udc, u16 addr) { if (addr > 127) { dev_dbg(udc->isp->dev, "invalid device address %u\n", addr); return -EINVAL; } if (udc->gadget.state != USB_STATE_DEFAULT && udc->gadget.state != USB_STATE_ADDRESS) { dev_dbg(udc->isp->dev, "can't set address in state %u\n", udc->gadget.state); return -EINVAL; } usb_gadget_set_state(&udc->gadget, addr ? USB_STATE_ADDRESS : USB_STATE_DEFAULT); isp1760_udc_write(udc, DC_DEVADDR, addr); isp1760_udc_set(udc, DC_DEVEN); spin_lock(&udc->lock); isp1760_udc_ctrl_send_status(&udc->ep[0], USB_DIR_OUT); spin_unlock(&udc->lock); return 0; } static bool isp1760_ep0_setup_standard(struct isp1760_udc *udc, struct usb_ctrlrequest *req) { bool stall; switch (req->bRequest) { case USB_REQ_GET_STATUS: return isp1760_udc_get_status(udc, req); case USB_REQ_CLEAR_FEATURE: switch (req->bRequestType) { case USB_DIR_OUT | USB_RECIP_DEVICE: { /* TODO: Handle remote wakeup feature. */ return true; } case USB_DIR_OUT | USB_RECIP_ENDPOINT: { u16 index = le16_to_cpu(req->wIndex); struct isp1760_ep *ep; if (req->wLength != cpu_to_le16(0) || req->wValue != cpu_to_le16(USB_ENDPOINT_HALT)) return true; ep = isp1760_udc_find_ep(udc, index); if (!ep) return true; spin_lock(&udc->lock); /* * If the endpoint is wedged only the gadget can clear * the halt feature. Pretend success in that case, but * keep the endpoint halted. */ if (!ep->wedged) stall = __isp1760_udc_set_halt(ep, false); else stall = false; if (!stall) isp1760_udc_ctrl_send_status(&udc->ep[0], USB_DIR_OUT); spin_unlock(&udc->lock); return stall; } default: return true; } break; case USB_REQ_SET_FEATURE: switch (req->bRequestType) { case USB_DIR_OUT | USB_RECIP_DEVICE: { /* TODO: Handle remote wakeup and test mode features */ return true; } case USB_DIR_OUT | USB_RECIP_ENDPOINT: { u16 index = le16_to_cpu(req->wIndex); struct isp1760_ep *ep; if (req->wLength != cpu_to_le16(0) || req->wValue != cpu_to_le16(USB_ENDPOINT_HALT)) return true; ep = isp1760_udc_find_ep(udc, index); if (!ep) return true; spin_lock(&udc->lock); stall = __isp1760_udc_set_halt(ep, true); if (!stall) isp1760_udc_ctrl_send_status(&udc->ep[0], USB_DIR_OUT); spin_unlock(&udc->lock); return stall; } default: return true; } break; case USB_REQ_SET_ADDRESS: if (req->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE)) return true; return isp1760_udc_set_address(udc, le16_to_cpu(req->wValue)); case USB_REQ_SET_CONFIGURATION: if (req->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE)) return true; if (udc->gadget.state != USB_STATE_ADDRESS && udc->gadget.state != USB_STATE_CONFIGURED) return true; stall = udc->driver->setup(&udc->gadget, req) < 0; if (stall) return true; usb_gadget_set_state(&udc->gadget, req->wValue ? USB_STATE_CONFIGURED : USB_STATE_ADDRESS); /* * SET_CONFIGURATION (and SET_INTERFACE) must reset the halt * feature on all endpoints. There is however no need to do so * explicitly here as the gadget driver will disable and * reenable endpoints, clearing the halt feature. */ return false; default: return udc->driver->setup(&udc->gadget, req) < 0; } } static void isp1760_ep0_setup(struct isp1760_udc *udc) { union { struct usb_ctrlrequest r; u32 data[2]; } req; unsigned int count; bool stall = false; spin_lock(&udc->lock); isp1760_udc_set(udc, DC_EP0SETUP); count = isp1760_udc_read(udc, DC_BUFLEN); if (count != sizeof(req)) { spin_unlock(&udc->lock); dev_err(udc->isp->dev, "invalid length %u for setup packet\n", count); isp1760_udc_ctrl_send_stall(&udc->ep[0]); return; } req.data[0] = isp1760_udc_read_raw(udc, ISP176x_DC_DATAPORT); req.data[1] = isp1760_udc_read_raw(udc, ISP176x_DC_DATAPORT); if (udc->ep0_state != ISP1760_CTRL_SETUP) { spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "unexpected SETUP packet\n"); return; } /* Move to the data stage. */ if (!req.r.wLength) udc->ep0_state = ISP1760_CTRL_STATUS; else if (req.r.bRequestType & USB_DIR_IN) udc->ep0_state = ISP1760_CTRL_DATA_IN; else udc->ep0_state = ISP1760_CTRL_DATA_OUT; udc->ep0_dir = req.r.bRequestType & USB_DIR_IN; udc->ep0_length = le16_to_cpu(req.r.wLength); spin_unlock(&udc->lock); dev_dbg(udc->isp->dev, "%s: bRequestType 0x%02x bRequest 0x%02x wValue 0x%04x wIndex 0x%04x wLength 0x%04x\n", __func__, req.r.bRequestType, req.r.bRequest, le16_to_cpu(req.r.wValue), le16_to_cpu(req.r.wIndex), le16_to_cpu(req.r.wLength)); if ((req.r.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) stall = isp1760_ep0_setup_standard(udc, &req.r); else stall = udc->driver->setup(&udc->gadget, &req.r) < 0; if (stall) isp1760_udc_ctrl_send_stall(&udc->ep[0]); } /* ----------------------------------------------------------------------------- * Gadget Endpoint Operations */ static int isp1760_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct isp1760_ep *uep = ep_to_udc_ep(ep); struct isp1760_udc *udc = uep->udc; unsigned long flags; unsigned int type; dev_dbg(uep->udc->isp->dev, "%s\n", __func__); /* * Validate the descriptor. The control endpoint can't be enabled * manually. */ if (desc->bDescriptorType != USB_DT_ENDPOINT || desc->bEndpointAddress == 0 || desc->bEndpointAddress != uep->addr || le16_to_cpu(desc->wMaxPacketSize) > ep->maxpacket) { dev_dbg(udc->isp->dev, "%s: invalid descriptor type %u addr %02x ep addr %02x max packet size %u/%u\n", __func__, desc->bDescriptorType, desc->bEndpointAddress, uep->addr, le16_to_cpu(desc->wMaxPacketSize), ep->maxpacket); return -EINVAL; } switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_ISOC: type = ISP176x_DC_ENDPTYP_ISOC; break; case USB_ENDPOINT_XFER_BULK: type = ISP176x_DC_ENDPTYP_BULK; break; case USB_ENDPOINT_XFER_INT: type = ISP176x_DC_ENDPTYP_INTERRUPT; break; case USB_ENDPOINT_XFER_CONTROL: default: dev_dbg(udc->isp->dev, "%s: control endpoints unsupported\n", __func__); return -EINVAL; } spin_lock_irqsave(&udc->lock, flags); uep->desc = desc; uep->maxpacket = le16_to_cpu(desc->wMaxPacketSize); uep->rx_pending = false; uep->halted = false; uep->wedged = false; isp1760_udc_select_ep(udc, uep); isp1760_udc_write(udc, DC_FFOSZ, uep->maxpacket); isp1760_udc_write(udc, DC_BUFLEN, uep->maxpacket); isp1760_udc_write(udc, DC_ENDPTYP, type); isp1760_udc_set(udc, DC_EPENABLE); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int isp1760_ep_disable(struct usb_ep *ep) { struct isp1760_ep *uep = ep_to_udc_ep(ep); struct isp1760_udc *udc = uep->udc; struct isp1760_request *req, *nreq; LIST_HEAD(req_list); unsigned long flags; dev_dbg(udc->isp->dev, "%s\n", __func__); spin_lock_irqsave(&udc->lock, flags); if (!uep->desc) { dev_dbg(udc->isp->dev, "%s: endpoint not enabled\n", __func__); spin_unlock_irqrestore(&udc->lock, flags); return -EINVAL; } uep->desc = NULL; uep->maxpacket = 0; isp1760_udc_select_ep(udc, uep); isp1760_udc_clear(udc, DC_EPENABLE); isp1760_udc_clear(udc, DC_ENDPTYP); /* TODO Synchronize with the IRQ handler */ list_splice_init(&uep->queue, &req_list); spin_unlock_irqrestore(&udc->lock, flags); list_for_each_entry_safe(req, nreq, &req_list, queue) { list_del(&req->queue); isp1760_udc_request_complete(uep, req, -ESHUTDOWN); } return 0; } static struct usb_request *isp1760_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct isp1760_request *req; req = kzalloc(sizeof(*req), gfp_flags); if (!req) return NULL; return &req->req; } static void isp1760_ep_free_request(struct usb_ep *ep, struct usb_request *_req) { struct isp1760_request *req = req_to_udc_req(_req); kfree(req); } static int isp1760_ep_queue(struct usb_ep *ep, struct usb_request *_req, gfp_t gfp_flags) { struct isp1760_request *req = req_to_udc_req(_req); struct isp1760_ep *uep = ep_to_udc_ep(ep); struct isp1760_udc *udc = uep->udc; bool complete = false; unsigned long flags; int ret = 0; _req->status = -EINPROGRESS; _req->actual = 0; spin_lock_irqsave(&udc->lock, flags); dev_dbg(udc->isp->dev, "%s: req %p (%u bytes%s) ep %p(0x%02x)\n", __func__, _req, _req->length, _req->zero ? " (zlp)" : "", uep, uep->addr); req->ep = uep; if (uep->addr == 0) { if (_req->length != udc->ep0_length && udc->ep0_state != ISP1760_CTRL_DATA_IN) { dev_dbg(udc->isp->dev, "%s: invalid length %u for req %p\n", __func__, _req->length, req); ret = -EINVAL; goto done; } switch (udc->ep0_state) { case ISP1760_CTRL_DATA_IN: dev_dbg(udc->isp->dev, "%s: transmitting req %p\n", __func__, req); list_add_tail(&req->queue, &uep->queue); isp1760_udc_transmit(uep, req); break; case ISP1760_CTRL_DATA_OUT: list_add_tail(&req->queue, &uep->queue); __isp1760_udc_select_ep(udc, uep, USB_DIR_OUT); isp1760_udc_set(udc, DC_DSEN); break; case ISP1760_CTRL_STATUS: complete = true; break; default: dev_dbg(udc->isp->dev, "%s: invalid ep0 state\n", __func__); ret = -EINVAL; break; } } else if (uep->desc) { bool empty = list_empty(&uep->queue); list_add_tail(&req->queue, &uep->queue); if ((uep->addr & USB_DIR_IN) && !uep->halted && empty) isp1760_udc_transmit(uep, req); else if (!(uep->addr & USB_DIR_IN) && uep->rx_pending) complete = isp1760_udc_receive(uep, req); } else { dev_dbg(udc->isp->dev, "%s: can't queue request to disabled ep%02x\n", __func__, uep->addr); ret = -ESHUTDOWN; } done: if (ret < 0) req->ep = NULL; spin_unlock_irqrestore(&udc->lock, flags); if (complete) isp1760_udc_request_complete(uep, req, 0); return ret; } static int isp1760_ep_dequeue(struct usb_ep *ep, struct usb_request *_req) { struct isp1760_request *req = req_to_udc_req(_req); struct isp1760_ep *uep = ep_to_udc_ep(ep); struct isp1760_udc *udc = uep->udc; unsigned long flags; dev_dbg(uep->udc->isp->dev, "%s(ep%02x)\n", __func__, uep->addr); spin_lock_irqsave(&udc->lock, flags); if (req->ep != uep) req = NULL; else list_del(&req->queue); spin_unlock_irqrestore(&udc->lock, flags); if (!req) return -EINVAL; isp1760_udc_request_complete(uep, req, -ECONNRESET); return 0; } static int __isp1760_ep_set_halt(struct isp1760_ep *uep, bool stall, bool wedge) { struct isp1760_udc *udc = uep->udc; int ret; if (!uep->addr) { /* * Halting the control endpoint is only valid as a delayed error * response to a SETUP packet. Make sure EP0 is in the right * stage and that the gadget isn't trying to clear the halt * condition. */ if (WARN_ON(udc->ep0_state == ISP1760_CTRL_SETUP || !stall || wedge)) { return -EINVAL; } } if (uep->addr && !uep->desc) { dev_dbg(udc->isp->dev, "%s: ep%02x is disabled\n", __func__, uep->addr); return -EINVAL; } if (uep->addr & USB_DIR_IN) { /* Refuse to halt IN endpoints with active transfers. */ if (!list_empty(&uep->queue)) { dev_dbg(udc->isp->dev, "%s: ep%02x has request pending\n", __func__, uep->addr); return -EAGAIN; } } ret = __isp1760_udc_set_halt(uep, stall); if (ret < 0) return ret; if (!uep->addr) { /* * Stalling EP0 completes the control transaction, move back to * the SETUP state. */ udc->ep0_state = ISP1760_CTRL_SETUP; return 0; } if (wedge) uep->wedged = true; else if (!stall) uep->wedged = false; return 0; } static int isp1760_ep_set_halt(struct usb_ep *ep, int value) { struct isp1760_ep *uep = ep_to_udc_ep(ep); unsigned long flags; int ret; dev_dbg(uep->udc->isp->dev, "%s: %s halt on ep%02x\n", __func__, value ? "set" : "clear", uep->addr); spin_lock_irqsave(&uep->udc->lock, flags); ret = __isp1760_ep_set_halt(uep, value, false); spin_unlock_irqrestore(&uep->udc->lock, flags); return ret; } static int isp1760_ep_set_wedge(struct usb_ep *ep) { struct isp1760_ep *uep = ep_to_udc_ep(ep); unsigned long flags; int ret; dev_dbg(uep->udc->isp->dev, "%s: set wedge on ep%02x)\n", __func__, uep->addr); spin_lock_irqsave(&uep->udc->lock, flags); ret = __isp1760_ep_set_halt(uep, true, true); spin_unlock_irqrestore(&uep->udc->lock, flags); return ret; } static void isp1760_ep_fifo_flush(struct usb_ep *ep) { struct isp1760_ep *uep = ep_to_udc_ep(ep); struct isp1760_udc *udc = uep->udc; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); isp1760_udc_select_ep(udc, uep); /* * Set the CLBUF bit twice to flush both buffers in case double * buffering is enabled. */ isp1760_udc_set(udc, DC_CLBUF); isp1760_udc_set(udc, DC_CLBUF); spin_unlock_irqrestore(&udc->lock, flags); } static const struct usb_ep_ops isp1760_ep_ops = { .enable = isp1760_ep_enable, .disable = isp1760_ep_disable, .alloc_request = isp1760_ep_alloc_request, .free_request = isp1760_ep_free_request, .queue = isp1760_ep_queue, .dequeue = isp1760_ep_dequeue, .set_halt = isp1760_ep_set_halt, .set_wedge = isp1760_ep_set_wedge, .fifo_flush = isp1760_ep_fifo_flush, }; /* ----------------------------------------------------------------------------- * Device States */ /* Called with the UDC spinlock held. */ static void isp1760_udc_connect(struct isp1760_udc *udc) { usb_gadget_set_state(&udc->gadget, USB_STATE_POWERED); mod_timer(&udc->vbus_timer, jiffies + ISP1760_VBUS_POLL_INTERVAL); } /* Called with the UDC spinlock held. */ static void isp1760_udc_disconnect(struct isp1760_udc *udc) { if (udc->gadget.state < USB_STATE_POWERED) return; dev_dbg(udc->isp->dev, "Device disconnected in state %u\n", udc->gadget.state); udc->gadget.speed = USB_SPEED_UNKNOWN; usb_gadget_set_state(&udc->gadget, USB_STATE_ATTACHED); if (udc->driver->disconnect) udc->driver->disconnect(&udc->gadget); del_timer(&udc->vbus_timer); /* TODO Reset all endpoints ? */ } static void isp1760_udc_init_hw(struct isp1760_udc *udc) { u32 intconf = udc->is_isp1763 ? ISP1763_DC_INTCONF : ISP176x_DC_INTCONF; u32 intena = udc->is_isp1763 ? ISP1763_DC_INTENABLE : ISP176x_DC_INTENABLE; /* * The device controller currently shares its interrupt with the host * controller, the DC_IRQ polarity and signaling mode are ignored. Set * the to active-low level-triggered. * * Configure the control, in and out pipes to generate interrupts on * ACK tokens only (and NYET for the out pipe). The default * configuration also generates an interrupt on the first NACK token. */ isp1760_reg_write(udc->regs, intconf, ISP176x_DC_CDBGMOD_ACK | ISP176x_DC_DDBGMODIN_ACK | ISP176x_DC_DDBGMODOUT_ACK); isp1760_reg_write(udc->regs, intena, DC_IEPRXTX(7) | DC_IEPRXTX(6) | DC_IEPRXTX(5) | DC_IEPRXTX(4) | DC_IEPRXTX(3) | DC_IEPRXTX(2) | DC_IEPRXTX(1) | DC_IEPRXTX(0) | ISP176x_DC_IEP0SETUP | ISP176x_DC_IEVBUS | ISP176x_DC_IERESM | ISP176x_DC_IESUSP | ISP176x_DC_IEHS_STA | ISP176x_DC_IEBRST); if (udc->connected) isp1760_set_pullup(udc->isp, true); isp1760_udc_set(udc, DC_DEVEN); } static void isp1760_udc_reset(struct isp1760_udc *udc) { unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* * The bus reset has reset most registers to their default value, * reinitialize the UDC hardware. */ isp1760_udc_init_hw(udc); udc->ep0_state = ISP1760_CTRL_SETUP; udc->gadget.speed = USB_SPEED_FULL; usb_gadget_udc_reset(&udc->gadget, udc->driver); spin_unlock_irqrestore(&udc->lock, flags); } static void isp1760_udc_suspend(struct isp1760_udc *udc) { if (udc->gadget.state < USB_STATE_DEFAULT) return; if (udc->driver->suspend) udc->driver->suspend(&udc->gadget); } static void isp1760_udc_resume(struct isp1760_udc *udc) { if (udc->gadget.state < USB_STATE_DEFAULT) return; if (udc->driver->resume) udc->driver->resume(&udc->gadget); } /* ----------------------------------------------------------------------------- * Gadget Operations */ static int isp1760_udc_get_frame(struct usb_gadget *gadget) { struct isp1760_udc *udc = gadget_to_udc(gadget); return isp1760_udc_read(udc, DC_FRAMENUM); } static int isp1760_udc_wakeup(struct usb_gadget *gadget) { struct isp1760_udc *udc = gadget_to_udc(gadget); dev_dbg(udc->isp->dev, "%s\n", __func__); return -ENOTSUPP; } static int isp1760_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered) { struct isp1760_udc *udc = gadget_to_udc(gadget); if (is_selfpowered) udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED; else udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED); return 0; } static int isp1760_udc_pullup(struct usb_gadget *gadget, int is_on) { struct isp1760_udc *udc = gadget_to_udc(gadget); isp1760_set_pullup(udc->isp, is_on); udc->connected = is_on; return 0; } static int isp1760_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct isp1760_udc *udc = gadget_to_udc(gadget); unsigned long flags; /* The hardware doesn't support low speed. */ if (driver->max_speed < USB_SPEED_FULL) { dev_err(udc->isp->dev, "Invalid gadget driver\n"); return -EINVAL; } spin_lock_irqsave(&udc->lock, flags); if (udc->driver) { dev_err(udc->isp->dev, "UDC already has a gadget driver\n"); spin_unlock_irqrestore(&udc->lock, flags); return -EBUSY; } udc->driver = driver; spin_unlock_irqrestore(&udc->lock, flags); dev_dbg(udc->isp->dev, "starting UDC with driver %s\n", driver->function); udc->devstatus = 0; udc->connected = true; usb_gadget_set_state(&udc->gadget, USB_STATE_ATTACHED); /* DMA isn't supported yet, don't enable the DMA clock. */ isp1760_udc_set(udc, DC_GLINTENA); isp1760_udc_init_hw(udc); dev_dbg(udc->isp->dev, "UDC started with driver %s\n", driver->function); return 0; } static int isp1760_udc_stop(struct usb_gadget *gadget) { struct isp1760_udc *udc = gadget_to_udc(gadget); u32 mode_reg = udc->is_isp1763 ? ISP1763_DC_MODE : ISP176x_DC_MODE; unsigned long flags; dev_dbg(udc->isp->dev, "%s\n", __func__); del_timer_sync(&udc->vbus_timer); isp1760_reg_write(udc->regs, mode_reg, 0); spin_lock_irqsave(&udc->lock, flags); udc->driver = NULL; spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_gadget_ops isp1760_udc_ops = { .get_frame = isp1760_udc_get_frame, .wakeup = isp1760_udc_wakeup, .set_selfpowered = isp1760_udc_set_selfpowered, .pullup = isp1760_udc_pullup, .udc_start = isp1760_udc_start, .udc_stop = isp1760_udc_stop, }; /* ----------------------------------------------------------------------------- * Interrupt Handling */ static u32 isp1760_udc_irq_get_status(struct isp1760_udc *udc) { u32 status; if (udc->is_isp1763) { status = isp1760_reg_read(udc->regs, ISP1763_DC_INTERRUPT) & isp1760_reg_read(udc->regs, ISP1763_DC_INTENABLE); isp1760_reg_write(udc->regs, ISP1763_DC_INTERRUPT, status); } else { status = isp1760_reg_read(udc->regs, ISP176x_DC_INTERRUPT) & isp1760_reg_read(udc->regs, ISP176x_DC_INTENABLE); isp1760_reg_write(udc->regs, ISP176x_DC_INTERRUPT, status); } return status; } static irqreturn_t isp1760_udc_irq(int irq, void *dev) { struct isp1760_udc *udc = dev; unsigned int i; u32 status; status = isp1760_udc_irq_get_status(udc); if (status & ISP176x_DC_IEVBUS) { dev_dbg(udc->isp->dev, "%s(VBUS)\n", __func__); /* The VBUS interrupt is only triggered when VBUS appears. */ spin_lock(&udc->lock); isp1760_udc_connect(udc); spin_unlock(&udc->lock); } if (status & ISP176x_DC_IEBRST) { dev_dbg(udc->isp->dev, "%s(BRST)\n", __func__); isp1760_udc_reset(udc); } for (i = 0; i <= 7; ++i) { struct isp1760_ep *ep = &udc->ep[i*2]; if (status & DC_IEPTX(i)) { dev_dbg(udc->isp->dev, "%s(EPTX%u)\n", __func__, i); isp1760_ep_tx_complete(ep); } if (status & DC_IEPRX(i)) { dev_dbg(udc->isp->dev, "%s(EPRX%u)\n", __func__, i); isp1760_ep_rx_ready(i ? ep - 1 : ep); } } if (status & ISP176x_DC_IEP0SETUP) { dev_dbg(udc->isp->dev, "%s(EP0SETUP)\n", __func__); isp1760_ep0_setup(udc); } if (status & ISP176x_DC_IERESM) { dev_dbg(udc->isp->dev, "%s(RESM)\n", __func__); isp1760_udc_resume(udc); } if (status & ISP176x_DC_IESUSP) { dev_dbg(udc->isp->dev, "%s(SUSP)\n", __func__); spin_lock(&udc->lock); if (!isp1760_udc_is_set(udc, DC_VBUSSTAT)) isp1760_udc_disconnect(udc); else isp1760_udc_suspend(udc); spin_unlock(&udc->lock); } if (status & ISP176x_DC_IEHS_STA) { dev_dbg(udc->isp->dev, "%s(HS_STA)\n", __func__); udc->gadget.speed = USB_SPEED_HIGH; } return status ? IRQ_HANDLED : IRQ_NONE; } static void isp1760_udc_vbus_poll(struct timer_list *t) { struct isp1760_udc *udc = from_timer(udc, t, vbus_timer); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); if (!(isp1760_udc_is_set(udc, DC_VBUSSTAT))) isp1760_udc_disconnect(udc); else if (udc->gadget.state >= USB_STATE_POWERED) mod_timer(&udc->vbus_timer, jiffies + ISP1760_VBUS_POLL_INTERVAL); spin_unlock_irqrestore(&udc->lock, flags); } /* ----------------------------------------------------------------------------- * Registration */ static void isp1760_udc_init_eps(struct isp1760_udc *udc) { unsigned int i; INIT_LIST_HEAD(&udc->gadget.ep_list); for (i = 0; i < ARRAY_SIZE(udc->ep); ++i) { struct isp1760_ep *ep = &udc->ep[i]; unsigned int ep_num = (i + 1) / 2; bool is_in = !(i & 1); ep->udc = udc; INIT_LIST_HEAD(&ep->queue); ep->addr = (ep_num && is_in ? USB_DIR_IN : USB_DIR_OUT) | ep_num; ep->desc = NULL; sprintf(ep->name, "ep%u%s", ep_num, ep_num ? (is_in ? "in" : "out") : ""); ep->ep.ops = &isp1760_ep_ops; ep->ep.name = ep->name; /* * Hardcode the maximum packet sizes for now, to 64 bytes for * the control endpoint and 512 bytes for all other endpoints. * This fits in the 8kB FIFO without double-buffering. */ if (ep_num == 0) { usb_ep_set_maxpacket_limit(&ep->ep, 64); ep->ep.caps.type_control = true; ep->ep.caps.dir_in = true; ep->ep.caps.dir_out = true; ep->maxpacket = 64; udc->gadget.ep0 = &ep->ep; } else { usb_ep_set_maxpacket_limit(&ep->ep, 512); ep->ep.caps.type_iso = true; ep->ep.caps.type_bulk = true; ep->ep.caps.type_int = true; ep->maxpacket = 0; list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); } if (is_in) ep->ep.caps.dir_in = true; else ep->ep.caps.dir_out = true; } } static int isp1760_udc_init(struct isp1760_udc *udc) { u32 mode_reg = udc->is_isp1763 ? ISP1763_DC_MODE : ISP176x_DC_MODE; u16 scratch; u32 chipid; /* * Check that the controller is present by writing to the scratch * register, modifying the bus pattern by reading from the chip ID * register, and reading the scratch register value back. The chip ID * and scratch register contents must match the expected values. */ isp1760_udc_write(udc, DC_SCRATCH, 0xbabe); chipid = isp1760_udc_read(udc, DC_CHIP_ID_HIGH) << 16; chipid |= isp1760_udc_read(udc, DC_CHIP_ID_LOW); scratch = isp1760_udc_read(udc, DC_SCRATCH); if (scratch != 0xbabe) { dev_err(udc->isp->dev, "udc: scratch test failed (0x%04x/0x%08x)\n", scratch, chipid); return -ENODEV; } if (chipid != 0x00011582 && chipid != 0x00158210 && chipid != 0x00176320) { dev_err(udc->isp->dev, "udc: invalid chip ID 0x%08x\n", chipid); return -ENODEV; } /* Reset the device controller. */ isp1760_udc_set(udc, DC_SFRESET); usleep_range(10000, 11000); isp1760_reg_write(udc->regs, mode_reg, 0); usleep_range(10000, 11000); return 0; } int isp1760_udc_register(struct isp1760_device *isp, int irq, unsigned long irqflags) { struct isp1760_udc *udc = &isp->udc; int ret; udc->irq = -1; udc->isp = isp; spin_lock_init(&udc->lock); timer_setup(&udc->vbus_timer, isp1760_udc_vbus_poll, 0); ret = isp1760_udc_init(udc); if (ret < 0) return ret; udc->irqname = kasprintf(GFP_KERNEL, "%s (udc)", dev_name(isp->dev)); if (!udc->irqname) return -ENOMEM; ret = request_irq(irq, isp1760_udc_irq, IRQF_SHARED | irqflags, udc->irqname, udc); if (ret < 0) goto error; udc->irq = irq; /* * Initialize the gadget static fields and register its device. Gadget * fields that vary during the life time of the gadget are initialized * by the UDC core. */ udc->gadget.ops = &isp1760_udc_ops; udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.max_speed = USB_SPEED_HIGH; udc->gadget.name = "isp1761_udc"; isp1760_udc_init_eps(udc); ret = usb_add_gadget_udc(isp->dev, &udc->gadget); if (ret < 0) goto error; return 0; error: if (udc->irq >= 0) free_irq(udc->irq, udc); kfree(udc->irqname); return ret; } void isp1760_udc_unregister(struct isp1760_device *isp) { struct isp1760_udc *udc = &isp->udc; if (!udc->isp) return; usb_del_gadget_udc(&udc->gadget); free_irq(udc->irq, udc); kfree(udc->irqname); }
linux-master
drivers/usb/isp1760/isp1760-udc.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the NXP ISP1760 chip * * However, the code might contain some bugs. What doesn't work for sure is: * - ISO * - OTG e The interrupt line is configured as active low, level. * * (c) 2007 Sebastian Siewior <[email protected]> * * (c) 2011 Arvid Brodin <[email protected]> * * Copyright 2021 Linaro, Rui Miguel Silva <[email protected]> * */ #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/debugfs.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mm.h> #include <linux/timer.h> #include <asm/unaligned.h> #include <asm/cacheflush.h> #include "isp1760-core.h" #include "isp1760-hcd.h" #include "isp1760-regs.h" static struct kmem_cache *qtd_cachep; static struct kmem_cache *qh_cachep; static struct kmem_cache *urb_listitem_cachep; typedef void (packet_enqueue)(struct usb_hcd *hcd, struct isp1760_qh *qh, struct isp1760_qtd *qtd); static inline struct isp1760_hcd *hcd_to_priv(struct usb_hcd *hcd) { return *(struct isp1760_hcd **)hcd->hcd_priv; } #define dw_to_le32(x) (cpu_to_le32((__force u32)x)) #define le32_to_dw(x) ((__force __dw)(le32_to_cpu(x))) /* urb state*/ #define DELETE_URB (0x0008) #define NO_TRANSFER_ACTIVE (0xffffffff) /* Philips Proprietary Transfer Descriptor (PTD) */ typedef __u32 __bitwise __dw; struct ptd { __dw dw0; __dw dw1; __dw dw2; __dw dw3; __dw dw4; __dw dw5; __dw dw6; __dw dw7; }; struct ptd_le32 { __le32 dw0; __le32 dw1; __le32 dw2; __le32 dw3; __le32 dw4; __le32 dw5; __le32 dw6; __le32 dw7; }; #define PTD_OFFSET 0x0400 #define ISO_PTD_OFFSET 0x0400 #define INT_PTD_OFFSET 0x0800 #define ATL_PTD_OFFSET 0x0c00 #define PAYLOAD_OFFSET 0x1000 #define ISP_BANK_0 0x00 #define ISP_BANK_1 0x01 #define ISP_BANK_2 0x02 #define ISP_BANK_3 0x03 #define TO_DW(x) ((__force __dw)x) #define TO_U32(x) ((__force u32)x) /* ATL */ /* DW0 */ #define DW0_VALID_BIT TO_DW(1) #define FROM_DW0_VALID(x) (TO_U32(x) & 0x01) #define TO_DW0_LENGTH(x) TO_DW((((u32)x) << 3)) #define TO_DW0_MAXPACKET(x) TO_DW((((u32)x) << 18)) #define TO_DW0_MULTI(x) TO_DW((((u32)x) << 29)) #define TO_DW0_ENDPOINT(x) TO_DW((((u32)x) << 31)) /* DW1 */ #define TO_DW1_DEVICE_ADDR(x) TO_DW((((u32)x) << 3)) #define TO_DW1_PID_TOKEN(x) TO_DW((((u32)x) << 10)) #define DW1_TRANS_BULK TO_DW(((u32)2 << 12)) #define DW1_TRANS_INT TO_DW(((u32)3 << 12)) #define DW1_TRANS_SPLIT TO_DW(((u32)1 << 14)) #define DW1_SE_USB_LOSPEED TO_DW(((u32)2 << 16)) #define TO_DW1_PORT_NUM(x) TO_DW((((u32)x) << 18)) #define TO_DW1_HUB_NUM(x) TO_DW((((u32)x) << 25)) /* DW2 */ #define TO_DW2_DATA_START_ADDR(x) TO_DW((((u32)x) << 8)) #define TO_DW2_RL(x) TO_DW(((x) << 25)) #define FROM_DW2_RL(x) ((TO_U32(x) >> 25) & 0xf) /* DW3 */ #define FROM_DW3_NRBYTESTRANSFERRED(x) TO_U32((x) & 0x3fff) #define FROM_DW3_SCS_NRBYTESTRANSFERRED(x) TO_U32((x) & 0x07ff) #define TO_DW3_NAKCOUNT(x) TO_DW(((x) << 19)) #define FROM_DW3_NAKCOUNT(x) ((TO_U32(x) >> 19) & 0xf) #define TO_DW3_CERR(x) TO_DW(((x) << 23)) #define FROM_DW3_CERR(x) ((TO_U32(x) >> 23) & 0x3) #define TO_DW3_DATA_TOGGLE(x) TO_DW(((x) << 25)) #define FROM_DW3_DATA_TOGGLE(x) ((TO_U32(x) >> 25) & 0x1) #define TO_DW3_PING(x) TO_DW(((x) << 26)) #define FROM_DW3_PING(x) ((TO_U32(x) >> 26) & 0x1) #define DW3_ERROR_BIT TO_DW((1 << 28)) #define DW3_BABBLE_BIT TO_DW((1 << 29)) #define DW3_HALT_BIT TO_DW((1 << 30)) #define DW3_ACTIVE_BIT TO_DW((1 << 31)) #define FROM_DW3_ACTIVE(x) ((TO_U32(x) >> 31) & 0x01) #define INT_UNDERRUN (1 << 2) #define INT_BABBLE (1 << 1) #define INT_EXACT (1 << 0) #define SETUP_PID (2) #define IN_PID (1) #define OUT_PID (0) /* Errata 1 */ #define RL_COUNTER (0) #define NAK_COUNTER (0) #define ERR_COUNTER (3) struct isp1760_qtd { u8 packet_type; void *data_buffer; u32 payload_addr; /* the rest is HCD-private */ struct list_head qtd_list; struct urb *urb; size_t length; size_t actual_length; /* QTD_ENQUEUED: waiting for transfer (inactive) */ /* QTD_PAYLOAD_ALLOC: chip mem has been allocated for payload */ /* QTD_XFER_STARTED: valid ptd has been written to isp176x - only interrupt handler may touch this qtd! */ /* QTD_XFER_COMPLETE: payload has been transferred successfully */ /* QTD_RETIRE: transfer error/abort qtd */ #define QTD_ENQUEUED 0 #define QTD_PAYLOAD_ALLOC 1 #define QTD_XFER_STARTED 2 #define QTD_XFER_COMPLETE 3 #define QTD_RETIRE 4 u32 status; }; /* Queue head, one for each active endpoint */ struct isp1760_qh { struct list_head qh_list; struct list_head qtd_list; u32 toggle; u32 ping; int slot; int tt_buffer_dirty; /* See USB2.0 spec section 11.17.5 */ }; struct urb_listitem { struct list_head urb_list; struct urb *urb; }; static const u32 isp176x_hc_portsc1_fields[] = { [PORT_OWNER] = BIT(13), [PORT_POWER] = BIT(12), [PORT_LSTATUS] = BIT(10), [PORT_RESET] = BIT(8), [PORT_SUSPEND] = BIT(7), [PORT_RESUME] = BIT(6), [PORT_PE] = BIT(2), [PORT_CSC] = BIT(1), [PORT_CONNECT] = BIT(0), }; /* * Access functions for isp176x registers regmap fields */ static u32 isp1760_hcd_read(struct usb_hcd *hcd, u32 field) { struct isp1760_hcd *priv = hcd_to_priv(hcd); return isp1760_field_read(priv->fields, field); } /* * We need, in isp176x, to write directly the values to the portsc1 * register so it will make the other values to trigger. */ static void isp1760_hcd_portsc1_set_clear(struct isp1760_hcd *priv, u32 field, u32 val) { u32 bit = isp176x_hc_portsc1_fields[field]; u16 portsc1_reg = priv->is_isp1763 ? ISP1763_HC_PORTSC1 : ISP176x_HC_PORTSC1; u32 port_status = readl(priv->base + portsc1_reg); if (val) writel(port_status | bit, priv->base + portsc1_reg); else writel(port_status & ~bit, priv->base + portsc1_reg); } static void isp1760_hcd_write(struct usb_hcd *hcd, u32 field, u32 val) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (unlikely((field >= PORT_OWNER && field <= PORT_CONNECT))) return isp1760_hcd_portsc1_set_clear(priv, field, val); isp1760_field_write(priv->fields, field, val); } static void isp1760_hcd_set(struct usb_hcd *hcd, u32 field) { isp1760_hcd_write(hcd, field, 0xFFFFFFFF); } static void isp1760_hcd_clear(struct usb_hcd *hcd, u32 field) { isp1760_hcd_write(hcd, field, 0); } static int isp1760_hcd_set_and_wait(struct usb_hcd *hcd, u32 field, u32 timeout_us) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 val; isp1760_hcd_set(hcd, field); return regmap_field_read_poll_timeout(priv->fields[field], val, val, 0, timeout_us); } static int isp1760_hcd_set_and_wait_swap(struct usb_hcd *hcd, u32 field, u32 timeout_us) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 val; isp1760_hcd_set(hcd, field); return regmap_field_read_poll_timeout(priv->fields[field], val, !val, 0, timeout_us); } static int isp1760_hcd_clear_and_wait(struct usb_hcd *hcd, u32 field, u32 timeout_us) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 val; isp1760_hcd_clear(hcd, field); return regmap_field_read_poll_timeout(priv->fields[field], val, !val, 0, timeout_us); } static bool isp1760_hcd_is_set(struct usb_hcd *hcd, u32 field) { return !!isp1760_hcd_read(hcd, field); } static bool isp1760_hcd_ppc_is_set(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (priv->is_isp1763) return true; return isp1760_hcd_is_set(hcd, HCS_PPC); } static u32 isp1760_hcd_n_ports(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (priv->is_isp1763) return 1; return isp1760_hcd_read(hcd, HCS_N_PORTS); } /* * Access functions for isp176x memory (offset >= 0x0400). * * bank_reads8() reads memory locations prefetched by an earlier write to * HC_MEMORY_REG (see isp176x datasheet). Unless you want to do fancy multi- * bank optimizations, you should use the more generic mem_read() below. * * For access to ptd memory, use the specialized ptd_read() and ptd_write() * below. * * These functions copy via MMIO data to/from the device. memcpy_{to|from}io() * doesn't quite work because some people have to enforce 32-bit access */ static void bank_reads8(void __iomem *src_base, u32 src_offset, u32 bank_addr, __u32 *dst, u32 bytes) { __u32 __iomem *src; u32 val; __u8 *src_byteptr; __u8 *dst_byteptr; src = src_base + (bank_addr | src_offset); if (src_offset < PAYLOAD_OFFSET) { while (bytes >= 4) { *dst = readl_relaxed(src); bytes -= 4; src++; dst++; } } else { while (bytes >= 4) { *dst = __raw_readl(src); bytes -= 4; src++; dst++; } } if (!bytes) return; /* in case we have 3, 2 or 1 by left. The dst buffer may not be fully * allocated. */ if (src_offset < PAYLOAD_OFFSET) val = readl_relaxed(src); else val = __raw_readl(src); dst_byteptr = (void *) dst; src_byteptr = (void *) &val; while (bytes > 0) { *dst_byteptr = *src_byteptr; dst_byteptr++; src_byteptr++; bytes--; } } static void isp1760_mem_read(struct usb_hcd *hcd, u32 src_offset, void *dst, u32 bytes) { struct isp1760_hcd *priv = hcd_to_priv(hcd); isp1760_reg_write(priv->regs, ISP176x_HC_MEMORY, src_offset); ndelay(100); bank_reads8(priv->base, src_offset, ISP_BANK_0, dst, bytes); } /* * ISP1763 does not have the banks direct host controller memory access, * needs to use the HC_DATA register. Add data read/write according to this, * and also adjust 16bit access. */ static void isp1763_mem_read(struct usb_hcd *hcd, u16 srcaddr, u16 *dstptr, u32 bytes) { struct isp1760_hcd *priv = hcd_to_priv(hcd); /* Write the starting device address to the hcd memory register */ isp1760_reg_write(priv->regs, ISP1763_HC_MEMORY, srcaddr); ndelay(100); /* Delay between consecutive access */ /* As long there are at least 16-bit to read ... */ while (bytes >= 2) { *dstptr = __raw_readw(priv->base + ISP1763_HC_DATA); bytes -= 2; dstptr++; } /* If there are no more bytes to read, return */ if (bytes <= 0) return; *((u8 *)dstptr) = (u8)(readw(priv->base + ISP1763_HC_DATA) & 0xFF); } static void mem_read(struct usb_hcd *hcd, u32 src_offset, __u32 *dst, u32 bytes) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!priv->is_isp1763) return isp1760_mem_read(hcd, src_offset, (u16 *)dst, bytes); isp1763_mem_read(hcd, (u16)src_offset, (u16 *)dst, bytes); } static void isp1760_mem_write(void __iomem *dst_base, u32 dst_offset, __u32 const *src, u32 bytes) { __u32 __iomem *dst; dst = dst_base + dst_offset; if (dst_offset < PAYLOAD_OFFSET) { while (bytes >= 4) { writel_relaxed(*src, dst); bytes -= 4; src++; dst++; } } else { while (bytes >= 4) { __raw_writel(*src, dst); bytes -= 4; src++; dst++; } } if (!bytes) return; /* in case we have 3, 2 or 1 bytes left. The buffer is allocated and the * extra bytes should not be read by the HW. */ if (dst_offset < PAYLOAD_OFFSET) writel_relaxed(*src, dst); else __raw_writel(*src, dst); } static void isp1763_mem_write(struct usb_hcd *hcd, u16 dstaddr, u16 *src, u32 bytes) { struct isp1760_hcd *priv = hcd_to_priv(hcd); /* Write the starting device address to the hcd memory register */ isp1760_reg_write(priv->regs, ISP1763_HC_MEMORY, dstaddr); ndelay(100); /* Delay between consecutive access */ while (bytes >= 2) { /* Get and write the data; then adjust the data ptr and len */ __raw_writew(*src, priv->base + ISP1763_HC_DATA); bytes -= 2; src++; } /* If there are no more bytes to process, return */ if (bytes <= 0) return; /* * The only way to get here is if there is a single byte left, * get it and write it to the data reg; */ writew(*((u8 *)src), priv->base + ISP1763_HC_DATA); } static void mem_write(struct usb_hcd *hcd, u32 dst_offset, __u32 *src, u32 bytes) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!priv->is_isp1763) return isp1760_mem_write(priv->base, dst_offset, src, bytes); isp1763_mem_write(hcd, dst_offset, (u16 *)src, bytes); } /* * Read and write ptds. 'ptd_offset' should be one of ISO_PTD_OFFSET, * INT_PTD_OFFSET, and ATL_PTD_OFFSET. 'slot' should be less than 32. */ static void isp1760_ptd_read(struct usb_hcd *hcd, u32 ptd_offset, u32 slot, struct ptd *ptd) { u16 src_offset = ptd_offset + slot * sizeof(*ptd); struct isp1760_hcd *priv = hcd_to_priv(hcd); isp1760_reg_write(priv->regs, ISP176x_HC_MEMORY, src_offset); ndelay(90); bank_reads8(priv->base, src_offset, ISP_BANK_0, (void *)ptd, sizeof(*ptd)); } static void isp1763_ptd_read(struct usb_hcd *hcd, u32 ptd_offset, u32 slot, struct ptd *ptd) { u16 src_offset = ptd_offset + slot * sizeof(*ptd); struct ptd_le32 le32_ptd; isp1763_mem_read(hcd, src_offset, (u16 *)&le32_ptd, sizeof(le32_ptd)); /* Normalize the data obtained */ ptd->dw0 = le32_to_dw(le32_ptd.dw0); ptd->dw1 = le32_to_dw(le32_ptd.dw1); ptd->dw2 = le32_to_dw(le32_ptd.dw2); ptd->dw3 = le32_to_dw(le32_ptd.dw3); ptd->dw4 = le32_to_dw(le32_ptd.dw4); ptd->dw5 = le32_to_dw(le32_ptd.dw5); ptd->dw6 = le32_to_dw(le32_ptd.dw6); ptd->dw7 = le32_to_dw(le32_ptd.dw7); } static void ptd_read(struct usb_hcd *hcd, u32 ptd_offset, u32 slot, struct ptd *ptd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!priv->is_isp1763) return isp1760_ptd_read(hcd, ptd_offset, slot, ptd); isp1763_ptd_read(hcd, ptd_offset, slot, ptd); } static void isp1763_ptd_write(struct usb_hcd *hcd, u32 ptd_offset, u32 slot, struct ptd *cpu_ptd) { u16 dst_offset = ptd_offset + slot * sizeof(*cpu_ptd); struct ptd_le32 ptd; ptd.dw0 = dw_to_le32(cpu_ptd->dw0); ptd.dw1 = dw_to_le32(cpu_ptd->dw1); ptd.dw2 = dw_to_le32(cpu_ptd->dw2); ptd.dw3 = dw_to_le32(cpu_ptd->dw3); ptd.dw4 = dw_to_le32(cpu_ptd->dw4); ptd.dw5 = dw_to_le32(cpu_ptd->dw5); ptd.dw6 = dw_to_le32(cpu_ptd->dw6); ptd.dw7 = dw_to_le32(cpu_ptd->dw7); isp1763_mem_write(hcd, dst_offset, (u16 *)&ptd.dw0, 8 * sizeof(ptd.dw0)); } static void isp1760_ptd_write(void __iomem *base, u32 ptd_offset, u32 slot, struct ptd *ptd) { u32 dst_offset = ptd_offset + slot * sizeof(*ptd); /* * Make sure dw0 gets written last (after other dw's and after payload) * since it contains the enable bit */ isp1760_mem_write(base, dst_offset + sizeof(ptd->dw0), (__force u32 *)&ptd->dw1, 7 * sizeof(ptd->dw1)); wmb(); isp1760_mem_write(base, dst_offset, (__force u32 *)&ptd->dw0, sizeof(ptd->dw0)); } static void ptd_write(struct usb_hcd *hcd, u32 ptd_offset, u32 slot, struct ptd *ptd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!priv->is_isp1763) return isp1760_ptd_write(priv->base, ptd_offset, slot, ptd); isp1763_ptd_write(hcd, ptd_offset, slot, ptd); } /* memory management of the 60kb on the chip from 0x1000 to 0xffff */ static void init_memory(struct isp1760_hcd *priv) { const struct isp1760_memory_layout *mem = priv->memory_layout; int i, j, curr; u32 payload_addr; payload_addr = PAYLOAD_OFFSET; for (i = 0, curr = 0; i < ARRAY_SIZE(mem->blocks); i++, curr += j) { for (j = 0; j < mem->blocks[i]; j++) { priv->memory_pool[curr + j].start = payload_addr; priv->memory_pool[curr + j].size = mem->blocks_size[i]; priv->memory_pool[curr + j].free = 1; payload_addr += priv->memory_pool[curr + j].size; } } WARN_ON(payload_addr - priv->memory_pool[0].start > mem->payload_area_size); } static void alloc_mem(struct usb_hcd *hcd, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; int i; WARN_ON(qtd->payload_addr); if (!qtd->length) return; for (i = 0; i < mem->payload_blocks; i++) { if (priv->memory_pool[i].size >= qtd->length && priv->memory_pool[i].free) { priv->memory_pool[i].free = 0; qtd->payload_addr = priv->memory_pool[i].start; return; } } } static void free_mem(struct usb_hcd *hcd, struct isp1760_qtd *qtd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; int i; if (!qtd->payload_addr) return; for (i = 0; i < mem->payload_blocks; i++) { if (priv->memory_pool[i].start == qtd->payload_addr) { WARN_ON(priv->memory_pool[i].free); priv->memory_pool[i].free = 1; qtd->payload_addr = 0; return; } } dev_err(hcd->self.controller, "%s: Invalid pointer: %08x\n", __func__, qtd->payload_addr); WARN_ON(1); qtd->payload_addr = 0; } /* reset a non-running (STS_HALT == 1) controller */ static int ehci_reset(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); hcd->state = HC_STATE_HALT; priv->next_statechange = jiffies; return isp1760_hcd_set_and_wait_swap(hcd, CMD_RESET, 250 * 1000); } static struct isp1760_qh *qh_alloc(gfp_t flags) { struct isp1760_qh *qh; qh = kmem_cache_zalloc(qh_cachep, flags); if (!qh) return NULL; INIT_LIST_HEAD(&qh->qh_list); INIT_LIST_HEAD(&qh->qtd_list); qh->slot = -1; return qh; } static void qh_free(struct isp1760_qh *qh) { WARN_ON(!list_empty(&qh->qtd_list)); WARN_ON(qh->slot > -1); kmem_cache_free(qh_cachep, qh); } /* one-time init, only for memory state */ static int priv_init(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 isoc_cache; u32 isoc_thres; int i; spin_lock_init(&priv->lock); for (i = 0; i < QH_END; i++) INIT_LIST_HEAD(&priv->qh_list[i]); /* * hw default: 1K periodic list heads, one per frame. * periodic_size can shrink by USBCMD update if hcc_params allows. */ priv->periodic_size = DEFAULT_I_TDPS; if (priv->is_isp1763) { priv->i_thresh = 2; return 0; } /* controllers may cache some of the periodic schedule ... */ isoc_cache = isp1760_hcd_read(hcd, HCC_ISOC_CACHE); isoc_thres = isp1760_hcd_read(hcd, HCC_ISOC_THRES); /* full frame cache */ if (isoc_cache) priv->i_thresh = 8; else /* N microframes cached */ priv->i_thresh = 2 + isoc_thres; return 0; } static int isp1760_hc_setup(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 atx_reset; int result; u32 scratch; u32 pattern; if (priv->is_isp1763) pattern = 0xcafe; else pattern = 0xdeadcafe; isp1760_hcd_write(hcd, HC_SCRATCH, pattern); /* * we do not care about the read value here we just want to * change bus pattern. */ isp1760_hcd_read(hcd, HC_CHIP_ID_HIGH); scratch = isp1760_hcd_read(hcd, HC_SCRATCH); if (scratch != pattern) { dev_err(hcd->self.controller, "Scratch test failed. 0x%08x\n", scratch); return -ENODEV; } /* * The RESET_HC bit in the SW_RESET register is supposed to reset the * host controller without touching the CPU interface registers, but at * least on the ISP1761 it seems to behave as the RESET_ALL bit and * reset the whole device. We thus can't use it here, so let's reset * the host controller through the EHCI USB Command register. The device * has been reset in core code anyway, so this shouldn't matter. */ isp1760_hcd_clear(hcd, ISO_BUF_FILL); isp1760_hcd_clear(hcd, INT_BUF_FILL); isp1760_hcd_clear(hcd, ATL_BUF_FILL); isp1760_hcd_set(hcd, HC_ATL_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_INT_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_ISO_PTD_SKIPMAP); result = ehci_reset(hcd); if (result) return result; /* Step 11 passed */ /* ATL reset */ if (priv->is_isp1763) atx_reset = SW_RESET_RESET_ATX; else atx_reset = ALL_ATX_RESET; isp1760_hcd_set(hcd, atx_reset); mdelay(10); isp1760_hcd_clear(hcd, atx_reset); if (priv->is_isp1763) { isp1760_hcd_set(hcd, HW_OTG_DISABLE); isp1760_hcd_set(hcd, HW_SW_SEL_HC_DC_CLEAR); isp1760_hcd_set(hcd, HW_HC_2_DIS_CLEAR); mdelay(10); isp1760_hcd_set(hcd, HW_INTF_LOCK); } isp1760_hcd_set(hcd, HC_INT_IRQ_ENABLE); isp1760_hcd_set(hcd, HC_ATL_IRQ_ENABLE); return priv_init(hcd); } static u32 base_to_chip(u32 base) { return ((base - 0x400) >> 3); } static int last_qtd_of_urb(struct isp1760_qtd *qtd, struct isp1760_qh *qh) { struct urb *urb; if (list_is_last(&qtd->qtd_list, &qh->qtd_list)) return 1; urb = qtd->urb; qtd = list_entry(qtd->qtd_list.next, typeof(*qtd), qtd_list); return (qtd->urb != urb); } /* magic numbers that can affect system performance */ #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ #define EHCI_TUNE_RL_TT 0 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ #define EHCI_TUNE_MULT_TT 1 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ static void create_ptd_atl(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { u32 maxpacket; u32 multi; u32 rl = RL_COUNTER; u32 nak = NAK_COUNTER; memset(ptd, 0, sizeof(*ptd)); /* according to 3.6.2, max packet len can not be > 0x400 */ maxpacket = usb_maxpacket(qtd->urb->dev, qtd->urb->pipe); multi = 1 + ((maxpacket >> 11) & 0x3); maxpacket &= 0x7ff; /* DW0 */ ptd->dw0 = DW0_VALID_BIT; ptd->dw0 |= TO_DW0_LENGTH(qtd->length); ptd->dw0 |= TO_DW0_MAXPACKET(maxpacket); ptd->dw0 |= TO_DW0_ENDPOINT(usb_pipeendpoint(qtd->urb->pipe)); /* DW1 */ ptd->dw1 = TO_DW((usb_pipeendpoint(qtd->urb->pipe) >> 1)); ptd->dw1 |= TO_DW1_DEVICE_ADDR(usb_pipedevice(qtd->urb->pipe)); ptd->dw1 |= TO_DW1_PID_TOKEN(qtd->packet_type); if (usb_pipebulk(qtd->urb->pipe)) ptd->dw1 |= DW1_TRANS_BULK; else if (usb_pipeint(qtd->urb->pipe)) ptd->dw1 |= DW1_TRANS_INT; if (qtd->urb->dev->speed != USB_SPEED_HIGH) { /* split transaction */ ptd->dw1 |= DW1_TRANS_SPLIT; if (qtd->urb->dev->speed == USB_SPEED_LOW) ptd->dw1 |= DW1_SE_USB_LOSPEED; ptd->dw1 |= TO_DW1_PORT_NUM(qtd->urb->dev->ttport); ptd->dw1 |= TO_DW1_HUB_NUM(qtd->urb->dev->tt->hub->devnum); /* SE bit for Split INT transfers */ if (usb_pipeint(qtd->urb->pipe) && (qtd->urb->dev->speed == USB_SPEED_LOW)) ptd->dw1 |= DW1_SE_USB_LOSPEED; rl = 0; nak = 0; } else { ptd->dw0 |= TO_DW0_MULTI(multi); if (usb_pipecontrol(qtd->urb->pipe) || usb_pipebulk(qtd->urb->pipe)) ptd->dw3 |= TO_DW3_PING(qh->ping); } /* DW2 */ ptd->dw2 = 0; ptd->dw2 |= TO_DW2_DATA_START_ADDR(base_to_chip(qtd->payload_addr)); ptd->dw2 |= TO_DW2_RL(rl); /* DW3 */ ptd->dw3 |= TO_DW3_NAKCOUNT(nak); ptd->dw3 |= TO_DW3_DATA_TOGGLE(qh->toggle); if (usb_pipecontrol(qtd->urb->pipe)) { if (qtd->data_buffer == qtd->urb->setup_packet) ptd->dw3 &= ~TO_DW3_DATA_TOGGLE(1); else if (last_qtd_of_urb(qtd, qh)) ptd->dw3 |= TO_DW3_DATA_TOGGLE(1); } ptd->dw3 |= DW3_ACTIVE_BIT; /* Cerr */ ptd->dw3 |= TO_DW3_CERR(ERR_COUNTER); } static void transform_add_int(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { u32 usof; u32 period; /* * Most of this is guessing. ISP1761 datasheet is quite unclear, and * the algorithm from the original Philips driver code, which was * pretty much used in this driver before as well, is quite horrendous * and, i believe, incorrect. The code below follows the datasheet and * USB2.0 spec as far as I can tell, and plug/unplug seems to be much * more reliable this way (fingers crossed...). */ if (qtd->urb->dev->speed == USB_SPEED_HIGH) { /* urb->interval is in units of microframes (1/8 ms) */ period = qtd->urb->interval >> 3; if (qtd->urb->interval > 4) usof = 0x01; /* One bit set => interval 1 ms * uFrame-match */ else if (qtd->urb->interval > 2) usof = 0x22; /* Two bits set => interval 1/2 ms */ else if (qtd->urb->interval > 1) usof = 0x55; /* Four bits set => interval 1/4 ms */ else usof = 0xff; /* All bits set => interval 1/8 ms */ } else { /* urb->interval is in units of frames (1 ms) */ period = qtd->urb->interval; usof = 0x0f; /* Execute Start Split on any of the four first uFrames */ /* * First 8 bits in dw5 is uSCS and "specifies which uSOF the * complete split needs to be sent. Valid only for IN." Also, * "All bits can be set to one for every transfer." (p 82, * ISP1761 data sheet.) 0x1c is from Philips driver. Where did * that number come from? 0xff seems to work fine... */ /* ptd->dw5 = 0x1c; */ ptd->dw5 = TO_DW(0xff); /* Execute Complete Split on any uFrame */ } period = period >> 1;/* Ensure equal or shorter period than requested */ period &= 0xf8; /* Mask off too large values and lowest unused 3 bits */ ptd->dw2 |= TO_DW(period); ptd->dw4 = TO_DW(usof); } static void create_ptd_int(struct isp1760_qh *qh, struct isp1760_qtd *qtd, struct ptd *ptd) { create_ptd_atl(qh, qtd, ptd); transform_add_int(qh, qtd, ptd); } static void isp1760_urb_done(struct usb_hcd *hcd, struct urb *urb) __releases(priv->lock) __acquires(priv->lock) { struct isp1760_hcd *priv = hcd_to_priv(hcd); if (!urb->unlinked) { if (urb->status == -EINPROGRESS) urb->status = 0; } if (usb_pipein(urb->pipe) && usb_pipetype(urb->pipe) != PIPE_CONTROL) { void *ptr; for (ptr = urb->transfer_buffer; ptr < urb->transfer_buffer + urb->transfer_buffer_length; ptr += PAGE_SIZE) flush_dcache_page(virt_to_page(ptr)); } /* complete() can reenter this HCD */ usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&priv->lock); usb_hcd_giveback_urb(hcd, urb, urb->status); spin_lock(&priv->lock); } static struct isp1760_qtd *qtd_alloc(gfp_t flags, struct urb *urb, u8 packet_type) { struct isp1760_qtd *qtd; qtd = kmem_cache_zalloc(qtd_cachep, flags); if (!qtd) return NULL; INIT_LIST_HEAD(&qtd->qtd_list); qtd->urb = urb; qtd->packet_type = packet_type; qtd->status = QTD_ENQUEUED; qtd->actual_length = 0; return qtd; } static void qtd_free(struct isp1760_qtd *qtd) { WARN_ON(qtd->payload_addr); kmem_cache_free(qtd_cachep, qtd); } static void start_bus_transfer(struct usb_hcd *hcd, u32 ptd_offset, int slot, struct isp1760_slotinfo *slots, struct isp1760_qtd *qtd, struct isp1760_qh *qh, struct ptd *ptd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; int skip_map; WARN_ON((slot < 0) || (slot > mem->slot_num - 1)); WARN_ON(qtd->length && !qtd->payload_addr); WARN_ON(slots[slot].qtd); WARN_ON(slots[slot].qh); WARN_ON(qtd->status != QTD_PAYLOAD_ALLOC); if (priv->is_isp1763) ndelay(100); /* Make sure done map has not triggered from some unlinked transfer */ if (ptd_offset == ATL_PTD_OFFSET) { skip_map = isp1760_hcd_read(hcd, HC_ATL_PTD_SKIPMAP); isp1760_hcd_write(hcd, HC_ATL_PTD_SKIPMAP, skip_map | (1 << slot)); priv->atl_done_map |= isp1760_hcd_read(hcd, HC_ATL_PTD_DONEMAP); priv->atl_done_map &= ~(1 << slot); } else { skip_map = isp1760_hcd_read(hcd, HC_INT_PTD_SKIPMAP); isp1760_hcd_write(hcd, HC_INT_PTD_SKIPMAP, skip_map | (1 << slot)); priv->int_done_map |= isp1760_hcd_read(hcd, HC_INT_PTD_DONEMAP); priv->int_done_map &= ~(1 << slot); } skip_map &= ~(1 << slot); qh->slot = slot; qtd->status = QTD_XFER_STARTED; slots[slot].timestamp = jiffies; slots[slot].qtd = qtd; slots[slot].qh = qh; ptd_write(hcd, ptd_offset, slot, ptd); if (ptd_offset == ATL_PTD_OFFSET) isp1760_hcd_write(hcd, HC_ATL_PTD_SKIPMAP, skip_map); else isp1760_hcd_write(hcd, HC_INT_PTD_SKIPMAP, skip_map); } static int is_short_bulk(struct isp1760_qtd *qtd) { return (usb_pipebulk(qtd->urb->pipe) && (qtd->actual_length < qtd->length)); } static void collect_qtds(struct usb_hcd *hcd, struct isp1760_qh *qh, struct list_head *urb_list) { struct isp1760_qtd *qtd, *qtd_next; struct urb_listitem *urb_listitem; int last_qtd; list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list, qtd_list) { if (qtd->status < QTD_XFER_COMPLETE) break; last_qtd = last_qtd_of_urb(qtd, qh); if ((!last_qtd) && (qtd->status == QTD_RETIRE)) qtd_next->status = QTD_RETIRE; if (qtd->status == QTD_XFER_COMPLETE) { if (qtd->actual_length) { switch (qtd->packet_type) { case IN_PID: mem_read(hcd, qtd->payload_addr, qtd->data_buffer, qtd->actual_length); fallthrough; case OUT_PID: qtd->urb->actual_length += qtd->actual_length; fallthrough; case SETUP_PID: break; } } if (is_short_bulk(qtd)) { if (qtd->urb->transfer_flags & URB_SHORT_NOT_OK) qtd->urb->status = -EREMOTEIO; if (!last_qtd) qtd_next->status = QTD_RETIRE; } } if (qtd->payload_addr) free_mem(hcd, qtd); if (last_qtd) { if ((qtd->status == QTD_RETIRE) && (qtd->urb->status == -EINPROGRESS)) qtd->urb->status = -EPIPE; /* Defer calling of urb_done() since it releases lock */ urb_listitem = kmem_cache_zalloc(urb_listitem_cachep, GFP_ATOMIC); if (unlikely(!urb_listitem)) break; /* Try again on next call */ urb_listitem->urb = qtd->urb; list_add_tail(&urb_listitem->urb_list, urb_list); } list_del(&qtd->qtd_list); qtd_free(qtd); } } #define ENQUEUE_DEPTH 2 static void enqueue_qtds(struct usb_hcd *hcd, struct isp1760_qh *qh) { struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; int slot_num = mem->slot_num; int ptd_offset; struct isp1760_slotinfo *slots; int curr_slot, free_slot; int n; struct ptd ptd; struct isp1760_qtd *qtd; if (unlikely(list_empty(&qh->qtd_list))) { WARN_ON(1); return; } /* Make sure this endpoint's TT buffer is clean before queueing ptds */ if (qh->tt_buffer_dirty) return; if (usb_pipeint(list_entry(qh->qtd_list.next, struct isp1760_qtd, qtd_list)->urb->pipe)) { ptd_offset = INT_PTD_OFFSET; slots = priv->int_slots; } else { ptd_offset = ATL_PTD_OFFSET; slots = priv->atl_slots; } free_slot = -1; for (curr_slot = 0; curr_slot < slot_num; curr_slot++) { if ((free_slot == -1) && (slots[curr_slot].qtd == NULL)) free_slot = curr_slot; if (slots[curr_slot].qh == qh) break; } n = 0; list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { if (qtd->status == QTD_ENQUEUED) { WARN_ON(qtd->payload_addr); alloc_mem(hcd, qtd); if ((qtd->length) && (!qtd->payload_addr)) break; if (qtd->length && (qtd->packet_type == SETUP_PID || qtd->packet_type == OUT_PID)) { mem_write(hcd, qtd->payload_addr, qtd->data_buffer, qtd->length); } qtd->status = QTD_PAYLOAD_ALLOC; } if (qtd->status == QTD_PAYLOAD_ALLOC) { /* if ((curr_slot > 31) && (free_slot == -1)) dev_dbg(hcd->self.controller, "%s: No slot " "available for transfer\n", __func__); */ /* Start xfer for this endpoint if not already done */ if ((curr_slot > slot_num - 1) && (free_slot > -1)) { if (usb_pipeint(qtd->urb->pipe)) create_ptd_int(qh, qtd, &ptd); else create_ptd_atl(qh, qtd, &ptd); start_bus_transfer(hcd, ptd_offset, free_slot, slots, qtd, qh, &ptd); curr_slot = free_slot; } n++; if (n >= ENQUEUE_DEPTH) break; } } } static void schedule_ptds(struct usb_hcd *hcd) { struct isp1760_hcd *priv; struct isp1760_qh *qh, *qh_next; struct list_head *ep_queue; LIST_HEAD(urb_list); struct urb_listitem *urb_listitem, *urb_listitem_next; int i; if (!hcd) { WARN_ON(1); return; } priv = hcd_to_priv(hcd); /* * check finished/retired xfers, transfer payloads, call urb_done() */ for (i = 0; i < QH_END; i++) { ep_queue = &priv->qh_list[i]; list_for_each_entry_safe(qh, qh_next, ep_queue, qh_list) { collect_qtds(hcd, qh, &urb_list); if (list_empty(&qh->qtd_list)) list_del(&qh->qh_list); } } list_for_each_entry_safe(urb_listitem, urb_listitem_next, &urb_list, urb_list) { isp1760_urb_done(hcd, urb_listitem->urb); kmem_cache_free(urb_listitem_cachep, urb_listitem); } /* * Schedule packets for transfer. * * According to USB2.0 specification: * * 1st prio: interrupt xfers, up to 80 % of bandwidth * 2nd prio: control xfers * 3rd prio: bulk xfers * * ... but let's use a simpler scheme here (mostly because ISP1761 doc * is very unclear on how to prioritize traffic): * * 1) Enqueue any queued control transfers, as long as payload chip mem * and PTD ATL slots are available. * 2) Enqueue any queued INT transfers, as long as payload chip mem * and PTD INT slots are available. * 3) Enqueue any queued bulk transfers, as long as payload chip mem * and PTD ATL slots are available. * * Use double buffering (ENQUEUE_DEPTH==2) as a compromise between * conservation of chip mem and performance. * * I'm sure this scheme could be improved upon! */ for (i = 0; i < QH_END; i++) { ep_queue = &priv->qh_list[i]; list_for_each_entry_safe(qh, qh_next, ep_queue, qh_list) enqueue_qtds(hcd, qh); } } #define PTD_STATE_QTD_DONE 1 #define PTD_STATE_QTD_RELOAD 2 #define PTD_STATE_URB_RETIRE 3 static int check_int_transfer(struct usb_hcd *hcd, struct ptd *ptd, struct urb *urb) { u32 dw4; int i; dw4 = TO_U32(ptd->dw4); dw4 >>= 8; /* FIXME: ISP1761 datasheet does not say what to do with these. Do we need to handle these errors? Is it done in hardware? */ if (ptd->dw3 & DW3_HALT_BIT) { urb->status = -EPROTO; /* Default unknown error */ for (i = 0; i < 8; i++) { switch (dw4 & 0x7) { case INT_UNDERRUN: dev_dbg(hcd->self.controller, "%s: underrun " "during uFrame %d\n", __func__, i); urb->status = -ECOMM; /* Could not write data */ break; case INT_EXACT: dev_dbg(hcd->self.controller, "%s: transaction " "error during uFrame %d\n", __func__, i); urb->status = -EPROTO; /* timeout, bad CRC, PID error etc. */ break; case INT_BABBLE: dev_dbg(hcd->self.controller, "%s: babble " "error during uFrame %d\n", __func__, i); urb->status = -EOVERFLOW; break; } dw4 >>= 3; } return PTD_STATE_URB_RETIRE; } return PTD_STATE_QTD_DONE; } static int check_atl_transfer(struct usb_hcd *hcd, struct ptd *ptd, struct urb *urb) { WARN_ON(!ptd); if (ptd->dw3 & DW3_HALT_BIT) { if (ptd->dw3 & DW3_BABBLE_BIT) urb->status = -EOVERFLOW; else if (FROM_DW3_CERR(ptd->dw3)) urb->status = -EPIPE; /* Stall */ else urb->status = -EPROTO; /* Unknown */ /* dev_dbg(hcd->self.controller, "%s: ptd error:\n" " dw0: %08x dw1: %08x dw2: %08x dw3: %08x\n" " dw4: %08x dw5: %08x dw6: %08x dw7: %08x\n", __func__, ptd->dw0, ptd->dw1, ptd->dw2, ptd->dw3, ptd->dw4, ptd->dw5, ptd->dw6, ptd->dw7); */ return PTD_STATE_URB_RETIRE; } if ((ptd->dw3 & DW3_ERROR_BIT) && (ptd->dw3 & DW3_ACTIVE_BIT)) { /* Transfer Error, *but* active and no HALT -> reload */ dev_dbg(hcd->self.controller, "PID error; reloading ptd\n"); return PTD_STATE_QTD_RELOAD; } if (!FROM_DW3_NAKCOUNT(ptd->dw3) && (ptd->dw3 & DW3_ACTIVE_BIT)) { /* * NAKs are handled in HW by the chip. Usually if the * device is not able to send data fast enough. * This happens mostly on slower hardware. */ return PTD_STATE_QTD_RELOAD; } return PTD_STATE_QTD_DONE; } static void handle_done_ptds(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct ptd ptd; struct isp1760_qh *qh; int slot; int state; struct isp1760_slotinfo *slots; u32 ptd_offset; struct isp1760_qtd *qtd; int modified; int skip_map; skip_map = isp1760_hcd_read(hcd, HC_INT_PTD_SKIPMAP); priv->int_done_map &= ~skip_map; skip_map = isp1760_hcd_read(hcd, HC_ATL_PTD_SKIPMAP); priv->atl_done_map &= ~skip_map; modified = priv->int_done_map || priv->atl_done_map; while (priv->int_done_map || priv->atl_done_map) { if (priv->int_done_map) { /* INT ptd */ slot = __ffs(priv->int_done_map); priv->int_done_map &= ~(1 << slot); slots = priv->int_slots; /* This should not trigger, and could be removed if noone have any problems with it triggering: */ if (!slots[slot].qh) { WARN_ON(1); continue; } ptd_offset = INT_PTD_OFFSET; ptd_read(hcd, INT_PTD_OFFSET, slot, &ptd); state = check_int_transfer(hcd, &ptd, slots[slot].qtd->urb); } else { /* ATL ptd */ slot = __ffs(priv->atl_done_map); priv->atl_done_map &= ~(1 << slot); slots = priv->atl_slots; /* This should not trigger, and could be removed if noone have any problems with it triggering: */ if (!slots[slot].qh) { WARN_ON(1); continue; } ptd_offset = ATL_PTD_OFFSET; ptd_read(hcd, ATL_PTD_OFFSET, slot, &ptd); state = check_atl_transfer(hcd, &ptd, slots[slot].qtd->urb); } qtd = slots[slot].qtd; slots[slot].qtd = NULL; qh = slots[slot].qh; slots[slot].qh = NULL; qh->slot = -1; WARN_ON(qtd->status != QTD_XFER_STARTED); switch (state) { case PTD_STATE_QTD_DONE: if ((usb_pipeint(qtd->urb->pipe)) && (qtd->urb->dev->speed != USB_SPEED_HIGH)) qtd->actual_length = FROM_DW3_SCS_NRBYTESTRANSFERRED(ptd.dw3); else qtd->actual_length = FROM_DW3_NRBYTESTRANSFERRED(ptd.dw3); qtd->status = QTD_XFER_COMPLETE; if (list_is_last(&qtd->qtd_list, &qh->qtd_list) || is_short_bulk(qtd)) qtd = NULL; else qtd = list_entry(qtd->qtd_list.next, typeof(*qtd), qtd_list); qh->toggle = FROM_DW3_DATA_TOGGLE(ptd.dw3); qh->ping = FROM_DW3_PING(ptd.dw3); break; case PTD_STATE_QTD_RELOAD: /* QTD_RETRY, for atls only */ qtd->status = QTD_PAYLOAD_ALLOC; ptd.dw0 |= DW0_VALID_BIT; /* RL counter = ERR counter */ ptd.dw3 &= ~TO_DW3_NAKCOUNT(0xf); ptd.dw3 |= TO_DW3_NAKCOUNT(FROM_DW2_RL(ptd.dw2)); ptd.dw3 &= ~TO_DW3_CERR(3); ptd.dw3 |= TO_DW3_CERR(ERR_COUNTER); qh->toggle = FROM_DW3_DATA_TOGGLE(ptd.dw3); qh->ping = FROM_DW3_PING(ptd.dw3); break; case PTD_STATE_URB_RETIRE: qtd->status = QTD_RETIRE; if ((qtd->urb->dev->speed != USB_SPEED_HIGH) && (qtd->urb->status != -EPIPE) && (qtd->urb->status != -EREMOTEIO)) { qh->tt_buffer_dirty = 1; if (usb_hub_clear_tt_buffer(qtd->urb)) /* Clear failed; let's hope things work anyway */ qh->tt_buffer_dirty = 0; } qtd = NULL; qh->toggle = 0; qh->ping = 0; break; default: WARN_ON(1); continue; } if (qtd && (qtd->status == QTD_PAYLOAD_ALLOC)) { if (slots == priv->int_slots) { if (state == PTD_STATE_QTD_RELOAD) dev_err(hcd->self.controller, "%s: PTD_STATE_QTD_RELOAD on " "interrupt packet\n", __func__); if (state != PTD_STATE_QTD_RELOAD) create_ptd_int(qh, qtd, &ptd); } else { if (state != PTD_STATE_QTD_RELOAD) create_ptd_atl(qh, qtd, &ptd); } start_bus_transfer(hcd, ptd_offset, slot, slots, qtd, qh, &ptd); } } if (modified) schedule_ptds(hcd); } static irqreturn_t isp1760_irq(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); irqreturn_t irqret = IRQ_NONE; u32 int_reg; u32 imask; spin_lock(&priv->lock); if (!(hcd->state & HC_STATE_RUNNING)) goto leave; imask = isp1760_hcd_read(hcd, HC_INTERRUPT); if (unlikely(!imask)) goto leave; int_reg = priv->is_isp1763 ? ISP1763_HC_INTERRUPT : ISP176x_HC_INTERRUPT; isp1760_reg_write(priv->regs, int_reg, imask); priv->int_done_map |= isp1760_hcd_read(hcd, HC_INT_PTD_DONEMAP); priv->atl_done_map |= isp1760_hcd_read(hcd, HC_ATL_PTD_DONEMAP); handle_done_ptds(hcd); irqret = IRQ_HANDLED; leave: spin_unlock(&priv->lock); return irqret; } /* * Workaround for problem described in chip errata 2: * * Sometimes interrupts are not generated when ATL (not INT?) completion occurs. * One solution suggested in the errata is to use SOF interrupts _instead_of_ * ATL done interrupts (the "instead of" might be important since it seems * enabling ATL interrupts also causes the chip to sometimes - rarely - "forget" * to set the PTD's done bit in addition to not generating an interrupt!). * * So if we use SOF + ATL interrupts, we sometimes get stale PTDs since their * done bit is not being set. This is bad - it blocks the endpoint until reboot. * * If we use SOF interrupts only, we get latency between ptd completion and the * actual handling. This is very noticeable in testusb runs which takes several * minutes longer without ATL interrupts. * * A better solution is to run the code below every SLOT_CHECK_PERIOD ms. If it * finds active ATL slots which are older than SLOT_TIMEOUT ms, it checks the * slot's ACTIVE and VALID bits. If these are not set, the ptd is considered * completed and its done map bit is set. * * The values of SLOT_TIMEOUT and SLOT_CHECK_PERIOD have been arbitrarily chosen * not to cause too much lag when this HW bug occurs, while still hopefully * ensuring that the check does not falsely trigger. */ #define SLOT_TIMEOUT 300 #define SLOT_CHECK_PERIOD 200 static struct timer_list errata2_timer; static struct usb_hcd *errata2_timer_hcd; static void errata2_function(struct timer_list *unused) { struct usb_hcd *hcd = errata2_timer_hcd; struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; int slot; struct ptd ptd; unsigned long spinflags; spin_lock_irqsave(&priv->lock, spinflags); for (slot = 0; slot < mem->slot_num; slot++) if (priv->atl_slots[slot].qh && time_after(jiffies, priv->atl_slots[slot].timestamp + msecs_to_jiffies(SLOT_TIMEOUT))) { ptd_read(hcd, ATL_PTD_OFFSET, slot, &ptd); if (!FROM_DW0_VALID(ptd.dw0) && !FROM_DW3_ACTIVE(ptd.dw3)) priv->atl_done_map |= 1 << slot; } if (priv->atl_done_map) handle_done_ptds(hcd); spin_unlock_irqrestore(&priv->lock, spinflags); errata2_timer.expires = jiffies + msecs_to_jiffies(SLOT_CHECK_PERIOD); add_timer(&errata2_timer); } static int isp1763_run(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int retval; u32 chipid_h; u32 chipid_l; u32 chip_rev; u32 ptd_atl_int; u32 ptd_iso; hcd->uses_new_polling = 1; hcd->state = HC_STATE_RUNNING; chipid_h = isp1760_hcd_read(hcd, HC_CHIP_ID_HIGH); chipid_l = isp1760_hcd_read(hcd, HC_CHIP_ID_LOW); chip_rev = isp1760_hcd_read(hcd, HC_CHIP_REV); dev_info(hcd->self.controller, "USB ISP %02x%02x HW rev. %d started\n", chipid_h, chipid_l, chip_rev); isp1760_hcd_clear(hcd, ISO_BUF_FILL); isp1760_hcd_clear(hcd, INT_BUF_FILL); isp1760_hcd_clear(hcd, ATL_BUF_FILL); isp1760_hcd_set(hcd, HC_ATL_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_INT_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_ISO_PTD_SKIPMAP); ndelay(100); isp1760_hcd_clear(hcd, HC_ATL_PTD_DONEMAP); isp1760_hcd_clear(hcd, HC_INT_PTD_DONEMAP); isp1760_hcd_clear(hcd, HC_ISO_PTD_DONEMAP); isp1760_hcd_set(hcd, HW_OTG_DISABLE); isp1760_reg_write(priv->regs, ISP1763_HC_OTG_CTRL_CLEAR, BIT(7)); isp1760_reg_write(priv->regs, ISP1763_HC_OTG_CTRL_CLEAR, BIT(15)); mdelay(10); isp1760_hcd_set(hcd, HC_INT_IRQ_ENABLE); isp1760_hcd_set(hcd, HC_ATL_IRQ_ENABLE); isp1760_hcd_set(hcd, HW_GLOBAL_INTR_EN); isp1760_hcd_clear(hcd, HC_ATL_IRQ_MASK_AND); isp1760_hcd_clear(hcd, HC_INT_IRQ_MASK_AND); isp1760_hcd_clear(hcd, HC_ISO_IRQ_MASK_AND); isp1760_hcd_set(hcd, HC_ATL_IRQ_MASK_OR); isp1760_hcd_set(hcd, HC_INT_IRQ_MASK_OR); isp1760_hcd_set(hcd, HC_ISO_IRQ_MASK_OR); ptd_atl_int = 0x8000; ptd_iso = 0x0001; isp1760_hcd_write(hcd, HC_ATL_PTD_LASTPTD, ptd_atl_int); isp1760_hcd_write(hcd, HC_INT_PTD_LASTPTD, ptd_atl_int); isp1760_hcd_write(hcd, HC_ISO_PTD_LASTPTD, ptd_iso); isp1760_hcd_set(hcd, ATL_BUF_FILL); isp1760_hcd_set(hcd, INT_BUF_FILL); isp1760_hcd_clear(hcd, CMD_LRESET); isp1760_hcd_clear(hcd, CMD_RESET); retval = isp1760_hcd_set_and_wait(hcd, CMD_RUN, 250 * 1000); if (retval) return retval; down_write(&ehci_cf_port_reset_rwsem); retval = isp1760_hcd_set_and_wait(hcd, FLAG_CF, 250 * 1000); up_write(&ehci_cf_port_reset_rwsem); if (retval) return retval; return 0; } static int isp1760_run(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int retval; u32 chipid_h; u32 chipid_l; u32 chip_rev; u32 ptd_atl_int; u32 ptd_iso; /* * ISP1763 have some differences in the setup and order to enable * the ports, disable otg, setup buffers, and ATL, INT, ISO status. * So, just handle it a separate sequence. */ if (priv->is_isp1763) return isp1763_run(hcd); hcd->uses_new_polling = 1; hcd->state = HC_STATE_RUNNING; /* Set PTD interrupt AND & OR maps */ isp1760_hcd_clear(hcd, HC_ATL_IRQ_MASK_AND); isp1760_hcd_clear(hcd, HC_INT_IRQ_MASK_AND); isp1760_hcd_clear(hcd, HC_ISO_IRQ_MASK_AND); isp1760_hcd_set(hcd, HC_ATL_IRQ_MASK_OR); isp1760_hcd_set(hcd, HC_INT_IRQ_MASK_OR); isp1760_hcd_set(hcd, HC_ISO_IRQ_MASK_OR); /* step 23 passed */ isp1760_hcd_set(hcd, HW_GLOBAL_INTR_EN); isp1760_hcd_clear(hcd, CMD_LRESET); isp1760_hcd_clear(hcd, CMD_RESET); retval = isp1760_hcd_set_and_wait(hcd, CMD_RUN, 250 * 1000); if (retval) return retval; /* * XXX * Spec says to write FLAG_CF as last config action, priv code grabs * the semaphore while doing so. */ down_write(&ehci_cf_port_reset_rwsem); retval = isp1760_hcd_set_and_wait(hcd, FLAG_CF, 250 * 1000); up_write(&ehci_cf_port_reset_rwsem); if (retval) return retval; errata2_timer_hcd = hcd; timer_setup(&errata2_timer, errata2_function, 0); errata2_timer.expires = jiffies + msecs_to_jiffies(SLOT_CHECK_PERIOD); add_timer(&errata2_timer); chipid_h = isp1760_hcd_read(hcd, HC_CHIP_ID_HIGH); chipid_l = isp1760_hcd_read(hcd, HC_CHIP_ID_LOW); chip_rev = isp1760_hcd_read(hcd, HC_CHIP_REV); dev_info(hcd->self.controller, "USB ISP %02x%02x HW rev. %d started\n", chipid_h, chipid_l, chip_rev); /* PTD Register Init Part 2, Step 28 */ /* Setup registers controlling PTD checking */ ptd_atl_int = 0x80000000; ptd_iso = 0x00000001; isp1760_hcd_write(hcd, HC_ATL_PTD_LASTPTD, ptd_atl_int); isp1760_hcd_write(hcd, HC_INT_PTD_LASTPTD, ptd_atl_int); isp1760_hcd_write(hcd, HC_ISO_PTD_LASTPTD, ptd_iso); isp1760_hcd_set(hcd, HC_ATL_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_INT_PTD_SKIPMAP); isp1760_hcd_set(hcd, HC_ISO_PTD_SKIPMAP); isp1760_hcd_set(hcd, ATL_BUF_FILL); isp1760_hcd_set(hcd, INT_BUF_FILL); /* GRR this is run-once init(), being done every time the HC starts. * So long as they're part of class devices, we can't do it init() * since the class device isn't created that early. */ return 0; } static int qtd_fill(struct isp1760_qtd *qtd, void *databuffer, size_t len) { qtd->data_buffer = databuffer; qtd->length = len; return qtd->length; } static void qtd_list_free(struct list_head *qtd_list) { struct isp1760_qtd *qtd, *qtd_next; list_for_each_entry_safe(qtd, qtd_next, qtd_list, qtd_list) { list_del(&qtd->qtd_list); qtd_free(qtd); } } /* * Packetize urb->transfer_buffer into list of packets of size wMaxPacketSize. * Also calculate the PID type (SETUP/IN/OUT) for each packet. */ static void packetize_urb(struct usb_hcd *hcd, struct urb *urb, struct list_head *head, gfp_t flags) { struct isp1760_hcd *priv = hcd_to_priv(hcd); const struct isp1760_memory_layout *mem = priv->memory_layout; struct isp1760_qtd *qtd; void *buf; int len, maxpacketsize; u8 packet_type; /* * URBs map to sequences of QTDs: one logical transaction */ if (!urb->transfer_buffer && urb->transfer_buffer_length) { /* XXX This looks like usb storage / SCSI bug */ dev_err(hcd->self.controller, "buf is null, dma is %08lx len is %d\n", (long unsigned)urb->transfer_dma, urb->transfer_buffer_length); WARN_ON(1); } if (usb_pipein(urb->pipe)) packet_type = IN_PID; else packet_type = OUT_PID; if (usb_pipecontrol(urb->pipe)) { qtd = qtd_alloc(flags, urb, SETUP_PID); if (!qtd) goto cleanup; qtd_fill(qtd, urb->setup_packet, sizeof(struct usb_ctrlrequest)); list_add_tail(&qtd->qtd_list, head); /* for zero length DATA stages, STATUS is always IN */ if (urb->transfer_buffer_length == 0) packet_type = IN_PID; } maxpacketsize = usb_maxpacket(urb->dev, urb->pipe); /* * buffer gets wrapped in one or more qtds; * last one may be "short" (including zero len) * and may serve as a control status ack */ buf = urb->transfer_buffer; len = urb->transfer_buffer_length; for (;;) { int this_qtd_len; qtd = qtd_alloc(flags, urb, packet_type); if (!qtd) goto cleanup; if (len > mem->blocks_size[ISP176x_BLOCK_NUM - 1]) this_qtd_len = mem->blocks_size[ISP176x_BLOCK_NUM - 1]; else this_qtd_len = len; this_qtd_len = qtd_fill(qtd, buf, this_qtd_len); list_add_tail(&qtd->qtd_list, head); len -= this_qtd_len; buf += this_qtd_len; if (len <= 0) break; } /* * control requests may need a terminating data "status" ack; * bulk ones may need a terminating short packet (zero length). */ if (urb->transfer_buffer_length != 0) { int one_more = 0; if (usb_pipecontrol(urb->pipe)) { one_more = 1; if (packet_type == IN_PID) packet_type = OUT_PID; else packet_type = IN_PID; } else if (usb_pipebulk(urb->pipe) && maxpacketsize && (urb->transfer_flags & URB_ZERO_PACKET) && !(urb->transfer_buffer_length % maxpacketsize)) { one_more = 1; } if (one_more) { qtd = qtd_alloc(flags, urb, packet_type); if (!qtd) goto cleanup; /* never any data in such packets */ qtd_fill(qtd, NULL, 0); list_add_tail(&qtd->qtd_list, head); } } return; cleanup: qtd_list_free(head); } static int isp1760_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct list_head *ep_queue; struct isp1760_qh *qh, *qhit; unsigned long spinflags; LIST_HEAD(new_qtds); int retval; int qh_in_queue; switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ep_queue = &priv->qh_list[QH_CONTROL]; break; case PIPE_BULK: ep_queue = &priv->qh_list[QH_BULK]; break; case PIPE_INTERRUPT: if (urb->interval < 0) return -EINVAL; /* FIXME: Check bandwidth */ ep_queue = &priv->qh_list[QH_INTERRUPT]; break; case PIPE_ISOCHRONOUS: dev_err(hcd->self.controller, "%s: isochronous USB packets " "not yet supported\n", __func__); return -EPIPE; default: dev_err(hcd->self.controller, "%s: unknown pipe type\n", __func__); return -EPIPE; } if (usb_pipein(urb->pipe)) urb->actual_length = 0; packetize_urb(hcd, urb, &new_qtds, mem_flags); if (list_empty(&new_qtds)) return -ENOMEM; spin_lock_irqsave(&priv->lock, spinflags); if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) { retval = -ESHUTDOWN; qtd_list_free(&new_qtds); goto out; } retval = usb_hcd_link_urb_to_ep(hcd, urb); if (retval) { qtd_list_free(&new_qtds); goto out; } qh = urb->ep->hcpriv; if (qh) { qh_in_queue = 0; list_for_each_entry(qhit, ep_queue, qh_list) { if (qhit == qh) { qh_in_queue = 1; break; } } if (!qh_in_queue) list_add_tail(&qh->qh_list, ep_queue); } else { qh = qh_alloc(GFP_ATOMIC); if (!qh) { retval = -ENOMEM; usb_hcd_unlink_urb_from_ep(hcd, urb); qtd_list_free(&new_qtds); goto out; } list_add_tail(&qh->qh_list, ep_queue); urb->ep->hcpriv = qh; } list_splice_tail(&new_qtds, &qh->qtd_list); schedule_ptds(hcd); out: spin_unlock_irqrestore(&priv->lock, spinflags); return retval; } static void kill_transfer(struct usb_hcd *hcd, struct urb *urb, struct isp1760_qh *qh) { struct isp1760_hcd *priv = hcd_to_priv(hcd); int skip_map; WARN_ON(qh->slot == -1); /* We need to forcefully reclaim the slot since some transfers never return, e.g. interrupt transfers and NAKed bulk transfers. */ if (usb_pipecontrol(urb->pipe) || usb_pipebulk(urb->pipe)) { if (qh->slot != -1) { skip_map = isp1760_hcd_read(hcd, HC_ATL_PTD_SKIPMAP); skip_map |= (1 << qh->slot); isp1760_hcd_write(hcd, HC_ATL_PTD_SKIPMAP, skip_map); ndelay(100); } priv->atl_slots[qh->slot].qh = NULL; priv->atl_slots[qh->slot].qtd = NULL; } else { if (qh->slot != -1) { skip_map = isp1760_hcd_read(hcd, HC_INT_PTD_SKIPMAP); skip_map |= (1 << qh->slot); isp1760_hcd_write(hcd, HC_INT_PTD_SKIPMAP, skip_map); } priv->int_slots[qh->slot].qh = NULL; priv->int_slots[qh->slot].qtd = NULL; } qh->slot = -1; } /* * Retire the qtds beginning at 'qtd' and belonging all to the same urb, killing * any active transfer belonging to the urb in the process. */ static void dequeue_urb_from_qtd(struct usb_hcd *hcd, struct isp1760_qh *qh, struct isp1760_qtd *qtd) { struct urb *urb; int urb_was_running; urb = qtd->urb; urb_was_running = 0; list_for_each_entry_from(qtd, &qh->qtd_list, qtd_list) { if (qtd->urb != urb) break; if (qtd->status >= QTD_XFER_STARTED) urb_was_running = 1; if (last_qtd_of_urb(qtd, qh) && (qtd->status >= QTD_XFER_COMPLETE)) urb_was_running = 0; if (qtd->status == QTD_XFER_STARTED) kill_transfer(hcd, urb, qh); qtd->status = QTD_RETIRE; } if ((urb->dev->speed != USB_SPEED_HIGH) && urb_was_running) { qh->tt_buffer_dirty = 1; if (usb_hub_clear_tt_buffer(urb)) /* Clear failed; let's hope things work anyway */ qh->tt_buffer_dirty = 0; } } static int isp1760_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct isp1760_hcd *priv = hcd_to_priv(hcd); unsigned long spinflags; struct isp1760_qh *qh; struct isp1760_qtd *qtd; int retval = 0; spin_lock_irqsave(&priv->lock, spinflags); retval = usb_hcd_check_unlink_urb(hcd, urb, status); if (retval) goto out; qh = urb->ep->hcpriv; if (!qh) { retval = -EINVAL; goto out; } list_for_each_entry(qtd, &qh->qtd_list, qtd_list) if (qtd->urb == urb) { dequeue_urb_from_qtd(hcd, qh, qtd); list_move(&qtd->qtd_list, &qh->qtd_list); break; } urb->status = status; schedule_ptds(hcd); out: spin_unlock_irqrestore(&priv->lock, spinflags); return retval; } static void isp1760_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct isp1760_hcd *priv = hcd_to_priv(hcd); unsigned long spinflags; struct isp1760_qh *qh, *qh_iter; int i; spin_lock_irqsave(&priv->lock, spinflags); qh = ep->hcpriv; if (!qh) goto out; WARN_ON(!list_empty(&qh->qtd_list)); for (i = 0; i < QH_END; i++) list_for_each_entry(qh_iter, &priv->qh_list[i], qh_list) if (qh_iter == qh) { list_del(&qh_iter->qh_list); i = QH_END; break; } qh_free(qh); ep->hcpriv = NULL; schedule_ptds(hcd); out: spin_unlock_irqrestore(&priv->lock, spinflags); } static int isp1760_hub_status_data(struct usb_hcd *hcd, char *buf) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 status = 0; int retval = 1; unsigned long flags; /* if !PM, root hub timers won't get shut down ... */ if (!HC_IS_RUNNING(hcd->state)) return 0; /* init status to no-changes */ buf[0] = 0; spin_lock_irqsave(&priv->lock, flags); if (isp1760_hcd_is_set(hcd, PORT_OWNER) && isp1760_hcd_is_set(hcd, PORT_CSC)) { isp1760_hcd_clear(hcd, PORT_CSC); goto done; } /* * Return status information even for ports with OWNER set. * Otherwise hub_wq wouldn't see the disconnect event when a * high-speed device is switched over to the companion * controller by the user. */ if (isp1760_hcd_is_set(hcd, PORT_CSC) || (isp1760_hcd_is_set(hcd, PORT_RESUME) && time_after_eq(jiffies, priv->reset_done))) { buf [0] |= 1 << (0 + 1); status = STS_PCD; } /* FIXME autosuspend idle root hubs */ done: spin_unlock_irqrestore(&priv->lock, flags); return status ? retval : 0; } static void isp1760_hub_descriptor(struct isp1760_hcd *priv, struct usb_hub_descriptor *desc) { int ports; u16 temp; ports = isp1760_hcd_n_ports(priv->hcd); desc->bDescriptorType = USB_DT_HUB; /* priv 1.0, 2.3.9 says 20ms max */ desc->bPwrOn2PwrGood = 10; desc->bHubContrCurrent = 0; desc->bNbrPorts = ports; temp = 1 + (ports / 8); desc->bDescLength = 7 + 2 * temp; /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ memset(&desc->u.hs.DeviceRemovable[0], 0, temp); memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); /* per-port overcurrent reporting */ temp = HUB_CHAR_INDV_PORT_OCPM; if (isp1760_hcd_ppc_is_set(priv->hcd)) /* per-port power control */ temp |= HUB_CHAR_INDV_PORT_LPSM; else /* no power switching */ temp |= HUB_CHAR_NO_LPSM; desc->wHubCharacteristics = cpu_to_le16(temp); } #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) static void check_reset_complete(struct usb_hcd *hcd, int index) { if (!(isp1760_hcd_is_set(hcd, PORT_CONNECT))) return; /* if reset finished and it's still not enabled -- handoff */ if (!isp1760_hcd_is_set(hcd, PORT_PE)) { dev_info(hcd->self.controller, "port %d full speed --> companion\n", index + 1); isp1760_hcd_set(hcd, PORT_OWNER); isp1760_hcd_clear(hcd, PORT_CSC); } else { dev_info(hcd->self.controller, "port %d high speed\n", index + 1); } return; } static int isp1760_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 status; unsigned long flags; int retval = 0; int ports; ports = isp1760_hcd_n_ports(hcd); /* * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. * HCS_INDICATOR may say we can change LEDs to off/amber/green. * (track current state ourselves) ... blink for diagnostics, * power, "this is the one", etc. EHCI spec supports this. */ spin_lock_irqsave(&priv->lock, flags); switch (typeReq) { case ClearHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case ClearPortFeature: if (!wIndex || wIndex > ports) goto error; wIndex--; /* * Even if OWNER is set, so the port is owned by the * companion controller, hub_wq needs to be able to clear * the port-change status bits (especially * USB_PORT_STAT_C_CONNECTION). */ switch (wValue) { case USB_PORT_FEAT_ENABLE: isp1760_hcd_clear(hcd, PORT_PE); break; case USB_PORT_FEAT_C_ENABLE: /* XXX error? */ break; case USB_PORT_FEAT_SUSPEND: if (isp1760_hcd_is_set(hcd, PORT_RESET)) goto error; if (isp1760_hcd_is_set(hcd, PORT_SUSPEND)) { if (!isp1760_hcd_is_set(hcd, PORT_PE)) goto error; /* resume signaling for 20 msec */ isp1760_hcd_clear(hcd, PORT_CSC); isp1760_hcd_set(hcd, PORT_RESUME); priv->reset_done = jiffies + msecs_to_jiffies(USB_RESUME_TIMEOUT); } break; case USB_PORT_FEAT_C_SUSPEND: /* we auto-clear this feature */ break; case USB_PORT_FEAT_POWER: if (isp1760_hcd_ppc_is_set(hcd)) isp1760_hcd_clear(hcd, PORT_POWER); break; case USB_PORT_FEAT_C_CONNECTION: isp1760_hcd_set(hcd, PORT_CSC); break; case USB_PORT_FEAT_C_OVER_CURRENT: /* XXX error ?*/ break; case USB_PORT_FEAT_C_RESET: /* GetPortStatus clears reset */ break; default: goto error; } isp1760_hcd_read(hcd, CMD_RUN); break; case GetHubDescriptor: isp1760_hub_descriptor(priv, (struct usb_hub_descriptor *) buf); break; case GetHubStatus: /* no hub-wide feature/status flags */ memset(buf, 0, 4); break; case GetPortStatus: if (!wIndex || wIndex > ports) goto error; wIndex--; status = 0; /* wPortChange bits */ if (isp1760_hcd_is_set(hcd, PORT_CSC)) status |= USB_PORT_STAT_C_CONNECTION << 16; /* whoever resumes must GetPortStatus to complete it!! */ if (isp1760_hcd_is_set(hcd, PORT_RESUME)) { dev_err(hcd->self.controller, "Port resume should be skipped.\n"); /* Remote Wakeup received? */ if (!priv->reset_done) { /* resume signaling for 20 msec */ priv->reset_done = jiffies + msecs_to_jiffies(20); /* check the port again */ mod_timer(&hcd->rh_timer, priv->reset_done); } /* resume completed? */ else if (time_after_eq(jiffies, priv->reset_done)) { status |= USB_PORT_STAT_C_SUSPEND << 16; priv->reset_done = 0; /* stop resume signaling */ isp1760_hcd_clear(hcd, PORT_CSC); retval = isp1760_hcd_clear_and_wait(hcd, PORT_RESUME, 2000); if (retval != 0) { dev_err(hcd->self.controller, "port %d resume error %d\n", wIndex + 1, retval); goto error; } } } /* whoever resets must GetPortStatus to complete it!! */ if (isp1760_hcd_is_set(hcd, PORT_RESET) && time_after_eq(jiffies, priv->reset_done)) { status |= USB_PORT_STAT_C_RESET << 16; priv->reset_done = 0; /* force reset to complete */ /* REVISIT: some hardware needs 550+ usec to clear * this bit; seems too long to spin routinely... */ retval = isp1760_hcd_clear_and_wait(hcd, PORT_RESET, 750); if (retval != 0) { dev_err(hcd->self.controller, "port %d reset error %d\n", wIndex + 1, retval); goto error; } /* see what we found out */ check_reset_complete(hcd, wIndex); } /* * Even if OWNER is set, there's no harm letting hub_wq * see the wPortStatus values (they should all be 0 except * for PORT_POWER anyway). */ if (isp1760_hcd_is_set(hcd, PORT_OWNER)) dev_err(hcd->self.controller, "PORT_OWNER is set\n"); if (isp1760_hcd_is_set(hcd, PORT_CONNECT)) { status |= USB_PORT_STAT_CONNECTION; /* status may be from integrated TT */ status |= USB_PORT_STAT_HIGH_SPEED; } if (isp1760_hcd_is_set(hcd, PORT_PE)) status |= USB_PORT_STAT_ENABLE; if (isp1760_hcd_is_set(hcd, PORT_SUSPEND) && isp1760_hcd_is_set(hcd, PORT_RESUME)) status |= USB_PORT_STAT_SUSPEND; if (isp1760_hcd_is_set(hcd, PORT_RESET)) status |= USB_PORT_STAT_RESET; if (isp1760_hcd_is_set(hcd, PORT_POWER)) status |= USB_PORT_STAT_POWER; put_unaligned(cpu_to_le32(status), (__le32 *) buf); break; case SetHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case SetPortFeature: wIndex &= 0xff; if (!wIndex || wIndex > ports) goto error; wIndex--; if (isp1760_hcd_is_set(hcd, PORT_OWNER)) break; switch (wValue) { case USB_PORT_FEAT_ENABLE: isp1760_hcd_set(hcd, PORT_PE); break; case USB_PORT_FEAT_SUSPEND: if (!isp1760_hcd_is_set(hcd, PORT_PE) || isp1760_hcd_is_set(hcd, PORT_RESET)) goto error; isp1760_hcd_set(hcd, PORT_SUSPEND); break; case USB_PORT_FEAT_POWER: if (isp1760_hcd_ppc_is_set(hcd)) isp1760_hcd_set(hcd, PORT_POWER); break; case USB_PORT_FEAT_RESET: if (isp1760_hcd_is_set(hcd, PORT_RESUME)) goto error; /* line status bits may report this as low speed, * which can be fine if this root hub has a * transaction translator built in. */ if ((isp1760_hcd_is_set(hcd, PORT_CONNECT) && !isp1760_hcd_is_set(hcd, PORT_PE)) && (isp1760_hcd_read(hcd, PORT_LSTATUS) == 1)) { isp1760_hcd_set(hcd, PORT_OWNER); } else { isp1760_hcd_set(hcd, PORT_RESET); isp1760_hcd_clear(hcd, PORT_PE); /* * caller must wait, then call GetPortStatus * usb 2.0 spec says 50 ms resets on root */ priv->reset_done = jiffies + msecs_to_jiffies(50); } break; default: goto error; } break; default: error: /* "stall" on error */ retval = -EPIPE; } spin_unlock_irqrestore(&priv->lock, flags); return retval; } static int isp1760_get_frame(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); u32 fr; fr = isp1760_hcd_read(hcd, HC_FRINDEX); return (fr >> 3) % priv->periodic_size; } static void isp1760_stop(struct usb_hcd *hcd) { struct isp1760_hcd *priv = hcd_to_priv(hcd); del_timer(&errata2_timer); isp1760_hub_control(hcd, ClearPortFeature, USB_PORT_FEAT_POWER, 1, NULL, 0); msleep(20); spin_lock_irq(&priv->lock); ehci_reset(hcd); /* Disable IRQ */ isp1760_hcd_clear(hcd, HW_GLOBAL_INTR_EN); spin_unlock_irq(&priv->lock); isp1760_hcd_clear(hcd, FLAG_CF); } static void isp1760_shutdown(struct usb_hcd *hcd) { isp1760_stop(hcd); isp1760_hcd_clear(hcd, HW_GLOBAL_INTR_EN); isp1760_hcd_clear(hcd, CMD_RUN); } static void isp1760_clear_tt_buffer_complete(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct isp1760_hcd *priv = hcd_to_priv(hcd); struct isp1760_qh *qh = ep->hcpriv; unsigned long spinflags; if (!qh) return; spin_lock_irqsave(&priv->lock, spinflags); qh->tt_buffer_dirty = 0; schedule_ptds(hcd); spin_unlock_irqrestore(&priv->lock, spinflags); } static const struct hc_driver isp1760_hc_driver = { .description = "isp1760-hcd", .product_desc = "NXP ISP1760 USB Host Controller", .hcd_priv_size = sizeof(struct isp1760_hcd *), .irq = isp1760_irq, .flags = HCD_MEMORY | HCD_USB2, .reset = isp1760_hc_setup, .start = isp1760_run, .stop = isp1760_stop, .shutdown = isp1760_shutdown, .urb_enqueue = isp1760_urb_enqueue, .urb_dequeue = isp1760_urb_dequeue, .endpoint_disable = isp1760_endpoint_disable, .get_frame_number = isp1760_get_frame, .hub_status_data = isp1760_hub_status_data, .hub_control = isp1760_hub_control, .clear_tt_buffer_complete = isp1760_clear_tt_buffer_complete, }; int __init isp1760_init_kmem_once(void) { urb_listitem_cachep = kmem_cache_create("isp1760_urb_listitem", sizeof(struct urb_listitem), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!urb_listitem_cachep) return -ENOMEM; qtd_cachep = kmem_cache_create("isp1760_qtd", sizeof(struct isp1760_qtd), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!qtd_cachep) goto destroy_urb_listitem; qh_cachep = kmem_cache_create("isp1760_qh", sizeof(struct isp1760_qh), 0, SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); if (!qh_cachep) goto destroy_qtd; return 0; destroy_qtd: kmem_cache_destroy(qtd_cachep); destroy_urb_listitem: kmem_cache_destroy(urb_listitem_cachep); return -ENOMEM; } void isp1760_deinit_kmem_cache(void) { kmem_cache_destroy(qtd_cachep); kmem_cache_destroy(qh_cachep); kmem_cache_destroy(urb_listitem_cachep); } int isp1760_hcd_register(struct isp1760_hcd *priv, struct resource *mem, int irq, unsigned long irqflags, struct device *dev) { const struct isp1760_memory_layout *mem_layout = priv->memory_layout; struct usb_hcd *hcd; int ret; hcd = usb_create_hcd(&isp1760_hc_driver, dev, dev_name(dev)); if (!hcd) return -ENOMEM; *(struct isp1760_hcd **)hcd->hcd_priv = priv; priv->hcd = hcd; priv->atl_slots = kcalloc(mem_layout->slot_num, sizeof(struct isp1760_slotinfo), GFP_KERNEL); if (!priv->atl_slots) { ret = -ENOMEM; goto put_hcd; } priv->int_slots = kcalloc(mem_layout->slot_num, sizeof(struct isp1760_slotinfo), GFP_KERNEL); if (!priv->int_slots) { ret = -ENOMEM; goto free_atl_slots; } init_memory(priv); hcd->irq = irq; hcd->rsrc_start = mem->start; hcd->rsrc_len = resource_size(mem); /* This driver doesn't support wakeup requests */ hcd->cant_recv_wakeups = 1; ret = usb_add_hcd(hcd, irq, irqflags); if (ret) goto free_int_slots; device_wakeup_enable(hcd->self.controller); return 0; free_int_slots: kfree(priv->int_slots); free_atl_slots: kfree(priv->atl_slots); put_hcd: usb_put_hcd(hcd); return ret; } void isp1760_hcd_unregister(struct isp1760_hcd *priv) { if (!priv->hcd) return; usb_remove_hcd(priv->hcd); usb_put_hcd(priv->hcd); kfree(priv->atl_slots); kfree(priv->int_slots); }
linux-master
drivers/usb/isp1760/isp1760-hcd.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the NXP ISP1760 chip * * Copyright 2021 Linaro, Rui Miguel Silva * Copyright 2014 Laurent Pinchart * Copyright 2007 Sebastian Siewior * * Contacts: * Sebastian Siewior <[email protected]> * Laurent Pinchart <[email protected]> * Rui Miguel Silva <[email protected]> */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/usb.h> #include "isp1760-core.h" #include "isp1760-hcd.h" #include "isp1760-regs.h" #include "isp1760-udc.h" static int isp1760_init_core(struct isp1760_device *isp) { struct isp1760_hcd *hcd = &isp->hcd; struct isp1760_udc *udc = &isp->udc; u32 otg_ctrl; /* Low-level chip reset */ if (isp->rst_gpio) { gpiod_set_value_cansleep(isp->rst_gpio, 1); msleep(50); gpiod_set_value_cansleep(isp->rst_gpio, 0); } /* * Reset the host controller, including the CPU interface * configuration. */ isp1760_field_set(hcd->fields, SW_RESET_RESET_ALL); msleep(100); /* Setup HW Mode Control: This assumes a level active-low interrupt */ if ((isp->devflags & ISP1760_FLAG_ANALOG_OC) && hcd->is_isp1763) { dev_err(isp->dev, "isp1763 analog overcurrent not available\n"); return -EINVAL; } if (isp->devflags & ISP1760_FLAG_BUS_WIDTH_16) isp1760_field_clear(hcd->fields, HW_DATA_BUS_WIDTH); if (isp->devflags & ISP1760_FLAG_BUS_WIDTH_8) isp1760_field_set(hcd->fields, HW_DATA_BUS_WIDTH); if (isp->devflags & ISP1760_FLAG_ANALOG_OC) isp1760_field_set(hcd->fields, HW_ANA_DIGI_OC); if (isp->devflags & ISP1760_FLAG_DACK_POL_HIGH) isp1760_field_set(hcd->fields, HW_DACK_POL_HIGH); if (isp->devflags & ISP1760_FLAG_DREQ_POL_HIGH) isp1760_field_set(hcd->fields, HW_DREQ_POL_HIGH); if (isp->devflags & ISP1760_FLAG_INTR_POL_HIGH) isp1760_field_set(hcd->fields, HW_INTR_HIGH_ACT); if (isp->devflags & ISP1760_FLAG_INTR_EDGE_TRIG) isp1760_field_set(hcd->fields, HW_INTR_EDGE_TRIG); /* * The ISP1761 has a dedicated DC IRQ line but supports sharing the HC * IRQ line for both the host and device controllers. Hardcode IRQ * sharing for now and disable the DC interrupts globally to avoid * spurious interrupts during HCD registration. */ if (isp->devflags & ISP1760_FLAG_ISP1761) { isp1760_reg_write(udc->regs, ISP176x_DC_MODE, 0); isp1760_field_set(hcd->fields, HW_COMN_IRQ); } /* * PORT 1 Control register of the ISP1760 is the OTG control register * on ISP1761. * * TODO: Really support OTG. For now we configure port 1 in device mode */ if (isp->devflags & ISP1760_FLAG_ISP1761) { if (isp->devflags & ISP1760_FLAG_PERIPHERAL_EN) { otg_ctrl = (ISP176x_HW_DM_PULLDOWN_CLEAR | ISP176x_HW_DP_PULLDOWN_CLEAR | ISP176x_HW_OTG_DISABLE); } else { otg_ctrl = (ISP176x_HW_SW_SEL_HC_DC_CLEAR | ISP176x_HW_VBUS_DRV | ISP176x_HW_SEL_CP_EXT); } isp1760_reg_write(hcd->regs, ISP176x_HC_OTG_CTRL, otg_ctrl); } dev_info(isp->dev, "%s bus width: %u, oc: %s\n", hcd->is_isp1763 ? "isp1763" : "isp1760", isp->devflags & ISP1760_FLAG_BUS_WIDTH_8 ? 8 : isp->devflags & ISP1760_FLAG_BUS_WIDTH_16 ? 16 : 32, hcd->is_isp1763 ? "not available" : isp->devflags & ISP1760_FLAG_ANALOG_OC ? "analog" : "digital"); return 0; } void isp1760_set_pullup(struct isp1760_device *isp, bool enable) { struct isp1760_udc *udc = &isp->udc; if (enable) isp1760_field_set(udc->fields, HW_DP_PULLUP); else isp1760_field_set(udc->fields, HW_DP_PULLUP_CLEAR); } /* * ISP1760/61: * * 60kb divided in: * - 32 blocks @ 256 bytes * - 20 blocks @ 1024 bytes * - 4 blocks @ 8192 bytes */ static const struct isp1760_memory_layout isp176x_memory_conf = { .blocks[0] = 32, .blocks_size[0] = 256, .blocks[1] = 20, .blocks_size[1] = 1024, .blocks[2] = 4, .blocks_size[2] = 8192, .slot_num = 32, .payload_blocks = 32 + 20 + 4, .payload_area_size = 0xf000, }; /* * ISP1763: * * 20kb divided in: * - 8 blocks @ 256 bytes * - 2 blocks @ 1024 bytes * - 4 blocks @ 4096 bytes */ static const struct isp1760_memory_layout isp1763_memory_conf = { .blocks[0] = 8, .blocks_size[0] = 256, .blocks[1] = 2, .blocks_size[1] = 1024, .blocks[2] = 4, .blocks_size[2] = 4096, .slot_num = 16, .payload_blocks = 8 + 2 + 4, .payload_area_size = 0x5000, }; static const struct regmap_range isp176x_hc_volatile_ranges[] = { regmap_reg_range(ISP176x_HC_USBCMD, ISP176x_HC_ATL_PTD_LASTPTD), regmap_reg_range(ISP176x_HC_BUFFER_STATUS, ISP176x_HC_MEMORY), regmap_reg_range(ISP176x_HC_INTERRUPT, ISP176x_HC_OTG_CTRL_CLEAR), }; static const struct regmap_access_table isp176x_hc_volatile_table = { .yes_ranges = isp176x_hc_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(isp176x_hc_volatile_ranges), }; static const struct regmap_config isp1760_hc_regmap_conf = { .name = "isp1760-hc", .reg_bits = 16, .reg_stride = 4, .val_bits = 32, .fast_io = true, .max_register = ISP176x_HC_OTG_CTRL_CLEAR, .volatile_table = &isp176x_hc_volatile_table, }; static const struct reg_field isp1760_hc_reg_fields[] = { [HCS_PPC] = REG_FIELD(ISP176x_HC_HCSPARAMS, 4, 4), [HCS_N_PORTS] = REG_FIELD(ISP176x_HC_HCSPARAMS, 0, 3), [HCC_ISOC_CACHE] = REG_FIELD(ISP176x_HC_HCCPARAMS, 7, 7), [HCC_ISOC_THRES] = REG_FIELD(ISP176x_HC_HCCPARAMS, 4, 6), [CMD_LRESET] = REG_FIELD(ISP176x_HC_USBCMD, 7, 7), [CMD_RESET] = REG_FIELD(ISP176x_HC_USBCMD, 1, 1), [CMD_RUN] = REG_FIELD(ISP176x_HC_USBCMD, 0, 0), [STS_PCD] = REG_FIELD(ISP176x_HC_USBSTS, 2, 2), [HC_FRINDEX] = REG_FIELD(ISP176x_HC_FRINDEX, 0, 13), [FLAG_CF] = REG_FIELD(ISP176x_HC_CONFIGFLAG, 0, 0), [HC_ISO_PTD_DONEMAP] = REG_FIELD(ISP176x_HC_ISO_PTD_DONEMAP, 0, 31), [HC_ISO_PTD_SKIPMAP] = REG_FIELD(ISP176x_HC_ISO_PTD_SKIPMAP, 0, 31), [HC_ISO_PTD_LASTPTD] = REG_FIELD(ISP176x_HC_ISO_PTD_LASTPTD, 0, 31), [HC_INT_PTD_DONEMAP] = REG_FIELD(ISP176x_HC_INT_PTD_DONEMAP, 0, 31), [HC_INT_PTD_SKIPMAP] = REG_FIELD(ISP176x_HC_INT_PTD_SKIPMAP, 0, 31), [HC_INT_PTD_LASTPTD] = REG_FIELD(ISP176x_HC_INT_PTD_LASTPTD, 0, 31), [HC_ATL_PTD_DONEMAP] = REG_FIELD(ISP176x_HC_ATL_PTD_DONEMAP, 0, 31), [HC_ATL_PTD_SKIPMAP] = REG_FIELD(ISP176x_HC_ATL_PTD_SKIPMAP, 0, 31), [HC_ATL_PTD_LASTPTD] = REG_FIELD(ISP176x_HC_ATL_PTD_LASTPTD, 0, 31), [PORT_OWNER] = REG_FIELD(ISP176x_HC_PORTSC1, 13, 13), [PORT_POWER] = REG_FIELD(ISP176x_HC_PORTSC1, 12, 12), [PORT_LSTATUS] = REG_FIELD(ISP176x_HC_PORTSC1, 10, 11), [PORT_RESET] = REG_FIELD(ISP176x_HC_PORTSC1, 8, 8), [PORT_SUSPEND] = REG_FIELD(ISP176x_HC_PORTSC1, 7, 7), [PORT_RESUME] = REG_FIELD(ISP176x_HC_PORTSC1, 6, 6), [PORT_PE] = REG_FIELD(ISP176x_HC_PORTSC1, 2, 2), [PORT_CSC] = REG_FIELD(ISP176x_HC_PORTSC1, 1, 1), [PORT_CONNECT] = REG_FIELD(ISP176x_HC_PORTSC1, 0, 0), [ALL_ATX_RESET] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 31, 31), [HW_ANA_DIGI_OC] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 15, 15), [HW_COMN_IRQ] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 10, 10), [HW_DATA_BUS_WIDTH] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 8, 8), [HW_DACK_POL_HIGH] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 6, 6), [HW_DREQ_POL_HIGH] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 5, 5), [HW_INTR_HIGH_ACT] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 2, 2), [HW_INTR_EDGE_TRIG] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 1, 1), [HW_GLOBAL_INTR_EN] = REG_FIELD(ISP176x_HC_HW_MODE_CTRL, 0, 0), [HC_CHIP_REV] = REG_FIELD(ISP176x_HC_CHIP_ID, 16, 31), [HC_CHIP_ID_HIGH] = REG_FIELD(ISP176x_HC_CHIP_ID, 8, 15), [HC_CHIP_ID_LOW] = REG_FIELD(ISP176x_HC_CHIP_ID, 0, 7), [HC_SCRATCH] = REG_FIELD(ISP176x_HC_SCRATCH, 0, 31), [SW_RESET_RESET_ALL] = REG_FIELD(ISP176x_HC_RESET, 0, 0), [ISO_BUF_FILL] = REG_FIELD(ISP176x_HC_BUFFER_STATUS, 2, 2), [INT_BUF_FILL] = REG_FIELD(ISP176x_HC_BUFFER_STATUS, 1, 1), [ATL_BUF_FILL] = REG_FIELD(ISP176x_HC_BUFFER_STATUS, 0, 0), [MEM_BANK_SEL] = REG_FIELD(ISP176x_HC_MEMORY, 16, 17), [MEM_START_ADDR] = REG_FIELD(ISP176x_HC_MEMORY, 0, 15), [HC_INTERRUPT] = REG_FIELD(ISP176x_HC_INTERRUPT, 0, 9), [HC_ATL_IRQ_ENABLE] = REG_FIELD(ISP176x_HC_INTERRUPT_ENABLE, 8, 8), [HC_INT_IRQ_ENABLE] = REG_FIELD(ISP176x_HC_INTERRUPT_ENABLE, 7, 7), [HC_ISO_IRQ_MASK_OR] = REG_FIELD(ISP176x_HC_ISO_IRQ_MASK_OR, 0, 31), [HC_INT_IRQ_MASK_OR] = REG_FIELD(ISP176x_HC_INT_IRQ_MASK_OR, 0, 31), [HC_ATL_IRQ_MASK_OR] = REG_FIELD(ISP176x_HC_ATL_IRQ_MASK_OR, 0, 31), [HC_ISO_IRQ_MASK_AND] = REG_FIELD(ISP176x_HC_ISO_IRQ_MASK_AND, 0, 31), [HC_INT_IRQ_MASK_AND] = REG_FIELD(ISP176x_HC_INT_IRQ_MASK_AND, 0, 31), [HC_ATL_IRQ_MASK_AND] = REG_FIELD(ISP176x_HC_ATL_IRQ_MASK_AND, 0, 31), [HW_OTG_DISABLE_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 26, 26), [HW_SW_SEL_HC_DC_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 23, 23), [HW_VBUS_DRV_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 20, 20), [HW_SEL_CP_EXT_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 19, 19), [HW_DM_PULLDOWN_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 18, 18), [HW_DP_PULLDOWN_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 17, 17), [HW_DP_PULLUP_CLEAR] = REG_FIELD(ISP176x_HC_OTG_CTRL, 16, 16), [HW_OTG_DISABLE] = REG_FIELD(ISP176x_HC_OTG_CTRL, 10, 10), [HW_SW_SEL_HC_DC] = REG_FIELD(ISP176x_HC_OTG_CTRL, 7, 7), [HW_VBUS_DRV] = REG_FIELD(ISP176x_HC_OTG_CTRL, 4, 4), [HW_SEL_CP_EXT] = REG_FIELD(ISP176x_HC_OTG_CTRL, 3, 3), [HW_DM_PULLDOWN] = REG_FIELD(ISP176x_HC_OTG_CTRL, 2, 2), [HW_DP_PULLDOWN] = REG_FIELD(ISP176x_HC_OTG_CTRL, 1, 1), [HW_DP_PULLUP] = REG_FIELD(ISP176x_HC_OTG_CTRL, 0, 0), /* Make sure the array is sized properly during compilation */ [HC_FIELD_MAX] = {}, }; static const struct reg_field isp1763_hc_reg_fields[] = { [CMD_LRESET] = REG_FIELD(ISP1763_HC_USBCMD, 7, 7), [CMD_RESET] = REG_FIELD(ISP1763_HC_USBCMD, 1, 1), [CMD_RUN] = REG_FIELD(ISP1763_HC_USBCMD, 0, 0), [STS_PCD] = REG_FIELD(ISP1763_HC_USBSTS, 2, 2), [HC_FRINDEX] = REG_FIELD(ISP1763_HC_FRINDEX, 0, 13), [FLAG_CF] = REG_FIELD(ISP1763_HC_CONFIGFLAG, 0, 0), [HC_ISO_PTD_DONEMAP] = REG_FIELD(ISP1763_HC_ISO_PTD_DONEMAP, 0, 15), [HC_ISO_PTD_SKIPMAP] = REG_FIELD(ISP1763_HC_ISO_PTD_SKIPMAP, 0, 15), [HC_ISO_PTD_LASTPTD] = REG_FIELD(ISP1763_HC_ISO_PTD_LASTPTD, 0, 15), [HC_INT_PTD_DONEMAP] = REG_FIELD(ISP1763_HC_INT_PTD_DONEMAP, 0, 15), [HC_INT_PTD_SKIPMAP] = REG_FIELD(ISP1763_HC_INT_PTD_SKIPMAP, 0, 15), [HC_INT_PTD_LASTPTD] = REG_FIELD(ISP1763_HC_INT_PTD_LASTPTD, 0, 15), [HC_ATL_PTD_DONEMAP] = REG_FIELD(ISP1763_HC_ATL_PTD_DONEMAP, 0, 15), [HC_ATL_PTD_SKIPMAP] = REG_FIELD(ISP1763_HC_ATL_PTD_SKIPMAP, 0, 15), [HC_ATL_PTD_LASTPTD] = REG_FIELD(ISP1763_HC_ATL_PTD_LASTPTD, 0, 15), [PORT_OWNER] = REG_FIELD(ISP1763_HC_PORTSC1, 13, 13), [PORT_POWER] = REG_FIELD(ISP1763_HC_PORTSC1, 12, 12), [PORT_LSTATUS] = REG_FIELD(ISP1763_HC_PORTSC1, 10, 11), [PORT_RESET] = REG_FIELD(ISP1763_HC_PORTSC1, 8, 8), [PORT_SUSPEND] = REG_FIELD(ISP1763_HC_PORTSC1, 7, 7), [PORT_RESUME] = REG_FIELD(ISP1763_HC_PORTSC1, 6, 6), [PORT_PE] = REG_FIELD(ISP1763_HC_PORTSC1, 2, 2), [PORT_CSC] = REG_FIELD(ISP1763_HC_PORTSC1, 1, 1), [PORT_CONNECT] = REG_FIELD(ISP1763_HC_PORTSC1, 0, 0), [HW_DATA_BUS_WIDTH] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 4, 4), [HW_DACK_POL_HIGH] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 6, 6), [HW_DREQ_POL_HIGH] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 5, 5), [HW_INTF_LOCK] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 3, 3), [HW_INTR_HIGH_ACT] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 2, 2), [HW_INTR_EDGE_TRIG] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 1, 1), [HW_GLOBAL_INTR_EN] = REG_FIELD(ISP1763_HC_HW_MODE_CTRL, 0, 0), [SW_RESET_RESET_ATX] = REG_FIELD(ISP1763_HC_RESET, 3, 3), [SW_RESET_RESET_ALL] = REG_FIELD(ISP1763_HC_RESET, 0, 0), [HC_CHIP_ID_HIGH] = REG_FIELD(ISP1763_HC_CHIP_ID, 0, 15), [HC_CHIP_ID_LOW] = REG_FIELD(ISP1763_HC_CHIP_REV, 8, 15), [HC_CHIP_REV] = REG_FIELD(ISP1763_HC_CHIP_REV, 0, 7), [HC_SCRATCH] = REG_FIELD(ISP1763_HC_SCRATCH, 0, 15), [ISO_BUF_FILL] = REG_FIELD(ISP1763_HC_BUFFER_STATUS, 2, 2), [INT_BUF_FILL] = REG_FIELD(ISP1763_HC_BUFFER_STATUS, 1, 1), [ATL_BUF_FILL] = REG_FIELD(ISP1763_HC_BUFFER_STATUS, 0, 0), [MEM_START_ADDR] = REG_FIELD(ISP1763_HC_MEMORY, 0, 15), [HC_DATA] = REG_FIELD(ISP1763_HC_DATA, 0, 15), [HC_INTERRUPT] = REG_FIELD(ISP1763_HC_INTERRUPT, 0, 10), [HC_ATL_IRQ_ENABLE] = REG_FIELD(ISP1763_HC_INTERRUPT_ENABLE, 8, 8), [HC_INT_IRQ_ENABLE] = REG_FIELD(ISP1763_HC_INTERRUPT_ENABLE, 7, 7), [HC_ISO_IRQ_MASK_OR] = REG_FIELD(ISP1763_HC_ISO_IRQ_MASK_OR, 0, 15), [HC_INT_IRQ_MASK_OR] = REG_FIELD(ISP1763_HC_INT_IRQ_MASK_OR, 0, 15), [HC_ATL_IRQ_MASK_OR] = REG_FIELD(ISP1763_HC_ATL_IRQ_MASK_OR, 0, 15), [HC_ISO_IRQ_MASK_AND] = REG_FIELD(ISP1763_HC_ISO_IRQ_MASK_AND, 0, 15), [HC_INT_IRQ_MASK_AND] = REG_FIELD(ISP1763_HC_INT_IRQ_MASK_AND, 0, 15), [HC_ATL_IRQ_MASK_AND] = REG_FIELD(ISP1763_HC_ATL_IRQ_MASK_AND, 0, 15), [HW_HC_2_DIS] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 15, 15), [HW_OTG_DISABLE] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 10, 10), [HW_SW_SEL_HC_DC] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 7, 7), [HW_VBUS_DRV] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 4, 4), [HW_SEL_CP_EXT] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 3, 3), [HW_DM_PULLDOWN] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 2, 2), [HW_DP_PULLDOWN] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 1, 1), [HW_DP_PULLUP] = REG_FIELD(ISP1763_HC_OTG_CTRL_SET, 0, 0), [HW_HC_2_DIS_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 15, 15), [HW_OTG_DISABLE_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 10, 10), [HW_SW_SEL_HC_DC_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 7, 7), [HW_VBUS_DRV_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 4, 4), [HW_SEL_CP_EXT_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 3, 3), [HW_DM_PULLDOWN_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 2, 2), [HW_DP_PULLDOWN_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 1, 1), [HW_DP_PULLUP_CLEAR] = REG_FIELD(ISP1763_HC_OTG_CTRL_CLEAR, 0, 0), /* Make sure the array is sized properly during compilation */ [HC_FIELD_MAX] = {}, }; static const struct regmap_range isp1763_hc_volatile_ranges[] = { regmap_reg_range(ISP1763_HC_USBCMD, ISP1763_HC_ATL_PTD_LASTPTD), regmap_reg_range(ISP1763_HC_BUFFER_STATUS, ISP1763_HC_DATA), regmap_reg_range(ISP1763_HC_INTERRUPT, ISP1763_HC_OTG_CTRL_CLEAR), }; static const struct regmap_access_table isp1763_hc_volatile_table = { .yes_ranges = isp1763_hc_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(isp1763_hc_volatile_ranges), }; static const struct regmap_config isp1763_hc_regmap_conf = { .name = "isp1763-hc", .reg_bits = 8, .reg_stride = 2, .val_bits = 16, .fast_io = true, .max_register = ISP1763_HC_OTG_CTRL_CLEAR, .volatile_table = &isp1763_hc_volatile_table, }; static const struct regmap_range isp176x_dc_volatile_ranges[] = { regmap_reg_range(ISP176x_DC_EPMAXPKTSZ, ISP176x_DC_EPTYPE), regmap_reg_range(ISP176x_DC_BUFLEN, ISP176x_DC_EPINDEX), }; static const struct regmap_access_table isp176x_dc_volatile_table = { .yes_ranges = isp176x_dc_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(isp176x_dc_volatile_ranges), }; static const struct regmap_config isp1761_dc_regmap_conf = { .name = "isp1761-dc", .reg_bits = 16, .reg_stride = 4, .val_bits = 32, .fast_io = true, .max_register = ISP176x_DC_TESTMODE, .volatile_table = &isp176x_dc_volatile_table, }; static const struct reg_field isp1761_dc_reg_fields[] = { [DC_DEVEN] = REG_FIELD(ISP176x_DC_ADDRESS, 7, 7), [DC_DEVADDR] = REG_FIELD(ISP176x_DC_ADDRESS, 0, 6), [DC_VBUSSTAT] = REG_FIELD(ISP176x_DC_MODE, 8, 8), [DC_SFRESET] = REG_FIELD(ISP176x_DC_MODE, 4, 4), [DC_GLINTENA] = REG_FIELD(ISP176x_DC_MODE, 3, 3), [DC_CDBGMOD_ACK] = REG_FIELD(ISP176x_DC_INTCONF, 6, 6), [DC_DDBGMODIN_ACK] = REG_FIELD(ISP176x_DC_INTCONF, 4, 4), [DC_DDBGMODOUT_ACK] = REG_FIELD(ISP176x_DC_INTCONF, 2, 2), [DC_INTPOL] = REG_FIELD(ISP176x_DC_INTCONF, 0, 0), [DC_IEPRXTX_7] = REG_FIELD(ISP176x_DC_INTENABLE, 25, 25), [DC_IEPRXTX_6] = REG_FIELD(ISP176x_DC_INTENABLE, 23, 23), [DC_IEPRXTX_5] = REG_FIELD(ISP176x_DC_INTENABLE, 21, 21), [DC_IEPRXTX_4] = REG_FIELD(ISP176x_DC_INTENABLE, 19, 19), [DC_IEPRXTX_3] = REG_FIELD(ISP176x_DC_INTENABLE, 17, 17), [DC_IEPRXTX_2] = REG_FIELD(ISP176x_DC_INTENABLE, 15, 15), [DC_IEPRXTX_1] = REG_FIELD(ISP176x_DC_INTENABLE, 13, 13), [DC_IEPRXTX_0] = REG_FIELD(ISP176x_DC_INTENABLE, 11, 11), [DC_IEP0SETUP] = REG_FIELD(ISP176x_DC_INTENABLE, 8, 8), [DC_IEVBUS] = REG_FIELD(ISP176x_DC_INTENABLE, 7, 7), [DC_IEHS_STA] = REG_FIELD(ISP176x_DC_INTENABLE, 5, 5), [DC_IERESM] = REG_FIELD(ISP176x_DC_INTENABLE, 4, 4), [DC_IESUSP] = REG_FIELD(ISP176x_DC_INTENABLE, 3, 3), [DC_IEBRST] = REG_FIELD(ISP176x_DC_INTENABLE, 0, 0), [DC_EP0SETUP] = REG_FIELD(ISP176x_DC_EPINDEX, 5, 5), [DC_ENDPIDX] = REG_FIELD(ISP176x_DC_EPINDEX, 1, 4), [DC_EPDIR] = REG_FIELD(ISP176x_DC_EPINDEX, 0, 0), [DC_CLBUF] = REG_FIELD(ISP176x_DC_CTRLFUNC, 4, 4), [DC_VENDP] = REG_FIELD(ISP176x_DC_CTRLFUNC, 3, 3), [DC_DSEN] = REG_FIELD(ISP176x_DC_CTRLFUNC, 2, 2), [DC_STATUS] = REG_FIELD(ISP176x_DC_CTRLFUNC, 1, 1), [DC_STALL] = REG_FIELD(ISP176x_DC_CTRLFUNC, 0, 0), [DC_BUFLEN] = REG_FIELD(ISP176x_DC_BUFLEN, 0, 15), [DC_FFOSZ] = REG_FIELD(ISP176x_DC_EPMAXPKTSZ, 0, 10), [DC_EPENABLE] = REG_FIELD(ISP176x_DC_EPTYPE, 3, 3), [DC_ENDPTYP] = REG_FIELD(ISP176x_DC_EPTYPE, 0, 1), [DC_UFRAMENUM] = REG_FIELD(ISP176x_DC_FRAMENUM, 11, 13), [DC_FRAMENUM] = REG_FIELD(ISP176x_DC_FRAMENUM, 0, 10), [DC_CHIP_ID_HIGH] = REG_FIELD(ISP176x_DC_CHIPID, 16, 31), [DC_CHIP_ID_LOW] = REG_FIELD(ISP176x_DC_CHIPID, 0, 15), [DC_SCRATCH] = REG_FIELD(ISP176x_DC_SCRATCH, 0, 15), /* Make sure the array is sized properly during compilation */ [DC_FIELD_MAX] = {}, }; static const struct regmap_range isp1763_dc_volatile_ranges[] = { regmap_reg_range(ISP1763_DC_EPMAXPKTSZ, ISP1763_DC_EPTYPE), regmap_reg_range(ISP1763_DC_BUFLEN, ISP1763_DC_EPINDEX), }; static const struct regmap_access_table isp1763_dc_volatile_table = { .yes_ranges = isp1763_dc_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(isp1763_dc_volatile_ranges), }; static const struct reg_field isp1763_dc_reg_fields[] = { [DC_DEVEN] = REG_FIELD(ISP1763_DC_ADDRESS, 7, 7), [DC_DEVADDR] = REG_FIELD(ISP1763_DC_ADDRESS, 0, 6), [DC_VBUSSTAT] = REG_FIELD(ISP1763_DC_MODE, 8, 8), [DC_SFRESET] = REG_FIELD(ISP1763_DC_MODE, 4, 4), [DC_GLINTENA] = REG_FIELD(ISP1763_DC_MODE, 3, 3), [DC_CDBGMOD_ACK] = REG_FIELD(ISP1763_DC_INTCONF, 6, 6), [DC_DDBGMODIN_ACK] = REG_FIELD(ISP1763_DC_INTCONF, 4, 4), [DC_DDBGMODOUT_ACK] = REG_FIELD(ISP1763_DC_INTCONF, 2, 2), [DC_INTPOL] = REG_FIELD(ISP1763_DC_INTCONF, 0, 0), [DC_IEPRXTX_7] = REG_FIELD(ISP1763_DC_INTENABLE, 25, 25), [DC_IEPRXTX_6] = REG_FIELD(ISP1763_DC_INTENABLE, 23, 23), [DC_IEPRXTX_5] = REG_FIELD(ISP1763_DC_INTENABLE, 21, 21), [DC_IEPRXTX_4] = REG_FIELD(ISP1763_DC_INTENABLE, 19, 19), [DC_IEPRXTX_3] = REG_FIELD(ISP1763_DC_INTENABLE, 17, 17), [DC_IEPRXTX_2] = REG_FIELD(ISP1763_DC_INTENABLE, 15, 15), [DC_IEPRXTX_1] = REG_FIELD(ISP1763_DC_INTENABLE, 13, 13), [DC_IEPRXTX_0] = REG_FIELD(ISP1763_DC_INTENABLE, 11, 11), [DC_IEP0SETUP] = REG_FIELD(ISP1763_DC_INTENABLE, 8, 8), [DC_IEVBUS] = REG_FIELD(ISP1763_DC_INTENABLE, 7, 7), [DC_IEHS_STA] = REG_FIELD(ISP1763_DC_INTENABLE, 5, 5), [DC_IERESM] = REG_FIELD(ISP1763_DC_INTENABLE, 4, 4), [DC_IESUSP] = REG_FIELD(ISP1763_DC_INTENABLE, 3, 3), [DC_IEBRST] = REG_FIELD(ISP1763_DC_INTENABLE, 0, 0), [DC_EP0SETUP] = REG_FIELD(ISP1763_DC_EPINDEX, 5, 5), [DC_ENDPIDX] = REG_FIELD(ISP1763_DC_EPINDEX, 1, 4), [DC_EPDIR] = REG_FIELD(ISP1763_DC_EPINDEX, 0, 0), [DC_CLBUF] = REG_FIELD(ISP1763_DC_CTRLFUNC, 4, 4), [DC_VENDP] = REG_FIELD(ISP1763_DC_CTRLFUNC, 3, 3), [DC_DSEN] = REG_FIELD(ISP1763_DC_CTRLFUNC, 2, 2), [DC_STATUS] = REG_FIELD(ISP1763_DC_CTRLFUNC, 1, 1), [DC_STALL] = REG_FIELD(ISP1763_DC_CTRLFUNC, 0, 0), [DC_BUFLEN] = REG_FIELD(ISP1763_DC_BUFLEN, 0, 15), [DC_FFOSZ] = REG_FIELD(ISP1763_DC_EPMAXPKTSZ, 0, 10), [DC_EPENABLE] = REG_FIELD(ISP1763_DC_EPTYPE, 3, 3), [DC_ENDPTYP] = REG_FIELD(ISP1763_DC_EPTYPE, 0, 1), [DC_UFRAMENUM] = REG_FIELD(ISP1763_DC_FRAMENUM, 11, 13), [DC_FRAMENUM] = REG_FIELD(ISP1763_DC_FRAMENUM, 0, 10), [DC_CHIP_ID_HIGH] = REG_FIELD(ISP1763_DC_CHIPID_HIGH, 0, 15), [DC_CHIP_ID_LOW] = REG_FIELD(ISP1763_DC_CHIPID_LOW, 0, 15), [DC_SCRATCH] = REG_FIELD(ISP1763_DC_SCRATCH, 0, 15), /* Make sure the array is sized properly during compilation */ [DC_FIELD_MAX] = {}, }; static const struct regmap_config isp1763_dc_regmap_conf = { .name = "isp1763-dc", .reg_bits = 8, .reg_stride = 2, .val_bits = 16, .fast_io = true, .max_register = ISP1763_DC_TESTMODE, .volatile_table = &isp1763_dc_volatile_table, }; int isp1760_register(struct resource *mem, int irq, unsigned long irqflags, struct device *dev, unsigned int devflags) { const struct regmap_config *hc_regmap; const struct reg_field *hc_reg_fields; const struct regmap_config *dc_regmap; const struct reg_field *dc_reg_fields; struct isp1760_device *isp; struct isp1760_hcd *hcd; struct isp1760_udc *udc; struct regmap_field *f; bool udc_enabled; int ret; int i; /* * If neither the HCD not the UDC is enabled return an error, as no * device would be registered. */ udc_enabled = ((devflags & ISP1760_FLAG_ISP1763) || (devflags & ISP1760_FLAG_ISP1761)); if ((!IS_ENABLED(CONFIG_USB_ISP1760_HCD) || usb_disabled()) && (!udc_enabled || !IS_ENABLED(CONFIG_USB_ISP1761_UDC))) return -ENODEV; isp = devm_kzalloc(dev, sizeof(*isp), GFP_KERNEL); if (!isp) return -ENOMEM; isp->dev = dev; isp->devflags = devflags; hcd = &isp->hcd; udc = &isp->udc; hcd->is_isp1763 = !!(devflags & ISP1760_FLAG_ISP1763); udc->is_isp1763 = !!(devflags & ISP1760_FLAG_ISP1763); if (!hcd->is_isp1763 && (devflags & ISP1760_FLAG_BUS_WIDTH_8)) { dev_err(dev, "isp1760/61 do not support data width 8\n"); return -EINVAL; } if (hcd->is_isp1763) { hc_regmap = &isp1763_hc_regmap_conf; hc_reg_fields = &isp1763_hc_reg_fields[0]; dc_regmap = &isp1763_dc_regmap_conf; dc_reg_fields = &isp1763_dc_reg_fields[0]; } else { hc_regmap = &isp1760_hc_regmap_conf; hc_reg_fields = &isp1760_hc_reg_fields[0]; dc_regmap = &isp1761_dc_regmap_conf; dc_reg_fields = &isp1761_dc_reg_fields[0]; } isp->rst_gpio = devm_gpiod_get_optional(dev, NULL, GPIOD_OUT_HIGH); if (IS_ERR(isp->rst_gpio)) return PTR_ERR(isp->rst_gpio); hcd->base = devm_ioremap_resource(dev, mem); if (IS_ERR(hcd->base)) return PTR_ERR(hcd->base); hcd->regs = devm_regmap_init_mmio(dev, hcd->base, hc_regmap); if (IS_ERR(hcd->regs)) return PTR_ERR(hcd->regs); for (i = 0; i < HC_FIELD_MAX; i++) { f = devm_regmap_field_alloc(dev, hcd->regs, hc_reg_fields[i]); if (IS_ERR(f)) return PTR_ERR(f); hcd->fields[i] = f; } udc->regs = devm_regmap_init_mmio(dev, hcd->base, dc_regmap); if (IS_ERR(udc->regs)) return PTR_ERR(udc->regs); for (i = 0; i < DC_FIELD_MAX; i++) { f = devm_regmap_field_alloc(dev, udc->regs, dc_reg_fields[i]); if (IS_ERR(f)) return PTR_ERR(f); udc->fields[i] = f; } if (hcd->is_isp1763) hcd->memory_layout = &isp1763_memory_conf; else hcd->memory_layout = &isp176x_memory_conf; ret = isp1760_init_core(isp); if (ret < 0) return ret; if (IS_ENABLED(CONFIG_USB_ISP1760_HCD) && !usb_disabled()) { ret = isp1760_hcd_register(hcd, mem, irq, irqflags | IRQF_SHARED, dev); if (ret < 0) return ret; } if (udc_enabled && IS_ENABLED(CONFIG_USB_ISP1761_UDC)) { ret = isp1760_udc_register(isp, irq, irqflags); if (ret < 0) { isp1760_hcd_unregister(hcd); return ret; } } dev_set_drvdata(dev, isp); return 0; } void isp1760_unregister(struct device *dev) { struct isp1760_device *isp = dev_get_drvdata(dev); isp1760_udc_unregister(isp); isp1760_hcd_unregister(&isp->hcd); } MODULE_DESCRIPTION("Driver for the ISP1760 USB-controller from NXP"); MODULE_AUTHOR("Sebastian Siewior <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/isp1760/isp1760-core.c
// SPDX-License-Identifier: GPL-2.0+ /*****************************************************************************/ /* * devio.c -- User space communication with USB devices. * * Copyright (C) 1999-2000 Thomas Sailer ([email protected]) * * This file implements the usbfs/x/y files, where * x is the bus number and y the device number. * * It allows user space programs/"drivers" to communicate directly * with USB devices without intervening kernel driver. * * Revision history * 22.12.1999 0.1 Initial release (split from proc_usb.c) * 04.01.2000 0.2 Turned into its own filesystem * 30.09.2005 0.3 Fix user-triggerable oops in async URB delivery * (CAN-2005-3055) */ /*****************************************************************************/ #include <linux/fs.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/signal.h> #include <linux/poll.h> #include <linux/module.h> #include <linux/string.h> #include <linux/usb.h> #include <linux/usbdevice_fs.h> #include <linux/usb/hcd.h> /* for usbcore internals */ #include <linux/usb/quirks.h> #include <linux/cdev.h> #include <linux/notifier.h> #include <linux/security.h> #include <linux/user_namespace.h> #include <linux/scatterlist.h> #include <linux/uaccess.h> #include <linux/dma-mapping.h> #include <asm/byteorder.h> #include <linux/moduleparam.h> #include "usb.h" #ifdef CONFIG_PM #define MAYBE_CAP_SUSPEND USBDEVFS_CAP_SUSPEND #else #define MAYBE_CAP_SUSPEND 0 #endif #define USB_MAXBUS 64 #define USB_DEVICE_MAX (USB_MAXBUS * 128) #define USB_SG_SIZE 16384 /* split-size for large txs */ /* Mutual exclusion for ps->list in resume vs. release and remove */ static DEFINE_MUTEX(usbfs_mutex); struct usb_dev_state { struct list_head list; /* state list */ struct usb_device *dev; struct file *file; spinlock_t lock; /* protects the async urb lists */ struct list_head async_pending; struct list_head async_completed; struct list_head memory_list; wait_queue_head_t wait; /* wake up if a request completed */ wait_queue_head_t wait_for_resume; /* wake up upon runtime resume */ unsigned int discsignr; struct pid *disc_pid; const struct cred *cred; sigval_t disccontext; unsigned long ifclaimed; u32 disabled_bulk_eps; unsigned long interface_allowed_mask; int not_yet_resumed; bool suspend_allowed; bool privileges_dropped; }; struct usb_memory { struct list_head memlist; int vma_use_count; int urb_use_count; u32 size; void *mem; dma_addr_t dma_handle; unsigned long vm_start; struct usb_dev_state *ps; }; struct async { struct list_head asynclist; struct usb_dev_state *ps; struct pid *pid; const struct cred *cred; unsigned int signr; unsigned int ifnum; void __user *userbuffer; void __user *userurb; sigval_t userurb_sigval; struct urb *urb; struct usb_memory *usbm; unsigned int mem_usage; int status; u8 bulk_addr; u8 bulk_status; }; static bool usbfs_snoop; module_param(usbfs_snoop, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(usbfs_snoop, "true to log all usbfs traffic"); static unsigned usbfs_snoop_max = 65536; module_param(usbfs_snoop_max, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(usbfs_snoop_max, "maximum number of bytes to print while snooping"); #define snoop(dev, format, arg...) \ do { \ if (usbfs_snoop) \ dev_info(dev, format, ## arg); \ } while (0) enum snoop_when { SUBMIT, COMPLETE }; #define USB_DEVICE_DEV MKDEV(USB_DEVICE_MAJOR, 0) /* Limit on the total amount of memory we can allocate for transfers */ static u32 usbfs_memory_mb = 16; module_param(usbfs_memory_mb, uint, 0644); MODULE_PARM_DESC(usbfs_memory_mb, "maximum MB allowed for usbfs buffers (0 = no limit)"); /* Hard limit, necessary to avoid arithmetic overflow */ #define USBFS_XFER_MAX (UINT_MAX / 2 - 1000000) static DEFINE_SPINLOCK(usbfs_memory_usage_lock); static u64 usbfs_memory_usage; /* Total memory currently allocated */ /* Check whether it's okay to allocate more memory for a transfer */ static int usbfs_increase_memory_usage(u64 amount) { u64 lim, total_mem; unsigned long flags; int ret; lim = READ_ONCE(usbfs_memory_mb); lim <<= 20; ret = 0; spin_lock_irqsave(&usbfs_memory_usage_lock, flags); total_mem = usbfs_memory_usage + amount; if (lim > 0 && total_mem > lim) ret = -ENOMEM; else usbfs_memory_usage = total_mem; spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags); return ret; } /* Memory for a transfer is being deallocated */ static void usbfs_decrease_memory_usage(u64 amount) { unsigned long flags; spin_lock_irqsave(&usbfs_memory_usage_lock, flags); if (amount > usbfs_memory_usage) usbfs_memory_usage = 0; else usbfs_memory_usage -= amount; spin_unlock_irqrestore(&usbfs_memory_usage_lock, flags); } static int connected(struct usb_dev_state *ps) { return (!list_empty(&ps->list) && ps->dev->state != USB_STATE_NOTATTACHED); } static void dec_usb_memory_use_count(struct usb_memory *usbm, int *count) { struct usb_dev_state *ps = usbm->ps; struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus); unsigned long flags; spin_lock_irqsave(&ps->lock, flags); --*count; if (usbm->urb_use_count == 0 && usbm->vma_use_count == 0) { list_del(&usbm->memlist); spin_unlock_irqrestore(&ps->lock, flags); hcd_buffer_free_pages(hcd, usbm->size, usbm->mem, usbm->dma_handle); usbfs_decrease_memory_usage( usbm->size + sizeof(struct usb_memory)); kfree(usbm); } else { spin_unlock_irqrestore(&ps->lock, flags); } } static void usbdev_vm_open(struct vm_area_struct *vma) { struct usb_memory *usbm = vma->vm_private_data; unsigned long flags; spin_lock_irqsave(&usbm->ps->lock, flags); ++usbm->vma_use_count; spin_unlock_irqrestore(&usbm->ps->lock, flags); } static void usbdev_vm_close(struct vm_area_struct *vma) { struct usb_memory *usbm = vma->vm_private_data; dec_usb_memory_use_count(usbm, &usbm->vma_use_count); } static const struct vm_operations_struct usbdev_vm_ops = { .open = usbdev_vm_open, .close = usbdev_vm_close }; static int usbdev_mmap(struct file *file, struct vm_area_struct *vma) { struct usb_memory *usbm = NULL; struct usb_dev_state *ps = file->private_data; struct usb_hcd *hcd = bus_to_hcd(ps->dev->bus); size_t size = vma->vm_end - vma->vm_start; void *mem; unsigned long flags; dma_addr_t dma_handle = DMA_MAPPING_ERROR; int ret; ret = usbfs_increase_memory_usage(size + sizeof(struct usb_memory)); if (ret) goto error; usbm = kzalloc(sizeof(struct usb_memory), GFP_KERNEL); if (!usbm) { ret = -ENOMEM; goto error_decrease_mem; } mem = hcd_buffer_alloc_pages(hcd, size, GFP_USER | __GFP_NOWARN, &dma_handle); if (!mem) { ret = -ENOMEM; goto error_free_usbm; } memset(mem, 0, size); usbm->mem = mem; usbm->dma_handle = dma_handle; usbm->size = size; usbm->ps = ps; usbm->vm_start = vma->vm_start; usbm->vma_use_count = 1; INIT_LIST_HEAD(&usbm->memlist); /* * In DMA-unavailable cases, hcd_buffer_alloc_pages allocates * normal pages and assigns DMA_MAPPING_ERROR to dma_handle. Check * whether we are in such cases, and then use remap_pfn_range (or * dma_mmap_coherent) to map normal (or DMA) pages into the user * space, respectively. */ if (dma_handle == DMA_MAPPING_ERROR) { if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(usbm->mem) >> PAGE_SHIFT, size, vma->vm_page_prot) < 0) { dec_usb_memory_use_count(usbm, &usbm->vma_use_count); return -EAGAIN; } } else { if (dma_mmap_coherent(hcd->self.sysdev, vma, mem, dma_handle, size)) { dec_usb_memory_use_count(usbm, &usbm->vma_use_count); return -EAGAIN; } } vm_flags_set(vma, VM_IO | VM_DONTEXPAND | VM_DONTDUMP); vma->vm_ops = &usbdev_vm_ops; vma->vm_private_data = usbm; spin_lock_irqsave(&ps->lock, flags); list_add_tail(&usbm->memlist, &ps->memory_list); spin_unlock_irqrestore(&ps->lock, flags); return 0; error_free_usbm: kfree(usbm); error_decrease_mem: usbfs_decrease_memory_usage(size + sizeof(struct usb_memory)); error: return ret; } static ssize_t usbdev_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct usb_dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; ssize_t ret = 0; unsigned len; loff_t pos; int i; pos = *ppos; usb_lock_device(dev); if (!connected(ps)) { ret = -ENODEV; goto err; } else if (pos < 0) { ret = -EINVAL; goto err; } if (pos < sizeof(struct usb_device_descriptor)) { /* 18 bytes - fits on the stack */ struct usb_device_descriptor temp_desc; memcpy(&temp_desc, &dev->descriptor, sizeof(dev->descriptor)); le16_to_cpus(&temp_desc.bcdUSB); le16_to_cpus(&temp_desc.idVendor); le16_to_cpus(&temp_desc.idProduct); le16_to_cpus(&temp_desc.bcdDevice); len = sizeof(struct usb_device_descriptor) - pos; if (len > nbytes) len = nbytes; if (copy_to_user(buf, ((char *)&temp_desc) + pos, len)) { ret = -EFAULT; goto err; } *ppos += len; buf += len; nbytes -= len; ret += len; } pos = sizeof(struct usb_device_descriptor); for (i = 0; nbytes && i < dev->descriptor.bNumConfigurations; i++) { struct usb_config_descriptor *config = (struct usb_config_descriptor *)dev->rawdescriptors[i]; unsigned int length = le16_to_cpu(config->wTotalLength); if (*ppos < pos + length) { /* The descriptor may claim to be longer than it * really is. Here is the actual allocated length. */ unsigned alloclen = le16_to_cpu(dev->config[i].desc.wTotalLength); len = length - (*ppos - pos); if (len > nbytes) len = nbytes; /* Simply don't write (skip over) unallocated parts */ if (alloclen > (*ppos - pos)) { alloclen -= (*ppos - pos); if (copy_to_user(buf, dev->rawdescriptors[i] + (*ppos - pos), min(len, alloclen))) { ret = -EFAULT; goto err; } } *ppos += len; buf += len; nbytes -= len; ret += len; } pos += length; } err: usb_unlock_device(dev); return ret; } /* * async list handling */ static struct async *alloc_async(unsigned int numisoframes) { struct async *as; as = kzalloc(sizeof(struct async), GFP_KERNEL); if (!as) return NULL; as->urb = usb_alloc_urb(numisoframes, GFP_KERNEL); if (!as->urb) { kfree(as); return NULL; } return as; } static void free_async(struct async *as) { int i; put_pid(as->pid); if (as->cred) put_cred(as->cred); for (i = 0; i < as->urb->num_sgs; i++) { if (sg_page(&as->urb->sg[i])) kfree(sg_virt(&as->urb->sg[i])); } kfree(as->urb->sg); if (as->usbm == NULL) kfree(as->urb->transfer_buffer); else dec_usb_memory_use_count(as->usbm, &as->usbm->urb_use_count); kfree(as->urb->setup_packet); usb_free_urb(as->urb); usbfs_decrease_memory_usage(as->mem_usage); kfree(as); } static void async_newpending(struct async *as) { struct usb_dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_add_tail(&as->asynclist, &ps->async_pending); spin_unlock_irqrestore(&ps->lock, flags); } static void async_removepending(struct async *as) { struct usb_dev_state *ps = as->ps; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); list_del_init(&as->asynclist); spin_unlock_irqrestore(&ps->lock, flags); } static struct async *async_getcompleted(struct usb_dev_state *ps) { unsigned long flags; struct async *as = NULL; spin_lock_irqsave(&ps->lock, flags); if (!list_empty(&ps->async_completed)) { as = list_entry(ps->async_completed.next, struct async, asynclist); list_del_init(&as->asynclist); } spin_unlock_irqrestore(&ps->lock, flags); return as; } static struct async *async_getpending(struct usb_dev_state *ps, void __user *userurb) { struct async *as; list_for_each_entry(as, &ps->async_pending, asynclist) if (as->userurb == userurb) { list_del_init(&as->asynclist); return as; } return NULL; } static void snoop_urb(struct usb_device *udev, void __user *userurb, int pipe, unsigned length, int timeout_or_status, enum snoop_when when, unsigned char *data, unsigned data_len) { static const char *types[] = {"isoc", "int", "ctrl", "bulk"}; static const char *dirs[] = {"out", "in"}; int ep; const char *t, *d; if (!usbfs_snoop) return; ep = usb_pipeendpoint(pipe); t = types[usb_pipetype(pipe)]; d = dirs[!!usb_pipein(pipe)]; if (userurb) { /* Async */ if (when == SUBMIT) dev_info(&udev->dev, "userurb %px, ep%d %s-%s, " "length %u\n", userurb, ep, t, d, length); else dev_info(&udev->dev, "userurb %px, ep%d %s-%s, " "actual_length %u status %d\n", userurb, ep, t, d, length, timeout_or_status); } else { if (when == SUBMIT) dev_info(&udev->dev, "ep%d %s-%s, length %u, " "timeout %d\n", ep, t, d, length, timeout_or_status); else dev_info(&udev->dev, "ep%d %s-%s, actual_length %u, " "status %d\n", ep, t, d, length, timeout_or_status); } data_len = min(data_len, usbfs_snoop_max); if (data && data_len > 0) { print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, data, data_len, 1); } } static void snoop_urb_data(struct urb *urb, unsigned len) { int i, size; len = min(len, usbfs_snoop_max); if (!usbfs_snoop || len == 0) return; if (urb->num_sgs == 0) { print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, urb->transfer_buffer, len, 1); return; } for (i = 0; i < urb->num_sgs && len; i++) { size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len; print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 32, 1, sg_virt(&urb->sg[i]), size, 1); len -= size; } } static int copy_urb_data_to_user(u8 __user *userbuffer, struct urb *urb) { unsigned i, len, size; if (urb->number_of_packets > 0) /* Isochronous */ len = urb->transfer_buffer_length; else /* Non-Isoc */ len = urb->actual_length; if (urb->num_sgs == 0) { if (copy_to_user(userbuffer, urb->transfer_buffer, len)) return -EFAULT; return 0; } for (i = 0; i < urb->num_sgs && len; i++) { size = (len > USB_SG_SIZE) ? USB_SG_SIZE : len; if (copy_to_user(userbuffer, sg_virt(&urb->sg[i]), size)) return -EFAULT; userbuffer += size; len -= size; } return 0; } #define AS_CONTINUATION 1 #define AS_UNLINK 2 static void cancel_bulk_urbs(struct usb_dev_state *ps, unsigned bulk_addr) __releases(ps->lock) __acquires(ps->lock) { struct urb *urb; struct async *as; /* Mark all the pending URBs that match bulk_addr, up to but not * including the first one without AS_CONTINUATION. If such an * URB is encountered then a new transfer has already started so * the endpoint doesn't need to be disabled; otherwise it does. */ list_for_each_entry(as, &ps->async_pending, asynclist) { if (as->bulk_addr == bulk_addr) { if (as->bulk_status != AS_CONTINUATION) goto rescan; as->bulk_status = AS_UNLINK; as->bulk_addr = 0; } } ps->disabled_bulk_eps |= (1 << bulk_addr); /* Now carefully unlink all the marked pending URBs */ rescan: list_for_each_entry_reverse(as, &ps->async_pending, asynclist) { if (as->bulk_status == AS_UNLINK) { as->bulk_status = 0; /* Only once */ urb = as->urb; usb_get_urb(urb); spin_unlock(&ps->lock); /* Allow completions */ usb_unlink_urb(urb); usb_put_urb(urb); spin_lock(&ps->lock); goto rescan; } } } static void async_completed(struct urb *urb) { struct async *as = urb->context; struct usb_dev_state *ps = as->ps; struct pid *pid = NULL; const struct cred *cred = NULL; unsigned long flags; sigval_t addr; int signr, errno; spin_lock_irqsave(&ps->lock, flags); list_move_tail(&as->asynclist, &ps->async_completed); as->status = urb->status; signr = as->signr; if (signr) { errno = as->status; addr = as->userurb_sigval; pid = get_pid(as->pid); cred = get_cred(as->cred); } snoop(&urb->dev->dev, "urb complete\n"); snoop_urb(urb->dev, as->userurb, urb->pipe, urb->actual_length, as->status, COMPLETE, NULL, 0); if (usb_urb_dir_in(urb)) snoop_urb_data(urb, urb->actual_length); if (as->status < 0 && as->bulk_addr && as->status != -ECONNRESET && as->status != -ENOENT) cancel_bulk_urbs(ps, as->bulk_addr); wake_up(&ps->wait); spin_unlock_irqrestore(&ps->lock, flags); if (signr) { kill_pid_usb_asyncio(signr, errno, addr, pid, cred); put_pid(pid); put_cred(cred); } } static void destroy_async(struct usb_dev_state *ps, struct list_head *list) { struct urb *urb; struct async *as; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); while (!list_empty(list)) { as = list_last_entry(list, struct async, asynclist); list_del_init(&as->asynclist); urb = as->urb; usb_get_urb(urb); /* drop the spinlock so the completion handler can run */ spin_unlock_irqrestore(&ps->lock, flags); usb_kill_urb(urb); usb_put_urb(urb); spin_lock_irqsave(&ps->lock, flags); } spin_unlock_irqrestore(&ps->lock, flags); } static void destroy_async_on_interface(struct usb_dev_state *ps, unsigned int ifnum) { struct list_head *p, *q, hitlist; unsigned long flags; INIT_LIST_HEAD(&hitlist); spin_lock_irqsave(&ps->lock, flags); list_for_each_safe(p, q, &ps->async_pending) if (ifnum == list_entry(p, struct async, asynclist)->ifnum) list_move_tail(p, &hitlist); spin_unlock_irqrestore(&ps->lock, flags); destroy_async(ps, &hitlist); } static void destroy_all_async(struct usb_dev_state *ps) { destroy_async(ps, &ps->async_pending); } /* * interface claims are made only at the request of user level code, * which can also release them (explicitly or by closing files). * they're also undone when devices disconnect. */ static int driver_probe(struct usb_interface *intf, const struct usb_device_id *id) { return -ENODEV; } static void driver_disconnect(struct usb_interface *intf) { struct usb_dev_state *ps = usb_get_intfdata(intf); unsigned int ifnum = intf->altsetting->desc.bInterfaceNumber; if (!ps) return; /* NOTE: this relies on usbcore having canceled and completed * all pending I/O requests; 2.6 does that. */ if (likely(ifnum < 8*sizeof(ps->ifclaimed))) clear_bit(ifnum, &ps->ifclaimed); else dev_warn(&intf->dev, "interface number %u out of range\n", ifnum); usb_set_intfdata(intf, NULL); /* force async requests to complete */ destroy_async_on_interface(ps, ifnum); } /* We don't care about suspend/resume of claimed interfaces */ static int driver_suspend(struct usb_interface *intf, pm_message_t msg) { return 0; } static int driver_resume(struct usb_interface *intf) { return 0; } #ifdef CONFIG_PM /* The following routines apply to the entire device, not interfaces */ void usbfs_notify_suspend(struct usb_device *udev) { /* We don't need to handle this */ } void usbfs_notify_resume(struct usb_device *udev) { struct usb_dev_state *ps; /* Protect against simultaneous remove or release */ mutex_lock(&usbfs_mutex); list_for_each_entry(ps, &udev->filelist, list) { WRITE_ONCE(ps->not_yet_resumed, 0); wake_up_all(&ps->wait_for_resume); } mutex_unlock(&usbfs_mutex); } #endif struct usb_driver usbfs_driver = { .name = "usbfs", .probe = driver_probe, .disconnect = driver_disconnect, .suspend = driver_suspend, .resume = driver_resume, .supports_autosuspend = 1, }; static int claimintf(struct usb_dev_state *ps, unsigned int ifnum) { struct usb_device *dev = ps->dev; struct usb_interface *intf; int err; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; /* already claimed */ if (test_bit(ifnum, &ps->ifclaimed)) return 0; if (ps->privileges_dropped && !test_bit(ifnum, &ps->interface_allowed_mask)) return -EACCES; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else { unsigned int old_suppress; /* suppress uevents while claiming interface */ old_suppress = dev_get_uevent_suppress(&intf->dev); dev_set_uevent_suppress(&intf->dev, 1); err = usb_driver_claim_interface(&usbfs_driver, intf, ps); dev_set_uevent_suppress(&intf->dev, old_suppress); } if (err == 0) set_bit(ifnum, &ps->ifclaimed); return err; } static int releaseintf(struct usb_dev_state *ps, unsigned int ifnum) { struct usb_device *dev; struct usb_interface *intf; int err; err = -EINVAL; if (ifnum >= 8*sizeof(ps->ifclaimed)) return err; dev = ps->dev; intf = usb_ifnum_to_if(dev, ifnum); if (!intf) err = -ENOENT; else if (test_and_clear_bit(ifnum, &ps->ifclaimed)) { unsigned int old_suppress; /* suppress uevents while releasing interface */ old_suppress = dev_get_uevent_suppress(&intf->dev); dev_set_uevent_suppress(&intf->dev, 1); usb_driver_release_interface(&usbfs_driver, intf); dev_set_uevent_suppress(&intf->dev, old_suppress); err = 0; } return err; } static int checkintf(struct usb_dev_state *ps, unsigned int ifnum) { if (ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (ifnum >= 8*sizeof(ps->ifclaimed)) return -EINVAL; if (test_bit(ifnum, &ps->ifclaimed)) return 0; /* if not yet claimed, claim it for the driver */ dev_warn(&ps->dev->dev, "usbfs: process %d (%s) did not claim " "interface %u before use\n", task_pid_nr(current), current->comm, ifnum); return claimintf(ps, ifnum); } static int findintfep(struct usb_device *dev, unsigned int ep) { unsigned int i, j, e; struct usb_interface *intf; struct usb_host_interface *alts; struct usb_endpoint_descriptor *endpt; if (ep & ~(USB_DIR_IN|0xf)) return -EINVAL; if (!dev->actconfig) return -ESRCH; for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { intf = dev->actconfig->interface[i]; for (j = 0; j < intf->num_altsetting; j++) { alts = &intf->altsetting[j]; for (e = 0; e < alts->desc.bNumEndpoints; e++) { endpt = &alts->endpoint[e].desc; if (endpt->bEndpointAddress == ep) return alts->desc.bInterfaceNumber; } } } return -ENOENT; } static int check_ctrlrecip(struct usb_dev_state *ps, unsigned int requesttype, unsigned int request, unsigned int index) { int ret = 0; struct usb_host_interface *alt_setting; if (ps->dev->state != USB_STATE_UNAUTHENTICATED && ps->dev->state != USB_STATE_ADDRESS && ps->dev->state != USB_STATE_CONFIGURED) return -EHOSTUNREACH; if (USB_TYPE_VENDOR == (USB_TYPE_MASK & requesttype)) return 0; /* * check for the special corner case 'get_device_id' in the printer * class specification, which we always want to allow as it is used * to query things like ink level, etc. */ if (requesttype == 0xa1 && request == 0) { alt_setting = usb_find_alt_setting(ps->dev->actconfig, index >> 8, index & 0xff); if (alt_setting && alt_setting->desc.bInterfaceClass == USB_CLASS_PRINTER) return 0; } index &= 0xff; switch (requesttype & USB_RECIP_MASK) { case USB_RECIP_ENDPOINT: if ((index & ~USB_DIR_IN) == 0) return 0; ret = findintfep(ps->dev, index); if (ret < 0) { /* * Some not fully compliant Win apps seem to get * index wrong and have the endpoint number here * rather than the endpoint address (with the * correct direction). Win does let this through, * so we'll not reject it here but leave it to * the device to not break KVM. But we warn. */ ret = findintfep(ps->dev, index ^ 0x80); if (ret >= 0) dev_info(&ps->dev->dev, "%s: process %i (%s) requesting ep %02x but needs %02x\n", __func__, task_pid_nr(current), current->comm, index, index ^ 0x80); } if (ret >= 0) ret = checkintf(ps, ret); break; case USB_RECIP_INTERFACE: ret = checkintf(ps, index); break; } return ret; } static struct usb_host_endpoint *ep_to_host_endpoint(struct usb_device *dev, unsigned char ep) { if (ep & USB_ENDPOINT_DIR_MASK) return dev->ep_in[ep & USB_ENDPOINT_NUMBER_MASK]; else return dev->ep_out[ep & USB_ENDPOINT_NUMBER_MASK]; } static int parse_usbdevfs_streams(struct usb_dev_state *ps, struct usbdevfs_streams __user *streams, unsigned int *num_streams_ret, unsigned int *num_eps_ret, struct usb_host_endpoint ***eps_ret, struct usb_interface **intf_ret) { unsigned int i, num_streams, num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf = NULL; unsigned char ep; int ifnum, ret; if (get_user(num_streams, &streams->num_streams) || get_user(num_eps, &streams->num_eps)) return -EFAULT; if (num_eps < 1 || num_eps > USB_MAXENDPOINTS) return -EINVAL; /* The XHCI controller allows max 2 ^ 16 streams */ if (num_streams_ret && (num_streams < 2 || num_streams > 65536)) return -EINVAL; eps = kmalloc_array(num_eps, sizeof(*eps), GFP_KERNEL); if (!eps) return -ENOMEM; for (i = 0; i < num_eps; i++) { if (get_user(ep, &streams->eps[i])) { ret = -EFAULT; goto error; } eps[i] = ep_to_host_endpoint(ps->dev, ep); if (!eps[i]) { ret = -EINVAL; goto error; } /* usb_alloc/free_streams operate on an usb_interface */ ifnum = findintfep(ps->dev, ep); if (ifnum < 0) { ret = ifnum; goto error; } if (i == 0) { ret = checkintf(ps, ifnum); if (ret < 0) goto error; intf = usb_ifnum_to_if(ps->dev, ifnum); } else { /* Verify all eps belong to the same interface */ if (ifnum != intf->altsetting->desc.bInterfaceNumber) { ret = -EINVAL; goto error; } } } if (num_streams_ret) *num_streams_ret = num_streams; *num_eps_ret = num_eps; *eps_ret = eps; *intf_ret = intf; return 0; error: kfree(eps); return ret; } static struct usb_device *usbdev_lookup_by_devt(dev_t devt) { struct device *dev; dev = bus_find_device_by_devt(&usb_bus_type, devt); if (!dev) return NULL; return to_usb_device(dev); } /* * file operations */ static int usbdev_open(struct inode *inode, struct file *file) { struct usb_device *dev = NULL; struct usb_dev_state *ps; int ret; ret = -ENOMEM; ps = kzalloc(sizeof(struct usb_dev_state), GFP_KERNEL); if (!ps) goto out_free_ps; ret = -ENODEV; /* usbdev device-node */ if (imajor(inode) == USB_DEVICE_MAJOR) dev = usbdev_lookup_by_devt(inode->i_rdev); if (!dev) goto out_free_ps; usb_lock_device(dev); if (dev->state == USB_STATE_NOTATTACHED) goto out_unlock_device; ret = usb_autoresume_device(dev); if (ret) goto out_unlock_device; ps->dev = dev; ps->file = file; ps->interface_allowed_mask = 0xFFFFFFFF; /* 32 bits */ spin_lock_init(&ps->lock); INIT_LIST_HEAD(&ps->list); INIT_LIST_HEAD(&ps->async_pending); INIT_LIST_HEAD(&ps->async_completed); INIT_LIST_HEAD(&ps->memory_list); init_waitqueue_head(&ps->wait); init_waitqueue_head(&ps->wait_for_resume); ps->disc_pid = get_pid(task_pid(current)); ps->cred = get_current_cred(); smp_wmb(); /* Can't race with resume; the device is already active */ list_add_tail(&ps->list, &dev->filelist); file->private_data = ps; usb_unlock_device(dev); snoop(&dev->dev, "opened by process %d: %s\n", task_pid_nr(current), current->comm); return ret; out_unlock_device: usb_unlock_device(dev); usb_put_dev(dev); out_free_ps: kfree(ps); return ret; } static int usbdev_release(struct inode *inode, struct file *file) { struct usb_dev_state *ps = file->private_data; struct usb_device *dev = ps->dev; unsigned int ifnum; struct async *as; usb_lock_device(dev); usb_hub_release_all_ports(dev, ps); /* Protect against simultaneous resume */ mutex_lock(&usbfs_mutex); list_del_init(&ps->list); mutex_unlock(&usbfs_mutex); for (ifnum = 0; ps->ifclaimed && ifnum < 8*sizeof(ps->ifclaimed); ifnum++) { if (test_bit(ifnum, &ps->ifclaimed)) releaseintf(ps, ifnum); } destroy_all_async(ps); if (!ps->suspend_allowed) usb_autosuspend_device(dev); usb_unlock_device(dev); usb_put_dev(dev); put_pid(ps->disc_pid); put_cred(ps->cred); as = async_getcompleted(ps); while (as) { free_async(as); as = async_getcompleted(ps); } kfree(ps); return 0; } static void usbfs_blocking_completion(struct urb *urb) { complete((struct completion *) urb->context); } /* * Much like usb_start_wait_urb, but returns status separately from * actual_length and uses a killable wait. */ static int usbfs_start_wait_urb(struct urb *urb, int timeout, unsigned int *actlen) { DECLARE_COMPLETION_ONSTACK(ctx); unsigned long expire; int rc; urb->context = &ctx; urb->complete = usbfs_blocking_completion; *actlen = 0; rc = usb_submit_urb(urb, GFP_KERNEL); if (unlikely(rc)) return rc; expire = (timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT); rc = wait_for_completion_killable_timeout(&ctx, expire); if (rc <= 0) { usb_kill_urb(urb); *actlen = urb->actual_length; if (urb->status != -ENOENT) ; /* Completed before it was killed */ else if (rc < 0) return -EINTR; else return -ETIMEDOUT; } *actlen = urb->actual_length; return urb->status; } static int do_proc_control(struct usb_dev_state *ps, struct usbdevfs_ctrltransfer *ctrl) { struct usb_device *dev = ps->dev; unsigned int tmo; unsigned char *tbuf; unsigned int wLength, actlen; int i, pipe, ret; struct urb *urb = NULL; struct usb_ctrlrequest *dr = NULL; ret = check_ctrlrecip(ps, ctrl->bRequestType, ctrl->bRequest, ctrl->wIndex); if (ret) return ret; wLength = ctrl->wLength; /* To suppress 64k PAGE_SIZE warning */ if (wLength > PAGE_SIZE) return -EINVAL; ret = usbfs_increase_memory_usage(PAGE_SIZE + sizeof(struct urb) + sizeof(struct usb_ctrlrequest)); if (ret) return ret; ret = -ENOMEM; tbuf = (unsigned char *)__get_free_page(GFP_KERNEL); if (!tbuf) goto done; urb = usb_alloc_urb(0, GFP_NOIO); if (!urb) goto done; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); if (!dr) goto done; dr->bRequestType = ctrl->bRequestType; dr->bRequest = ctrl->bRequest; dr->wValue = cpu_to_le16(ctrl->wValue); dr->wIndex = cpu_to_le16(ctrl->wIndex); dr->wLength = cpu_to_le16(ctrl->wLength); tmo = ctrl->timeout; snoop(&dev->dev, "control urb: bRequestType=%02x " "bRequest=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, ctrl->wIndex, ctrl->wLength); if ((ctrl->bRequestType & USB_DIR_IN) && wLength) { pipe = usb_rcvctrlpipe(dev, 0); usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf, wLength, NULL, NULL); snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, NULL, 0); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &actlen); /* Linger a bit, prior to the next control message. */ if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) msleep(200); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, tbuf, actlen); if (!i && actlen) { if (copy_to_user(ctrl->data, tbuf, actlen)) { ret = -EFAULT; goto done; } } } else { if (wLength) { if (copy_from_user(tbuf, ctrl->data, wLength)) { ret = -EFAULT; goto done; } } pipe = usb_sndctrlpipe(dev, 0); usb_fill_control_urb(urb, dev, pipe, (unsigned char *) dr, tbuf, wLength, NULL, NULL); snoop_urb(dev, NULL, pipe, wLength, tmo, SUBMIT, tbuf, wLength); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &actlen); /* Linger a bit, prior to the next control message. */ if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) msleep(200); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, actlen, i, COMPLETE, NULL, 0); } if (i < 0 && i != -EPIPE) { dev_printk(KERN_DEBUG, &dev->dev, "usbfs: USBDEVFS_CONTROL " "failed cmd %s rqt %u rq %u len %u ret %d\n", current->comm, ctrl->bRequestType, ctrl->bRequest, ctrl->wLength, i); } ret = (i < 0 ? i : actlen); done: kfree(dr); usb_free_urb(urb); free_page((unsigned long) tbuf); usbfs_decrease_memory_usage(PAGE_SIZE + sizeof(struct urb) + sizeof(struct usb_ctrlrequest)); return ret; } static int proc_control(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_ctrltransfer ctrl; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; return do_proc_control(ps, &ctrl); } static int do_proc_bulk(struct usb_dev_state *ps, struct usbdevfs_bulktransfer *bulk) { struct usb_device *dev = ps->dev; unsigned int tmo, len1, len2, pipe; unsigned char *tbuf; int i, ret; struct urb *urb = NULL; struct usb_host_endpoint *ep; ret = findintfep(ps->dev, bulk->ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; len1 = bulk->len; if (len1 < 0 || len1 >= (INT_MAX - sizeof(struct urb))) return -EINVAL; if (bulk->ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(dev, bulk->ep & 0x7f); else pipe = usb_sndbulkpipe(dev, bulk->ep & 0x7f); ep = usb_pipe_endpoint(dev, pipe); if (!ep || !usb_endpoint_maxp(&ep->desc)) return -EINVAL; ret = usbfs_increase_memory_usage(len1 + sizeof(struct urb)); if (ret) return ret; /* * len1 can be almost arbitrarily large. Don't WARN if it's * too big, just fail the request. */ ret = -ENOMEM; tbuf = kmalloc(len1, GFP_KERNEL | __GFP_NOWARN); if (!tbuf) goto done; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) goto done; if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) { pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); usb_fill_int_urb(urb, dev, pipe, tbuf, len1, NULL, NULL, ep->desc.bInterval); } else { usb_fill_bulk_urb(urb, dev, pipe, tbuf, len1, NULL, NULL); } tmo = bulk->timeout; if (bulk->ep & 0x80) { snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, NULL, 0); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &len2); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, tbuf, len2); if (!i && len2) { if (copy_to_user(bulk->data, tbuf, len2)) { ret = -EFAULT; goto done; } } } else { if (len1) { if (copy_from_user(tbuf, bulk->data, len1)) { ret = -EFAULT; goto done; } } snoop_urb(dev, NULL, pipe, len1, tmo, SUBMIT, tbuf, len1); usb_unlock_device(dev); i = usbfs_start_wait_urb(urb, tmo, &len2); usb_lock_device(dev); snoop_urb(dev, NULL, pipe, len2, i, COMPLETE, NULL, 0); } ret = (i < 0 ? i : len2); done: usb_free_urb(urb); kfree(tbuf); usbfs_decrease_memory_usage(len1 + sizeof(struct urb)); return ret; } static int proc_bulk(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_bulktransfer bulk; if (copy_from_user(&bulk, arg, sizeof(bulk))) return -EFAULT; return do_proc_bulk(ps, &bulk); } static void check_reset_of_active_ep(struct usb_device *udev, unsigned int epnum, char *ioctl_name) { struct usb_host_endpoint **eps; struct usb_host_endpoint *ep; eps = (epnum & USB_DIR_IN) ? udev->ep_in : udev->ep_out; ep = eps[epnum & 0x0f]; if (ep && !list_empty(&ep->urb_list)) dev_warn(&udev->dev, "Process %d (%s) called USBDEVFS_%s for active endpoint 0x%02x\n", task_pid_nr(current), current->comm, ioctl_name, epnum); } static int proc_resetep(struct usb_dev_state *ps, void __user *arg) { unsigned int ep; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; check_reset_of_active_ep(ps->dev, ep, "RESETEP"); usb_reset_endpoint(ps->dev, ep); return 0; } static int proc_clearhalt(struct usb_dev_state *ps, void __user *arg) { unsigned int ep; int pipe; int ret; if (get_user(ep, (unsigned int __user *)arg)) return -EFAULT; ret = findintfep(ps->dev, ep); if (ret < 0) return ret; ret = checkintf(ps, ret); if (ret) return ret; check_reset_of_active_ep(ps->dev, ep, "CLEAR_HALT"); if (ep & USB_DIR_IN) pipe = usb_rcvbulkpipe(ps->dev, ep & 0x7f); else pipe = usb_sndbulkpipe(ps->dev, ep & 0x7f); return usb_clear_halt(ps->dev, pipe); } static int proc_getdriver(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_getdriver gd; struct usb_interface *intf; int ret; if (copy_from_user(&gd, arg, sizeof(gd))) return -EFAULT; intf = usb_ifnum_to_if(ps->dev, gd.interface); if (!intf || !intf->dev.driver) ret = -ENODATA; else { strscpy(gd.driver, intf->dev.driver->name, sizeof(gd.driver)); ret = (copy_to_user(arg, &gd, sizeof(gd)) ? -EFAULT : 0); } return ret; } static int proc_connectinfo(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_connectinfo ci; memset(&ci, 0, sizeof(ci)); ci.devnum = ps->dev->devnum; ci.slow = ps->dev->speed == USB_SPEED_LOW; if (copy_to_user(arg, &ci, sizeof(ci))) return -EFAULT; return 0; } static int proc_conninfo_ex(struct usb_dev_state *ps, void __user *arg, size_t size) { struct usbdevfs_conninfo_ex ci; struct usb_device *udev = ps->dev; if (size < sizeof(ci.size)) return -EINVAL; memset(&ci, 0, sizeof(ci)); ci.size = sizeof(ci); ci.busnum = udev->bus->busnum; ci.devnum = udev->devnum; ci.speed = udev->speed; while (udev && udev->portnum != 0) { if (++ci.num_ports <= ARRAY_SIZE(ci.ports)) ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports] = udev->portnum; udev = udev->parent; } if (ci.num_ports < ARRAY_SIZE(ci.ports)) memmove(&ci.ports[0], &ci.ports[ARRAY_SIZE(ci.ports) - ci.num_ports], ci.num_ports); if (copy_to_user(arg, &ci, min(sizeof(ci), size))) return -EFAULT; return 0; } static int proc_resetdevice(struct usb_dev_state *ps) { struct usb_host_config *actconfig = ps->dev->actconfig; struct usb_interface *interface; int i, number; /* Don't allow a device reset if the process has dropped the * privilege to do such things and any of the interfaces are * currently claimed. */ if (ps->privileges_dropped && actconfig) { for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) { interface = actconfig->interface[i]; number = interface->cur_altsetting->desc.bInterfaceNumber; if (usb_interface_claimed(interface) && !test_bit(number, &ps->ifclaimed)) { dev_warn(&ps->dev->dev, "usbfs: interface %d claimed by %s while '%s' resets device\n", number, interface->dev.driver->name, current->comm); return -EACCES; } } } return usb_reset_device(ps->dev); } static int proc_setintf(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_setinterface setintf; int ret; if (copy_from_user(&setintf, arg, sizeof(setintf))) return -EFAULT; ret = checkintf(ps, setintf.interface); if (ret) return ret; destroy_async_on_interface(ps, setintf.interface); return usb_set_interface(ps->dev, setintf.interface, setintf.altsetting); } static int proc_setconfig(struct usb_dev_state *ps, void __user *arg) { int u; int status = 0; struct usb_host_config *actconfig; if (get_user(u, (int __user *)arg)) return -EFAULT; actconfig = ps->dev->actconfig; /* Don't touch the device if any interfaces are claimed. * It could interfere with other drivers' operations, and if * an interface is claimed by usbfs it could easily deadlock. */ if (actconfig) { int i; for (i = 0; i < actconfig->desc.bNumInterfaces; ++i) { if (usb_interface_claimed(actconfig->interface[i])) { dev_warn(&ps->dev->dev, "usbfs: interface %d claimed by %s " "while '%s' sets config #%d\n", actconfig->interface[i] ->cur_altsetting ->desc.bInterfaceNumber, actconfig->interface[i] ->dev.driver->name, current->comm, u); status = -EBUSY; break; } } } /* SET_CONFIGURATION is often abused as a "cheap" driver reset, * so avoid usb_set_configuration()'s kick to sysfs */ if (status == 0) { if (actconfig && actconfig->desc.bConfigurationValue == u) status = usb_reset_configuration(ps->dev); else status = usb_set_configuration(ps->dev, u); } return status; } static struct usb_memory * find_memory_area(struct usb_dev_state *ps, const struct usbdevfs_urb *uurb) { struct usb_memory *usbm = NULL, *iter; unsigned long flags; unsigned long uurb_start = (unsigned long)uurb->buffer; spin_lock_irqsave(&ps->lock, flags); list_for_each_entry(iter, &ps->memory_list, memlist) { if (uurb_start >= iter->vm_start && uurb_start < iter->vm_start + iter->size) { if (uurb->buffer_length > iter->vm_start + iter->size - uurb_start) { usbm = ERR_PTR(-EINVAL); } else { usbm = iter; usbm->urb_use_count++; } break; } } spin_unlock_irqrestore(&ps->lock, flags); return usbm; } static int proc_do_submiturb(struct usb_dev_state *ps, struct usbdevfs_urb *uurb, struct usbdevfs_iso_packet_desc __user *iso_frame_desc, void __user *arg, sigval_t userurb_sigval) { struct usbdevfs_iso_packet_desc *isopkt = NULL; struct usb_host_endpoint *ep; struct async *as = NULL; struct usb_ctrlrequest *dr = NULL; unsigned int u, totlen, isofrmlen; int i, ret, num_sgs = 0, ifnum = -1; int number_of_packets = 0; unsigned int stream_id = 0; void *buf; bool is_in; bool allow_short = false; bool allow_zero = false; unsigned long mask = USBDEVFS_URB_SHORT_NOT_OK | USBDEVFS_URB_BULK_CONTINUATION | USBDEVFS_URB_NO_FSBR | USBDEVFS_URB_ZERO_PACKET | USBDEVFS_URB_NO_INTERRUPT; /* USBDEVFS_URB_ISO_ASAP is a special case */ if (uurb->type == USBDEVFS_URB_TYPE_ISO) mask |= USBDEVFS_URB_ISO_ASAP; if (uurb->flags & ~mask) return -EINVAL; if ((unsigned int)uurb->buffer_length >= USBFS_XFER_MAX) return -EINVAL; if (uurb->buffer_length > 0 && !uurb->buffer) return -EINVAL; if (!(uurb->type == USBDEVFS_URB_TYPE_CONTROL && (uurb->endpoint & ~USB_ENDPOINT_DIR_MASK) == 0)) { ifnum = findintfep(ps->dev, uurb->endpoint); if (ifnum < 0) return ifnum; ret = checkintf(ps, ifnum); if (ret) return ret; } ep = ep_to_host_endpoint(ps->dev, uurb->endpoint); if (!ep) return -ENOENT; is_in = (uurb->endpoint & USB_ENDPOINT_DIR_MASK) != 0; u = 0; switch (uurb->type) { case USBDEVFS_URB_TYPE_CONTROL: if (!usb_endpoint_xfer_control(&ep->desc)) return -EINVAL; /* min 8 byte setup packet */ if (uurb->buffer_length < 8) return -EINVAL; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!dr) return -ENOMEM; if (copy_from_user(dr, uurb->buffer, 8)) { ret = -EFAULT; goto error; } if (uurb->buffer_length < (le16_to_cpu(dr->wLength) + 8)) { ret = -EINVAL; goto error; } ret = check_ctrlrecip(ps, dr->bRequestType, dr->bRequest, le16_to_cpu(dr->wIndex)); if (ret) goto error; uurb->buffer_length = le16_to_cpu(dr->wLength); uurb->buffer += 8; if ((dr->bRequestType & USB_DIR_IN) && uurb->buffer_length) { is_in = true; uurb->endpoint |= USB_DIR_IN; } else { is_in = false; uurb->endpoint &= ~USB_DIR_IN; } if (is_in) allow_short = true; snoop(&ps->dev->dev, "control urb: bRequestType=%02x " "bRequest=%02x wValue=%04x " "wIndex=%04x wLength=%04x\n", dr->bRequestType, dr->bRequest, __le16_to_cpu(dr->wValue), __le16_to_cpu(dr->wIndex), __le16_to_cpu(dr->wLength)); u = sizeof(struct usb_ctrlrequest); break; case USBDEVFS_URB_TYPE_BULK: if (!is_in) allow_zero = true; else allow_short = true; switch (usb_endpoint_type(&ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_ISOC: return -EINVAL; case USB_ENDPOINT_XFER_INT: /* allow single-shot interrupt transfers */ uurb->type = USBDEVFS_URB_TYPE_INTERRUPT; goto interrupt_urb; } num_sgs = DIV_ROUND_UP(uurb->buffer_length, USB_SG_SIZE); if (num_sgs == 1 || num_sgs > ps->dev->bus->sg_tablesize) num_sgs = 0; if (ep->streams) stream_id = uurb->stream_id; break; case USBDEVFS_URB_TYPE_INTERRUPT: if (!usb_endpoint_xfer_int(&ep->desc)) return -EINVAL; interrupt_urb: if (!is_in) allow_zero = true; else allow_short = true; break; case USBDEVFS_URB_TYPE_ISO: /* arbitrary limit */ if (uurb->number_of_packets < 1 || uurb->number_of_packets > 128) return -EINVAL; if (!usb_endpoint_xfer_isoc(&ep->desc)) return -EINVAL; number_of_packets = uurb->number_of_packets; isofrmlen = sizeof(struct usbdevfs_iso_packet_desc) * number_of_packets; isopkt = memdup_user(iso_frame_desc, isofrmlen); if (IS_ERR(isopkt)) { ret = PTR_ERR(isopkt); isopkt = NULL; goto error; } for (totlen = u = 0; u < number_of_packets; u++) { /* * arbitrary limit need for USB 3.1 Gen2 * sizemax: 96 DPs at SSP, 96 * 1024 = 98304 */ if (isopkt[u].length > 98304) { ret = -EINVAL; goto error; } totlen += isopkt[u].length; } u *= sizeof(struct usb_iso_packet_descriptor); uurb->buffer_length = totlen; break; default: return -EINVAL; } if (uurb->buffer_length > 0 && !access_ok(uurb->buffer, uurb->buffer_length)) { ret = -EFAULT; goto error; } as = alloc_async(number_of_packets); if (!as) { ret = -ENOMEM; goto error; } as->usbm = find_memory_area(ps, uurb); if (IS_ERR(as->usbm)) { ret = PTR_ERR(as->usbm); as->usbm = NULL; goto error; } /* do not use SG buffers when memory mapped segments * are in use */ if (as->usbm) num_sgs = 0; u += sizeof(struct async) + sizeof(struct urb) + (as->usbm ? 0 : uurb->buffer_length) + num_sgs * sizeof(struct scatterlist); ret = usbfs_increase_memory_usage(u); if (ret) goto error; as->mem_usage = u; if (num_sgs) { as->urb->sg = kmalloc_array(num_sgs, sizeof(struct scatterlist), GFP_KERNEL | __GFP_NOWARN); if (!as->urb->sg) { ret = -ENOMEM; goto error; } as->urb->num_sgs = num_sgs; sg_init_table(as->urb->sg, as->urb->num_sgs); totlen = uurb->buffer_length; for (i = 0; i < as->urb->num_sgs; i++) { u = (totlen > USB_SG_SIZE) ? USB_SG_SIZE : totlen; buf = kmalloc(u, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto error; } sg_set_buf(&as->urb->sg[i], buf, u); if (!is_in) { if (copy_from_user(buf, uurb->buffer, u)) { ret = -EFAULT; goto error; } uurb->buffer += u; } totlen -= u; } } else if (uurb->buffer_length > 0) { if (as->usbm) { unsigned long uurb_start = (unsigned long)uurb->buffer; as->urb->transfer_buffer = as->usbm->mem + (uurb_start - as->usbm->vm_start); } else { as->urb->transfer_buffer = kmalloc(uurb->buffer_length, GFP_KERNEL | __GFP_NOWARN); if (!as->urb->transfer_buffer) { ret = -ENOMEM; goto error; } if (!is_in) { if (copy_from_user(as->urb->transfer_buffer, uurb->buffer, uurb->buffer_length)) { ret = -EFAULT; goto error; } } else if (uurb->type == USBDEVFS_URB_TYPE_ISO) { /* * Isochronous input data may end up being * discontiguous if some of the packets are * short. Clear the buffer so that the gaps * don't leak kernel data to userspace. */ memset(as->urb->transfer_buffer, 0, uurb->buffer_length); } } } as->urb->dev = ps->dev; as->urb->pipe = (uurb->type << 30) | __create_pipe(ps->dev, uurb->endpoint & 0xf) | (uurb->endpoint & USB_DIR_IN); /* This tedious sequence is necessary because the URB_* flags * are internal to the kernel and subject to change, whereas * the USBDEVFS_URB_* flags are a user API and must not be changed. */ u = (is_in ? URB_DIR_IN : URB_DIR_OUT); if (uurb->flags & USBDEVFS_URB_ISO_ASAP) u |= URB_ISO_ASAP; if (allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK) u |= URB_SHORT_NOT_OK; if (allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET) u |= URB_ZERO_PACKET; if (uurb->flags & USBDEVFS_URB_NO_INTERRUPT) u |= URB_NO_INTERRUPT; as->urb->transfer_flags = u; if (!allow_short && uurb->flags & USBDEVFS_URB_SHORT_NOT_OK) dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_SHORT_NOT_OK.\n"); if (!allow_zero && uurb->flags & USBDEVFS_URB_ZERO_PACKET) dev_warn(&ps->dev->dev, "Requested nonsensical USBDEVFS_URB_ZERO_PACKET.\n"); as->urb->transfer_buffer_length = uurb->buffer_length; as->urb->setup_packet = (unsigned char *)dr; dr = NULL; as->urb->start_frame = uurb->start_frame; as->urb->number_of_packets = number_of_packets; as->urb->stream_id = stream_id; if (ep->desc.bInterval) { if (uurb->type == USBDEVFS_URB_TYPE_ISO || ps->dev->speed == USB_SPEED_HIGH || ps->dev->speed >= USB_SPEED_SUPER) as->urb->interval = 1 << min(15, ep->desc.bInterval - 1); else as->urb->interval = ep->desc.bInterval; } as->urb->context = as; as->urb->complete = async_completed; for (totlen = u = 0; u < number_of_packets; u++) { as->urb->iso_frame_desc[u].offset = totlen; as->urb->iso_frame_desc[u].length = isopkt[u].length; totlen += isopkt[u].length; } kfree(isopkt); isopkt = NULL; as->ps = ps; as->userurb = arg; as->userurb_sigval = userurb_sigval; if (as->usbm) { unsigned long uurb_start = (unsigned long)uurb->buffer; as->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; as->urb->transfer_dma = as->usbm->dma_handle + (uurb_start - as->usbm->vm_start); } else if (is_in && uurb->buffer_length > 0) as->userbuffer = uurb->buffer; as->signr = uurb->signr; as->ifnum = ifnum; as->pid = get_pid(task_pid(current)); as->cred = get_current_cred(); snoop_urb(ps->dev, as->userurb, as->urb->pipe, as->urb->transfer_buffer_length, 0, SUBMIT, NULL, 0); if (!is_in) snoop_urb_data(as->urb, as->urb->transfer_buffer_length); async_newpending(as); if (usb_endpoint_xfer_bulk(&ep->desc)) { spin_lock_irq(&ps->lock); /* Not exactly the endpoint address; the direction bit is * shifted to the 0x10 position so that the value will be * between 0 and 31. */ as->bulk_addr = usb_endpoint_num(&ep->desc) | ((ep->desc.bEndpointAddress & USB_ENDPOINT_DIR_MASK) >> 3); /* If this bulk URB is the start of a new transfer, re-enable * the endpoint. Otherwise mark it as a continuation URB. */ if (uurb->flags & USBDEVFS_URB_BULK_CONTINUATION) as->bulk_status = AS_CONTINUATION; else ps->disabled_bulk_eps &= ~(1 << as->bulk_addr); /* Don't accept continuation URBs if the endpoint is * disabled because of an earlier error. */ if (ps->disabled_bulk_eps & (1 << as->bulk_addr)) ret = -EREMOTEIO; else ret = usb_submit_urb(as->urb, GFP_ATOMIC); spin_unlock_irq(&ps->lock); } else { ret = usb_submit_urb(as->urb, GFP_KERNEL); } if (ret) { dev_printk(KERN_DEBUG, &ps->dev->dev, "usbfs: usb_submit_urb returned %d\n", ret); snoop_urb(ps->dev, as->userurb, as->urb->pipe, 0, ret, COMPLETE, NULL, 0); async_removepending(as); goto error; } return 0; error: kfree(isopkt); kfree(dr); if (as) free_async(as); return ret; } static int proc_submiturb(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; sigval_t userurb_sigval; if (copy_from_user(&uurb, arg, sizeof(uurb))) return -EFAULT; memset(&userurb_sigval, 0, sizeof(userurb_sigval)); userurb_sigval.sival_ptr = arg; return proc_do_submiturb(ps, &uurb, (((struct usbdevfs_urb __user *)arg)->iso_frame_desc), arg, userurb_sigval); } static int proc_unlinkurb(struct usb_dev_state *ps, void __user *arg) { struct urb *urb; struct async *as; unsigned long flags; spin_lock_irqsave(&ps->lock, flags); as = async_getpending(ps, arg); if (!as) { spin_unlock_irqrestore(&ps->lock, flags); return -EINVAL; } urb = as->urb; usb_get_urb(urb); spin_unlock_irqrestore(&ps->lock, flags); usb_kill_urb(urb); usb_put_urb(urb); return 0; } static void compute_isochronous_actual_length(struct urb *urb) { unsigned int i; if (urb->number_of_packets > 0) { urb->actual_length = 0; for (i = 0; i < urb->number_of_packets; i++) urb->actual_length += urb->iso_frame_desc[i].actual_length; } } static int processcompl(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; compute_isochronous_actual_length(urb); if (as->userbuffer && urb->actual_length) { if (copy_urb_data_to_user(as->userbuffer, urb)) goto err_out; } if (put_user(as->status, &userurb->status)) goto err_out; if (put_user(urb->actual_length, &userurb->actual_length)) goto err_out; if (put_user(urb->error_count, &userurb->error_count)) goto err_out; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) goto err_out; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) goto err_out; } } if (put_user(addr, (void __user * __user *)arg)) return -EFAULT; return 0; err_out: return -EFAULT; } static struct async *reap_as(struct usb_dev_state *ps) { DECLARE_WAITQUEUE(wait, current); struct async *as = NULL; struct usb_device *dev = ps->dev; add_wait_queue(&ps->wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); as = async_getcompleted(ps); if (as || !connected(ps)) break; if (signal_pending(current)) break; usb_unlock_device(dev); schedule(); usb_lock_device(dev); } remove_wait_queue(&ps->wait, &wait); set_current_state(TASK_RUNNING); return as; } static int proc_reapurb(struct usb_dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) { int retval; snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl(as, (void __user * __user *)arg); free_async(as); return retval; } if (signal_pending(current)) return -EINTR; return -ENODEV; } static int proc_reapurbnonblock(struct usb_dev_state *ps, void __user *arg) { int retval; struct async *as; as = async_getcompleted(ps); if (as) { snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl(as, (void __user * __user *)arg); free_async(as); } else { retval = (connected(ps) ? -EAGAIN : -ENODEV); } return retval; } #ifdef CONFIG_COMPAT static int proc_control_compat(struct usb_dev_state *ps, struct usbdevfs_ctrltransfer32 __user *p32) { struct usbdevfs_ctrltransfer ctrl; u32 udata; if (copy_from_user(&ctrl, p32, sizeof(*p32) - sizeof(compat_caddr_t)) || get_user(udata, &p32->data)) return -EFAULT; ctrl.data = compat_ptr(udata); return do_proc_control(ps, &ctrl); } static int proc_bulk_compat(struct usb_dev_state *ps, struct usbdevfs_bulktransfer32 __user *p32) { struct usbdevfs_bulktransfer bulk; compat_caddr_t addr; if (get_user(bulk.ep, &p32->ep) || get_user(bulk.len, &p32->len) || get_user(bulk.timeout, &p32->timeout) || get_user(addr, &p32->data)) return -EFAULT; bulk.data = compat_ptr(addr); return do_proc_bulk(ps, &bulk); } static int proc_disconnectsignal_compat(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnectsignal32 ds; if (copy_from_user(&ds, arg, sizeof(ds))) return -EFAULT; ps->discsignr = ds.signr; ps->disccontext.sival_int = ds.context; return 0; } static int get_urb32(struct usbdevfs_urb *kurb, struct usbdevfs_urb32 __user *uurb) { struct usbdevfs_urb32 urb32; if (copy_from_user(&urb32, uurb, sizeof(*uurb))) return -EFAULT; kurb->type = urb32.type; kurb->endpoint = urb32.endpoint; kurb->status = urb32.status; kurb->flags = urb32.flags; kurb->buffer = compat_ptr(urb32.buffer); kurb->buffer_length = urb32.buffer_length; kurb->actual_length = urb32.actual_length; kurb->start_frame = urb32.start_frame; kurb->number_of_packets = urb32.number_of_packets; kurb->error_count = urb32.error_count; kurb->signr = urb32.signr; kurb->usercontext = compat_ptr(urb32.usercontext); return 0; } static int proc_submiturb_compat(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_urb uurb; sigval_t userurb_sigval; if (get_urb32(&uurb, (struct usbdevfs_urb32 __user *)arg)) return -EFAULT; memset(&userurb_sigval, 0, sizeof(userurb_sigval)); userurb_sigval.sival_int = ptr_to_compat(arg); return proc_do_submiturb(ps, &uurb, ((struct usbdevfs_urb32 __user *)arg)->iso_frame_desc, arg, userurb_sigval); } static int processcompl_compat(struct async *as, void __user * __user *arg) { struct urb *urb = as->urb; struct usbdevfs_urb32 __user *userurb = as->userurb; void __user *addr = as->userurb; unsigned int i; compute_isochronous_actual_length(urb); if (as->userbuffer && urb->actual_length) { if (copy_urb_data_to_user(as->userbuffer, urb)) return -EFAULT; } if (put_user(as->status, &userurb->status)) return -EFAULT; if (put_user(urb->actual_length, &userurb->actual_length)) return -EFAULT; if (put_user(urb->error_count, &userurb->error_count)) return -EFAULT; if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { for (i = 0; i < urb->number_of_packets; i++) { if (put_user(urb->iso_frame_desc[i].actual_length, &userurb->iso_frame_desc[i].actual_length)) return -EFAULT; if (put_user(urb->iso_frame_desc[i].status, &userurb->iso_frame_desc[i].status)) return -EFAULT; } } if (put_user(ptr_to_compat(addr), (u32 __user *)arg)) return -EFAULT; return 0; } static int proc_reapurb_compat(struct usb_dev_state *ps, void __user *arg) { struct async *as = reap_as(ps); if (as) { int retval; snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl_compat(as, (void __user * __user *)arg); free_async(as); return retval; } if (signal_pending(current)) return -EINTR; return -ENODEV; } static int proc_reapurbnonblock_compat(struct usb_dev_state *ps, void __user *arg) { int retval; struct async *as; as = async_getcompleted(ps); if (as) { snoop(&ps->dev->dev, "reap %px\n", as->userurb); retval = processcompl_compat(as, (void __user * __user *)arg); free_async(as); } else { retval = (connected(ps) ? -EAGAIN : -ENODEV); } return retval; } #endif static int proc_disconnectsignal(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnectsignal ds; if (copy_from_user(&ds, arg, sizeof(ds))) return -EFAULT; ps->discsignr = ds.signr; ps->disccontext.sival_ptr = ds.context; return 0; } static int proc_claiminterface(struct usb_dev_state *ps, void __user *arg) { unsigned int ifnum; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; return claimintf(ps, ifnum); } static int proc_releaseinterface(struct usb_dev_state *ps, void __user *arg) { unsigned int ifnum; int ret; if (get_user(ifnum, (unsigned int __user *)arg)) return -EFAULT; ret = releaseintf(ps, ifnum); if (ret < 0) return ret; destroy_async_on_interface(ps, ifnum); return 0; } static int proc_ioctl(struct usb_dev_state *ps, struct usbdevfs_ioctl *ctl) { int size; void *buf = NULL; int retval = 0; struct usb_interface *intf = NULL; struct usb_driver *driver = NULL; if (ps->privileges_dropped) return -EACCES; if (!connected(ps)) return -ENODEV; /* alloc buffer */ size = _IOC_SIZE(ctl->ioctl_code); if (size > 0) { buf = kmalloc(size, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if ((_IOC_DIR(ctl->ioctl_code) & _IOC_WRITE)) { if (copy_from_user(buf, ctl->data, size)) { kfree(buf); return -EFAULT; } } else { memset(buf, 0, size); } } if (ps->dev->state != USB_STATE_CONFIGURED) retval = -EHOSTUNREACH; else if (!(intf = usb_ifnum_to_if(ps->dev, ctl->ifno))) retval = -EINVAL; else switch (ctl->ioctl_code) { /* disconnect kernel driver from interface */ case USBDEVFS_DISCONNECT: if (intf->dev.driver) { driver = to_usb_driver(intf->dev.driver); dev_dbg(&intf->dev, "disconnect by usbfs\n"); usb_driver_release_interface(driver, intf); } else retval = -ENODATA; break; /* let kernel drivers try to (re)bind to the interface */ case USBDEVFS_CONNECT: if (!intf->dev.driver) retval = device_attach(&intf->dev); else retval = -EBUSY; break; /* talk directly to the interface's driver */ default: if (intf->dev.driver) driver = to_usb_driver(intf->dev.driver); if (driver == NULL || driver->unlocked_ioctl == NULL) { retval = -ENOTTY; } else { retval = driver->unlocked_ioctl(intf, ctl->ioctl_code, buf); if (retval == -ENOIOCTLCMD) retval = -ENOTTY; } } /* cleanup and return */ if (retval >= 0 && (_IOC_DIR(ctl->ioctl_code) & _IOC_READ) != 0 && size > 0 && copy_to_user(ctl->data, buf, size) != 0) retval = -EFAULT; kfree(buf); return retval; } static int proc_ioctl_default(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_ioctl ctrl; if (copy_from_user(&ctrl, arg, sizeof(ctrl))) return -EFAULT; return proc_ioctl(ps, &ctrl); } #ifdef CONFIG_COMPAT static int proc_ioctl_compat(struct usb_dev_state *ps, compat_uptr_t arg) { struct usbdevfs_ioctl32 ioc32; struct usbdevfs_ioctl ctrl; if (copy_from_user(&ioc32, compat_ptr(arg), sizeof(ioc32))) return -EFAULT; ctrl.ifno = ioc32.ifno; ctrl.ioctl_code = ioc32.ioctl_code; ctrl.data = compat_ptr(ioc32.data); return proc_ioctl(ps, &ctrl); } #endif static int proc_claim_port(struct usb_dev_state *ps, void __user *arg) { unsigned portnum; int rc; if (get_user(portnum, (unsigned __user *) arg)) return -EFAULT; rc = usb_hub_claim_port(ps->dev, portnum, ps); if (rc == 0) snoop(&ps->dev->dev, "port %d claimed by process %d: %s\n", portnum, task_pid_nr(current), current->comm); return rc; } static int proc_release_port(struct usb_dev_state *ps, void __user *arg) { unsigned portnum; if (get_user(portnum, (unsigned __user *) arg)) return -EFAULT; return usb_hub_release_port(ps->dev, portnum, ps); } static int proc_get_capabilities(struct usb_dev_state *ps, void __user *arg) { __u32 caps; caps = USBDEVFS_CAP_ZERO_PACKET | USBDEVFS_CAP_NO_PACKET_SIZE_LIM | USBDEVFS_CAP_REAP_AFTER_DISCONNECT | USBDEVFS_CAP_MMAP | USBDEVFS_CAP_DROP_PRIVILEGES | USBDEVFS_CAP_CONNINFO_EX | MAYBE_CAP_SUSPEND; if (!ps->dev->bus->no_stop_on_short) caps |= USBDEVFS_CAP_BULK_CONTINUATION; if (ps->dev->bus->sg_tablesize) caps |= USBDEVFS_CAP_BULK_SCATTER_GATHER; if (put_user(caps, (__u32 __user *)arg)) return -EFAULT; return 0; } static int proc_disconnect_claim(struct usb_dev_state *ps, void __user *arg) { struct usbdevfs_disconnect_claim dc; struct usb_interface *intf; if (copy_from_user(&dc, arg, sizeof(dc))) return -EFAULT; intf = usb_ifnum_to_if(ps->dev, dc.interface); if (!intf) return -EINVAL; if (intf->dev.driver) { struct usb_driver *driver = to_usb_driver(intf->dev.driver); if (ps->privileges_dropped) return -EACCES; if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_IF_DRIVER) && strncmp(dc.driver, intf->dev.driver->name, sizeof(dc.driver)) != 0) return -EBUSY; if ((dc.flags & USBDEVFS_DISCONNECT_CLAIM_EXCEPT_DRIVER) && strncmp(dc.driver, intf->dev.driver->name, sizeof(dc.driver)) == 0) return -EBUSY; dev_dbg(&intf->dev, "disconnect by usbfs\n"); usb_driver_release_interface(driver, intf); } return claimintf(ps, dc.interface); } static int proc_alloc_streams(struct usb_dev_state *ps, void __user *arg) { unsigned num_streams, num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf; int r; r = parse_usbdevfs_streams(ps, arg, &num_streams, &num_eps, &eps, &intf); if (r) return r; destroy_async_on_interface(ps, intf->altsetting[0].desc.bInterfaceNumber); r = usb_alloc_streams(intf, eps, num_eps, num_streams, GFP_KERNEL); kfree(eps); return r; } static int proc_free_streams(struct usb_dev_state *ps, void __user *arg) { unsigned num_eps; struct usb_host_endpoint **eps; struct usb_interface *intf; int r; r = parse_usbdevfs_streams(ps, arg, NULL, &num_eps, &eps, &intf); if (r) return r; destroy_async_on_interface(ps, intf->altsetting[0].desc.bInterfaceNumber); r = usb_free_streams(intf, eps, num_eps, GFP_KERNEL); kfree(eps); return r; } static int proc_drop_privileges(struct usb_dev_state *ps, void __user *arg) { u32 data; if (copy_from_user(&data, arg, sizeof(data))) return -EFAULT; /* This is a one way operation. Once privileges are * dropped, you cannot regain them. You may however reissue * this ioctl to shrink the allowed interfaces mask. */ ps->interface_allowed_mask &= data; ps->privileges_dropped = true; return 0; } static int proc_forbid_suspend(struct usb_dev_state *ps) { int ret = 0; if (ps->suspend_allowed) { ret = usb_autoresume_device(ps->dev); if (ret == 0) ps->suspend_allowed = false; else if (ret != -ENODEV) ret = -EIO; } return ret; } static int proc_allow_suspend(struct usb_dev_state *ps) { if (!connected(ps)) return -ENODEV; WRITE_ONCE(ps->not_yet_resumed, 1); if (!ps->suspend_allowed) { usb_autosuspend_device(ps->dev); ps->suspend_allowed = true; } return 0; } static int proc_wait_for_resume(struct usb_dev_state *ps) { int ret; usb_unlock_device(ps->dev); ret = wait_event_interruptible(ps->wait_for_resume, READ_ONCE(ps->not_yet_resumed) == 0); usb_lock_device(ps->dev); if (ret != 0) return -EINTR; return proc_forbid_suspend(ps); } /* * NOTE: All requests here that have interface numbers as parameters * are assuming that somehow the configuration has been prevented from * changing. But there's no mechanism to ensure that... */ static long usbdev_do_ioctl(struct file *file, unsigned int cmd, void __user *p) { struct usb_dev_state *ps = file->private_data; struct inode *inode = file_inode(file); struct usb_device *dev = ps->dev; int ret = -ENOTTY; if (!(file->f_mode & FMODE_WRITE)) return -EPERM; usb_lock_device(dev); /* Reap operations are allowed even after disconnection */ switch (cmd) { case USBDEVFS_REAPURB: snoop(&dev->dev, "%s: REAPURB\n", __func__); ret = proc_reapurb(ps, p); goto done; case USBDEVFS_REAPURBNDELAY: snoop(&dev->dev, "%s: REAPURBNDELAY\n", __func__); ret = proc_reapurbnonblock(ps, p); goto done; #ifdef CONFIG_COMPAT case USBDEVFS_REAPURB32: snoop(&dev->dev, "%s: REAPURB32\n", __func__); ret = proc_reapurb_compat(ps, p); goto done; case USBDEVFS_REAPURBNDELAY32: snoop(&dev->dev, "%s: REAPURBNDELAY32\n", __func__); ret = proc_reapurbnonblock_compat(ps, p); goto done; #endif } if (!connected(ps)) { usb_unlock_device(dev); return -ENODEV; } switch (cmd) { case USBDEVFS_CONTROL: snoop(&dev->dev, "%s: CONTROL\n", __func__); ret = proc_control(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_BULK: snoop(&dev->dev, "%s: BULK\n", __func__); ret = proc_bulk(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_RESETEP: snoop(&dev->dev, "%s: RESETEP\n", __func__); ret = proc_resetep(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_RESET: snoop(&dev->dev, "%s: RESET\n", __func__); ret = proc_resetdevice(ps); break; case USBDEVFS_CLEAR_HALT: snoop(&dev->dev, "%s: CLEAR_HALT\n", __func__); ret = proc_clearhalt(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_GETDRIVER: snoop(&dev->dev, "%s: GETDRIVER\n", __func__); ret = proc_getdriver(ps, p); break; case USBDEVFS_CONNECTINFO: snoop(&dev->dev, "%s: CONNECTINFO\n", __func__); ret = proc_connectinfo(ps, p); break; case USBDEVFS_SETINTERFACE: snoop(&dev->dev, "%s: SETINTERFACE\n", __func__); ret = proc_setintf(ps, p); break; case USBDEVFS_SETCONFIGURATION: snoop(&dev->dev, "%s: SETCONFIGURATION\n", __func__); ret = proc_setconfig(ps, p); break; case USBDEVFS_SUBMITURB: snoop(&dev->dev, "%s: SUBMITURB\n", __func__); ret = proc_submiturb(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; #ifdef CONFIG_COMPAT case USBDEVFS_CONTROL32: snoop(&dev->dev, "%s: CONTROL32\n", __func__); ret = proc_control_compat(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_BULK32: snoop(&dev->dev, "%s: BULK32\n", __func__); ret = proc_bulk_compat(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_DISCSIGNAL32: snoop(&dev->dev, "%s: DISCSIGNAL32\n", __func__); ret = proc_disconnectsignal_compat(ps, p); break; case USBDEVFS_SUBMITURB32: snoop(&dev->dev, "%s: SUBMITURB32\n", __func__); ret = proc_submiturb_compat(ps, p); if (ret >= 0) inode->i_mtime = inode_set_ctime_current(inode); break; case USBDEVFS_IOCTL32: snoop(&dev->dev, "%s: IOCTL32\n", __func__); ret = proc_ioctl_compat(ps, ptr_to_compat(p)); break; #endif case USBDEVFS_DISCARDURB: snoop(&dev->dev, "%s: DISCARDURB %px\n", __func__, p); ret = proc_unlinkurb(ps, p); break; case USBDEVFS_DISCSIGNAL: snoop(&dev->dev, "%s: DISCSIGNAL\n", __func__); ret = proc_disconnectsignal(ps, p); break; case USBDEVFS_CLAIMINTERFACE: snoop(&dev->dev, "%s: CLAIMINTERFACE\n", __func__); ret = proc_claiminterface(ps, p); break; case USBDEVFS_RELEASEINTERFACE: snoop(&dev->dev, "%s: RELEASEINTERFACE\n", __func__); ret = proc_releaseinterface(ps, p); break; case USBDEVFS_IOCTL: snoop(&dev->dev, "%s: IOCTL\n", __func__); ret = proc_ioctl_default(ps, p); break; case USBDEVFS_CLAIM_PORT: snoop(&dev->dev, "%s: CLAIM_PORT\n", __func__); ret = proc_claim_port(ps, p); break; case USBDEVFS_RELEASE_PORT: snoop(&dev->dev, "%s: RELEASE_PORT\n", __func__); ret = proc_release_port(ps, p); break; case USBDEVFS_GET_CAPABILITIES: ret = proc_get_capabilities(ps, p); break; case USBDEVFS_DISCONNECT_CLAIM: ret = proc_disconnect_claim(ps, p); break; case USBDEVFS_ALLOC_STREAMS: ret = proc_alloc_streams(ps, p); break; case USBDEVFS_FREE_STREAMS: ret = proc_free_streams(ps, p); break; case USBDEVFS_DROP_PRIVILEGES: ret = proc_drop_privileges(ps, p); break; case USBDEVFS_GET_SPEED: ret = ps->dev->speed; break; case USBDEVFS_FORBID_SUSPEND: ret = proc_forbid_suspend(ps); break; case USBDEVFS_ALLOW_SUSPEND: ret = proc_allow_suspend(ps); break; case USBDEVFS_WAIT_FOR_RESUME: ret = proc_wait_for_resume(ps); break; } /* Handle variable-length commands */ switch (cmd & ~IOCSIZE_MASK) { case USBDEVFS_CONNINFO_EX(0): ret = proc_conninfo_ex(ps, p, _IOC_SIZE(cmd)); break; } done: usb_unlock_device(dev); if (ret >= 0) inode->i_atime = current_time(inode); return ret; } static long usbdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; ret = usbdev_do_ioctl(file, cmd, (void __user *)arg); return ret; } /* No kernel lock - fine */ static __poll_t usbdev_poll(struct file *file, struct poll_table_struct *wait) { struct usb_dev_state *ps = file->private_data; __poll_t mask = 0; poll_wait(file, &ps->wait, wait); if (file->f_mode & FMODE_WRITE && !list_empty(&ps->async_completed)) mask |= EPOLLOUT | EPOLLWRNORM; if (!connected(ps)) mask |= EPOLLHUP; if (list_empty(&ps->list)) mask |= EPOLLERR; return mask; } const struct file_operations usbdev_file_operations = { .owner = THIS_MODULE, .llseek = no_seek_end_llseek, .read = usbdev_read, .poll = usbdev_poll, .unlocked_ioctl = usbdev_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = usbdev_mmap, .open = usbdev_open, .release = usbdev_release, }; static void usbdev_remove(struct usb_device *udev) { struct usb_dev_state *ps; /* Protect against simultaneous resume */ mutex_lock(&usbfs_mutex); while (!list_empty(&udev->filelist)) { ps = list_entry(udev->filelist.next, struct usb_dev_state, list); destroy_all_async(ps); wake_up_all(&ps->wait); WRITE_ONCE(ps->not_yet_resumed, 0); wake_up_all(&ps->wait_for_resume); list_del_init(&ps->list); if (ps->discsignr) kill_pid_usb_asyncio(ps->discsignr, EPIPE, ps->disccontext, ps->disc_pid, ps->cred); } mutex_unlock(&usbfs_mutex); } static int usbdev_notify(struct notifier_block *self, unsigned long action, void *dev) { switch (action) { case USB_DEVICE_ADD: break; case USB_DEVICE_REMOVE: usbdev_remove(dev); break; } return NOTIFY_OK; } static struct notifier_block usbdev_nb = { .notifier_call = usbdev_notify, }; static struct cdev usb_device_cdev; int __init usb_devio_init(void) { int retval; retval = register_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX, "usb_device"); if (retval) { printk(KERN_ERR "Unable to register minors for usb_device\n"); goto out; } cdev_init(&usb_device_cdev, &usbdev_file_operations); retval = cdev_add(&usb_device_cdev, USB_DEVICE_DEV, USB_DEVICE_MAX); if (retval) { printk(KERN_ERR "Unable to get usb_device major %d\n", USB_DEVICE_MAJOR); goto error_cdev; } usb_register_notify(&usbdev_nb); out: return retval; error_cdev: unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); goto out; } void usb_devio_cleanup(void) { usb_unregister_notify(&usbdev_nb); cdev_del(&usb_device_cdev); unregister_chrdev_region(USB_DEVICE_DEV, USB_DEVICE_MAX); }
linux-master
drivers/usb/core/devio.c
// SPDX-License-Identifier: GPL-2.0 /* * DMA memory management for framework level HCD code (hc_driver) * * This implementation plugs in through generic "usb_bus" level methods, * and should work with all USB controllers, regardless of bus type. * * Released under the GPLv2 only. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/mm.h> #include <linux/io.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/genalloc.h> #include <linux/usb.h> #include <linux/usb/hcd.h> /* * DMA-Coherent Buffers */ /* FIXME tune these based on pool statistics ... */ static size_t pool_max[HCD_BUFFER_POOLS] = { 32, 128, 512, 2048, }; void __init usb_init_pool_max(void) { /* * The pool_max values must never be smaller than * ARCH_DMA_MINALIGN. */ if (ARCH_DMA_MINALIGN <= 32) ; /* Original value is okay */ else if (ARCH_DMA_MINALIGN <= 64) pool_max[0] = 64; else if (ARCH_DMA_MINALIGN <= 128) pool_max[0] = 0; /* Don't use this pool */ else BUILD_BUG(); /* We don't allow this */ } /* SETUP primitives */ /** * hcd_buffer_create - initialize buffer pools * @hcd: the bus whose buffer pools are to be initialized * * Context: task context, might sleep * * Call this as part of initializing a host controller that uses the dma * memory allocators. It initializes some pools of dma-coherent memory that * will be shared by all drivers using that controller. * * Call hcd_buffer_destroy() to clean up after using those pools. * * Return: 0 if successful. A negative errno value otherwise. */ int hcd_buffer_create(struct usb_hcd *hcd) { char name[16]; int i, size; if (hcd->localmem_pool || !hcd_uses_dma(hcd)) return 0; for (i = 0; i < HCD_BUFFER_POOLS; i++) { size = pool_max[i]; if (!size) continue; snprintf(name, sizeof(name), "buffer-%d", size); hcd->pool[i] = dma_pool_create(name, hcd->self.sysdev, size, size, 0); if (!hcd->pool[i]) { hcd_buffer_destroy(hcd); return -ENOMEM; } } return 0; } /** * hcd_buffer_destroy - deallocate buffer pools * @hcd: the bus whose buffer pools are to be destroyed * * Context: task context, might sleep * * This frees the buffer pools created by hcd_buffer_create(). */ void hcd_buffer_destroy(struct usb_hcd *hcd) { int i; if (!IS_ENABLED(CONFIG_HAS_DMA)) return; for (i = 0; i < HCD_BUFFER_POOLS; i++) { dma_pool_destroy(hcd->pool[i]); hcd->pool[i] = NULL; } } /* sometimes alloc/free could use kmalloc with GFP_DMA, for * better sharing and to leverage mm/slab.c intelligence. */ void *hcd_buffer_alloc( struct usb_bus *bus, size_t size, gfp_t mem_flags, dma_addr_t *dma ) { struct usb_hcd *hcd = bus_to_hcd(bus); int i; if (size == 0) return NULL; if (hcd->localmem_pool) return gen_pool_dma_alloc(hcd->localmem_pool, size, dma); /* some USB hosts just use PIO */ if (!hcd_uses_dma(hcd)) { *dma = ~(dma_addr_t) 0; return kmalloc(size, mem_flags); } for (i = 0; i < HCD_BUFFER_POOLS; i++) { if (size <= pool_max[i]) return dma_pool_alloc(hcd->pool[i], mem_flags, dma); } return dma_alloc_coherent(hcd->self.sysdev, size, dma, mem_flags); } void hcd_buffer_free( struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma ) { struct usb_hcd *hcd = bus_to_hcd(bus); int i; if (!addr) return; if (hcd->localmem_pool) { gen_pool_free(hcd->localmem_pool, (unsigned long)addr, size); return; } if (!hcd_uses_dma(hcd)) { kfree(addr); return; } for (i = 0; i < HCD_BUFFER_POOLS; i++) { if (size <= pool_max[i]) { dma_pool_free(hcd->pool[i], addr, dma); return; } } dma_free_coherent(hcd->self.sysdev, size, addr, dma); } void *hcd_buffer_alloc_pages(struct usb_hcd *hcd, size_t size, gfp_t mem_flags, dma_addr_t *dma) { if (size == 0) return NULL; if (hcd->localmem_pool) return gen_pool_dma_alloc_align(hcd->localmem_pool, size, dma, PAGE_SIZE); /* some USB hosts just use PIO */ if (!hcd_uses_dma(hcd)) { *dma = DMA_MAPPING_ERROR; return (void *)__get_free_pages(mem_flags, get_order(size)); } return dma_alloc_coherent(hcd->self.sysdev, size, dma, mem_flags); } void hcd_buffer_free_pages(struct usb_hcd *hcd, size_t size, void *addr, dma_addr_t dma) { if (!addr) return; if (hcd->localmem_pool) { gen_pool_free(hcd->localmem_pool, (unsigned long)addr, size); return; } if (!hcd_uses_dma(hcd)) { free_pages((unsigned long)addr, get_order(size)); return; } dma_free_coherent(hcd->self.sysdev, size, addr, dma); }
linux-master
drivers/usb/core/buffer.c
// SPDX-License-Identifier: GPL-2.0 /* * Released under the GPLv2 only. */ #include <linux/module.h> #include <linux/string.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/log2.h> #include <linux/kmsan.h> #include <linux/usb.h> #include <linux/wait.h> #include <linux/usb/hcd.h> #include <linux/scatterlist.h> #define to_urb(d) container_of(d, struct urb, kref) static void urb_destroy(struct kref *kref) { struct urb *urb = to_urb(kref); if (urb->transfer_flags & URB_FREE_BUFFER) kfree(urb->transfer_buffer); kfree(urb); } /** * usb_init_urb - initializes a urb so that it can be used by a USB driver * @urb: pointer to the urb to initialize * * Initializes a urb so that the USB subsystem can use it properly. * * If a urb is created with a call to usb_alloc_urb() it is not * necessary to call this function. Only use this if you allocate the * space for a struct urb on your own. If you call this function, be * careful when freeing the memory for your urb that it is no longer in * use by the USB core. * * Only use this function if you _really_ understand what you are doing. */ void usb_init_urb(struct urb *urb) { if (urb) { memset(urb, 0, sizeof(*urb)); kref_init(&urb->kref); INIT_LIST_HEAD(&urb->urb_list); INIT_LIST_HEAD(&urb->anchor_list); } } EXPORT_SYMBOL_GPL(usb_init_urb); /** * usb_alloc_urb - creates a new urb for a USB driver to use * @iso_packets: number of iso packets for this urb * @mem_flags: the type of memory to allocate, see kmalloc() for a list of * valid options for this. * * Creates an urb for the USB driver to use, initializes a few internal * structures, increments the usage counter, and returns a pointer to it. * * If the driver want to use this urb for interrupt, control, or bulk * endpoints, pass '0' as the number of iso packets. * * The driver must call usb_free_urb() when it is finished with the urb. * * Return: A pointer to the new urb, or %NULL if no memory is available. */ struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags) { struct urb *urb; urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets), mem_flags); if (!urb) return NULL; usb_init_urb(urb); return urb; } EXPORT_SYMBOL_GPL(usb_alloc_urb); /** * usb_free_urb - frees the memory used by a urb when all users of it are finished * @urb: pointer to the urb to free, may be NULL * * Must be called when a user of a urb is finished with it. When the last user * of the urb calls this function, the memory of the urb is freed. * * Note: The transfer buffer associated with the urb is not freed unless the * URB_FREE_BUFFER transfer flag is set. */ void usb_free_urb(struct urb *urb) { if (urb) kref_put(&urb->kref, urb_destroy); } EXPORT_SYMBOL_GPL(usb_free_urb); /** * usb_get_urb - increments the reference count of the urb * @urb: pointer to the urb to modify, may be NULL * * This must be called whenever a urb is transferred from a device driver to a * host controller driver. This allows proper reference counting to happen * for urbs. * * Return: A pointer to the urb with the incremented reference counter. */ struct urb *usb_get_urb(struct urb *urb) { if (urb) kref_get(&urb->kref); return urb; } EXPORT_SYMBOL_GPL(usb_get_urb); /** * usb_anchor_urb - anchors an URB while it is processed * @urb: pointer to the urb to anchor * @anchor: pointer to the anchor * * This can be called to have access to URBs which are to be executed * without bothering to track them */ void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor) { unsigned long flags; spin_lock_irqsave(&anchor->lock, flags); usb_get_urb(urb); list_add_tail(&urb->anchor_list, &anchor->urb_list); urb->anchor = anchor; if (unlikely(anchor->poisoned)) atomic_inc(&urb->reject); spin_unlock_irqrestore(&anchor->lock, flags); } EXPORT_SYMBOL_GPL(usb_anchor_urb); static int usb_anchor_check_wakeup(struct usb_anchor *anchor) { return atomic_read(&anchor->suspend_wakeups) == 0 && list_empty(&anchor->urb_list); } /* Callers must hold anchor->lock */ static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor) { urb->anchor = NULL; list_del(&urb->anchor_list); usb_put_urb(urb); if (usb_anchor_check_wakeup(anchor)) wake_up(&anchor->wait); } /** * usb_unanchor_urb - unanchors an URB * @urb: pointer to the urb to anchor * * Call this to stop the system keeping track of this URB */ void usb_unanchor_urb(struct urb *urb) { unsigned long flags; struct usb_anchor *anchor; if (!urb) return; anchor = urb->anchor; if (!anchor) return; spin_lock_irqsave(&anchor->lock, flags); /* * At this point, we could be competing with another thread which * has the same intention. To protect the urb from being unanchored * twice, only the winner of the race gets the job. */ if (likely(anchor == urb->anchor)) __usb_unanchor_urb(urb, anchor); spin_unlock_irqrestore(&anchor->lock, flags); } EXPORT_SYMBOL_GPL(usb_unanchor_urb); /*-------------------------------------------------------------------*/ static const int pipetypes[4] = { PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT }; /** * usb_pipe_type_check - sanity check of a specific pipe for a usb device * @dev: struct usb_device to be checked * @pipe: pipe to check * * This performs a light-weight sanity check for the endpoint in the * given usb device. It returns 0 if the pipe is valid for the specific usb * device, otherwise a negative error code. */ int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe) { const struct usb_host_endpoint *ep; ep = usb_pipe_endpoint(dev, pipe); if (!ep) return -EINVAL; if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)]) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(usb_pipe_type_check); /** * usb_urb_ep_type_check - sanity check of endpoint in the given urb * @urb: urb to be checked * * This performs a light-weight sanity check for the endpoint in the * given urb. It returns 0 if the urb contains a valid endpoint, otherwise * a negative error code. */ int usb_urb_ep_type_check(const struct urb *urb) { return usb_pipe_type_check(urb->dev, urb->pipe); } EXPORT_SYMBOL_GPL(usb_urb_ep_type_check); /** * usb_submit_urb - issue an asynchronous transfer request for an endpoint * @urb: pointer to the urb describing the request * @mem_flags: the type of memory to allocate, see kmalloc() for a list * of valid options for this. * * This submits a transfer request, and transfers control of the URB * describing that request to the USB subsystem. Request completion will * be indicated later, asynchronously, by calling the completion handler. * The three types of completion are success, error, and unlink * (a software-induced fault, also called "request cancellation"). * * URBs may be submitted in interrupt context. * * The caller must have correctly initialized the URB before submitting * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are * available to ensure that most fields are correctly initialized, for * the particular kind of transfer, although they will not initialize * any transfer flags. * * If the submission is successful, the complete() callback from the URB * will be called exactly once, when the USB core and Host Controller Driver * (HCD) are finished with the URB. When the completion function is called, * control of the URB is returned to the device driver which issued the * request. The completion handler may then immediately free or reuse that * URB. * * With few exceptions, USB device drivers should never access URB fields * provided by usbcore or the HCD until its complete() is called. * The exceptions relate to periodic transfer scheduling. For both * interrupt and isochronous urbs, as part of successful URB submission * urb->interval is modified to reflect the actual transfer period used * (normally some power of two units). And for isochronous urbs, * urb->start_frame is modified to reflect when the URB's transfers were * scheduled to start. * * Not all isochronous transfer scheduling policies will work, but most * host controller drivers should easily handle ISO queues going from now * until 10-200 msec into the future. Drivers should try to keep at * least one or two msec of data in the queue; many controllers require * that new transfers start at least 1 msec in the future when they are * added. If the driver is unable to keep up and the queue empties out, * the behavior for new submissions is governed by the URB_ISO_ASAP flag. * If the flag is set, or if the queue is idle, then the URB is always * assigned to the first available (and not yet expired) slot in the * endpoint's schedule. If the flag is not set and the queue is active * then the URB is always assigned to the next slot in the schedule * following the end of the endpoint's previous URB, even if that slot is * in the past. When a packet is assigned in this way to a slot that has * already expired, the packet is not transmitted and the corresponding * usb_iso_packet_descriptor's status field will return -EXDEV. If this * would happen to all the packets in the URB, submission fails with a * -EXDEV error code. * * For control endpoints, the synchronous usb_control_msg() call is * often used (in non-interrupt context) instead of this call. * That is often used through convenience wrappers, for the requests * that are standardized in the USB 2.0 specification. For bulk * endpoints, a synchronous usb_bulk_msg() call is available. * * Return: * 0 on successful submissions. A negative error number otherwise. * * Request Queuing: * * URBs may be submitted to endpoints before previous ones complete, to * minimize the impact of interrupt latencies and system overhead on data * throughput. With that queuing policy, an endpoint's queue would never * be empty. This is required for continuous isochronous data streams, * and may also be required for some kinds of interrupt transfers. Such * queuing also maximizes bandwidth utilization by letting USB controllers * start work on later requests before driver software has finished the * completion processing for earlier (successful) requests. * * As of Linux 2.6, all USB endpoint transfer queues support depths greater * than one. This was previously a HCD-specific behavior, except for ISO * transfers. Non-isochronous endpoint queues are inactive during cleanup * after faults (transfer errors or cancellation). * * Reserved Bandwidth Transfers: * * Periodic transfers (interrupt or isochronous) are performed repeatedly, * using the interval specified in the urb. Submitting the first urb to * the endpoint reserves the bandwidth necessary to make those transfers. * If the USB subsystem can't allocate sufficient bandwidth to perform * the periodic request, submitting such a periodic request should fail. * * For devices under xHCI, the bandwidth is reserved at configuration time, or * when the alt setting is selected. If there is not enough bus bandwidth, the * configuration/alt setting request will fail. Therefore, submissions to * periodic endpoints on devices under xHCI should never fail due to bandwidth * constraints. * * Device drivers must explicitly request that repetition, by ensuring that * some URB is always on the endpoint's queue (except possibly for short * periods during completion callbacks). When there is no longer an urb * queued, the endpoint's bandwidth reservation is canceled. This means * drivers can use their completion handlers to ensure they keep bandwidth * they need, by reinitializing and resubmitting the just-completed urb * until the driver longer needs that periodic bandwidth. * * Memory Flags: * * The general rules for how to decide which mem_flags to use * are the same as for kmalloc. There are four * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and * GFP_ATOMIC. * * GFP_NOFS is not ever used, as it has not been implemented yet. * * GFP_ATOMIC is used when * (a) you are inside a completion handler, an interrupt, bottom half, * tasklet or timer, or * (b) you are holding a spinlock or rwlock (does not apply to * semaphores), or * (c) current->state != TASK_RUNNING, this is the case only after * you've changed it. * * GFP_NOIO is used in the block io path and error handling of storage * devices. * * All other situations use GFP_KERNEL. * * Some more specific rules for mem_flags can be inferred, such as * (1) start_xmit, timeout, and receive methods of network drivers must * use GFP_ATOMIC (they are called with a spinlock held); * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also * called with a spinlock held); * (3) If you use a kernel thread with a network driver you must use * GFP_NOIO, unless (b) or (c) apply; * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c) * apply or your are in a storage driver's block io path; * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and * (6) changing firmware on a running storage or net device uses * GFP_NOIO, unless b) or c) apply * */ int usb_submit_urb(struct urb *urb, gfp_t mem_flags) { int xfertype, max; struct usb_device *dev; struct usb_host_endpoint *ep; int is_out; unsigned int allowed; if (!urb || !urb->complete) return -EINVAL; if (urb->hcpriv) { WARN_ONCE(1, "URB %pK submitted while active\n", urb); return -EBUSY; } dev = urb->dev; if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) return -ENODEV; /* For now, get the endpoint from the pipe. Eventually drivers * will be required to set urb->ep directly and we will eliminate * urb->pipe. */ ep = usb_pipe_endpoint(dev, urb->pipe); if (!ep) return -ENOENT; urb->ep = ep; urb->status = -EINPROGRESS; urb->actual_length = 0; /* Lots of sanity checks, so HCDs can rely on clean data * and don't need to duplicate tests */ xfertype = usb_endpoint_type(&ep->desc); if (xfertype == USB_ENDPOINT_XFER_CONTROL) { struct usb_ctrlrequest *setup = (struct usb_ctrlrequest *) urb->setup_packet; if (!setup) return -ENOEXEC; is_out = !(setup->bRequestType & USB_DIR_IN) || !setup->wLength; dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out), "BOGUS control dir, pipe %x doesn't match bRequestType %x\n", urb->pipe, setup->bRequestType); if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) { dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n", le16_to_cpu(setup->wLength), urb->transfer_buffer_length); return -EBADR; } } else { is_out = usb_endpoint_dir_out(&ep->desc); } /* Clear the internal flags and cache the direction for later use */ urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE | URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL | URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL | URB_DMA_SG_COMBINED); urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN); kmsan_handle_urb(urb, is_out); if (xfertype != USB_ENDPOINT_XFER_CONTROL && dev->state < USB_STATE_CONFIGURED) return -ENODEV; max = usb_endpoint_maxp(&ep->desc); if (max <= 0) { dev_dbg(&dev->dev, "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n", usb_endpoint_num(&ep->desc), is_out ? "out" : "in", __func__, max); return -EMSGSIZE; } /* periodic transfers limit size per frame/uframe, * but drivers only control those sizes for ISO. * while we're checking, initialize return status. */ if (xfertype == USB_ENDPOINT_XFER_ISOC) { int n, len; /* SuperSpeed isoc endpoints have up to 16 bursts of up to * 3 packets each */ if (dev->speed >= USB_SPEED_SUPER) { int burst = 1 + ep->ss_ep_comp.bMaxBurst; int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes); max *= burst; max *= mult; } if (dev->speed == USB_SPEED_SUPER_PLUS && USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) { struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp; isoc_ep_comp = &ep->ssp_isoc_ep_comp; max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval); } /* "high bandwidth" mode, 1-3 packets/uframe? */ if (dev->speed == USB_SPEED_HIGH) max *= usb_endpoint_maxp_mult(&ep->desc); if (urb->number_of_packets <= 0) return -EINVAL; for (n = 0; n < urb->number_of_packets; n++) { len = urb->iso_frame_desc[n].length; if (len < 0 || len > max) return -EMSGSIZE; urb->iso_frame_desc[n].status = -EXDEV; urb->iso_frame_desc[n].actual_length = 0; } } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint) { struct scatterlist *sg; int i; for_each_sg(urb->sg, sg, urb->num_sgs - 1, i) if (sg->length % max) return -EINVAL; } /* the I/O buffer must be mapped/unmapped, except when length=0 */ if (urb->transfer_buffer_length > INT_MAX) return -EMSGSIZE; /* * stuff that drivers shouldn't do, but which shouldn't * cause problems in HCDs if they get it wrong. */ /* Check that the pipe's type matches the endpoint's type */ if (usb_pipe_type_check(urb->dev, urb->pipe)) dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n", usb_pipetype(urb->pipe), pipetypes[xfertype]); /* Check against a simple/standard policy */ allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER); switch (xfertype) { case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_INT: if (is_out) allowed |= URB_ZERO_PACKET; fallthrough; default: /* all non-iso endpoints */ if (!is_out) allowed |= URB_SHORT_NOT_OK; break; case USB_ENDPOINT_XFER_ISOC: allowed |= URB_ISO_ASAP; break; } allowed &= urb->transfer_flags; /* warn if submitter gave bogus flags */ if (allowed != urb->transfer_flags) dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n", urb->transfer_flags, allowed); /* * Force periodic transfer intervals to be legal values that are * a power of two (so HCDs don't need to). * * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC * supports different values... this uses EHCI/UHCI defaults (and * EHCI can use smaller non-default values). */ switch (xfertype) { case USB_ENDPOINT_XFER_ISOC: case USB_ENDPOINT_XFER_INT: /* too small? */ if (urb->interval <= 0) return -EINVAL; /* too big? */ switch (dev->speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: /* units are 125us */ /* Handle up to 2^(16-1) microframes */ if (urb->interval > (1 << 15)) return -EINVAL; max = 1 << 15; break; case USB_SPEED_HIGH: /* units are microframes */ /* NOTE usb handles 2^15 */ if (urb->interval > (1024 * 8)) urb->interval = 1024 * 8; max = 1024 * 8; break; case USB_SPEED_FULL: /* units are frames/msec */ case USB_SPEED_LOW: if (xfertype == USB_ENDPOINT_XFER_INT) { if (urb->interval > 255) return -EINVAL; /* NOTE ohci only handles up to 32 */ max = 128; } else { if (urb->interval > 1024) urb->interval = 1024; /* NOTE usb and ohci handle up to 2^15 */ max = 1024; } break; default: return -EINVAL; } /* Round down to a power of 2, no more than max */ urb->interval = min(max, 1 << ilog2(urb->interval)); } return usb_hcd_submit_urb(urb, mem_flags); } EXPORT_SYMBOL_GPL(usb_submit_urb); /*-------------------------------------------------------------------*/ /** * usb_unlink_urb - abort/cancel a transfer request for an endpoint * @urb: pointer to urb describing a previously submitted request, * may be NULL * * This routine cancels an in-progress request. URBs complete only once * per submission, and may be canceled only once per submission. * Successful cancellation means termination of @urb will be expedited * and the completion handler will be called with a status code * indicating that the request has been canceled (rather than any other * code). * * Drivers should not call this routine or related routines, such as * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect * method has returned. The disconnect function should synchronize with * a driver's I/O routines to insure that all URB-related activity has * completed before it returns. * * This request is asynchronous, however the HCD might call the ->complete() * callback during unlink. Therefore when drivers call usb_unlink_urb(), they * must not hold any locks that may be taken by the completion function. * Success is indicated by returning -EINPROGRESS, at which time the URB will * probably not yet have been given back to the device driver. When it is * eventually called, the completion function will see @urb->status == * -ECONNRESET. * Failure is indicated by usb_unlink_urb() returning any other value. * Unlinking will fail when @urb is not currently "linked" (i.e., it was * never submitted, or it was unlinked before, or the hardware is already * finished with it), even if the completion handler has not yet run. * * The URB must not be deallocated while this routine is running. In * particular, when a driver calls this routine, it must insure that the * completion handler cannot deallocate the URB. * * Return: -EINPROGRESS on success. See description for other values on * failure. * * Unlinking and Endpoint Queues: * * [The behaviors and guarantees described below do not apply to virtual * root hubs but only to endpoint queues for physical USB devices.] * * Host Controller Drivers (HCDs) place all the URBs for a particular * endpoint in a queue. Normally the queue advances as the controller * hardware processes each request. But when an URB terminates with an * error its queue generally stops (see below), at least until that URB's * completion routine returns. It is guaranteed that a stopped queue * will not restart until all its unlinked URBs have been fully retired, * with their completion routines run, even if that's not until some time * after the original completion handler returns. The same behavior and * guarantee apply when an URB terminates because it was unlinked. * * Bulk and interrupt endpoint queues are guaranteed to stop whenever an * URB terminates with any sort of error, including -ECONNRESET, -ENOENT, * and -EREMOTEIO. Control endpoint queues behave the same way except * that they are not guaranteed to stop for -EREMOTEIO errors. Queues * for isochronous endpoints are treated differently, because they must * advance at fixed rates. Such queues do not stop when an URB * encounters an error or is unlinked. An unlinked isochronous URB may * leave a gap in the stream of packets; it is undefined whether such * gaps can be filled in. * * Note that early termination of an URB because a short packet was * received will generate a -EREMOTEIO error if and only if the * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device * drivers can build deep queues for large or complex bulk transfers * and clean them up reliably after any sort of aborted transfer by * unlinking all pending URBs at the first fault. * * When a control URB terminates with an error other than -EREMOTEIO, it * is quite likely that the status stage of the transfer will not take * place. */ int usb_unlink_urb(struct urb *urb) { if (!urb) return -EINVAL; if (!urb->dev) return -ENODEV; if (!urb->ep) return -EIDRM; return usb_hcd_unlink_urb(urb, -ECONNRESET); } EXPORT_SYMBOL_GPL(usb_unlink_urb); /** * usb_kill_urb - cancel a transfer request and wait for it to finish * @urb: pointer to URB describing a previously submitted request, * may be NULL * * This routine cancels an in-progress request. It is guaranteed that * upon return all completion handlers will have finished and the URB * will be totally idle and available for reuse. These features make * this an ideal way to stop I/O in a disconnect() callback or close() * function. If the request has not already finished or been unlinked * the completion handler will see urb->status == -ENOENT. * * While the routine is running, attempts to resubmit the URB will fail * with error -EPERM. Thus even if the URB's completion handler always * tries to resubmit, it will not succeed and the URB will become idle. * * The URB must not be deallocated while this routine is running. In * particular, when a driver calls this routine, it must insure that the * completion handler cannot deallocate the URB. * * This routine may not be used in an interrupt context (such as a bottom * half or a completion handler), or when holding a spinlock, or in other * situations where the caller can't schedule(). * * This routine should not be called by a driver after its disconnect * method has returned. */ void usb_kill_urb(struct urb *urb) { might_sleep(); if (!(urb && urb->dev && urb->ep)) return; atomic_inc(&urb->reject); /* * Order the write of urb->reject above before the read * of urb->use_count below. Pairs with the barriers in * __usb_hcd_giveback_urb() and usb_hcd_submit_urb(). */ smp_mb__after_atomic(); usb_hcd_unlink_urb(urb, -ENOENT); wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); atomic_dec(&urb->reject); } EXPORT_SYMBOL_GPL(usb_kill_urb); /** * usb_poison_urb - reliably kill a transfer and prevent further use of an URB * @urb: pointer to URB describing a previously submitted request, * may be NULL * * This routine cancels an in-progress request. It is guaranteed that * upon return all completion handlers will have finished and the URB * will be totally idle and cannot be reused. These features make * this an ideal way to stop I/O in a disconnect() callback. * If the request has not already finished or been unlinked * the completion handler will see urb->status == -ENOENT. * * After and while the routine runs, attempts to resubmit the URB will fail * with error -EPERM. Thus even if the URB's completion handler always * tries to resubmit, it will not succeed and the URB will become idle. * * The URB must not be deallocated while this routine is running. In * particular, when a driver calls this routine, it must insure that the * completion handler cannot deallocate the URB. * * This routine may not be used in an interrupt context (such as a bottom * half or a completion handler), or when holding a spinlock, or in other * situations where the caller can't schedule(). * * This routine should not be called by a driver after its disconnect * method has returned. */ void usb_poison_urb(struct urb *urb) { might_sleep(); if (!urb) return; atomic_inc(&urb->reject); /* * Order the write of urb->reject above before the read * of urb->use_count below. Pairs with the barriers in * __usb_hcd_giveback_urb() and usb_hcd_submit_urb(). */ smp_mb__after_atomic(); if (!urb->dev || !urb->ep) return; usb_hcd_unlink_urb(urb, -ENOENT); wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); } EXPORT_SYMBOL_GPL(usb_poison_urb); void usb_unpoison_urb(struct urb *urb) { if (!urb) return; atomic_dec(&urb->reject); } EXPORT_SYMBOL_GPL(usb_unpoison_urb); /** * usb_block_urb - reliably prevent further use of an URB * @urb: pointer to URB to be blocked, may be NULL * * After the routine has run, attempts to resubmit the URB will fail * with error -EPERM. Thus even if the URB's completion handler always * tries to resubmit, it will not succeed and the URB will become idle. * * The URB must not be deallocated while this routine is running. In * particular, when a driver calls this routine, it must insure that the * completion handler cannot deallocate the URB. */ void usb_block_urb(struct urb *urb) { if (!urb) return; atomic_inc(&urb->reject); } EXPORT_SYMBOL_GPL(usb_block_urb); /** * usb_kill_anchored_urbs - kill all URBs associated with an anchor * @anchor: anchor the requests are bound to * * This kills all outstanding URBs starting from the back of the queue, * with guarantee that no completer callbacks will take place from the * anchor after this function returns. * * This routine should not be called by a driver after its disconnect * method has returned. */ void usb_kill_anchored_urbs(struct usb_anchor *anchor) { struct urb *victim; int surely_empty; do { spin_lock_irq(&anchor->lock); while (!list_empty(&anchor->urb_list)) { victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list); /* make sure the URB isn't freed before we kill it */ usb_get_urb(victim); spin_unlock_irq(&anchor->lock); /* this will unanchor the URB */ usb_kill_urb(victim); usb_put_urb(victim); spin_lock_irq(&anchor->lock); } surely_empty = usb_anchor_check_wakeup(anchor); spin_unlock_irq(&anchor->lock); cpu_relax(); } while (!surely_empty); } EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs); /** * usb_poison_anchored_urbs - cease all traffic from an anchor * @anchor: anchor the requests are bound to * * this allows all outstanding URBs to be poisoned starting * from the back of the queue. Newly added URBs will also be * poisoned * * This routine should not be called by a driver after its disconnect * method has returned. */ void usb_poison_anchored_urbs(struct usb_anchor *anchor) { struct urb *victim; int surely_empty; do { spin_lock_irq(&anchor->lock); anchor->poisoned = 1; while (!list_empty(&anchor->urb_list)) { victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list); /* make sure the URB isn't freed before we kill it */ usb_get_urb(victim); spin_unlock_irq(&anchor->lock); /* this will unanchor the URB */ usb_poison_urb(victim); usb_put_urb(victim); spin_lock_irq(&anchor->lock); } surely_empty = usb_anchor_check_wakeup(anchor); spin_unlock_irq(&anchor->lock); cpu_relax(); } while (!surely_empty); } EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs); /** * usb_unpoison_anchored_urbs - let an anchor be used successfully again * @anchor: anchor the requests are bound to * * Reverses the effect of usb_poison_anchored_urbs * the anchor can be used normally after it returns */ void usb_unpoison_anchored_urbs(struct usb_anchor *anchor) { unsigned long flags; struct urb *lazarus; spin_lock_irqsave(&anchor->lock, flags); list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) { usb_unpoison_urb(lazarus); } anchor->poisoned = 0; spin_unlock_irqrestore(&anchor->lock, flags); } EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs); /** * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse * @anchor: anchor the requests are bound to * * this allows all outstanding URBs to be unlinked starting * from the back of the queue. This function is asynchronous. * The unlinking is just triggered. It may happen after this * function has returned. * * This routine should not be called by a driver after its disconnect * method has returned. */ void usb_unlink_anchored_urbs(struct usb_anchor *anchor) { struct urb *victim; while ((victim = usb_get_from_anchor(anchor)) != NULL) { usb_unlink_urb(victim); usb_put_urb(victim); } } EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs); /** * usb_anchor_suspend_wakeups * @anchor: the anchor you want to suspend wakeups on * * Call this to stop the last urb being unanchored from waking up any * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give- * back path to delay waking up until after the completion handler has run. */ void usb_anchor_suspend_wakeups(struct usb_anchor *anchor) { if (anchor) atomic_inc(&anchor->suspend_wakeups); } EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups); /** * usb_anchor_resume_wakeups * @anchor: the anchor you want to resume wakeups on * * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and * wake up any current waiters if the anchor is empty. */ void usb_anchor_resume_wakeups(struct usb_anchor *anchor) { if (!anchor) return; atomic_dec(&anchor->suspend_wakeups); if (usb_anchor_check_wakeup(anchor)) wake_up(&anchor->wait); } EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups); /** * usb_wait_anchor_empty_timeout - wait for an anchor to be unused * @anchor: the anchor you want to become unused * @timeout: how long you are willing to wait in milliseconds * * Call this is you want to be sure all an anchor's * URBs have finished * * Return: Non-zero if the anchor became unused. Zero on timeout. */ int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, unsigned int timeout) { return wait_event_timeout(anchor->wait, usb_anchor_check_wakeup(anchor), msecs_to_jiffies(timeout)); } EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout); /** * usb_get_from_anchor - get an anchor's oldest urb * @anchor: the anchor whose urb you want * * This will take the oldest urb from an anchor, * unanchor and return it * * Return: The oldest urb from @anchor, or %NULL if @anchor has no * urbs associated with it. */ struct urb *usb_get_from_anchor(struct usb_anchor *anchor) { struct urb *victim; unsigned long flags; spin_lock_irqsave(&anchor->lock, flags); if (!list_empty(&anchor->urb_list)) { victim = list_entry(anchor->urb_list.next, struct urb, anchor_list); usb_get_urb(victim); __usb_unanchor_urb(victim, anchor); } else { victim = NULL; } spin_unlock_irqrestore(&anchor->lock, flags); return victim; } EXPORT_SYMBOL_GPL(usb_get_from_anchor); /** * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs * @anchor: the anchor whose urbs you want to unanchor * * use this to get rid of all an anchor's urbs */ void usb_scuttle_anchored_urbs(struct usb_anchor *anchor) { struct urb *victim; unsigned long flags; int surely_empty; do { spin_lock_irqsave(&anchor->lock, flags); while (!list_empty(&anchor->urb_list)) { victim = list_entry(anchor->urb_list.prev, struct urb, anchor_list); __usb_unanchor_urb(victim, anchor); } surely_empty = usb_anchor_check_wakeup(anchor); spin_unlock_irqrestore(&anchor->lock, flags); cpu_relax(); } while (!surely_empty); } EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs); /** * usb_anchor_empty - is an anchor empty * @anchor: the anchor you want to query * * Return: 1 if the anchor has no urbs associated with it. */ int usb_anchor_empty(struct usb_anchor *anchor) { return list_empty(&anchor->urb_list); } EXPORT_SYMBOL_GPL(usb_anchor_empty);
linux-master
drivers/usb/core/urb.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/sysfs.c * * (C) Copyright 2002 David Brownell * (C) Copyright 2002,2004 Greg Kroah-Hartman * (C) Copyright 2002,2004 IBM Corp. * * All of the sysfs file attributes for usb devices and interfaces. * * Released under the GPLv2 only. */ #include <linux/kernel.h> #include <linux/kstrtox.h> #include <linux/string.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/quirks.h> #include <linux/of.h> #include "usb.h" /* Active configuration fields */ #define usb_actconfig_show(field, format_string) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct usb_device *udev; \ struct usb_host_config *actconfig; \ ssize_t rc; \ \ udev = to_usb_device(dev); \ rc = usb_lock_device_interruptible(udev); \ if (rc < 0) \ return -EINTR; \ actconfig = udev->actconfig; \ if (actconfig) \ rc = sysfs_emit(buf, format_string, \ actconfig->desc.field); \ usb_unlock_device(udev); \ return rc; \ } \ #define usb_actconfig_attr(field, format_string) \ usb_actconfig_show(field, format_string) \ static DEVICE_ATTR_RO(field) usb_actconfig_attr(bNumInterfaces, "%2d\n"); usb_actconfig_attr(bmAttributes, "%2x\n"); static ssize_t bMaxPower_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; struct usb_host_config *actconfig; ssize_t rc; udev = to_usb_device(dev); rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; actconfig = udev->actconfig; if (actconfig) rc = sysfs_emit(buf, "%dmA\n", usb_get_max_power(udev, actconfig)); usb_unlock_device(udev); return rc; } static DEVICE_ATTR_RO(bMaxPower); static ssize_t configuration_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; struct usb_host_config *actconfig; ssize_t rc; udev = to_usb_device(dev); rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; actconfig = udev->actconfig; if (actconfig && actconfig->string) rc = sysfs_emit(buf, "%s\n", actconfig->string); usb_unlock_device(udev); return rc; } static DEVICE_ATTR_RO(configuration); /* configuration value is always present, and r/w */ usb_actconfig_show(bConfigurationValue, "%u\n"); static ssize_t bConfigurationValue_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); int config, value, rc; if (sscanf(buf, "%d", &config) != 1 || config < -1 || config > 255) return -EINVAL; rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; value = usb_set_configuration(udev, config); usb_unlock_device(udev); return (value < 0) ? value : count; } static DEVICE_ATTR_IGNORE_LOCKDEP(bConfigurationValue, S_IRUGO | S_IWUSR, bConfigurationValue_show, bConfigurationValue_store); #ifdef CONFIG_OF static ssize_t devspec_show(struct device *dev, struct device_attribute *attr, char *buf) { struct device_node *of_node = dev->of_node; return sysfs_emit(buf, "%pOF\n", of_node); } static DEVICE_ATTR_RO(devspec); #endif /* String fields */ #define usb_string_attr(name) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct usb_device *udev; \ int retval; \ \ udev = to_usb_device(dev); \ retval = usb_lock_device_interruptible(udev); \ if (retval < 0) \ return -EINTR; \ retval = sysfs_emit(buf, "%s\n", udev->name); \ usb_unlock_device(udev); \ return retval; \ } \ static DEVICE_ATTR_RO(name) usb_string_attr(product); usb_string_attr(manufacturer); usb_string_attr(serial); static ssize_t speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; char *speed; udev = to_usb_device(dev); switch (udev->speed) { case USB_SPEED_LOW: speed = "1.5"; break; case USB_SPEED_UNKNOWN: case USB_SPEED_FULL: speed = "12"; break; case USB_SPEED_HIGH: speed = "480"; break; case USB_SPEED_SUPER: speed = "5000"; break; case USB_SPEED_SUPER_PLUS: if (udev->ssp_rate == USB_SSP_GEN_2x2) speed = "20000"; else speed = "10000"; break; default: speed = "unknown"; } return sysfs_emit(buf, "%s\n", speed); } static DEVICE_ATTR_RO(speed); static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->rx_lanes); } static DEVICE_ATTR_RO(rx_lanes); static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->tx_lanes); } static DEVICE_ATTR_RO(tx_lanes); static ssize_t busnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->bus->busnum); } static DEVICE_ATTR_RO(busnum); static ssize_t devnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->devnum); } static DEVICE_ATTR_RO(devnum); static ssize_t devpath_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%s\n", udev->devpath); } static DEVICE_ATTR_RO(devpath); static ssize_t version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; u16 bcdUSB; udev = to_usb_device(dev); bcdUSB = le16_to_cpu(udev->descriptor.bcdUSB); return sysfs_emit(buf, "%2x.%02x\n", bcdUSB >> 8, bcdUSB & 0xff); } static DEVICE_ATTR_RO(version); static ssize_t maxchild_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->maxchild); } static DEVICE_ATTR_RO(maxchild); static ssize_t quirks_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "0x%x\n", udev->quirks); } static DEVICE_ATTR_RO(quirks); static ssize_t avoid_reset_quirk_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", !!(udev->quirks & USB_QUIRK_RESET)); } static ssize_t avoid_reset_quirk_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); int val, rc; if (sscanf(buf, "%d", &val) != 1 || val < 0 || val > 1) return -EINVAL; rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; if (val) udev->quirks |= USB_QUIRK_RESET; else udev->quirks &= ~USB_QUIRK_RESET; usb_unlock_device(udev); return count; } static DEVICE_ATTR_RW(avoid_reset_quirk); static ssize_t urbnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev; udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", atomic_read(&udev->urbnum)); } static DEVICE_ATTR_RO(urbnum); static ssize_t ltm_capable_show(struct device *dev, struct device_attribute *attr, char *buf) { if (usb_device_supports_ltm(to_usb_device(dev))) return sysfs_emit(buf, "%s\n", "yes"); return sysfs_emit(buf, "%s\n", "no"); } static DEVICE_ATTR_RO(ltm_capable); #ifdef CONFIG_PM static ssize_t persist_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->persist_enabled); } static ssize_t persist_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); int value, rc; /* Hubs are always enabled for USB_PERSIST */ if (udev->descriptor.bDeviceClass == USB_CLASS_HUB) return -EPERM; if (sscanf(buf, "%d", &value) != 1) return -EINVAL; rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; udev->persist_enabled = !!value; usb_unlock_device(udev); return count; } static DEVICE_ATTR_RW(persist); static int add_persist_attributes(struct device *dev) { int rc = 0; if (is_usb_device(dev)) { struct usb_device *udev = to_usb_device(dev); /* Hubs are automatically enabled for USB_PERSIST, * no point in creating the attribute file. */ if (udev->descriptor.bDeviceClass != USB_CLASS_HUB) rc = sysfs_add_file_to_group(&dev->kobj, &dev_attr_persist.attr, power_group_name); } return rc; } static void remove_persist_attributes(struct device *dev) { sysfs_remove_file_from_group(&dev->kobj, &dev_attr_persist.attr, power_group_name); } static ssize_t connected_duration_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); return sysfs_emit(buf, "%u\n", jiffies_to_msecs(jiffies - udev->connect_time)); } static DEVICE_ATTR_RO(connected_duration); /* * If the device is resumed, the last time the device was suspended has * been pre-subtracted from active_duration. We add the current time to * get the duration that the device was actually active. * * If the device is suspended, the active_duration is up-to-date. */ static ssize_t active_duration_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); int duration; if (udev->state != USB_STATE_SUSPENDED) duration = jiffies_to_msecs(jiffies + udev->active_duration); else duration = jiffies_to_msecs(udev->active_duration); return sysfs_emit(buf, "%u\n", duration); } static DEVICE_ATTR_RO(active_duration); static ssize_t autosuspend_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", dev->power.autosuspend_delay / 1000); } static ssize_t autosuspend_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; if (sscanf(buf, "%d", &value) != 1 || value >= INT_MAX/1000 || value <= -INT_MAX/1000) return -EINVAL; pm_runtime_set_autosuspend_delay(dev, value * 1000); return count; } static DEVICE_ATTR_RW(autosuspend); static const char on_string[] = "on"; static const char auto_string[] = "auto"; static void warn_level(void) { static int level_warned; if (!level_warned) { level_warned = 1; printk(KERN_WARNING "WARNING! power/level is deprecated; " "use power/control instead\n"); } } static ssize_t level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); const char *p = auto_string; warn_level(); if (udev->state != USB_STATE_SUSPENDED && !udev->dev.power.runtime_auto) p = on_string; return sysfs_emit(buf, "%s\n", p); } static ssize_t level_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); int len = count; char *cp; int rc = count; int rv; warn_level(); cp = memchr(buf, '\n', count); if (cp) len = cp - buf; rv = usb_lock_device_interruptible(udev); if (rv < 0) return -EINTR; if (len == sizeof on_string - 1 && strncmp(buf, on_string, len) == 0) usb_disable_autosuspend(udev); else if (len == sizeof auto_string - 1 && strncmp(buf, auto_string, len) == 0) usb_enable_autosuspend(udev); else rc = -EINVAL; usb_unlock_device(udev); return rc; } static DEVICE_ATTR_RW(level); static ssize_t usb2_hardware_lpm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); const char *p; if (udev->usb2_hw_lpm_allowed == 1) p = "enabled"; else p = "disabled"; return sysfs_emit(buf, "%s\n", p); } static ssize_t usb2_hardware_lpm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); bool value; int ret; ret = usb_lock_device_interruptible(udev); if (ret < 0) return -EINTR; ret = kstrtobool(buf, &value); if (!ret) { udev->usb2_hw_lpm_allowed = value; if (value) ret = usb_enable_usb2_hardware_lpm(udev); else ret = usb_disable_usb2_hardware_lpm(udev); } usb_unlock_device(udev); if (!ret) return count; return ret; } static DEVICE_ATTR_RW(usb2_hardware_lpm); static ssize_t usb2_lpm_l1_timeout_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->l1_params.timeout); } static ssize_t usb2_lpm_l1_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); u16 timeout; if (kstrtou16(buf, 0, &timeout)) return -EINVAL; udev->l1_params.timeout = timeout; return count; } static DEVICE_ATTR_RW(usb2_lpm_l1_timeout); static ssize_t usb2_lpm_besl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); return sysfs_emit(buf, "%d\n", udev->l1_params.besl); } static ssize_t usb2_lpm_besl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); u8 besl; if (kstrtou8(buf, 0, &besl) || besl > 15) return -EINVAL; udev->l1_params.besl = besl; return count; } static DEVICE_ATTR_RW(usb2_lpm_besl); static ssize_t usb3_hardware_lpm_u1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); const char *p; int rc; rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; if (udev->usb3_lpm_u1_enabled) p = "enabled"; else p = "disabled"; usb_unlock_device(udev); return sysfs_emit(buf, "%s\n", p); } static DEVICE_ATTR_RO(usb3_hardware_lpm_u1); static ssize_t usb3_hardware_lpm_u2_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); const char *p; int rc; rc = usb_lock_device_interruptible(udev); if (rc < 0) return -EINTR; if (udev->usb3_lpm_u2_enabled) p = "enabled"; else p = "disabled"; usb_unlock_device(udev); return sysfs_emit(buf, "%s\n", p); } static DEVICE_ATTR_RO(usb3_hardware_lpm_u2); static struct attribute *usb2_hardware_lpm_attr[] = { &dev_attr_usb2_hardware_lpm.attr, &dev_attr_usb2_lpm_l1_timeout.attr, &dev_attr_usb2_lpm_besl.attr, NULL, }; static const struct attribute_group usb2_hardware_lpm_attr_group = { .name = power_group_name, .attrs = usb2_hardware_lpm_attr, }; static struct attribute *usb3_hardware_lpm_attr[] = { &dev_attr_usb3_hardware_lpm_u1.attr, &dev_attr_usb3_hardware_lpm_u2.attr, NULL, }; static const struct attribute_group usb3_hardware_lpm_attr_group = { .name = power_group_name, .attrs = usb3_hardware_lpm_attr, }; static struct attribute *power_attrs[] = { &dev_attr_autosuspend.attr, &dev_attr_level.attr, &dev_attr_connected_duration.attr, &dev_attr_active_duration.attr, NULL, }; static const struct attribute_group power_attr_group = { .name = power_group_name, .attrs = power_attrs, }; static int add_power_attributes(struct device *dev) { int rc = 0; if (is_usb_device(dev)) { struct usb_device *udev = to_usb_device(dev); rc = sysfs_merge_group(&dev->kobj, &power_attr_group); if (udev->usb2_hw_lpm_capable == 1) rc = sysfs_merge_group(&dev->kobj, &usb2_hardware_lpm_attr_group); if ((udev->speed == USB_SPEED_SUPER || udev->speed == USB_SPEED_SUPER_PLUS) && udev->lpm_capable == 1) rc = sysfs_merge_group(&dev->kobj, &usb3_hardware_lpm_attr_group); } return rc; } static void remove_power_attributes(struct device *dev) { sysfs_unmerge_group(&dev->kobj, &usb2_hardware_lpm_attr_group); sysfs_unmerge_group(&dev->kobj, &power_attr_group); } #else #define add_persist_attributes(dev) 0 #define remove_persist_attributes(dev) do {} while (0) #define add_power_attributes(dev) 0 #define remove_power_attributes(dev) do {} while (0) #endif /* CONFIG_PM */ /* Descriptor fields */ #define usb_descriptor_attr_le16(field, format_string) \ static ssize_t \ field##_show(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct usb_device *udev; \ \ udev = to_usb_device(dev); \ return sysfs_emit(buf, format_string, \ le16_to_cpu(udev->descriptor.field)); \ } \ static DEVICE_ATTR_RO(field) usb_descriptor_attr_le16(idVendor, "%04x\n"); usb_descriptor_attr_le16(idProduct, "%04x\n"); usb_descriptor_attr_le16(bcdDevice, "%04x\n"); #define usb_descriptor_attr(field, format_string) \ static ssize_t \ field##_show(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct usb_device *udev; \ \ udev = to_usb_device(dev); \ return sysfs_emit(buf, format_string, udev->descriptor.field); \ } \ static DEVICE_ATTR_RO(field) usb_descriptor_attr(bDeviceClass, "%02x\n"); usb_descriptor_attr(bDeviceSubClass, "%02x\n"); usb_descriptor_attr(bDeviceProtocol, "%02x\n"); usb_descriptor_attr(bNumConfigurations, "%d\n"); usb_descriptor_attr(bMaxPacketSize0, "%d\n"); /* show if the device is authorized (1) or not (0) */ static ssize_t authorized_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *usb_dev = to_usb_device(dev); return sysfs_emit(buf, "%u\n", usb_dev->authorized); } /* * Authorize a device to be used in the system * * Writing a 0 deauthorizes the device, writing a 1 authorizes it. */ static ssize_t authorized_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { ssize_t result; struct usb_device *usb_dev = to_usb_device(dev); unsigned val; result = sscanf(buf, "%u\n", &val); if (result != 1) result = -EINVAL; else if (val == 0) result = usb_deauthorize_device(usb_dev); else result = usb_authorize_device(usb_dev); return result < 0 ? result : size; } static DEVICE_ATTR_IGNORE_LOCKDEP(authorized, S_IRUGO | S_IWUSR, authorized_show, authorized_store); /* "Safely remove a device" */ static ssize_t remove_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); int rc = 0; usb_lock_device(udev); if (udev->state != USB_STATE_NOTATTACHED) { /* To avoid races, first unconfigure and then remove */ usb_set_configuration(udev, -1); rc = usb_remove_device(udev); } if (rc == 0) rc = count; usb_unlock_device(udev); return rc; } static DEVICE_ATTR_IGNORE_LOCKDEP(remove, S_IWUSR, NULL, remove_store); static struct attribute *dev_attrs[] = { /* current configuration's attributes */ &dev_attr_configuration.attr, &dev_attr_bNumInterfaces.attr, &dev_attr_bConfigurationValue.attr, &dev_attr_bmAttributes.attr, &dev_attr_bMaxPower.attr, /* device attributes */ &dev_attr_urbnum.attr, &dev_attr_idVendor.attr, &dev_attr_idProduct.attr, &dev_attr_bcdDevice.attr, &dev_attr_bDeviceClass.attr, &dev_attr_bDeviceSubClass.attr, &dev_attr_bDeviceProtocol.attr, &dev_attr_bNumConfigurations.attr, &dev_attr_bMaxPacketSize0.attr, &dev_attr_speed.attr, &dev_attr_rx_lanes.attr, &dev_attr_tx_lanes.attr, &dev_attr_busnum.attr, &dev_attr_devnum.attr, &dev_attr_devpath.attr, &dev_attr_version.attr, &dev_attr_maxchild.attr, &dev_attr_quirks.attr, &dev_attr_avoid_reset_quirk.attr, &dev_attr_authorized.attr, &dev_attr_remove.attr, &dev_attr_ltm_capable.attr, #ifdef CONFIG_OF &dev_attr_devspec.attr, #endif NULL, }; static const struct attribute_group dev_attr_grp = { .attrs = dev_attrs, }; /* When modifying this list, be sure to modify dev_string_attrs_are_visible() * accordingly. */ static struct attribute *dev_string_attrs[] = { &dev_attr_manufacturer.attr, &dev_attr_product.attr, &dev_attr_serial.attr, NULL }; static umode_t dev_string_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_device *udev = to_usb_device(dev); if (a == &dev_attr_manufacturer.attr) { if (udev->manufacturer == NULL) return 0; } else if (a == &dev_attr_product.attr) { if (udev->product == NULL) return 0; } else if (a == &dev_attr_serial.attr) { if (udev->serial == NULL) return 0; } return a->mode; } static const struct attribute_group dev_string_attr_grp = { .attrs = dev_string_attrs, .is_visible = dev_string_attrs_are_visible, }; const struct attribute_group *usb_device_groups[] = { &dev_attr_grp, &dev_string_attr_grp, NULL }; /* Binary descriptors */ static ssize_t read_descriptors(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct usb_device *udev = to_usb_device(dev); size_t nleft = count; size_t srclen, n; int cfgno; void *src; /* The binary attribute begins with the device descriptor. * Following that are the raw descriptor entries for all the * configurations (config plus subsidiary descriptors). */ for (cfgno = -1; cfgno < udev->descriptor.bNumConfigurations && nleft > 0; ++cfgno) { if (cfgno < 0) { src = &udev->descriptor; srclen = sizeof(struct usb_device_descriptor); } else { src = udev->rawdescriptors[cfgno]; srclen = __le16_to_cpu(udev->config[cfgno].desc. wTotalLength); } if (off < srclen) { n = min(nleft, srclen - (size_t) off); memcpy(buf, src + off, n); nleft -= n; buf += n; off = 0; } else { off -= srclen; } } return count - nleft; } static struct bin_attribute dev_bin_attr_descriptors = { .attr = {.name = "descriptors", .mode = 0444}, .read = read_descriptors, .size = 18 + 65535, /* dev descr + max-size raw descriptor */ }; /* * Show & store the current value of authorized_default */ static ssize_t authorized_default_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *rh_usb_dev = to_usb_device(dev); struct usb_bus *usb_bus = rh_usb_dev->bus; struct usb_hcd *hcd; hcd = bus_to_hcd(usb_bus); return sysfs_emit(buf, "%u\n", hcd->dev_policy); } static ssize_t authorized_default_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { ssize_t result; unsigned int val; struct usb_device *rh_usb_dev = to_usb_device(dev); struct usb_bus *usb_bus = rh_usb_dev->bus; struct usb_hcd *hcd; hcd = bus_to_hcd(usb_bus); result = sscanf(buf, "%u\n", &val); if (result == 1) { hcd->dev_policy = val <= USB_DEVICE_AUTHORIZE_INTERNAL ? val : USB_DEVICE_AUTHORIZE_ALL; result = size; } else { result = -EINVAL; } return result; } static DEVICE_ATTR_RW(authorized_default); /* * interface_authorized_default_show - show default authorization status * for USB interfaces * * note: interface_authorized_default is the default value * for initializing the authorized attribute of interfaces */ static ssize_t interface_authorized_default_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *usb_dev = to_usb_device(dev); struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); return sysfs_emit(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); } /* * interface_authorized_default_store - store default authorization status * for USB interfaces * * note: interface_authorized_default is the default value * for initializing the authorized attribute of interfaces */ static ssize_t interface_authorized_default_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *usb_dev = to_usb_device(dev); struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); int rc = count; bool val; if (kstrtobool(buf, &val) != 0) return -EINVAL; if (val) set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); else clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); return rc; } static DEVICE_ATTR_RW(interface_authorized_default); /* Group all the USB bus attributes */ static struct attribute *usb_bus_attrs[] = { &dev_attr_authorized_default.attr, &dev_attr_interface_authorized_default.attr, NULL, }; static const struct attribute_group usb_bus_attr_group = { .name = NULL, /* we want them in the same directory */ .attrs = usb_bus_attrs, }; static int add_default_authorized_attributes(struct device *dev) { int rc = 0; if (is_usb_device(dev)) rc = sysfs_create_group(&dev->kobj, &usb_bus_attr_group); return rc; } static void remove_default_authorized_attributes(struct device *dev) { if (is_usb_device(dev)) { sysfs_remove_group(&dev->kobj, &usb_bus_attr_group); } } int usb_create_sysfs_dev_files(struct usb_device *udev) { struct device *dev = &udev->dev; int retval; retval = device_create_bin_file(dev, &dev_bin_attr_descriptors); if (retval) goto error; retval = add_persist_attributes(dev); if (retval) goto error; retval = add_power_attributes(dev); if (retval) goto error; if (is_root_hub(udev)) { retval = add_default_authorized_attributes(dev); if (retval) goto error; } return retval; error: usb_remove_sysfs_dev_files(udev); return retval; } void usb_remove_sysfs_dev_files(struct usb_device *udev) { struct device *dev = &udev->dev; if (is_root_hub(udev)) remove_default_authorized_attributes(dev); remove_power_attributes(dev); remove_persist_attributes(dev); device_remove_bin_file(dev, &dev_bin_attr_descriptors); } /* Interface Association Descriptor fields */ #define usb_intf_assoc_attr(field, format_string) \ static ssize_t \ iad_##field##_show(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct usb_interface *intf = to_usb_interface(dev); \ \ return sysfs_emit(buf, format_string, \ intf->intf_assoc->field); \ } \ static DEVICE_ATTR_RO(iad_##field) usb_intf_assoc_attr(bFirstInterface, "%02x\n"); usb_intf_assoc_attr(bInterfaceCount, "%02d\n"); usb_intf_assoc_attr(bFunctionClass, "%02x\n"); usb_intf_assoc_attr(bFunctionSubClass, "%02x\n"); usb_intf_assoc_attr(bFunctionProtocol, "%02x\n"); /* Interface fields */ #define usb_intf_attr(field, format_string) \ static ssize_t \ field##_show(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct usb_interface *intf = to_usb_interface(dev); \ \ return sysfs_emit(buf, format_string, \ intf->cur_altsetting->desc.field); \ } \ static DEVICE_ATTR_RO(field) usb_intf_attr(bInterfaceNumber, "%02x\n"); usb_intf_attr(bAlternateSetting, "%2d\n"); usb_intf_attr(bNumEndpoints, "%02x\n"); usb_intf_attr(bInterfaceClass, "%02x\n"); usb_intf_attr(bInterfaceSubClass, "%02x\n"); usb_intf_attr(bInterfaceProtocol, "%02x\n"); static ssize_t interface_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf; char *string; intf = to_usb_interface(dev); string = READ_ONCE(intf->cur_altsetting->string); if (!string) return 0; return sysfs_emit(buf, "%s\n", string); } static DEVICE_ATTR_RO(interface); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf; struct usb_device *udev; struct usb_host_interface *alt; intf = to_usb_interface(dev); udev = interface_to_usbdev(intf); alt = READ_ONCE(intf->cur_altsetting); return sysfs_emit(buf, "usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02X" "ic%02Xisc%02Xip%02Xin%02X\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct), le16_to_cpu(udev->descriptor.bcdDevice), udev->descriptor.bDeviceClass, udev->descriptor.bDeviceSubClass, udev->descriptor.bDeviceProtocol, alt->desc.bInterfaceClass, alt->desc.bInterfaceSubClass, alt->desc.bInterfaceProtocol, alt->desc.bInterfaceNumber); } static DEVICE_ATTR_RO(modalias); static ssize_t supports_autosuspend_show(struct device *dev, struct device_attribute *attr, char *buf) { int s; s = device_lock_interruptible(dev); if (s < 0) return -EINTR; /* Devices will be autosuspended even when an interface isn't claimed */ s = (!dev->driver || to_usb_driver(dev->driver)->supports_autosuspend); device_unlock(dev); return sysfs_emit(buf, "%u\n", s); } static DEVICE_ATTR_RO(supports_autosuspend); /* * interface_authorized_show - show authorization status of an USB interface * 1 is authorized, 0 is deauthorized */ static ssize_t interface_authorized_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); return sysfs_emit(buf, "%u\n", intf->authorized); } /* * interface_authorized_store - authorize or deauthorize an USB interface */ static ssize_t interface_authorized_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); bool val; if (kstrtobool(buf, &val) != 0) return -EINVAL; if (val) usb_authorize_interface(intf); else usb_deauthorize_interface(intf); return count; } static struct device_attribute dev_attr_interface_authorized = __ATTR(authorized, S_IRUGO | S_IWUSR, interface_authorized_show, interface_authorized_store); static struct attribute *intf_attrs[] = { &dev_attr_bInterfaceNumber.attr, &dev_attr_bAlternateSetting.attr, &dev_attr_bNumEndpoints.attr, &dev_attr_bInterfaceClass.attr, &dev_attr_bInterfaceSubClass.attr, &dev_attr_bInterfaceProtocol.attr, &dev_attr_modalias.attr, &dev_attr_supports_autosuspend.attr, &dev_attr_interface_authorized.attr, NULL, }; static const struct attribute_group intf_attr_grp = { .attrs = intf_attrs, }; static struct attribute *intf_assoc_attrs[] = { &dev_attr_iad_bFirstInterface.attr, &dev_attr_iad_bInterfaceCount.attr, &dev_attr_iad_bFunctionClass.attr, &dev_attr_iad_bFunctionSubClass.attr, &dev_attr_iad_bFunctionProtocol.attr, NULL, }; static umode_t intf_assoc_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_interface *intf = to_usb_interface(dev); if (intf->intf_assoc == NULL) return 0; return a->mode; } static const struct attribute_group intf_assoc_attr_grp = { .attrs = intf_assoc_attrs, .is_visible = intf_assoc_attrs_are_visible, }; static ssize_t wireless_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_interface *intf; intf = to_usb_interface(dev); if (intf->wireless_status == USB_WIRELESS_STATUS_DISCONNECTED) return sysfs_emit(buf, "%s\n", "disconnected"); return sysfs_emit(buf, "%s\n", "connected"); } static DEVICE_ATTR_RO(wireless_status); static struct attribute *intf_wireless_status_attrs[] = { &dev_attr_wireless_status.attr, NULL }; static umode_t intf_wireless_status_attr_is_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_interface *intf = to_usb_interface(dev); if (a != &dev_attr_wireless_status.attr || intf->wireless_status != USB_WIRELESS_STATUS_NA) return a->mode; return 0; } static const struct attribute_group intf_wireless_status_attr_grp = { .attrs = intf_wireless_status_attrs, .is_visible = intf_wireless_status_attr_is_visible, }; int usb_update_wireless_status_attr(struct usb_interface *intf) { struct device *dev = &intf->dev; int ret; ret = sysfs_update_group(&dev->kobj, &intf_wireless_status_attr_grp); if (ret < 0) return ret; sysfs_notify(&dev->kobj, NULL, "wireless_status"); kobject_uevent(&dev->kobj, KOBJ_CHANGE); return 0; } const struct attribute_group *usb_interface_groups[] = { &intf_attr_grp, &intf_assoc_attr_grp, &intf_wireless_status_attr_grp, NULL }; void usb_create_sysfs_intf_files(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_interface *alt = intf->cur_altsetting; if (intf->sysfs_files_created || intf->unregistering) return; if (!alt->string && !(udev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) alt->string = usb_cache_string(udev, alt->desc.iInterface); if (alt->string && device_create_file(&intf->dev, &dev_attr_interface)) { /* This is not a serious error */ dev_dbg(&intf->dev, "interface string descriptor file not created\n"); } intf->sysfs_files_created = 1; } void usb_remove_sysfs_intf_files(struct usb_interface *intf) { if (!intf->sysfs_files_created) return; device_remove_file(&intf->dev, &dev_attr_interface); intf->sysfs_files_created = 0; }
linux-master
drivers/usb/core/sysfs.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/usb.c * * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2004 * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * (C) Copyright Greg Kroah-Hartman 2002-2003 * * Released under the GPLv2 only. * * NOTE! This is not actually a driver at all, rather this is * just a collection of helper routines that implement the * generic USB things that the real drivers can use.. * * Think of this as a "USB library" rather than anything else, * with no callbacks. Callbacks are evil. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/of.h> #include <linux/string.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <linux/debugfs.h> #include <linux/usb/of.h> #include <asm/io.h> #include <linux/scatterlist.h> #include <linux/mm.h> #include <linux/dma-mapping.h> #include "hub.h" const char *usbcore_name = "usbcore"; static bool nousb; /* Disable USB when built into kernel image */ module_param(nousb, bool, 0444); /* * for external read access to <nousb> */ int usb_disabled(void) { return nousb; } EXPORT_SYMBOL_GPL(usb_disabled); #ifdef CONFIG_PM /* Default delay value, in seconds */ static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); #else #define usb_autosuspend_delay 0 #endif static bool match_endpoint(struct usb_endpoint_descriptor *epd, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { switch (usb_endpoint_type(epd)) { case USB_ENDPOINT_XFER_BULK: if (usb_endpoint_dir_in(epd)) { if (bulk_in && !*bulk_in) { *bulk_in = epd; break; } } else { if (bulk_out && !*bulk_out) { *bulk_out = epd; break; } } return false; case USB_ENDPOINT_XFER_INT: if (usb_endpoint_dir_in(epd)) { if (int_in && !*int_in) { *int_in = epd; break; } } else { if (int_out && !*int_out) { *int_out = epd; break; } } return false; default: return false; } return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && (!int_in || *int_in) && (!int_out || *int_out); } /** * usb_find_common_endpoints() -- look up common endpoint descriptors * @alt: alternate setting to search * @bulk_in: pointer to descriptor pointer, or NULL * @bulk_out: pointer to descriptor pointer, or NULL * @int_in: pointer to descriptor pointer, or NULL * @int_out: pointer to descriptor pointer, or NULL * * Search the alternate setting's endpoint descriptors for the first bulk-in, * bulk-out, interrupt-in and interrupt-out endpoints and return them in the * provided pointers (unless they are NULL). * * If a requested endpoint is not found, the corresponding pointer is set to * NULL. * * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. */ int usb_find_common_endpoints(struct usb_host_interface *alt, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { struct usb_endpoint_descriptor *epd; int i; if (bulk_in) *bulk_in = NULL; if (bulk_out) *bulk_out = NULL; if (int_in) *int_in = NULL; if (int_out) *int_out = NULL; for (i = 0; i < alt->desc.bNumEndpoints; ++i) { epd = &alt->endpoint[i].desc; if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) return 0; } return -ENXIO; } EXPORT_SYMBOL_GPL(usb_find_common_endpoints); /** * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors * @alt: alternate setting to search * @bulk_in: pointer to descriptor pointer, or NULL * @bulk_out: pointer to descriptor pointer, or NULL * @int_in: pointer to descriptor pointer, or NULL * @int_out: pointer to descriptor pointer, or NULL * * Search the alternate setting's endpoint descriptors for the last bulk-in, * bulk-out, interrupt-in and interrupt-out endpoints and return them in the * provided pointers (unless they are NULL). * * If a requested endpoint is not found, the corresponding pointer is set to * NULL. * * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. */ int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, struct usb_endpoint_descriptor **bulk_in, struct usb_endpoint_descriptor **bulk_out, struct usb_endpoint_descriptor **int_in, struct usb_endpoint_descriptor **int_out) { struct usb_endpoint_descriptor *epd; int i; if (bulk_in) *bulk_in = NULL; if (bulk_out) *bulk_out = NULL; if (int_in) *int_in = NULL; if (int_out) *int_out = NULL; for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { epd = &alt->endpoint[i].desc; if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) return 0; } return -ENXIO; } EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); /** * usb_find_endpoint() - Given an endpoint address, search for the endpoint's * usb_host_endpoint structure in an interface's current altsetting. * @intf: the interface whose current altsetting should be searched * @ep_addr: the endpoint address (number and direction) to find * * Search the altsetting's list of endpoints for one with the specified address. * * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise. */ static const struct usb_host_endpoint *usb_find_endpoint( const struct usb_interface *intf, unsigned int ep_addr) { int n; const struct usb_host_endpoint *ep; n = intf->cur_altsetting->desc.bNumEndpoints; ep = intf->cur_altsetting->endpoint; for (; n > 0; (--n, ++ep)) { if (ep->desc.bEndpointAddress == ep_addr) return ep; } return NULL; } /** * usb_check_bulk_endpoints - Check whether an interface's current altsetting * contains a set of bulk endpoints with the given addresses. * @intf: the interface whose current altsetting should be searched * @ep_addrs: 0-terminated array of the endpoint addresses (number and * direction) to look for * * Search for endpoints with the specified addresses and check their types. * * Return: %true if all the endpoints are found and are bulk, %false otherwise. */ bool usb_check_bulk_endpoints( const struct usb_interface *intf, const u8 *ep_addrs) { const struct usb_host_endpoint *ep; for (; *ep_addrs; ++ep_addrs) { ep = usb_find_endpoint(intf, *ep_addrs); if (!ep || !usb_endpoint_xfer_bulk(&ep->desc)) return false; } return true; } EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints); /** * usb_check_int_endpoints - Check whether an interface's current altsetting * contains a set of interrupt endpoints with the given addresses. * @intf: the interface whose current altsetting should be searched * @ep_addrs: 0-terminated array of the endpoint addresses (number and * direction) to look for * * Search for endpoints with the specified addresses and check their types. * * Return: %true if all the endpoints are found and are interrupt, * %false otherwise. */ bool usb_check_int_endpoints( const struct usb_interface *intf, const u8 *ep_addrs) { const struct usb_host_endpoint *ep; for (; *ep_addrs; ++ep_addrs) { ep = usb_find_endpoint(intf, *ep_addrs); if (!ep || !usb_endpoint_xfer_int(&ep->desc)) return false; } return true; } EXPORT_SYMBOL_GPL(usb_check_int_endpoints); /** * usb_find_alt_setting() - Given a configuration, find the alternate setting * for the given interface. * @config: the configuration to search (not necessarily the current config). * @iface_num: interface number to search in * @alt_num: alternate interface setting number to search for. * * Search the configuration's interface cache for the given alt setting. * * Return: The alternate setting, if found. %NULL otherwise. */ struct usb_host_interface *usb_find_alt_setting( struct usb_host_config *config, unsigned int iface_num, unsigned int alt_num) { struct usb_interface_cache *intf_cache = NULL; int i; if (!config) return NULL; for (i = 0; i < config->desc.bNumInterfaces; i++) { if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber == iface_num) { intf_cache = config->intf_cache[i]; break; } } if (!intf_cache) return NULL; for (i = 0; i < intf_cache->num_altsetting; i++) if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) return &intf_cache->altsetting[i]; printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " "config %u\n", alt_num, iface_num, config->desc.bConfigurationValue); return NULL; } EXPORT_SYMBOL_GPL(usb_find_alt_setting); /** * usb_ifnum_to_if - get the interface object with a given interface number * @dev: the device whose current configuration is considered * @ifnum: the desired interface * * This walks the device descriptor for the currently active configuration * to find the interface object with the particular interface number. * * Note that configuration descriptors are not required to assign interface * numbers sequentially, so that it would be incorrect to assume that * the first interface in that descriptor corresponds to interface zero. * This routine helps device drivers avoid such mistakes. * However, you should make sure that you do the right thing with any * alternate settings available for this interfaces. * * Don't call this function unless you are bound to one of the interfaces * on this device or you have locked the device! * * Return: A pointer to the interface that has @ifnum as interface number, * if found. %NULL otherwise. */ struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, unsigned ifnum) { struct usb_host_config *config = dev->actconfig; int i; if (!config) return NULL; for (i = 0; i < config->desc.bNumInterfaces; i++) if (config->interface[i]->altsetting[0] .desc.bInterfaceNumber == ifnum) return config->interface[i]; return NULL; } EXPORT_SYMBOL_GPL(usb_ifnum_to_if); /** * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. * @intf: the interface containing the altsetting in question * @altnum: the desired alternate setting number * * This searches the altsetting array of the specified interface for * an entry with the correct bAlternateSetting value. * * Note that altsettings need not be stored sequentially by number, so * it would be incorrect to assume that the first altsetting entry in * the array corresponds to altsetting zero. This routine helps device * drivers avoid such mistakes. * * Don't call this function unless you are bound to the intf interface * or you have locked the device! * * Return: A pointer to the entry of the altsetting array of @intf that * has @altnum as the alternate setting number. %NULL if not found. */ struct usb_host_interface *usb_altnum_to_altsetting( const struct usb_interface *intf, unsigned int altnum) { int i; for (i = 0; i < intf->num_altsetting; i++) { if (intf->altsetting[i].desc.bAlternateSetting == altnum) return &intf->altsetting[i]; } return NULL; } EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); struct find_interface_arg { int minor; struct device_driver *drv; }; static int __find_interface(struct device *dev, const void *data) { const struct find_interface_arg *arg = data; struct usb_interface *intf; if (!is_usb_interface(dev)) return 0; if (dev->driver != arg->drv) return 0; intf = to_usb_interface(dev); return intf->minor == arg->minor; } /** * usb_find_interface - find usb_interface pointer for driver and device * @drv: the driver whose current configuration is considered * @minor: the minor number of the desired device * * This walks the bus device list and returns a pointer to the interface * with the matching minor and driver. Note, this only works for devices * that share the USB major number. * * Return: A pointer to the interface with the matching major and @minor. */ struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) { struct find_interface_arg argb; struct device *dev; argb.minor = minor; argb.drv = &drv->drvwrap.driver; dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); /* Drop reference count from bus_find_device */ put_device(dev); return dev ? to_usb_interface(dev) : NULL; } EXPORT_SYMBOL_GPL(usb_find_interface); struct each_dev_arg { void *data; int (*fn)(struct usb_device *, void *); }; static int __each_dev(struct device *dev, void *data) { struct each_dev_arg *arg = (struct each_dev_arg *)data; /* There are struct usb_interface on the same bus, filter them out */ if (!is_usb_device(dev)) return 0; return arg->fn(to_usb_device(dev), arg->data); } /** * usb_for_each_dev - iterate over all USB devices in the system * @data: data pointer that will be handed to the callback function * @fn: callback function to be called for each USB device * * Iterate over all USB devices and call @fn for each, passing it @data. If it * returns anything other than 0, we break the iteration prematurely and return * that value. */ int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) { struct each_dev_arg arg = {data, fn}; return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); } EXPORT_SYMBOL_GPL(usb_for_each_dev); /** * usb_release_dev - free a usb device structure when all users of it are finished. * @dev: device that's been disconnected * * Will be called only by the device core when all users of this usb device are * done. */ static void usb_release_dev(struct device *dev) { struct usb_device *udev; struct usb_hcd *hcd; udev = to_usb_device(dev); hcd = bus_to_hcd(udev->bus); usb_destroy_configuration(udev); usb_release_bos_descriptor(udev); of_node_put(dev->of_node); usb_put_hcd(hcd); kfree(udev->product); kfree(udev->manufacturer); kfree(udev->serial); kfree(udev); } static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct usb_device *usb_dev; usb_dev = to_usb_device(dev); if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) return -ENOMEM; if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) return -ENOMEM; return 0; } #ifdef CONFIG_PM /* USB device Power-Management thunks. * There's no need to distinguish here between quiescing a USB device * and powering it down; the generic_suspend() routine takes care of * it by skipping the usb_port_suspend() call for a quiesce. And for * USB interfaces there's no difference at all. */ static int usb_dev_prepare(struct device *dev) { return 0; /* Implement eventually? */ } static void usb_dev_complete(struct device *dev) { /* Currently used only for rebinding interfaces */ usb_resume_complete(dev); } static int usb_dev_suspend(struct device *dev) { return usb_suspend(dev, PMSG_SUSPEND); } static int usb_dev_resume(struct device *dev) { return usb_resume(dev, PMSG_RESUME); } static int usb_dev_freeze(struct device *dev) { return usb_suspend(dev, PMSG_FREEZE); } static int usb_dev_thaw(struct device *dev) { return usb_resume(dev, PMSG_THAW); } static int usb_dev_poweroff(struct device *dev) { return usb_suspend(dev, PMSG_HIBERNATE); } static int usb_dev_restore(struct device *dev) { return usb_resume(dev, PMSG_RESTORE); } static const struct dev_pm_ops usb_device_pm_ops = { .prepare = usb_dev_prepare, .complete = usb_dev_complete, .suspend = usb_dev_suspend, .resume = usb_dev_resume, .freeze = usb_dev_freeze, .thaw = usb_dev_thaw, .poweroff = usb_dev_poweroff, .restore = usb_dev_restore, .runtime_suspend = usb_runtime_suspend, .runtime_resume = usb_runtime_resume, .runtime_idle = usb_runtime_idle, }; #endif /* CONFIG_PM */ static char *usb_devnode(const struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid) { const struct usb_device *usb_dev; usb_dev = to_usb_device(dev); return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", usb_dev->bus->busnum, usb_dev->devnum); } struct device_type usb_device_type = { .name = "usb_device", .release = usb_release_dev, .uevent = usb_dev_uevent, .devnode = usb_devnode, #ifdef CONFIG_PM .pm = &usb_device_pm_ops, #endif }; static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) { struct usb_hub *hub; if (!dev->parent) return true; /* Root hub always ok [and always wired] */ switch (hcd->dev_policy) { case USB_DEVICE_AUTHORIZE_NONE: default: return false; case USB_DEVICE_AUTHORIZE_ALL: return true; case USB_DEVICE_AUTHORIZE_INTERNAL: hub = usb_hub_to_struct_hub(dev->parent); return hub->ports[dev->portnum - 1]->connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED; } } /** * usb_alloc_dev - usb device constructor (usbcore-internal) * @parent: hub to which device is connected; null to allocate a root hub * @bus: bus used to access the device * @port1: one-based index of port; ignored for root hubs * * Context: task context, might sleep. * * Only hub drivers (including virtual root hub drivers for host * controllers) should ever call this. * * This call may not be used in a non-sleeping context. * * Return: On success, a pointer to the allocated usb device. %NULL on * failure. */ struct usb_device *usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1) { struct usb_device *dev; struct usb_hcd *usb_hcd = bus_to_hcd(bus); unsigned raw_port = port1; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; if (!usb_get_hcd(usb_hcd)) { kfree(dev); return NULL; } /* Root hubs aren't true devices, so don't allocate HCD resources */ if (usb_hcd->driver->alloc_dev && parent && !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { usb_put_hcd(bus_to_hcd(bus)); kfree(dev); return NULL; } device_initialize(&dev->dev); dev->dev.bus = &usb_bus_type; dev->dev.type = &usb_device_type; dev->dev.groups = usb_device_groups; set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); dev->state = USB_STATE_ATTACHED; dev->lpm_disable_count = 1; atomic_set(&dev->urbnum, 0); INIT_LIST_HEAD(&dev->ep0.urb_list); dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; /* ep0 maxpacket comes later, from device descriptor */ usb_enable_endpoint(dev, &dev->ep0, false); dev->can_submit = 1; /* Save readable and stable topology id, distinguishing devices * by location for diagnostics, tools, driver model, etc. The * string is a path along hub ports, from the root. Each device's * dev->devpath will be stable until USB is re-cabled, and hubs * are often labeled with these port numbers. The name isn't * as stable: bus->busnum changes easily from modprobe order, * cardbus or pci hotplugging, and so on. */ if (unlikely(!parent)) { dev->devpath[0] = '0'; dev->route = 0; dev->dev.parent = bus->controller; device_set_of_node_from_dev(&dev->dev, bus->sysdev); dev_set_name(&dev->dev, "usb%d", bus->busnum); } else { /* match any labeling on the hubs; it's one-based */ if (parent->devpath[0] == '0') { snprintf(dev->devpath, sizeof dev->devpath, "%d", port1); /* Root ports are not counted in route string */ dev->route = 0; } else { snprintf(dev->devpath, sizeof dev->devpath, "%s.%d", parent->devpath, port1); /* Route string assumes hubs have less than 16 ports */ if (port1 < 15) dev->route = parent->route + (port1 << ((parent->level - 1)*4)); else dev->route = parent->route + (15 << ((parent->level - 1)*4)); } dev->dev.parent = &parent->dev; dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); if (!parent->parent) { /* device under root hub's port */ raw_port = usb_hcd_find_raw_port_number(usb_hcd, port1); } dev->dev.of_node = usb_of_get_device_node(parent, raw_port); /* hub driver sets up TT records */ } dev->portnum = port1; dev->bus = bus; dev->parent = parent; INIT_LIST_HEAD(&dev->filelist); #ifdef CONFIG_PM pm_runtime_set_autosuspend_delay(&dev->dev, usb_autosuspend_delay * 1000); dev->connect_time = jiffies; dev->active_duration = -jiffies; #endif dev->authorized = usb_dev_authorized(dev, usb_hcd); return dev; } EXPORT_SYMBOL_GPL(usb_alloc_dev); /** * usb_get_dev - increments the reference count of the usb device structure * @dev: the device being referenced * * Each live reference to a device should be refcounted. * * Drivers for USB interfaces should normally record such references in * their probe() methods, when they bind to an interface, and release * them by calling usb_put_dev(), in their disconnect() methods. * However, if a driver does not access the usb_device structure after * its disconnect() method returns then refcounting is not necessary, * because the USB core guarantees that a usb_device will not be * deallocated until after all of its interface drivers have been unbound. * * Return: A pointer to the device with the incremented reference counter. */ struct usb_device *usb_get_dev(struct usb_device *dev) { if (dev) get_device(&dev->dev); return dev; } EXPORT_SYMBOL_GPL(usb_get_dev); /** * usb_put_dev - release a use of the usb device structure * @dev: device that's been disconnected * * Must be called when a user of a device is finished with it. When the last * user of the device calls this function, the memory of the device is freed. */ void usb_put_dev(struct usb_device *dev) { if (dev) put_device(&dev->dev); } EXPORT_SYMBOL_GPL(usb_put_dev); /** * usb_get_intf - increments the reference count of the usb interface structure * @intf: the interface being referenced * * Each live reference to a interface must be refcounted. * * Drivers for USB interfaces should normally record such references in * their probe() methods, when they bind to an interface, and release * them by calling usb_put_intf(), in their disconnect() methods. * However, if a driver does not access the usb_interface structure after * its disconnect() method returns then refcounting is not necessary, * because the USB core guarantees that a usb_interface will not be * deallocated until after its driver has been unbound. * * Return: A pointer to the interface with the incremented reference counter. */ struct usb_interface *usb_get_intf(struct usb_interface *intf) { if (intf) get_device(&intf->dev); return intf; } EXPORT_SYMBOL_GPL(usb_get_intf); /** * usb_put_intf - release a use of the usb interface structure * @intf: interface that's been decremented * * Must be called when a user of an interface is finished with it. When the * last user of the interface calls this function, the memory of the interface * is freed. */ void usb_put_intf(struct usb_interface *intf) { if (intf) put_device(&intf->dev); } EXPORT_SYMBOL_GPL(usb_put_intf); /** * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint * @intf: the usb interface * * While a USB device cannot perform DMA operations by itself, many USB * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint * for the given USB interface, if any. The returned device structure must be * released with put_device(). * * See also usb_get_dma_device(). * * Returns: A reference to the usb interface's DMA endpoint; or NULL if none * exists. */ struct device *usb_intf_get_dma_device(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct device *dmadev; if (!udev->bus) return NULL; dmadev = get_device(udev->bus->sysdev); if (!dmadev || !dmadev->dma_mask) { put_device(dmadev); return NULL; } return dmadev; } EXPORT_SYMBOL_GPL(usb_intf_get_dma_device); /* USB device locking * * USB devices and interfaces are locked using the semaphore in their * embedded struct device. The hub driver guarantees that whenever a * device is connected or disconnected, drivers are called with the * USB device locked as well as their particular interface. * * Complications arise when several devices are to be locked at the same * time. Only hub-aware drivers that are part of usbcore ever have to * do this; nobody else needs to worry about it. The rule for locking * is simple: * * When locking both a device and its parent, always lock the * parent first. */ /** * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure * @udev: device that's being locked * @iface: interface bound to the driver making the request (optional) * * Attempts to acquire the device lock, but fails if the device is * NOTATTACHED or SUSPENDED, or if iface is specified and the interface * is neither BINDING nor BOUND. Rather than sleeping to wait for the * lock, the routine polls repeatedly. This is to prevent deadlock with * disconnect; in some drivers (such as usb-storage) the disconnect() * or suspend() method will block waiting for a device reset to complete. * * Return: A negative error code for failure, otherwise 0. */ int usb_lock_device_for_reset(struct usb_device *udev, const struct usb_interface *iface) { unsigned long jiffies_expire = jiffies + HZ; if (udev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (udev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; if (iface && (iface->condition == USB_INTERFACE_UNBINDING || iface->condition == USB_INTERFACE_UNBOUND)) return -EINTR; while (!usb_trylock_device(udev)) { /* If we can't acquire the lock after waiting one second, * we're probably deadlocked */ if (time_after(jiffies, jiffies_expire)) return -EBUSY; msleep(15); if (udev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (udev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; if (iface && (iface->condition == USB_INTERFACE_UNBINDING || iface->condition == USB_INTERFACE_UNBOUND)) return -EINTR; } return 0; } EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); /** * usb_get_current_frame_number - return current bus frame number * @dev: the device whose bus is being queried * * Return: The current frame number for the USB host controller used * with the given USB device. This can be used when scheduling * isochronous requests. * * Note: Different kinds of host controller have different "scheduling * horizons". While one type might support scheduling only 32 frames * into the future, others could support scheduling up to 1024 frames * into the future. * */ int usb_get_current_frame_number(struct usb_device *dev) { return usb_hcd_get_frame_number(dev); } EXPORT_SYMBOL_GPL(usb_get_current_frame_number); /*-------------------------------------------------------------------*/ /* * __usb_get_extra_descriptor() finds a descriptor of specific type in the * extra field of the interface and endpoint descriptor structs. */ int __usb_get_extra_descriptor(char *buffer, unsigned size, unsigned char type, void **ptr, size_t minsize) { struct usb_descriptor_header *header; while (size >= sizeof(struct usb_descriptor_header)) { header = (struct usb_descriptor_header *)buffer; if (header->bLength < 2 || header->bLength > size) { printk(KERN_ERR "%s: bogus descriptor, type %d length %d\n", usbcore_name, header->bDescriptorType, header->bLength); return -1; } if (header->bDescriptorType == type && header->bLength >= minsize) { *ptr = header; return 0; } buffer += header->bLength; size -= header->bLength; } return -1; } EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); /** * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP * @dev: device the buffer will be used with * @size: requested buffer size * @mem_flags: affect whether allocation may block * @dma: used to return DMA address of buffer * * Return: Either null (indicating no buffer could be allocated), or the * cpu-space pointer to a buffer that may be used to perform DMA to the * specified device. Such cpu-space buffers are returned along with the DMA * address (through the pointer provided). * * Note: * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU * hardware during URB completion/resubmit. The implementation varies between * platforms, depending on details of how DMA will work to this device. * Using these buffers also eliminates cacheline sharing problems on * architectures where CPU caches are not DMA-coherent. On systems without * bus-snooping caches, these buffers are uncached. * * When the buffer is no longer used, free it with usb_free_coherent(). */ void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, dma_addr_t *dma) { if (!dev || !dev->bus) return NULL; return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); } EXPORT_SYMBOL_GPL(usb_alloc_coherent); /** * usb_free_coherent - free memory allocated with usb_alloc_coherent() * @dev: device the buffer was used with * @size: requested buffer size * @addr: CPU address of buffer * @dma: DMA address of buffer * * This reclaims an I/O buffer, letting it be reused. The memory must have * been allocated using usb_alloc_coherent(), and the parameters must match * those provided in that allocation request. */ void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma) { if (!dev || !dev->bus) return; if (!addr) return; hcd_buffer_free(dev->bus, size, addr, dma); } EXPORT_SYMBOL_GPL(usb_free_coherent); /* * Notifications of device and interface registration */ static int usb_bus_notify(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; switch (action) { case BUS_NOTIFY_ADD_DEVICE: if (dev->type == &usb_device_type) (void) usb_create_sysfs_dev_files(to_usb_device(dev)); else if (dev->type == &usb_if_device_type) usb_create_sysfs_intf_files(to_usb_interface(dev)); break; case BUS_NOTIFY_DEL_DEVICE: if (dev->type == &usb_device_type) usb_remove_sysfs_dev_files(to_usb_device(dev)); else if (dev->type == &usb_if_device_type) usb_remove_sysfs_intf_files(to_usb_interface(dev)); break; } return 0; } static struct notifier_block usb_bus_nb = { .notifier_call = usb_bus_notify, }; static void usb_debugfs_init(void) { debugfs_create_file("devices", 0444, usb_debug_root, NULL, &usbfs_devices_fops); } static void usb_debugfs_cleanup(void) { debugfs_lookup_and_remove("devices", usb_debug_root); } /* * Init */ static int __init usb_init(void) { int retval; if (usb_disabled()) { pr_info("%s: USB support disabled\n", usbcore_name); return 0; } usb_init_pool_max(); usb_debugfs_init(); usb_acpi_register(); retval = bus_register(&usb_bus_type); if (retval) goto bus_register_failed; retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); if (retval) goto bus_notifier_failed; retval = usb_major_init(); if (retval) goto major_init_failed; retval = class_register(&usbmisc_class); if (retval) goto class_register_failed; retval = usb_register(&usbfs_driver); if (retval) goto driver_register_failed; retval = usb_devio_init(); if (retval) goto usb_devio_init_failed; retval = usb_hub_init(); if (retval) goto hub_init_failed; retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); if (!retval) goto out; usb_hub_cleanup(); hub_init_failed: usb_devio_cleanup(); usb_devio_init_failed: usb_deregister(&usbfs_driver); driver_register_failed: class_unregister(&usbmisc_class); class_register_failed: usb_major_cleanup(); major_init_failed: bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); bus_notifier_failed: bus_unregister(&usb_bus_type); bus_register_failed: usb_acpi_unregister(); usb_debugfs_cleanup(); out: return retval; } /* * Cleanup */ static void __exit usb_exit(void) { /* This will matter if shutdown/reboot does exitcalls. */ if (usb_disabled()) return; usb_release_quirk_list(); usb_deregister_device_driver(&usb_generic_driver); usb_major_cleanup(); usb_deregister(&usbfs_driver); usb_devio_cleanup(); usb_hub_cleanup(); class_unregister(&usbmisc_class); bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); bus_unregister(&usb_bus_type); usb_acpi_unregister(); usb_debugfs_cleanup(); idr_destroy(&usb_bus_idr); } subsys_initcall(usb_init); module_exit(usb_exit); MODULE_LICENSE("GPL");
linux-master
drivers/usb/core/usb.c
// SPDX-License-Identifier: GPL-2.0 /* * USB-ACPI glue code * * Copyright 2012 Red Hat <[email protected]> */ #include <linux/module.h> #include <linux/usb.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/usb/hcd.h> #include "hub.h" /** * usb_acpi_power_manageable - check whether usb port has * acpi power resource. * @hdev: USB device belonging to the usb hub * @index: port index based zero * * Return true if the port has acpi power resource and false if no. */ bool usb_acpi_power_manageable(struct usb_device *hdev, int index) { acpi_handle port_handle; int port1 = index + 1; port_handle = usb_get_hub_port_acpi_handle(hdev, port1); if (port_handle) return acpi_bus_power_manageable(port_handle); else return false; } EXPORT_SYMBOL_GPL(usb_acpi_power_manageable); #define UUID_USB_CONTROLLER_DSM "ce2ee385-00e6-48cb-9f05-2edb927c4899" #define USB_DSM_DISABLE_U1_U2_FOR_PORT 5 /** * usb_acpi_port_lpm_incapable - check if lpm should be disabled for a port. * @hdev: USB device belonging to the usb hub * @index: zero based port index * * Some USB3 ports may not support USB3 link power management U1/U2 states * due to different retimer setup. ACPI provides _DSM method which returns 0x01 * if U1 and U2 states should be disabled. Evaluate _DSM with: * Arg0: UUID = ce2ee385-00e6-48cb-9f05-2edb927c4899 * Arg1: Revision ID = 0 * Arg2: Function Index = 5 * Arg3: (empty) * * Return 1 if USB3 port is LPM incapable, negative on error, otherwise 0 */ int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) { union acpi_object *obj; acpi_handle port_handle; int port1 = index + 1; guid_t guid; int ret; ret = guid_parse(UUID_USB_CONTROLLER_DSM, &guid); if (ret) return ret; port_handle = usb_get_hub_port_acpi_handle(hdev, port1); if (!port_handle) { dev_dbg(&hdev->dev, "port-%d no acpi handle\n", port1); return -ENODEV; } if (!acpi_check_dsm(port_handle, &guid, 0, BIT(USB_DSM_DISABLE_U1_U2_FOR_PORT))) { dev_dbg(&hdev->dev, "port-%d no _DSM function %d\n", port1, USB_DSM_DISABLE_U1_U2_FOR_PORT); return -ENODEV; } obj = acpi_evaluate_dsm_typed(port_handle, &guid, 0, USB_DSM_DISABLE_U1_U2_FOR_PORT, NULL, ACPI_TYPE_INTEGER); if (!obj) { dev_dbg(&hdev->dev, "evaluate port-%d _DSM failed\n", port1); return -EINVAL; } if (obj->integer.value == 0x01) ret = 1; ACPI_FREE(obj); return ret; } EXPORT_SYMBOL_GPL(usb_acpi_port_lpm_incapable); /** * usb_acpi_set_power_state - control usb port's power via acpi power * resource * @hdev: USB device belonging to the usb hub * @index: port index based zero * @enable: power state expected to be set * * Notice to use usb_acpi_power_manageable() to check whether the usb port * has acpi power resource before invoking this function. * * Returns 0 on success, else negative errno. */ int usb_acpi_set_power_state(struct usb_device *hdev, int index, bool enable) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_port *port_dev; acpi_handle port_handle; unsigned char state; int port1 = index + 1; int error = -EINVAL; if (!hub) return -ENODEV; port_dev = hub->ports[port1 - 1]; port_handle = (acpi_handle) usb_get_hub_port_acpi_handle(hdev, port1); if (!port_handle) return error; if (enable) state = ACPI_STATE_D0; else state = ACPI_STATE_D3_COLD; error = acpi_bus_set_power(port_handle, state); if (!error) dev_dbg(&port_dev->dev, "acpi: power was set to %d\n", enable); else dev_dbg(&port_dev->dev, "acpi: power failed to be set\n"); return error; } EXPORT_SYMBOL_GPL(usb_acpi_set_power_state); static enum usb_port_connect_type usb_acpi_get_connect_type(acpi_handle handle, struct acpi_pld_info *pld) { enum usb_port_connect_type connect_type = USB_PORT_CONNECT_TYPE_UNKNOWN; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *upc = NULL; acpi_status status; /* * According to 9.14 in ACPI Spec 6.2. _PLD indicates whether usb port * is user visible and _UPC indicates whether it is connectable. If * the port was visible and connectable, it could be freely connected * and disconnected with USB devices. If no visible and connectable, * a usb device is directly hard-wired to the port. If no visible and * no connectable, the port would be not used. */ status = acpi_evaluate_object(handle, "_UPC", NULL, &buffer); if (ACPI_FAILURE(status)) goto out; upc = buffer.pointer; if (!upc || (upc->type != ACPI_TYPE_PACKAGE) || upc->package.count != 4) goto out; if (upc->package.elements[0].integer.value) if (pld->user_visible) connect_type = USB_PORT_CONNECT_TYPE_HOT_PLUG; else connect_type = USB_PORT_CONNECT_TYPE_HARD_WIRED; else if (!pld->user_visible) connect_type = USB_PORT_NOT_USED; out: kfree(upc); return connect_type; } /* * Private to usb-acpi, all the core needs to know is that * port_dev->location is non-zero when it has been set by the firmware. */ #define USB_ACPI_LOCATION_VALID (1 << 31) static struct acpi_device * usb_acpi_get_companion_for_port(struct usb_port *port_dev) { struct usb_device *udev; struct acpi_device *adev; acpi_handle *parent_handle; int port1; /* Get the struct usb_device point of port's hub */ udev = to_usb_device(port_dev->dev.parent->parent); /* * The root hub ports' parent is the root hub. The non-root-hub * ports' parent is the parent hub port which the hub is * connected to. */ if (!udev->parent) { adev = ACPI_COMPANION(&udev->dev); port1 = usb_hcd_find_raw_port_number(bus_to_hcd(udev->bus), port_dev->portnum); } else { parent_handle = usb_get_hub_port_acpi_handle(udev->parent, udev->portnum); if (!parent_handle) return NULL; adev = acpi_fetch_acpi_dev(parent_handle); port1 = port_dev->portnum; } return acpi_find_child_by_adr(adev, port1); } static struct acpi_device * usb_acpi_find_companion_for_port(struct usb_port *port_dev) { struct acpi_device *adev; struct acpi_pld_info *pld; acpi_handle *handle; acpi_status status; adev = usb_acpi_get_companion_for_port(port_dev); if (!adev) return NULL; handle = adev->handle; status = acpi_get_physical_device_location(handle, &pld); if (ACPI_SUCCESS(status) && pld) { port_dev->location = USB_ACPI_LOCATION_VALID | pld->group_token << 8 | pld->group_position; port_dev->connect_type = usb_acpi_get_connect_type(handle, pld); ACPI_FREE(pld); } return adev; } static struct acpi_device * usb_acpi_find_companion_for_device(struct usb_device *udev) { struct acpi_device *adev; struct usb_port *port_dev; struct usb_hub *hub; if (!udev->parent) { /* * root hub is only child (_ADR=0) under its parent, the HC. * sysdev pointer is the HC as seen from firmware. */ adev = ACPI_COMPANION(udev->bus->sysdev); return acpi_find_child_device(adev, 0, false); } hub = usb_hub_to_struct_hub(udev->parent); if (!hub) return NULL; /* * This is an embedded USB device connected to a port and such * devices share port's ACPI companion. */ port_dev = hub->ports[udev->portnum - 1]; return usb_acpi_get_companion_for_port(port_dev); } static struct acpi_device *usb_acpi_find_companion(struct device *dev) { /* * The USB hierarchy like following: * * Device (EHC1) * Device (HUBN) * Device (PR01) * Device (PR11) * Device (PR12) * Device (FN12) * Device (FN13) * Device (PR13) * ... * where HUBN is root hub, and PRNN are USB ports and devices * connected to them, and FNNN are individualk functions for * connected composite USB devices. PRNN and FNNN may contain * _CRS and other methods describing sideband resources for * the connected device. * * On the kernel side both root hub and embedded USB devices are * represented as instances of usb_device structure, and ports * are represented as usb_port structures, so the whole process * is split into 2 parts: finding companions for devices and * finding companions for ports. * * Note that we do not handle individual functions of composite * devices yet, for that we would need to assign companions to * devices corresponding to USB interfaces. */ if (is_usb_device(dev)) return usb_acpi_find_companion_for_device(to_usb_device(dev)); else if (is_usb_port(dev)) return usb_acpi_find_companion_for_port(to_usb_port(dev)); return NULL; } static bool usb_acpi_bus_match(struct device *dev) { return is_usb_device(dev) || is_usb_port(dev); } static struct acpi_bus_type usb_acpi_bus = { .name = "USB", .match = usb_acpi_bus_match, .find_companion = usb_acpi_find_companion, }; int usb_acpi_register(void) { return register_acpi_bus_type(&usb_acpi_bus); } void usb_acpi_unregister(void) { unregister_acpi_bus_type(&usb_acpi_bus); }
linux-master
drivers/usb/core/usb-acpi.c
// SPDX-License-Identifier: GPL-2.0 /* * USB hub driver. * * (C) Copyright 1999 Linus Torvalds * (C) Copyright 1999 Johannes Erdfelt * (C) Copyright 1999 Gregory P. Smith * (C) Copyright 2001 Brad Hards ([email protected]) * * Released under the GPLv2 only. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/completion.h> #include <linux/sched/mm.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/kcov.h> #include <linux/ioctl.h> #include <linux/usb.h> #include <linux/usbdevice_fs.h> #include <linux/usb/hcd.h> #include <linux/usb/onboard_hub.h> #include <linux/usb/otg.h> #include <linux/usb/quirks.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/random.h> #include <linux/pm_qos.h> #include <linux/kobject.h> #include <linux/bitfield.h> #include <linux/uaccess.h> #include <asm/byteorder.h> #include "hub.h" #include "otg_productlist.h" #define USB_VENDOR_GENESYS_LOGIC 0x05e3 #define USB_VENDOR_SMSC 0x0424 #define USB_PRODUCT_USB5534B 0x5534 #define USB_VENDOR_CYPRESS 0x04b4 #define USB_PRODUCT_CY7C65632 0x6570 #define USB_VENDOR_TEXAS_INSTRUMENTS 0x0451 #define USB_PRODUCT_TUSB8041_USB3 0x8140 #define USB_PRODUCT_TUSB8041_USB2 0x8142 #define HUB_QUIRK_CHECK_PORT_AUTOSUSPEND 0x01 #define HUB_QUIRK_DISABLE_AUTOSUSPEND 0x02 #define USB_TP_TRANSMISSION_DELAY 40 /* ns */ #define USB_TP_TRANSMISSION_DELAY_MAX 65535 /* ns */ #define USB_PING_RESPONSE_TIME 400 /* ns */ /* Protect struct usb_device->state and ->children members * Note: Both are also protected by ->dev.sem, except that ->state can * change to USB_STATE_NOTATTACHED even when the semaphore isn't held. */ static DEFINE_SPINLOCK(device_state_lock); /* workqueue to process hub events */ static struct workqueue_struct *hub_wq; static void hub_event(struct work_struct *work); /* synchronize hub-port add/remove and peering operations */ DEFINE_MUTEX(usb_port_peer_mutex); /* cycle leds on hubs that aren't blinking for attention */ static bool blinkenlights; module_param(blinkenlights, bool, S_IRUGO); MODULE_PARM_DESC(blinkenlights, "true to cycle leds on hubs"); /* * Device SATA8000 FW1.0 from DATAST0R Technology Corp requires about * 10 seconds to send reply for the initial 64-byte descriptor request. */ /* define initial 64-byte descriptor request timeout in milliseconds */ static int initial_descriptor_timeout = USB_CTRL_GET_TIMEOUT; module_param(initial_descriptor_timeout, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(initial_descriptor_timeout, "initial 64-byte descriptor request timeout in milliseconds " "(default 5000 - 5.0 seconds)"); /* * As of 2.6.10 we introduce a new USB device initialization scheme which * closely resembles the way Windows works. Hopefully it will be compatible * with a wider range of devices than the old scheme. However some previously * working devices may start giving rise to "device not accepting address" * errors; if that happens the user can try the old scheme by adjusting the * following module parameters. * * For maximum flexibility there are two boolean parameters to control the * hub driver's behavior. On the first initialization attempt, if the * "old_scheme_first" parameter is set then the old scheme will be used, * otherwise the new scheme is used. If that fails and "use_both_schemes" * is set, then the driver will make another attempt, using the other scheme. */ static bool old_scheme_first; module_param(old_scheme_first, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(old_scheme_first, "start with the old device initialization scheme"); static bool use_both_schemes = true; module_param(use_both_schemes, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(use_both_schemes, "try the other device initialization scheme if the " "first one fails"); /* Mutual exclusion for EHCI CF initialization. This interferes with * port reset on some companion controllers. */ DECLARE_RWSEM(ehci_cf_port_reset_rwsem); EXPORT_SYMBOL_GPL(ehci_cf_port_reset_rwsem); #define HUB_DEBOUNCE_TIMEOUT 2000 #define HUB_DEBOUNCE_STEP 25 #define HUB_DEBOUNCE_STABLE 100 static void hub_release(struct kref *kref); static int usb_reset_and_verify_device(struct usb_device *udev); static int hub_port_disable(struct usb_hub *hub, int port1, int set_state); static bool hub_port_warm_reset_required(struct usb_hub *hub, int port1, u16 portstatus); static inline char *portspeed(struct usb_hub *hub, int portstatus) { if (hub_is_superspeedplus(hub->hdev)) return "10.0 Gb/s"; if (hub_is_superspeed(hub->hdev)) return "5.0 Gb/s"; if (portstatus & USB_PORT_STAT_HIGH_SPEED) return "480 Mb/s"; else if (portstatus & USB_PORT_STAT_LOW_SPEED) return "1.5 Mb/s"; else return "12 Mb/s"; } /* Note that hdev or one of its children must be locked! */ struct usb_hub *usb_hub_to_struct_hub(struct usb_device *hdev) { if (!hdev || !hdev->actconfig || !hdev->maxchild) return NULL; return usb_get_intfdata(hdev->actconfig->interface[0]); } int usb_device_supports_lpm(struct usb_device *udev) { /* Some devices have trouble with LPM */ if (udev->quirks & USB_QUIRK_NO_LPM) return 0; /* USB 2.1 (and greater) devices indicate LPM support through * their USB 2.0 Extended Capabilities BOS descriptor. */ if (udev->speed == USB_SPEED_HIGH || udev->speed == USB_SPEED_FULL) { if (udev->bos->ext_cap && (USB_LPM_SUPPORT & le32_to_cpu(udev->bos->ext_cap->bmAttributes))) return 1; return 0; } /* * According to the USB 3.0 spec, all USB 3.0 devices must support LPM. * However, there are some that don't, and they set the U1/U2 exit * latencies to zero. */ if (!udev->bos->ss_cap) { dev_info(&udev->dev, "No LPM exit latency info found, disabling LPM.\n"); return 0; } if (udev->bos->ss_cap->bU1devExitLat == 0 && udev->bos->ss_cap->bU2DevExitLat == 0) { if (udev->parent) dev_info(&udev->dev, "LPM exit latency is zeroed, disabling LPM.\n"); else dev_info(&udev->dev, "We don't know the algorithms for LPM for this host, disabling LPM.\n"); return 0; } if (!udev->parent || udev->parent->lpm_capable) return 1; return 0; } /* * Set the Maximum Exit Latency (MEL) for the host to wakup up the path from * U1/U2, send a PING to the device and receive a PING_RESPONSE. * See USB 3.1 section C.1.5.2 */ static void usb_set_lpm_mel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params, unsigned int udev_exit_latency, struct usb_hub *hub, struct usb3_lpm_parameters *hub_lpm_params, unsigned int hub_exit_latency) { unsigned int total_mel; /* * tMEL1. time to transition path from host to device into U0. * MEL for parent already contains the delay up to parent, so only add * the exit latency for the last link (pick the slower exit latency), * and the hub header decode latency. See USB 3.1 section C 2.2.1 * Store MEL in nanoseconds */ total_mel = hub_lpm_params->mel + max(udev_exit_latency, hub_exit_latency) * 1000 + hub->descriptor->u.ss.bHubHdrDecLat * 100; /* * tMEL2. Time to submit PING packet. Sum of tTPTransmissionDelay for * each link + wHubDelay for each hub. Add only for last link. * tMEL4, the time for PING_RESPONSE to traverse upstream is similar. * Multiply by 2 to include it as well. */ total_mel += (__le16_to_cpu(hub->descriptor->u.ss.wHubDelay) + USB_TP_TRANSMISSION_DELAY) * 2; /* * tMEL3, tPingResponse. Time taken by device to generate PING_RESPONSE * after receiving PING. Also add 2100ns as stated in USB 3.1 C 1.5.2.4 * to cover the delay if the PING_RESPONSE is queued behind a Max Packet * Size DP. * Note these delays should be added only once for the entire path, so * add them to the MEL of the device connected to the roothub. */ if (!hub->hdev->parent) total_mel += USB_PING_RESPONSE_TIME + 2100; udev_lpm_params->mel = total_mel; } /* * Set the maximum Device to Host Exit Latency (PEL) for the device to initiate * a transition from either U1 or U2. */ static void usb_set_lpm_pel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params, unsigned int udev_exit_latency, struct usb_hub *hub, struct usb3_lpm_parameters *hub_lpm_params, unsigned int hub_exit_latency, unsigned int port_to_port_exit_latency) { unsigned int first_link_pel; unsigned int hub_pel; /* * First, the device sends an LFPS to transition the link between the * device and the parent hub into U0. The exit latency is the bigger of * the device exit latency or the hub exit latency. */ if (udev_exit_latency > hub_exit_latency) first_link_pel = udev_exit_latency * 1000; else first_link_pel = hub_exit_latency * 1000; /* * When the hub starts to receive the LFPS, there is a slight delay for * it to figure out that one of the ports is sending an LFPS. Then it * will forward the LFPS to its upstream link. The exit latency is the * delay, plus the PEL that we calculated for this hub. */ hub_pel = port_to_port_exit_latency * 1000 + hub_lpm_params->pel; /* * According to figure C-7 in the USB 3.0 spec, the PEL for this device * is the greater of the two exit latencies. */ if (first_link_pel > hub_pel) udev_lpm_params->pel = first_link_pel; else udev_lpm_params->pel = hub_pel; } /* * Set the System Exit Latency (SEL) to indicate the total worst-case time from * when a device initiates a transition to U0, until when it will receive the * first packet from the host controller. * * Section C.1.5.1 describes the four components to this: * - t1: device PEL * - t2: time for the ERDY to make it from the device to the host. * - t3: a host-specific delay to process the ERDY. * - t4: time for the packet to make it from the host to the device. * * t3 is specific to both the xHCI host and the platform the host is integrated * into. The Intel HW folks have said it's negligible, FIXME if a different * vendor says otherwise. */ static void usb_set_lpm_sel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params) { struct usb_device *parent; unsigned int num_hubs; unsigned int total_sel; /* t1 = device PEL */ total_sel = udev_lpm_params->pel; /* How many external hubs are in between the device & the root port. */ for (parent = udev->parent, num_hubs = 0; parent->parent; parent = parent->parent) num_hubs++; /* t2 = 2.1us + 250ns * (num_hubs - 1) */ if (num_hubs > 0) total_sel += 2100 + 250 * (num_hubs - 1); /* t4 = 250ns * num_hubs */ total_sel += 250 * num_hubs; udev_lpm_params->sel = total_sel; } static void usb_set_lpm_parameters(struct usb_device *udev) { struct usb_hub *hub; unsigned int port_to_port_delay; unsigned int udev_u1_del; unsigned int udev_u2_del; unsigned int hub_u1_del; unsigned int hub_u2_del; if (!udev->lpm_capable || udev->speed < USB_SPEED_SUPER) return; hub = usb_hub_to_struct_hub(udev->parent); /* It doesn't take time to transition the roothub into U0, since it * doesn't have an upstream link. */ if (!hub) return; udev_u1_del = udev->bos->ss_cap->bU1devExitLat; udev_u2_del = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat); hub_u1_del = udev->parent->bos->ss_cap->bU1devExitLat; hub_u2_del = le16_to_cpu(udev->parent->bos->ss_cap->bU2DevExitLat); usb_set_lpm_mel(udev, &udev->u1_params, udev_u1_del, hub, &udev->parent->u1_params, hub_u1_del); usb_set_lpm_mel(udev, &udev->u2_params, udev_u2_del, hub, &udev->parent->u2_params, hub_u2_del); /* * Appendix C, section C.2.2.2, says that there is a slight delay from * when the parent hub notices the downstream port is trying to * transition to U0 to when the hub initiates a U0 transition on its * upstream port. The section says the delays are tPort2PortU1EL and * tPort2PortU2EL, but it doesn't define what they are. * * The hub chapter, sections 10.4.2.4 and 10.4.2.5 seem to be talking * about the same delays. Use the maximum delay calculations from those * sections. For U1, it's tHubPort2PortExitLat, which is 1us max. For * U2, it's tHubPort2PortExitLat + U2DevExitLat - U1DevExitLat. I * assume the device exit latencies they are talking about are the hub * exit latencies. * * What do we do if the U2 exit latency is less than the U1 exit * latency? It's possible, although not likely... */ port_to_port_delay = 1; usb_set_lpm_pel(udev, &udev->u1_params, udev_u1_del, hub, &udev->parent->u1_params, hub_u1_del, port_to_port_delay); if (hub_u2_del > hub_u1_del) port_to_port_delay = 1 + hub_u2_del - hub_u1_del; else port_to_port_delay = 1 + hub_u1_del; usb_set_lpm_pel(udev, &udev->u2_params, udev_u2_del, hub, &udev->parent->u2_params, hub_u2_del, port_to_port_delay); /* Now that we've got PEL, calculate SEL. */ usb_set_lpm_sel(udev, &udev->u1_params); usb_set_lpm_sel(udev, &udev->u2_params); } /* USB 2.0 spec Section 11.24.4.5 */ static int get_hub_descriptor(struct usb_device *hdev, struct usb_hub_descriptor *desc) { int i, ret, size; unsigned dtype; if (hub_is_superspeed(hdev)) { dtype = USB_DT_SS_HUB; size = USB_DT_SS_HUB_SIZE; } else { dtype = USB_DT_HUB; size = sizeof(struct usb_hub_descriptor); } for (i = 0; i < 3; i++) { ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB, dtype << 8, 0, desc, size, USB_CTRL_GET_TIMEOUT); if (hub_is_superspeed(hdev)) { if (ret == size) return ret; } else if (ret >= USB_DT_HUB_NONVAR_SIZE + 2) { /* Make sure we have the DeviceRemovable field. */ size = USB_DT_HUB_NONVAR_SIZE + desc->bNbrPorts / 8 + 1; if (ret < size) return -EMSGSIZE; return ret; } } return -EINVAL; } /* * USB 2.0 spec Section 11.24.2.1 */ static int clear_hub_feature(struct usb_device *hdev, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_CLEAR_FEATURE, USB_RT_HUB, feature, 0, NULL, 0, 1000); } /* * USB 2.0 spec Section 11.24.2.2 */ int usb_clear_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } /* * USB 2.0 spec Section 11.24.2.13 */ static int set_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_SET_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } static char *to_led_name(int selector) { switch (selector) { case HUB_LED_AMBER: return "amber"; case HUB_LED_GREEN: return "green"; case HUB_LED_OFF: return "off"; case HUB_LED_AUTO: return "auto"; default: return "??"; } } /* * USB 2.0 spec Section 11.24.2.7.1.10 and table 11-7 * for info about using port indicators */ static void set_port_led(struct usb_hub *hub, int port1, int selector) { struct usb_port *port_dev = hub->ports[port1 - 1]; int status; status = set_port_feature(hub->hdev, (selector << 8) | port1, USB_PORT_FEAT_INDICATOR); dev_dbg(&port_dev->dev, "indicator %s status %d\n", to_led_name(selector), status); } #define LED_CYCLE_PERIOD ((2*HZ)/3) static void led_work(struct work_struct *work) { struct usb_hub *hub = container_of(work, struct usb_hub, leds.work); struct usb_device *hdev = hub->hdev; unsigned i; unsigned changed = 0; int cursor = -1; if (hdev->state != USB_STATE_CONFIGURED || hub->quiescing) return; for (i = 0; i < hdev->maxchild; i++) { unsigned selector, mode; /* 30%-50% duty cycle */ switch (hub->indicator[i]) { /* cycle marker */ case INDICATOR_CYCLE: cursor = i; selector = HUB_LED_AUTO; mode = INDICATOR_AUTO; break; /* blinking green = sw attention */ case INDICATOR_GREEN_BLINK: selector = HUB_LED_GREEN; mode = INDICATOR_GREEN_BLINK_OFF; break; case INDICATOR_GREEN_BLINK_OFF: selector = HUB_LED_OFF; mode = INDICATOR_GREEN_BLINK; break; /* blinking amber = hw attention */ case INDICATOR_AMBER_BLINK: selector = HUB_LED_AMBER; mode = INDICATOR_AMBER_BLINK_OFF; break; case INDICATOR_AMBER_BLINK_OFF: selector = HUB_LED_OFF; mode = INDICATOR_AMBER_BLINK; break; /* blink green/amber = reserved */ case INDICATOR_ALT_BLINK: selector = HUB_LED_GREEN; mode = INDICATOR_ALT_BLINK_OFF; break; case INDICATOR_ALT_BLINK_OFF: selector = HUB_LED_AMBER; mode = INDICATOR_ALT_BLINK; break; default: continue; } if (selector != HUB_LED_AUTO) changed = 1; set_port_led(hub, i + 1, selector); hub->indicator[i] = mode; } if (!changed && blinkenlights) { cursor++; cursor %= hdev->maxchild; set_port_led(hub, cursor + 1, HUB_LED_GREEN); hub->indicator[cursor] = INDICATOR_CYCLE; changed++; } if (changed) queue_delayed_work(system_power_efficient_wq, &hub->leds, LED_CYCLE_PERIOD); } /* use a short timeout for hub/port status fetches */ #define USB_STS_TIMEOUT 1000 #define USB_STS_RETRIES 5 /* * USB 2.0 spec Section 11.24.2.6 */ static int get_hub_status(struct usb_device *hdev, struct usb_hub_status *data) { int i, status = -ETIMEDOUT; for (i = 0; i < USB_STS_RETRIES && (status == -ETIMEDOUT || status == -EPIPE); i++) { status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_HUB, 0, 0, data, sizeof(*data), USB_STS_TIMEOUT); } return status; } /* * USB 2.0 spec Section 11.24.2.7 * USB 3.1 takes into use the wValue and wLength fields, spec Section 10.16.2.6 */ static int get_port_status(struct usb_device *hdev, int port1, void *data, u16 value, u16 length) { int i, status = -ETIMEDOUT; for (i = 0; i < USB_STS_RETRIES && (status == -ETIMEDOUT || status == -EPIPE); i++) { status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, value, port1, data, length, USB_STS_TIMEOUT); } return status; } static int hub_ext_port_status(struct usb_hub *hub, int port1, int type, u16 *status, u16 *change, u32 *ext_status) { int ret; int len = 4; if (type != HUB_PORT_STATUS) len = 8; mutex_lock(&hub->status_mutex); ret = get_port_status(hub->hdev, port1, &hub->status->port, type, len); if (ret < len) { if (ret != -ENODEV) dev_err(hub->intfdev, "%s failed (err = %d)\n", __func__, ret); if (ret >= 0) ret = -EIO; } else { *status = le16_to_cpu(hub->status->port.wPortStatus); *change = le16_to_cpu(hub->status->port.wPortChange); if (type != HUB_PORT_STATUS && ext_status) *ext_status = le32_to_cpu( hub->status->port.dwExtPortStatus); ret = 0; } mutex_unlock(&hub->status_mutex); /* * There is no need to lock status_mutex here, because status_mutex * protects hub->status, and the phy driver only checks the port * status without changing the status. */ if (!ret) { struct usb_device *hdev = hub->hdev; /* * Only roothub will be notified of port state changes, * since the USB PHY only cares about changes at the next * level. */ if (is_root_hub(hdev)) { struct usb_hcd *hcd = bus_to_hcd(hdev->bus); if (hcd->usb_phy) usb_phy_notify_port_status(hcd->usb_phy, port1 - 1, *status, *change); } } return ret; } int usb_hub_port_status(struct usb_hub *hub, int port1, u16 *status, u16 *change) { return hub_ext_port_status(hub, port1, HUB_PORT_STATUS, status, change, NULL); } static void hub_resubmit_irq_urb(struct usb_hub *hub) { unsigned long flags; int status; spin_lock_irqsave(&hub->irq_urb_lock, flags); if (hub->quiescing) { spin_unlock_irqrestore(&hub->irq_urb_lock, flags); return; } status = usb_submit_urb(hub->urb, GFP_ATOMIC); if (status && status != -ENODEV && status != -EPERM && status != -ESHUTDOWN) { dev_err(hub->intfdev, "resubmit --> %d\n", status); mod_timer(&hub->irq_urb_retry, jiffies + HZ); } spin_unlock_irqrestore(&hub->irq_urb_lock, flags); } static void hub_retry_irq_urb(struct timer_list *t) { struct usb_hub *hub = from_timer(hub, t, irq_urb_retry); hub_resubmit_irq_urb(hub); } static void kick_hub_wq(struct usb_hub *hub) { struct usb_interface *intf; if (hub->disconnected || work_pending(&hub->events)) return; /* * Suppress autosuspend until the event is proceed. * * Be careful and make sure that the symmetric operation is * always called. We are here only when there is no pending * work for this hub. Therefore put the interface either when * the new work is called or when it is canceled. */ intf = to_usb_interface(hub->intfdev); usb_autopm_get_interface_no_resume(intf); kref_get(&hub->kref); if (queue_work(hub_wq, &hub->events)) return; /* the work has already been scheduled */ usb_autopm_put_interface_async(intf); kref_put(&hub->kref, hub_release); } void usb_kick_hub_wq(struct usb_device *hdev) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (hub) kick_hub_wq(hub); } /* * Let the USB core know that a USB 3.0 device has sent a Function Wake Device * Notification, which indicates it had initiated remote wakeup. * * USB 3.0 hubs do not report the port link state change from U3 to U0 when the * device initiates resume, so the USB core will not receive notice of the * resume through the normal hub interrupt URB. */ void usb_wakeup_notification(struct usb_device *hdev, unsigned int portnum) { struct usb_hub *hub; struct usb_port *port_dev; if (!hdev) return; hub = usb_hub_to_struct_hub(hdev); if (hub) { port_dev = hub->ports[portnum - 1]; if (port_dev && port_dev->child) pm_wakeup_event(&port_dev->child->dev, 0); set_bit(portnum, hub->wakeup_bits); kick_hub_wq(hub); } } EXPORT_SYMBOL_GPL(usb_wakeup_notification); /* completion function, fires on port status changes and various faults */ static void hub_irq(struct urb *urb) { struct usb_hub *hub = urb->context; int status = urb->status; unsigned i; unsigned long bits; switch (status) { case -ENOENT: /* synchronous unlink */ case -ECONNRESET: /* async unlink */ case -ESHUTDOWN: /* hardware going away */ return; default: /* presumably an error */ /* Cause a hub reset after 10 consecutive errors */ dev_dbg(hub->intfdev, "transfer --> %d\n", status); if ((++hub->nerrors < 10) || hub->error) goto resubmit; hub->error = status; fallthrough; /* let hub_wq handle things */ case 0: /* we got data: port status changed */ bits = 0; for (i = 0; i < urb->actual_length; ++i) bits |= ((unsigned long) ((*hub->buffer)[i])) << (i*8); hub->event_bits[0] = bits; break; } hub->nerrors = 0; /* Something happened, let hub_wq figure it out */ kick_hub_wq(hub); resubmit: hub_resubmit_irq_urb(hub); } /* USB 2.0 spec Section 11.24.2.3 */ static inline int hub_clear_tt_buffer(struct usb_device *hdev, u16 devinfo, u16 tt) { /* Need to clear both directions for control ep */ if (((devinfo >> 11) & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL) { int status = usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo ^ 0x8000, tt, NULL, 0, 1000); if (status) return status; } return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo, tt, NULL, 0, 1000); } /* * enumeration blocks hub_wq for a long time. we use keventd instead, since * long blocking there is the exception, not the rule. accordingly, HCDs * talking to TTs must queue control transfers (not just bulk and iso), so * both can talk to the same hub concurrently. */ static void hub_tt_work(struct work_struct *work) { struct usb_hub *hub = container_of(work, struct usb_hub, tt.clear_work); unsigned long flags; spin_lock_irqsave(&hub->tt.lock, flags); while (!list_empty(&hub->tt.clear_list)) { struct list_head *next; struct usb_tt_clear *clear; struct usb_device *hdev = hub->hdev; const struct hc_driver *drv; int status; next = hub->tt.clear_list.next; clear = list_entry(next, struct usb_tt_clear, clear_list); list_del(&clear->clear_list); /* drop lock so HCD can concurrently report other TT errors */ spin_unlock_irqrestore(&hub->tt.lock, flags); status = hub_clear_tt_buffer(hdev, clear->devinfo, clear->tt); if (status && status != -ENODEV) dev_err(&hdev->dev, "clear tt %d (%04x) error %d\n", clear->tt, clear->devinfo, status); /* Tell the HCD, even if the operation failed */ drv = clear->hcd->driver; if (drv->clear_tt_buffer_complete) (drv->clear_tt_buffer_complete)(clear->hcd, clear->ep); kfree(clear); spin_lock_irqsave(&hub->tt.lock, flags); } spin_unlock_irqrestore(&hub->tt.lock, flags); } /** * usb_hub_set_port_power - control hub port's power state * @hdev: USB device belonging to the usb hub * @hub: target hub * @port1: port index * @set: expected status * * call this function to control port's power via setting or * clearing the port's PORT_POWER feature. * * Return: 0 if successful. A negative error code otherwise. */ int usb_hub_set_port_power(struct usb_device *hdev, struct usb_hub *hub, int port1, bool set) { int ret; if (set) ret = set_port_feature(hdev, port1, USB_PORT_FEAT_POWER); else ret = usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_POWER); if (ret) return ret; if (set) set_bit(port1, hub->power_bits); else clear_bit(port1, hub->power_bits); return 0; } /** * usb_hub_clear_tt_buffer - clear control/bulk TT state in high speed hub * @urb: an URB associated with the failed or incomplete split transaction * * High speed HCDs use this to tell the hub driver that some split control or * bulk transaction failed in a way that requires clearing internal state of * a transaction translator. This is normally detected (and reported) from * interrupt context. * * It may not be possible for that hub to handle additional full (or low) * speed transactions until that state is fully cleared out. * * Return: 0 if successful. A negative error code otherwise. */ int usb_hub_clear_tt_buffer(struct urb *urb) { struct usb_device *udev = urb->dev; int pipe = urb->pipe; struct usb_tt *tt = udev->tt; unsigned long flags; struct usb_tt_clear *clear; /* we've got to cope with an arbitrary number of pending TT clears, * since each TT has "at least two" buffers that can need it (and * there can be many TTs per hub). even if they're uncommon. */ clear = kmalloc(sizeof *clear, GFP_ATOMIC); if (clear == NULL) { dev_err(&udev->dev, "can't save CLEAR_TT_BUFFER state\n"); /* FIXME recover somehow ... RESET_TT? */ return -ENOMEM; } /* info that CLEAR_TT_BUFFER needs */ clear->tt = tt->multi ? udev->ttport : 1; clear->devinfo = usb_pipeendpoint (pipe); clear->devinfo |= ((u16)udev->devaddr) << 4; clear->devinfo |= usb_pipecontrol(pipe) ? (USB_ENDPOINT_XFER_CONTROL << 11) : (USB_ENDPOINT_XFER_BULK << 11); if (usb_pipein(pipe)) clear->devinfo |= 1 << 15; /* info for completion callback */ clear->hcd = bus_to_hcd(udev->bus); clear->ep = urb->ep; /* tell keventd to clear state for this TT */ spin_lock_irqsave(&tt->lock, flags); list_add_tail(&clear->clear_list, &tt->clear_list); schedule_work(&tt->clear_work); spin_unlock_irqrestore(&tt->lock, flags); return 0; } EXPORT_SYMBOL_GPL(usb_hub_clear_tt_buffer); static void hub_power_on(struct usb_hub *hub, bool do_delay) { int port1; /* Enable power on each port. Some hubs have reserved values * of LPSM (> 2) in their descriptors, even though they are * USB 2.0 hubs. Some hubs do not implement port-power switching * but only emulate it. In all cases, the ports won't work * unless we send these messages to the hub. */ if (hub_is_port_power_switchable(hub)) dev_dbg(hub->intfdev, "enabling power on all ports\n"); else dev_dbg(hub->intfdev, "trying to enable port power on " "non-switchable hub\n"); for (port1 = 1; port1 <= hub->hdev->maxchild; port1++) if (test_bit(port1, hub->power_bits)) set_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER); else usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER); if (do_delay) msleep(hub_power_on_good_delay(hub)); } static int hub_hub_status(struct usb_hub *hub, u16 *status, u16 *change) { int ret; mutex_lock(&hub->status_mutex); ret = get_hub_status(hub->hdev, &hub->status->hub); if (ret < 0) { if (ret != -ENODEV) dev_err(hub->intfdev, "%s failed (err = %d)\n", __func__, ret); } else { *status = le16_to_cpu(hub->status->hub.wHubStatus); *change = le16_to_cpu(hub->status->hub.wHubChange); ret = 0; } mutex_unlock(&hub->status_mutex); return ret; } static int hub_set_port_link_state(struct usb_hub *hub, int port1, unsigned int link_status) { return set_port_feature(hub->hdev, port1 | (link_status << 3), USB_PORT_FEAT_LINK_STATE); } /* * Disable a port and mark a logical connect-change event, so that some * time later hub_wq will disconnect() any existing usb_device on the port * and will re-enumerate if there actually is a device attached. */ static void hub_port_logical_disconnect(struct usb_hub *hub, int port1) { dev_dbg(&hub->ports[port1 - 1]->dev, "logical disconnect\n"); hub_port_disable(hub, port1, 1); /* FIXME let caller ask to power down the port: * - some devices won't enumerate without a VBUS power cycle * - SRP saves power that way * - ... new call, TBD ... * That's easy if this hub can switch power per-port, and * hub_wq reactivates the port later (timer, SRP, etc). * Powerdown must be optional, because of reset/DFU. */ set_bit(port1, hub->change_bits); kick_hub_wq(hub); } /** * usb_remove_device - disable a device's port on its parent hub * @udev: device to be disabled and removed * Context: @udev locked, must be able to sleep. * * After @udev's port has been disabled, hub_wq is notified and it will * see that the device has been disconnected. When the device is * physically unplugged and something is plugged in, the events will * be received and processed normally. * * Return: 0 if successful. A negative error code otherwise. */ int usb_remove_device(struct usb_device *udev) { struct usb_hub *hub; struct usb_interface *intf; int ret; if (!udev->parent) /* Can't remove a root hub */ return -EINVAL; hub = usb_hub_to_struct_hub(udev->parent); intf = to_usb_interface(hub->intfdev); ret = usb_autopm_get_interface(intf); if (ret < 0) return ret; set_bit(udev->portnum, hub->removed_bits); hub_port_logical_disconnect(hub, udev->portnum); usb_autopm_put_interface(intf); return 0; } enum hub_activation_type { HUB_INIT, HUB_INIT2, HUB_INIT3, /* INITs must come first */ HUB_POST_RESET, HUB_RESUME, HUB_RESET_RESUME, }; static void hub_init_func2(struct work_struct *ws); static void hub_init_func3(struct work_struct *ws); static void hub_activate(struct usb_hub *hub, enum hub_activation_type type) { struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd; int ret; int port1; int status; bool need_debounce_delay = false; unsigned delay; /* Continue a partial initialization */ if (type == HUB_INIT2 || type == HUB_INIT3) { device_lock(&hdev->dev); /* Was the hub disconnected while we were waiting? */ if (hub->disconnected) goto disconnected; if (type == HUB_INIT2) goto init2; goto init3; } kref_get(&hub->kref); /* The superspeed hub except for root hub has to use Hub Depth * value as an offset into the route string to locate the bits * it uses to determine the downstream port number. So hub driver * should send a set hub depth request to superspeed hub after * the superspeed hub is set configuration in initialization or * reset procedure. * * After a resume, port power should still be on. * For any other type of activation, turn it on. */ if (type != HUB_RESUME) { if (hdev->parent && hub_is_superspeed(hdev)) { ret = usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_SET_DEPTH, USB_RT_HUB, hdev->level - 1, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (ret < 0) dev_err(hub->intfdev, "set hub depth failed\n"); } /* Speed up system boot by using a delayed_work for the * hub's initial power-up delays. This is pretty awkward * and the implementation looks like a home-brewed sort of * setjmp/longjmp, but it saves at least 100 ms for each * root hub (assuming usbcore is compiled into the kernel * rather than as a module). It adds up. * * This can't be done for HUB_RESUME or HUB_RESET_RESUME * because for those activation types the ports have to be * operational when we return. In theory this could be done * for HUB_POST_RESET, but it's easier not to. */ if (type == HUB_INIT) { delay = hub_power_on_good_delay(hub); hub_power_on(hub, false); INIT_DELAYED_WORK(&hub->init_work, hub_init_func2); queue_delayed_work(system_power_efficient_wq, &hub->init_work, msecs_to_jiffies(delay)); /* Suppress autosuspend until init is done */ usb_autopm_get_interface_no_resume( to_usb_interface(hub->intfdev)); return; /* Continues at init2: below */ } else if (type == HUB_RESET_RESUME) { /* The internal host controller state for the hub device * may be gone after a host power loss on system resume. * Update the device's info so the HW knows it's a hub. */ hcd = bus_to_hcd(hdev->bus); if (hcd->driver->update_hub_device) { ret = hcd->driver->update_hub_device(hcd, hdev, &hub->tt, GFP_NOIO); if (ret < 0) { dev_err(hub->intfdev, "Host not accepting hub info update\n"); dev_err(hub->intfdev, "LS/FS devices and hubs may not work under this hub\n"); } } hub_power_on(hub, true); } else { hub_power_on(hub, true); } /* Give some time on remote wakeup to let links to transit to U0 */ } else if (hub_is_superspeed(hub->hdev)) msleep(20); init2: /* * Check each port and set hub->change_bits to let hub_wq know * which ports need attention. */ for (port1 = 1; port1 <= hdev->maxchild; ++port1) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; u16 portstatus, portchange; portstatus = portchange = 0; status = usb_hub_port_status(hub, port1, &portstatus, &portchange); if (status) goto abort; if (udev || (portstatus & USB_PORT_STAT_CONNECTION)) dev_dbg(&port_dev->dev, "status %04x change %04x\n", portstatus, portchange); /* * After anything other than HUB_RESUME (i.e., initialization * or any sort of reset), every port should be disabled. * Unconnected ports should likewise be disabled (paranoia), * and so should ports for which we have no usb_device. */ if ((portstatus & USB_PORT_STAT_ENABLE) && ( type != HUB_RESUME || !(portstatus & USB_PORT_STAT_CONNECTION) || !udev || udev->state == USB_STATE_NOTATTACHED)) { /* * USB3 protocol ports will automatically transition * to Enabled state when detect an USB3.0 device attach. * Do not disable USB3 protocol ports, just pretend * power was lost */ portstatus &= ~USB_PORT_STAT_ENABLE; if (!hub_is_superspeed(hdev)) usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE); } /* Make sure a warm-reset request is handled by port_event */ if (type == HUB_RESUME && hub_port_warm_reset_required(hub, port1, portstatus)) set_bit(port1, hub->event_bits); /* * Add debounce if USB3 link is in polling/link training state. * Link will automatically transition to Enabled state after * link training completes. */ if (hub_is_superspeed(hdev) && ((portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_POLLING)) need_debounce_delay = true; /* Clear status-change flags; we'll debounce later */ if (portchange & USB_PORT_STAT_C_CONNECTION) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); } if (portchange & USB_PORT_STAT_C_ENABLE) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_ENABLE); } if (portchange & USB_PORT_STAT_C_RESET) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_RESET); } if ((portchange & USB_PORT_STAT_C_BH_RESET) && hub_is_superspeed(hub->hdev)) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); } /* We can forget about a "removed" device when there's a * physical disconnect or the connect status changes. */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION)) clear_bit(port1, hub->removed_bits); if (!udev || udev->state == USB_STATE_NOTATTACHED) { /* Tell hub_wq to disconnect the device or * check for a new connection or over current condition. * Based on USB2.0 Spec Section 11.12.5, * C_PORT_OVER_CURRENT could be set while * PORT_OVER_CURRENT is not. So check for any of them. */ if (udev || (portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION) || (portstatus & USB_PORT_STAT_OVERCURRENT) || (portchange & USB_PORT_STAT_C_OVERCURRENT)) set_bit(port1, hub->change_bits); } else if (portstatus & USB_PORT_STAT_ENABLE) { bool port_resumed = (portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_U0; /* The power session apparently survived the resume. * If there was an overcurrent or suspend change * (i.e., remote wakeup request), have hub_wq * take care of it. Look at the port link state * for USB 3.0 hubs, since they don't have a suspend * change bit, and they don't set the port link change * bit on device-initiated resume. */ if (portchange || (hub_is_superspeed(hub->hdev) && port_resumed)) set_bit(port1, hub->event_bits); } else if (udev->persist_enabled) { #ifdef CONFIG_PM udev->reset_resume = 1; #endif /* Don't set the change_bits when the device * was powered off. */ if (test_bit(port1, hub->power_bits)) set_bit(port1, hub->change_bits); } else { /* The power session is gone; tell hub_wq */ usb_set_device_state(udev, USB_STATE_NOTATTACHED); set_bit(port1, hub->change_bits); } } /* If no port-status-change flags were set, we don't need any * debouncing. If flags were set we can try to debounce the * ports all at once right now, instead of letting hub_wq do them * one at a time later on. * * If any port-status changes do occur during this delay, hub_wq * will see them later and handle them normally. */ if (need_debounce_delay) { delay = HUB_DEBOUNCE_STABLE; /* Don't do a long sleep inside a workqueue routine */ if (type == HUB_INIT2) { INIT_DELAYED_WORK(&hub->init_work, hub_init_func3); queue_delayed_work(system_power_efficient_wq, &hub->init_work, msecs_to_jiffies(delay)); device_unlock(&hdev->dev); return; /* Continues at init3: below */ } else { msleep(delay); } } init3: hub->quiescing = 0; status = usb_submit_urb(hub->urb, GFP_NOIO); if (status < 0) dev_err(hub->intfdev, "activate --> %d\n", status); if (hub->has_indicators && blinkenlights) queue_delayed_work(system_power_efficient_wq, &hub->leds, LED_CYCLE_PERIOD); /* Scan all ports that need attention */ kick_hub_wq(hub); abort: if (type == HUB_INIT2 || type == HUB_INIT3) { /* Allow autosuspend if it was suppressed */ disconnected: usb_autopm_put_interface_async(to_usb_interface(hub->intfdev)); device_unlock(&hdev->dev); } kref_put(&hub->kref, hub_release); } /* Implement the continuations for the delays above */ static void hub_init_func2(struct work_struct *ws) { struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work); hub_activate(hub, HUB_INIT2); } static void hub_init_func3(struct work_struct *ws) { struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work); hub_activate(hub, HUB_INIT3); } enum hub_quiescing_type { HUB_DISCONNECT, HUB_PRE_RESET, HUB_SUSPEND }; static void hub_quiesce(struct usb_hub *hub, enum hub_quiescing_type type) { struct usb_device *hdev = hub->hdev; unsigned long flags; int i; /* hub_wq and related activity won't re-trigger */ spin_lock_irqsave(&hub->irq_urb_lock, flags); hub->quiescing = 1; spin_unlock_irqrestore(&hub->irq_urb_lock, flags); if (type != HUB_SUSPEND) { /* Disconnect all the children */ for (i = 0; i < hdev->maxchild; ++i) { if (hub->ports[i]->child) usb_disconnect(&hub->ports[i]->child); } } /* Stop hub_wq and related activity */ del_timer_sync(&hub->irq_urb_retry); usb_kill_urb(hub->urb); if (hub->has_indicators) cancel_delayed_work_sync(&hub->leds); if (hub->tt.hub) flush_work(&hub->tt.clear_work); } static void hub_pm_barrier_for_all_ports(struct usb_hub *hub) { int i; for (i = 0; i < hub->hdev->maxchild; ++i) pm_runtime_barrier(&hub->ports[i]->dev); } /* caller has locked the hub device */ static int hub_pre_reset(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); hub_quiesce(hub, HUB_PRE_RESET); hub->in_reset = 1; hub_pm_barrier_for_all_ports(hub); return 0; } /* caller has locked the hub device */ static int hub_post_reset(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); hub->in_reset = 0; hub_pm_barrier_for_all_ports(hub); hub_activate(hub, HUB_POST_RESET); return 0; } static int hub_configure(struct usb_hub *hub, struct usb_endpoint_descriptor *endpoint) { struct usb_hcd *hcd; struct usb_device *hdev = hub->hdev; struct device *hub_dev = hub->intfdev; u16 hubstatus, hubchange; u16 wHubCharacteristics; unsigned int pipe; int maxp, ret, i; char *message = "out of memory"; unsigned unit_load; unsigned full_load; unsigned maxchild; hub->buffer = kmalloc(sizeof(*hub->buffer), GFP_KERNEL); if (!hub->buffer) { ret = -ENOMEM; goto fail; } hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL); if (!hub->status) { ret = -ENOMEM; goto fail; } mutex_init(&hub->status_mutex); hub->descriptor = kzalloc(sizeof(*hub->descriptor), GFP_KERNEL); if (!hub->descriptor) { ret = -ENOMEM; goto fail; } /* Request the entire hub descriptor. * hub->descriptor can handle USB_MAXCHILDREN ports, * but a (non-SS) hub can/will return fewer bytes here. */ ret = get_hub_descriptor(hdev, hub->descriptor); if (ret < 0) { message = "can't read hub descriptor"; goto fail; } maxchild = USB_MAXCHILDREN; if (hub_is_superspeed(hdev)) maxchild = min_t(unsigned, maxchild, USB_SS_MAXPORTS); if (hub->descriptor->bNbrPorts > maxchild) { message = "hub has too many ports!"; ret = -ENODEV; goto fail; } else if (hub->descriptor->bNbrPorts == 0) { message = "hub doesn't have any ports!"; ret = -ENODEV; goto fail; } /* * Accumulate wHubDelay + 40ns for every hub in the tree of devices. * The resulting value will be used for SetIsochDelay() request. */ if (hub_is_superspeed(hdev) || hub_is_superspeedplus(hdev)) { u32 delay = __le16_to_cpu(hub->descriptor->u.ss.wHubDelay); if (hdev->parent) delay += hdev->parent->hub_delay; delay += USB_TP_TRANSMISSION_DELAY; hdev->hub_delay = min_t(u32, delay, USB_TP_TRANSMISSION_DELAY_MAX); } maxchild = hub->descriptor->bNbrPorts; dev_info(hub_dev, "%d port%s detected\n", maxchild, (maxchild == 1) ? "" : "s"); hub->ports = kcalloc(maxchild, sizeof(struct usb_port *), GFP_KERNEL); if (!hub->ports) { ret = -ENOMEM; goto fail; } wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics); if (hub_is_superspeed(hdev)) { unit_load = 150; full_load = 900; } else { unit_load = 100; full_load = 500; } /* FIXME for USB 3.0, skip for now */ if ((wHubCharacteristics & HUB_CHAR_COMPOUND) && !(hub_is_superspeed(hdev))) { char portstr[USB_MAXCHILDREN + 1]; for (i = 0; i < maxchild; i++) portstr[i] = hub->descriptor->u.hs.DeviceRemovable [((i + 1) / 8)] & (1 << ((i + 1) % 8)) ? 'F' : 'R'; portstr[maxchild] = 0; dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr); } else dev_dbg(hub_dev, "standalone hub\n"); switch (wHubCharacteristics & HUB_CHAR_LPSM) { case HUB_CHAR_COMMON_LPSM: dev_dbg(hub_dev, "ganged power switching\n"); break; case HUB_CHAR_INDV_PORT_LPSM: dev_dbg(hub_dev, "individual port power switching\n"); break; case HUB_CHAR_NO_LPSM: case HUB_CHAR_LPSM: dev_dbg(hub_dev, "no power switching (usb 1.0)\n"); break; } switch (wHubCharacteristics & HUB_CHAR_OCPM) { case HUB_CHAR_COMMON_OCPM: dev_dbg(hub_dev, "global over-current protection\n"); break; case HUB_CHAR_INDV_PORT_OCPM: dev_dbg(hub_dev, "individual port over-current protection\n"); break; case HUB_CHAR_NO_OCPM: case HUB_CHAR_OCPM: dev_dbg(hub_dev, "no over-current protection\n"); break; } spin_lock_init(&hub->tt.lock); INIT_LIST_HEAD(&hub->tt.clear_list); INIT_WORK(&hub->tt.clear_work, hub_tt_work); switch (hdev->descriptor.bDeviceProtocol) { case USB_HUB_PR_FS: break; case USB_HUB_PR_HS_SINGLE_TT: dev_dbg(hub_dev, "Single TT\n"); hub->tt.hub = hdev; break; case USB_HUB_PR_HS_MULTI_TT: ret = usb_set_interface(hdev, 0, 1); if (ret == 0) { dev_dbg(hub_dev, "TT per port\n"); hub->tt.multi = 1; } else dev_err(hub_dev, "Using single TT (err %d)\n", ret); hub->tt.hub = hdev; break; case USB_HUB_PR_SS: /* USB 3.0 hubs don't have a TT */ break; default: dev_dbg(hub_dev, "Unrecognized hub protocol %d\n", hdev->descriptor.bDeviceProtocol); break; } /* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */ switch (wHubCharacteristics & HUB_CHAR_TTTT) { case HUB_TTTT_8_BITS: if (hdev->descriptor.bDeviceProtocol != 0) { hub->tt.think_time = 666; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 8, hub->tt.think_time); } break; case HUB_TTTT_16_BITS: hub->tt.think_time = 666 * 2; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 16, hub->tt.think_time); break; case HUB_TTTT_24_BITS: hub->tt.think_time = 666 * 3; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 24, hub->tt.think_time); break; case HUB_TTTT_32_BITS: hub->tt.think_time = 666 * 4; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 32, hub->tt.think_time); break; } /* probe() zeroes hub->indicator[] */ if (wHubCharacteristics & HUB_CHAR_PORTIND) { hub->has_indicators = 1; dev_dbg(hub_dev, "Port indicators are supported\n"); } dev_dbg(hub_dev, "power on to power good time: %dms\n", hub->descriptor->bPwrOn2PwrGood * 2); /* power budgeting mostly matters with bus-powered hubs, * and battery-powered root hubs (may provide just 8 mA). */ ret = usb_get_std_status(hdev, USB_RECIP_DEVICE, 0, &hubstatus); if (ret) { message = "can't get hub status"; goto fail; } hcd = bus_to_hcd(hdev->bus); if (hdev == hdev->bus->root_hub) { if (hcd->power_budget > 0) hdev->bus_mA = hcd->power_budget; else hdev->bus_mA = full_load * maxchild; if (hdev->bus_mA >= full_load) hub->mA_per_port = full_load; else { hub->mA_per_port = hdev->bus_mA; hub->limited_power = 1; } } else if ((hubstatus & (1 << USB_DEVICE_SELF_POWERED)) == 0) { int remaining = hdev->bus_mA - hub->descriptor->bHubContrCurrent; dev_dbg(hub_dev, "hub controller current requirement: %dmA\n", hub->descriptor->bHubContrCurrent); hub->limited_power = 1; if (remaining < maxchild * unit_load) dev_warn(hub_dev, "insufficient power available " "to use all downstream ports\n"); hub->mA_per_port = unit_load; /* 7.2.1 */ } else { /* Self-powered external hub */ /* FIXME: What about battery-powered external hubs that * provide less current per port? */ hub->mA_per_port = full_load; } if (hub->mA_per_port < full_load) dev_dbg(hub_dev, "%umA bus power budget for each child\n", hub->mA_per_port); ret = hub_hub_status(hub, &hubstatus, &hubchange); if (ret < 0) { message = "can't get hub status"; goto fail; } /* local power status reports aren't always correct */ if (hdev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER) dev_dbg(hub_dev, "local power source is %s\n", (hubstatus & HUB_STATUS_LOCAL_POWER) ? "lost (inactive)" : "good"); if ((wHubCharacteristics & HUB_CHAR_OCPM) == 0) dev_dbg(hub_dev, "%sover-current condition exists\n", (hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no "); /* set up the interrupt endpoint * We use the EP's maxpacket size instead of (PORTS+1+7)/8 * bytes as USB2.0[11.12.3] says because some hubs are known * to send more data (and thus cause overflow). For root hubs, * maxpktsize is defined in hcd.c's fake endpoint descriptors * to be big enough for at least USB_MAXCHILDREN ports. */ pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress); maxp = usb_maxpacket(hdev, pipe); if (maxp > sizeof(*hub->buffer)) maxp = sizeof(*hub->buffer); hub->urb = usb_alloc_urb(0, GFP_KERNEL); if (!hub->urb) { ret = -ENOMEM; goto fail; } usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq, hub, endpoint->bInterval); /* maybe cycle the hub leds */ if (hub->has_indicators && blinkenlights) hub->indicator[0] = INDICATOR_CYCLE; mutex_lock(&usb_port_peer_mutex); for (i = 0; i < maxchild; i++) { ret = usb_hub_create_port_device(hub, i + 1); if (ret < 0) { dev_err(hub->intfdev, "couldn't create port%d device.\n", i + 1); break; } } hdev->maxchild = i; for (i = 0; i < hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i]; pm_runtime_put(&port_dev->dev); } mutex_unlock(&usb_port_peer_mutex); if (ret < 0) goto fail; /* Update the HCD's internal representation of this hub before hub_wq * starts getting port status changes for devices under the hub. */ if (hcd->driver->update_hub_device) { ret = hcd->driver->update_hub_device(hcd, hdev, &hub->tt, GFP_KERNEL); if (ret < 0) { message = "can't update HCD hub info"; goto fail; } } usb_hub_adjust_deviceremovable(hdev, hub->descriptor); hub_activate(hub, HUB_INIT); return 0; fail: dev_err(hub_dev, "config failed, %s (err %d)\n", message, ret); /* hub_disconnect() frees urb and descriptor */ return ret; } static void hub_release(struct kref *kref) { struct usb_hub *hub = container_of(kref, struct usb_hub, kref); usb_put_dev(hub->hdev); usb_put_intf(to_usb_interface(hub->intfdev)); kfree(hub); } static unsigned highspeed_hubs; static void hub_disconnect(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); struct usb_device *hdev = interface_to_usbdev(intf); int port1; /* * Stop adding new hub events. We do not want to block here and thus * will not try to remove any pending work item. */ hub->disconnected = 1; /* Disconnect all children and quiesce the hub */ hub->error = 0; hub_quiesce(hub, HUB_DISCONNECT); mutex_lock(&usb_port_peer_mutex); /* Avoid races with recursively_mark_NOTATTACHED() */ spin_lock_irq(&device_state_lock); port1 = hdev->maxchild; hdev->maxchild = 0; usb_set_intfdata(intf, NULL); spin_unlock_irq(&device_state_lock); for (; port1 > 0; --port1) usb_hub_remove_port_device(hub, port1); mutex_unlock(&usb_port_peer_mutex); if (hub->hdev->speed == USB_SPEED_HIGH) highspeed_hubs--; usb_free_urb(hub->urb); kfree(hub->ports); kfree(hub->descriptor); kfree(hub->status); kfree(hub->buffer); pm_suspend_ignore_children(&intf->dev, false); if (hub->quirk_disable_autosuspend) usb_autopm_put_interface(intf); onboard_hub_destroy_pdevs(&hub->onboard_hub_devs); kref_put(&hub->kref, hub_release); } static bool hub_descriptor_is_sane(struct usb_host_interface *desc) { /* Some hubs have a subclass of 1, which AFAICT according to the */ /* specs is not defined, but it works */ if (desc->desc.bInterfaceSubClass != 0 && desc->desc.bInterfaceSubClass != 1) return false; /* Multiple endpoints? What kind of mutant ninja-hub is this? */ if (desc->desc.bNumEndpoints != 1) return false; /* If the first endpoint is not interrupt IN, we'd better punt! */ if (!usb_endpoint_is_int_in(&desc->endpoint[0].desc)) return false; return true; } static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_host_interface *desc; struct usb_device *hdev; struct usb_hub *hub; desc = intf->cur_altsetting; hdev = interface_to_usbdev(intf); /* * Set default autosuspend delay as 0 to speedup bus suspend, * based on the below considerations: * * - Unlike other drivers, the hub driver does not rely on the * autosuspend delay to provide enough time to handle a wakeup * event, and the submitted status URB is just to check future * change on hub downstream ports, so it is safe to do it. * * - The patch might cause one or more auto supend/resume for * below very rare devices when they are plugged into hub * first time: * * devices having trouble initializing, and disconnect * themselves from the bus and then reconnect a second * or so later * * devices just for downloading firmware, and disconnects * themselves after completing it * * For these quite rare devices, their drivers may change the * autosuspend delay of their parent hub in the probe() to one * appropriate value to avoid the subtle problem if someone * does care it. * * - The patch may cause one or more auto suspend/resume on * hub during running 'lsusb', but it is probably too * infrequent to worry about. * * - Change autosuspend delay of hub can avoid unnecessary auto * suspend timer for hub, also may decrease power consumption * of USB bus. * * - If user has indicated to prevent autosuspend by passing * usbcore.autosuspend = -1 then keep autosuspend disabled. */ #ifdef CONFIG_PM if (hdev->dev.power.autosuspend_delay >= 0) pm_runtime_set_autosuspend_delay(&hdev->dev, 0); #endif /* * Hubs have proper suspend/resume support, except for root hubs * where the controller driver doesn't have bus_suspend and * bus_resume methods. */ if (hdev->parent) { /* normal device */ usb_enable_autosuspend(hdev); } else { /* root hub */ const struct hc_driver *drv = bus_to_hcd(hdev->bus)->driver; if (drv->bus_suspend && drv->bus_resume) usb_enable_autosuspend(hdev); } if (hdev->level == MAX_TOPO_LEVEL) { dev_err(&intf->dev, "Unsupported bus topology: hub nested too deep\n"); return -E2BIG; } #ifdef CONFIG_USB_OTG_DISABLE_EXTERNAL_HUB if (hdev->parent) { dev_warn(&intf->dev, "ignoring external hub\n"); return -ENODEV; } #endif if (!hub_descriptor_is_sane(desc)) { dev_err(&intf->dev, "bad descriptor, ignoring hub\n"); return -EIO; } /* We found a hub */ dev_info(&intf->dev, "USB hub found\n"); hub = kzalloc(sizeof(*hub), GFP_KERNEL); if (!hub) return -ENOMEM; kref_init(&hub->kref); hub->intfdev = &intf->dev; hub->hdev = hdev; INIT_DELAYED_WORK(&hub->leds, led_work); INIT_DELAYED_WORK(&hub->init_work, NULL); INIT_WORK(&hub->events, hub_event); INIT_LIST_HEAD(&hub->onboard_hub_devs); spin_lock_init(&hub->irq_urb_lock); timer_setup(&hub->irq_urb_retry, hub_retry_irq_urb, 0); usb_get_intf(intf); usb_get_dev(hdev); usb_set_intfdata(intf, hub); intf->needs_remote_wakeup = 1; pm_suspend_ignore_children(&intf->dev, true); if (hdev->speed == USB_SPEED_HIGH) highspeed_hubs++; if (id->driver_info & HUB_QUIRK_CHECK_PORT_AUTOSUSPEND) hub->quirk_check_port_auto_suspend = 1; if (id->driver_info & HUB_QUIRK_DISABLE_AUTOSUSPEND) { hub->quirk_disable_autosuspend = 1; usb_autopm_get_interface_no_resume(intf); } if (hub_configure(hub, &desc->endpoint[0].desc) >= 0) { onboard_hub_create_pdevs(hdev, &hub->onboard_hub_devs); return 0; } hub_disconnect(intf); return -ENODEV; } static int hub_ioctl(struct usb_interface *intf, unsigned int code, void *user_data) { struct usb_device *hdev = interface_to_usbdev(intf); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); /* assert ifno == 0 (part of hub spec) */ switch (code) { case USBDEVFS_HUB_PORTINFO: { struct usbdevfs_hub_portinfo *info = user_data; int i; spin_lock_irq(&device_state_lock); if (hdev->devnum <= 0) info->nports = 0; else { info->nports = hdev->maxchild; for (i = 0; i < info->nports; i++) { if (hub->ports[i]->child == NULL) info->port[i] = 0; else info->port[i] = hub->ports[i]->child->devnum; } } spin_unlock_irq(&device_state_lock); return info->nports + 1; } default: return -ENOSYS; } } /* * Allow user programs to claim ports on a hub. When a device is attached * to one of these "claimed" ports, the program will "own" the device. */ static int find_port_owner(struct usb_device *hdev, unsigned port1, struct usb_dev_state ***ppowner) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (hdev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (port1 == 0 || port1 > hdev->maxchild) return -EINVAL; /* Devices not managed by the hub driver * will always have maxchild equal to 0. */ *ppowner = &(hub->ports[port1 - 1]->port_owner); return 0; } /* In the following three functions, the caller must hold hdev's lock */ int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, struct usb_dev_state *owner) { int rc; struct usb_dev_state **powner; rc = find_port_owner(hdev, port1, &powner); if (rc) return rc; if (*powner) return -EBUSY; *powner = owner; return rc; } EXPORT_SYMBOL_GPL(usb_hub_claim_port); int usb_hub_release_port(struct usb_device *hdev, unsigned port1, struct usb_dev_state *owner) { int rc; struct usb_dev_state **powner; rc = find_port_owner(hdev, port1, &powner); if (rc) return rc; if (*powner != owner) return -ENOENT; *powner = NULL; return rc; } EXPORT_SYMBOL_GPL(usb_hub_release_port); void usb_hub_release_all_ports(struct usb_device *hdev, struct usb_dev_state *owner) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); int n; for (n = 0; n < hdev->maxchild; n++) { if (hub->ports[n]->port_owner == owner) hub->ports[n]->port_owner = NULL; } } /* The caller must hold udev's lock */ bool usb_device_is_owned(struct usb_device *udev) { struct usb_hub *hub; if (udev->state == USB_STATE_NOTATTACHED || !udev->parent) return false; hub = usb_hub_to_struct_hub(udev->parent); return !!hub->ports[udev->portnum - 1]->port_owner; } static void update_port_device_state(struct usb_device *udev) { struct usb_hub *hub; struct usb_port *port_dev; if (udev->parent) { hub = usb_hub_to_struct_hub(udev->parent); port_dev = hub->ports[udev->portnum - 1]; WRITE_ONCE(port_dev->state, udev->state); sysfs_notify_dirent(port_dev->state_kn); } } static void recursively_mark_NOTATTACHED(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); int i; for (i = 0; i < udev->maxchild; ++i) { if (hub->ports[i]->child) recursively_mark_NOTATTACHED(hub->ports[i]->child); } if (udev->state == USB_STATE_SUSPENDED) udev->active_duration -= jiffies; udev->state = USB_STATE_NOTATTACHED; update_port_device_state(udev); } /** * usb_set_device_state - change a device's current state (usbcore, hcds) * @udev: pointer to device whose state should be changed * @new_state: new state value to be stored * * udev->state is _not_ fully protected by the device lock. Although * most transitions are made only while holding the lock, the state can * can change to USB_STATE_NOTATTACHED at almost any time. This * is so that devices can be marked as disconnected as soon as possible, * without having to wait for any semaphores to be released. As a result, * all changes to any device's state must be protected by the * device_state_lock spinlock. * * Once a device has been added to the device tree, all changes to its state * should be made using this routine. The state should _not_ be set directly. * * If udev->state is already USB_STATE_NOTATTACHED then no change is made. * Otherwise udev->state is set to new_state, and if new_state is * USB_STATE_NOTATTACHED then all of udev's descendants' states are also set * to USB_STATE_NOTATTACHED. */ void usb_set_device_state(struct usb_device *udev, enum usb_device_state new_state) { unsigned long flags; int wakeup = -1; spin_lock_irqsave(&device_state_lock, flags); if (udev->state == USB_STATE_NOTATTACHED) ; /* do nothing */ else if (new_state != USB_STATE_NOTATTACHED) { /* root hub wakeup capabilities are managed out-of-band * and may involve silicon errata ... ignore them here. */ if (udev->parent) { if (udev->state == USB_STATE_SUSPENDED || new_state == USB_STATE_SUSPENDED) ; /* No change to wakeup settings */ else if (new_state == USB_STATE_CONFIGURED) wakeup = (udev->quirks & USB_QUIRK_IGNORE_REMOTE_WAKEUP) ? 0 : udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP; else wakeup = 0; } if (udev->state == USB_STATE_SUSPENDED && new_state != USB_STATE_SUSPENDED) udev->active_duration -= jiffies; else if (new_state == USB_STATE_SUSPENDED && udev->state != USB_STATE_SUSPENDED) udev->active_duration += jiffies; udev->state = new_state; update_port_device_state(udev); } else recursively_mark_NOTATTACHED(udev); spin_unlock_irqrestore(&device_state_lock, flags); if (wakeup >= 0) device_set_wakeup_capable(&udev->dev, wakeup); } EXPORT_SYMBOL_GPL(usb_set_device_state); /* * Choose a device number. * * Device numbers are used as filenames in usbfs. On USB-1.1 and * USB-2.0 buses they are also used as device addresses, however on * USB-3.0 buses the address is assigned by the controller hardware * and it usually is not the same as the device number. * * Devices connected under xHCI are not as simple. The host controller * supports virtualization, so the hardware assigns device addresses and * the HCD must setup data structures before issuing a set address * command to the hardware. */ static void choose_devnum(struct usb_device *udev) { int devnum; struct usb_bus *bus = udev->bus; /* be safe when more hub events are proceed in parallel */ mutex_lock(&bus->devnum_next_mutex); /* Try to allocate the next devnum beginning at bus->devnum_next. */ devnum = find_next_zero_bit(bus->devmap.devicemap, 128, bus->devnum_next); if (devnum >= 128) devnum = find_next_zero_bit(bus->devmap.devicemap, 128, 1); bus->devnum_next = (devnum >= 127 ? 1 : devnum + 1); if (devnum < 128) { set_bit(devnum, bus->devmap.devicemap); udev->devnum = devnum; } mutex_unlock(&bus->devnum_next_mutex); } static void release_devnum(struct usb_device *udev) { if (udev->devnum > 0) { clear_bit(udev->devnum, udev->bus->devmap.devicemap); udev->devnum = -1; } } static void update_devnum(struct usb_device *udev, int devnum) { udev->devnum = devnum; if (!udev->devaddr) udev->devaddr = (u8)devnum; } static void hub_free_dev(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Root hubs aren't real devices, so don't free HCD resources */ if (hcd->driver->free_dev && udev->parent) hcd->driver->free_dev(hcd, udev); } static void hub_disconnect_children(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); int i; /* Free up all the children before we remove this device */ for (i = 0; i < udev->maxchild; i++) { if (hub->ports[i]->child) usb_disconnect(&hub->ports[i]->child); } } /** * usb_disconnect - disconnect a device (usbcore-internal) * @pdev: pointer to device being disconnected * * Context: task context, might sleep * * Something got disconnected. Get rid of it and all of its children. * * If *pdev is a normal device then the parent hub must already be locked. * If *pdev is a root hub then the caller must hold the usb_bus_idr_lock, * which protects the set of root hubs as well as the list of buses. * * Only hub drivers (including virtual root hub drivers for host * controllers) should ever call this. * * This call is synchronous, and may not be used in an interrupt context. */ void usb_disconnect(struct usb_device **pdev) { struct usb_port *port_dev = NULL; struct usb_device *udev = *pdev; struct usb_hub *hub = NULL; int port1 = 1; /* mark the device as inactive, so any further urb submissions for * this device (and any of its children) will fail immediately. * this quiesces everything except pending urbs. */ usb_set_device_state(udev, USB_STATE_NOTATTACHED); dev_info(&udev->dev, "USB disconnect, device number %d\n", udev->devnum); /* * Ensure that the pm runtime code knows that the USB device * is in the process of being disconnected. */ pm_runtime_barrier(&udev->dev); usb_lock_device(udev); hub_disconnect_children(udev); /* deallocate hcd/hardware state ... nuking all pending urbs and * cleaning up all state associated with the current configuration * so that the hardware is now fully quiesced. */ dev_dbg(&udev->dev, "unregistering device\n"); usb_disable_device(udev, 0); usb_hcd_synchronize_unlinks(udev); if (udev->parent) { port1 = udev->portnum; hub = usb_hub_to_struct_hub(udev->parent); port_dev = hub->ports[port1 - 1]; sysfs_remove_link(&udev->dev.kobj, "port"); sysfs_remove_link(&port_dev->dev.kobj, "device"); /* * As usb_port_runtime_resume() de-references udev, make * sure no resumes occur during removal */ if (!test_and_set_bit(port1, hub->child_usage_bits)) pm_runtime_get_sync(&port_dev->dev); } usb_remove_ep_devs(&udev->ep0); usb_unlock_device(udev); /* Unregister the device. The device driver is responsible * for de-configuring the device and invoking the remove-device * notifier chain (used by usbfs and possibly others). */ device_del(&udev->dev); /* Free the device number and delete the parent's children[] * (or root_hub) pointer. */ release_devnum(udev); /* Avoid races with recursively_mark_NOTATTACHED() */ spin_lock_irq(&device_state_lock); *pdev = NULL; spin_unlock_irq(&device_state_lock); if (port_dev && test_and_clear_bit(port1, hub->child_usage_bits)) pm_runtime_put(&port_dev->dev); hub_free_dev(udev); put_device(&udev->dev); } #ifdef CONFIG_USB_ANNOUNCE_NEW_DEVICES static void show_string(struct usb_device *udev, char *id, char *string) { if (!string) return; dev_info(&udev->dev, "%s: %s\n", id, string); } static void announce_device(struct usb_device *udev) { u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice); dev_info(&udev->dev, "New USB device found, idVendor=%04x, idProduct=%04x, bcdDevice=%2x.%02x\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct), bcdDevice >> 8, bcdDevice & 0xff); dev_info(&udev->dev, "New USB device strings: Mfr=%d, Product=%d, SerialNumber=%d\n", udev->descriptor.iManufacturer, udev->descriptor.iProduct, udev->descriptor.iSerialNumber); show_string(udev, "Product", udev->product); show_string(udev, "Manufacturer", udev->manufacturer); show_string(udev, "SerialNumber", udev->serial); } #else static inline void announce_device(struct usb_device *udev) { } #endif /** * usb_enumerate_device_otg - FIXME (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * Finish enumeration for On-The-Go devices * * Return: 0 if successful. A negative error code otherwise. */ static int usb_enumerate_device_otg(struct usb_device *udev) { int err = 0; #ifdef CONFIG_USB_OTG /* * OTG-aware devices on OTG-capable root hubs may be able to use SRP, * to wake us after we've powered off VBUS; and HNP, switching roles * "host" to "peripheral". The OTG descriptor helps figure this out. */ if (!udev->bus->is_b_host && udev->config && udev->parent == udev->bus->root_hub) { struct usb_otg_descriptor *desc = NULL; struct usb_bus *bus = udev->bus; unsigned port1 = udev->portnum; /* descriptor may appear anywhere in config */ err = __usb_get_extra_descriptor(udev->rawdescriptors[0], le16_to_cpu(udev->config[0].desc.wTotalLength), USB_DT_OTG, (void **) &desc, sizeof(*desc)); if (err || !(desc->bmAttributes & USB_OTG_HNP)) return 0; dev_info(&udev->dev, "Dual-Role OTG device on %sHNP port\n", (port1 == bus->otg_port) ? "" : "non-"); /* enable HNP before suspend, it's simpler */ if (port1 == bus->otg_port) { bus->b_hnp_enable = 1; err = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, 0, USB_DEVICE_B_HNP_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (err < 0) { /* * OTG MESSAGE: report errors here, * customize to match your product. */ dev_err(&udev->dev, "can't set HNP mode: %d\n", err); bus->b_hnp_enable = 0; } } else if (desc->bLength == sizeof (struct usb_otg_descriptor)) { /* Set a_alt_hnp_support for legacy otg device */ err = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, 0, USB_DEVICE_A_ALT_HNP_SUPPORT, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (err < 0) dev_err(&udev->dev, "set a_alt_hnp_support failed: %d\n", err); } } #endif return err; } /** * usb_enumerate_device - Read device configs/intfs/otg (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * This is only called by usb_new_device() -- all comments that apply there * apply here wrt to environment. * * If the device is WUSB and not authorized, we don't attempt to read * the string descriptors, as they will be errored out by the device * until it has been authorized. * * Return: 0 if successful. A negative error code otherwise. */ static int usb_enumerate_device(struct usb_device *udev) { int err; struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (udev->config == NULL) { err = usb_get_configuration(udev); if (err < 0) { if (err != -ENODEV) dev_err(&udev->dev, "can't read configurations, error %d\n", err); return err; } } /* read the standard strings and cache them if present */ udev->product = usb_cache_string(udev, udev->descriptor.iProduct); udev->manufacturer = usb_cache_string(udev, udev->descriptor.iManufacturer); udev->serial = usb_cache_string(udev, udev->descriptor.iSerialNumber); err = usb_enumerate_device_otg(udev); if (err < 0) return err; if (IS_ENABLED(CONFIG_USB_OTG_PRODUCTLIST) && hcd->tpl_support && !is_targeted(udev)) { /* Maybe it can talk to us, though we can't talk to it. * (Includes HNP test device.) */ if (IS_ENABLED(CONFIG_USB_OTG) && (udev->bus->b_hnp_enable || udev->bus->is_b_host)) { err = usb_port_suspend(udev, PMSG_AUTO_SUSPEND); if (err < 0) dev_dbg(&udev->dev, "HNP fail, %d\n", err); } return -ENOTSUPP; } usb_detect_interface_quirks(udev); return 0; } static void set_usb_port_removable(struct usb_device *udev) { struct usb_device *hdev = udev->parent; struct usb_hub *hub; u8 port = udev->portnum; u16 wHubCharacteristics; bool removable = true; dev_set_removable(&udev->dev, DEVICE_REMOVABLE_UNKNOWN); if (!hdev) return; hub = usb_hub_to_struct_hub(udev->parent); /* * If the platform firmware has provided information about a port, * use that to determine whether it's removable. */ switch (hub->ports[udev->portnum - 1]->connect_type) { case USB_PORT_CONNECT_TYPE_HOT_PLUG: dev_set_removable(&udev->dev, DEVICE_REMOVABLE); return; case USB_PORT_CONNECT_TYPE_HARD_WIRED: case USB_PORT_NOT_USED: dev_set_removable(&udev->dev, DEVICE_FIXED); return; default: break; } /* * Otherwise, check whether the hub knows whether a port is removable * or not */ wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics); if (!(wHubCharacteristics & HUB_CHAR_COMPOUND)) return; if (hub_is_superspeed(hdev)) { if (le16_to_cpu(hub->descriptor->u.ss.DeviceRemovable) & (1 << port)) removable = false; } else { if (hub->descriptor->u.hs.DeviceRemovable[port / 8] & (1 << (port % 8))) removable = false; } if (removable) dev_set_removable(&udev->dev, DEVICE_REMOVABLE); else dev_set_removable(&udev->dev, DEVICE_FIXED); } /** * usb_new_device - perform initial device setup (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * This is called with devices which have been detected but not fully * enumerated. The device descriptor is available, but not descriptors * for any device configuration. The caller must have locked either * the parent hub (if udev is a normal device) or else the * usb_bus_idr_lock (if udev is a root hub). The parent's pointer to * udev has already been installed, but udev is not yet visible through * sysfs or other filesystem code. * * This call is synchronous, and may not be used in an interrupt context. * * Only the hub driver or root-hub registrar should ever call this. * * Return: Whether the device is configured properly or not. Zero if the * interface was registered with the driver core; else a negative errno * value. * */ int usb_new_device(struct usb_device *udev) { int err; if (udev->parent) { /* Initialize non-root-hub device wakeup to disabled; * device (un)configuration controls wakeup capable * sysfs power/wakeup controls wakeup enabled/disabled */ device_init_wakeup(&udev->dev, 0); } /* Tell the runtime-PM framework the device is active */ pm_runtime_set_active(&udev->dev); pm_runtime_get_noresume(&udev->dev); pm_runtime_use_autosuspend(&udev->dev); pm_runtime_enable(&udev->dev); /* By default, forbid autosuspend for all devices. It will be * allowed for hubs during binding. */ usb_disable_autosuspend(udev); err = usb_enumerate_device(udev); /* Read descriptors */ if (err < 0) goto fail; dev_dbg(&udev->dev, "udev %d, busnum %d, minor = %d\n", udev->devnum, udev->bus->busnum, (((udev->bus->busnum-1) * 128) + (udev->devnum-1))); /* export the usbdev device-node for libusb */ udev->dev.devt = MKDEV(USB_DEVICE_MAJOR, (((udev->bus->busnum-1) * 128) + (udev->devnum-1))); /* Tell the world! */ announce_device(udev); if (udev->serial) add_device_randomness(udev->serial, strlen(udev->serial)); if (udev->product) add_device_randomness(udev->product, strlen(udev->product)); if (udev->manufacturer) add_device_randomness(udev->manufacturer, strlen(udev->manufacturer)); device_enable_async_suspend(&udev->dev); /* check whether the hub or firmware marks this port as non-removable */ set_usb_port_removable(udev); /* Register the device. The device driver is responsible * for configuring the device and invoking the add-device * notifier chain (used by usbfs and possibly others). */ err = device_add(&udev->dev); if (err) { dev_err(&udev->dev, "can't device_add, error %d\n", err); goto fail; } /* Create link files between child device and usb port device. */ if (udev->parent) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); int port1 = udev->portnum; struct usb_port *port_dev = hub->ports[port1 - 1]; err = sysfs_create_link(&udev->dev.kobj, &port_dev->dev.kobj, "port"); if (err) goto fail; err = sysfs_create_link(&port_dev->dev.kobj, &udev->dev.kobj, "device"); if (err) { sysfs_remove_link(&udev->dev.kobj, "port"); goto fail; } if (!test_and_set_bit(port1, hub->child_usage_bits)) pm_runtime_get_sync(&port_dev->dev); } (void) usb_create_ep_devs(&udev->dev, &udev->ep0, udev); usb_mark_last_busy(udev); pm_runtime_put_sync_autosuspend(&udev->dev); return err; fail: usb_set_device_state(udev, USB_STATE_NOTATTACHED); pm_runtime_disable(&udev->dev); pm_runtime_set_suspended(&udev->dev); return err; } /** * usb_deauthorize_device - deauthorize a device (usbcore-internal) * @usb_dev: USB device * * Move the USB device to a very basic state where interfaces are disabled * and the device is in fact unconfigured and unusable. * * We share a lock (that we have) with device_del(), so we need to * defer its call. * * Return: 0. */ int usb_deauthorize_device(struct usb_device *usb_dev) { usb_lock_device(usb_dev); if (usb_dev->authorized == 0) goto out_unauthorized; usb_dev->authorized = 0; usb_set_configuration(usb_dev, -1); out_unauthorized: usb_unlock_device(usb_dev); return 0; } int usb_authorize_device(struct usb_device *usb_dev) { int result = 0, c; usb_lock_device(usb_dev); if (usb_dev->authorized == 1) goto out_authorized; result = usb_autoresume_device(usb_dev); if (result < 0) { dev_err(&usb_dev->dev, "can't autoresume for authorization: %d\n", result); goto error_autoresume; } usb_dev->authorized = 1; /* Choose and set the configuration. This registers the interfaces * with the driver core and lets interface drivers bind to them. */ c = usb_choose_configuration(usb_dev); if (c >= 0) { result = usb_set_configuration(usb_dev, c); if (result) { dev_err(&usb_dev->dev, "can't set config #%d, error %d\n", c, result); /* This need not be fatal. The user can try to * set other configurations. */ } } dev_info(&usb_dev->dev, "authorized to connect\n"); usb_autosuspend_device(usb_dev); error_autoresume: out_authorized: usb_unlock_device(usb_dev); /* complements locktree */ return result; } /** * get_port_ssp_rate - Match the extended port status to SSP rate * @hdev: The hub device * @ext_portstatus: extended port status * * Match the extended port status speed id to the SuperSpeed Plus sublink speed * capability attributes. Base on the number of connected lanes and speed, * return the corresponding enum usb_ssp_rate. */ static enum usb_ssp_rate get_port_ssp_rate(struct usb_device *hdev, u32 ext_portstatus) { struct usb_ssp_cap_descriptor *ssp_cap = hdev->bos->ssp_cap; u32 attr; u8 speed_id; u8 ssac; u8 lanes; int i; if (!ssp_cap) goto out; speed_id = ext_portstatus & USB_EXT_PORT_STAT_RX_SPEED_ID; lanes = USB_EXT_PORT_RX_LANES(ext_portstatus) + 1; ssac = le32_to_cpu(ssp_cap->bmAttributes) & USB_SSP_SUBLINK_SPEED_ATTRIBS; for (i = 0; i <= ssac; i++) { u8 ssid; attr = le32_to_cpu(ssp_cap->bmSublinkSpeedAttr[i]); ssid = FIELD_GET(USB_SSP_SUBLINK_SPEED_SSID, attr); if (speed_id == ssid) { u16 mantissa; u8 lse; u8 type; /* * Note: currently asymmetric lane types are only * applicable for SSIC operate in SuperSpeed protocol */ type = FIELD_GET(USB_SSP_SUBLINK_SPEED_ST, attr); if (type == USB_SSP_SUBLINK_SPEED_ST_ASYM_RX || type == USB_SSP_SUBLINK_SPEED_ST_ASYM_TX) goto out; if (FIELD_GET(USB_SSP_SUBLINK_SPEED_LP, attr) != USB_SSP_SUBLINK_SPEED_LP_SSP) goto out; lse = FIELD_GET(USB_SSP_SUBLINK_SPEED_LSE, attr); mantissa = FIELD_GET(USB_SSP_SUBLINK_SPEED_LSM, attr); /* Convert to Gbps */ for (; lse < USB_SSP_SUBLINK_SPEED_LSE_GBPS; lse++) mantissa /= 1000; if (mantissa >= 10 && lanes == 1) return USB_SSP_GEN_2x1; if (mantissa >= 10 && lanes == 2) return USB_SSP_GEN_2x2; if (mantissa >= 5 && lanes == 2) return USB_SSP_GEN_1x2; goto out; } } out: return USB_SSP_GEN_UNKNOWN; } #ifdef CONFIG_USB_FEW_INIT_RETRIES #define PORT_RESET_TRIES 2 #define SET_ADDRESS_TRIES 1 #define GET_DESCRIPTOR_TRIES 1 #define GET_MAXPACKET0_TRIES 1 #define PORT_INIT_TRIES 4 #else #define PORT_RESET_TRIES 5 #define SET_ADDRESS_TRIES 2 #define GET_DESCRIPTOR_TRIES 2 #define GET_MAXPACKET0_TRIES 3 #define PORT_INIT_TRIES 4 #endif /* CONFIG_USB_FEW_INIT_RETRIES */ #define DETECT_DISCONNECT_TRIES 5 #define HUB_ROOT_RESET_TIME 60 /* times are in msec */ #define HUB_SHORT_RESET_TIME 10 #define HUB_BH_RESET_TIME 50 #define HUB_LONG_RESET_TIME 200 #define HUB_RESET_TIMEOUT 800 static bool use_new_scheme(struct usb_device *udev, int retry, struct usb_port *port_dev) { int old_scheme_first_port = (port_dev->quirks & USB_PORT_QUIRK_OLD_SCHEME) || old_scheme_first; /* * "New scheme" enumeration causes an extra state transition to be * exposed to an xhci host and causes USB3 devices to receive control * commands in the default state. This has been seen to cause * enumeration failures, so disable this enumeration scheme for USB3 * devices. */ if (udev->speed >= USB_SPEED_SUPER) return false; /* * If use_both_schemes is set, use the first scheme (whichever * it is) for the larger half of the retries, then use the other * scheme. Otherwise, use the first scheme for all the retries. */ if (use_both_schemes && retry >= (PORT_INIT_TRIES + 1) / 2) return old_scheme_first_port; /* Second half */ return !old_scheme_first_port; /* First half or all */ } /* Is a USB 3.0 port in the Inactive or Compliance Mode state? * Port warm reset is required to recover */ static bool hub_port_warm_reset_required(struct usb_hub *hub, int port1, u16 portstatus) { u16 link_state; if (!hub_is_superspeed(hub->hdev)) return false; if (test_bit(port1, hub->warm_reset_bits)) return true; link_state = portstatus & USB_PORT_STAT_LINK_STATE; return link_state == USB_SS_PORT_LS_SS_INACTIVE || link_state == USB_SS_PORT_LS_COMP_MOD; } static int hub_port_wait_reset(struct usb_hub *hub, int port1, struct usb_device *udev, unsigned int delay, bool warm) { int delay_time, ret; u16 portstatus; u16 portchange; u32 ext_portstatus = 0; for (delay_time = 0; delay_time < HUB_RESET_TIMEOUT; delay_time += delay) { /* wait to give the device a chance to reset */ msleep(delay); /* read and decode port status */ if (hub_is_superspeedplus(hub->hdev)) ret = hub_ext_port_status(hub, port1, HUB_EXT_PORT_STATUS, &portstatus, &portchange, &ext_portstatus); else ret = usb_hub_port_status(hub, port1, &portstatus, &portchange); if (ret < 0) return ret; /* * The port state is unknown until the reset completes. * * On top of that, some chips may require additional time * to re-establish a connection after the reset is complete, * so also wait for the connection to be re-established. */ if (!(portstatus & USB_PORT_STAT_RESET) && (portstatus & USB_PORT_STAT_CONNECTION)) break; /* switch to the long delay after two short delay failures */ if (delay_time >= 2 * HUB_SHORT_RESET_TIME) delay = HUB_LONG_RESET_TIME; dev_dbg(&hub->ports[port1 - 1]->dev, "not %sreset yet, waiting %dms\n", warm ? "warm " : "", delay); } if ((portstatus & USB_PORT_STAT_RESET)) return -EBUSY; if (hub_port_warm_reset_required(hub, port1, portstatus)) return -ENOTCONN; /* Device went away? */ if (!(portstatus & USB_PORT_STAT_CONNECTION)) return -ENOTCONN; /* Retry if connect change is set but status is still connected. * A USB 3.0 connection may bounce if multiple warm resets were issued, * but the device may have successfully re-connected. Ignore it. */ if (!hub_is_superspeed(hub->hdev) && (portchange & USB_PORT_STAT_C_CONNECTION)) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); return -EAGAIN; } if (!(portstatus & USB_PORT_STAT_ENABLE)) return -EBUSY; if (!udev) return 0; if (hub_is_superspeedplus(hub->hdev)) { /* extended portstatus Rx and Tx lane count are zero based */ udev->rx_lanes = USB_EXT_PORT_RX_LANES(ext_portstatus) + 1; udev->tx_lanes = USB_EXT_PORT_TX_LANES(ext_portstatus) + 1; udev->ssp_rate = get_port_ssp_rate(hub->hdev, ext_portstatus); } else { udev->rx_lanes = 1; udev->tx_lanes = 1; udev->ssp_rate = USB_SSP_GEN_UNKNOWN; } if (udev->ssp_rate != USB_SSP_GEN_UNKNOWN) udev->speed = USB_SPEED_SUPER_PLUS; else if (hub_is_superspeed(hub->hdev)) udev->speed = USB_SPEED_SUPER; else if (portstatus & USB_PORT_STAT_HIGH_SPEED) udev->speed = USB_SPEED_HIGH; else if (portstatus & USB_PORT_STAT_LOW_SPEED) udev->speed = USB_SPEED_LOW; else udev->speed = USB_SPEED_FULL; return 0; } /* Handle port reset and port warm(BH) reset (for USB3 protocol ports) */ static int hub_port_reset(struct usb_hub *hub, int port1, struct usb_device *udev, unsigned int delay, bool warm) { int i, status; u16 portchange, portstatus; struct usb_port *port_dev = hub->ports[port1 - 1]; int reset_recovery_time; if (!hub_is_superspeed(hub->hdev)) { if (warm) { dev_err(hub->intfdev, "only USB3 hub support " "warm reset\n"); return -EINVAL; } /* Block EHCI CF initialization during the port reset. * Some companion controllers don't like it when they mix. */ down_read(&ehci_cf_port_reset_rwsem); } else if (!warm) { /* * If the caller hasn't explicitly requested a warm reset, * double check and see if one is needed. */ if (usb_hub_port_status(hub, port1, &portstatus, &portchange) == 0) if (hub_port_warm_reset_required(hub, port1, portstatus)) warm = true; } clear_bit(port1, hub->warm_reset_bits); /* Reset the port */ for (i = 0; i < PORT_RESET_TRIES; i++) { status = set_port_feature(hub->hdev, port1, (warm ? USB_PORT_FEAT_BH_PORT_RESET : USB_PORT_FEAT_RESET)); if (status == -ENODEV) { ; /* The hub is gone */ } else if (status) { dev_err(&port_dev->dev, "cannot %sreset (err = %d)\n", warm ? "warm " : "", status); } else { status = hub_port_wait_reset(hub, port1, udev, delay, warm); if (status && status != -ENOTCONN && status != -ENODEV) dev_dbg(hub->intfdev, "port_wait_reset: err = %d\n", status); } /* * Check for disconnect or reset, and bail out after several * reset attempts to avoid warm reset loop. */ if (status == 0 || status == -ENOTCONN || status == -ENODEV || (status == -EBUSY && i == PORT_RESET_TRIES - 1)) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_RESET); if (!hub_is_superspeed(hub->hdev)) goto done; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); if (udev) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); /* * If a USB 3.0 device migrates from reset to an error * state, re-issue the warm reset. */ if (usb_hub_port_status(hub, port1, &portstatus, &portchange) < 0) goto done; if (!hub_port_warm_reset_required(hub, port1, portstatus)) goto done; /* * If the port is in SS.Inactive or Compliance Mode, the * hot or warm reset failed. Try another warm reset. */ if (!warm) { dev_dbg(&port_dev->dev, "hot reset failed, warm reset\n"); warm = true; } } dev_dbg(&port_dev->dev, "not enabled, trying %sreset again...\n", warm ? "warm " : ""); delay = HUB_LONG_RESET_TIME; } dev_err(&port_dev->dev, "Cannot enable. Maybe the USB cable is bad?\n"); done: if (status == 0) { if (port_dev->quirks & USB_PORT_QUIRK_FAST_ENUM) usleep_range(10000, 12000); else { /* TRSTRCY = 10 ms; plus some extra */ reset_recovery_time = 10 + 40; /* Hub needs extra delay after resetting its port. */ if (hub->hdev->quirks & USB_QUIRK_HUB_SLOW_RESET) reset_recovery_time += 100; msleep(reset_recovery_time); } if (udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); update_devnum(udev, 0); /* The xHC may think the device is already reset, * so ignore the status. */ if (hcd->driver->reset_device) hcd->driver->reset_device(hcd, udev); usb_set_device_state(udev, USB_STATE_DEFAULT); } } else { if (udev) usb_set_device_state(udev, USB_STATE_NOTATTACHED); } if (!hub_is_superspeed(hub->hdev)) up_read(&ehci_cf_port_reset_rwsem); return status; } /* * hub_port_stop_enumerate - stop USB enumeration or ignore port events * @hub: target hub * @port1: port num of the port * @retries: port retries number of hub_port_init() * * Return: * true: ignore port actions/events or give up connection attempts. * false: keep original behavior. * * This function will be based on retries to check whether the port which is * marked with early_stop attribute would stop enumeration or ignore events. * * Note: * This function didn't change anything if early_stop is not set, and it will * prevent all connection attempts when early_stop is set and the attempts of * the port are more than 1. */ static bool hub_port_stop_enumerate(struct usb_hub *hub, int port1, int retries) { struct usb_port *port_dev = hub->ports[port1 - 1]; if (port_dev->early_stop) { if (port_dev->ignore_event) return true; /* * We want unsuccessful attempts to fail quickly. * Since some devices may need one failure during * port initialization, we allow two tries but no * more. */ if (retries < 2) return false; port_dev->ignore_event = 1; } else port_dev->ignore_event = 0; return port_dev->ignore_event; } /* Check if a port is power on */ int usb_port_is_power_on(struct usb_hub *hub, unsigned int portstatus) { int ret = 0; if (hub_is_superspeed(hub->hdev)) { if (portstatus & USB_SS_PORT_STAT_POWER) ret = 1; } else { if (portstatus & USB_PORT_STAT_POWER) ret = 1; } return ret; } static void usb_lock_port(struct usb_port *port_dev) __acquires(&port_dev->status_lock) { mutex_lock(&port_dev->status_lock); __acquire(&port_dev->status_lock); } static void usb_unlock_port(struct usb_port *port_dev) __releases(&port_dev->status_lock) { mutex_unlock(&port_dev->status_lock); __release(&port_dev->status_lock); } #ifdef CONFIG_PM /* Check if a port is suspended(USB2.0 port) or in U3 state(USB3.0 port) */ static int port_is_suspended(struct usb_hub *hub, unsigned portstatus) { int ret = 0; if (hub_is_superspeed(hub->hdev)) { if ((portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_U3) ret = 1; } else { if (portstatus & USB_PORT_STAT_SUSPEND) ret = 1; } return ret; } /* Determine whether the device on a port is ready for a normal resume, * is ready for a reset-resume, or should be disconnected. */ static int check_port_resume_type(struct usb_device *udev, struct usb_hub *hub, int port1, int status, u16 portchange, u16 portstatus) { struct usb_port *port_dev = hub->ports[port1 - 1]; int retries = 3; retry: /* Is a warm reset needed to recover the connection? */ if (status == 0 && udev->reset_resume && hub_port_warm_reset_required(hub, port1, portstatus)) { /* pass */; } /* Is the device still present? */ else if (status || port_is_suspended(hub, portstatus) || !usb_port_is_power_on(hub, portstatus)) { if (status >= 0) status = -ENODEV; } else if (!(portstatus & USB_PORT_STAT_CONNECTION)) { if (retries--) { usleep_range(200, 300); status = usb_hub_port_status(hub, port1, &portstatus, &portchange); goto retry; } status = -ENODEV; } /* Can't do a normal resume if the port isn't enabled, * so try a reset-resume instead. */ else if (!(portstatus & USB_PORT_STAT_ENABLE) && !udev->reset_resume) { if (udev->persist_enabled) udev->reset_resume = 1; else status = -ENODEV; } if (status) { dev_dbg(&port_dev->dev, "status %04x.%04x after resume, %d\n", portchange, portstatus, status); } else if (udev->reset_resume) { /* Late port handoff can set status-change bits */ if (portchange & USB_PORT_STAT_C_CONNECTION) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); if (portchange & USB_PORT_STAT_C_ENABLE) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_ENABLE); /* * Whatever made this reset-resume necessary may have * turned on the port1 bit in hub->change_bits. But after * a successful reset-resume we want the bit to be clear; * if it was on it would indicate that something happened * following the reset-resume. */ clear_bit(port1, hub->change_bits); } return status; } int usb_disable_ltm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Check if the roothub and device supports LTM. */ if (!usb_device_supports_ltm(hcd->self.root_hub) || !usb_device_supports_ltm(udev)) return 0; /* Clear Feature LTM Enable can only be sent if the device is * configured. */ if (!udev->actconfig) return 0; return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_LTM_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } EXPORT_SYMBOL_GPL(usb_disable_ltm); void usb_enable_ltm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Check if the roothub and device supports LTM. */ if (!usb_device_supports_ltm(hcd->self.root_hub) || !usb_device_supports_ltm(udev)) return; /* Set Feature LTM Enable can only be sent if the device is * configured. */ if (!udev->actconfig) return; usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_LTM_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } EXPORT_SYMBOL_GPL(usb_enable_ltm); /* * usb_enable_remote_wakeup - enable remote wakeup for a device * @udev: target device * * For USB-2 devices: Set the device's remote wakeup feature. * * For USB-3 devices: Assume there's only one function on the device and * enable remote wake for the first interface. FIXME if the interface * association descriptor shows there's more than one function. */ static int usb_enable_remote_wakeup(struct usb_device *udev) { if (udev->speed < USB_SPEED_SUPER) return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_REMOTE_WAKEUP, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); else return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_INTERFACE, USB_INTRF_FUNC_SUSPEND, USB_INTRF_FUNC_SUSPEND_RW | USB_INTRF_FUNC_SUSPEND_LP, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* * usb_disable_remote_wakeup - disable remote wakeup for a device * @udev: target device * * For USB-2 devices: Clear the device's remote wakeup feature. * * For USB-3 devices: Assume there's only one function on the device and * disable remote wake for the first interface. FIXME if the interface * association descriptor shows there's more than one function. */ static int usb_disable_remote_wakeup(struct usb_device *udev) { if (udev->speed < USB_SPEED_SUPER) return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_REMOTE_WAKEUP, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); else return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_INTERFACE, USB_INTRF_FUNC_SUSPEND, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* Count of wakeup-enabled devices at or below udev */ unsigned usb_wakeup_enabled_descendants(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); return udev->do_remote_wakeup + (hub ? hub->wakeup_enabled_descendants : 0); } EXPORT_SYMBOL_GPL(usb_wakeup_enabled_descendants); /* * usb_port_suspend - suspend a usb device's upstream port * @udev: device that's no longer in active use, not a root hub * Context: must be able to sleep; device not locked; pm locks held * * Suspends a USB device that isn't in active use, conserving power. * Devices may wake out of a suspend, if anything important happens, * using the remote wakeup mechanism. They may also be taken out of * suspend by the host, using usb_port_resume(). It's also routine * to disconnect devices while they are suspended. * * This only affects the USB hardware for a device; its interfaces * (and, for hubs, child devices) must already have been suspended. * * Selective port suspend reduces power; most suspended devices draw * less than 500 uA. It's also used in OTG, along with remote wakeup. * All devices below the suspended port are also suspended. * * Devices leave suspend state when the host wakes them up. Some devices * also support "remote wakeup", where the device can activate the USB * tree above them to deliver data, such as a keypress or packet. In * some cases, this wakes the USB host. * * Suspending OTG devices may trigger HNP, if that's been enabled * between a pair of dual-role devices. That will change roles, such * as from A-Host to A-Peripheral or from B-Host back to B-Peripheral. * * Devices on USB hub ports have only one "suspend" state, corresponding * to ACPI D2, "may cause the device to lose some context". * State transitions include: * * - suspend, resume ... when the VBUS power link stays live * - suspend, disconnect ... VBUS lost * * Once VBUS drop breaks the circuit, the port it's using has to go through * normal re-enumeration procedures, starting with enabling VBUS power. * Other than re-initializing the hub (plug/unplug, except for root hubs), * Linux (2.6) currently has NO mechanisms to initiate that: no hub_wq * timer, no SRP, no requests through sysfs. * * If Runtime PM isn't enabled or used, non-SuperSpeed devices may not get * suspended until their bus goes into global suspend (i.e., the root * hub is suspended). Nevertheless, we change @udev->state to * USB_STATE_SUSPENDED as this is the device's "logical" state. The actual * upstream port setting is stored in @udev->port_is_suspended. * * Returns 0 on success, else negative errno. */ int usb_port_suspend(struct usb_device *udev, pm_message_t msg) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); struct usb_port *port_dev = hub->ports[udev->portnum - 1]; int port1 = udev->portnum; int status; bool really_suspend = true; usb_lock_port(port_dev); /* enable remote wakeup when appropriate; this lets the device * wake up the upstream hub (including maybe the root hub). * * NOTE: OTG devices may issue remote wakeup (or SRP) even when * we don't explicitly enable it here. */ if (udev->do_remote_wakeup) { status = usb_enable_remote_wakeup(udev); if (status) { dev_dbg(&udev->dev, "won't remote wakeup, status %d\n", status); /* bail if autosuspend is requested */ if (PMSG_IS_AUTO(msg)) goto err_wakeup; } } /* disable USB2 hardware LPM */ usb_disable_usb2_hardware_lpm(udev); if (usb_disable_ltm(udev)) { dev_err(&udev->dev, "Failed to disable LTM before suspend\n"); status = -ENOMEM; if (PMSG_IS_AUTO(msg)) goto err_ltm; } /* see 7.1.7.6 */ if (hub_is_superspeed(hub->hdev)) status = hub_set_port_link_state(hub, port1, USB_SS_PORT_LS_U3); /* * For system suspend, we do not need to enable the suspend feature * on individual USB-2 ports. The devices will automatically go * into suspend a few ms after the root hub stops sending packets. * The USB 2.0 spec calls this "global suspend". * * However, many USB hubs have a bug: They don't relay wakeup requests * from a downstream port if the port's suspend feature isn't on. * Therefore we will turn on the suspend feature if udev or any of its * descendants is enabled for remote wakeup. */ else if (PMSG_IS_AUTO(msg) || usb_wakeup_enabled_descendants(udev) > 0) status = set_port_feature(hub->hdev, port1, USB_PORT_FEAT_SUSPEND); else { really_suspend = false; status = 0; } if (status) { /* Check if the port has been suspended for the timeout case * to prevent the suspended port from incorrect handling. */ if (status == -ETIMEDOUT) { int ret; u16 portstatus, portchange; portstatus = portchange = 0; ret = usb_hub_port_status(hub, port1, &portstatus, &portchange); dev_dbg(&port_dev->dev, "suspend timeout, status %04x\n", portstatus); if (ret == 0 && port_is_suspended(hub, portstatus)) { status = 0; goto suspend_done; } } dev_dbg(&port_dev->dev, "can't suspend, status %d\n", status); /* Try to enable USB3 LTM again */ usb_enable_ltm(udev); err_ltm: /* Try to enable USB2 hardware LPM again */ usb_enable_usb2_hardware_lpm(udev); if (udev->do_remote_wakeup) (void) usb_disable_remote_wakeup(udev); err_wakeup: /* System sleep transitions should never fail */ if (!PMSG_IS_AUTO(msg)) status = 0; } else { suspend_done: dev_dbg(&udev->dev, "usb %ssuspend, wakeup %d\n", (PMSG_IS_AUTO(msg) ? "auto-" : ""), udev->do_remote_wakeup); if (really_suspend) { udev->port_is_suspended = 1; /* device has up to 10 msec to fully suspend */ msleep(10); } usb_set_device_state(udev, USB_STATE_SUSPENDED); } if (status == 0 && !udev->do_remote_wakeup && udev->persist_enabled && test_and_clear_bit(port1, hub->child_usage_bits)) pm_runtime_put_sync(&port_dev->dev); usb_mark_last_busy(hub->hdev); usb_unlock_port(port_dev); return status; } /* * If the USB "suspend" state is in use (rather than "global suspend"), * many devices will be individually taken out of suspend state using * special "resume" signaling. This routine kicks in shortly after * hardware resume signaling is finished, either because of selective * resume (by host) or remote wakeup (by device) ... now see what changed * in the tree that's rooted at this device. * * If @udev->reset_resume is set then the device is reset before the * status check is done. */ static int finish_port_resume(struct usb_device *udev) { int status = 0; u16 devstatus = 0; /* caller owns the udev device lock */ dev_dbg(&udev->dev, "%s\n", udev->reset_resume ? "finish reset-resume" : "finish resume"); /* usb ch9 identifies four variants of SUSPENDED, based on what * state the device resumes to. Linux currently won't see the * first two on the host side; they'd be inside hub_port_init() * during many timeouts, but hub_wq can't suspend until later. */ usb_set_device_state(udev, udev->actconfig ? USB_STATE_CONFIGURED : USB_STATE_ADDRESS); /* 10.5.4.5 says not to reset a suspended port if the attached * device is enabled for remote wakeup. Hence the reset * operation is carried out here, after the port has been * resumed. */ if (udev->reset_resume) { /* * If the device morphs or switches modes when it is reset, * we don't want to perform a reset-resume. We'll fail the * resume, which will cause a logical disconnect, and then * the device will be rediscovered. */ retry_reset_resume: if (udev->quirks & USB_QUIRK_RESET) status = -ENODEV; else status = usb_reset_and_verify_device(udev); } /* 10.5.4.5 says be sure devices in the tree are still there. * For now let's assume the device didn't go crazy on resume, * and device drivers will know about any resume quirks. */ if (status == 0) { devstatus = 0; status = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, &devstatus); /* If a normal resume failed, try doing a reset-resume */ if (status && !udev->reset_resume && udev->persist_enabled) { dev_dbg(&udev->dev, "retry with reset-resume\n"); udev->reset_resume = 1; goto retry_reset_resume; } } if (status) { dev_dbg(&udev->dev, "gone after usb resume? status %d\n", status); /* * There are a few quirky devices which violate the standard * by claiming to have remote wakeup enabled after a reset, * which crash if the feature is cleared, hence check for * udev->reset_resume */ } else if (udev->actconfig && !udev->reset_resume) { if (udev->speed < USB_SPEED_SUPER) { if (devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) status = usb_disable_remote_wakeup(udev); } else { status = usb_get_std_status(udev, USB_RECIP_INTERFACE, 0, &devstatus); if (!status && devstatus & (USB_INTRF_STAT_FUNC_RW_CAP | USB_INTRF_STAT_FUNC_RW)) status = usb_disable_remote_wakeup(udev); } if (status) dev_dbg(&udev->dev, "disable remote wakeup, status %d\n", status); status = 0; } return status; } /* * There are some SS USB devices which take longer time for link training. * XHCI specs 4.19.4 says that when Link training is successful, port * sets CCS bit to 1. So if SW reads port status before successful link * training, then it will not find device to be present. * USB Analyzer log with such buggy devices show that in some cases * device switch on the RX termination after long delay of host enabling * the VBUS. In few other cases it has been seen that device fails to * negotiate link training in first attempt. It has been * reported till now that few devices take as long as 2000 ms to train * the link after host enabling its VBUS and termination. Following * routine implements a 2000 ms timeout for link training. If in a case * link trains before timeout, loop will exit earlier. * * There are also some 2.0 hard drive based devices and 3.0 thumb * drives that, when plugged into a 2.0 only port, take a long * time to set CCS after VBUS enable. * * FIXME: If a device was connected before suspend, but was removed * while system was asleep, then the loop in the following routine will * only exit at timeout. * * This routine should only be called when persist is enabled. */ static int wait_for_connected(struct usb_device *udev, struct usb_hub *hub, int port1, u16 *portchange, u16 *portstatus) { int status = 0, delay_ms = 0; while (delay_ms < 2000) { if (status || *portstatus & USB_PORT_STAT_CONNECTION) break; if (!usb_port_is_power_on(hub, *portstatus)) { status = -ENODEV; break; } msleep(20); delay_ms += 20; status = usb_hub_port_status(hub, port1, portstatus, portchange); } dev_dbg(&udev->dev, "Waited %dms for CONNECT\n", delay_ms); return status; } /* * usb_port_resume - re-activate a suspended usb device's upstream port * @udev: device to re-activate, not a root hub * Context: must be able to sleep; device not locked; pm locks held * * This will re-activate the suspended device, increasing power usage * while letting drivers communicate again with its endpoints. * USB resume explicitly guarantees that the power session between * the host and the device is the same as it was when the device * suspended. * * If @udev->reset_resume is set then this routine won't check that the * port is still enabled. Furthermore, finish_port_resume() above will * reset @udev. The end result is that a broken power session can be * recovered and @udev will appear to persist across a loss of VBUS power. * * For example, if a host controller doesn't maintain VBUS suspend current * during a system sleep or is reset when the system wakes up, all the USB * power sessions below it will be broken. This is especially troublesome * for mass-storage devices containing mounted filesystems, since the * device will appear to have disconnected and all the memory mappings * to it will be lost. Using the USB_PERSIST facility, the device can be * made to appear as if it had not disconnected. * * This facility can be dangerous. Although usb_reset_and_verify_device() makes * every effort to insure that the same device is present after the * reset as before, it cannot provide a 100% guarantee. Furthermore it's * quite possible for a device to remain unaltered but its media to be * changed. If the user replaces a flash memory card while the system is * asleep, he will have only himself to blame when the filesystem on the * new card is corrupted and the system crashes. * * Returns 0 on success, else negative errno. */ int usb_port_resume(struct usb_device *udev, pm_message_t msg) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); struct usb_port *port_dev = hub->ports[udev->portnum - 1]; int port1 = udev->portnum; int status; u16 portchange, portstatus; if (!test_and_set_bit(port1, hub->child_usage_bits)) { status = pm_runtime_resume_and_get(&port_dev->dev); if (status < 0) { dev_dbg(&udev->dev, "can't resume usb port, status %d\n", status); return status; } } usb_lock_port(port_dev); /* Skip the initial Clear-Suspend step for a remote wakeup */ status = usb_hub_port_status(hub, port1, &portstatus, &portchange); if (status == 0 && !port_is_suspended(hub, portstatus)) { if (portchange & USB_PORT_STAT_C_SUSPEND) pm_wakeup_event(&udev->dev, 0); goto SuspendCleared; } /* see 7.1.7.7; affects power usage, but not budgeting */ if (hub_is_superspeed(hub->hdev)) status = hub_set_port_link_state(hub, port1, USB_SS_PORT_LS_U0); else status = usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_SUSPEND); if (status) { dev_dbg(&port_dev->dev, "can't resume, status %d\n", status); } else { /* drive resume for USB_RESUME_TIMEOUT msec */ dev_dbg(&udev->dev, "usb %sresume\n", (PMSG_IS_AUTO(msg) ? "auto-" : "")); msleep(USB_RESUME_TIMEOUT); /* Virtual root hubs can trigger on GET_PORT_STATUS to * stop resume signaling. Then finish the resume * sequence. */ status = usb_hub_port_status(hub, port1, &portstatus, &portchange); } SuspendCleared: if (status == 0) { udev->port_is_suspended = 0; if (hub_is_superspeed(hub->hdev)) { if (portchange & USB_PORT_STAT_C_LINK_STATE) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); } else { if (portchange & USB_PORT_STAT_C_SUSPEND) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_SUSPEND); } /* TRSMRCY = 10 msec */ msleep(10); } if (udev->persist_enabled) status = wait_for_connected(udev, hub, port1, &portchange, &portstatus); status = check_port_resume_type(udev, hub, port1, status, portchange, portstatus); if (status == 0) status = finish_port_resume(udev); if (status < 0) { dev_dbg(&udev->dev, "can't resume, status %d\n", status); hub_port_logical_disconnect(hub, port1); } else { /* Try to enable USB2 hardware LPM */ usb_enable_usb2_hardware_lpm(udev); /* Try to enable USB3 LTM */ usb_enable_ltm(udev); } usb_unlock_port(port_dev); return status; } int usb_remote_wakeup(struct usb_device *udev) { int status = 0; usb_lock_device(udev); if (udev->state == USB_STATE_SUSPENDED) { dev_dbg(&udev->dev, "usb %sresume\n", "wakeup-"); status = usb_autoresume_device(udev); if (status == 0) { /* Let the drivers do their thing, then... */ usb_autosuspend_device(udev); } } usb_unlock_device(udev); return status; } /* Returns 1 if there was a remote wakeup and a connect status change. */ static int hub_handle_remote_wakeup(struct usb_hub *hub, unsigned int port, u16 portstatus, u16 portchange) __must_hold(&port_dev->status_lock) { struct usb_port *port_dev = hub->ports[port - 1]; struct usb_device *hdev; struct usb_device *udev; int connect_change = 0; u16 link_state; int ret; hdev = hub->hdev; udev = port_dev->child; if (!hub_is_superspeed(hdev)) { if (!(portchange & USB_PORT_STAT_C_SUSPEND)) return 0; usb_clear_port_feature(hdev, port, USB_PORT_FEAT_C_SUSPEND); } else { link_state = portstatus & USB_PORT_STAT_LINK_STATE; if (!udev || udev->state != USB_STATE_SUSPENDED || (link_state != USB_SS_PORT_LS_U0 && link_state != USB_SS_PORT_LS_U1 && link_state != USB_SS_PORT_LS_U2)) return 0; } if (udev) { /* TRSMRCY = 10 msec */ msleep(10); usb_unlock_port(port_dev); ret = usb_remote_wakeup(udev); usb_lock_port(port_dev); if (ret < 0) connect_change = 1; } else { ret = -ENODEV; hub_port_disable(hub, port, 1); } dev_dbg(&port_dev->dev, "resume, status %d\n", ret); return connect_change; } static int check_ports_changed(struct usb_hub *hub) { int port1; for (port1 = 1; port1 <= hub->hdev->maxchild; ++port1) { u16 portstatus, portchange; int status; status = usb_hub_port_status(hub, port1, &portstatus, &portchange); if (!status && portchange) return 1; } return 0; } static int hub_suspend(struct usb_interface *intf, pm_message_t msg) { struct usb_hub *hub = usb_get_intfdata(intf); struct usb_device *hdev = hub->hdev; unsigned port1; /* * Warn if children aren't already suspended. * Also, add up the number of wakeup-enabled descendants. */ hub->wakeup_enabled_descendants = 0; for (port1 = 1; port1 <= hdev->maxchild; port1++) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; if (udev && udev->can_submit) { dev_warn(&port_dev->dev, "device %s not suspended yet\n", dev_name(&udev->dev)); if (PMSG_IS_AUTO(msg)) return -EBUSY; } if (udev) hub->wakeup_enabled_descendants += usb_wakeup_enabled_descendants(udev); } if (hdev->do_remote_wakeup && hub->quirk_check_port_auto_suspend) { /* check if there are changes pending on hub ports */ if (check_ports_changed(hub)) { if (PMSG_IS_AUTO(msg)) return -EBUSY; pm_wakeup_event(&hdev->dev, 2000); } } if (hub_is_superspeed(hdev) && hdev->do_remote_wakeup) { /* Enable hub to send remote wakeup for all ports. */ for (port1 = 1; port1 <= hdev->maxchild; port1++) { set_port_feature(hdev, port1 | USB_PORT_FEAT_REMOTE_WAKE_CONNECT | USB_PORT_FEAT_REMOTE_WAKE_DISCONNECT | USB_PORT_FEAT_REMOTE_WAKE_OVER_CURRENT, USB_PORT_FEAT_REMOTE_WAKE_MASK); } } dev_dbg(&intf->dev, "%s\n", __func__); /* stop hub_wq and related activity */ hub_quiesce(hub, HUB_SUSPEND); return 0; } /* Report wakeup requests from the ports of a resuming root hub */ static void report_wakeup_requests(struct usb_hub *hub) { struct usb_device *hdev = hub->hdev; struct usb_device *udev; struct usb_hcd *hcd; unsigned long resuming_ports; int i; if (hdev->parent) return; /* Not a root hub */ hcd = bus_to_hcd(hdev->bus); if (hcd->driver->get_resuming_ports) { /* * The get_resuming_ports() method returns a bitmap (origin 0) * of ports which have started wakeup signaling but have not * yet finished resuming. During system resume we will * resume all the enabled ports, regardless of any wakeup * signals, which means the wakeup requests would be lost. * To prevent this, report them to the PM core here. */ resuming_ports = hcd->driver->get_resuming_ports(hcd); for (i = 0; i < hdev->maxchild; ++i) { if (test_bit(i, &resuming_ports)) { udev = hub->ports[i]->child; if (udev) pm_wakeup_event(&udev->dev, 0); } } } } static int hub_resume(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); dev_dbg(&intf->dev, "%s\n", __func__); hub_activate(hub, HUB_RESUME); /* * This should be called only for system resume, not runtime resume. * We can't tell the difference here, so some wakeup requests will be * reported at the wrong time or more than once. This shouldn't * matter much, so long as they do get reported. */ report_wakeup_requests(hub); return 0; } static int hub_reset_resume(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); dev_dbg(&intf->dev, "%s\n", __func__); hub_activate(hub, HUB_RESET_RESUME); return 0; } /** * usb_root_hub_lost_power - called by HCD if the root hub lost Vbus power * @rhdev: struct usb_device for the root hub * * The USB host controller driver calls this function when its root hub * is resumed and Vbus power has been interrupted or the controller * has been reset. The routine marks @rhdev as having lost power. * When the hub driver is resumed it will take notice and carry out * power-session recovery for all the "USB-PERSIST"-enabled child devices; * the others will be disconnected. */ void usb_root_hub_lost_power(struct usb_device *rhdev) { dev_notice(&rhdev->dev, "root hub lost power or was reset\n"); rhdev->reset_resume = 1; } EXPORT_SYMBOL_GPL(usb_root_hub_lost_power); static const char * const usb3_lpm_names[] = { "U0", "U1", "U2", "U3", }; /* * Send a Set SEL control transfer to the device, prior to enabling * device-initiated U1 or U2. This lets the device know the exit latencies from * the time the device initiates a U1 or U2 exit, to the time it will receive a * packet from the host. * * This function will fail if the SEL or PEL values for udev are greater than * the maximum allowed values for the link state to be enabled. */ static int usb_req_set_sel(struct usb_device *udev) { struct usb_set_sel_req *sel_values; unsigned long long u1_sel; unsigned long long u1_pel; unsigned long long u2_sel; unsigned long long u2_pel; int ret; if (!udev->parent || udev->speed < USB_SPEED_SUPER || !udev->lpm_capable) return 0; /* Convert SEL and PEL stored in ns to us */ u1_sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); u1_pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); u2_sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); u2_pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); /* * Make sure that the calculated SEL and PEL values for the link * state we're enabling aren't bigger than the max SEL/PEL * value that will fit in the SET SEL control transfer. * Otherwise the device would get an incorrect idea of the exit * latency for the link state, and could start a device-initiated * U1/U2 when the exit latencies are too high. */ if (u1_sel > USB3_LPM_MAX_U1_SEL_PEL || u1_pel > USB3_LPM_MAX_U1_SEL_PEL || u2_sel > USB3_LPM_MAX_U2_SEL_PEL || u2_pel > USB3_LPM_MAX_U2_SEL_PEL) { dev_dbg(&udev->dev, "Device-initiated U1/U2 disabled due to long SEL or PEL\n"); return -EINVAL; } /* * usb_enable_lpm() can be called as part of a failed device reset, * which may be initiated by an error path of a mass storage driver. * Therefore, use GFP_NOIO. */ sel_values = kmalloc(sizeof *(sel_values), GFP_NOIO); if (!sel_values) return -ENOMEM; sel_values->u1_sel = u1_sel; sel_values->u1_pel = u1_pel; sel_values->u2_sel = cpu_to_le16(u2_sel); sel_values->u2_pel = cpu_to_le16(u2_pel); ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_SEL, USB_RECIP_DEVICE, 0, 0, sel_values, sizeof *(sel_values), USB_CTRL_SET_TIMEOUT); kfree(sel_values); if (ret > 0) udev->lpm_devinit_allow = 1; return ret; } /* * Enable or disable device-initiated U1 or U2 transitions. */ static int usb_set_device_initiated_lpm(struct usb_device *udev, enum usb3_link_state state, bool enable) { int ret; int feature; switch (state) { case USB3_LPM_U1: feature = USB_DEVICE_U1_ENABLE; break; case USB3_LPM_U2: feature = USB_DEVICE_U2_ENABLE; break; default: dev_warn(&udev->dev, "%s: Can't %s non-U1 or U2 state.\n", __func__, enable ? "enable" : "disable"); return -EINVAL; } if (udev->state != USB_STATE_CONFIGURED) { dev_dbg(&udev->dev, "%s: Can't %s %s state " "for unconfigured device.\n", __func__, enable ? "enable" : "disable", usb3_lpm_names[state]); return 0; } if (enable) { /* * Now send the control transfer to enable device-initiated LPM * for either U1 or U2. */ ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } else { ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } if (ret < 0) { dev_warn(&udev->dev, "%s of device-initiated %s failed.\n", enable ? "Enable" : "Disable", usb3_lpm_names[state]); return -EBUSY; } return 0; } static int usb_set_lpm_timeout(struct usb_device *udev, enum usb3_link_state state, int timeout) { int ret; int feature; switch (state) { case USB3_LPM_U1: feature = USB_PORT_FEAT_U1_TIMEOUT; break; case USB3_LPM_U2: feature = USB_PORT_FEAT_U2_TIMEOUT; break; default: dev_warn(&udev->dev, "%s: Can't set timeout for non-U1 or U2 state.\n", __func__); return -EINVAL; } if (state == USB3_LPM_U1 && timeout > USB3_LPM_U1_MAX_TIMEOUT && timeout != USB3_LPM_DEVICE_INITIATED) { dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x, " "which is a reserved value.\n", usb3_lpm_names[state], timeout); return -EINVAL; } ret = set_port_feature(udev->parent, USB_PORT_LPM_TIMEOUT(timeout) | udev->portnum, feature); if (ret < 0) { dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x," "error code %i\n", usb3_lpm_names[state], timeout, ret); return -EBUSY; } if (state == USB3_LPM_U1) udev->u1_params.timeout = timeout; else udev->u2_params.timeout = timeout; return 0; } /* * Don't allow device intiated U1/U2 if the system exit latency + one bus * interval is greater than the minimum service interval of any active * periodic endpoint. See USB 3.2 section 9.4.9 */ static bool usb_device_may_initiate_lpm(struct usb_device *udev, enum usb3_link_state state) { unsigned int sel; /* us */ int i, j; if (!udev->lpm_devinit_allow) return false; if (state == USB3_LPM_U1) sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); else if (state == USB3_LPM_U2) sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); else return false; for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { struct usb_interface *intf; struct usb_endpoint_descriptor *desc; unsigned int interval; intf = udev->actconfig->interface[i]; if (!intf) continue; for (j = 0; j < intf->cur_altsetting->desc.bNumEndpoints; j++) { desc = &intf->cur_altsetting->endpoint[j].desc; if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { interval = (1 << (desc->bInterval - 1)) * 125; if (sel + 125 > interval) return false; } } } return true; } /* * Enable the hub-initiated U1/U2 idle timeouts, and enable device-initiated * U1/U2 entry. * * We will attempt to enable U1 or U2, but there are no guarantees that the * control transfers to set the hub timeout or enable device-initiated U1/U2 * will be successful. * * If the control transfer to enable device-initiated U1/U2 entry fails, then * hub-initiated U1/U2 will be disabled. * * If we cannot set the parent hub U1/U2 timeout, we attempt to let the xHCI * driver know about it. If that call fails, it should be harmless, and just * take up more slightly more bus bandwidth for unnecessary U1/U2 exit latency. */ static void usb_enable_link_state(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { int timeout; __u8 u1_mel = udev->bos->ss_cap->bU1devExitLat; __le16 u2_mel = udev->bos->ss_cap->bU2DevExitLat; /* If the device says it doesn't have *any* exit latency to come out of * U1 or U2, it's probably lying. Assume it doesn't implement that link * state. */ if ((state == USB3_LPM_U1 && u1_mel == 0) || (state == USB3_LPM_U2 && u2_mel == 0)) return; /* We allow the host controller to set the U1/U2 timeout internally * first, so that it can change its schedule to account for the * additional latency to send data to a device in a lower power * link state. */ timeout = hcd->driver->enable_usb3_lpm_timeout(hcd, udev, state); /* xHCI host controller doesn't want to enable this LPM state. */ if (timeout == 0) return; if (timeout < 0) { dev_warn(&udev->dev, "Could not enable %s link state, " "xHCI error %i.\n", usb3_lpm_names[state], timeout); return; } if (usb_set_lpm_timeout(udev, state, timeout)) { /* If we can't set the parent hub U1/U2 timeout, * device-initiated LPM won't be allowed either, so let the xHCI * host know that this link state won't be enabled. */ hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state); return; } /* Only a configured device will accept the Set Feature * U1/U2_ENABLE */ if (udev->actconfig && usb_device_may_initiate_lpm(udev, state)) { if (usb_set_device_initiated_lpm(udev, state, true)) { /* * Request to enable device initiated U1/U2 failed, * better to turn off lpm in this case. */ usb_set_lpm_timeout(udev, state, 0); hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state); return; } } if (state == USB3_LPM_U1) udev->usb3_lpm_u1_enabled = 1; else if (state == USB3_LPM_U2) udev->usb3_lpm_u2_enabled = 1; } /* * Disable the hub-initiated U1/U2 idle timeouts, and disable device-initiated * U1/U2 entry. * * If this function returns -EBUSY, the parent hub will still allow U1/U2 entry. * If zero is returned, the parent will not allow the link to go into U1/U2. * * If zero is returned, device-initiated U1/U2 entry may still be enabled, but * it won't have an effect on the bus link state because the parent hub will * still disallow device-initiated U1/U2 entry. * * If zero is returned, the xHCI host controller may still think U1/U2 entry is * possible. The result will be slightly more bus bandwidth will be taken up * (to account for U1/U2 exit latency), but it should be harmless. */ static int usb_disable_link_state(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { switch (state) { case USB3_LPM_U1: case USB3_LPM_U2: break; default: dev_warn(&udev->dev, "%s: Can't disable non-U1 or U2 state.\n", __func__); return -EINVAL; } if (usb_set_lpm_timeout(udev, state, 0)) return -EBUSY; usb_set_device_initiated_lpm(udev, state, false); if (hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state)) dev_warn(&udev->dev, "Could not disable xHCI %s timeout, " "bus schedule bandwidth may be impacted.\n", usb3_lpm_names[state]); /* As soon as usb_set_lpm_timeout(0) return 0, hub initiated LPM * is disabled. Hub will disallows link to enter U1/U2 as well, * even device is initiating LPM. Hence LPM is disabled if hub LPM * timeout set to 0, no matter device-initiated LPM is disabled or * not. */ if (state == USB3_LPM_U1) udev->usb3_lpm_u1_enabled = 0; else if (state == USB3_LPM_U2) udev->usb3_lpm_u2_enabled = 0; return 0; } /* * Disable hub-initiated and device-initiated U1 and U2 entry. * Caller must own the bandwidth_mutex. * * This will call usb_enable_lpm() on failure, which will decrement * lpm_disable_count, and will re-enable LPM if lpm_disable_count reaches zero. */ int usb_disable_lpm(struct usb_device *udev) { struct usb_hcd *hcd; if (!udev || !udev->parent || udev->speed < USB_SPEED_SUPER || !udev->lpm_capable || udev->state < USB_STATE_CONFIGURED) return 0; hcd = bus_to_hcd(udev->bus); if (!hcd || !hcd->driver->disable_usb3_lpm_timeout) return 0; udev->lpm_disable_count++; if ((udev->u1_params.timeout == 0 && udev->u2_params.timeout == 0)) return 0; /* If LPM is enabled, attempt to disable it. */ if (usb_disable_link_state(hcd, udev, USB3_LPM_U1)) goto enable_lpm; if (usb_disable_link_state(hcd, udev, USB3_LPM_U2)) goto enable_lpm; return 0; enable_lpm: usb_enable_lpm(udev); return -EBUSY; } EXPORT_SYMBOL_GPL(usb_disable_lpm); /* Grab the bandwidth_mutex before calling usb_disable_lpm() */ int usb_unlocked_disable_lpm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); int ret; if (!hcd) return -EINVAL; mutex_lock(hcd->bandwidth_mutex); ret = usb_disable_lpm(udev); mutex_unlock(hcd->bandwidth_mutex); return ret; } EXPORT_SYMBOL_GPL(usb_unlocked_disable_lpm); /* * Attempt to enable device-initiated and hub-initiated U1 and U2 entry. The * xHCI host policy may prevent U1 or U2 from being enabled. * * Other callers may have disabled link PM, so U1 and U2 entry will be disabled * until the lpm_disable_count drops to zero. Caller must own the * bandwidth_mutex. */ void usb_enable_lpm(struct usb_device *udev) { struct usb_hcd *hcd; struct usb_hub *hub; struct usb_port *port_dev; if (!udev || !udev->parent || udev->speed < USB_SPEED_SUPER || !udev->lpm_capable || udev->state < USB_STATE_CONFIGURED) return; udev->lpm_disable_count--; hcd = bus_to_hcd(udev->bus); /* Double check that we can both enable and disable LPM. * Device must be configured to accept set feature U1/U2 timeout. */ if (!hcd || !hcd->driver->enable_usb3_lpm_timeout || !hcd->driver->disable_usb3_lpm_timeout) return; if (udev->lpm_disable_count > 0) return; hub = usb_hub_to_struct_hub(udev->parent); if (!hub) return; port_dev = hub->ports[udev->portnum - 1]; if (port_dev->usb3_lpm_u1_permit) usb_enable_link_state(hcd, udev, USB3_LPM_U1); if (port_dev->usb3_lpm_u2_permit) usb_enable_link_state(hcd, udev, USB3_LPM_U2); } EXPORT_SYMBOL_GPL(usb_enable_lpm); /* Grab the bandwidth_mutex before calling usb_enable_lpm() */ void usb_unlocked_enable_lpm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!hcd) return; mutex_lock(hcd->bandwidth_mutex); usb_enable_lpm(udev); mutex_unlock(hcd->bandwidth_mutex); } EXPORT_SYMBOL_GPL(usb_unlocked_enable_lpm); /* usb3 devices use U3 for disabled, make sure remote wakeup is disabled */ static void hub_usb3_port_prepare_disable(struct usb_hub *hub, struct usb_port *port_dev) { struct usb_device *udev = port_dev->child; int ret; if (udev && udev->port_is_suspended && udev->do_remote_wakeup) { ret = hub_set_port_link_state(hub, port_dev->portnum, USB_SS_PORT_LS_U0); if (!ret) { msleep(USB_RESUME_TIMEOUT); ret = usb_disable_remote_wakeup(udev); } if (ret) dev_warn(&udev->dev, "Port disable: can't disable remote wake\n"); udev->do_remote_wakeup = 0; } } #else /* CONFIG_PM */ #define hub_suspend NULL #define hub_resume NULL #define hub_reset_resume NULL static inline void hub_usb3_port_prepare_disable(struct usb_hub *hub, struct usb_port *port_dev) { } int usb_disable_lpm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_disable_lpm); void usb_enable_lpm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_enable_lpm); int usb_unlocked_disable_lpm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_unlocked_disable_lpm); void usb_unlocked_enable_lpm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_unlocked_enable_lpm); int usb_disable_ltm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_disable_ltm); void usb_enable_ltm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_enable_ltm); static int hub_handle_remote_wakeup(struct usb_hub *hub, unsigned int port, u16 portstatus, u16 portchange) { return 0; } static int usb_req_set_sel(struct usb_device *udev) { return 0; } #endif /* CONFIG_PM */ /* * USB-3 does not have a similar link state as USB-2 that will avoid negotiating * a connection with a plugged-in cable but will signal the host when the cable * is unplugged. Disable remote wake and set link state to U3 for USB-3 devices */ static int hub_port_disable(struct usb_hub *hub, int port1, int set_state) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *hdev = hub->hdev; int ret = 0; if (!hub->error) { if (hub_is_superspeed(hub->hdev)) { hub_usb3_port_prepare_disable(hub, port_dev); ret = hub_set_port_link_state(hub, port_dev->portnum, USB_SS_PORT_LS_U3); } else { ret = usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE); } } if (port_dev->child && set_state) usb_set_device_state(port_dev->child, USB_STATE_NOTATTACHED); if (ret && ret != -ENODEV) dev_err(&port_dev->dev, "cannot disable (err = %d)\n", ret); return ret; } /* * usb_port_disable - disable a usb device's upstream port * @udev: device to disable * Context: @udev locked, must be able to sleep. * * Disables a USB device that isn't in active use. */ int usb_port_disable(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); return hub_port_disable(hub, udev->portnum, 0); } /* USB 2.0 spec, 7.1.7.3 / fig 7-29: * * Between connect detection and reset signaling there must be a delay * of 100ms at least for debounce and power-settling. The corresponding * timer shall restart whenever the downstream port detects a disconnect. * * Apparently there are some bluetooth and irda-dongles and a number of * low-speed devices for which this debounce period may last over a second. * Not covered by the spec - but easy to deal with. * * This implementation uses a 1500ms total debounce timeout; if the * connection isn't stable by then it returns -ETIMEDOUT. It checks * every 25ms for transient disconnects. When the port status has been * unchanged for 100ms it returns the port status. */ int hub_port_debounce(struct usb_hub *hub, int port1, bool must_be_connected) { int ret; u16 portchange, portstatus; unsigned connection = 0xffff; int total_time, stable_time = 0; struct usb_port *port_dev = hub->ports[port1 - 1]; for (total_time = 0; ; total_time += HUB_DEBOUNCE_STEP) { ret = usb_hub_port_status(hub, port1, &portstatus, &portchange); if (ret < 0) return ret; if (!(portchange & USB_PORT_STAT_C_CONNECTION) && (portstatus & USB_PORT_STAT_CONNECTION) == connection) { if (!must_be_connected || (connection == USB_PORT_STAT_CONNECTION)) stable_time += HUB_DEBOUNCE_STEP; if (stable_time >= HUB_DEBOUNCE_STABLE) break; } else { stable_time = 0; connection = portstatus & USB_PORT_STAT_CONNECTION; } if (portchange & USB_PORT_STAT_C_CONNECTION) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); } if (total_time >= HUB_DEBOUNCE_TIMEOUT) break; msleep(HUB_DEBOUNCE_STEP); } dev_dbg(&port_dev->dev, "debounce total %dms stable %dms status 0x%x\n", total_time, stable_time, portstatus); if (stable_time < HUB_DEBOUNCE_STABLE) return -ETIMEDOUT; return portstatus; } void usb_ep0_reinit(struct usb_device *udev) { usb_disable_endpoint(udev, 0 + USB_DIR_IN, true); usb_disable_endpoint(udev, 0 + USB_DIR_OUT, true); usb_enable_endpoint(udev, &udev->ep0, true); } EXPORT_SYMBOL_GPL(usb_ep0_reinit); #define usb_sndaddr0pipe() (PIPE_CONTROL << 30) #define usb_rcvaddr0pipe() ((PIPE_CONTROL << 30) | USB_DIR_IN) static int hub_set_address(struct usb_device *udev, int devnum) { int retval; struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* * The host controller will choose the device address, * instead of the core having chosen it earlier */ if (!hcd->driver->address_device && devnum <= 1) return -EINVAL; if (udev->state == USB_STATE_ADDRESS) return 0; if (udev->state != USB_STATE_DEFAULT) return -EINVAL; if (hcd->driver->address_device) retval = hcd->driver->address_device(hcd, udev); else retval = usb_control_msg(udev, usb_sndaddr0pipe(), USB_REQ_SET_ADDRESS, 0, devnum, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval == 0) { update_devnum(udev, devnum); /* Device now using proper address. */ usb_set_device_state(udev, USB_STATE_ADDRESS); usb_ep0_reinit(udev); } return retval; } /* * There are reports of USB 3.0 devices that say they support USB 2.0 Link PM * when they're plugged into a USB 2.0 port, but they don't work when LPM is * enabled. * * Only enable USB 2.0 Link PM if the port is internal (hardwired), or the * device says it supports the new USB 2.0 Link PM errata by setting the BESL * support bit in the BOS descriptor. */ static void hub_set_initial_usb2_lpm_policy(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); int connect_type = USB_PORT_CONNECT_TYPE_UNKNOWN; if (!udev->usb2_hw_lpm_capable || !udev->bos) return; if (hub) connect_type = hub->ports[udev->portnum - 1]->connect_type; if ((udev->bos->ext_cap->bmAttributes & cpu_to_le32(USB_BESL_SUPPORT)) || connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { udev->usb2_hw_lpm_allowed = 1; usb_enable_usb2_hardware_lpm(udev); } } static int hub_enable_device(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!hcd->driver->enable_device) return 0; if (udev->state == USB_STATE_ADDRESS) return 0; if (udev->state != USB_STATE_DEFAULT) return -EINVAL; return hcd->driver->enable_device(hcd, udev); } /* * Get the bMaxPacketSize0 value during initialization by reading the * device's device descriptor. Since we don't already know this value, * the transfer is unsafe and it ignores I/O errors, only testing for * reasonable received values. * * For "old scheme" initialization, size will be 8 so we read just the * start of the device descriptor, which should work okay regardless of * the actual bMaxPacketSize0 value. For "new scheme" initialization, * size will be 64 (and buf will point to a sufficiently large buffer), * which might not be kosher according to the USB spec but it's what * Windows does and what many devices expect. * * Returns: bMaxPacketSize0 or a negative error code. */ static int get_bMaxPacketSize0(struct usb_device *udev, struct usb_device_descriptor *buf, int size, bool first_time) { int i, rc; /* * Retry on all errors; some devices are flakey. * 255 is for WUSB devices, we actually need to use * 512 (WUSB1.0[4.8.1]). */ for (i = 0; i < GET_MAXPACKET0_TRIES; ++i) { /* Start with invalid values in case the transfer fails */ buf->bDescriptorType = buf->bMaxPacketSize0 = 0; rc = usb_control_msg(udev, usb_rcvaddr0pipe(), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, USB_DT_DEVICE << 8, 0, buf, size, initial_descriptor_timeout); switch (buf->bMaxPacketSize0) { case 8: case 16: case 32: case 64: case 9: if (buf->bDescriptorType == USB_DT_DEVICE) { rc = buf->bMaxPacketSize0; break; } fallthrough; default: if (rc >= 0) rc = -EPROTO; break; } /* * Some devices time out if they are powered on * when already connected. They need a second * reset, so return early. But only on the first * attempt, lest we get into a time-out/reset loop. */ if (rc > 0 || (rc == -ETIMEDOUT && first_time && udev->speed > USB_SPEED_FULL)) break; } return rc; } #define GET_DESCRIPTOR_BUFSIZE 64 /* Reset device, (re)assign address, get device descriptor. * Device connection must be stable, no more debouncing needed. * Returns device in USB_STATE_ADDRESS, except on error. * * If this is called for an already-existing device (as part of * usb_reset_and_verify_device), the caller must own the device lock and * the port lock. For a newly detected device that is not accessible * through any global pointers, it's not necessary to lock the device, * but it is still necessary to lock the port. * * For a newly detected device, @dev_descr must be NULL. The device * descriptor retrieved from the device will then be stored in * @udev->descriptor. For an already existing device, @dev_descr * must be non-NULL. The device descriptor will be stored there, * not in @udev->descriptor, because descriptors for registered * devices are meant to be immutable. */ static int hub_port_init(struct usb_hub *hub, struct usb_device *udev, int port1, int retry_counter, struct usb_device_descriptor *dev_descr) { struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_port *port_dev = hub->ports[port1 - 1]; int retries, operations, retval, i; unsigned delay = HUB_SHORT_RESET_TIME; enum usb_device_speed oldspeed = udev->speed; const char *speed; int devnum = udev->devnum; const char *driver_name; bool do_new_scheme; const bool initial = !dev_descr; int maxp0; struct usb_device_descriptor *buf, *descr; buf = kmalloc(GET_DESCRIPTOR_BUFSIZE, GFP_NOIO); if (!buf) return -ENOMEM; /* root hub ports have a slightly longer reset period * (from USB 2.0 spec, section 7.1.7.5) */ if (!hdev->parent) { delay = HUB_ROOT_RESET_TIME; if (port1 == hdev->bus->otg_port) hdev->bus->b_hnp_enable = 0; } /* Some low speed devices have problems with the quick delay, so */ /* be a bit pessimistic with those devices. RHbug #23670 */ if (oldspeed == USB_SPEED_LOW) delay = HUB_LONG_RESET_TIME; /* Reset the device; full speed may morph to high speed */ /* FIXME a USB 2.0 device may morph into SuperSpeed on reset. */ retval = hub_port_reset(hub, port1, udev, delay, false); if (retval < 0) /* error or disconnect */ goto fail; /* success, speed is known */ retval = -ENODEV; /* Don't allow speed changes at reset, except usb 3.0 to faster */ if (oldspeed != USB_SPEED_UNKNOWN && oldspeed != udev->speed && !(oldspeed == USB_SPEED_SUPER && udev->speed > oldspeed)) { dev_dbg(&udev->dev, "device reset changed speed!\n"); goto fail; } oldspeed = udev->speed; if (initial) { /* USB 2.0 section 5.5.3 talks about ep0 maxpacket ... * it's fixed size except for full speed devices. */ switch (udev->speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: udev->ep0.desc.wMaxPacketSize = cpu_to_le16(512); break; case USB_SPEED_HIGH: /* fixed at 64 */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); break; case USB_SPEED_FULL: /* 8, 16, 32, or 64 */ /* to determine the ep0 maxpacket size, try to read * the device descriptor to get bMaxPacketSize0 and * then correct our initial guess. */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); break; case USB_SPEED_LOW: /* fixed at 8 */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(8); break; default: goto fail; } } speed = usb_speed_string(udev->speed); /* * The controller driver may be NULL if the controller device * is the middle device between platform device and roothub. * This middle device may not need a device driver due to * all hardware control can be at platform device driver, this * platform device is usually a dual-role USB controller device. */ if (udev->bus->controller->driver) driver_name = udev->bus->controller->driver->name; else driver_name = udev->bus->sysdev->driver->name; if (udev->speed < USB_SPEED_SUPER) dev_info(&udev->dev, "%s %s USB device number %d using %s\n", (initial ? "new" : "reset"), speed, devnum, driver_name); if (initial) { /* Set up TT records, if needed */ if (hdev->tt) { udev->tt = hdev->tt; udev->ttport = hdev->ttport; } else if (udev->speed != USB_SPEED_HIGH && hdev->speed == USB_SPEED_HIGH) { if (!hub->tt.hub) { dev_err(&udev->dev, "parent hub has no TT\n"); retval = -EINVAL; goto fail; } udev->tt = &hub->tt; udev->ttport = port1; } } /* Why interleave GET_DESCRIPTOR and SET_ADDRESS this way? * Because device hardware and firmware is sometimes buggy in * this area, and this is how Linux has done it for ages. * Change it cautiously. * * NOTE: If use_new_scheme() is true we will start by issuing * a 64-byte GET_DESCRIPTOR request. This is what Windows does, * so it may help with some non-standards-compliant devices. * Otherwise we start with SET_ADDRESS and then try to read the * first 8 bytes of the device descriptor to get the ep0 maxpacket * value. */ do_new_scheme = use_new_scheme(udev, retry_counter, port_dev); for (retries = 0; retries < GET_DESCRIPTOR_TRIES; (++retries, msleep(100))) { if (hub_port_stop_enumerate(hub, port1, retries)) { retval = -ENODEV; break; } if (do_new_scheme) { retval = hub_enable_device(udev); if (retval < 0) { dev_err(&udev->dev, "hub failed to enable device, error %d\n", retval); goto fail; } maxp0 = get_bMaxPacketSize0(udev, buf, GET_DESCRIPTOR_BUFSIZE, retries == 0); if (maxp0 > 0 && !initial && maxp0 != udev->descriptor.bMaxPacketSize0) { dev_err(&udev->dev, "device reset changed ep0 maxpacket size!\n"); retval = -ENODEV; goto fail; } retval = hub_port_reset(hub, port1, udev, delay, false); if (retval < 0) /* error or disconnect */ goto fail; if (oldspeed != udev->speed) { dev_dbg(&udev->dev, "device reset changed speed!\n"); retval = -ENODEV; goto fail; } if (maxp0 < 0) { if (maxp0 != -ENODEV) dev_err(&udev->dev, "device descriptor read/64, error %d\n", maxp0); retval = maxp0; continue; } } for (operations = 0; operations < SET_ADDRESS_TRIES; ++operations) { retval = hub_set_address(udev, devnum); if (retval >= 0) break; msleep(200); } if (retval < 0) { if (retval != -ENODEV) dev_err(&udev->dev, "device not accepting address %d, error %d\n", devnum, retval); goto fail; } if (udev->speed >= USB_SPEED_SUPER) { devnum = udev->devnum; dev_info(&udev->dev, "%s SuperSpeed%s%s USB device number %d using %s\n", (udev->config) ? "reset" : "new", (udev->speed == USB_SPEED_SUPER_PLUS) ? " Plus" : "", (udev->ssp_rate == USB_SSP_GEN_2x2) ? " Gen 2x2" : (udev->ssp_rate == USB_SSP_GEN_2x1) ? " Gen 2x1" : (udev->ssp_rate == USB_SSP_GEN_1x2) ? " Gen 1x2" : "", devnum, driver_name); } /* * cope with hardware quirkiness: * - let SET_ADDRESS settle, some device hardware wants it * - read ep0 maxpacket even for high and low speed, */ msleep(10); if (do_new_scheme) break; maxp0 = get_bMaxPacketSize0(udev, buf, 8, retries == 0); if (maxp0 < 0) { retval = maxp0; if (retval != -ENODEV) dev_err(&udev->dev, "device descriptor read/8, error %d\n", retval); } else { u32 delay; if (!initial && maxp0 != udev->descriptor.bMaxPacketSize0) { dev_err(&udev->dev, "device reset changed ep0 maxpacket size!\n"); retval = -ENODEV; goto fail; } delay = udev->parent->hub_delay; udev->hub_delay = min_t(u32, delay, USB_TP_TRANSMISSION_DELAY_MAX); retval = usb_set_isoch_delay(udev); if (retval) { dev_dbg(&udev->dev, "Failed set isoch delay, error %d\n", retval); retval = 0; } break; } } if (retval) goto fail; /* * Check the ep0 maxpacket guess and correct it if necessary. * maxp0 is the value stored in the device descriptor; * i is the value it encodes (logarithmic for SuperSpeed or greater). */ i = maxp0; if (udev->speed >= USB_SPEED_SUPER) { if (maxp0 <= 16) i = 1 << maxp0; else i = 0; /* Invalid */ } if (usb_endpoint_maxp(&udev->ep0.desc) == i) { ; /* Initial ep0 maxpacket guess is right */ } else if ((udev->speed == USB_SPEED_FULL || udev->speed == USB_SPEED_HIGH) && (i == 8 || i == 16 || i == 32 || i == 64)) { /* Initial guess is wrong; use the descriptor's value */ if (udev->speed == USB_SPEED_FULL) dev_dbg(&udev->dev, "ep0 maxpacket = %d\n", i); else dev_warn(&udev->dev, "Using ep0 maxpacket: %d\n", i); udev->ep0.desc.wMaxPacketSize = cpu_to_le16(i); usb_ep0_reinit(udev); } else { /* Initial guess is wrong and descriptor's value is invalid */ dev_err(&udev->dev, "Invalid ep0 maxpacket: %d\n", maxp0); retval = -EMSGSIZE; goto fail; } descr = usb_get_device_descriptor(udev); if (IS_ERR(descr)) { retval = PTR_ERR(descr); if (retval != -ENODEV) dev_err(&udev->dev, "device descriptor read/all, error %d\n", retval); goto fail; } if (initial) udev->descriptor = *descr; else *dev_descr = *descr; kfree(descr); /* * Some superspeed devices have finished the link training process * and attached to a superspeed hub port, but the device descriptor * got from those devices show they aren't superspeed devices. Warm * reset the port attached by the devices can fix them. */ if ((udev->speed >= USB_SPEED_SUPER) && (le16_to_cpu(udev->descriptor.bcdUSB) < 0x0300)) { dev_err(&udev->dev, "got a wrong device descriptor, warm reset device\n"); hub_port_reset(hub, port1, udev, HUB_BH_RESET_TIME, true); retval = -EINVAL; goto fail; } usb_detect_quirks(udev); if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0201) { retval = usb_get_bos_descriptor(udev); if (!retval) { udev->lpm_capable = usb_device_supports_lpm(udev); udev->lpm_disable_count = 1; usb_set_lpm_parameters(udev); usb_req_set_sel(udev); } } retval = 0; /* notify HCD that we have a device connected and addressed */ if (hcd->driver->update_device) hcd->driver->update_device(hcd, udev); hub_set_initial_usb2_lpm_policy(udev); fail: if (retval) { hub_port_disable(hub, port1, 0); update_devnum(udev, devnum); /* for disconnect processing */ } kfree(buf); return retval; } static void check_highspeed(struct usb_hub *hub, struct usb_device *udev, int port1) { struct usb_qualifier_descriptor *qual; int status; if (udev->quirks & USB_QUIRK_DEVICE_QUALIFIER) return; qual = kmalloc(sizeof *qual, GFP_KERNEL); if (qual == NULL) return; status = usb_get_descriptor(udev, USB_DT_DEVICE_QUALIFIER, 0, qual, sizeof *qual); if (status == sizeof *qual) { dev_info(&udev->dev, "not running at top speed; " "connect to a high speed hub\n"); /* hub LEDs are probably harder to miss than syslog */ if (hub->has_indicators) { hub->indicator[port1-1] = INDICATOR_GREEN_BLINK; queue_delayed_work(system_power_efficient_wq, &hub->leds, 0); } } kfree(qual); } static unsigned hub_power_remaining(struct usb_hub *hub) { struct usb_device *hdev = hub->hdev; int remaining; int port1; if (!hub->limited_power) return 0; remaining = hdev->bus_mA - hub->descriptor->bHubContrCurrent; for (port1 = 1; port1 <= hdev->maxchild; ++port1) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; unsigned unit_load; int delta; if (!udev) continue; if (hub_is_superspeed(udev)) unit_load = 150; else unit_load = 100; /* * Unconfigured devices may not use more than one unit load, * or 8mA for OTG ports */ if (udev->actconfig) delta = usb_get_max_power(udev, udev->actconfig); else if (port1 != udev->bus->otg_port || hdev->parent) delta = unit_load; else delta = 8; if (delta > hub->mA_per_port) dev_warn(&port_dev->dev, "%dmA is over %umA budget!\n", delta, hub->mA_per_port); remaining -= delta; } if (remaining < 0) { dev_warn(hub->intfdev, "%dmA over power budget!\n", -remaining); remaining = 0; } return remaining; } static int descriptors_changed(struct usb_device *udev, struct usb_device_descriptor *new_device_descriptor, struct usb_host_bos *old_bos) { int changed = 0; unsigned index; unsigned serial_len = 0; unsigned len; unsigned old_length; int length; char *buf; if (memcmp(&udev->descriptor, new_device_descriptor, sizeof(*new_device_descriptor)) != 0) return 1; if ((old_bos && !udev->bos) || (!old_bos && udev->bos)) return 1; if (udev->bos) { len = le16_to_cpu(udev->bos->desc->wTotalLength); if (len != le16_to_cpu(old_bos->desc->wTotalLength)) return 1; if (memcmp(udev->bos->desc, old_bos->desc, len)) return 1; } /* Since the idVendor, idProduct, and bcdDevice values in the * device descriptor haven't changed, we will assume the * Manufacturer and Product strings haven't changed either. * But the SerialNumber string could be different (e.g., a * different flash card of the same brand). */ if (udev->serial) serial_len = strlen(udev->serial) + 1; len = serial_len; for (index = 0; index < udev->descriptor.bNumConfigurations; index++) { old_length = le16_to_cpu(udev->config[index].desc.wTotalLength); len = max(len, old_length); } buf = kmalloc(len, GFP_NOIO); if (!buf) /* assume the worst */ return 1; for (index = 0; index < udev->descriptor.bNumConfigurations; index++) { old_length = le16_to_cpu(udev->config[index].desc.wTotalLength); length = usb_get_descriptor(udev, USB_DT_CONFIG, index, buf, old_length); if (length != old_length) { dev_dbg(&udev->dev, "config index %d, error %d\n", index, length); changed = 1; break; } if (memcmp(buf, udev->rawdescriptors[index], old_length) != 0) { dev_dbg(&udev->dev, "config index %d changed (#%d)\n", index, ((struct usb_config_descriptor *) buf)-> bConfigurationValue); changed = 1; break; } } if (!changed && serial_len) { length = usb_string(udev, udev->descriptor.iSerialNumber, buf, serial_len); if (length + 1 != serial_len) { dev_dbg(&udev->dev, "serial string error %d\n", length); changed = 1; } else if (memcmp(buf, udev->serial, length) != 0) { dev_dbg(&udev->dev, "serial string changed\n"); changed = 1; } } kfree(buf); return changed; } static void hub_port_connect(struct usb_hub *hub, int port1, u16 portstatus, u16 portchange) { int status = -ENODEV; int i; unsigned unit_load; struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; static int unreliable_port = -1; bool retry_locked; /* Disconnect any existing devices under this port */ if (udev) { if (hcd->usb_phy && !hdev->parent) usb_phy_notify_disconnect(hcd->usb_phy, udev->speed); usb_disconnect(&port_dev->child); } /* We can forget about a "removed" device when there's a physical * disconnect or the connect status changes. */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION)) clear_bit(port1, hub->removed_bits); if (portchange & (USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE)) { status = hub_port_debounce_be_stable(hub, port1); if (status < 0) { if (status != -ENODEV && port1 != unreliable_port && printk_ratelimit()) dev_err(&port_dev->dev, "connect-debounce failed\n"); portstatus &= ~USB_PORT_STAT_CONNECTION; unreliable_port = port1; } else { portstatus = status; } } /* Return now if debouncing failed or nothing is connected or * the device was "removed". */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || test_bit(port1, hub->removed_bits)) { /* * maybe switch power back on (e.g. root hub was reset) * but only if the port isn't owned by someone else. */ if (hub_is_port_power_switchable(hub) && !usb_port_is_power_on(hub, portstatus) && !port_dev->port_owner) set_port_feature(hdev, port1, USB_PORT_FEAT_POWER); if (portstatus & USB_PORT_STAT_ENABLE) goto done; return; } if (hub_is_superspeed(hub->hdev)) unit_load = 150; else unit_load = 100; status = 0; for (i = 0; i < PORT_INIT_TRIES; i++) { if (hub_port_stop_enumerate(hub, port1, i)) { status = -ENODEV; break; } usb_lock_port(port_dev); mutex_lock(hcd->address0_mutex); retry_locked = true; /* reallocate for each attempt, since references * to the previous one can escape in various ways */ udev = usb_alloc_dev(hdev, hdev->bus, port1); if (!udev) { dev_err(&port_dev->dev, "couldn't allocate usb_device\n"); mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); goto done; } usb_set_device_state(udev, USB_STATE_POWERED); udev->bus_mA = hub->mA_per_port; udev->level = hdev->level + 1; /* Devices connected to SuperSpeed hubs are USB 3.0 or later */ if (hub_is_superspeed(hub->hdev)) udev->speed = USB_SPEED_SUPER; else udev->speed = USB_SPEED_UNKNOWN; choose_devnum(udev); if (udev->devnum <= 0) { status = -ENOTCONN; /* Don't retry */ goto loop; } /* reset (non-USB 3.0 devices) and get descriptor */ status = hub_port_init(hub, udev, port1, i, NULL); if (status < 0) goto loop; mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); retry_locked = false; if (udev->quirks & USB_QUIRK_DELAY_INIT) msleep(2000); /* consecutive bus-powered hubs aren't reliable; they can * violate the voltage drop budget. if the new child has * a "powered" LED, users should notice we didn't enable it * (without reading syslog), even without per-port LEDs * on the parent. */ if (udev->descriptor.bDeviceClass == USB_CLASS_HUB && udev->bus_mA <= unit_load) { u16 devstat; status = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, &devstat); if (status) { dev_dbg(&udev->dev, "get status %d ?\n", status); goto loop_disable; } if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) { dev_err(&udev->dev, "can't connect bus-powered hub " "to this port\n"); if (hub->has_indicators) { hub->indicator[port1-1] = INDICATOR_AMBER_BLINK; queue_delayed_work( system_power_efficient_wq, &hub->leds, 0); } status = -ENOTCONN; /* Don't retry */ goto loop_disable; } } /* check for devices running slower than they could */ if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200 && udev->speed == USB_SPEED_FULL && highspeed_hubs != 0) check_highspeed(hub, udev, port1); /* Store the parent's children[] pointer. At this point * udev becomes globally accessible, although presumably * no one will look at it until hdev is unlocked. */ status = 0; mutex_lock(&usb_port_peer_mutex); /* We mustn't add new devices if the parent hub has * been disconnected; we would race with the * recursively_mark_NOTATTACHED() routine. */ spin_lock_irq(&device_state_lock); if (hdev->state == USB_STATE_NOTATTACHED) status = -ENOTCONN; else port_dev->child = udev; spin_unlock_irq(&device_state_lock); mutex_unlock(&usb_port_peer_mutex); /* Run it through the hoops (find a driver, etc) */ if (!status) { status = usb_new_device(udev); if (status) { mutex_lock(&usb_port_peer_mutex); spin_lock_irq(&device_state_lock); port_dev->child = NULL; spin_unlock_irq(&device_state_lock); mutex_unlock(&usb_port_peer_mutex); } else { if (hcd->usb_phy && !hdev->parent) usb_phy_notify_connect(hcd->usb_phy, udev->speed); } } if (status) goto loop_disable; status = hub_power_remaining(hub); if (status) dev_dbg(hub->intfdev, "%dmA power budget left\n", status); return; loop_disable: hub_port_disable(hub, port1, 1); loop: usb_ep0_reinit(udev); release_devnum(udev); hub_free_dev(udev); if (retry_locked) { mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); } usb_put_dev(udev); if ((status == -ENOTCONN) || (status == -ENOTSUPP)) break; /* When halfway through our retry count, power-cycle the port */ if (i == (PORT_INIT_TRIES - 1) / 2) { dev_info(&port_dev->dev, "attempt power cycle\n"); usb_hub_set_port_power(hdev, hub, port1, false); msleep(2 * hub_power_on_good_delay(hub)); usb_hub_set_port_power(hdev, hub, port1, true); msleep(hub_power_on_good_delay(hub)); } } if (hub->hdev->parent || !hcd->driver->port_handed_over || !(hcd->driver->port_handed_over)(hcd, port1)) { if (status != -ENOTCONN && status != -ENODEV) dev_err(&port_dev->dev, "unable to enumerate USB device\n"); } done: hub_port_disable(hub, port1, 1); if (hcd->driver->relinquish_port && !hub->hdev->parent) { if (status != -ENOTCONN && status != -ENODEV) hcd->driver->relinquish_port(hcd, port1); } } /* Handle physical or logical connection change events. * This routine is called when: * a port connection-change occurs; * a port enable-change occurs (often caused by EMI); * usb_reset_and_verify_device() encounters changed descriptors (as from * a firmware download) * caller already locked the hub */ static void hub_port_connect_change(struct usb_hub *hub, int port1, u16 portstatus, u16 portchange) __must_hold(&port_dev->status_lock) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; struct usb_device_descriptor *descr; int status = -ENODEV; dev_dbg(&port_dev->dev, "status %04x, change %04x, %s\n", portstatus, portchange, portspeed(hub, portstatus)); if (hub->has_indicators) { set_port_led(hub, port1, HUB_LED_AUTO); hub->indicator[port1-1] = INDICATOR_AUTO; } #ifdef CONFIG_USB_OTG /* during HNP, don't repeat the debounce */ if (hub->hdev->bus->is_b_host) portchange &= ~(USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE); #endif /* Try to resuscitate an existing device */ if ((portstatus & USB_PORT_STAT_CONNECTION) && udev && udev->state != USB_STATE_NOTATTACHED) { if (portstatus & USB_PORT_STAT_ENABLE) { /* * USB-3 connections are initialized automatically by * the hostcontroller hardware. Therefore check for * changed device descriptors before resuscitating the * device. */ descr = usb_get_device_descriptor(udev); if (IS_ERR(descr)) { dev_dbg(&udev->dev, "can't read device descriptor %ld\n", PTR_ERR(descr)); } else { if (descriptors_changed(udev, descr, udev->bos)) { dev_dbg(&udev->dev, "device descriptor has changed\n"); } else { status = 0; /* Nothing to do */ } kfree(descr); } #ifdef CONFIG_PM } else if (udev->state == USB_STATE_SUSPENDED && udev->persist_enabled) { /* For a suspended device, treat this as a * remote wakeup event. */ usb_unlock_port(port_dev); status = usb_remote_wakeup(udev); usb_lock_port(port_dev); #endif } else { /* Don't resuscitate */; } } clear_bit(port1, hub->change_bits); /* successfully revalidated the connection */ if (status == 0) return; usb_unlock_port(port_dev); hub_port_connect(hub, port1, portstatus, portchange); usb_lock_port(port_dev); } /* Handle notifying userspace about hub over-current events */ static void port_over_current_notify(struct usb_port *port_dev) { char *envp[3] = { NULL, NULL, NULL }; struct device *hub_dev; char *port_dev_path; sysfs_notify(&port_dev->dev.kobj, NULL, "over_current_count"); hub_dev = port_dev->dev.parent; if (!hub_dev) return; port_dev_path = kobject_get_path(&port_dev->dev.kobj, GFP_KERNEL); if (!port_dev_path) return; envp[0] = kasprintf(GFP_KERNEL, "OVER_CURRENT_PORT=%s", port_dev_path); if (!envp[0]) goto exit; envp[1] = kasprintf(GFP_KERNEL, "OVER_CURRENT_COUNT=%u", port_dev->over_current_count); if (!envp[1]) goto exit; kobject_uevent_env(&hub_dev->kobj, KOBJ_CHANGE, envp); exit: kfree(envp[1]); kfree(envp[0]); kfree(port_dev_path); } static void port_event(struct usb_hub *hub, int port1) __must_hold(&port_dev->status_lock) { int connect_change; struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; struct usb_device *hdev = hub->hdev; u16 portstatus, portchange; int i = 0; connect_change = test_bit(port1, hub->change_bits); clear_bit(port1, hub->event_bits); clear_bit(port1, hub->wakeup_bits); if (usb_hub_port_status(hub, port1, &portstatus, &portchange) < 0) return; if (portchange & USB_PORT_STAT_C_CONNECTION) { usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_CONNECTION); connect_change = 1; } if (portchange & USB_PORT_STAT_C_ENABLE) { if (!connect_change) dev_dbg(&port_dev->dev, "enable change, status %08x\n", portstatus); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_ENABLE); /* * EM interference sometimes causes badly shielded USB devices * to be shutdown by the hub, this hack enables them again. * Works at least with mouse driver. */ if (!(portstatus & USB_PORT_STAT_ENABLE) && !connect_change && udev) { dev_err(&port_dev->dev, "disabled by hub (EMI?), re-enabling...\n"); connect_change = 1; } } if (portchange & USB_PORT_STAT_C_OVERCURRENT) { u16 status = 0, unused; port_dev->over_current_count++; port_over_current_notify(port_dev); dev_dbg(&port_dev->dev, "over-current change #%u\n", port_dev->over_current_count); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_OVER_CURRENT); msleep(100); /* Cool down */ hub_power_on(hub, true); usb_hub_port_status(hub, port1, &status, &unused); if (status & USB_PORT_STAT_OVERCURRENT) dev_err(&port_dev->dev, "over-current condition\n"); } if (portchange & USB_PORT_STAT_C_RESET) { dev_dbg(&port_dev->dev, "reset change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_RESET); } if ((portchange & USB_PORT_STAT_C_BH_RESET) && hub_is_superspeed(hdev)) { dev_dbg(&port_dev->dev, "warm reset change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); } if (portchange & USB_PORT_STAT_C_LINK_STATE) { dev_dbg(&port_dev->dev, "link state change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); } if (portchange & USB_PORT_STAT_C_CONFIG_ERROR) { dev_warn(&port_dev->dev, "config error\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_PORT_CONFIG_ERROR); } /* skip port actions that require the port to be powered on */ if (!pm_runtime_active(&port_dev->dev)) return; /* skip port actions if ignore_event and early_stop are true */ if (port_dev->ignore_event && port_dev->early_stop) return; if (hub_handle_remote_wakeup(hub, port1, portstatus, portchange)) connect_change = 1; /* * Avoid trying to recover a USB3 SS.Inactive port with a warm reset if * the device was disconnected. A 12ms disconnect detect timer in * SS.Inactive state transitions the port to RxDetect automatically. * SS.Inactive link error state is common during device disconnect. */ while (hub_port_warm_reset_required(hub, port1, portstatus)) { if ((i++ < DETECT_DISCONNECT_TRIES) && udev) { u16 unused; msleep(20); usb_hub_port_status(hub, port1, &portstatus, &unused); dev_dbg(&port_dev->dev, "Wait for inactive link disconnect detect\n"); continue; } else if (!udev || !(portstatus & USB_PORT_STAT_CONNECTION) || udev->state == USB_STATE_NOTATTACHED) { dev_dbg(&port_dev->dev, "do warm reset, port only\n"); if (hub_port_reset(hub, port1, NULL, HUB_BH_RESET_TIME, true) < 0) hub_port_disable(hub, port1, 1); } else { dev_dbg(&port_dev->dev, "do warm reset, full device\n"); usb_unlock_port(port_dev); usb_lock_device(udev); usb_reset_device(udev); usb_unlock_device(udev); usb_lock_port(port_dev); connect_change = 0; } break; } if (connect_change) hub_port_connect_change(hub, port1, portstatus, portchange); } static void hub_event(struct work_struct *work) { struct usb_device *hdev; struct usb_interface *intf; struct usb_hub *hub; struct device *hub_dev; u16 hubstatus; u16 hubchange; int i, ret; hub = container_of(work, struct usb_hub, events); hdev = hub->hdev; hub_dev = hub->intfdev; intf = to_usb_interface(hub_dev); kcov_remote_start_usb((u64)hdev->bus->busnum); dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x\n", hdev->state, hdev->maxchild, /* NOTE: expects max 15 ports... */ (u16) hub->change_bits[0], (u16) hub->event_bits[0]); /* Lock the device, then check to see if we were * disconnected while waiting for the lock to succeed. */ usb_lock_device(hdev); if (unlikely(hub->disconnected)) goto out_hdev_lock; /* If the hub has died, clean up after it */ if (hdev->state == USB_STATE_NOTATTACHED) { hub->error = -ENODEV; hub_quiesce(hub, HUB_DISCONNECT); goto out_hdev_lock; } /* Autoresume */ ret = usb_autopm_get_interface(intf); if (ret) { dev_dbg(hub_dev, "Can't autoresume: %d\n", ret); goto out_hdev_lock; } /* If this is an inactive hub, do nothing */ if (hub->quiescing) goto out_autopm; if (hub->error) { dev_dbg(hub_dev, "resetting for error %d\n", hub->error); ret = usb_reset_device(hdev); if (ret) { dev_dbg(hub_dev, "error resetting hub: %d\n", ret); goto out_autopm; } hub->nerrors = 0; hub->error = 0; } /* deal with port status changes */ for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; if (test_bit(i, hub->event_bits) || test_bit(i, hub->change_bits) || test_bit(i, hub->wakeup_bits)) { /* * The get_noresume and barrier ensure that if * the port was in the process of resuming, we * flush that work and keep the port active for * the duration of the port_event(). However, * if the port is runtime pm suspended * (powered-off), we leave it in that state, run * an abbreviated port_event(), and move on. */ pm_runtime_get_noresume(&port_dev->dev); pm_runtime_barrier(&port_dev->dev); usb_lock_port(port_dev); port_event(hub, i); usb_unlock_port(port_dev); pm_runtime_put_sync(&port_dev->dev); } } /* deal with hub status changes */ if (test_and_clear_bit(0, hub->event_bits) == 0) ; /* do nothing */ else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0) dev_err(hub_dev, "get_hub_status failed\n"); else { if (hubchange & HUB_CHANGE_LOCAL_POWER) { dev_dbg(hub_dev, "power change\n"); clear_hub_feature(hdev, C_HUB_LOCAL_POWER); if (hubstatus & HUB_STATUS_LOCAL_POWER) /* FIXME: Is this always true? */ hub->limited_power = 1; else hub->limited_power = 0; } if (hubchange & HUB_CHANGE_OVERCURRENT) { u16 status = 0; u16 unused; dev_dbg(hub_dev, "over-current change\n"); clear_hub_feature(hdev, C_HUB_OVER_CURRENT); msleep(500); /* Cool down */ hub_power_on(hub, true); hub_hub_status(hub, &status, &unused); if (status & HUB_STATUS_OVERCURRENT) dev_err(hub_dev, "over-current condition\n"); } } out_autopm: /* Balance the usb_autopm_get_interface() above */ usb_autopm_put_interface_no_suspend(intf); out_hdev_lock: usb_unlock_device(hdev); /* Balance the stuff in kick_hub_wq() and allow autosuspend */ usb_autopm_put_interface(intf); kref_put(&hub->kref, hub_release); kcov_remote_stop(); } static const struct usb_device_id hub_id_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT | USB_DEVICE_ID_MATCH_INT_CLASS, .idVendor = USB_VENDOR_SMSC, .idProduct = USB_PRODUCT_USB5534B, .bInterfaceClass = USB_CLASS_HUB, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT, .idVendor = USB_VENDOR_CYPRESS, .idProduct = USB_PRODUCT_CY7C65632, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_INT_CLASS, .idVendor = USB_VENDOR_GENESYS_LOGIC, .bInterfaceClass = USB_CLASS_HUB, .driver_info = HUB_QUIRK_CHECK_PORT_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT, .idVendor = USB_VENDOR_TEXAS_INSTRUMENTS, .idProduct = USB_PRODUCT_TUSB8041_USB2, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT, .idVendor = USB_VENDOR_TEXAS_INSTRUMENTS, .idProduct = USB_PRODUCT_TUSB8041_USB3, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_DEV_CLASS, .bDeviceClass = USB_CLASS_HUB}, { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS, .bInterfaceClass = USB_CLASS_HUB}, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, hub_id_table); static struct usb_driver hub_driver = { .name = "hub", .probe = hub_probe, .disconnect = hub_disconnect, .suspend = hub_suspend, .resume = hub_resume, .reset_resume = hub_reset_resume, .pre_reset = hub_pre_reset, .post_reset = hub_post_reset, .unlocked_ioctl = hub_ioctl, .id_table = hub_id_table, .supports_autosuspend = 1, }; int usb_hub_init(void) { if (usb_register(&hub_driver) < 0) { printk(KERN_ERR "%s: can't register hub driver\n", usbcore_name); return -1; } /* * The workqueue needs to be freezable to avoid interfering with * USB-PERSIST port handover. Otherwise it might see that a full-speed * device was gone before the EHCI controller had handed its port * over to the companion full-speed controller. */ hub_wq = alloc_workqueue("usb_hub_wq", WQ_FREEZABLE, 0); if (hub_wq) return 0; /* Fall through if kernel_thread failed */ usb_deregister(&hub_driver); pr_err("%s: can't allocate workqueue for usb hub\n", usbcore_name); return -1; } void usb_hub_cleanup(void) { destroy_workqueue(hub_wq); /* * Hub resources are freed for us by usb_deregister. It calls * usb_driver_purge on every device which in turn calls that * devices disconnect function if it is using this driver. * The hub_disconnect function takes care of releasing the * individual hub resources. -greg */ usb_deregister(&hub_driver); } /* usb_hub_cleanup() */ /** * usb_reset_and_verify_device - perform a USB port reset to reinitialize a device * @udev: device to reset (not in SUSPENDED or NOTATTACHED state) * * WARNING - don't use this routine to reset a composite device * (one with multiple interfaces owned by separate drivers)! * Use usb_reset_device() instead. * * Do a port reset, reassign the device's address, and establish its * former operating configuration. If the reset fails, or the device's * descriptors change from their values before the reset, or the original * configuration and altsettings cannot be restored, a flag will be set * telling hub_wq to pretend the device has been disconnected and then * re-connected. All drivers will be unbound, and the device will be * re-enumerated and probed all over again. * * Return: 0 if the reset succeeded, -ENODEV if the device has been * flagged for logical disconnection, or some other negative error code * if the reset wasn't even attempted. * * Note: * The caller must own the device lock and the port lock, the latter is * taken by usb_reset_device(). For example, it's safe to use * usb_reset_device() from a driver probe() routine after downloading * new firmware. For calls that might not occur during probe(), drivers * should lock the device using usb_lock_device_for_reset(). * * Locking exception: This routine may also be called from within an * autoresume handler. Such usage won't conflict with other tasks * holding the device lock because these tasks should always call * usb_autopm_resume_device(), thereby preventing any unwanted * autoresume. The autoresume handler is expected to have already * acquired the port lock before calling this routine. */ static int usb_reset_and_verify_device(struct usb_device *udev) { struct usb_device *parent_hdev = udev->parent; struct usb_hub *parent_hub; struct usb_hcd *hcd = bus_to_hcd(udev->bus); struct usb_device_descriptor descriptor; struct usb_host_bos *bos; int i, j, ret = 0; int port1 = udev->portnum; if (udev->state == USB_STATE_NOTATTACHED || udev->state == USB_STATE_SUSPENDED) { dev_dbg(&udev->dev, "device reset not allowed in state %d\n", udev->state); return -EINVAL; } if (!parent_hdev) return -EISDIR; parent_hub = usb_hub_to_struct_hub(parent_hdev); /* Disable USB2 hardware LPM. * It will be re-enabled by the enumeration process. */ usb_disable_usb2_hardware_lpm(udev); bos = udev->bos; udev->bos = NULL; mutex_lock(hcd->address0_mutex); for (i = 0; i < PORT_INIT_TRIES; ++i) { if (hub_port_stop_enumerate(parent_hub, port1, i)) { ret = -ENODEV; break; } /* ep0 maxpacket size may change; let the HCD know about it. * Other endpoints will be handled by re-enumeration. */ usb_ep0_reinit(udev); ret = hub_port_init(parent_hub, udev, port1, i, &descriptor); if (ret >= 0 || ret == -ENOTCONN || ret == -ENODEV) break; } mutex_unlock(hcd->address0_mutex); if (ret < 0) goto re_enumerate; /* Device might have changed firmware (DFU or similar) */ if (descriptors_changed(udev, &descriptor, bos)) { dev_info(&udev->dev, "device firmware changed\n"); goto re_enumerate; } /* Restore the device's previous configuration */ if (!udev->actconfig) goto done; mutex_lock(hcd->bandwidth_mutex); ret = usb_hcd_alloc_bandwidth(udev, udev->actconfig, NULL, NULL); if (ret < 0) { dev_warn(&udev->dev, "Busted HC? Not enough HCD resources for " "old configuration.\n"); mutex_unlock(hcd->bandwidth_mutex); goto re_enumerate; } ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_CONFIGURATION, 0, udev->actconfig->desc.bConfigurationValue, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (ret < 0) { dev_err(&udev->dev, "can't restore configuration #%d (error=%d)\n", udev->actconfig->desc.bConfigurationValue, ret); mutex_unlock(hcd->bandwidth_mutex); goto re_enumerate; } mutex_unlock(hcd->bandwidth_mutex); usb_set_device_state(udev, USB_STATE_CONFIGURED); /* Put interfaces back into the same altsettings as before. * Don't bother to send the Set-Interface request for interfaces * that were already in altsetting 0; besides being unnecessary, * many devices can't handle it. Instead just reset the host-side * endpoint state. */ for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { struct usb_host_config *config = udev->actconfig; struct usb_interface *intf = config->interface[i]; struct usb_interface_descriptor *desc; desc = &intf->cur_altsetting->desc; if (desc->bAlternateSetting == 0) { usb_disable_interface(udev, intf, true); usb_enable_interface(udev, intf, true); ret = 0; } else { /* Let the bandwidth allocation function know that this * device has been reset, and it will have to use * alternate setting 0 as the current alternate setting. */ intf->resetting_device = 1; ret = usb_set_interface(udev, desc->bInterfaceNumber, desc->bAlternateSetting); intf->resetting_device = 0; } if (ret < 0) { dev_err(&udev->dev, "failed to restore interface %d " "altsetting %d (error=%d)\n", desc->bInterfaceNumber, desc->bAlternateSetting, ret); goto re_enumerate; } /* Resetting also frees any allocated streams */ for (j = 0; j < intf->cur_altsetting->desc.bNumEndpoints; j++) intf->cur_altsetting->endpoint[j].streams = 0; } done: /* Now that the alt settings are re-installed, enable LTM and LPM. */ usb_enable_usb2_hardware_lpm(udev); usb_unlocked_enable_lpm(udev); usb_enable_ltm(udev); usb_release_bos_descriptor(udev); udev->bos = bos; return 0; re_enumerate: usb_release_bos_descriptor(udev); udev->bos = bos; hub_port_logical_disconnect(parent_hub, port1); return -ENODEV; } /** * usb_reset_device - warn interface drivers and perform a USB port reset * @udev: device to reset (not in NOTATTACHED state) * * Warns all drivers bound to registered interfaces (using their pre_reset * method), performs the port reset, and then lets the drivers know that * the reset is over (using their post_reset method). * * Return: The same as for usb_reset_and_verify_device(). * However, if a reset is already in progress (for instance, if a * driver doesn't have pre_reset() or post_reset() callbacks, and while * being unbound or re-bound during the ongoing reset its disconnect() * or probe() routine tries to perform a second, nested reset), the * routine returns -EINPROGRESS. * * Note: * The caller must own the device lock. For example, it's safe to use * this from a driver probe() routine after downloading new firmware. * For calls that might not occur during probe(), drivers should lock * the device using usb_lock_device_for_reset(). * * If an interface is currently being probed or disconnected, we assume * its driver knows how to handle resets. For all other interfaces, * if the driver doesn't have pre_reset and post_reset methods then * we attempt to unbind it and rebind afterward. */ int usb_reset_device(struct usb_device *udev) { int ret; int i; unsigned int noio_flag; struct usb_port *port_dev; struct usb_host_config *config = udev->actconfig; struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); if (udev->state == USB_STATE_NOTATTACHED) { dev_dbg(&udev->dev, "device reset not allowed in state %d\n", udev->state); return -EINVAL; } if (!udev->parent) { /* this requires hcd-specific logic; see ohci_restart() */ dev_dbg(&udev->dev, "%s for root hub!\n", __func__); return -EISDIR; } if (udev->reset_in_progress) return -EINPROGRESS; udev->reset_in_progress = 1; port_dev = hub->ports[udev->portnum - 1]; /* * Don't allocate memory with GFP_KERNEL in current * context to avoid possible deadlock if usb mass * storage interface or usbnet interface(iSCSI case) * is included in current configuration. The easist * approach is to do it for every device reset, * because the device 'memalloc_noio' flag may have * not been set before reseting the usb device. */ noio_flag = memalloc_noio_save(); /* Prevent autosuspend during the reset */ usb_autoresume_device(udev); if (config) { for (i = 0; i < config->desc.bNumInterfaces; ++i) { struct usb_interface *cintf = config->interface[i]; struct usb_driver *drv; int unbind = 0; if (cintf->dev.driver) { drv = to_usb_driver(cintf->dev.driver); if (drv->pre_reset && drv->post_reset) unbind = (drv->pre_reset)(cintf); else if (cintf->condition == USB_INTERFACE_BOUND) unbind = 1; if (unbind) usb_forced_unbind_intf(cintf); } } } usb_lock_port(port_dev); ret = usb_reset_and_verify_device(udev); usb_unlock_port(port_dev); if (config) { for (i = config->desc.bNumInterfaces - 1; i >= 0; --i) { struct usb_interface *cintf = config->interface[i]; struct usb_driver *drv; int rebind = cintf->needs_binding; if (!rebind && cintf->dev.driver) { drv = to_usb_driver(cintf->dev.driver); if (drv->post_reset) rebind = (drv->post_reset)(cintf); else if (cintf->condition == USB_INTERFACE_BOUND) rebind = 1; if (rebind) cintf->needs_binding = 1; } } /* If the reset failed, hub_wq will unbind drivers later */ if (ret == 0) usb_unbind_and_rebind_marked_interfaces(udev); } usb_autosuspend_device(udev); memalloc_noio_restore(noio_flag); udev->reset_in_progress = 0; return ret; } EXPORT_SYMBOL_GPL(usb_reset_device); /** * usb_queue_reset_device - Reset a USB device from an atomic context * @iface: USB interface belonging to the device to reset * * This function can be used to reset a USB device from an atomic * context, where usb_reset_device() won't work (as it blocks). * * Doing a reset via this method is functionally equivalent to calling * usb_reset_device(), except for the fact that it is delayed to a * workqueue. This means that any drivers bound to other interfaces * might be unbound, as well as users from usbfs in user space. * * Corner cases: * * - Scheduling two resets at the same time from two different drivers * attached to two different interfaces of the same device is * possible; depending on how the driver attached to each interface * handles ->pre_reset(), the second reset might happen or not. * * - If the reset is delayed so long that the interface is unbound from * its driver, the reset will be skipped. * * - This function can be called during .probe(). It can also be called * during .disconnect(), but doing so is pointless because the reset * will not occur. If you really want to reset the device during * .disconnect(), call usb_reset_device() directly -- but watch out * for nested unbinding issues! */ void usb_queue_reset_device(struct usb_interface *iface) { if (schedule_work(&iface->reset_ws)) usb_get_intf(iface); } EXPORT_SYMBOL_GPL(usb_queue_reset_device); /** * usb_hub_find_child - Get the pointer of child device * attached to the port which is specified by @port1. * @hdev: USB device belonging to the usb hub * @port1: port num to indicate which port the child device * is attached to. * * USB drivers call this function to get hub's child device * pointer. * * Return: %NULL if input param is invalid and * child's usb_device pointer if non-NULL. */ struct usb_device *usb_hub_find_child(struct usb_device *hdev, int port1) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (port1 < 1 || port1 > hdev->maxchild) return NULL; return hub->ports[port1 - 1]->child; } EXPORT_SYMBOL_GPL(usb_hub_find_child); void usb_hub_adjust_deviceremovable(struct usb_device *hdev, struct usb_hub_descriptor *desc) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); enum usb_port_connect_type connect_type; int i; if (!hub) return; if (!hub_is_superspeed(hdev)) { for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; connect_type = port_dev->connect_type; if (connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { u8 mask = 1 << (i%8); if (!(desc->u.hs.DeviceRemovable[i/8] & mask)) { dev_dbg(&port_dev->dev, "DeviceRemovable is changed to 1 according to platform information.\n"); desc->u.hs.DeviceRemovable[i/8] |= mask; } } } } else { u16 port_removable = le16_to_cpu(desc->u.ss.DeviceRemovable); for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; connect_type = port_dev->connect_type; if (connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { u16 mask = 1 << i; if (!(port_removable & mask)) { dev_dbg(&port_dev->dev, "DeviceRemovable is changed to 1 according to platform information.\n"); port_removable |= mask; } } } desc->u.ss.DeviceRemovable = cpu_to_le16(port_removable); } } #ifdef CONFIG_ACPI /** * usb_get_hub_port_acpi_handle - Get the usb port's acpi handle * @hdev: USB device belonging to the usb hub * @port1: port num of the port * * Return: Port's acpi handle if successful, %NULL if params are * invalid. */ acpi_handle usb_get_hub_port_acpi_handle(struct usb_device *hdev, int port1) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (!hub) return NULL; return ACPI_HANDLE(&hub->ports[port1 - 1]->dev); } #endif
linux-master
drivers/usb/core/hub.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/endpoint.c * * (C) Copyright 2002,2004,2006 Greg Kroah-Hartman * (C) Copyright 2002,2004 IBM Corp. * (C) Copyright 2006 Novell Inc. * * Released under the GPLv2 only. * * Endpoint sysfs stuff */ #include <linux/kernel.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/usb.h> #include "usb.h" struct ep_device { struct usb_endpoint_descriptor *desc; struct usb_device *udev; struct device dev; }; #define to_ep_device(_dev) \ container_of(_dev, struct ep_device, dev) struct ep_attribute { struct attribute attr; ssize_t (*show)(struct usb_device *, struct usb_endpoint_descriptor *, char *); }; #define to_ep_attribute(_attr) \ container_of(_attr, struct ep_attribute, attr) #define usb_ep_attr(field, format_string) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct ep_device *ep = to_ep_device(dev); \ return sprintf(buf, format_string, ep->desc->field); \ } \ static DEVICE_ATTR_RO(field) usb_ep_attr(bLength, "%02x\n"); usb_ep_attr(bEndpointAddress, "%02x\n"); usb_ep_attr(bmAttributes, "%02x\n"); usb_ep_attr(bInterval, "%02x\n"); static ssize_t wMaxPacketSize_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ep_device *ep = to_ep_device(dev); return sprintf(buf, "%04x\n", usb_endpoint_maxp(ep->desc)); } static DEVICE_ATTR_RO(wMaxPacketSize); static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ep_device *ep = to_ep_device(dev); char *type = "unknown"; switch (usb_endpoint_type(ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: type = "Control"; break; case USB_ENDPOINT_XFER_ISOC: type = "Isoc"; break; case USB_ENDPOINT_XFER_BULK: type = "Bulk"; break; case USB_ENDPOINT_XFER_INT: type = "Interrupt"; break; } return sprintf(buf, "%s\n", type); } static DEVICE_ATTR_RO(type); static ssize_t interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ep_device *ep = to_ep_device(dev); unsigned int interval; char unit; interval = usb_decode_interval(ep->desc, ep->udev->speed); if (interval % 1000) { unit = 'u'; } else { unit = 'm'; interval /= 1000; } return sprintf(buf, "%d%cs\n", interval, unit); } static DEVICE_ATTR_RO(interval); static ssize_t direction_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ep_device *ep = to_ep_device(dev); char *direction; if (usb_endpoint_xfer_control(ep->desc)) direction = "both"; else if (usb_endpoint_dir_in(ep->desc)) direction = "in"; else direction = "out"; return sprintf(buf, "%s\n", direction); } static DEVICE_ATTR_RO(direction); static struct attribute *ep_dev_attrs[] = { &dev_attr_bLength.attr, &dev_attr_bEndpointAddress.attr, &dev_attr_bmAttributes.attr, &dev_attr_bInterval.attr, &dev_attr_wMaxPacketSize.attr, &dev_attr_interval.attr, &dev_attr_type.attr, &dev_attr_direction.attr, NULL, }; static const struct attribute_group ep_dev_attr_grp = { .attrs = ep_dev_attrs, }; static const struct attribute_group *ep_dev_groups[] = { &ep_dev_attr_grp, NULL }; static void ep_device_release(struct device *dev) { struct ep_device *ep_dev = to_ep_device(dev); kfree(ep_dev); } struct device_type usb_ep_device_type = { .name = "usb_endpoint", .release = ep_device_release, }; int usb_create_ep_devs(struct device *parent, struct usb_host_endpoint *endpoint, struct usb_device *udev) { struct ep_device *ep_dev; int retval; ep_dev = kzalloc(sizeof(*ep_dev), GFP_KERNEL); if (!ep_dev) { retval = -ENOMEM; goto exit; } ep_dev->desc = &endpoint->desc; ep_dev->udev = udev; ep_dev->dev.groups = ep_dev_groups; ep_dev->dev.type = &usb_ep_device_type; ep_dev->dev.parent = parent; dev_set_name(&ep_dev->dev, "ep_%02x", endpoint->desc.bEndpointAddress); retval = device_register(&ep_dev->dev); if (retval) goto error_register; device_enable_async_suspend(&ep_dev->dev); endpoint->ep_dev = ep_dev; return retval; error_register: put_device(&ep_dev->dev); exit: return retval; } void usb_remove_ep_devs(struct usb_host_endpoint *endpoint) { struct ep_device *ep_dev = endpoint->ep_dev; if (ep_dev) { device_unregister(&ep_dev->dev); endpoint->ep_dev = NULL; } }
linux-master
drivers/usb/core/endpoint.c
// SPDX-License-Identifier: GPL-2.0+ /* * A wrapper for multiple PHYs which passes all phy_* function calls to * multiple (actual) PHY devices. This is comes handy when initializing * all PHYs on a HCD and to keep them all in the same state. * * Copyright (C) 2018 Martin Blumenstingl <[email protected]> */ #include <linux/device.h> #include <linux/list.h> #include <linux/phy/phy.h> #include <linux/of.h> #include "phy.h" struct usb_phy_roothub { struct phy *phy; struct list_head list; }; static int usb_phy_roothub_add_phy(struct device *dev, int index, struct list_head *list) { struct usb_phy_roothub *roothub_entry; struct phy *phy; phy = devm_of_phy_get_by_index(dev, dev->of_node, index); if (IS_ERR(phy)) { if (PTR_ERR(phy) == -ENODEV) return 0; else return PTR_ERR(phy); } roothub_entry = devm_kzalloc(dev, sizeof(*roothub_entry), GFP_KERNEL); if (!roothub_entry) return -ENOMEM; INIT_LIST_HEAD(&roothub_entry->list); roothub_entry->phy = phy; list_add_tail(&roothub_entry->list, list); return 0; } struct usb_phy_roothub *usb_phy_roothub_alloc(struct device *dev) { struct usb_phy_roothub *phy_roothub; int i, num_phys, err; if (!IS_ENABLED(CONFIG_GENERIC_PHY)) return NULL; num_phys = of_count_phandle_with_args(dev->of_node, "phys", "#phy-cells"); if (num_phys <= 0) return NULL; phy_roothub = devm_kzalloc(dev, sizeof(*phy_roothub), GFP_KERNEL); if (!phy_roothub) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&phy_roothub->list); for (i = 0; i < num_phys; i++) { err = usb_phy_roothub_add_phy(dev, i, &phy_roothub->list); if (err) return ERR_PTR(err); } return phy_roothub; } EXPORT_SYMBOL_GPL(usb_phy_roothub_alloc); int usb_phy_roothub_init(struct usb_phy_roothub *phy_roothub) { struct usb_phy_roothub *roothub_entry; struct list_head *head; int err; if (!phy_roothub) return 0; head = &phy_roothub->list; list_for_each_entry(roothub_entry, head, list) { err = phy_init(roothub_entry->phy); if (err) goto err_exit_phys; } return 0; err_exit_phys: list_for_each_entry_continue_reverse(roothub_entry, head, list) phy_exit(roothub_entry->phy); return err; } EXPORT_SYMBOL_GPL(usb_phy_roothub_init); int usb_phy_roothub_exit(struct usb_phy_roothub *phy_roothub) { struct usb_phy_roothub *roothub_entry; struct list_head *head; int err, ret = 0; if (!phy_roothub) return 0; head = &phy_roothub->list; list_for_each_entry(roothub_entry, head, list) { err = phy_exit(roothub_entry->phy); if (err) ret = err; } return ret; } EXPORT_SYMBOL_GPL(usb_phy_roothub_exit); int usb_phy_roothub_set_mode(struct usb_phy_roothub *phy_roothub, enum phy_mode mode) { struct usb_phy_roothub *roothub_entry; struct list_head *head; int err; if (!phy_roothub) return 0; head = &phy_roothub->list; list_for_each_entry(roothub_entry, head, list) { err = phy_set_mode(roothub_entry->phy, mode); if (err) goto err_out; } return 0; err_out: list_for_each_entry_continue_reverse(roothub_entry, head, list) phy_power_off(roothub_entry->phy); return err; } EXPORT_SYMBOL_GPL(usb_phy_roothub_set_mode); int usb_phy_roothub_calibrate(struct usb_phy_roothub *phy_roothub) { struct usb_phy_roothub *roothub_entry; struct list_head *head; int err; if (!phy_roothub) return 0; head = &phy_roothub->list; list_for_each_entry(roothub_entry, head, list) { err = phy_calibrate(roothub_entry->phy); if (err) return err; } return 0; } EXPORT_SYMBOL_GPL(usb_phy_roothub_calibrate); int usb_phy_roothub_power_on(struct usb_phy_roothub *phy_roothub) { struct usb_phy_roothub *roothub_entry; struct list_head *head; int err; if (!phy_roothub) return 0; head = &phy_roothub->list; list_for_each_entry(roothub_entry, head, list) { err = phy_power_on(roothub_entry->phy); if (err) goto err_out; } return 0; err_out: list_for_each_entry_continue_reverse(roothub_entry, head, list) phy_power_off(roothub_entry->phy); return err; } EXPORT_SYMBOL_GPL(usb_phy_roothub_power_on); void usb_phy_roothub_power_off(struct usb_phy_roothub *phy_roothub) { struct usb_phy_roothub *roothub_entry; if (!phy_roothub) return; list_for_each_entry_reverse(roothub_entry, &phy_roothub->list, list) phy_power_off(roothub_entry->phy); } EXPORT_SYMBOL_GPL(usb_phy_roothub_power_off); int usb_phy_roothub_suspend(struct device *controller_dev, struct usb_phy_roothub *phy_roothub) { usb_phy_roothub_power_off(phy_roothub); /* keep the PHYs initialized so the device can wake up the system */ if (device_may_wakeup(controller_dev)) return 0; return usb_phy_roothub_exit(phy_roothub); } EXPORT_SYMBOL_GPL(usb_phy_roothub_suspend); int usb_phy_roothub_resume(struct device *controller_dev, struct usb_phy_roothub *phy_roothub) { int err; /* if the device can't wake up the system _exit was called */ if (!device_may_wakeup(controller_dev)) { err = usb_phy_roothub_init(phy_roothub); if (err) return err; } err = usb_phy_roothub_power_on(phy_roothub); /* undo _init if _power_on failed */ if (err && !device_may_wakeup(controller_dev)) usb_phy_roothub_exit(phy_roothub); return err; } EXPORT_SYMBOL_GPL(usb_phy_roothub_resume);
linux-master
drivers/usb/core/phy.c
// SPDX-License-Identifier: GPL-2.0+ /* * devices.c * (C) Copyright 1999 Randy Dunlap. * (C) Copyright 1999,2000 Thomas Sailer <[email protected]>. * (proc file per device) * (C) Copyright 1999 Deti Fliegl (new USB architecture) * ************************************************************* * * <mountpoint>/devices contains USB topology, device, config, class, * interface, & endpoint data. * * I considered using /dev/bus/usb/device# for each device * as it is attached or detached, but I didn't like this for some * reason -- maybe it's just too deep of a directory structure. * I also don't like looking in multiple places to gather and view * the data. Having only one file for ./devices also prevents race * conditions that could arise if a program was reading device info * for devices that are being removed (unplugged). (That is, the * program may find a directory for devnum_12 then try to open it, * but it was just unplugged, so the directory is now deleted. * But programs would just have to be prepared for situations like * this in any plug-and-play environment.) * * 1999-12-16: Thomas Sailer <[email protected]> * Converted the whole proc stuff to real * read methods. Now not the whole device list needs to fit * into one page, only the device list for one bus. * Added a poll method to /sys/kernel/debug/usb/devices, to wake * up an eventual usbd * 2000-01-04: Thomas Sailer <[email protected]> * Turned into its own filesystem * 2000-07-05: Ashley Montanaro <[email protected]> * Converted file reading routine to dump to buffer once * per device, not per bus */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/gfp.h> #include <linux/usb.h> #include <linux/usbdevice_fs.h> #include <linux/usb/hcd.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include "usb.h" /* Define ALLOW_SERIAL_NUMBER if you want to see the serial number of devices */ #define ALLOW_SERIAL_NUMBER static const char format_topo[] = /* T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd */ "\nT: Bus=%2.2d Lev=%2.2d Prnt=%2.2d Port=%2.2d Cnt=%2.2d Dev#=%3d Spd=%-4s MxCh=%2d\n"; static const char format_string_manufacturer[] = /* S: Manufacturer=xxxx */ "S: Manufacturer=%.100s\n"; static const char format_string_product[] = /* S: Product=xxxx */ "S: Product=%.100s\n"; #ifdef ALLOW_SERIAL_NUMBER static const char format_string_serialnumber[] = /* S: SerialNumber=xxxx */ "S: SerialNumber=%.100s\n"; #endif static const char format_bandwidth[] = /* B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd */ "B: Alloc=%3d/%3d us (%2d%%), #Int=%3d, #Iso=%3d\n"; static const char format_device1[] = /* D: Ver=xx.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd */ "D: Ver=%2x.%02x Cls=%02x(%-5s) Sub=%02x Prot=%02x MxPS=%2d #Cfgs=%3d\n"; static const char format_device2[] = /* P: Vendor=xxxx ProdID=xxxx Rev=xx.xx */ "P: Vendor=%04x ProdID=%04x Rev=%2x.%02x\n"; static const char format_config[] = /* C: #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA */ "C:%c #Ifs=%2d Cfg#=%2d Atr=%02x MxPwr=%3dmA\n"; static const char format_iad[] = /* A: FirstIf#=dd IfCount=dd Cls=xx(sssss) Sub=xx Prot=xx */ "A: FirstIf#=%2d IfCount=%2d Cls=%02x(%-5s) Sub=%02x Prot=%02x\n"; static const char format_iface[] = /* I: If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=xxxx*/ "I:%c If#=%2d Alt=%2d #EPs=%2d Cls=%02x(%-5s) Sub=%02x Prot=%02x Driver=%s\n"; static const char format_endpt[] = /* E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=D?s */ "E: Ad=%02x(%c) Atr=%02x(%-4s) MxPS=%4d Ivl=%d%cs\n"; struct class_info { int class; char *class_name; }; static const struct class_info clas_info[] = { /* max. 5 chars. per name string */ {USB_CLASS_PER_INTERFACE, ">ifc"}, {USB_CLASS_AUDIO, "audio"}, {USB_CLASS_COMM, "comm."}, {USB_CLASS_HID, "HID"}, {USB_CLASS_PHYSICAL, "PID"}, {USB_CLASS_STILL_IMAGE, "still"}, {USB_CLASS_PRINTER, "print"}, {USB_CLASS_MASS_STORAGE, "stor."}, {USB_CLASS_HUB, "hub"}, {USB_CLASS_CDC_DATA, "data"}, {USB_CLASS_CSCID, "scard"}, {USB_CLASS_CONTENT_SEC, "c-sec"}, {USB_CLASS_VIDEO, "video"}, {USB_CLASS_PERSONAL_HEALTHCARE, "perhc"}, {USB_CLASS_AUDIO_VIDEO, "av"}, {USB_CLASS_BILLBOARD, "blbrd"}, {USB_CLASS_USB_TYPE_C_BRIDGE, "bridg"}, {USB_CLASS_WIRELESS_CONTROLLER, "wlcon"}, {USB_CLASS_MISC, "misc"}, {USB_CLASS_APP_SPEC, "app."}, {USB_CLASS_VENDOR_SPEC, "vend."}, {-1, "unk."} /* leave as last */ }; /*****************************************************************/ static const char *class_decode(const int class) { int ix; for (ix = 0; clas_info[ix].class != -1; ix++) if (clas_info[ix].class == class) break; return clas_info[ix].class_name; } static char *usb_dump_endpoint_descriptor(int speed, char *start, char *end, const struct usb_endpoint_descriptor *desc) { char dir, unit, *type; unsigned interval, bandwidth = 1; if (start > end) return start; dir = usb_endpoint_dir_in(desc) ? 'I' : 'O'; if (speed == USB_SPEED_HIGH) bandwidth = usb_endpoint_maxp_mult(desc); /* this isn't checking for illegal values */ switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: type = "Ctrl"; dir = 'B'; /* ctrl is bidirectional */ break; case USB_ENDPOINT_XFER_ISOC: type = "Isoc"; break; case USB_ENDPOINT_XFER_BULK: type = "Bulk"; break; case USB_ENDPOINT_XFER_INT: type = "Int."; break; default: /* "can't happen" */ return start; } interval = usb_decode_interval(desc, speed); if (interval % 1000) { unit = 'u'; } else { unit = 'm'; interval /= 1000; } start += sprintf(start, format_endpt, desc->bEndpointAddress, dir, desc->bmAttributes, type, usb_endpoint_maxp(desc) * bandwidth, interval, unit); return start; } static char *usb_dump_interface_descriptor(char *start, char *end, const struct usb_interface_cache *intfc, const struct usb_interface *iface, int setno) { const struct usb_interface_descriptor *desc; const char *driver_name = ""; int active = 0; if (start > end) return start; desc = &intfc->altsetting[setno].desc; if (iface) { driver_name = (iface->dev.driver ? iface->dev.driver->name : "(none)"); active = (desc == &iface->cur_altsetting->desc); } start += sprintf(start, format_iface, active ? '*' : ' ', /* mark active altsetting */ desc->bInterfaceNumber, desc->bAlternateSetting, desc->bNumEndpoints, desc->bInterfaceClass, class_decode(desc->bInterfaceClass), desc->bInterfaceSubClass, desc->bInterfaceProtocol, driver_name); return start; } static char *usb_dump_interface(int speed, char *start, char *end, const struct usb_interface_cache *intfc, const struct usb_interface *iface, int setno) { const struct usb_host_interface *desc = &intfc->altsetting[setno]; int i; start = usb_dump_interface_descriptor(start, end, intfc, iface, setno); for (i = 0; i < desc->desc.bNumEndpoints; i++) { start = usb_dump_endpoint_descriptor(speed, start, end, &desc->endpoint[i].desc); } return start; } static char *usb_dump_iad_descriptor(char *start, char *end, const struct usb_interface_assoc_descriptor *iad) { if (start > end) return start; start += sprintf(start, format_iad, iad->bFirstInterface, iad->bInterfaceCount, iad->bFunctionClass, class_decode(iad->bFunctionClass), iad->bFunctionSubClass, iad->bFunctionProtocol); return start; } /* TBD: * 0. TBDs * 1. marking active interface altsettings (code lists all, but should mark * which ones are active, if any) */ static char *usb_dump_config_descriptor(char *start, char *end, const struct usb_config_descriptor *desc, int active, int speed) { int mul; if (start > end) return start; if (speed >= USB_SPEED_SUPER) mul = 8; else mul = 2; start += sprintf(start, format_config, /* mark active/actual/current cfg. */ active ? '*' : ' ', desc->bNumInterfaces, desc->bConfigurationValue, desc->bmAttributes, desc->bMaxPower * mul); return start; } static char *usb_dump_config(int speed, char *start, char *end, const struct usb_host_config *config, int active) { int i, j; struct usb_interface_cache *intfc; struct usb_interface *interface; if (start > end) return start; if (!config) /* getting these some in 2.3.7; none in 2.3.6 */ return start + sprintf(start, "(null Cfg. desc.)\n"); start = usb_dump_config_descriptor(start, end, &config->desc, active, speed); for (i = 0; i < USB_MAXIADS; i++) { if (config->intf_assoc[i] == NULL) break; start = usb_dump_iad_descriptor(start, end, config->intf_assoc[i]); } for (i = 0; i < config->desc.bNumInterfaces; i++) { intfc = config->intf_cache[i]; interface = config->interface[i]; for (j = 0; j < intfc->num_altsetting; j++) { start = usb_dump_interface(speed, start, end, intfc, interface, j); } } return start; } /* * Dump the different USB descriptors. */ static char *usb_dump_device_descriptor(char *start, char *end, const struct usb_device_descriptor *desc) { u16 bcdUSB = le16_to_cpu(desc->bcdUSB); u16 bcdDevice = le16_to_cpu(desc->bcdDevice); if (start > end) return start; start += sprintf(start, format_device1, bcdUSB >> 8, bcdUSB & 0xff, desc->bDeviceClass, class_decode(desc->bDeviceClass), desc->bDeviceSubClass, desc->bDeviceProtocol, desc->bMaxPacketSize0, desc->bNumConfigurations); if (start > end) return start; start += sprintf(start, format_device2, le16_to_cpu(desc->idVendor), le16_to_cpu(desc->idProduct), bcdDevice >> 8, bcdDevice & 0xff); return start; } /* * Dump the different strings that this device holds. */ static char *usb_dump_device_strings(char *start, char *end, struct usb_device *dev) { if (start > end) return start; if (dev->manufacturer) start += sprintf(start, format_string_manufacturer, dev->manufacturer); if (start > end) goto out; if (dev->product) start += sprintf(start, format_string_product, dev->product); if (start > end) goto out; #ifdef ALLOW_SERIAL_NUMBER if (dev->serial) start += sprintf(start, format_string_serialnumber, dev->serial); #endif out: return start; } static char *usb_dump_desc(char *start, char *end, struct usb_device *dev) { int i; start = usb_dump_device_descriptor(start, end, &dev->descriptor); start = usb_dump_device_strings(start, end, dev); for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { start = usb_dump_config(dev->speed, start, end, dev->config + i, /* active ? */ (dev->config + i) == dev->actconfig); } return start; } /*****************************************************************/ /* This is a recursive function. Parameters: * buffer - the user-space buffer to write data into * nbytes - the maximum number of bytes to write * skip_bytes - the number of bytes to skip before writing anything * file_offset - the offset into the devices file on completion * The caller must own the device lock. */ static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes, loff_t *skip_bytes, loff_t *file_offset, struct usb_device *usbdev, struct usb_bus *bus, int level, int index, int count) { int chix; int ret, cnt = 0; int parent_devnum = 0; char *pages_start, *data_end, *speed; unsigned int length; ssize_t total_written = 0; struct usb_device *childdev = NULL; /* don't bother with anything else if we're not writing any data */ if (*nbytes <= 0) return 0; if (level > MAX_TOPO_LEVEL) return 0; /* allocate 2^1 pages = 8K (on i386); * should be more than enough for one device */ pages_start = (char *)__get_free_pages(GFP_NOIO, 1); if (!pages_start) return -ENOMEM; if (usbdev->parent && usbdev->parent->devnum != -1) parent_devnum = usbdev->parent->devnum; /* * So the root hub's parent is 0 and any device that is * plugged into the root hub has a parent of 0. */ switch (usbdev->speed) { case USB_SPEED_LOW: speed = "1.5"; break; case USB_SPEED_UNKNOWN: /* usb 1.1 root hub code */ case USB_SPEED_FULL: speed = "12"; break; case USB_SPEED_HIGH: speed = "480"; break; case USB_SPEED_SUPER: speed = "5000"; break; case USB_SPEED_SUPER_PLUS: speed = "10000"; break; default: speed = "??"; } data_end = pages_start + sprintf(pages_start, format_topo, bus->busnum, level, parent_devnum, index, count, usbdev->devnum, speed, usbdev->maxchild); /* * level = topology-tier level; * parent_devnum = parent device number; * index = parent's connector number; * count = device count at this level */ /* If this is the root hub, display the bandwidth information */ if (level == 0) { int max; /* super/high speed reserves 80%, full/low reserves 90% */ if (usbdev->speed == USB_SPEED_HIGH || usbdev->speed >= USB_SPEED_SUPER) max = 800; else max = FRAME_TIME_MAX_USECS_ALLOC; /* report "average" periodic allocation over a microsecond. * the schedules are actually bursty, HCDs need to deal with * that and just compute/report this average. */ data_end += sprintf(data_end, format_bandwidth, bus->bandwidth_allocated, max, (100 * bus->bandwidth_allocated + max / 2) / max, bus->bandwidth_int_reqs, bus->bandwidth_isoc_reqs); } data_end = usb_dump_desc(data_end, pages_start + (2 * PAGE_SIZE) - 256, usbdev); if (data_end > (pages_start + (2 * PAGE_SIZE) - 256)) data_end += sprintf(data_end, "(truncated)\n"); length = data_end - pages_start; /* if we can start copying some data to the user */ if (length > *skip_bytes) { length -= *skip_bytes; if (length > *nbytes) length = *nbytes; if (copy_to_user(*buffer, pages_start + *skip_bytes, length)) { free_pages((unsigned long)pages_start, 1); return -EFAULT; } *nbytes -= length; *file_offset += length; total_written += length; *buffer += length; *skip_bytes = 0; } else *skip_bytes -= length; free_pages((unsigned long)pages_start, 1); /* Now look at all of this device's children. */ usb_hub_for_each_child(usbdev, chix, childdev) { usb_lock_device(childdev); ret = usb_device_dump(buffer, nbytes, skip_bytes, file_offset, childdev, bus, level + 1, chix - 1, ++cnt); usb_unlock_device(childdev); if (ret == -EFAULT) return total_written; total_written += ret; } return total_written; } static ssize_t usb_device_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct usb_bus *bus; ssize_t ret, total_written = 0; loff_t skip_bytes = *ppos; int id; if (*ppos < 0) return -EINVAL; if (nbytes <= 0) return 0; mutex_lock(&usb_bus_idr_lock); /* print devices for all busses */ idr_for_each_entry(&usb_bus_idr, bus, id) { /* recurse through all children of the root hub */ if (!bus_to_hcd(bus)->rh_registered) continue; usb_lock_device(bus->root_hub); ret = usb_device_dump(&buf, &nbytes, &skip_bytes, ppos, bus->root_hub, bus, 0, 0, 0); usb_unlock_device(bus->root_hub); if (ret < 0) { mutex_unlock(&usb_bus_idr_lock); return ret; } total_written += ret; } mutex_unlock(&usb_bus_idr_lock); return total_written; } const struct file_operations usbfs_devices_fops = { .llseek = no_seek_end_llseek, .read = usb_device_read, };
linux-master
drivers/usb/core/devices.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/generic.c - generic driver for USB devices (not interfaces) * * (C) Copyright 2005 Greg Kroah-Hartman <[email protected]> * * based on drivers/usb/usb.c which had the following copyrights: * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2004 * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * (C) Copyright Greg Kroah-Hartman 2002-2003 * * Released under the GPLv2 only. */ #include <linux/usb.h> #include <linux/usb/hcd.h> #include <uapi/linux/usb/audio.h> #include "usb.h" static inline const char *plural(int n) { return (n == 1 ? "" : "s"); } static int is_rndis(struct usb_interface_descriptor *desc) { return desc->bInterfaceClass == USB_CLASS_COMM && desc->bInterfaceSubClass == 2 && desc->bInterfaceProtocol == 0xff; } static int is_activesync(struct usb_interface_descriptor *desc) { return desc->bInterfaceClass == USB_CLASS_MISC && desc->bInterfaceSubClass == 1 && desc->bInterfaceProtocol == 1; } static bool is_audio(struct usb_interface_descriptor *desc) { return desc->bInterfaceClass == USB_CLASS_AUDIO; } static bool is_uac3_config(struct usb_interface_descriptor *desc) { return desc->bInterfaceProtocol == UAC_VERSION_3; } int usb_choose_configuration(struct usb_device *udev) { int i; int num_configs; int insufficient_power = 0; struct usb_host_config *c, *best; if (usb_device_is_owned(udev)) return 0; best = NULL; c = udev->config; num_configs = udev->descriptor.bNumConfigurations; for (i = 0; i < num_configs; (i++, c++)) { struct usb_interface_descriptor *desc = NULL; /* It's possible that a config has no interfaces! */ if (c->desc.bNumInterfaces > 0) desc = &c->intf_cache[0]->altsetting->desc; /* * HP's USB bus-powered keyboard has only one configuration * and it claims to be self-powered; other devices may have * similar errors in their descriptors. If the next test * were allowed to execute, such configurations would always * be rejected and the devices would not work as expected. * In the meantime, we run the risk of selecting a config * that requires external power at a time when that power * isn't available. It seems to be the lesser of two evils. * * Bugzilla #6448 reports a device that appears to crash * when it receives a GET_DEVICE_STATUS request! We don't * have any other way to tell whether a device is self-powered, * but since we don't use that information anywhere but here, * the call has been removed. * * Maybe the GET_DEVICE_STATUS call and the test below can * be reinstated when device firmwares become more reliable. * Don't hold your breath. */ #if 0 /* Rule out self-powered configs for a bus-powered device */ if (bus_powered && (c->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER)) continue; #endif /* * The next test may not be as effective as it should be. * Some hubs have errors in their descriptor, claiming * to be self-powered when they are really bus-powered. * We will overestimate the amount of current such hubs * make available for each port. * * This is a fairly benign sort of failure. It won't * cause us to reject configurations that we should have * accepted. */ /* Rule out configs that draw too much bus current */ if (usb_get_max_power(udev, c) > udev->bus_mA) { insufficient_power++; continue; } /* * Select first configuration as default for audio so that * devices that don't comply with UAC3 protocol are supported. * But, still iterate through other configurations and * select UAC3 compliant config if present. */ if (desc && is_audio(desc)) { /* Always prefer the first found UAC3 config */ if (is_uac3_config(desc)) { best = c; break; } /* If there is no UAC3 config, prefer the first config */ else if (i == 0) best = c; /* Unconditional continue, because the rest of the code * in the loop is irrelevant for audio devices, and * because it can reassign best, which for audio devices * we don't want. */ continue; } /* When the first config's first interface is one of Microsoft's * pet nonstandard Ethernet-over-USB protocols, ignore it unless * this kernel has enabled the necessary host side driver. * But: Don't ignore it if it's the only config. */ if (i == 0 && num_configs > 1 && desc && (is_rndis(desc) || is_activesync(desc))) { #if !defined(CONFIG_USB_NET_RNDIS_HOST) && !defined(CONFIG_USB_NET_RNDIS_HOST_MODULE) continue; #else best = c; #endif } /* From the remaining configs, choose the first one whose * first interface is for a non-vendor-specific class. * Reason: Linux is more likely to have a class driver * than a vendor-specific driver. */ else if (udev->descriptor.bDeviceClass != USB_CLASS_VENDOR_SPEC && (desc && desc->bInterfaceClass != USB_CLASS_VENDOR_SPEC)) { best = c; break; } /* If all the remaining configs are vendor-specific, * choose the first one. */ else if (!best) best = c; } if (insufficient_power > 0) dev_info(&udev->dev, "rejected %d configuration%s " "due to insufficient available bus power\n", insufficient_power, plural(insufficient_power)); if (best) { i = best->desc.bConfigurationValue; dev_dbg(&udev->dev, "configuration #%d chosen from %d choice%s\n", i, num_configs, plural(num_configs)); } else { i = -1; dev_warn(&udev->dev, "no configuration chosen from %d choice%s\n", num_configs, plural(num_configs)); } return i; } EXPORT_SYMBOL_GPL(usb_choose_configuration); static int __check_for_non_generic_match(struct device_driver *drv, void *data) { struct usb_device *udev = data; struct usb_device_driver *udrv; if (!is_usb_device_driver(drv)) return 0; udrv = to_usb_device_driver(drv); if (udrv == &usb_generic_driver) return 0; return usb_driver_applicable(udev, udrv); } static bool usb_generic_driver_match(struct usb_device *udev) { if (udev->use_generic_driver) return true; /* * If any other driver wants the device, leave the device to this other * driver. */ if (bus_for_each_drv(&usb_bus_type, NULL, udev, __check_for_non_generic_match)) return false; return true; } int usb_generic_driver_probe(struct usb_device *udev) { int err, c; /* Choose and set the configuration. This registers the interfaces * with the driver core and lets interface drivers bind to them. */ if (udev->authorized == 0) dev_err(&udev->dev, "Device is not authorized for usage\n"); else { c = usb_choose_configuration(udev); if (c >= 0) { err = usb_set_configuration(udev, c); if (err && err != -ENODEV) { dev_err(&udev->dev, "can't set config #%d, error %d\n", c, err); /* This need not be fatal. The user can try to * set other configurations. */ } } } /* USB device state == configured ... usable */ usb_notify_add_device(udev); return 0; } void usb_generic_driver_disconnect(struct usb_device *udev) { usb_notify_remove_device(udev); /* if this is only an unbind, not a physical disconnect, then * unconfigure the device */ if (udev->actconfig) usb_set_configuration(udev, -1); } #ifdef CONFIG_PM int usb_generic_driver_suspend(struct usb_device *udev, pm_message_t msg) { int rc; /* Normal USB devices suspend through their upstream port. * Root hubs don't have upstream ports to suspend, * so we have to shut down their downstream HC-to-USB * interfaces manually by doing a bus (or "global") suspend. */ if (!udev->parent) rc = hcd_bus_suspend(udev, msg); /* * Non-root USB2 devices don't need to do anything for FREEZE * or PRETHAW. USB3 devices don't support global suspend and * needs to be selectively suspended. */ else if ((msg.event == PM_EVENT_FREEZE || msg.event == PM_EVENT_PRETHAW) && (udev->speed < USB_SPEED_SUPER)) rc = 0; else rc = usb_port_suspend(udev, msg); if (rc == 0) usbfs_notify_suspend(udev); return rc; } int usb_generic_driver_resume(struct usb_device *udev, pm_message_t msg) { int rc; /* Normal USB devices resume/reset through their upstream port. * Root hubs don't have upstream ports to resume or reset, * so we have to start up their downstream HC-to-USB * interfaces manually by doing a bus (or "global") resume. */ if (!udev->parent) rc = hcd_bus_resume(udev, msg); else rc = usb_port_resume(udev, msg); if (rc == 0) usbfs_notify_resume(udev); return rc; } #endif /* CONFIG_PM */ struct usb_device_driver usb_generic_driver = { .name = "usb", .match = usb_generic_driver_match, .probe = usb_generic_driver_probe, .disconnect = usb_generic_driver_disconnect, #ifdef CONFIG_PM .suspend = usb_generic_driver_suspend, .resume = usb_generic_driver_resume, #endif .supports_autosuspend = 1, };
linux-master
drivers/usb/core/generic.c
// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright David Brownell 2000-2002 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <asm/io.h> #include <asm/irq.h> #ifdef CONFIG_PPC_PMAC #include <asm/machdep.h> #include <asm/pmac_feature.h> #endif #include "usb.h" /* PCI-based HCs are common, but plenty of non-PCI HCs are used too */ /* * Coordinate handoffs between EHCI and companion controllers * during EHCI probing and system resume. */ static DECLARE_RWSEM(companions_rwsem); #define CL_UHCI PCI_CLASS_SERIAL_USB_UHCI #define CL_OHCI PCI_CLASS_SERIAL_USB_OHCI #define CL_EHCI PCI_CLASS_SERIAL_USB_EHCI static inline int is_ohci_or_uhci(struct pci_dev *pdev) { return pdev->class == CL_OHCI || pdev->class == CL_UHCI; } typedef void (*companion_fn)(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd); /* Iterate over PCI devices in the same slot as pdev and call fn for each */ static void for_each_companion(struct pci_dev *pdev, struct usb_hcd *hcd, companion_fn fn) { struct pci_dev *companion; struct usb_hcd *companion_hcd; unsigned int slot = PCI_SLOT(pdev->devfn); /* * Iterate through other PCI functions in the same slot. * If the function's drvdata isn't set then it isn't bound to * a USB host controller driver, so skip it. */ companion = NULL; for_each_pci_dev(companion) { if (companion->bus != pdev->bus || PCI_SLOT(companion->devfn) != slot) continue; /* * Companion device should be either UHCI,OHCI or EHCI host * controller, otherwise skip. */ if (companion->class != CL_UHCI && companion->class != CL_OHCI && companion->class != CL_EHCI) continue; companion_hcd = pci_get_drvdata(companion); if (!companion_hcd || !companion_hcd->self.root_hub) continue; fn(pdev, hcd, companion, companion_hcd); } } /* * We're about to add an EHCI controller, which will unceremoniously grab * all the port connections away from its companions. To prevent annoying * error messages, lock the companion's root hub and gracefully unconfigure * it beforehand. Leave it locked until the EHCI controller is all set. */ static void ehci_pre_add(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd) { struct usb_device *udev; if (is_ohci_or_uhci(companion)) { udev = companion_hcd->self.root_hub; usb_lock_device(udev); usb_set_configuration(udev, 0); } } /* * Adding the EHCI controller has either succeeded or failed. Set the * companion pointer accordingly, and in either case, reconfigure and * unlock the root hub. */ static void ehci_post_add(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd) { struct usb_device *udev; if (is_ohci_or_uhci(companion)) { if (dev_get_drvdata(&pdev->dev)) { /* Succeeded */ dev_dbg(&pdev->dev, "HS companion for %s\n", dev_name(&companion->dev)); companion_hcd->self.hs_companion = &hcd->self; } udev = companion_hcd->self.root_hub; usb_set_configuration(udev, 1); usb_unlock_device(udev); } } /* * We just added a non-EHCI controller. Find the EHCI controller to * which it is a companion, and store a pointer to the bus structure. */ static void non_ehci_add(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd) { if (is_ohci_or_uhci(pdev) && companion->class == CL_EHCI) { dev_dbg(&pdev->dev, "FS/LS companion for %s\n", dev_name(&companion->dev)); hcd->self.hs_companion = &companion_hcd->self; } } /* We are removing an EHCI controller. Clear the companions' pointers. */ static void ehci_remove(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd) { if (is_ohci_or_uhci(companion)) companion_hcd->self.hs_companion = NULL; } #ifdef CONFIG_PM /* An EHCI controller must wait for its companions before resuming. */ static void ehci_wait_for_companions(struct pci_dev *pdev, struct usb_hcd *hcd, struct pci_dev *companion, struct usb_hcd *companion_hcd) { if (is_ohci_or_uhci(companion)) device_pm_wait_for_dev(&pdev->dev, &companion->dev); } #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ /* configure so an HC device and id are always provided */ /* always called with process context; sleeping is OK */ /** * usb_hcd_pci_probe - initialize PCI-based HCDs * @dev: USB Host Controller being probed * @driver: USB HC driver handle * * Context: task context, might sleep * * Allocates basic PCI resources for this USB host controller, and * then invokes the start() method for the HCD associated with it * through the hotplug entry's driver_data. * * Store this function in the HCD's struct pci_driver as probe(). * * Return: 0 if successful. */ int usb_hcd_pci_probe(struct pci_dev *dev, const struct hc_driver *driver) { struct usb_hcd *hcd; int retval; int hcd_irq = 0; if (usb_disabled()) return -ENODEV; if (!driver) return -EINVAL; if (pci_enable_device(dev) < 0) return -ENODEV; /* * The xHCI driver has its own irq management * make sure irq setup is not touched for xhci in generic hcd code */ if ((driver->flags & HCD_MASK) < HCD_USB3) { retval = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY | PCI_IRQ_MSI); if (retval < 0) { dev_err(&dev->dev, "Found HC with no IRQ. Check BIOS/PCI %s setup!\n", pci_name(dev)); retval = -ENODEV; goto disable_pci; } hcd_irq = pci_irq_vector(dev, 0); } hcd = usb_create_hcd(driver, &dev->dev, pci_name(dev)); if (!hcd) { retval = -ENOMEM; goto free_irq_vectors; } hcd->amd_resume_bug = (usb_hcd_amd_remote_wakeup_quirk(dev) && driver->flags & (HCD_USB11 | HCD_USB3)) ? 1 : 0; if (driver->flags & HCD_MEMORY) { /* EHCI, OHCI */ hcd->rsrc_start = pci_resource_start(dev, 0); hcd->rsrc_len = pci_resource_len(dev, 0); if (!devm_request_mem_region(&dev->dev, hcd->rsrc_start, hcd->rsrc_len, driver->description)) { dev_dbg(&dev->dev, "controller already in use\n"); retval = -EBUSY; goto put_hcd; } hcd->regs = devm_ioremap(&dev->dev, hcd->rsrc_start, hcd->rsrc_len); if (hcd->regs == NULL) { dev_dbg(&dev->dev, "error mapping memory\n"); retval = -EFAULT; goto put_hcd; } } else { /* UHCI */ int region; for (region = 0; region < PCI_STD_NUM_BARS; region++) { if (!(pci_resource_flags(dev, region) & IORESOURCE_IO)) continue; hcd->rsrc_start = pci_resource_start(dev, region); hcd->rsrc_len = pci_resource_len(dev, region); if (devm_request_region(&dev->dev, hcd->rsrc_start, hcd->rsrc_len, driver->description)) break; } if (region == PCI_STD_NUM_BARS) { dev_dbg(&dev->dev, "no i/o regions available\n"); retval = -EBUSY; goto put_hcd; } } pci_set_master(dev); /* Note: dev_set_drvdata must be called while holding the rwsem */ if (dev->class == CL_EHCI) { down_write(&companions_rwsem); dev_set_drvdata(&dev->dev, hcd); for_each_companion(dev, hcd, ehci_pre_add); retval = usb_add_hcd(hcd, hcd_irq, IRQF_SHARED); if (retval != 0) dev_set_drvdata(&dev->dev, NULL); for_each_companion(dev, hcd, ehci_post_add); up_write(&companions_rwsem); } else { down_read(&companions_rwsem); dev_set_drvdata(&dev->dev, hcd); retval = usb_add_hcd(hcd, hcd_irq, IRQF_SHARED); if (retval != 0) dev_set_drvdata(&dev->dev, NULL); else for_each_companion(dev, hcd, non_ehci_add); up_read(&companions_rwsem); } if (retval != 0) goto put_hcd; device_wakeup_enable(hcd->self.controller); if (pci_dev_run_wake(dev)) pm_runtime_put_noidle(&dev->dev); return retval; put_hcd: usb_put_hcd(hcd); free_irq_vectors: if ((driver->flags & HCD_MASK) < HCD_USB3) pci_free_irq_vectors(dev); disable_pci: pci_disable_device(dev); dev_err(&dev->dev, "init %s fail, %d\n", pci_name(dev), retval); return retval; } EXPORT_SYMBOL_GPL(usb_hcd_pci_probe); /* may be called without controller electrically present */ /* may be called with controller, bus, and devices active */ /** * usb_hcd_pci_remove - shutdown processing for PCI-based HCDs * @dev: USB Host Controller being removed * * Context: task context, might sleep * * Reverses the effect of usb_hcd_pci_probe(), first invoking * the HCD's stop() method. It is always called from a thread * context, normally "rmmod", "apmd", or something similar. * * Store this function in the HCD's struct pci_driver as remove(). */ void usb_hcd_pci_remove(struct pci_dev *dev) { struct usb_hcd *hcd; int hcd_driver_flags; hcd = pci_get_drvdata(dev); if (!hcd) return; hcd_driver_flags = hcd->driver->flags; if (pci_dev_run_wake(dev)) pm_runtime_get_noresume(&dev->dev); /* Fake an interrupt request in order to give the driver a chance * to test whether the controller hardware has been removed (e.g., * cardbus physical eject). */ local_irq_disable(); usb_hcd_irq(0, hcd); local_irq_enable(); /* Note: dev_set_drvdata must be called while holding the rwsem */ if (dev->class == CL_EHCI) { down_write(&companions_rwsem); for_each_companion(dev, hcd, ehci_remove); usb_remove_hcd(hcd); dev_set_drvdata(&dev->dev, NULL); up_write(&companions_rwsem); } else { /* Not EHCI; just clear the companion pointer */ down_read(&companions_rwsem); hcd->self.hs_companion = NULL; usb_remove_hcd(hcd); dev_set_drvdata(&dev->dev, NULL); up_read(&companions_rwsem); } usb_put_hcd(hcd); if ((hcd_driver_flags & HCD_MASK) < HCD_USB3) pci_free_irq_vectors(dev); pci_disable_device(dev); } EXPORT_SYMBOL_GPL(usb_hcd_pci_remove); /** * usb_hcd_pci_shutdown - shutdown host controller * @dev: USB Host Controller being shutdown */ void usb_hcd_pci_shutdown(struct pci_dev *dev) { struct usb_hcd *hcd; hcd = pci_get_drvdata(dev); if (!hcd) return; if (test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags) && hcd->driver->shutdown) { hcd->driver->shutdown(hcd); if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) free_irq(hcd->irq, hcd); pci_disable_device(dev); } } EXPORT_SYMBOL_GPL(usb_hcd_pci_shutdown); #ifdef CONFIG_PM #ifdef CONFIG_PPC_PMAC static void powermac_set_asic(struct pci_dev *pci_dev, int enable) { /* Enanble or disable ASIC clocks for USB */ if (machine_is(powermac)) { struct device_node *of_node; of_node = pci_device_to_OF_node(pci_dev); if (of_node) pmac_call_feature(PMAC_FTR_USB_ENABLE, of_node, 0, enable); } } #else static inline void powermac_set_asic(struct pci_dev *pci_dev, int enable) {} #endif /* CONFIG_PPC_PMAC */ static int check_root_hub_suspended(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); if (HCD_RH_RUNNING(hcd)) { dev_warn(dev, "Root hub is not suspended\n"); return -EBUSY; } if (hcd->shared_hcd) { hcd = hcd->shared_hcd; if (HCD_RH_RUNNING(hcd)) { dev_warn(dev, "Secondary root hub is not suspended\n"); return -EBUSY; } } return 0; } static int suspend_common(struct device *dev, pm_message_t msg) { struct pci_dev *pci_dev = to_pci_dev(dev); struct usb_hcd *hcd = pci_get_drvdata(pci_dev); bool do_wakeup; int retval; do_wakeup = PMSG_IS_AUTO(msg) ? true : device_may_wakeup(dev); /* Root hub suspend should have stopped all downstream traffic, * and all bus master traffic. And done so for both the interface * and the stub usb_device (which we check here). But maybe it * didn't; writing sysfs power/state files ignores such rules... */ retval = check_root_hub_suspended(dev); if (retval) return retval; if (hcd->driver->pci_suspend && !HCD_DEAD(hcd)) { /* Optimization: Don't suspend if a root-hub wakeup is * pending and it would cause the HCD to wake up anyway. */ if (do_wakeup && HCD_WAKEUP_PENDING(hcd)) return -EBUSY; if (do_wakeup && hcd->shared_hcd && HCD_WAKEUP_PENDING(hcd->shared_hcd)) return -EBUSY; retval = hcd->driver->pci_suspend(hcd, do_wakeup); suspend_report_result(dev, hcd->driver->pci_suspend, retval); /* Check again in case wakeup raced with pci_suspend */ if ((retval == 0 && do_wakeup && HCD_WAKEUP_PENDING(hcd)) || (retval == 0 && do_wakeup && hcd->shared_hcd && HCD_WAKEUP_PENDING(hcd->shared_hcd))) { if (hcd->driver->pci_resume) hcd->driver->pci_resume(hcd, msg); retval = -EBUSY; } if (retval) return retval; } /* If MSI-X is enabled, the driver will have synchronized all vectors * in pci_suspend(). If MSI or legacy PCI is enabled, that will be * synchronized here. */ if (!hcd->msix_enabled) synchronize_irq(pci_irq_vector(pci_dev, 0)); /* Downstream ports from this root hub should already be quiesced, so * there will be no DMA activity. Now we can shut down the upstream * link (except maybe for PME# resume signaling). We'll enter a * low power state during suspend_noirq, if the hardware allows. */ pci_disable_device(pci_dev); return retval; } static int resume_common(struct device *dev, pm_message_t msg) { struct pci_dev *pci_dev = to_pci_dev(dev); struct usb_hcd *hcd = pci_get_drvdata(pci_dev); int retval; if (HCD_RH_RUNNING(hcd) || (hcd->shared_hcd && HCD_RH_RUNNING(hcd->shared_hcd))) { dev_dbg(dev, "can't resume, not suspended!\n"); return 0; } retval = pci_enable_device(pci_dev); if (retval < 0) { dev_err(dev, "can't re-enable after resume, %d!\n", retval); return retval; } pci_set_master(pci_dev); if (hcd->driver->pci_resume && !HCD_DEAD(hcd)) { /* * Only EHCI controllers have to wait for their companions. * No locking is needed because PCI controller drivers do not * get unbound during system resume. */ if (pci_dev->class == CL_EHCI && msg.event != PM_EVENT_AUTO_RESUME) for_each_companion(pci_dev, hcd, ehci_wait_for_companions); retval = hcd->driver->pci_resume(hcd, msg); if (retval) { dev_err(dev, "PCI post-resume error %d!\n", retval); usb_hc_died(hcd); } } return retval; } #ifdef CONFIG_PM_SLEEP static int hcd_pci_suspend(struct device *dev) { return suspend_common(dev, PMSG_SUSPEND); } static int hcd_pci_suspend_noirq(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct usb_hcd *hcd = pci_get_drvdata(pci_dev); int retval; retval = check_root_hub_suspended(dev); if (retval) return retval; pci_save_state(pci_dev); /* If the root hub is dead rather than suspended, disallow remote * wakeup. usb_hc_died() should ensure that both hosts are marked as * dying, so we only need to check the primary roothub. */ if (HCD_DEAD(hcd)) device_set_wakeup_enable(dev, 0); dev_dbg(dev, "wakeup: %d\n", device_may_wakeup(dev)); /* Possibly enable remote wakeup, * choose the appropriate low-power state, and go to that state. */ retval = pci_prepare_to_sleep(pci_dev); if (retval == -EIO) { /* Low-power not supported */ dev_dbg(dev, "--> PCI D0 legacy\n"); retval = 0; } else if (retval == 0) { dev_dbg(dev, "--> PCI %s\n", pci_power_name(pci_dev->current_state)); } else { suspend_report_result(dev, pci_prepare_to_sleep, retval); return retval; } powermac_set_asic(pci_dev, 0); return retval; } static int hcd_pci_poweroff_late(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct usb_hcd *hcd = pci_get_drvdata(pci_dev); if (hcd->driver->pci_poweroff_late && !HCD_DEAD(hcd)) return hcd->driver->pci_poweroff_late(hcd, device_may_wakeup(dev)); return 0; } static int hcd_pci_resume_noirq(struct device *dev) { powermac_set_asic(to_pci_dev(dev), 1); return 0; } static int hcd_pci_resume(struct device *dev) { return resume_common(dev, PMSG_RESUME); } static int hcd_pci_restore(struct device *dev) { return resume_common(dev, PMSG_RESTORE); } #else #define hcd_pci_suspend NULL #define hcd_pci_suspend_noirq NULL #define hcd_pci_poweroff_late NULL #define hcd_pci_resume_noirq NULL #define hcd_pci_resume NULL #define hcd_pci_restore NULL #endif /* CONFIG_PM_SLEEP */ static int hcd_pci_runtime_suspend(struct device *dev) { int retval; retval = suspend_common(dev, PMSG_AUTO_SUSPEND); if (retval == 0) powermac_set_asic(to_pci_dev(dev), 0); dev_dbg(dev, "hcd_pci_runtime_suspend: %d\n", retval); return retval; } static int hcd_pci_runtime_resume(struct device *dev) { int retval; powermac_set_asic(to_pci_dev(dev), 1); retval = resume_common(dev, PMSG_AUTO_RESUME); dev_dbg(dev, "hcd_pci_runtime_resume: %d\n", retval); return retval; } const struct dev_pm_ops usb_hcd_pci_pm_ops = { .suspend = hcd_pci_suspend, .suspend_noirq = hcd_pci_suspend_noirq, .resume_noirq = hcd_pci_resume_noirq, .resume = hcd_pci_resume, .freeze = hcd_pci_suspend, .freeze_noirq = check_root_hub_suspended, .thaw_noirq = NULL, .thaw = hcd_pci_resume, .poweroff = hcd_pci_suspend, .poweroff_late = hcd_pci_poweroff_late, .poweroff_noirq = hcd_pci_suspend_noirq, .restore_noirq = hcd_pci_resume_noirq, .restore = hcd_pci_restore, .runtime_suspend = hcd_pci_runtime_suspend, .runtime_resume = hcd_pci_runtime_resume, }; EXPORT_SYMBOL_GPL(usb_hcd_pci_pm_ops); #endif /* CONFIG_PM */
linux-master
drivers/usb/core/hcd-pci.c
// SPDX-License-Identifier: GPL-2.0 /* * Released under the GPLv2 only. */ #include <linux/usb.h> #include <linux/usb/ch9.h> #include <linux/usb/hcd.h> #include <linux/usb/quirks.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/device.h> #include <asm/byteorder.h> #include "usb.h" #define USB_MAXALTSETTING 128 /* Hard limit */ #define USB_MAXCONFIG 8 /* Arbitrary limit */ static inline const char *plural(int n) { return (n == 1 ? "" : "s"); } static int find_next_descriptor(unsigned char *buffer, int size, int dt1, int dt2, int *num_skipped) { struct usb_descriptor_header *h; int n = 0; unsigned char *buffer0 = buffer; /* Find the next descriptor of type dt1 or dt2 */ while (size > 0) { h = (struct usb_descriptor_header *) buffer; if (h->bDescriptorType == dt1 || h->bDescriptorType == dt2) break; buffer += h->bLength; size -= h->bLength; ++n; } /* Store the number of descriptors skipped and return the * number of bytes skipped */ if (num_skipped) *num_skipped = n; return buffer - buffer0; } static void usb_parse_ssp_isoc_endpoint_companion(struct device *ddev, int cfgno, int inum, int asnum, struct usb_host_endpoint *ep, unsigned char *buffer, int size) { struct usb_ssp_isoc_ep_comp_descriptor *desc; /* * The SuperSpeedPlus Isoc endpoint companion descriptor immediately * follows the SuperSpeed Endpoint Companion descriptor */ desc = (struct usb_ssp_isoc_ep_comp_descriptor *) buffer; if (desc->bDescriptorType != USB_DT_SSP_ISOC_ENDPOINT_COMP || size < USB_DT_SSP_ISOC_EP_COMP_SIZE) { dev_notice(ddev, "Invalid SuperSpeedPlus isoc endpoint companion" "for config %d interface %d altsetting %d ep %d.\n", cfgno, inum, asnum, ep->desc.bEndpointAddress); return; } memcpy(&ep->ssp_isoc_ep_comp, desc, USB_DT_SSP_ISOC_EP_COMP_SIZE); } static void usb_parse_ss_endpoint_companion(struct device *ddev, int cfgno, int inum, int asnum, struct usb_host_endpoint *ep, unsigned char *buffer, int size) { struct usb_ss_ep_comp_descriptor *desc; int max_tx; /* The SuperSpeed endpoint companion descriptor is supposed to * be the first thing immediately following the endpoint descriptor. */ desc = (struct usb_ss_ep_comp_descriptor *) buffer; if (desc->bDescriptorType != USB_DT_SS_ENDPOINT_COMP || size < USB_DT_SS_EP_COMP_SIZE) { dev_notice(ddev, "No SuperSpeed endpoint companion for config %d " " interface %d altsetting %d ep %d: " "using minimum values\n", cfgno, inum, asnum, ep->desc.bEndpointAddress); /* Fill in some default values. * Leave bmAttributes as zero, which will mean no streams for * bulk, and isoc won't support multiple bursts of packets. * With bursts of only one packet, and a Mult of 1, the max * amount of data moved per endpoint service interval is one * packet. */ ep->ss_ep_comp.bLength = USB_DT_SS_EP_COMP_SIZE; ep->ss_ep_comp.bDescriptorType = USB_DT_SS_ENDPOINT_COMP; if (usb_endpoint_xfer_isoc(&ep->desc) || usb_endpoint_xfer_int(&ep->desc)) ep->ss_ep_comp.wBytesPerInterval = ep->desc.wMaxPacketSize; return; } buffer += desc->bLength; size -= desc->bLength; memcpy(&ep->ss_ep_comp, desc, USB_DT_SS_EP_COMP_SIZE); /* Check the various values */ if (usb_endpoint_xfer_control(&ep->desc) && desc->bMaxBurst != 0) { dev_notice(ddev, "Control endpoint with bMaxBurst = %d in " "config %d interface %d altsetting %d ep %d: " "setting to zero\n", desc->bMaxBurst, cfgno, inum, asnum, ep->desc.bEndpointAddress); ep->ss_ep_comp.bMaxBurst = 0; } else if (desc->bMaxBurst > 15) { dev_notice(ddev, "Endpoint with bMaxBurst = %d in " "config %d interface %d altsetting %d ep %d: " "setting to 15\n", desc->bMaxBurst, cfgno, inum, asnum, ep->desc.bEndpointAddress); ep->ss_ep_comp.bMaxBurst = 15; } if ((usb_endpoint_xfer_control(&ep->desc) || usb_endpoint_xfer_int(&ep->desc)) && desc->bmAttributes != 0) { dev_notice(ddev, "%s endpoint with bmAttributes = %d in " "config %d interface %d altsetting %d ep %d: " "setting to zero\n", usb_endpoint_xfer_control(&ep->desc) ? "Control" : "Bulk", desc->bmAttributes, cfgno, inum, asnum, ep->desc.bEndpointAddress); ep->ss_ep_comp.bmAttributes = 0; } else if (usb_endpoint_xfer_bulk(&ep->desc) && desc->bmAttributes > 16) { dev_notice(ddev, "Bulk endpoint with more than 65536 streams in " "config %d interface %d altsetting %d ep %d: " "setting to max\n", cfgno, inum, asnum, ep->desc.bEndpointAddress); ep->ss_ep_comp.bmAttributes = 16; } else if (usb_endpoint_xfer_isoc(&ep->desc) && !USB_SS_SSP_ISOC_COMP(desc->bmAttributes) && USB_SS_MULT(desc->bmAttributes) > 3) { dev_notice(ddev, "Isoc endpoint has Mult of %d in " "config %d interface %d altsetting %d ep %d: " "setting to 3\n", USB_SS_MULT(desc->bmAttributes), cfgno, inum, asnum, ep->desc.bEndpointAddress); ep->ss_ep_comp.bmAttributes = 2; } if (usb_endpoint_xfer_isoc(&ep->desc)) max_tx = (desc->bMaxBurst + 1) * (USB_SS_MULT(desc->bmAttributes)) * usb_endpoint_maxp(&ep->desc); else if (usb_endpoint_xfer_int(&ep->desc)) max_tx = usb_endpoint_maxp(&ep->desc) * (desc->bMaxBurst + 1); else max_tx = 999999; if (le16_to_cpu(desc->wBytesPerInterval) > max_tx) { dev_notice(ddev, "%s endpoint with wBytesPerInterval of %d in " "config %d interface %d altsetting %d ep %d: " "setting to %d\n", usb_endpoint_xfer_isoc(&ep->desc) ? "Isoc" : "Int", le16_to_cpu(desc->wBytesPerInterval), cfgno, inum, asnum, ep->desc.bEndpointAddress, max_tx); ep->ss_ep_comp.wBytesPerInterval = cpu_to_le16(max_tx); } /* Parse a possible SuperSpeedPlus isoc ep companion descriptor */ if (usb_endpoint_xfer_isoc(&ep->desc) && USB_SS_SSP_ISOC_COMP(desc->bmAttributes)) usb_parse_ssp_isoc_endpoint_companion(ddev, cfgno, inum, asnum, ep, buffer, size); } static const unsigned short low_speed_maxpacket_maxes[4] = { [USB_ENDPOINT_XFER_CONTROL] = 8, [USB_ENDPOINT_XFER_ISOC] = 0, [USB_ENDPOINT_XFER_BULK] = 0, [USB_ENDPOINT_XFER_INT] = 8, }; static const unsigned short full_speed_maxpacket_maxes[4] = { [USB_ENDPOINT_XFER_CONTROL] = 64, [USB_ENDPOINT_XFER_ISOC] = 1023, [USB_ENDPOINT_XFER_BULK] = 64, [USB_ENDPOINT_XFER_INT] = 64, }; static const unsigned short high_speed_maxpacket_maxes[4] = { [USB_ENDPOINT_XFER_CONTROL] = 64, [USB_ENDPOINT_XFER_ISOC] = 1024, /* Bulk should be 512, but some devices use 1024: we will warn below */ [USB_ENDPOINT_XFER_BULK] = 1024, [USB_ENDPOINT_XFER_INT] = 1024, }; static const unsigned short super_speed_maxpacket_maxes[4] = { [USB_ENDPOINT_XFER_CONTROL] = 512, [USB_ENDPOINT_XFER_ISOC] = 1024, [USB_ENDPOINT_XFER_BULK] = 1024, [USB_ENDPOINT_XFER_INT] = 1024, }; static bool endpoint_is_duplicate(struct usb_endpoint_descriptor *e1, struct usb_endpoint_descriptor *e2) { if (e1->bEndpointAddress == e2->bEndpointAddress) return true; if (usb_endpoint_xfer_control(e1) || usb_endpoint_xfer_control(e2)) { if (usb_endpoint_num(e1) == usb_endpoint_num(e2)) return true; } return false; } /* * Check for duplicate endpoint addresses in other interfaces and in the * altsetting currently being parsed. */ static bool config_endpoint_is_duplicate(struct usb_host_config *config, int inum, int asnum, struct usb_endpoint_descriptor *d) { struct usb_endpoint_descriptor *epd; struct usb_interface_cache *intfc; struct usb_host_interface *alt; int i, j, k; for (i = 0; i < config->desc.bNumInterfaces; ++i) { intfc = config->intf_cache[i]; for (j = 0; j < intfc->num_altsetting; ++j) { alt = &intfc->altsetting[j]; if (alt->desc.bInterfaceNumber == inum && alt->desc.bAlternateSetting != asnum) continue; for (k = 0; k < alt->desc.bNumEndpoints; ++k) { epd = &alt->endpoint[k].desc; if (endpoint_is_duplicate(epd, d)) return true; } } } return false; } static int usb_parse_endpoint(struct device *ddev, int cfgno, struct usb_host_config *config, int inum, int asnum, struct usb_host_interface *ifp, int num_ep, unsigned char *buffer, int size) { struct usb_device *udev = to_usb_device(ddev); unsigned char *buffer0 = buffer; struct usb_endpoint_descriptor *d; struct usb_host_endpoint *endpoint; int n, i, j, retval; unsigned int maxp; const unsigned short *maxpacket_maxes; d = (struct usb_endpoint_descriptor *) buffer; buffer += d->bLength; size -= d->bLength; if (d->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE) n = USB_DT_ENDPOINT_AUDIO_SIZE; else if (d->bLength >= USB_DT_ENDPOINT_SIZE) n = USB_DT_ENDPOINT_SIZE; else { dev_notice(ddev, "config %d interface %d altsetting %d has an " "invalid endpoint descriptor of length %d, skipping\n", cfgno, inum, asnum, d->bLength); goto skip_to_next_endpoint_or_interface_descriptor; } i = d->bEndpointAddress & ~USB_ENDPOINT_DIR_MASK; if (i >= 16 || i == 0) { dev_notice(ddev, "config %d interface %d altsetting %d has an " "invalid endpoint with address 0x%X, skipping\n", cfgno, inum, asnum, d->bEndpointAddress); goto skip_to_next_endpoint_or_interface_descriptor; } /* Only store as many endpoints as we have room for */ if (ifp->desc.bNumEndpoints >= num_ep) goto skip_to_next_endpoint_or_interface_descriptor; /* Check for duplicate endpoint addresses */ if (config_endpoint_is_duplicate(config, inum, asnum, d)) { dev_notice(ddev, "config %d interface %d altsetting %d has a duplicate endpoint with address 0x%X, skipping\n", cfgno, inum, asnum, d->bEndpointAddress); goto skip_to_next_endpoint_or_interface_descriptor; } /* Ignore some endpoints */ if (udev->quirks & USB_QUIRK_ENDPOINT_IGNORE) { if (usb_endpoint_is_ignored(udev, ifp, d)) { dev_notice(ddev, "config %d interface %d altsetting %d has an ignored endpoint with address 0x%X, skipping\n", cfgno, inum, asnum, d->bEndpointAddress); goto skip_to_next_endpoint_or_interface_descriptor; } } endpoint = &ifp->endpoint[ifp->desc.bNumEndpoints]; ++ifp->desc.bNumEndpoints; memcpy(&endpoint->desc, d, n); INIT_LIST_HEAD(&endpoint->urb_list); /* * Fix up bInterval values outside the legal range. * Use 10 or 8 ms if no proper value can be guessed. */ i = 0; /* i = min, j = max, n = default */ j = 255; if (usb_endpoint_xfer_int(d)) { i = 1; switch (udev->speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: case USB_SPEED_HIGH: /* * Many device manufacturers are using full-speed * bInterval values in high-speed interrupt endpoint * descriptors. Try to fix those and fall back to an * 8-ms default value otherwise. */ n = fls(d->bInterval*8); if (n == 0) n = 7; /* 8 ms = 2^(7-1) uframes */ j = 16; /* * Adjust bInterval for quirked devices. */ /* * This quirk fixes bIntervals reported in ms. */ if (udev->quirks & USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL) { n = clamp(fls(d->bInterval) + 3, i, j); i = j = n; } /* * This quirk fixes bIntervals reported in * linear microframes. */ if (udev->quirks & USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL) { n = clamp(fls(d->bInterval), i, j); i = j = n; } break; default: /* USB_SPEED_FULL or _LOW */ /* * For low-speed, 10 ms is the official minimum. * But some "overclocked" devices might want faster * polling so we'll allow it. */ n = 10; break; } } else if (usb_endpoint_xfer_isoc(d)) { i = 1; j = 16; switch (udev->speed) { case USB_SPEED_HIGH: n = 7; /* 8 ms = 2^(7-1) uframes */ break; default: /* USB_SPEED_FULL */ n = 4; /* 8 ms = 2^(4-1) frames */ break; } } if (d->bInterval < i || d->bInterval > j) { dev_notice(ddev, "config %d interface %d altsetting %d " "endpoint 0x%X has an invalid bInterval %d, " "changing to %d\n", cfgno, inum, asnum, d->bEndpointAddress, d->bInterval, n); endpoint->desc.bInterval = n; } /* Some buggy low-speed devices have Bulk endpoints, which is * explicitly forbidden by the USB spec. In an attempt to make * them usable, we will try treating them as Interrupt endpoints. */ if (udev->speed == USB_SPEED_LOW && usb_endpoint_xfer_bulk(d)) { dev_notice(ddev, "config %d interface %d altsetting %d " "endpoint 0x%X is Bulk; changing to Interrupt\n", cfgno, inum, asnum, d->bEndpointAddress); endpoint->desc.bmAttributes = USB_ENDPOINT_XFER_INT; endpoint->desc.bInterval = 1; if (usb_endpoint_maxp(&endpoint->desc) > 8) endpoint->desc.wMaxPacketSize = cpu_to_le16(8); } /* * Validate the wMaxPacketSize field. * Some devices have isochronous endpoints in altsetting 0; * the USB-2 spec requires such endpoints to have wMaxPacketSize = 0 * (see the end of section 5.6.3), so don't warn about them. */ maxp = le16_to_cpu(endpoint->desc.wMaxPacketSize); if (maxp == 0 && !(usb_endpoint_xfer_isoc(d) && asnum == 0)) { dev_notice(ddev, "config %d interface %d altsetting %d endpoint 0x%X has invalid wMaxPacketSize 0\n", cfgno, inum, asnum, d->bEndpointAddress); } /* Find the highest legal maxpacket size for this endpoint */ i = 0; /* additional transactions per microframe */ switch (udev->speed) { case USB_SPEED_LOW: maxpacket_maxes = low_speed_maxpacket_maxes; break; case USB_SPEED_FULL: maxpacket_maxes = full_speed_maxpacket_maxes; break; case USB_SPEED_HIGH: /* Multiple-transactions bits are allowed only for HS periodic endpoints */ if (usb_endpoint_xfer_int(d) || usb_endpoint_xfer_isoc(d)) { i = maxp & USB_EP_MAXP_MULT_MASK; maxp &= ~i; } fallthrough; default: maxpacket_maxes = high_speed_maxpacket_maxes; break; case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: maxpacket_maxes = super_speed_maxpacket_maxes; break; } j = maxpacket_maxes[usb_endpoint_type(&endpoint->desc)]; if (maxp > j) { dev_notice(ddev, "config %d interface %d altsetting %d endpoint 0x%X has invalid maxpacket %d, setting to %d\n", cfgno, inum, asnum, d->bEndpointAddress, maxp, j); maxp = j; endpoint->desc.wMaxPacketSize = cpu_to_le16(i | maxp); } /* * Some buggy high speed devices have bulk endpoints using * maxpacket sizes other than 512. High speed HCDs may not * be able to handle that particular bug, so let's warn... */ if (udev->speed == USB_SPEED_HIGH && usb_endpoint_xfer_bulk(d)) { if (maxp != 512) dev_notice(ddev, "config %d interface %d altsetting %d " "bulk endpoint 0x%X has invalid maxpacket %d\n", cfgno, inum, asnum, d->bEndpointAddress, maxp); } /* Parse a possible SuperSpeed endpoint companion descriptor */ if (udev->speed >= USB_SPEED_SUPER) usb_parse_ss_endpoint_companion(ddev, cfgno, inum, asnum, endpoint, buffer, size); /* Skip over any Class Specific or Vendor Specific descriptors; * find the next endpoint or interface descriptor */ endpoint->extra = buffer; i = find_next_descriptor(buffer, size, USB_DT_ENDPOINT, USB_DT_INTERFACE, &n); endpoint->extralen = i; retval = buffer - buffer0 + i; if (n > 0) dev_dbg(ddev, "skipped %d descriptor%s after %s\n", n, plural(n), "endpoint"); return retval; skip_to_next_endpoint_or_interface_descriptor: i = find_next_descriptor(buffer, size, USB_DT_ENDPOINT, USB_DT_INTERFACE, NULL); return buffer - buffer0 + i; } void usb_release_interface_cache(struct kref *ref) { struct usb_interface_cache *intfc = ref_to_usb_interface_cache(ref); int j; for (j = 0; j < intfc->num_altsetting; j++) { struct usb_host_interface *alt = &intfc->altsetting[j]; kfree(alt->endpoint); kfree(alt->string); } kfree(intfc); } static int usb_parse_interface(struct device *ddev, int cfgno, struct usb_host_config *config, unsigned char *buffer, int size, u8 inums[], u8 nalts[]) { unsigned char *buffer0 = buffer; struct usb_interface_descriptor *d; int inum, asnum; struct usb_interface_cache *intfc; struct usb_host_interface *alt; int i, n; int len, retval; int num_ep, num_ep_orig; d = (struct usb_interface_descriptor *) buffer; buffer += d->bLength; size -= d->bLength; if (d->bLength < USB_DT_INTERFACE_SIZE) goto skip_to_next_interface_descriptor; /* Which interface entry is this? */ intfc = NULL; inum = d->bInterfaceNumber; for (i = 0; i < config->desc.bNumInterfaces; ++i) { if (inums[i] == inum) { intfc = config->intf_cache[i]; break; } } if (!intfc || intfc->num_altsetting >= nalts[i]) goto skip_to_next_interface_descriptor; /* Check for duplicate altsetting entries */ asnum = d->bAlternateSetting; for ((i = 0, alt = &intfc->altsetting[0]); i < intfc->num_altsetting; (++i, ++alt)) { if (alt->desc.bAlternateSetting == asnum) { dev_notice(ddev, "Duplicate descriptor for config %d " "interface %d altsetting %d, skipping\n", cfgno, inum, asnum); goto skip_to_next_interface_descriptor; } } ++intfc->num_altsetting; memcpy(&alt->desc, d, USB_DT_INTERFACE_SIZE); /* Skip over any Class Specific or Vendor Specific descriptors; * find the first endpoint or interface descriptor */ alt->extra = buffer; i = find_next_descriptor(buffer, size, USB_DT_ENDPOINT, USB_DT_INTERFACE, &n); alt->extralen = i; if (n > 0) dev_dbg(ddev, "skipped %d descriptor%s after %s\n", n, plural(n), "interface"); buffer += i; size -= i; /* Allocate space for the right(?) number of endpoints */ num_ep = num_ep_orig = alt->desc.bNumEndpoints; alt->desc.bNumEndpoints = 0; /* Use as a counter */ if (num_ep > USB_MAXENDPOINTS) { dev_notice(ddev, "too many endpoints for config %d interface %d " "altsetting %d: %d, using maximum allowed: %d\n", cfgno, inum, asnum, num_ep, USB_MAXENDPOINTS); num_ep = USB_MAXENDPOINTS; } if (num_ep > 0) { /* Can't allocate 0 bytes */ len = sizeof(struct usb_host_endpoint) * num_ep; alt->endpoint = kzalloc(len, GFP_KERNEL); if (!alt->endpoint) return -ENOMEM; } /* Parse all the endpoint descriptors */ n = 0; while (size > 0) { if (((struct usb_descriptor_header *) buffer)->bDescriptorType == USB_DT_INTERFACE) break; retval = usb_parse_endpoint(ddev, cfgno, config, inum, asnum, alt, num_ep, buffer, size); if (retval < 0) return retval; ++n; buffer += retval; size -= retval; } if (n != num_ep_orig) dev_notice(ddev, "config %d interface %d altsetting %d has %d " "endpoint descriptor%s, different from the interface " "descriptor's value: %d\n", cfgno, inum, asnum, n, plural(n), num_ep_orig); return buffer - buffer0; skip_to_next_interface_descriptor: i = find_next_descriptor(buffer, size, USB_DT_INTERFACE, USB_DT_INTERFACE, NULL); return buffer - buffer0 + i; } static int usb_parse_configuration(struct usb_device *dev, int cfgidx, struct usb_host_config *config, unsigned char *buffer, int size) { struct device *ddev = &dev->dev; unsigned char *buffer0 = buffer; int cfgno; int nintf, nintf_orig; int i, j, n; struct usb_interface_cache *intfc; unsigned char *buffer2; int size2; struct usb_descriptor_header *header; int retval; u8 inums[USB_MAXINTERFACES], nalts[USB_MAXINTERFACES]; unsigned iad_num = 0; memcpy(&config->desc, buffer, USB_DT_CONFIG_SIZE); nintf = nintf_orig = config->desc.bNumInterfaces; config->desc.bNumInterfaces = 0; // Adjusted later if (config->desc.bDescriptorType != USB_DT_CONFIG || config->desc.bLength < USB_DT_CONFIG_SIZE || config->desc.bLength > size) { dev_notice(ddev, "invalid descriptor for config index %d: " "type = 0x%X, length = %d\n", cfgidx, config->desc.bDescriptorType, config->desc.bLength); return -EINVAL; } cfgno = config->desc.bConfigurationValue; buffer += config->desc.bLength; size -= config->desc.bLength; if (nintf > USB_MAXINTERFACES) { dev_notice(ddev, "config %d has too many interfaces: %d, " "using maximum allowed: %d\n", cfgno, nintf, USB_MAXINTERFACES); nintf = USB_MAXINTERFACES; } /* Go through the descriptors, checking their length and counting the * number of altsettings for each interface */ n = 0; for ((buffer2 = buffer, size2 = size); size2 > 0; (buffer2 += header->bLength, size2 -= header->bLength)) { if (size2 < sizeof(struct usb_descriptor_header)) { dev_notice(ddev, "config %d descriptor has %d excess " "byte%s, ignoring\n", cfgno, size2, plural(size2)); break; } header = (struct usb_descriptor_header *) buffer2; if ((header->bLength > size2) || (header->bLength < 2)) { dev_notice(ddev, "config %d has an invalid descriptor " "of length %d, skipping remainder of the config\n", cfgno, header->bLength); break; } if (header->bDescriptorType == USB_DT_INTERFACE) { struct usb_interface_descriptor *d; int inum; d = (struct usb_interface_descriptor *) header; if (d->bLength < USB_DT_INTERFACE_SIZE) { dev_notice(ddev, "config %d has an invalid " "interface descriptor of length %d, " "skipping\n", cfgno, d->bLength); continue; } inum = d->bInterfaceNumber; if ((dev->quirks & USB_QUIRK_HONOR_BNUMINTERFACES) && n >= nintf_orig) { dev_notice(ddev, "config %d has more interface " "descriptors, than it declares in " "bNumInterfaces, ignoring interface " "number: %d\n", cfgno, inum); continue; } if (inum >= nintf_orig) dev_notice(ddev, "config %d has an invalid " "interface number: %d but max is %d\n", cfgno, inum, nintf_orig - 1); /* Have we already encountered this interface? * Count its altsettings */ for (i = 0; i < n; ++i) { if (inums[i] == inum) break; } if (i < n) { if (nalts[i] < 255) ++nalts[i]; } else if (n < USB_MAXINTERFACES) { inums[n] = inum; nalts[n] = 1; ++n; } } else if (header->bDescriptorType == USB_DT_INTERFACE_ASSOCIATION) { struct usb_interface_assoc_descriptor *d; d = (struct usb_interface_assoc_descriptor *)header; if (d->bLength < USB_DT_INTERFACE_ASSOCIATION_SIZE) { dev_notice(ddev, "config %d has an invalid interface association descriptor of length %d, skipping\n", cfgno, d->bLength); continue; } if (iad_num == USB_MAXIADS) { dev_notice(ddev, "found more Interface " "Association Descriptors " "than allocated for in " "configuration %d\n", cfgno); } else { config->intf_assoc[iad_num] = d; iad_num++; } } else if (header->bDescriptorType == USB_DT_DEVICE || header->bDescriptorType == USB_DT_CONFIG) dev_notice(ddev, "config %d contains an unexpected " "descriptor of type 0x%X, skipping\n", cfgno, header->bDescriptorType); } /* for ((buffer2 = buffer, size2 = size); ...) */ size = buffer2 - buffer; config->desc.wTotalLength = cpu_to_le16(buffer2 - buffer0); if (n != nintf) dev_notice(ddev, "config %d has %d interface%s, different from " "the descriptor's value: %d\n", cfgno, n, plural(n), nintf_orig); else if (n == 0) dev_notice(ddev, "config %d has no interfaces?\n", cfgno); config->desc.bNumInterfaces = nintf = n; /* Check for missing interface numbers */ for (i = 0; i < nintf; ++i) { for (j = 0; j < nintf; ++j) { if (inums[j] == i) break; } if (j >= nintf) dev_notice(ddev, "config %d has no interface number " "%d\n", cfgno, i); } /* Allocate the usb_interface_caches and altsetting arrays */ for (i = 0; i < nintf; ++i) { j = nalts[i]; if (j > USB_MAXALTSETTING) { dev_notice(ddev, "too many alternate settings for " "config %d interface %d: %d, " "using maximum allowed: %d\n", cfgno, inums[i], j, USB_MAXALTSETTING); nalts[i] = j = USB_MAXALTSETTING; } intfc = kzalloc(struct_size(intfc, altsetting, j), GFP_KERNEL); config->intf_cache[i] = intfc; if (!intfc) return -ENOMEM; kref_init(&intfc->ref); } /* FIXME: parse the BOS descriptor */ /* Skip over any Class Specific or Vendor Specific descriptors; * find the first interface descriptor */ config->extra = buffer; i = find_next_descriptor(buffer, size, USB_DT_INTERFACE, USB_DT_INTERFACE, &n); config->extralen = i; if (n > 0) dev_dbg(ddev, "skipped %d descriptor%s after %s\n", n, plural(n), "configuration"); buffer += i; size -= i; /* Parse all the interface/altsetting descriptors */ while (size > 0) { retval = usb_parse_interface(ddev, cfgno, config, buffer, size, inums, nalts); if (retval < 0) return retval; buffer += retval; size -= retval; } /* Check for missing altsettings */ for (i = 0; i < nintf; ++i) { intfc = config->intf_cache[i]; for (j = 0; j < intfc->num_altsetting; ++j) { for (n = 0; n < intfc->num_altsetting; ++n) { if (intfc->altsetting[n].desc. bAlternateSetting == j) break; } if (n >= intfc->num_altsetting) dev_notice(ddev, "config %d interface %d has no " "altsetting %d\n", cfgno, inums[i], j); } } return 0; } /* hub-only!! ... and only exported for reset/reinit path. * otherwise used internally on disconnect/destroy path */ void usb_destroy_configuration(struct usb_device *dev) { int c, i; if (!dev->config) return; if (dev->rawdescriptors) { for (i = 0; i < dev->descriptor.bNumConfigurations; i++) kfree(dev->rawdescriptors[i]); kfree(dev->rawdescriptors); dev->rawdescriptors = NULL; } for (c = 0; c < dev->descriptor.bNumConfigurations; c++) { struct usb_host_config *cf = &dev->config[c]; kfree(cf->string); for (i = 0; i < cf->desc.bNumInterfaces; i++) { if (cf->intf_cache[i]) kref_put(&cf->intf_cache[i]->ref, usb_release_interface_cache); } } kfree(dev->config); dev->config = NULL; } /* * Get the USB config descriptors, cache and parse'em * * hub-only!! ... and only in reset path, or usb_new_device() * (used by real hubs and virtual root hubs) */ int usb_get_configuration(struct usb_device *dev) { struct device *ddev = &dev->dev; int ncfg = dev->descriptor.bNumConfigurations; unsigned int cfgno, length; unsigned char *bigbuffer; struct usb_config_descriptor *desc; int result; if (ncfg > USB_MAXCONFIG) { dev_notice(ddev, "too many configurations: %d, " "using maximum allowed: %d\n", ncfg, USB_MAXCONFIG); dev->descriptor.bNumConfigurations = ncfg = USB_MAXCONFIG; } if (ncfg < 1) { dev_err(ddev, "no configurations\n"); return -EINVAL; } length = ncfg * sizeof(struct usb_host_config); dev->config = kzalloc(length, GFP_KERNEL); if (!dev->config) return -ENOMEM; length = ncfg * sizeof(char *); dev->rawdescriptors = kzalloc(length, GFP_KERNEL); if (!dev->rawdescriptors) return -ENOMEM; desc = kmalloc(USB_DT_CONFIG_SIZE, GFP_KERNEL); if (!desc) return -ENOMEM; for (cfgno = 0; cfgno < ncfg; cfgno++) { /* We grab just the first descriptor so we know how long * the whole configuration is */ result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, desc, USB_DT_CONFIG_SIZE); if (result < 0) { dev_err(ddev, "unable to read config index %d " "descriptor/%s: %d\n", cfgno, "start", result); if (result != -EPIPE) goto err; dev_notice(ddev, "chopping to %d config(s)\n", cfgno); dev->descriptor.bNumConfigurations = cfgno; break; } else if (result < 4) { dev_err(ddev, "config index %d descriptor too short " "(expected %i, got %i)\n", cfgno, USB_DT_CONFIG_SIZE, result); result = -EINVAL; goto err; } length = max((int) le16_to_cpu(desc->wTotalLength), USB_DT_CONFIG_SIZE); /* Now that we know the length, get the whole thing */ bigbuffer = kmalloc(length, GFP_KERNEL); if (!bigbuffer) { result = -ENOMEM; goto err; } if (dev->quirks & USB_QUIRK_DELAY_INIT) msleep(200); result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, bigbuffer, length); if (result < 0) { dev_err(ddev, "unable to read config index %d " "descriptor/%s\n", cfgno, "all"); kfree(bigbuffer); goto err; } if (result < length) { dev_notice(ddev, "config index %d descriptor too short " "(expected %i, got %i)\n", cfgno, length, result); length = result; } dev->rawdescriptors[cfgno] = bigbuffer; result = usb_parse_configuration(dev, cfgno, &dev->config[cfgno], bigbuffer, length); if (result < 0) { ++cfgno; goto err; } } err: kfree(desc); dev->descriptor.bNumConfigurations = cfgno; return result; } void usb_release_bos_descriptor(struct usb_device *dev) { if (dev->bos) { kfree(dev->bos->desc); kfree(dev->bos); dev->bos = NULL; } } static const __u8 bos_desc_len[256] = { [USB_CAP_TYPE_WIRELESS_USB] = USB_DT_USB_WIRELESS_CAP_SIZE, [USB_CAP_TYPE_EXT] = USB_DT_USB_EXT_CAP_SIZE, [USB_SS_CAP_TYPE] = USB_DT_USB_SS_CAP_SIZE, [USB_SSP_CAP_TYPE] = USB_DT_USB_SSP_CAP_SIZE(1), [CONTAINER_ID_TYPE] = USB_DT_USB_SS_CONTN_ID_SIZE, [USB_PTM_CAP_TYPE] = USB_DT_USB_PTM_ID_SIZE, }; /* Get BOS descriptor set */ int usb_get_bos_descriptor(struct usb_device *dev) { struct device *ddev = &dev->dev; struct usb_bos_descriptor *bos; struct usb_dev_cap_header *cap; struct usb_ssp_cap_descriptor *ssp_cap; unsigned char *buffer, *buffer0; int length, total_len, num, i, ssac; __u8 cap_type; int ret; bos = kzalloc(sizeof(*bos), GFP_KERNEL); if (!bos) return -ENOMEM; /* Get BOS descriptor */ ret = usb_get_descriptor(dev, USB_DT_BOS, 0, bos, USB_DT_BOS_SIZE); if (ret < USB_DT_BOS_SIZE || bos->bLength < USB_DT_BOS_SIZE) { dev_notice(ddev, "unable to get BOS descriptor or descriptor too short\n"); if (ret >= 0) ret = -ENOMSG; kfree(bos); return ret; } length = bos->bLength; total_len = le16_to_cpu(bos->wTotalLength); num = bos->bNumDeviceCaps; kfree(bos); if (total_len < length) return -EINVAL; dev->bos = kzalloc(sizeof(*dev->bos), GFP_KERNEL); if (!dev->bos) return -ENOMEM; /* Now let's get the whole BOS descriptor set */ buffer = kzalloc(total_len, GFP_KERNEL); if (!buffer) { ret = -ENOMEM; goto err; } dev->bos->desc = (struct usb_bos_descriptor *)buffer; ret = usb_get_descriptor(dev, USB_DT_BOS, 0, buffer, total_len); if (ret < total_len) { dev_notice(ddev, "unable to get BOS descriptor set\n"); if (ret >= 0) ret = -ENOMSG; goto err; } buffer0 = buffer; total_len -= length; buffer += length; for (i = 0; i < num; i++) { cap = (struct usb_dev_cap_header *)buffer; if (total_len < sizeof(*cap) || total_len < cap->bLength) { dev->bos->desc->bNumDeviceCaps = i; break; } cap_type = cap->bDevCapabilityType; length = cap->bLength; if (bos_desc_len[cap_type] && length < bos_desc_len[cap_type]) { dev->bos->desc->bNumDeviceCaps = i; break; } if (cap->bDescriptorType != USB_DT_DEVICE_CAPABILITY) { dev_notice(ddev, "descriptor type invalid, skip\n"); continue; } switch (cap_type) { case USB_CAP_TYPE_EXT: dev->bos->ext_cap = (struct usb_ext_cap_descriptor *)buffer; break; case USB_SS_CAP_TYPE: dev->bos->ss_cap = (struct usb_ss_cap_descriptor *)buffer; break; case USB_SSP_CAP_TYPE: ssp_cap = (struct usb_ssp_cap_descriptor *)buffer; ssac = (le32_to_cpu(ssp_cap->bmAttributes) & USB_SSP_SUBLINK_SPEED_ATTRIBS); if (length >= USB_DT_USB_SSP_CAP_SIZE(ssac)) dev->bos->ssp_cap = ssp_cap; break; case CONTAINER_ID_TYPE: dev->bos->ss_id = (struct usb_ss_container_id_descriptor *)buffer; break; case USB_PTM_CAP_TYPE: dev->bos->ptm_cap = (struct usb_ptm_cap_descriptor *)buffer; break; default: break; } total_len -= length; buffer += length; } dev->bos->desc->wTotalLength = cpu_to_le16(buffer - buffer0); return 0; err: usb_release_bos_descriptor(dev); return ret; }
linux-master
drivers/usb/core/config.c
// SPDX-License-Identifier: GPL-2.0 /* * of.c The helpers for hcd device tree support * * Copyright (C) 2016 Freescale Semiconductor, Inc. * Author: Peter Chen <[email protected]> * Copyright (C) 2017 Johan Hovold <[email protected]> */ #include <linux/of.h> #include <linux/usb/of.h> /** * usb_of_get_device_node() - get a USB device node * @hub: hub to which device is connected * @port1: one-based index of port * * Look up the node of a USB device given its parent hub device and one-based * port number. * * Return: A pointer to the node with incremented refcount if found, or * %NULL otherwise. */ struct device_node *usb_of_get_device_node(struct usb_device *hub, int port1) { struct device_node *node; u32 reg; for_each_child_of_node(hub->dev.of_node, node) { if (of_property_read_u32(node, "reg", &reg)) continue; if (reg == port1) return node; } return NULL; } EXPORT_SYMBOL_GPL(usb_of_get_device_node); /** * usb_of_has_combined_node() - determine whether a device has a combined node * @udev: USB device * * Determine whether a USB device has a so called combined node which is * shared with its sole interface. This is the case if and only if the device * has a node and its descriptors report the following: * * 1) bDeviceClass is 0 or 9, and * 2) bNumConfigurations is 1, and * 3) bNumInterfaces is 1. * * Return: True iff the device has a device node and its descriptors match the * criteria for a combined node. */ bool usb_of_has_combined_node(struct usb_device *udev) { struct usb_device_descriptor *ddesc = &udev->descriptor; struct usb_config_descriptor *cdesc; if (!udev->dev.of_node) return false; switch (ddesc->bDeviceClass) { case USB_CLASS_PER_INTERFACE: case USB_CLASS_HUB: if (ddesc->bNumConfigurations == 1) { cdesc = &udev->config->desc; if (cdesc->bNumInterfaces == 1) return true; } } return false; } EXPORT_SYMBOL_GPL(usb_of_has_combined_node); /** * usb_of_get_interface_node() - get a USB interface node * @udev: USB device of interface * @config: configuration value * @ifnum: interface number * * Look up the node of a USB interface given its USB device, configuration * value and interface number. * * Return: A pointer to the node with incremented refcount if found, or * %NULL otherwise. */ struct device_node * usb_of_get_interface_node(struct usb_device *udev, u8 config, u8 ifnum) { struct device_node *node; u32 reg[2]; for_each_child_of_node(udev->dev.of_node, node) { if (of_property_read_u32_array(node, "reg", reg, 2)) continue; if (reg[0] == ifnum && reg[1] == config) return node; } return NULL; } EXPORT_SYMBOL_GPL(usb_of_get_interface_node);
linux-master
drivers/usb/core/of.c
// SPDX-License-Identifier: GPL-2.0 /* * usb port device code * * Copyright (C) 2012 Intel Corp * * Author: Lan Tianyu <[email protected]> */ #include <linux/kstrtox.h> #include <linux/slab.h> #include <linux/pm_qos.h> #include <linux/component.h> #include "hub.h" static int usb_port_block_power_off; static const struct attribute_group *port_dev_group[]; static ssize_t early_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); return sysfs_emit(buf, "%s\n", port_dev->early_stop ? "yes" : "no"); } static ssize_t early_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_port *port_dev = to_usb_port(dev); bool value; if (kstrtobool(buf, &value)) return -EINVAL; if (value) port_dev->early_stop = 1; else port_dev->early_stop = 0; return count; } static DEVICE_ATTR_RW(early_stop); static ssize_t disable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); struct usb_device *hdev = to_usb_device(dev->parent->parent); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_interface *intf = to_usb_interface(hub->intfdev); int port1 = port_dev->portnum; u16 portstatus, unused; bool disabled; int rc; rc = usb_autopm_get_interface(intf); if (rc < 0) return rc; usb_lock_device(hdev); if (hub->disconnected) { rc = -ENODEV; goto out_hdev_lock; } usb_hub_port_status(hub, port1, &portstatus, &unused); disabled = !usb_port_is_power_on(hub, portstatus); out_hdev_lock: usb_unlock_device(hdev); usb_autopm_put_interface(intf); if (rc) return rc; return sysfs_emit(buf, "%s\n", disabled ? "1" : "0"); } static ssize_t disable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_port *port_dev = to_usb_port(dev); struct usb_device *hdev = to_usb_device(dev->parent->parent); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_interface *intf = to_usb_interface(hub->intfdev); int port1 = port_dev->portnum; bool disabled; int rc; rc = kstrtobool(buf, &disabled); if (rc) return rc; rc = usb_autopm_get_interface(intf); if (rc < 0) return rc; usb_lock_device(hdev); if (hub->disconnected) { rc = -ENODEV; goto out_hdev_lock; } if (disabled && port_dev->child) usb_disconnect(&port_dev->child); rc = usb_hub_set_port_power(hdev, hub, port1, !disabled); if (disabled) { usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_CONNECTION); if (!port_dev->is_superspeed) usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_ENABLE); } if (!rc) rc = count; out_hdev_lock: usb_unlock_device(hdev); usb_autopm_put_interface(intf); return rc; } static DEVICE_ATTR_RW(disable); static ssize_t location_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); return sprintf(buf, "0x%08x\n", port_dev->location); } static DEVICE_ATTR_RO(location); static ssize_t connect_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); char *result; switch (port_dev->connect_type) { case USB_PORT_CONNECT_TYPE_HOT_PLUG: result = "hotplug"; break; case USB_PORT_CONNECT_TYPE_HARD_WIRED: result = "hardwired"; break; case USB_PORT_NOT_USED: result = "not used"; break; default: result = "unknown"; break; } return sprintf(buf, "%s\n", result); } static DEVICE_ATTR_RO(connect_type); static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); enum usb_device_state state = READ_ONCE(port_dev->state); return sysfs_emit(buf, "%s\n", usb_state_string(state)); } static DEVICE_ATTR_RO(state); static ssize_t over_current_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); return sprintf(buf, "%u\n", port_dev->over_current_count); } static DEVICE_ATTR_RO(over_current_count); static ssize_t quirks_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); return sprintf(buf, "%08x\n", port_dev->quirks); } static ssize_t quirks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_port *port_dev = to_usb_port(dev); u32 value; if (kstrtou32(buf, 16, &value)) return -EINVAL; port_dev->quirks = value; return count; } static DEVICE_ATTR_RW(quirks); static ssize_t usb3_lpm_permit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_port *port_dev = to_usb_port(dev); const char *p; if (port_dev->usb3_lpm_u1_permit) { if (port_dev->usb3_lpm_u2_permit) p = "u1_u2"; else p = "u1"; } else { if (port_dev->usb3_lpm_u2_permit) p = "u2"; else p = "0"; } return sprintf(buf, "%s\n", p); } static ssize_t usb3_lpm_permit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_port *port_dev = to_usb_port(dev); struct usb_device *udev = port_dev->child; struct usb_hcd *hcd; if (!strncmp(buf, "u1_u2", 5)) { port_dev->usb3_lpm_u1_permit = 1; port_dev->usb3_lpm_u2_permit = 1; } else if (!strncmp(buf, "u1", 2)) { port_dev->usb3_lpm_u1_permit = 1; port_dev->usb3_lpm_u2_permit = 0; } else if (!strncmp(buf, "u2", 2)) { port_dev->usb3_lpm_u1_permit = 0; port_dev->usb3_lpm_u2_permit = 1; } else if (!strncmp(buf, "0", 1)) { port_dev->usb3_lpm_u1_permit = 0; port_dev->usb3_lpm_u2_permit = 0; } else return -EINVAL; /* If device is connected to the port, disable or enable lpm * to make new u1 u2 setting take effect immediately. */ if (udev) { hcd = bus_to_hcd(udev->bus); if (!hcd) return -EINVAL; usb_lock_device(udev); mutex_lock(hcd->bandwidth_mutex); if (!usb_disable_lpm(udev)) usb_enable_lpm(udev); mutex_unlock(hcd->bandwidth_mutex); usb_unlock_device(udev); } return count; } static DEVICE_ATTR_RW(usb3_lpm_permit); static struct attribute *port_dev_attrs[] = { &dev_attr_connect_type.attr, &dev_attr_state.attr, &dev_attr_location.attr, &dev_attr_quirks.attr, &dev_attr_over_current_count.attr, &dev_attr_disable.attr, &dev_attr_early_stop.attr, NULL, }; static const struct attribute_group port_dev_attr_grp = { .attrs = port_dev_attrs, }; static const struct attribute_group *port_dev_group[] = { &port_dev_attr_grp, NULL, }; static struct attribute *port_dev_usb3_attrs[] = { &dev_attr_usb3_lpm_permit.attr, NULL, }; static const struct attribute_group port_dev_usb3_attr_grp = { .attrs = port_dev_usb3_attrs, }; static const struct attribute_group *port_dev_usb3_group[] = { &port_dev_attr_grp, &port_dev_usb3_attr_grp, NULL, }; static void usb_port_device_release(struct device *dev) { struct usb_port *port_dev = to_usb_port(dev); kfree(port_dev->req); kfree(port_dev); } #ifdef CONFIG_PM static int usb_port_runtime_resume(struct device *dev) { struct usb_port *port_dev = to_usb_port(dev); struct usb_device *hdev = to_usb_device(dev->parent->parent); struct usb_interface *intf = to_usb_interface(dev->parent); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_device *udev = port_dev->child; struct usb_port *peer = port_dev->peer; int port1 = port_dev->portnum; int retval; if (!hub) return -EINVAL; if (hub->in_reset) { set_bit(port1, hub->power_bits); return 0; } /* * Power on our usb3 peer before this usb2 port to prevent a usb3 * device from degrading to its usb2 connection */ if (!port_dev->is_superspeed && peer) pm_runtime_get_sync(&peer->dev); retval = usb_autopm_get_interface(intf); if (retval < 0) return retval; retval = usb_hub_set_port_power(hdev, hub, port1, true); msleep(hub_power_on_good_delay(hub)); if (udev && !retval) { /* * Our preference is to simply wait for the port to reconnect, * as that is the lowest latency method to restart the port. * However, there are cases where toggling port power results in * the host port and the device port getting out of sync causing * a link training live lock. Upon timeout, flag the port as * needing warm reset recovery (to be performed later by * usb_port_resume() as requested via usb_wakeup_notification()) */ if (hub_port_debounce_be_connected(hub, port1) < 0) { dev_dbg(&port_dev->dev, "reconnect timeout\n"); if (hub_is_superspeed(hdev)) set_bit(port1, hub->warm_reset_bits); } /* Force the child awake to revalidate after the power loss. */ if (!test_and_set_bit(port1, hub->child_usage_bits)) { pm_runtime_get_noresume(&port_dev->dev); pm_request_resume(&udev->dev); } } usb_autopm_put_interface(intf); return retval; } static int usb_port_runtime_suspend(struct device *dev) { struct usb_port *port_dev = to_usb_port(dev); struct usb_device *hdev = to_usb_device(dev->parent->parent); struct usb_interface *intf = to_usb_interface(dev->parent); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_port *peer = port_dev->peer; int port1 = port_dev->portnum; int retval; if (!hub) return -EINVAL; if (hub->in_reset) return -EBUSY; if (dev_pm_qos_flags(&port_dev->dev, PM_QOS_FLAG_NO_POWER_OFF) == PM_QOS_FLAGS_ALL) return -EAGAIN; if (usb_port_block_power_off) return -EBUSY; retval = usb_autopm_get_interface(intf); if (retval < 0) return retval; retval = usb_hub_set_port_power(hdev, hub, port1, false); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_CONNECTION); if (!port_dev->is_superspeed) usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_ENABLE); usb_autopm_put_interface(intf); /* * Our peer usb3 port may now be able to suspend, so * asynchronously queue a suspend request to observe that this * usb2 port is now off. */ if (!port_dev->is_superspeed && peer) pm_runtime_put(&peer->dev); return retval; } #endif static void usb_port_shutdown(struct device *dev) { struct usb_port *port_dev = to_usb_port(dev); if (port_dev->child) usb_disable_usb2_hardware_lpm(port_dev->child); } static const struct dev_pm_ops usb_port_pm_ops = { #ifdef CONFIG_PM .runtime_suspend = usb_port_runtime_suspend, .runtime_resume = usb_port_runtime_resume, #endif }; struct device_type usb_port_device_type = { .name = "usb_port", .release = usb_port_device_release, .pm = &usb_port_pm_ops, }; static struct device_driver usb_port_driver = { .name = "usb", .owner = THIS_MODULE, .shutdown = usb_port_shutdown, }; static int link_peers(struct usb_port *left, struct usb_port *right) { struct usb_port *ss_port, *hs_port; int rc; if (left->peer == right && right->peer == left) return 0; if (left->peer || right->peer) { struct usb_port *lpeer = left->peer; struct usb_port *rpeer = right->peer; char *method; if (left->location && left->location == right->location) method = "location"; else method = "default"; pr_debug("usb: failed to peer %s and %s by %s (%s:%s) (%s:%s)\n", dev_name(&left->dev), dev_name(&right->dev), method, dev_name(&left->dev), lpeer ? dev_name(&lpeer->dev) : "none", dev_name(&right->dev), rpeer ? dev_name(&rpeer->dev) : "none"); return -EBUSY; } rc = sysfs_create_link(&left->dev.kobj, &right->dev.kobj, "peer"); if (rc) return rc; rc = sysfs_create_link(&right->dev.kobj, &left->dev.kobj, "peer"); if (rc) { sysfs_remove_link(&left->dev.kobj, "peer"); return rc; } /* * We need to wake the HiSpeed port to make sure we don't race * setting ->peer with usb_port_runtime_suspend(). Otherwise we * may miss a suspend event for the SuperSpeed port. */ if (left->is_superspeed) { ss_port = left; WARN_ON(right->is_superspeed); hs_port = right; } else { ss_port = right; WARN_ON(!right->is_superspeed); hs_port = left; } pm_runtime_get_sync(&hs_port->dev); left->peer = right; right->peer = left; /* * The SuperSpeed reference is dropped when the HiSpeed port in * this relationship suspends, i.e. when it is safe to allow a * SuperSpeed connection to drop since there is no risk of a * device degrading to its powered-off HiSpeed connection. * * Also, drop the HiSpeed ref taken above. */ pm_runtime_get_sync(&ss_port->dev); pm_runtime_put(&hs_port->dev); return 0; } static void link_peers_report(struct usb_port *left, struct usb_port *right) { int rc; rc = link_peers(left, right); if (rc == 0) { dev_dbg(&left->dev, "peered to %s\n", dev_name(&right->dev)); } else { dev_dbg(&left->dev, "failed to peer to %s (%d)\n", dev_name(&right->dev), rc); pr_warn_once("usb: port power management may be unreliable\n"); usb_port_block_power_off = 1; } } static void unlink_peers(struct usb_port *left, struct usb_port *right) { struct usb_port *ss_port, *hs_port; WARN(right->peer != left || left->peer != right, "%s and %s are not peers?\n", dev_name(&left->dev), dev_name(&right->dev)); /* * We wake the HiSpeed port to make sure we don't race its * usb_port_runtime_resume() event which takes a SuperSpeed ref * when ->peer is !NULL. */ if (left->is_superspeed) { ss_port = left; hs_port = right; } else { ss_port = right; hs_port = left; } pm_runtime_get_sync(&hs_port->dev); sysfs_remove_link(&left->dev.kobj, "peer"); right->peer = NULL; sysfs_remove_link(&right->dev.kobj, "peer"); left->peer = NULL; /* Drop the SuperSpeed ref held on behalf of the active HiSpeed port */ pm_runtime_put(&ss_port->dev); /* Drop the ref taken above */ pm_runtime_put(&hs_port->dev); } /* * For each usb hub device in the system check to see if it is in the * peer domain of the given port_dev, and if it is check to see if it * has a port that matches the given port by location */ static int match_location(struct usb_device *peer_hdev, void *p) { int port1; struct usb_hcd *hcd, *peer_hcd; struct usb_port *port_dev = p, *peer; struct usb_hub *peer_hub = usb_hub_to_struct_hub(peer_hdev); struct usb_device *hdev = to_usb_device(port_dev->dev.parent->parent); if (!peer_hub) return 0; hcd = bus_to_hcd(hdev->bus); peer_hcd = bus_to_hcd(peer_hdev->bus); /* peer_hcd is provisional until we verify it against the known peer */ if (peer_hcd != hcd->shared_hcd) return 0; for (port1 = 1; port1 <= peer_hdev->maxchild; port1++) { peer = peer_hub->ports[port1 - 1]; if (peer && peer->location == port_dev->location) { link_peers_report(port_dev, peer); return 1; /* done */ } } return 0; } /* * Find the peer port either via explicit platform firmware "location" * data, the peer hcd for root hubs, or the upstream peer relationship * for all other hubs. */ static void find_and_link_peer(struct usb_hub *hub, int port1) { struct usb_port *port_dev = hub->ports[port1 - 1], *peer; struct usb_device *hdev = hub->hdev; struct usb_device *peer_hdev; struct usb_hub *peer_hub; /* * If location data is available then we can only peer this port * by a location match, not the default peer (lest we create a * situation where we need to go back and undo a default peering * when the port is later peered by location data) */ if (port_dev->location) { /* we link the peer in match_location() if found */ usb_for_each_dev(port_dev, match_location); return; } else if (!hdev->parent) { struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_hcd *peer_hcd = hcd->shared_hcd; if (!peer_hcd) return; peer_hdev = peer_hcd->self.root_hub; } else { struct usb_port *upstream; struct usb_device *parent = hdev->parent; struct usb_hub *parent_hub = usb_hub_to_struct_hub(parent); if (!parent_hub) return; upstream = parent_hub->ports[hdev->portnum - 1]; if (!upstream || !upstream->peer) return; peer_hdev = upstream->peer->child; } peer_hub = usb_hub_to_struct_hub(peer_hdev); if (!peer_hub || port1 > peer_hdev->maxchild) return; /* * we found a valid default peer, last check is to make sure it * does not have location data */ peer = peer_hub->ports[port1 - 1]; if (peer && peer->location == 0) link_peers_report(port_dev, peer); } static int connector_bind(struct device *dev, struct device *connector, void *data) { int ret; ret = sysfs_create_link(&dev->kobj, &connector->kobj, "connector"); if (ret) return ret; ret = sysfs_create_link(&connector->kobj, &dev->kobj, dev_name(dev)); if (ret) sysfs_remove_link(&dev->kobj, "connector"); return ret; } static void connector_unbind(struct device *dev, struct device *connector, void *data) { sysfs_remove_link(&connector->kobj, dev_name(dev)); sysfs_remove_link(&dev->kobj, "connector"); } static const struct component_ops connector_ops = { .bind = connector_bind, .unbind = connector_unbind, }; int usb_hub_create_port_device(struct usb_hub *hub, int port1) { struct usb_port *port_dev; struct usb_device *hdev = hub->hdev; int retval; port_dev = kzalloc(sizeof(*port_dev), GFP_KERNEL); if (!port_dev) return -ENOMEM; port_dev->req = kzalloc(sizeof(*(port_dev->req)), GFP_KERNEL); if (!port_dev->req) { kfree(port_dev); return -ENOMEM; } hub->ports[port1 - 1] = port_dev; port_dev->portnum = port1; set_bit(port1, hub->power_bits); port_dev->dev.parent = hub->intfdev; if (hub_is_superspeed(hdev)) { port_dev->usb3_lpm_u1_permit = 1; port_dev->usb3_lpm_u2_permit = 1; port_dev->dev.groups = port_dev_usb3_group; } else port_dev->dev.groups = port_dev_group; port_dev->dev.type = &usb_port_device_type; port_dev->dev.driver = &usb_port_driver; if (hub_is_superspeed(hub->hdev)) port_dev->is_superspeed = 1; dev_set_name(&port_dev->dev, "%s-port%d", dev_name(&hub->hdev->dev), port1); mutex_init(&port_dev->status_lock); retval = device_register(&port_dev->dev); if (retval) { put_device(&port_dev->dev); return retval; } port_dev->state_kn = sysfs_get_dirent(port_dev->dev.kobj.sd, "state"); if (!port_dev->state_kn) { dev_err(&port_dev->dev, "failed to sysfs_get_dirent 'state'\n"); retval = -ENODEV; goto err_unregister; } /* Set default policy of port-poweroff disabled. */ retval = dev_pm_qos_add_request(&port_dev->dev, port_dev->req, DEV_PM_QOS_FLAGS, PM_QOS_FLAG_NO_POWER_OFF); if (retval < 0) { goto err_put_kn; } retval = component_add(&port_dev->dev, &connector_ops); if (retval) { dev_warn(&port_dev->dev, "failed to add component\n"); goto err_put_kn; } find_and_link_peer(hub, port1); /* * Enable runtime pm and hold a refernce that hub_configure() * will drop once the PM_QOS_NO_POWER_OFF flag state has been set * and the hub has been fully registered (hdev->maxchild set). */ pm_runtime_set_active(&port_dev->dev); pm_runtime_get_noresume(&port_dev->dev); pm_runtime_enable(&port_dev->dev); device_enable_async_suspend(&port_dev->dev); /* * Keep hidden the ability to enable port-poweroff if the hub * does not support power switching. */ if (!hub_is_port_power_switchable(hub)) return 0; /* Attempt to let userspace take over the policy. */ retval = dev_pm_qos_expose_flags(&port_dev->dev, PM_QOS_FLAG_NO_POWER_OFF); if (retval < 0) { dev_warn(&port_dev->dev, "failed to expose pm_qos_no_poweroff\n"); return 0; } /* Userspace owns the policy, drop the kernel 'no_poweroff' request. */ retval = dev_pm_qos_remove_request(port_dev->req); if (retval >= 0) { kfree(port_dev->req); port_dev->req = NULL; } return 0; err_put_kn: sysfs_put(port_dev->state_kn); err_unregister: device_unregister(&port_dev->dev); return retval; } void usb_hub_remove_port_device(struct usb_hub *hub, int port1) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_port *peer; peer = port_dev->peer; if (peer) unlink_peers(port_dev, peer); component_del(&port_dev->dev, &connector_ops); sysfs_put(port_dev->state_kn); device_unregister(&port_dev->dev); }
linux-master
drivers/usb/core/port.c
// SPDX-License-Identifier: GPL-2.0 /* * USB device quirk handling logic and table * * Copyright (c) 2007 Oliver Neukum * Copyright (c) 2007 Greg Kroah-Hartman <[email protected]> */ #include <linux/moduleparam.h> #include <linux/usb.h> #include <linux/usb/quirks.h> #include <linux/usb/hcd.h> #include "usb.h" struct quirk_entry { u16 vid; u16 pid; u32 flags; }; static DEFINE_MUTEX(quirk_mutex); static struct quirk_entry *quirk_list; static unsigned int quirk_count; static char quirks_param[128]; static int quirks_param_set(const char *value, const struct kernel_param *kp) { char *val, *p, *field; u16 vid, pid; u32 flags; size_t i; int err; val = kstrdup(value, GFP_KERNEL); if (!val) return -ENOMEM; err = param_set_copystring(val, kp); if (err) { kfree(val); return err; } mutex_lock(&quirk_mutex); if (!*val) { quirk_count = 0; kfree(quirk_list); quirk_list = NULL; goto unlock; } for (quirk_count = 1, i = 0; val[i]; i++) if (val[i] == ',') quirk_count++; if (quirk_list) { kfree(quirk_list); quirk_list = NULL; } quirk_list = kcalloc(quirk_count, sizeof(struct quirk_entry), GFP_KERNEL); if (!quirk_list) { quirk_count = 0; mutex_unlock(&quirk_mutex); kfree(val); return -ENOMEM; } for (i = 0, p = val; p && *p;) { /* Each entry consists of VID:PID:flags */ field = strsep(&p, ":"); if (!field) break; if (kstrtou16(field, 16, &vid)) break; field = strsep(&p, ":"); if (!field) break; if (kstrtou16(field, 16, &pid)) break; field = strsep(&p, ","); if (!field || !*field) break; /* Collect the flags */ for (flags = 0; *field; field++) { switch (*field) { case 'a': flags |= USB_QUIRK_STRING_FETCH_255; break; case 'b': flags |= USB_QUIRK_RESET_RESUME; break; case 'c': flags |= USB_QUIRK_NO_SET_INTF; break; case 'd': flags |= USB_QUIRK_CONFIG_INTF_STRINGS; break; case 'e': flags |= USB_QUIRK_RESET; break; case 'f': flags |= USB_QUIRK_HONOR_BNUMINTERFACES; break; case 'g': flags |= USB_QUIRK_DELAY_INIT; break; case 'h': flags |= USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL; break; case 'i': flags |= USB_QUIRK_DEVICE_QUALIFIER; break; case 'j': flags |= USB_QUIRK_IGNORE_REMOTE_WAKEUP; break; case 'k': flags |= USB_QUIRK_NO_LPM; break; case 'l': flags |= USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL; break; case 'm': flags |= USB_QUIRK_DISCONNECT_SUSPEND; break; case 'n': flags |= USB_QUIRK_DELAY_CTRL_MSG; break; case 'o': flags |= USB_QUIRK_HUB_SLOW_RESET; break; /* Ignore unrecognized flag characters */ } } quirk_list[i++] = (struct quirk_entry) { .vid = vid, .pid = pid, .flags = flags }; } if (i < quirk_count) quirk_count = i; unlock: mutex_unlock(&quirk_mutex); kfree(val); return 0; } static const struct kernel_param_ops quirks_param_ops = { .set = quirks_param_set, .get = param_get_string, }; static struct kparam_string quirks_param_string = { .maxlen = sizeof(quirks_param), .string = quirks_param, }; device_param_cb(quirks, &quirks_param_ops, &quirks_param_string, 0644); MODULE_PARM_DESC(quirks, "Add/modify USB quirks by specifying quirks=vendorID:productID:quirks"); /* Lists of quirky USB devices, split in device quirks and interface quirks. * Device quirks are applied at the very beginning of the enumeration process, * right after reading the device descriptor. They can thus only match on device * information. * * Interface quirks are applied after reading all the configuration descriptors. * They can match on both device and interface information. * * Note that the DELAY_INIT and HONOR_BNUMINTERFACES quirks do not make sense as * interface quirks, as they only influence the enumeration process which is run * before processing the interface quirks. * * Please keep the lists ordered by: * 1) Vendor ID * 2) Product ID * 3) Class ID */ static const struct usb_device_id usb_quirk_list[] = { /* CBM - Flash disk */ { USB_DEVICE(0x0204, 0x6025), .driver_info = USB_QUIRK_RESET_RESUME }, /* WORLDE Controller KS49 or Prodipe MIDI 49C USB controller */ { USB_DEVICE(0x0218, 0x0201), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* WORLDE easy key (easykey.25) MIDI controller */ { USB_DEVICE(0x0218, 0x0401), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* HP 5300/5370C scanner */ { USB_DEVICE(0x03f0, 0x0701), .driver_info = USB_QUIRK_STRING_FETCH_255 }, /* HP v222w 16GB Mini USB Drive */ { USB_DEVICE(0x03f0, 0x3f40), .driver_info = USB_QUIRK_DELAY_INIT }, /* Creative SB Audigy 2 NX */ { USB_DEVICE(0x041e, 0x3020), .driver_info = USB_QUIRK_RESET_RESUME }, /* USB3503 */ { USB_DEVICE(0x0424, 0x3503), .driver_info = USB_QUIRK_RESET_RESUME }, /* Microsoft Wireless Laser Mouse 6000 Receiver */ { USB_DEVICE(0x045e, 0x00e1), .driver_info = USB_QUIRK_RESET_RESUME }, /* Microsoft LifeCam-VX700 v2.0 */ { USB_DEVICE(0x045e, 0x0770), .driver_info = USB_QUIRK_RESET_RESUME }, /* Microsoft Surface Dock Ethernet (RTL8153 GigE) */ { USB_DEVICE(0x045e, 0x07c6), .driver_info = USB_QUIRK_NO_LPM }, /* Cherry Stream G230 2.0 (G85-231) and 3.0 (G85-232) */ { USB_DEVICE(0x046a, 0x0023), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech HD Webcam C270 */ { USB_DEVICE(0x046d, 0x0825), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech HD Pro Webcams C920, C920-C, C922, C925e and C930e */ { USB_DEVICE(0x046d, 0x082d), .driver_info = USB_QUIRK_DELAY_INIT }, { USB_DEVICE(0x046d, 0x0841), .driver_info = USB_QUIRK_DELAY_INIT }, { USB_DEVICE(0x046d, 0x0843), .driver_info = USB_QUIRK_DELAY_INIT }, { USB_DEVICE(0x046d, 0x085b), .driver_info = USB_QUIRK_DELAY_INIT }, { USB_DEVICE(0x046d, 0x085c), .driver_info = USB_QUIRK_DELAY_INIT }, /* Logitech ConferenceCam CC3000e */ { USB_DEVICE(0x046d, 0x0847), .driver_info = USB_QUIRK_DELAY_INIT }, { USB_DEVICE(0x046d, 0x0848), .driver_info = USB_QUIRK_DELAY_INIT }, /* Logitech PTZ Pro Camera */ { USB_DEVICE(0x046d, 0x0853), .driver_info = USB_QUIRK_DELAY_INIT }, /* Logitech Screen Share */ { USB_DEVICE(0x046d, 0x086c), .driver_info = USB_QUIRK_NO_LPM }, /* Logitech Quickcam Fusion */ { USB_DEVICE(0x046d, 0x08c1), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Quickcam Orbit MP */ { USB_DEVICE(0x046d, 0x08c2), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Quickcam Pro for Notebook */ { USB_DEVICE(0x046d, 0x08c3), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Quickcam Pro 5000 */ { USB_DEVICE(0x046d, 0x08c5), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Quickcam OEM Dell Notebook */ { USB_DEVICE(0x046d, 0x08c6), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Quickcam OEM Cisco VT Camera II */ { USB_DEVICE(0x046d, 0x08c7), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Harmony 700-series */ { USB_DEVICE(0x046d, 0xc122), .driver_info = USB_QUIRK_DELAY_INIT }, /* Philips PSC805 audio device */ { USB_DEVICE(0x0471, 0x0155), .driver_info = USB_QUIRK_RESET_RESUME }, /* Plantronic Audio 655 DSP */ { USB_DEVICE(0x047f, 0xc008), .driver_info = USB_QUIRK_RESET_RESUME }, /* Plantronic Audio 648 USB */ { USB_DEVICE(0x047f, 0xc013), .driver_info = USB_QUIRK_RESET_RESUME }, /* Artisman Watchdog Dongle */ { USB_DEVICE(0x04b4, 0x0526), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Microchip Joss Optical infrared touchboard device */ { USB_DEVICE(0x04d8, 0x000c), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* CarrolTouch 4000U */ { USB_DEVICE(0x04e7, 0x0009), .driver_info = USB_QUIRK_RESET_RESUME }, /* CarrolTouch 4500U */ { USB_DEVICE(0x04e7, 0x0030), .driver_info = USB_QUIRK_RESET_RESUME }, /* Samsung Android phone modem - ID conflict with SPH-I500 */ { USB_DEVICE(0x04e8, 0x6601), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Elan Touchscreen */ { USB_DEVICE(0x04f3, 0x0089), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, { USB_DEVICE(0x04f3, 0x009b), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, { USB_DEVICE(0x04f3, 0x010c), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, { USB_DEVICE(0x04f3, 0x0125), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, { USB_DEVICE(0x04f3, 0x016f), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, { USB_DEVICE(0x04f3, 0x0381), .driver_info = USB_QUIRK_NO_LPM }, { USB_DEVICE(0x04f3, 0x21b8), .driver_info = USB_QUIRK_DEVICE_QUALIFIER }, /* Roland SC-8820 */ { USB_DEVICE(0x0582, 0x0007), .driver_info = USB_QUIRK_RESET_RESUME }, /* Edirol SD-20 */ { USB_DEVICE(0x0582, 0x0027), .driver_info = USB_QUIRK_RESET_RESUME }, /* Alcor Micro Corp. Hub */ { USB_DEVICE(0x058f, 0x9254), .driver_info = USB_QUIRK_RESET_RESUME }, /* appletouch */ { USB_DEVICE(0x05ac, 0x021a), .driver_info = USB_QUIRK_RESET_RESUME }, /* Genesys Logic hub, internally used by KY-688 USB 3.1 Type-C Hub */ { USB_DEVICE(0x05e3, 0x0612), .driver_info = USB_QUIRK_NO_LPM }, /* ELSA MicroLink 56K */ { USB_DEVICE(0x05cc, 0x2267), .driver_info = USB_QUIRK_RESET_RESUME }, /* Genesys Logic hub, internally used by Moshi USB to Ethernet Adapter */ { USB_DEVICE(0x05e3, 0x0616), .driver_info = USB_QUIRK_NO_LPM }, /* Avision AV600U */ { USB_DEVICE(0x0638, 0x0a13), .driver_info = USB_QUIRK_STRING_FETCH_255 }, /* Saitek Cyborg Gold Joystick */ { USB_DEVICE(0x06a3, 0x0006), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Agfa SNAPSCAN 1212U */ { USB_DEVICE(0x06bd, 0x0001), .driver_info = USB_QUIRK_RESET_RESUME }, /* Guillemot Webcam Hercules Dualpix Exchange (2nd ID) */ { USB_DEVICE(0x06f8, 0x0804), .driver_info = USB_QUIRK_RESET_RESUME }, /* Guillemot Webcam Hercules Dualpix Exchange*/ { USB_DEVICE(0x06f8, 0x3005), .driver_info = USB_QUIRK_RESET_RESUME }, /* Guillemot Hercules DJ Console audio card (BZ 208357) */ { USB_DEVICE(0x06f8, 0xb000), .driver_info = USB_QUIRK_ENDPOINT_IGNORE }, /* Midiman M-Audio Keystation 88es */ { USB_DEVICE(0x0763, 0x0192), .driver_info = USB_QUIRK_RESET_RESUME }, /* SanDisk Ultra Fit and Ultra Flair */ { USB_DEVICE(0x0781, 0x5583), .driver_info = USB_QUIRK_NO_LPM }, { USB_DEVICE(0x0781, 0x5591), .driver_info = USB_QUIRK_NO_LPM }, /* Realforce 87U Keyboard */ { USB_DEVICE(0x0853, 0x011b), .driver_info = USB_QUIRK_NO_LPM }, /* M-Systems Flash Disk Pioneers */ { USB_DEVICE(0x08ec, 0x1000), .driver_info = USB_QUIRK_RESET_RESUME }, /* Baum Vario Ultra */ { USB_DEVICE(0x0904, 0x6101), .driver_info = USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL }, { USB_DEVICE(0x0904, 0x6102), .driver_info = USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL }, { USB_DEVICE(0x0904, 0x6103), .driver_info = USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL }, /* Sound Devices USBPre2 */ { USB_DEVICE(0x0926, 0x0202), .driver_info = USB_QUIRK_ENDPOINT_IGNORE }, /* Sound Devices MixPre-D */ { USB_DEVICE(0x0926, 0x0208), .driver_info = USB_QUIRK_ENDPOINT_IGNORE }, /* Keytouch QWERTY Panel keyboard */ { USB_DEVICE(0x0926, 0x3333), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Kingston DataTraveler 3.0 */ { USB_DEVICE(0x0951, 0x1666), .driver_info = USB_QUIRK_NO_LPM }, /* NVIDIA Jetson devices in Force Recovery mode */ { USB_DEVICE(0x0955, 0x7018), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7019), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7418), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7721), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7c18), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7e19), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x0955, 0x7f21), .driver_info = USB_QUIRK_RESET_RESUME }, /* X-Rite/Gretag-Macbeth Eye-One Pro display colorimeter */ { USB_DEVICE(0x0971, 0x2000), .driver_info = USB_QUIRK_NO_SET_INTF }, /* ELMO L-12F document camera */ { USB_DEVICE(0x09a1, 0x0028), .driver_info = USB_QUIRK_DELAY_CTRL_MSG }, /* Broadcom BCM92035DGROM BT dongle */ { USB_DEVICE(0x0a5c, 0x2021), .driver_info = USB_QUIRK_RESET_RESUME }, /* MAYA44USB sound device */ { USB_DEVICE(0x0a92, 0x0091), .driver_info = USB_QUIRK_RESET_RESUME }, /* ASUS Base Station(T100) */ { USB_DEVICE(0x0b05, 0x17e0), .driver_info = USB_QUIRK_IGNORE_REMOTE_WAKEUP }, /* Realtek Semiconductor Corp. Mass Storage Device (Multicard Reader)*/ { USB_DEVICE(0x0bda, 0x0151), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Realtek hub in Dell WD19 (Type-C) */ { USB_DEVICE(0x0bda, 0x0487), .driver_info = USB_QUIRK_NO_LPM }, /* Generic RTL8153 based ethernet adapters */ { USB_DEVICE(0x0bda, 0x8153), .driver_info = USB_QUIRK_NO_LPM }, /* SONiX USB DEVICE Touchpad */ { USB_DEVICE(0x0c45, 0x7056), .driver_info = USB_QUIRK_IGNORE_REMOTE_WAKEUP }, /* Action Semiconductor flash disk */ { USB_DEVICE(0x10d6, 0x2200), .driver_info = USB_QUIRK_STRING_FETCH_255 }, /* novation SoundControl XL */ { USB_DEVICE(0x1235, 0x0061), .driver_info = USB_QUIRK_RESET_RESUME }, /* Focusrite Scarlett Solo USB */ { USB_DEVICE(0x1235, 0x8211), .driver_info = USB_QUIRK_DISCONNECT_SUSPEND }, /* Huawei 4G LTE module */ { USB_DEVICE(0x12d1, 0x15bb), .driver_info = USB_QUIRK_DISCONNECT_SUSPEND }, { USB_DEVICE(0x12d1, 0x15c3), .driver_info = USB_QUIRK_DISCONNECT_SUSPEND }, /* SKYMEDI USB_DRIVE */ { USB_DEVICE(0x1516, 0x8628), .driver_info = USB_QUIRK_RESET_RESUME }, /* Razer - Razer Blade Keyboard */ { USB_DEVICE(0x1532, 0x0116), .driver_info = USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL }, /* Lenovo ThinkPad OneLink+ Dock twin hub controllers (VIA Labs VL812) */ { USB_DEVICE(0x17ef, 0x1018), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x17ef, 0x1019), .driver_info = USB_QUIRK_RESET_RESUME }, /* Lenovo USB-C to Ethernet Adapter RTL8153-04 */ { USB_DEVICE(0x17ef, 0x720c), .driver_info = USB_QUIRK_NO_LPM }, /* Lenovo Powered USB-C Travel Hub (4X90S92381, RTL8153 GigE) */ { USB_DEVICE(0x17ef, 0x721e), .driver_info = USB_QUIRK_NO_LPM }, /* Lenovo ThinkCenter A630Z TI024Gen3 usb-audio */ { USB_DEVICE(0x17ef, 0xa012), .driver_info = USB_QUIRK_DISCONNECT_SUSPEND }, /* Lenovo ThinkPad USB-C Dock Gen2 Ethernet (RTL8153 GigE) */ { USB_DEVICE(0x17ef, 0xa387), .driver_info = USB_QUIRK_NO_LPM }, /* BUILDWIN Photo Frame */ { USB_DEVICE(0x1908, 0x1315), .driver_info = USB_QUIRK_HONOR_BNUMINTERFACES }, /* Protocol and OTG Electrical Test Device */ { USB_DEVICE(0x1a0a, 0x0200), .driver_info = USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL }, /* Terminus Technology Inc. Hub */ { USB_DEVICE(0x1a40, 0x0101), .driver_info = USB_QUIRK_HUB_SLOW_RESET }, /* Corsair K70 RGB */ { USB_DEVICE(0x1b1c, 0x1b13), .driver_info = USB_QUIRK_DELAY_INIT | USB_QUIRK_DELAY_CTRL_MSG }, /* Corsair Strafe */ { USB_DEVICE(0x1b1c, 0x1b15), .driver_info = USB_QUIRK_DELAY_INIT | USB_QUIRK_DELAY_CTRL_MSG }, /* Corsair Strafe RGB */ { USB_DEVICE(0x1b1c, 0x1b20), .driver_info = USB_QUIRK_DELAY_INIT | USB_QUIRK_DELAY_CTRL_MSG }, /* Corsair K70 LUX RGB */ { USB_DEVICE(0x1b1c, 0x1b33), .driver_info = USB_QUIRK_DELAY_INIT }, /* Corsair K70 LUX */ { USB_DEVICE(0x1b1c, 0x1b36), .driver_info = USB_QUIRK_DELAY_INIT }, /* Corsair K70 RGB RAPDIFIRE */ { USB_DEVICE(0x1b1c, 0x1b38), .driver_info = USB_QUIRK_DELAY_INIT | USB_QUIRK_DELAY_CTRL_MSG }, /* MIDI keyboard WORLDE MINI */ { USB_DEVICE(0x1c75, 0x0204), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Acer C120 LED Projector */ { USB_DEVICE(0x1de1, 0xc102), .driver_info = USB_QUIRK_NO_LPM }, /* Blackmagic Design Intensity Shuttle */ { USB_DEVICE(0x1edb, 0xbd3b), .driver_info = USB_QUIRK_NO_LPM }, /* Blackmagic Design UltraStudio SDI */ { USB_DEVICE(0x1edb, 0xbd4f), .driver_info = USB_QUIRK_NO_LPM }, /* Hauppauge HVR-950q */ { USB_DEVICE(0x2040, 0x7200), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* Raydium Touchscreen */ { USB_DEVICE(0x2386, 0x3114), .driver_info = USB_QUIRK_NO_LPM }, { USB_DEVICE(0x2386, 0x3119), .driver_info = USB_QUIRK_NO_LPM }, { USB_DEVICE(0x2386, 0x350e), .driver_info = USB_QUIRK_NO_LPM }, /* DJI CineSSD */ { USB_DEVICE(0x2ca3, 0x0031), .driver_info = USB_QUIRK_NO_LPM }, /* Alcor Link AK9563 SC Reader used in 2022 Lenovo ThinkPads */ { USB_DEVICE(0x2ce3, 0x9563), .driver_info = USB_QUIRK_NO_LPM }, /* DELL USB GEN2 */ { USB_DEVICE(0x413c, 0xb062), .driver_info = USB_QUIRK_NO_LPM | USB_QUIRK_RESET_RESUME }, /* VCOM device */ { USB_DEVICE(0x4296, 0x7570), .driver_info = USB_QUIRK_CONFIG_INTF_STRINGS }, /* INTEL VALUE SSD */ { USB_DEVICE(0x8086, 0xf1a5), .driver_info = USB_QUIRK_RESET_RESUME }, { } /* terminating entry must be last */ }; static const struct usb_device_id usb_interface_quirk_list[] = { /* Logitech UVC Cameras */ { USB_VENDOR_AND_INTERFACE_INFO(0x046d, USB_CLASS_VIDEO, 1, 0), .driver_info = USB_QUIRK_RESET_RESUME }, { } /* terminating entry must be last */ }; static const struct usb_device_id usb_amd_resume_quirk_list[] = { /* Lenovo Mouse with Pixart controller */ { USB_DEVICE(0x17ef, 0x602e), .driver_info = USB_QUIRK_RESET_RESUME }, /* Pixart Mouse */ { USB_DEVICE(0x093a, 0x2500), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x093a, 0x2510), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x093a, 0x2521), .driver_info = USB_QUIRK_RESET_RESUME }, { USB_DEVICE(0x03f0, 0x2b4a), .driver_info = USB_QUIRK_RESET_RESUME }, /* Logitech Optical Mouse M90/M100 */ { USB_DEVICE(0x046d, 0xc05a), .driver_info = USB_QUIRK_RESET_RESUME }, { } /* terminating entry must be last */ }; /* * Entries for endpoints that should be ignored when parsing configuration * descriptors. * * Matched for devices with USB_QUIRK_ENDPOINT_IGNORE. */ static const struct usb_device_id usb_endpoint_ignore[] = { { USB_DEVICE_INTERFACE_NUMBER(0x06f8, 0xb000, 5), .driver_info = 0x01 }, { USB_DEVICE_INTERFACE_NUMBER(0x06f8, 0xb000, 5), .driver_info = 0x81 }, { USB_DEVICE_INTERFACE_NUMBER(0x0926, 0x0202, 1), .driver_info = 0x85 }, { USB_DEVICE_INTERFACE_NUMBER(0x0926, 0x0208, 1), .driver_info = 0x85 }, { } }; bool usb_endpoint_is_ignored(struct usb_device *udev, struct usb_host_interface *intf, struct usb_endpoint_descriptor *epd) { const struct usb_device_id *id; unsigned int address; for (id = usb_endpoint_ignore; id->match_flags; ++id) { if (!usb_match_device(udev, id)) continue; if (!usb_match_one_id_intf(udev, intf, id)) continue; address = id->driver_info; if (address == epd->bEndpointAddress) return true; } return false; } static bool usb_match_any_interface(struct usb_device *udev, const struct usb_device_id *id) { unsigned int i; for (i = 0; i < udev->descriptor.bNumConfigurations; ++i) { struct usb_host_config *cfg = &udev->config[i]; unsigned int j; for (j = 0; j < cfg->desc.bNumInterfaces; ++j) { struct usb_interface_cache *cache; struct usb_host_interface *intf; cache = cfg->intf_cache[j]; if (cache->num_altsetting == 0) continue; intf = &cache->altsetting[0]; if (usb_match_one_id_intf(udev, intf, id)) return true; } } return false; } static int usb_amd_resume_quirk(struct usb_device *udev) { struct usb_hcd *hcd; hcd = bus_to_hcd(udev->bus); /* The device should be attached directly to root hub */ if (udev->level == 1 && hcd->amd_resume_bug == 1) return 1; return 0; } static u32 usb_detect_static_quirks(struct usb_device *udev, const struct usb_device_id *id) { u32 quirks = 0; for (; id->match_flags; id++) { if (!usb_match_device(udev, id)) continue; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_INFO) && !usb_match_any_interface(udev, id)) continue; quirks |= (u32)(id->driver_info); } return quirks; } static u32 usb_detect_dynamic_quirks(struct usb_device *udev) { u16 vid = le16_to_cpu(udev->descriptor.idVendor); u16 pid = le16_to_cpu(udev->descriptor.idProduct); int i, flags = 0; mutex_lock(&quirk_mutex); for (i = 0; i < quirk_count; i++) { if (vid == quirk_list[i].vid && pid == quirk_list[i].pid) { flags = quirk_list[i].flags; break; } } mutex_unlock(&quirk_mutex); return flags; } /* * Detect any quirks the device has, and do any housekeeping for it if needed. */ void usb_detect_quirks(struct usb_device *udev) { udev->quirks = usb_detect_static_quirks(udev, usb_quirk_list); /* * Pixart-based mice would trigger remote wakeup issue on AMD * Yangtze chipset, so set them as RESET_RESUME flag. */ if (usb_amd_resume_quirk(udev)) udev->quirks |= usb_detect_static_quirks(udev, usb_amd_resume_quirk_list); udev->quirks ^= usb_detect_dynamic_quirks(udev); if (udev->quirks) dev_dbg(&udev->dev, "USB quirks for this device: %x\n", udev->quirks); #ifdef CONFIG_USB_DEFAULT_PERSIST if (!(udev->quirks & USB_QUIRK_RESET)) udev->persist_enabled = 1; #else /* Hubs are automatically enabled for USB-PERSIST */ if (udev->descriptor.bDeviceClass == USB_CLASS_HUB) udev->persist_enabled = 1; #endif /* CONFIG_USB_DEFAULT_PERSIST */ } void usb_detect_interface_quirks(struct usb_device *udev) { u32 quirks; quirks = usb_detect_static_quirks(udev, usb_interface_quirk_list); if (quirks == 0) return; dev_dbg(&udev->dev, "USB interface quirks for this device: %x\n", quirks); udev->quirks |= quirks; } void usb_release_quirk_list(void) { mutex_lock(&quirk_mutex); kfree(quirk_list); quirk_list = NULL; mutex_unlock(&quirk_mutex); }
linux-master
drivers/usb/core/quirks.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/file.c * * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2001 (kernel hotplug, usb_device_id, * more docs, etc) * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * (C) Copyright Greg Kroah-Hartman 2002-2003 * * Released under the GPLv2 only. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/rwsem.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/usb.h> #include "usb.h" #define MAX_USB_MINORS 256 static const struct file_operations *usb_minors[MAX_USB_MINORS]; static DECLARE_RWSEM(minor_rwsem); static int usb_open(struct inode *inode, struct file *file) { int err = -ENODEV; const struct file_operations *new_fops; down_read(&minor_rwsem); new_fops = fops_get(usb_minors[iminor(inode)]); if (!new_fops) goto done; replace_fops(file, new_fops); /* Curiouser and curiouser... NULL ->open() as "no device" ? */ if (file->f_op->open) err = file->f_op->open(inode, file); done: up_read(&minor_rwsem); return err; } static const struct file_operations usb_fops = { .owner = THIS_MODULE, .open = usb_open, .llseek = noop_llseek, }; static char *usb_devnode(const struct device *dev, umode_t *mode) { struct usb_class_driver *drv; drv = dev_get_drvdata(dev); if (!drv || !drv->devnode) return NULL; return drv->devnode(dev, mode); } const struct class usbmisc_class = { .name = "usbmisc", .devnode = usb_devnode, }; int usb_major_init(void) { int error; error = register_chrdev(USB_MAJOR, "usb", &usb_fops); if (error) printk(KERN_ERR "Unable to get major %d for usb devices\n", USB_MAJOR); return error; } void usb_major_cleanup(void) { unregister_chrdev(USB_MAJOR, "usb"); } /** * usb_register_dev - register a USB device, and ask for a minor number * @intf: pointer to the usb_interface that is being registered * @class_driver: pointer to the usb_class_driver for this device * * This should be called by all USB drivers that use the USB major number. * If CONFIG_USB_DYNAMIC_MINORS is enabled, the minor number will be * dynamically allocated out of the list of available ones. If it is not * enabled, the minor number will be based on the next available free minor, * starting at the class_driver->minor_base. * * This function also creates a usb class device in the sysfs tree. * * usb_deregister_dev() must be called when the driver is done with * the minor numbers given out by this function. * * Return: -EINVAL if something bad happens with trying to register a * device, and 0 on success. */ int usb_register_dev(struct usb_interface *intf, struct usb_class_driver *class_driver) { int retval = 0; int minor_base = class_driver->minor_base; int minor; char name[20]; #ifdef CONFIG_USB_DYNAMIC_MINORS /* * We don't care what the device tries to start at, we want to start * at zero to pack the devices into the smallest available space with * no holes in the minor range. */ minor_base = 0; #endif if (class_driver->fops == NULL) return -EINVAL; if (intf->minor >= 0) return -EADDRINUSE; dev_dbg(&intf->dev, "looking for a minor, starting at %d\n", minor_base); down_write(&minor_rwsem); for (minor = minor_base; minor < MAX_USB_MINORS; ++minor) { if (usb_minors[minor]) continue; usb_minors[minor] = class_driver->fops; intf->minor = minor; break; } if (intf->minor < 0) { up_write(&minor_rwsem); return -EXFULL; } /* create a usb class device for this usb interface */ snprintf(name, sizeof(name), class_driver->name, minor - minor_base); intf->usb_dev = device_create(&usbmisc_class, &intf->dev, MKDEV(USB_MAJOR, minor), class_driver, "%s", kbasename(name)); if (IS_ERR(intf->usb_dev)) { usb_minors[minor] = NULL; intf->minor = -1; retval = PTR_ERR(intf->usb_dev); } up_write(&minor_rwsem); return retval; } EXPORT_SYMBOL_GPL(usb_register_dev); /** * usb_deregister_dev - deregister a USB device's dynamic minor. * @intf: pointer to the usb_interface that is being deregistered * @class_driver: pointer to the usb_class_driver for this device * * Used in conjunction with usb_register_dev(). This function is called * when the USB driver is finished with the minor numbers gotten from a * call to usb_register_dev() (usually when the device is disconnected * from the system.) * * This function also removes the usb class device from the sysfs tree. * * This should be called by all drivers that use the USB major number. */ void usb_deregister_dev(struct usb_interface *intf, struct usb_class_driver *class_driver) { if (intf->minor == -1) return; dev_dbg(&intf->dev, "removing %d minor\n", intf->minor); device_destroy(&usbmisc_class, MKDEV(USB_MAJOR, intf->minor)); down_write(&minor_rwsem); usb_minors[intf->minor] = NULL; up_write(&minor_rwsem); intf->usb_dev = NULL; intf->minor = -1; } EXPORT_SYMBOL_GPL(usb_deregister_dev);
linux-master
drivers/usb/core/file.c
// SPDX-License-Identifier: GPL-2.0 /* * USB port LED trigger * * Copyright (C) 2016 Rafał Miłecki <[email protected]> */ #include <linux/device.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/of.h> struct usbport_trig_data { struct led_classdev *led_cdev; struct list_head ports; struct notifier_block nb; int count; /* Amount of connected matching devices */ }; struct usbport_trig_port { struct usbport_trig_data *data; struct usb_device *hub; int portnum; char *port_name; bool observed; struct device_attribute attr; struct list_head list; }; /*************************************** * Helpers ***************************************/ /* * usbport_trig_usb_dev_observed - Check if dev is connected to observed port */ static bool usbport_trig_usb_dev_observed(struct usbport_trig_data *usbport_data, struct usb_device *usb_dev) { struct usbport_trig_port *port; if (!usb_dev->parent) return false; list_for_each_entry(port, &usbport_data->ports, list) { if (usb_dev->parent == port->hub && usb_dev->portnum == port->portnum) return port->observed; } return false; } static int usbport_trig_usb_dev_check(struct usb_device *usb_dev, void *data) { struct usbport_trig_data *usbport_data = data; if (usbport_trig_usb_dev_observed(usbport_data, usb_dev)) usbport_data->count++; return 0; } /* * usbport_trig_update_count - Recalculate amount of connected matching devices */ static void usbport_trig_update_count(struct usbport_trig_data *usbport_data) { struct led_classdev *led_cdev = usbport_data->led_cdev; usbport_data->count = 0; usb_for_each_dev(usbport_data, usbport_trig_usb_dev_check); led_set_brightness(led_cdev, usbport_data->count ? LED_FULL : LED_OFF); } /*************************************** * Device attr ***************************************/ static ssize_t usbport_trig_port_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usbport_trig_port *port = container_of(attr, struct usbport_trig_port, attr); return sprintf(buf, "%d\n", port->observed) + 1; } static ssize_t usbport_trig_port_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct usbport_trig_port *port = container_of(attr, struct usbport_trig_port, attr); if (!strcmp(buf, "0") || !strcmp(buf, "0\n")) port->observed = 0; else if (!strcmp(buf, "1") || !strcmp(buf, "1\n")) port->observed = 1; else return -EINVAL; usbport_trig_update_count(port->data); return size; } static struct attribute *ports_attrs[] = { NULL, }; static const struct attribute_group ports_group = { .name = "ports", .attrs = ports_attrs, }; /*************************************** * Adding & removing ports ***************************************/ /* * usbport_trig_port_observed - Check if port should be observed */ static bool usbport_trig_port_observed(struct usbport_trig_data *usbport_data, struct usb_device *usb_dev, int port1) { struct device *dev = usbport_data->led_cdev->dev; struct device_node *led_np = dev->of_node; struct of_phandle_args args; struct device_node *port_np; int count, i; if (!led_np) return false; /* * Get node of port being added * * FIXME: This is really the device node of the connected device */ port_np = usb_of_get_device_node(usb_dev, port1); if (!port_np) return false; of_node_put(port_np); /* Amount of trigger sources for this LED */ count = of_count_phandle_with_args(led_np, "trigger-sources", "#trigger-source-cells"); if (count < 0) { dev_warn(dev, "Failed to get trigger sources for %pOF\n", led_np); return false; } /* Check list of sources for this specific port */ for (i = 0; i < count; i++) { int err; err = of_parse_phandle_with_args(led_np, "trigger-sources", "#trigger-source-cells", i, &args); if (err) { dev_err(dev, "Failed to get trigger source phandle at index %d: %d\n", i, err); continue; } of_node_put(args.np); if (args.np == port_np) return true; } return false; } static int usbport_trig_add_port(struct usbport_trig_data *usbport_data, struct usb_device *usb_dev, const char *hub_name, int portnum) { struct led_classdev *led_cdev = usbport_data->led_cdev; struct usbport_trig_port *port; size_t len; int err; port = kzalloc(sizeof(*port), GFP_KERNEL); if (!port) { err = -ENOMEM; goto err_out; } port->data = usbport_data; port->hub = usb_dev; port->portnum = portnum; port->observed = usbport_trig_port_observed(usbport_data, usb_dev, portnum); len = strlen(hub_name) + 8; port->port_name = kzalloc(len, GFP_KERNEL); if (!port->port_name) { err = -ENOMEM; goto err_free_port; } snprintf(port->port_name, len, "%s-port%d", hub_name, portnum); sysfs_attr_init(&port->attr.attr); port->attr.attr.name = port->port_name; port->attr.attr.mode = S_IRUSR | S_IWUSR; port->attr.show = usbport_trig_port_show; port->attr.store = usbport_trig_port_store; err = sysfs_add_file_to_group(&led_cdev->dev->kobj, &port->attr.attr, ports_group.name); if (err) goto err_free_port_name; list_add_tail(&port->list, &usbport_data->ports); return 0; err_free_port_name: kfree(port->port_name); err_free_port: kfree(port); err_out: return err; } static int usbport_trig_add_usb_dev_ports(struct usb_device *usb_dev, void *data) { struct usbport_trig_data *usbport_data = data; int i; for (i = 1; i <= usb_dev->maxchild; i++) usbport_trig_add_port(usbport_data, usb_dev, dev_name(&usb_dev->dev), i); return 0; } static void usbport_trig_remove_port(struct usbport_trig_data *usbport_data, struct usbport_trig_port *port) { struct led_classdev *led_cdev = usbport_data->led_cdev; list_del(&port->list); sysfs_remove_file_from_group(&led_cdev->dev->kobj, &port->attr.attr, ports_group.name); kfree(port->port_name); kfree(port); } static void usbport_trig_remove_usb_dev_ports(struct usbport_trig_data *usbport_data, struct usb_device *usb_dev) { struct usbport_trig_port *port, *tmp; list_for_each_entry_safe(port, tmp, &usbport_data->ports, list) { if (port->hub == usb_dev) usbport_trig_remove_port(usbport_data, port); } } /*************************************** * Init, exit, etc. ***************************************/ static int usbport_trig_notify(struct notifier_block *nb, unsigned long action, void *data) { struct usbport_trig_data *usbport_data = container_of(nb, struct usbport_trig_data, nb); struct led_classdev *led_cdev = usbport_data->led_cdev; struct usb_device *usb_dev = data; bool observed; observed = usbport_trig_usb_dev_observed(usbport_data, usb_dev); switch (action) { case USB_DEVICE_ADD: usbport_trig_add_usb_dev_ports(usb_dev, usbport_data); if (observed && usbport_data->count++ == 0) led_set_brightness(led_cdev, LED_FULL); return NOTIFY_OK; case USB_DEVICE_REMOVE: usbport_trig_remove_usb_dev_ports(usbport_data, usb_dev); if (observed && --usbport_data->count == 0) led_set_brightness(led_cdev, LED_OFF); return NOTIFY_OK; } return NOTIFY_DONE; } static int usbport_trig_activate(struct led_classdev *led_cdev) { struct usbport_trig_data *usbport_data; int err; usbport_data = kzalloc(sizeof(*usbport_data), GFP_KERNEL); if (!usbport_data) return -ENOMEM; usbport_data->led_cdev = led_cdev; /* List of ports */ INIT_LIST_HEAD(&usbport_data->ports); err = sysfs_create_group(&led_cdev->dev->kobj, &ports_group); if (err) goto err_free; usb_for_each_dev(usbport_data, usbport_trig_add_usb_dev_ports); usbport_trig_update_count(usbport_data); /* Notifications */ usbport_data->nb.notifier_call = usbport_trig_notify; led_set_trigger_data(led_cdev, usbport_data); usb_register_notify(&usbport_data->nb); return 0; err_free: kfree(usbport_data); return err; } static void usbport_trig_deactivate(struct led_classdev *led_cdev) { struct usbport_trig_data *usbport_data = led_get_trigger_data(led_cdev); struct usbport_trig_port *port, *tmp; list_for_each_entry_safe(port, tmp, &usbport_data->ports, list) { usbport_trig_remove_port(usbport_data, port); } sysfs_remove_group(&led_cdev->dev->kobj, &ports_group); usb_unregister_notify(&usbport_data->nb); kfree(usbport_data); } static struct led_trigger usbport_led_trigger = { .name = "usbport", .activate = usbport_trig_activate, .deactivate = usbport_trig_deactivate, }; module_led_trigger(usbport_led_trigger); MODULE_AUTHOR("Rafał Miłecki <[email protected]>"); MODULE_DESCRIPTION("USB port trigger"); MODULE_LICENSE("GPL v2");
linux-master
drivers/usb/core/ledtrig-usbport.c
// SPDX-License-Identifier: GPL-2.0 /* * All the USB notify logic * * (C) Copyright 2005 Greg Kroah-Hartman <[email protected]> * * notifier functions originally based on those in kernel/sys.c * but fixed up to not be so broken. * * Released under the GPLv2 only. */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/notifier.h> #include <linux/usb.h> #include <linux/mutex.h> #include "usb.h" static BLOCKING_NOTIFIER_HEAD(usb_notifier_list); /** * usb_register_notify - register a notifier callback whenever a usb change happens * @nb: pointer to the notifier block for the callback events. * * These changes are either USB devices or busses being added or removed. */ void usb_register_notify(struct notifier_block *nb) { blocking_notifier_chain_register(&usb_notifier_list, nb); } EXPORT_SYMBOL_GPL(usb_register_notify); /** * usb_unregister_notify - unregister a notifier callback * @nb: pointer to the notifier block for the callback events. * * usb_register_notify() must have been previously called for this function * to work properly. */ void usb_unregister_notify(struct notifier_block *nb) { blocking_notifier_chain_unregister(&usb_notifier_list, nb); } EXPORT_SYMBOL_GPL(usb_unregister_notify); void usb_notify_add_device(struct usb_device *udev) { blocking_notifier_call_chain(&usb_notifier_list, USB_DEVICE_ADD, udev); } void usb_notify_remove_device(struct usb_device *udev) { blocking_notifier_call_chain(&usb_notifier_list, USB_DEVICE_REMOVE, udev); } void usb_notify_add_bus(struct usb_bus *ubus) { blocking_notifier_call_chain(&usb_notifier_list, USB_BUS_ADD, ubus); } void usb_notify_remove_bus(struct usb_bus *ubus) { blocking_notifier_call_chain(&usb_notifier_list, USB_BUS_REMOVE, ubus); }
linux-master
drivers/usb/core/notify.c
// SPDX-License-Identifier: GPL-2.0 /* * drivers/usb/core/driver.c - most of the driver model stuff for usb * * (C) Copyright 2005 Greg Kroah-Hartman <[email protected]> * * based on drivers/usb/usb.c which had the following copyrights: * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2004 * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * (C) Copyright Greg Kroah-Hartman 2002-2003 * * Released under the GPLv2 only. * * NOTE! This is not actually a driver at all, rather this is * just a collection of helper routines that implement the * matching, probing, releasing, suspending and resuming for * real drivers. * */ #include <linux/device.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/usb.h> #include <linux/usb/quirks.h> #include <linux/usb/hcd.h> #include "usb.h" /* * Adds a new dynamic USBdevice ID to this driver, * and cause the driver to probe for all devices again. */ ssize_t usb_store_new_id(struct usb_dynids *dynids, const struct usb_device_id *id_table, struct device_driver *driver, const char *buf, size_t count) { struct usb_dynid *dynid; u32 idVendor = 0; u32 idProduct = 0; unsigned int bInterfaceClass = 0; u32 refVendor, refProduct; int fields = 0; int retval = 0; fields = sscanf(buf, "%x %x %x %x %x", &idVendor, &idProduct, &bInterfaceClass, &refVendor, &refProduct); if (fields < 2) return -EINVAL; dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); if (!dynid) return -ENOMEM; INIT_LIST_HEAD(&dynid->node); dynid->id.idVendor = idVendor; dynid->id.idProduct = idProduct; dynid->id.match_flags = USB_DEVICE_ID_MATCH_DEVICE; if (fields > 2 && bInterfaceClass) { if (bInterfaceClass > 255) { retval = -EINVAL; goto fail; } dynid->id.bInterfaceClass = (u8)bInterfaceClass; dynid->id.match_flags |= USB_DEVICE_ID_MATCH_INT_CLASS; } if (fields > 4) { const struct usb_device_id *id = id_table; if (!id) { retval = -ENODEV; goto fail; } for (; id->match_flags; id++) if (id->idVendor == refVendor && id->idProduct == refProduct) break; if (id->match_flags) { dynid->id.driver_info = id->driver_info; } else { retval = -ENODEV; goto fail; } } spin_lock(&dynids->lock); list_add_tail(&dynid->node, &dynids->list); spin_unlock(&dynids->lock); retval = driver_attach(driver); if (retval) return retval; return count; fail: kfree(dynid); return retval; } EXPORT_SYMBOL_GPL(usb_store_new_id); ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf) { struct usb_dynid *dynid; size_t count = 0; list_for_each_entry(dynid, &dynids->list, node) if (dynid->id.bInterfaceClass != 0) count += scnprintf(&buf[count], PAGE_SIZE - count, "%04x %04x %02x\n", dynid->id.idVendor, dynid->id.idProduct, dynid->id.bInterfaceClass); else count += scnprintf(&buf[count], PAGE_SIZE - count, "%04x %04x\n", dynid->id.idVendor, dynid->id.idProduct); return count; } EXPORT_SYMBOL_GPL(usb_show_dynids); static ssize_t new_id_show(struct device_driver *driver, char *buf) { struct usb_driver *usb_drv = to_usb_driver(driver); return usb_show_dynids(&usb_drv->dynids, buf); } static ssize_t new_id_store(struct device_driver *driver, const char *buf, size_t count) { struct usb_driver *usb_drv = to_usb_driver(driver); return usb_store_new_id(&usb_drv->dynids, usb_drv->id_table, driver, buf, count); } static DRIVER_ATTR_RW(new_id); /* * Remove a USB device ID from this driver */ static ssize_t remove_id_store(struct device_driver *driver, const char *buf, size_t count) { struct usb_dynid *dynid, *n; struct usb_driver *usb_driver = to_usb_driver(driver); u32 idVendor; u32 idProduct; int fields; fields = sscanf(buf, "%x %x", &idVendor, &idProduct); if (fields < 2) return -EINVAL; spin_lock(&usb_driver->dynids.lock); list_for_each_entry_safe(dynid, n, &usb_driver->dynids.list, node) { struct usb_device_id *id = &dynid->id; if ((id->idVendor == idVendor) && (id->idProduct == idProduct)) { list_del(&dynid->node); kfree(dynid); break; } } spin_unlock(&usb_driver->dynids.lock); return count; } static ssize_t remove_id_show(struct device_driver *driver, char *buf) { return new_id_show(driver, buf); } static DRIVER_ATTR_RW(remove_id); static int usb_create_newid_files(struct usb_driver *usb_drv) { int error = 0; if (usb_drv->no_dynamic_id) goto exit; if (usb_drv->probe != NULL) { error = driver_create_file(&usb_drv->drvwrap.driver, &driver_attr_new_id); if (error == 0) { error = driver_create_file(&usb_drv->drvwrap.driver, &driver_attr_remove_id); if (error) driver_remove_file(&usb_drv->drvwrap.driver, &driver_attr_new_id); } } exit: return error; } static void usb_remove_newid_files(struct usb_driver *usb_drv) { if (usb_drv->no_dynamic_id) return; if (usb_drv->probe != NULL) { driver_remove_file(&usb_drv->drvwrap.driver, &driver_attr_remove_id); driver_remove_file(&usb_drv->drvwrap.driver, &driver_attr_new_id); } } static void usb_free_dynids(struct usb_driver *usb_drv) { struct usb_dynid *dynid, *n; spin_lock(&usb_drv->dynids.lock); list_for_each_entry_safe(dynid, n, &usb_drv->dynids.list, node) { list_del(&dynid->node); kfree(dynid); } spin_unlock(&usb_drv->dynids.lock); } static const struct usb_device_id *usb_match_dynamic_id(struct usb_interface *intf, struct usb_driver *drv) { struct usb_dynid *dynid; spin_lock(&drv->dynids.lock); list_for_each_entry(dynid, &drv->dynids.list, node) { if (usb_match_one_id(intf, &dynid->id)) { spin_unlock(&drv->dynids.lock); return &dynid->id; } } spin_unlock(&drv->dynids.lock); return NULL; } /* called from driver core with dev locked */ static int usb_probe_device(struct device *dev) { struct usb_device_driver *udriver = to_usb_device_driver(dev->driver); struct usb_device *udev = to_usb_device(dev); int error = 0; dev_dbg(dev, "%s\n", __func__); /* TODO: Add real matching code */ /* The device should always appear to be in use * unless the driver supports autosuspend. */ if (!udriver->supports_autosuspend) error = usb_autoresume_device(udev); if (error) return error; if (udriver->generic_subclass) error = usb_generic_driver_probe(udev); if (error) return error; /* Probe the USB device with the driver in hand, but only * defer to a generic driver in case the current USB * device driver has an id_table or a match function; i.e., * when the device driver was explicitly matched against * a device. * * If the device driver does not have either of these, * then we assume that it can bind to any device and is * not truly a more specialized/non-generic driver, so a * return value of -ENODEV should not force the device * to be handled by the generic USB driver, as there * can still be another, more specialized, device driver. * * This accommodates the usbip driver. * * TODO: What if, in the future, there are multiple * specialized USB device drivers for a particular device? * In such cases, there is a need to try all matching * specialised device drivers prior to setting the * use_generic_driver bit. */ error = udriver->probe(udev); if (error == -ENODEV && udriver != &usb_generic_driver && (udriver->id_table || udriver->match)) { udev->use_generic_driver = 1; return -EPROBE_DEFER; } return error; } /* called from driver core with dev locked */ static int usb_unbind_device(struct device *dev) { struct usb_device *udev = to_usb_device(dev); struct usb_device_driver *udriver = to_usb_device_driver(dev->driver); if (udriver->disconnect) udriver->disconnect(udev); if (udriver->generic_subclass) usb_generic_driver_disconnect(udev); if (!udriver->supports_autosuspend) usb_autosuspend_device(udev); return 0; } /* called from driver core with dev locked */ static int usb_probe_interface(struct device *dev) { struct usb_driver *driver = to_usb_driver(dev->driver); struct usb_interface *intf = to_usb_interface(dev); struct usb_device *udev = interface_to_usbdev(intf); const struct usb_device_id *id; int error = -ENODEV; int lpm_disable_error = -ENODEV; dev_dbg(dev, "%s\n", __func__); intf->needs_binding = 0; if (usb_device_is_owned(udev)) return error; if (udev->authorized == 0) { dev_err(&intf->dev, "Device is not authorized for usage\n"); return error; } else if (intf->authorized == 0) { dev_err(&intf->dev, "Interface %d is not authorized for usage\n", intf->altsetting->desc.bInterfaceNumber); return error; } id = usb_match_dynamic_id(intf, driver); if (!id) id = usb_match_id(intf, driver->id_table); if (!id) return error; dev_dbg(dev, "%s - got id\n", __func__); error = usb_autoresume_device(udev); if (error) return error; intf->condition = USB_INTERFACE_BINDING; /* Probed interfaces are initially active. They are * runtime-PM-enabled only if the driver has autosuspend support. * They are sensitive to their children's power states. */ pm_runtime_set_active(dev); pm_suspend_ignore_children(dev, false); if (driver->supports_autosuspend) pm_runtime_enable(dev); /* If the new driver doesn't allow hub-initiated LPM, and we can't * disable hub-initiated LPM, then fail the probe. * * Otherwise, leaving LPM enabled should be harmless, because the * endpoint intervals should remain the same, and the U1/U2 timeouts * should remain the same. * * If we need to install alt setting 0 before probe, or another alt * setting during probe, that should also be fine. usb_set_interface() * will attempt to disable LPM, and fail if it can't disable it. */ if (driver->disable_hub_initiated_lpm) { lpm_disable_error = usb_unlocked_disable_lpm(udev); if (lpm_disable_error) { dev_err(&intf->dev, "%s Failed to disable LPM for driver %s\n", __func__, driver->name); error = lpm_disable_error; goto err; } } /* Carry out a deferred switch to altsetting 0 */ if (intf->needs_altsetting0) { error = usb_set_interface(udev, intf->altsetting[0]. desc.bInterfaceNumber, 0); if (error < 0) goto err; intf->needs_altsetting0 = 0; } error = driver->probe(intf, id); if (error) goto err; intf->condition = USB_INTERFACE_BOUND; /* If the LPM disable succeeded, balance the ref counts. */ if (!lpm_disable_error) usb_unlocked_enable_lpm(udev); usb_autosuspend_device(udev); return error; err: usb_set_intfdata(intf, NULL); intf->needs_remote_wakeup = 0; intf->condition = USB_INTERFACE_UNBOUND; /* If the LPM disable succeeded, balance the ref counts. */ if (!lpm_disable_error) usb_unlocked_enable_lpm(udev); /* Unbound interfaces are always runtime-PM-disabled and -suspended */ if (driver->supports_autosuspend) pm_runtime_disable(dev); pm_runtime_set_suspended(dev); usb_autosuspend_device(udev); return error; } /* called from driver core with dev locked */ static int usb_unbind_interface(struct device *dev) { struct usb_driver *driver = to_usb_driver(dev->driver); struct usb_interface *intf = to_usb_interface(dev); struct usb_host_endpoint *ep, **eps = NULL; struct usb_device *udev; int i, j, error, r; int lpm_disable_error = -ENODEV; intf->condition = USB_INTERFACE_UNBINDING; /* Autoresume for set_interface call below */ udev = interface_to_usbdev(intf); error = usb_autoresume_device(udev); /* If hub-initiated LPM policy may change, attempt to disable LPM until * the driver is unbound. If LPM isn't disabled, that's fine because it * wouldn't be enabled unless all the bound interfaces supported * hub-initiated LPM. */ if (driver->disable_hub_initiated_lpm) lpm_disable_error = usb_unlocked_disable_lpm(udev); /* * Terminate all URBs for this interface unless the driver * supports "soft" unbinding and the device is still present. */ if (!driver->soft_unbind || udev->state == USB_STATE_NOTATTACHED) usb_disable_interface(udev, intf, false); driver->disconnect(intf); /* Free streams */ for (i = 0, j = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep = &intf->cur_altsetting->endpoint[i]; if (ep->streams == 0) continue; if (j == 0) { eps = kmalloc_array(USB_MAXENDPOINTS, sizeof(void *), GFP_KERNEL); if (!eps) break; } eps[j++] = ep; } if (j) { usb_free_streams(intf, eps, j, GFP_KERNEL); kfree(eps); } /* Reset other interface state. * We cannot do a Set-Interface if the device is suspended or * if it is prepared for a system sleep (since installing a new * altsetting means creating new endpoint device entries). * When either of these happens, defer the Set-Interface. */ if (intf->cur_altsetting->desc.bAlternateSetting == 0) { /* Already in altsetting 0 so skip Set-Interface. * Just re-enable it without affecting the endpoint toggles. */ usb_enable_interface(udev, intf, false); } else if (!error && !intf->dev.power.is_prepared) { r = usb_set_interface(udev, intf->altsetting[0]. desc.bInterfaceNumber, 0); if (r < 0) intf->needs_altsetting0 = 1; } else { intf->needs_altsetting0 = 1; } usb_set_intfdata(intf, NULL); intf->condition = USB_INTERFACE_UNBOUND; intf->needs_remote_wakeup = 0; /* Attempt to re-enable USB3 LPM, if the disable succeeded. */ if (!lpm_disable_error) usb_unlocked_enable_lpm(udev); /* Unbound interfaces are always runtime-PM-disabled and -suspended */ if (driver->supports_autosuspend) pm_runtime_disable(dev); pm_runtime_set_suspended(dev); if (!error) usb_autosuspend_device(udev); return 0; } /** * usb_driver_claim_interface - bind a driver to an interface * @driver: the driver to be bound * @iface: the interface to which it will be bound; must be in the * usb device's active configuration * @data: driver data associated with that interface * * This is used by usb device drivers that need to claim more than one * interface on a device when probing (audio and acm are current examples). * No device driver should directly modify internal usb_interface or * usb_device structure members. * * Callers must own the device lock, so driver probe() entries don't need * extra locking, but other call contexts may need to explicitly claim that * lock. * * Return: 0 on success. */ int usb_driver_claim_interface(struct usb_driver *driver, struct usb_interface *iface, void *data) { struct device *dev; int retval = 0; if (!iface) return -ENODEV; dev = &iface->dev; if (dev->driver) return -EBUSY; /* reject claim if interface is not authorized */ if (!iface->authorized) return -ENODEV; dev->driver = &driver->drvwrap.driver; usb_set_intfdata(iface, data); iface->needs_binding = 0; iface->condition = USB_INTERFACE_BOUND; /* Claimed interfaces are initially inactive (suspended) and * runtime-PM-enabled, but only if the driver has autosuspend * support. Otherwise they are marked active, to prevent the * device from being autosuspended, but left disabled. In either * case they are sensitive to their children's power states. */ pm_suspend_ignore_children(dev, false); if (driver->supports_autosuspend) pm_runtime_enable(dev); else pm_runtime_set_active(dev); /* if interface was already added, bind now; else let * the future device_add() bind it, bypassing probe() */ if (device_is_registered(dev)) retval = device_bind_driver(dev); if (retval) { dev->driver = NULL; usb_set_intfdata(iface, NULL); iface->needs_remote_wakeup = 0; iface->condition = USB_INTERFACE_UNBOUND; /* * Unbound interfaces are always runtime-PM-disabled * and runtime-PM-suspended */ if (driver->supports_autosuspend) pm_runtime_disable(dev); pm_runtime_set_suspended(dev); } return retval; } EXPORT_SYMBOL_GPL(usb_driver_claim_interface); /** * usb_driver_release_interface - unbind a driver from an interface * @driver: the driver to be unbound * @iface: the interface from which it will be unbound * * This can be used by drivers to release an interface without waiting * for their disconnect() methods to be called. In typical cases this * also causes the driver disconnect() method to be called. * * This call is synchronous, and may not be used in an interrupt context. * Callers must own the device lock, so driver disconnect() entries don't * need extra locking, but other call contexts may need to explicitly claim * that lock. */ void usb_driver_release_interface(struct usb_driver *driver, struct usb_interface *iface) { struct device *dev = &iface->dev; /* this should never happen, don't release something that's not ours */ if (!dev->driver || dev->driver != &driver->drvwrap.driver) return; /* don't release from within disconnect() */ if (iface->condition != USB_INTERFACE_BOUND) return; iface->condition = USB_INTERFACE_UNBINDING; /* Release via the driver core only if the interface * has already been registered */ if (device_is_registered(dev)) { device_release_driver(dev); } else { device_lock(dev); usb_unbind_interface(dev); dev->driver = NULL; device_unlock(dev); } } EXPORT_SYMBOL_GPL(usb_driver_release_interface); /* returns 0 if no match, 1 if match */ int usb_match_device(struct usb_device *dev, const struct usb_device_id *id) { if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && id->idVendor != le16_to_cpu(dev->descriptor.idVendor)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && id->idProduct != le16_to_cpu(dev->descriptor.idProduct)) return 0; /* No need to test id->bcdDevice_lo != 0, since 0 is never greater than any unsigned number. */ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && (id->bDeviceClass != dev->descriptor.bDeviceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && (id->bDeviceSubClass != dev->descriptor.bDeviceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol)) return 0; return 1; } /* returns 0 if no match, 1 if match */ int usb_match_one_id_intf(struct usb_device *dev, struct usb_host_interface *intf, const struct usb_device_id *id) { /* The interface class, subclass, protocol and number should never be * checked for a match if the device class is Vendor Specific, * unless the match record specifies the Vendor ID. */ if (dev->descriptor.bDeviceClass == USB_CLASS_VENDOR_SPEC && !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL | USB_DEVICE_ID_MATCH_INT_NUMBER))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && (id->bInterfaceClass != intf->desc.bInterfaceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_NUMBER) && (id->bInterfaceNumber != intf->desc.bInterfaceNumber)) return 0; return 1; } /* returns 0 if no match, 1 if match */ int usb_match_one_id(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_host_interface *intf; struct usb_device *dev; /* proc_connectinfo in devio.c may call us with id == NULL. */ if (id == NULL) return 0; intf = interface->cur_altsetting; dev = interface_to_usbdev(interface); if (!usb_match_device(dev, id)) return 0; return usb_match_one_id_intf(dev, intf, id); } EXPORT_SYMBOL_GPL(usb_match_one_id); /** * usb_match_id - find first usb_device_id matching device or interface * @interface: the interface of interest * @id: array of usb_device_id structures, terminated by zero entry * * usb_match_id searches an array of usb_device_id's and returns * the first one matching the device or interface, or null. * This is used when binding (or rebinding) a driver to an interface. * Most USB device drivers will use this indirectly, through the usb core, * but some layered driver frameworks use it directly. * These device tables are exported with MODULE_DEVICE_TABLE, through * modutils, to support the driver loading functionality of USB hotplugging. * * Return: The first matching usb_device_id, or %NULL. * * What Matches: * * The "match_flags" element in a usb_device_id controls which * members are used. If the corresponding bit is set, the * value in the device_id must match its corresponding member * in the device or interface descriptor, or else the device_id * does not match. * * "driver_info" is normally used only by device drivers, * but you can create a wildcard "matches anything" usb_device_id * as a driver's "modules.usbmap" entry if you provide an id with * only a nonzero "driver_info" field. If you do this, the USB device * driver's probe() routine should use additional intelligence to * decide whether to bind to the specified interface. * * What Makes Good usb_device_id Tables: * * The match algorithm is very simple, so that intelligence in * driver selection must come from smart driver id records. * Unless you have good reasons to use another selection policy, * provide match elements only in related groups, and order match * specifiers from specific to general. Use the macros provided * for that purpose if you can. * * The most specific match specifiers use device descriptor * data. These are commonly used with product-specific matches; * the USB_DEVICE macro lets you provide vendor and product IDs, * and you can also match against ranges of product revisions. * These are widely used for devices with application or vendor * specific bDeviceClass values. * * Matches based on device class/subclass/protocol specifications * are slightly more general; use the USB_DEVICE_INFO macro, or * its siblings. These are used with single-function devices * where bDeviceClass doesn't specify that each interface has * its own class. * * Matches based on interface class/subclass/protocol are the * most general; they let drivers bind to any interface on a * multiple-function device. Use the USB_INTERFACE_INFO * macro, or its siblings, to match class-per-interface style * devices (as recorded in bInterfaceClass). * * Note that an entry created by USB_INTERFACE_INFO won't match * any interface if the device class is set to Vendor-Specific. * This is deliberate; according to the USB spec the meanings of * the interface class/subclass/protocol for these devices are also * vendor-specific, and hence matching against a standard product * class wouldn't work anyway. If you really want to use an * interface-based match for such a device, create a match record * that also specifies the vendor ID. (Unforunately there isn't a * standard macro for creating records like this.) * * Within those groups, remember that not all combinations are * meaningful. For example, don't give a product version range * without vendor and product IDs; or specify a protocol without * its associated class and subclass. */ const struct usb_device_id *usb_match_id(struct usb_interface *interface, const struct usb_device_id *id) { /* proc_connectinfo in devio.c may call us with id == NULL. */ if (id == NULL) return NULL; /* It is important to check that id->driver_info is nonzero, since an entry that is all zeroes except for a nonzero id->driver_info is the way to create an entry that indicates that the driver want to examine every device and interface. */ for (; id->idVendor || id->idProduct || id->bDeviceClass || id->bInterfaceClass || id->driver_info; id++) { if (usb_match_one_id(interface, id)) return id; } return NULL; } EXPORT_SYMBOL_GPL(usb_match_id); const struct usb_device_id *usb_device_match_id(struct usb_device *udev, const struct usb_device_id *id) { if (!id) return NULL; for (; id->idVendor || id->idProduct ; id++) { if (usb_match_device(udev, id)) return id; } return NULL; } EXPORT_SYMBOL_GPL(usb_device_match_id); bool usb_driver_applicable(struct usb_device *udev, struct usb_device_driver *udrv) { if (udrv->id_table && udrv->match) return usb_device_match_id(udev, udrv->id_table) != NULL && udrv->match(udev); if (udrv->id_table) return usb_device_match_id(udev, udrv->id_table) != NULL; if (udrv->match) return udrv->match(udev); return false; } static int usb_device_match(struct device *dev, struct device_driver *drv) { /* devices and interfaces are handled separately */ if (is_usb_device(dev)) { struct usb_device *udev; struct usb_device_driver *udrv; /* interface drivers never match devices */ if (!is_usb_device_driver(drv)) return 0; udev = to_usb_device(dev); udrv = to_usb_device_driver(drv); /* If the device driver under consideration does not have a * id_table or a match function, then let the driver's probe * function decide. */ if (!udrv->id_table && !udrv->match) return 1; return usb_driver_applicable(udev, udrv); } else if (is_usb_interface(dev)) { struct usb_interface *intf; struct usb_driver *usb_drv; const struct usb_device_id *id; /* device drivers never match interfaces */ if (is_usb_device_driver(drv)) return 0; intf = to_usb_interface(dev); usb_drv = to_usb_driver(drv); id = usb_match_id(intf, usb_drv->id_table); if (id) return 1; id = usb_match_dynamic_id(intf, usb_drv); if (id) return 1; } return 0; } static int usb_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct usb_device *usb_dev; if (is_usb_device(dev)) { usb_dev = to_usb_device(dev); } else if (is_usb_interface(dev)) { const struct usb_interface *intf = to_usb_interface(dev); usb_dev = interface_to_usbdev(intf); } else { return 0; } if (usb_dev->devnum < 0) { /* driver is often null here; dev_dbg() would oops */ pr_debug("usb %s: already deleted?\n", dev_name(dev)); return -ENODEV; } if (!usb_dev->bus) { pr_debug("usb %s: bus removed?\n", dev_name(dev)); return -ENODEV; } /* per-device configurations are common */ if (add_uevent_var(env, "PRODUCT=%x/%x/%x", le16_to_cpu(usb_dev->descriptor.idVendor), le16_to_cpu(usb_dev->descriptor.idProduct), le16_to_cpu(usb_dev->descriptor.bcdDevice))) return -ENOMEM; /* class-based driver binding models */ if (add_uevent_var(env, "TYPE=%d/%d/%d", usb_dev->descriptor.bDeviceClass, usb_dev->descriptor.bDeviceSubClass, usb_dev->descriptor.bDeviceProtocol)) return -ENOMEM; return 0; } static int __usb_bus_reprobe_drivers(struct device *dev, void *data) { struct usb_device_driver *new_udriver = data; struct usb_device *udev; int ret; /* Don't reprobe if current driver isn't usb_generic_driver */ if (dev->driver != &usb_generic_driver.drvwrap.driver) return 0; udev = to_usb_device(dev); if (!usb_driver_applicable(udev, new_udriver)) return 0; ret = device_reprobe(dev); if (ret && ret != -EPROBE_DEFER) dev_err(dev, "Failed to reprobe device (error %d)\n", ret); return 0; } /** * usb_register_device_driver - register a USB device (not interface) driver * @new_udriver: USB operations for the device driver * @owner: module owner of this driver. * * Registers a USB device driver with the USB core. The list of * unattached devices will be rescanned whenever a new driver is * added, allowing the new driver to attach to any recognized devices. * * Return: A negative error code on failure and 0 on success. */ int usb_register_device_driver(struct usb_device_driver *new_udriver, struct module *owner) { int retval = 0; if (usb_disabled()) return -ENODEV; new_udriver->drvwrap.for_devices = 1; new_udriver->drvwrap.driver.name = new_udriver->name; new_udriver->drvwrap.driver.bus = &usb_bus_type; new_udriver->drvwrap.driver.probe = usb_probe_device; new_udriver->drvwrap.driver.remove = usb_unbind_device; new_udriver->drvwrap.driver.owner = owner; new_udriver->drvwrap.driver.dev_groups = new_udriver->dev_groups; retval = driver_register(&new_udriver->drvwrap.driver); if (!retval) { pr_info("%s: registered new device driver %s\n", usbcore_name, new_udriver->name); /* * Check whether any device could be better served with * this new driver */ bus_for_each_dev(&usb_bus_type, NULL, new_udriver, __usb_bus_reprobe_drivers); } else { pr_err("%s: error %d registering device driver %s\n", usbcore_name, retval, new_udriver->name); } return retval; } EXPORT_SYMBOL_GPL(usb_register_device_driver); /** * usb_deregister_device_driver - unregister a USB device (not interface) driver * @udriver: USB operations of the device driver to unregister * Context: must be able to sleep * * Unlinks the specified driver from the internal USB driver list. */ void usb_deregister_device_driver(struct usb_device_driver *udriver) { pr_info("%s: deregistering device driver %s\n", usbcore_name, udriver->name); driver_unregister(&udriver->drvwrap.driver); } EXPORT_SYMBOL_GPL(usb_deregister_device_driver); /** * usb_register_driver - register a USB interface driver * @new_driver: USB operations for the interface driver * @owner: module owner of this driver. * @mod_name: module name string * * Registers a USB interface driver with the USB core. The list of * unattached interfaces will be rescanned whenever a new driver is * added, allowing the new driver to attach to any recognized interfaces. * * Return: A negative error code on failure and 0 on success. * * NOTE: if you want your driver to use the USB major number, you must call * usb_register_dev() to enable that functionality. This function no longer * takes care of that. */ int usb_register_driver(struct usb_driver *new_driver, struct module *owner, const char *mod_name) { int retval = 0; if (usb_disabled()) return -ENODEV; new_driver->drvwrap.for_devices = 0; new_driver->drvwrap.driver.name = new_driver->name; new_driver->drvwrap.driver.bus = &usb_bus_type; new_driver->drvwrap.driver.probe = usb_probe_interface; new_driver->drvwrap.driver.remove = usb_unbind_interface; new_driver->drvwrap.driver.owner = owner; new_driver->drvwrap.driver.mod_name = mod_name; new_driver->drvwrap.driver.dev_groups = new_driver->dev_groups; spin_lock_init(&new_driver->dynids.lock); INIT_LIST_HEAD(&new_driver->dynids.list); retval = driver_register(&new_driver->drvwrap.driver); if (retval) goto out; retval = usb_create_newid_files(new_driver); if (retval) goto out_newid; pr_info("%s: registered new interface driver %s\n", usbcore_name, new_driver->name); out: return retval; out_newid: driver_unregister(&new_driver->drvwrap.driver); pr_err("%s: error %d registering interface driver %s\n", usbcore_name, retval, new_driver->name); goto out; } EXPORT_SYMBOL_GPL(usb_register_driver); /** * usb_deregister - unregister a USB interface driver * @driver: USB operations of the interface driver to unregister * Context: must be able to sleep * * Unlinks the specified driver from the internal USB driver list. * * NOTE: If you called usb_register_dev(), you still need to call * usb_deregister_dev() to clean up your driver's allocated minor numbers, * this * call will no longer do it for you. */ void usb_deregister(struct usb_driver *driver) { pr_info("%s: deregistering interface driver %s\n", usbcore_name, driver->name); usb_remove_newid_files(driver); driver_unregister(&driver->drvwrap.driver); usb_free_dynids(driver); } EXPORT_SYMBOL_GPL(usb_deregister); /* Forced unbinding of a USB interface driver, either because * it doesn't support pre_reset/post_reset/reset_resume or * because it doesn't support suspend/resume. * * The caller must hold @intf's device's lock, but not @intf's lock. */ void usb_forced_unbind_intf(struct usb_interface *intf) { struct usb_driver *driver = to_usb_driver(intf->dev.driver); dev_dbg(&intf->dev, "forced unbind\n"); usb_driver_release_interface(driver, intf); /* Mark the interface for later rebinding */ intf->needs_binding = 1; } /* * Unbind drivers for @udev's marked interfaces. These interfaces have * the needs_binding flag set, for example by usb_resume_interface(). * * The caller must hold @udev's device lock. */ static void unbind_marked_interfaces(struct usb_device *udev) { struct usb_host_config *config; int i; struct usb_interface *intf; config = udev->actconfig; if (config) { for (i = 0; i < config->desc.bNumInterfaces; ++i) { intf = config->interface[i]; if (intf->dev.driver && intf->needs_binding) usb_forced_unbind_intf(intf); } } } /* Delayed forced unbinding of a USB interface driver and scan * for rebinding. * * The caller must hold @intf's device's lock, but not @intf's lock. * * Note: Rebinds will be skipped if a system sleep transition is in * progress and the PM "complete" callback hasn't occurred yet. */ static void usb_rebind_intf(struct usb_interface *intf) { int rc; /* Delayed unbind of an existing driver */ if (intf->dev.driver) usb_forced_unbind_intf(intf); /* Try to rebind the interface */ if (!intf->dev.power.is_prepared) { intf->needs_binding = 0; rc = device_attach(&intf->dev); if (rc < 0 && rc != -EPROBE_DEFER) dev_warn(&intf->dev, "rebind failed: %d\n", rc); } } /* * Rebind drivers to @udev's marked interfaces. These interfaces have * the needs_binding flag set. * * The caller must hold @udev's device lock. */ static void rebind_marked_interfaces(struct usb_device *udev) { struct usb_host_config *config; int i; struct usb_interface *intf; config = udev->actconfig; if (config) { for (i = 0; i < config->desc.bNumInterfaces; ++i) { intf = config->interface[i]; if (intf->needs_binding) usb_rebind_intf(intf); } } } /* * Unbind all of @udev's marked interfaces and then rebind all of them. * This ordering is necessary because some drivers claim several interfaces * when they are first probed. * * The caller must hold @udev's device lock. */ void usb_unbind_and_rebind_marked_interfaces(struct usb_device *udev) { unbind_marked_interfaces(udev); rebind_marked_interfaces(udev); } #ifdef CONFIG_PM /* Unbind drivers for @udev's interfaces that don't support suspend/resume * There is no check for reset_resume here because it can be determined * only during resume whether reset_resume is needed. * * The caller must hold @udev's device lock. */ static void unbind_no_pm_drivers_interfaces(struct usb_device *udev) { struct usb_host_config *config; int i; struct usb_interface *intf; struct usb_driver *drv; config = udev->actconfig; if (config) { for (i = 0; i < config->desc.bNumInterfaces; ++i) { intf = config->interface[i]; if (intf->dev.driver) { drv = to_usb_driver(intf->dev.driver); if (!drv->suspend || !drv->resume) usb_forced_unbind_intf(intf); } } } } static int usb_suspend_device(struct usb_device *udev, pm_message_t msg) { struct usb_device_driver *udriver; int status = 0; if (udev->state == USB_STATE_NOTATTACHED || udev->state == USB_STATE_SUSPENDED) goto done; /* For devices that don't have a driver, we do a generic suspend. */ if (udev->dev.driver) udriver = to_usb_device_driver(udev->dev.driver); else { udev->do_remote_wakeup = 0; udriver = &usb_generic_driver; } if (udriver->suspend) status = udriver->suspend(udev, msg); if (status == 0 && udriver->generic_subclass) status = usb_generic_driver_suspend(udev, msg); done: dev_vdbg(&udev->dev, "%s: status %d\n", __func__, status); return status; } static int usb_resume_device(struct usb_device *udev, pm_message_t msg) { struct usb_device_driver *udriver; int status = 0; if (udev->state == USB_STATE_NOTATTACHED) goto done; /* Can't resume it if it doesn't have a driver. */ if (udev->dev.driver == NULL) { status = -ENOTCONN; goto done; } /* Non-root devices on a full/low-speed bus must wait for their * companion high-speed root hub, in case a handoff is needed. */ if (!PMSG_IS_AUTO(msg) && udev->parent && udev->bus->hs_companion) device_pm_wait_for_dev(&udev->dev, &udev->bus->hs_companion->root_hub->dev); if (udev->quirks & USB_QUIRK_RESET_RESUME) udev->reset_resume = 1; udriver = to_usb_device_driver(udev->dev.driver); if (udriver->generic_subclass) status = usb_generic_driver_resume(udev, msg); if (status == 0 && udriver->resume) status = udriver->resume(udev, msg); done: dev_vdbg(&udev->dev, "%s: status %d\n", __func__, status); return status; } static int usb_suspend_interface(struct usb_device *udev, struct usb_interface *intf, pm_message_t msg) { struct usb_driver *driver; int status = 0; if (udev->state == USB_STATE_NOTATTACHED || intf->condition == USB_INTERFACE_UNBOUND) goto done; driver = to_usb_driver(intf->dev.driver); /* at this time we know the driver supports suspend */ status = driver->suspend(intf, msg); if (status && !PMSG_IS_AUTO(msg)) dev_err(&intf->dev, "suspend error %d\n", status); done: dev_vdbg(&intf->dev, "%s: status %d\n", __func__, status); return status; } static int usb_resume_interface(struct usb_device *udev, struct usb_interface *intf, pm_message_t msg, int reset_resume) { struct usb_driver *driver; int status = 0; if (udev->state == USB_STATE_NOTATTACHED) goto done; /* Don't let autoresume interfere with unbinding */ if (intf->condition == USB_INTERFACE_UNBINDING) goto done; /* Can't resume it if it doesn't have a driver. */ if (intf->condition == USB_INTERFACE_UNBOUND) { /* Carry out a deferred switch to altsetting 0 */ if (intf->needs_altsetting0 && !intf->dev.power.is_prepared) { usb_set_interface(udev, intf->altsetting[0]. desc.bInterfaceNumber, 0); intf->needs_altsetting0 = 0; } goto done; } /* Don't resume if the interface is marked for rebinding */ if (intf->needs_binding) goto done; driver = to_usb_driver(intf->dev.driver); if (reset_resume) { if (driver->reset_resume) { status = driver->reset_resume(intf); if (status) dev_err(&intf->dev, "%s error %d\n", "reset_resume", status); } else { intf->needs_binding = 1; dev_dbg(&intf->dev, "no reset_resume for driver %s?\n", driver->name); } } else { status = driver->resume(intf); if (status) dev_err(&intf->dev, "resume error %d\n", status); } done: dev_vdbg(&intf->dev, "%s: status %d\n", __func__, status); /* Later we will unbind the driver and/or reprobe, if necessary */ return status; } /** * usb_suspend_both - suspend a USB device and its interfaces * @udev: the usb_device to suspend * @msg: Power Management message describing this state transition * * This is the central routine for suspending USB devices. It calls the * suspend methods for all the interface drivers in @udev and then calls * the suspend method for @udev itself. When the routine is called in * autosuspend, if an error occurs at any stage, all the interfaces * which were suspended are resumed so that they remain in the same * state as the device, but when called from system sleep, all error * from suspend methods of interfaces and the non-root-hub device itself * are simply ignored, so all suspended interfaces are only resumed * to the device's state when @udev is root-hub and its suspend method * returns failure. * * Autosuspend requests originating from a child device or an interface * driver may be made without the protection of @udev's device lock, but * all other suspend calls will hold the lock. Usbcore will insure that * method calls do not arrive during bind, unbind, or reset operations. * However drivers must be prepared to handle suspend calls arriving at * unpredictable times. * * This routine can run only in process context. * * Return: 0 if the suspend succeeded. */ static int usb_suspend_both(struct usb_device *udev, pm_message_t msg) { int status = 0; int i = 0, n = 0; struct usb_interface *intf; if (udev->state == USB_STATE_NOTATTACHED || udev->state == USB_STATE_SUSPENDED) goto done; /* Suspend all the interfaces and then udev itself */ if (udev->actconfig) { n = udev->actconfig->desc.bNumInterfaces; for (i = n - 1; i >= 0; --i) { intf = udev->actconfig->interface[i]; status = usb_suspend_interface(udev, intf, msg); /* Ignore errors during system sleep transitions */ if (!PMSG_IS_AUTO(msg)) status = 0; if (status != 0) break; } } if (status == 0) { status = usb_suspend_device(udev, msg); /* * Ignore errors from non-root-hub devices during * system sleep transitions. For the most part, * these devices should go to low power anyway when * the entire bus is suspended. */ if (udev->parent && !PMSG_IS_AUTO(msg)) status = 0; /* * If the device is inaccessible, don't try to resume * suspended interfaces and just return the error. */ if (status && status != -EBUSY) { int err; u16 devstat; err = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, &devstat); if (err) { dev_err(&udev->dev, "Failed to suspend device, error %d\n", status); goto done; } } } /* If the suspend failed, resume interfaces that did get suspended */ if (status != 0) { if (udev->actconfig) { msg.event ^= (PM_EVENT_SUSPEND | PM_EVENT_RESUME); while (++i < n) { intf = udev->actconfig->interface[i]; usb_resume_interface(udev, intf, msg, 0); } } /* If the suspend succeeded then prevent any more URB submissions * and flush any outstanding URBs. */ } else { udev->can_submit = 0; for (i = 0; i < 16; ++i) { usb_hcd_flush_endpoint(udev, udev->ep_out[i]); usb_hcd_flush_endpoint(udev, udev->ep_in[i]); } } done: dev_vdbg(&udev->dev, "%s: status %d\n", __func__, status); return status; } /** * usb_resume_both - resume a USB device and its interfaces * @udev: the usb_device to resume * @msg: Power Management message describing this state transition * * This is the central routine for resuming USB devices. It calls the * resume method for @udev and then calls the resume methods for all * the interface drivers in @udev. * * Autoresume requests originating from a child device or an interface * driver may be made without the protection of @udev's device lock, but * all other resume calls will hold the lock. Usbcore will insure that * method calls do not arrive during bind, unbind, or reset operations. * However drivers must be prepared to handle resume calls arriving at * unpredictable times. * * This routine can run only in process context. * * Return: 0 on success. */ static int usb_resume_both(struct usb_device *udev, pm_message_t msg) { int status = 0; int i; struct usb_interface *intf; if (udev->state == USB_STATE_NOTATTACHED) { status = -ENODEV; goto done; } udev->can_submit = 1; /* Resume the device */ if (udev->state == USB_STATE_SUSPENDED || udev->reset_resume) status = usb_resume_device(udev, msg); /* Resume the interfaces */ if (status == 0 && udev->actconfig) { for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { intf = udev->actconfig->interface[i]; usb_resume_interface(udev, intf, msg, udev->reset_resume); } } usb_mark_last_busy(udev); done: dev_vdbg(&udev->dev, "%s: status %d\n", __func__, status); if (!status) udev->reset_resume = 0; return status; } static void choose_wakeup(struct usb_device *udev, pm_message_t msg) { int w; /* * For FREEZE/QUIESCE, disable remote wakeups so no interrupts get * generated. */ if (msg.event == PM_EVENT_FREEZE || msg.event == PM_EVENT_QUIESCE) { w = 0; } else { /* * Enable remote wakeup if it is allowed, even if no interface * drivers actually want it. */ w = device_may_wakeup(&udev->dev); } /* * If the device is autosuspended with the wrong wakeup setting, * autoresume now so the setting can be changed. */ if (udev->state == USB_STATE_SUSPENDED && w != udev->do_remote_wakeup) pm_runtime_resume(&udev->dev); udev->do_remote_wakeup = w; } /* The device lock is held by the PM core */ int usb_suspend(struct device *dev, pm_message_t msg) { struct usb_device *udev = to_usb_device(dev); int r; unbind_no_pm_drivers_interfaces(udev); /* From now on we are sure all drivers support suspend/resume * but not necessarily reset_resume() * so we may still need to unbind and rebind upon resume */ choose_wakeup(udev, msg); r = usb_suspend_both(udev, msg); if (r) return r; if (udev->quirks & USB_QUIRK_DISCONNECT_SUSPEND) usb_port_disable(udev); return 0; } /* The device lock is held by the PM core */ int usb_resume_complete(struct device *dev) { struct usb_device *udev = to_usb_device(dev); /* For PM complete calls, all we do is rebind interfaces * whose needs_binding flag is set */ if (udev->state != USB_STATE_NOTATTACHED) rebind_marked_interfaces(udev); return 0; } /* The device lock is held by the PM core */ int usb_resume(struct device *dev, pm_message_t msg) { struct usb_device *udev = to_usb_device(dev); int status; /* For all calls, take the device back to full power and * tell the PM core in case it was autosuspended previously. * Unbind the interfaces that will need rebinding later, * because they fail to support reset_resume. * (This can't be done in usb_resume_interface() * above because it doesn't own the right set of locks.) */ status = usb_resume_both(udev, msg); if (status == 0) { pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); unbind_marked_interfaces(udev); } /* Avoid PM error messages for devices disconnected while suspended * as we'll display regular disconnect messages just a bit later. */ if (status == -ENODEV || status == -ESHUTDOWN) status = 0; return status; } /** * usb_enable_autosuspend - allow a USB device to be autosuspended * @udev: the USB device which may be autosuspended * * This routine allows @udev to be autosuspended. An autosuspend won't * take place until the autosuspend_delay has elapsed and all the other * necessary conditions are satisfied. * * The caller must hold @udev's device lock. */ void usb_enable_autosuspend(struct usb_device *udev) { pm_runtime_allow(&udev->dev); } EXPORT_SYMBOL_GPL(usb_enable_autosuspend); /** * usb_disable_autosuspend - prevent a USB device from being autosuspended * @udev: the USB device which may not be autosuspended * * This routine prevents @udev from being autosuspended and wakes it up * if it is already autosuspended. * * The caller must hold @udev's device lock. */ void usb_disable_autosuspend(struct usb_device *udev) { pm_runtime_forbid(&udev->dev); } EXPORT_SYMBOL_GPL(usb_disable_autosuspend); /** * usb_autosuspend_device - delayed autosuspend of a USB device and its interfaces * @udev: the usb_device to autosuspend * * This routine should be called when a core subsystem is finished using * @udev and wants to allow it to autosuspend. Examples would be when * @udev's device file in usbfs is closed or after a configuration change. * * @udev's usage counter is decremented; if it drops to 0 and all the * interfaces are inactive then a delayed autosuspend will be attempted. * The attempt may fail (see autosuspend_check()). * * The caller must hold @udev's device lock. * * This routine can run only in process context. */ void usb_autosuspend_device(struct usb_device *udev) { int status; usb_mark_last_busy(udev); status = pm_runtime_put_sync_autosuspend(&udev->dev); dev_vdbg(&udev->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&udev->dev.power.usage_count), status); } /** * usb_autoresume_device - immediately autoresume a USB device and its interfaces * @udev: the usb_device to autoresume * * This routine should be called when a core subsystem wants to use @udev * and needs to guarantee that it is not suspended. No autosuspend will * occur until usb_autosuspend_device() is called. (Note that this will * not prevent suspend events originating in the PM core.) Examples would * be when @udev's device file in usbfs is opened or when a remote-wakeup * request is received. * * @udev's usage counter is incremented to prevent subsequent autosuspends. * However if the autoresume fails then the usage counter is re-decremented. * * The caller must hold @udev's device lock. * * This routine can run only in process context. * * Return: 0 on success. A negative error code otherwise. */ int usb_autoresume_device(struct usb_device *udev) { int status; status = pm_runtime_get_sync(&udev->dev); if (status < 0) pm_runtime_put_sync(&udev->dev); dev_vdbg(&udev->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&udev->dev.power.usage_count), status); if (status > 0) status = 0; return status; } /** * usb_autopm_put_interface - decrement a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be decremented * * This routine should be called by an interface driver when it is * finished using @intf and wants to allow it to autosuspend. A typical * example would be a character-device driver when its device file is * closed. * * The routine decrements @intf's usage counter. When the counter reaches * 0, a delayed autosuspend request for @intf's device is attempted. The * attempt may fail (see autosuspend_check()). * * This routine can run only in process context. */ void usb_autopm_put_interface(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); int status; usb_mark_last_busy(udev); status = pm_runtime_put_sync(&intf->dev); dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&intf->dev.power.usage_count), status); } EXPORT_SYMBOL_GPL(usb_autopm_put_interface); /** * usb_autopm_put_interface_async - decrement a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be decremented * * This routine does much the same thing as usb_autopm_put_interface(): * It decrements @intf's usage counter and schedules a delayed * autosuspend request if the counter is <= 0. The difference is that it * does not perform any synchronization; callers should hold a private * lock and handle all synchronization issues themselves. * * Typically a driver would call this routine during an URB's completion * handler, if no more URBs were pending. * * This routine can run in atomic context. */ void usb_autopm_put_interface_async(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); int status; usb_mark_last_busy(udev); status = pm_runtime_put(&intf->dev); dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&intf->dev.power.usage_count), status); } EXPORT_SYMBOL_GPL(usb_autopm_put_interface_async); /** * usb_autopm_put_interface_no_suspend - decrement a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be decremented * * This routine decrements @intf's usage counter but does not carry out an * autosuspend. * * This routine can run in atomic context. */ void usb_autopm_put_interface_no_suspend(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); usb_mark_last_busy(udev); pm_runtime_put_noidle(&intf->dev); } EXPORT_SYMBOL_GPL(usb_autopm_put_interface_no_suspend); /** * usb_autopm_get_interface - increment a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be incremented * * This routine should be called by an interface driver when it wants to * use @intf and needs to guarantee that it is not suspended. In addition, * the routine prevents @intf from being autosuspended subsequently. (Note * that this will not prevent suspend events originating in the PM core.) * This prevention will persist until usb_autopm_put_interface() is called * or @intf is unbound. A typical example would be a character-device * driver when its device file is opened. * * @intf's usage counter is incremented to prevent subsequent autosuspends. * However if the autoresume fails then the counter is re-decremented. * * This routine can run only in process context. * * Return: 0 on success. */ int usb_autopm_get_interface(struct usb_interface *intf) { int status; status = pm_runtime_get_sync(&intf->dev); if (status < 0) pm_runtime_put_sync(&intf->dev); dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&intf->dev.power.usage_count), status); if (status > 0) status = 0; return status; } EXPORT_SYMBOL_GPL(usb_autopm_get_interface); /** * usb_autopm_get_interface_async - increment a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be incremented * * This routine does much the same thing as * usb_autopm_get_interface(): It increments @intf's usage counter and * queues an autoresume request if the device is suspended. The * differences are that it does not perform any synchronization (callers * should hold a private lock and handle all synchronization issues * themselves), and it does not autoresume the device directly (it only * queues a request). After a successful call, the device may not yet be * resumed. * * This routine can run in atomic context. * * Return: 0 on success. A negative error code otherwise. */ int usb_autopm_get_interface_async(struct usb_interface *intf) { int status; status = pm_runtime_get(&intf->dev); if (status < 0 && status != -EINPROGRESS) pm_runtime_put_noidle(&intf->dev); dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n", __func__, atomic_read(&intf->dev.power.usage_count), status); if (status > 0 || status == -EINPROGRESS) status = 0; return status; } EXPORT_SYMBOL_GPL(usb_autopm_get_interface_async); /** * usb_autopm_get_interface_no_resume - increment a USB interface's PM-usage counter * @intf: the usb_interface whose counter should be incremented * * This routine increments @intf's usage counter but does not carry out an * autoresume. * * This routine can run in atomic context. */ void usb_autopm_get_interface_no_resume(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); usb_mark_last_busy(udev); pm_runtime_get_noresume(&intf->dev); } EXPORT_SYMBOL_GPL(usb_autopm_get_interface_no_resume); /* Internal routine to check whether we may autosuspend a device. */ static int autosuspend_check(struct usb_device *udev) { int w, i; struct usb_interface *intf; if (udev->state == USB_STATE_NOTATTACHED) return -ENODEV; /* Fail if autosuspend is disabled, or any interfaces are in use, or * any interface drivers require remote wakeup but it isn't available. */ w = 0; if (udev->actconfig) { for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { intf = udev->actconfig->interface[i]; /* We don't need to check interfaces that are * disabled for runtime PM. Either they are unbound * or else their drivers don't support autosuspend * and so they are permanently active. */ if (intf->dev.power.disable_depth) continue; if (atomic_read(&intf->dev.power.usage_count) > 0) return -EBUSY; w |= intf->needs_remote_wakeup; /* Don't allow autosuspend if the device will need * a reset-resume and any of its interface drivers * doesn't include support or needs remote wakeup. */ if (udev->quirks & USB_QUIRK_RESET_RESUME) { struct usb_driver *driver; driver = to_usb_driver(intf->dev.driver); if (!driver->reset_resume || intf->needs_remote_wakeup) return -EOPNOTSUPP; } } } if (w && !device_can_wakeup(&udev->dev)) { dev_dbg(&udev->dev, "remote wakeup needed for autosuspend\n"); return -EOPNOTSUPP; } /* * If the device is a direct child of the root hub and the HCD * doesn't handle wakeup requests, don't allow autosuspend when * wakeup is needed. */ if (w && udev->parent == udev->bus->root_hub && bus_to_hcd(udev->bus)->cant_recv_wakeups) { dev_dbg(&udev->dev, "HCD doesn't handle wakeup requests\n"); return -EOPNOTSUPP; } udev->do_remote_wakeup = w; return 0; } int usb_runtime_suspend(struct device *dev) { struct usb_device *udev = to_usb_device(dev); int status; /* A USB device can be suspended if it passes the various autosuspend * checks. Runtime suspend for a USB device means suspending all the * interfaces and then the device itself. */ if (autosuspend_check(udev) != 0) return -EAGAIN; status = usb_suspend_both(udev, PMSG_AUTO_SUSPEND); /* Allow a retry if autosuspend failed temporarily */ if (status == -EAGAIN || status == -EBUSY) usb_mark_last_busy(udev); /* * The PM core reacts badly unless the return code is 0, * -EAGAIN, or -EBUSY, so always return -EBUSY on an error * (except for root hubs, because they don't suspend through * an upstream port like other USB devices). */ if (status != 0 && udev->parent) return -EBUSY; return status; } int usb_runtime_resume(struct device *dev) { struct usb_device *udev = to_usb_device(dev); int status; /* Runtime resume for a USB device means resuming both the device * and all its interfaces. */ status = usb_resume_both(udev, PMSG_AUTO_RESUME); return status; } int usb_runtime_idle(struct device *dev) { struct usb_device *udev = to_usb_device(dev); /* An idle USB device can be suspended if it passes the various * autosuspend checks. */ if (autosuspend_check(udev) == 0) pm_runtime_autosuspend(dev); /* Tell the core not to suspend it, though. */ return -EBUSY; } static int usb_set_usb2_hardware_lpm(struct usb_device *udev, int enable) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); int ret = -EPERM; if (hcd->driver->set_usb2_hw_lpm) { ret = hcd->driver->set_usb2_hw_lpm(hcd, udev, enable); if (!ret) udev->usb2_hw_lpm_enabled = enable; } return ret; } int usb_enable_usb2_hardware_lpm(struct usb_device *udev) { if (!udev->usb2_hw_lpm_capable || !udev->usb2_hw_lpm_allowed || udev->usb2_hw_lpm_enabled) return 0; return usb_set_usb2_hardware_lpm(udev, 1); } int usb_disable_usb2_hardware_lpm(struct usb_device *udev) { if (!udev->usb2_hw_lpm_enabled) return 0; return usb_set_usb2_hardware_lpm(udev, 0); } #endif /* CONFIG_PM */ const struct bus_type usb_bus_type = { .name = "usb", .match = usb_device_match, .uevent = usb_uevent, .need_parent_lock = true, };
linux-master
drivers/usb/core/driver.c
// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2002 */ #include <linux/bcd.h> #include <linux/module.h> #include <linux/version.h> #include <linux/kernel.h> #include <linux/sched/task_stack.h> #include <linux/slab.h> #include <linux/completion.h> #include <linux/utsname.h> #include <linux/mm.h> #include <asm/io.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/mutex.h> #include <asm/irq.h> #include <asm/byteorder.h> #include <asm/unaligned.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/pm_runtime.h> #include <linux/types.h> #include <linux/genalloc.h> #include <linux/io.h> #include <linux/kcov.h> #include <linux/phy/phy.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/otg.h> #include "usb.h" #include "phy.h" /*-------------------------------------------------------------------------*/ /* * USB Host Controller Driver framework * * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing * HCD-specific behaviors/bugs. * * This does error checks, tracks devices and urbs, and delegates to a * "hc_driver" only for code (and data) that really needs to know about * hardware differences. That includes root hub registers, i/o queues, * and so on ... but as little else as possible. * * Shared code includes most of the "root hub" code (these are emulated, * though each HC's hardware works differently) and PCI glue, plus request * tracking overhead. The HCD code should only block on spinlocks or on * hardware handshaking; blocking on software events (such as other kernel * threads releasing resources, or completing actions) is all generic. * * Happens the USB 2.0 spec says this would be invisible inside the "USBD", * and includes mostly a "HCDI" (HCD Interface) along with some APIs used * only by the hub driver ... and that neither should be seen or used by * usb client device drivers. * * Contributors of ideas or unattributed patches include: David Brownell, * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... * * HISTORY: * 2002-02-21 Pull in most of the usb_bus support from usb.c; some * associated cleanup. "usb_hcd" still != "usb_bus". * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. */ /*-------------------------------------------------------------------------*/ /* Keep track of which host controller drivers are loaded */ unsigned long usb_hcds_loaded; EXPORT_SYMBOL_GPL(usb_hcds_loaded); /* host controllers we manage */ DEFINE_IDR (usb_bus_idr); EXPORT_SYMBOL_GPL (usb_bus_idr); /* used when allocating bus numbers */ #define USB_MAXBUS 64 /* used when updating list of hcds */ DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ EXPORT_SYMBOL_GPL (usb_bus_idr_lock); /* used for controlling access to virtual root hubs */ static DEFINE_SPINLOCK(hcd_root_hub_lock); /* used when updating an endpoint's URB list */ static DEFINE_SPINLOCK(hcd_urb_list_lock); /* used to protect against unlinking URBs after the device is gone */ static DEFINE_SPINLOCK(hcd_urb_unlink_lock); /* wait queue for synchronous unlinks */ DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); /*-------------------------------------------------------------------------*/ /* * Sharable chunks of root hub code. */ /*-------------------------------------------------------------------------*/ #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) /* usb 3.1 root hub device descriptor */ static const u8 usb31_rh_dev_descriptor[18] = { 0x12, /* __u8 bLength; */ USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /* usb 3.0 root hub device descriptor */ static const u8 usb3_rh_dev_descriptor[18] = { 0x12, /* __u8 bLength; */ USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /* usb 2.0 root hub device descriptor */ static const u8 usb2_rh_dev_descriptor[18] = { 0x12, /* __u8 bLength; */ USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ /* usb 1.1 root hub device descriptor */ static const u8 usb11_rh_dev_descriptor[18] = { 0x12, /* __u8 bLength; */ USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /*-------------------------------------------------------------------------*/ /* Configuration descriptors for our root hubs */ static const u8 fs_rh_config_descriptor[] = { /* one configuration */ 0x09, /* __u8 bLength; */ USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 0x19, 0x00, /* __le16 wTotalLength; */ 0x01, /* __u8 bNumInterfaces; (1) */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0xc0, /* __u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* USB 1.1: * USB 2.0, single TT organization (mandatory): * one interface, protocol 0 * * USB 2.0, multiple TT organization (optional): * two interfaces, protocols 1 (like single TT) * and 2 (multiple TT mode) ... config is * sometimes settable * NOT IMPLEMENTED */ /* one interface */ 0x09, /* __u8 if_bLength; */ USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 0x00, /* __u8 if_iInterface; */ /* one endpoint (status change endpoint) */ 0x07, /* __u8 ep_bLength; */ USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ }; static const u8 hs_rh_config_descriptor[] = { /* one configuration */ 0x09, /* __u8 bLength; */ USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 0x19, 0x00, /* __le16 wTotalLength; */ 0x01, /* __u8 bNumInterfaces; (1) */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0xc0, /* __u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* USB 1.1: * USB 2.0, single TT organization (mandatory): * one interface, protocol 0 * * USB 2.0, multiple TT organization (optional): * two interfaces, protocols 1 (like single TT) * and 2 (multiple TT mode) ... config is * sometimes settable * NOT IMPLEMENTED */ /* one interface */ 0x09, /* __u8 if_bLength; */ USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 0x00, /* __u8 if_iInterface; */ /* one endpoint (status change endpoint) */ 0x07, /* __u8 ep_bLength; */ USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) * see hub.c:hub_configure() for details. */ (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ }; static const u8 ss_rh_config_descriptor[] = { /* one configuration */ 0x09, /* __u8 bLength; */ USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 0x1f, 0x00, /* __le16 wTotalLength; */ 0x01, /* __u8 bNumInterfaces; (1) */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0xc0, /* __u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* one interface */ 0x09, /* __u8 if_bLength; */ USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; */ 0x00, /* __u8 if_iInterface; */ /* one endpoint (status change endpoint) */ 0x07, /* __u8 ep_bLength; */ USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) * see hub.c:hub_configure() for details. */ (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ /* one SuperSpeed endpoint companion descriptor */ 0x06, /* __u8 ss_bLength */ USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ /* Companion */ 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ }; /* authorized_default behaviour: * -1 is authorized for all devices (leftover from wireless USB) * 0 is unauthorized for all devices * 1 is authorized for all devices * 2 is authorized for internal devices */ #define USB_AUTHORIZE_WIRED -1 #define USB_AUTHORIZE_NONE 0 #define USB_AUTHORIZE_ALL 1 #define USB_AUTHORIZE_INTERNAL 2 static int authorized_default = USB_AUTHORIZE_WIRED; module_param(authorized_default, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(authorized_default, "Default USB device authorization: 0 is not authorized, 1 is " "authorized, 2 is authorized for internal devices, -1 is " "authorized (default, same as 1)"); /*-------------------------------------------------------------------------*/ /** * ascii2desc() - Helper routine for producing UTF-16LE string descriptors * @s: Null-terminated ASCII (actually ISO-8859-1) string * @buf: Buffer for USB string descriptor (header + UTF-16LE) * @len: Length (in bytes; may be odd) of descriptor buffer. * * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, * whichever is less. * * Note: * USB String descriptors can contain at most 126 characters; input * strings longer than that are truncated. */ static unsigned ascii2desc(char const *s, u8 *buf, unsigned len) { unsigned n, t = 2 + 2*strlen(s); if (t > 254) t = 254; /* Longest possible UTF string descriptor */ if (len > t) len = t; t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ n = len; while (n--) { *buf++ = t; if (!n--) break; *buf++ = t >> 8; t = (unsigned char)*s++; } return len; } /** * rh_string() - provides string descriptors for root hub * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) * @hcd: the host controller for this root hub * @data: buffer for output packet * @len: length of the provided buffer * * Produces either a manufacturer, product or serial number string for the * virtual root hub device. * * Return: The number of bytes filled in: the length of the descriptor or * of the provided buffer, whichever is less. */ static unsigned rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) { char buf[100]; char const *s; static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; /* language ids */ switch (id) { case 0: /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ if (len > 4) len = 4; memcpy(data, langids, len); return len; case 1: /* Serial number */ s = hcd->self.bus_name; break; case 2: /* Product name */ s = hcd->product_desc; break; case 3: /* Manufacturer */ snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, init_utsname()->release, hcd->driver->description); s = buf; break; default: /* Can't happen; caller guarantees it */ return 0; } return ascii2desc(s, data, len); } /* Root hub control transfers execute synchronously */ static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) { struct usb_ctrlrequest *cmd; u16 typeReq, wValue, wIndex, wLength; u8 *ubuf = urb->transfer_buffer; unsigned len = 0; int status; u8 patch_wakeup = 0; u8 patch_protocol = 0; u16 tbuf_size; u8 *tbuf = NULL; const u8 *bufp; might_sleep(); spin_lock_irq(&hcd_root_hub_lock); status = usb_hcd_link_urb_to_ep(hcd, urb); spin_unlock_irq(&hcd_root_hub_lock); if (status) return status; urb->hcpriv = hcd; /* Indicate it's queued */ cmd = (struct usb_ctrlrequest *) urb->setup_packet; typeReq = (cmd->bRequestType << 8) | cmd->bRequest; wValue = le16_to_cpu (cmd->wValue); wIndex = le16_to_cpu (cmd->wIndex); wLength = le16_to_cpu (cmd->wLength); if (wLength > urb->transfer_buffer_length) goto error; /* * tbuf should be at least as big as the * USB hub descriptor. */ tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); tbuf = kzalloc(tbuf_size, GFP_KERNEL); if (!tbuf) { status = -ENOMEM; goto err_alloc; } bufp = tbuf; urb->actual_length = 0; switch (typeReq) { /* DEVICE REQUESTS */ /* The root hub's remote wakeup enable bit is implemented using * driver model wakeup flags. If this system supports wakeup * through USB, userspace may change the default "allow wakeup" * policy through sysfs or these calls. * * Most root hubs support wakeup from downstream devices, for * runtime power management (disabling USB clocks and reducing * VBUS power usage). However, not all of them do so; silicon, * board, and BIOS bugs here are not uncommon, so these can't * be treated quite like external hubs. * * Likewise, not all root hubs will pass wakeup events upstream, * to wake up the whole system. So don't assume root hub and * controller capabilities are identical. */ case DeviceRequest | USB_REQ_GET_STATUS: tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) << USB_DEVICE_REMOTE_WAKEUP) | (1 << USB_DEVICE_SELF_POWERED); tbuf[1] = 0; len = 2; break; case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: if (wValue == USB_DEVICE_REMOTE_WAKEUP) device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); else goto error; break; case DeviceOutRequest | USB_REQ_SET_FEATURE: if (device_can_wakeup(&hcd->self.root_hub->dev) && wValue == USB_DEVICE_REMOTE_WAKEUP) device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); else goto error; break; case DeviceRequest | USB_REQ_GET_CONFIGURATION: tbuf[0] = 1; len = 1; fallthrough; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: switch (wValue & 0xff00) { case USB_DT_DEVICE << 8: switch (hcd->speed) { case HCD_USB32: case HCD_USB31: bufp = usb31_rh_dev_descriptor; break; case HCD_USB3: bufp = usb3_rh_dev_descriptor; break; case HCD_USB2: bufp = usb2_rh_dev_descriptor; break; case HCD_USB11: bufp = usb11_rh_dev_descriptor; break; default: goto error; } len = 18; if (hcd->has_tt) patch_protocol = 1; break; case USB_DT_CONFIG << 8: switch (hcd->speed) { case HCD_USB32: case HCD_USB31: case HCD_USB3: bufp = ss_rh_config_descriptor; len = sizeof ss_rh_config_descriptor; break; case HCD_USB2: bufp = hs_rh_config_descriptor; len = sizeof hs_rh_config_descriptor; break; case HCD_USB11: bufp = fs_rh_config_descriptor; len = sizeof fs_rh_config_descriptor; break; default: goto error; } if (device_can_wakeup(&hcd->self.root_hub->dev)) patch_wakeup = 1; break; case USB_DT_STRING << 8: if ((wValue & 0xff) < 4) urb->actual_length = rh_string(wValue & 0xff, hcd, ubuf, wLength); else /* unsupported IDs --> "protocol stall" */ goto error; break; case USB_DT_BOS << 8: goto nongeneric; default: goto error; } break; case DeviceRequest | USB_REQ_GET_INTERFACE: tbuf[0] = 0; len = 1; fallthrough; case DeviceOutRequest | USB_REQ_SET_INTERFACE: break; case DeviceOutRequest | USB_REQ_SET_ADDRESS: /* wValue == urb->dev->devaddr */ dev_dbg (hcd->self.controller, "root hub device address %d\n", wValue); break; /* INTERFACE REQUESTS (no defined feature/status flags) */ /* ENDPOINT REQUESTS */ case EndpointRequest | USB_REQ_GET_STATUS: /* ENDPOINT_HALT flag */ tbuf[0] = 0; tbuf[1] = 0; len = 2; fallthrough; case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: case EndpointOutRequest | USB_REQ_SET_FEATURE: dev_dbg (hcd->self.controller, "no endpoint features yet\n"); break; /* CLASS REQUESTS (and errors) */ default: nongeneric: /* non-generic request */ switch (typeReq) { case GetHubStatus: len = 4; break; case GetPortStatus: if (wValue == HUB_PORT_STATUS) len = 4; else /* other port status types return 8 bytes */ len = 8; break; case GetHubDescriptor: len = sizeof (struct usb_hub_descriptor); break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: /* len is returned by hub_control */ break; } status = hcd->driver->hub_control (hcd, typeReq, wValue, wIndex, tbuf, wLength); if (typeReq == GetHubDescriptor) usb_hub_adjust_deviceremovable(hcd->self.root_hub, (struct usb_hub_descriptor *)tbuf); break; error: /* "protocol stall" on error */ status = -EPIPE; } if (status < 0) { len = 0; if (status != -EPIPE) { dev_dbg (hcd->self.controller, "CTRL: TypeReq=0x%x val=0x%x " "idx=0x%x len=%d ==> %d\n", typeReq, wValue, wIndex, wLength, status); } } else if (status > 0) { /* hub_control may return the length of data copied. */ len = status; status = 0; } if (len) { if (urb->transfer_buffer_length < len) len = urb->transfer_buffer_length; urb->actual_length = len; /* always USB_DIR_IN, toward host */ memcpy (ubuf, bufp, len); /* report whether RH hardware supports remote wakeup */ if (patch_wakeup && len > offsetof (struct usb_config_descriptor, bmAttributes)) ((struct usb_config_descriptor *)ubuf)->bmAttributes |= USB_CONFIG_ATT_WAKEUP; /* report whether RH hardware has an integrated TT */ if (patch_protocol && len > offsetof(struct usb_device_descriptor, bDeviceProtocol)) ((struct usb_device_descriptor *) ubuf)-> bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; } kfree(tbuf); err_alloc: /* any errors get returned through the urb completion */ spin_lock_irq(&hcd_root_hub_lock); usb_hcd_unlink_urb_from_ep(hcd, urb); usb_hcd_giveback_urb(hcd, urb, status); spin_unlock_irq(&hcd_root_hub_lock); return 0; } /*-------------------------------------------------------------------------*/ /* * Root Hub interrupt transfers are polled using a timer if the * driver requests it; otherwise the driver is responsible for * calling usb_hcd_poll_rh_status() when an event occurs. * * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. */ void usb_hcd_poll_rh_status(struct usb_hcd *hcd) { struct urb *urb; int length; int status; unsigned long flags; char buffer[6]; /* Any root hubs with > 31 ports? */ if (unlikely(!hcd->rh_pollable)) return; if (!hcd->uses_new_polling && !hcd->status_urb) return; length = hcd->driver->hub_status_data(hcd, buffer); if (length > 0) { /* try to complete the status urb */ spin_lock_irqsave(&hcd_root_hub_lock, flags); urb = hcd->status_urb; if (urb) { clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); hcd->status_urb = NULL; if (urb->transfer_buffer_length >= length) { status = 0; } else { status = -EOVERFLOW; length = urb->transfer_buffer_length; } urb->actual_length = length; memcpy(urb->transfer_buffer, buffer, length); usb_hcd_unlink_urb_from_ep(hcd, urb); usb_hcd_giveback_urb(hcd, urb, status); } else { length = 0; set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); } spin_unlock_irqrestore(&hcd_root_hub_lock, flags); } /* The USB 2.0 spec says 256 ms. This is close enough and won't * exceed that limit if HZ is 100. The math is more clunky than * maybe expected, this is to make sure that all timers for USB devices * fire at the same time to give the CPU a break in between */ if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : (length == 0 && hcd->status_urb != NULL)) mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); } EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); /* timer callback */ static void rh_timer_func (struct timer_list *t) { struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); usb_hcd_poll_rh_status(_hcd); } /*-------------------------------------------------------------------------*/ static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) { int retval; unsigned long flags; unsigned len = 1 + (urb->dev->maxchild / 8); spin_lock_irqsave (&hcd_root_hub_lock, flags); if (hcd->status_urb || urb->transfer_buffer_length < len) { dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); retval = -EINVAL; goto done; } retval = usb_hcd_link_urb_to_ep(hcd, urb); if (retval) goto done; hcd->status_urb = urb; urb->hcpriv = hcd; /* indicate it's queued */ if (!hcd->uses_new_polling) mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); /* If a status change has already occurred, report it ASAP */ else if (HCD_POLL_PENDING(hcd)) mod_timer(&hcd->rh_timer, jiffies); retval = 0; done: spin_unlock_irqrestore (&hcd_root_hub_lock, flags); return retval; } static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) { if (usb_endpoint_xfer_int(&urb->ep->desc)) return rh_queue_status (hcd, urb); if (usb_endpoint_xfer_control(&urb->ep->desc)) return rh_call_control (hcd, urb); return -EINVAL; } /*-------------------------------------------------------------------------*/ /* Unlinks of root-hub control URBs are legal, but they don't do anything * since these URBs always execute synchronously. */ static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { unsigned long flags; int rc; spin_lock_irqsave(&hcd_root_hub_lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto done; if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ ; /* Do nothing */ } else { /* Status URB */ if (!hcd->uses_new_polling) del_timer (&hcd->rh_timer); if (urb == hcd->status_urb) { hcd->status_urb = NULL; usb_hcd_unlink_urb_from_ep(hcd, urb); usb_hcd_giveback_urb(hcd, urb, status); } } done: spin_unlock_irqrestore(&hcd_root_hub_lock, flags); return rc; } /*-------------------------------------------------------------------------*/ /** * usb_bus_init - shared initialization code * @bus: the bus structure being initialized * * This code is used to initialize a usb_bus structure, memory for which is * separately managed. */ static void usb_bus_init (struct usb_bus *bus) { memset (&bus->devmap, 0, sizeof(struct usb_devmap)); bus->devnum_next = 1; bus->root_hub = NULL; bus->busnum = -1; bus->bandwidth_allocated = 0; bus->bandwidth_int_reqs = 0; bus->bandwidth_isoc_reqs = 0; mutex_init(&bus->devnum_next_mutex); } /*-------------------------------------------------------------------------*/ /** * usb_register_bus - registers the USB host controller with the usb core * @bus: pointer to the bus to register * * Context: task context, might sleep. * * Assigns a bus number, and links the controller into usbcore data * structures so that it can be seen by scanning the bus list. * * Return: 0 if successful. A negative error code otherwise. */ static int usb_register_bus(struct usb_bus *bus) { int result = -E2BIG; int busnum; mutex_lock(&usb_bus_idr_lock); busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); if (busnum < 0) { pr_err("%s: failed to get bus number\n", usbcore_name); goto error_find_busnum; } bus->busnum = busnum; mutex_unlock(&usb_bus_idr_lock); usb_notify_add_bus(bus); dev_info (bus->controller, "new USB bus registered, assigned bus " "number %d\n", bus->busnum); return 0; error_find_busnum: mutex_unlock(&usb_bus_idr_lock); return result; } /** * usb_deregister_bus - deregisters the USB host controller * @bus: pointer to the bus to deregister * * Context: task context, might sleep. * * Recycles the bus number, and unlinks the controller from usbcore data * structures so that it won't be seen by scanning the bus list. */ static void usb_deregister_bus (struct usb_bus *bus) { dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); /* * NOTE: make sure that all the devices are removed by the * controller code, as well as having it call this when cleaning * itself up */ mutex_lock(&usb_bus_idr_lock); idr_remove(&usb_bus_idr, bus->busnum); mutex_unlock(&usb_bus_idr_lock); usb_notify_remove_bus(bus); } /** * register_root_hub - called by usb_add_hcd() to register a root hub * @hcd: host controller for this root hub * * This function registers the root hub with the USB subsystem. It sets up * the device properly in the device tree and then calls usb_new_device() * to register the usb device. It also assigns the root hub's USB address * (always 1). * * Return: 0 if successful. A negative error code otherwise. */ static int register_root_hub(struct usb_hcd *hcd) { struct device *parent_dev = hcd->self.controller; struct usb_device *usb_dev = hcd->self.root_hub; struct usb_device_descriptor *descr; const int devnum = 1; int retval; usb_dev->devnum = devnum; usb_dev->bus->devnum_next = devnum + 1; set_bit (devnum, usb_dev->bus->devmap.devicemap); usb_set_device_state(usb_dev, USB_STATE_ADDRESS); mutex_lock(&usb_bus_idr_lock); usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); descr = usb_get_device_descriptor(usb_dev); if (IS_ERR(descr)) { retval = PTR_ERR(descr); mutex_unlock(&usb_bus_idr_lock); dev_dbg (parent_dev, "can't read %s device descriptor %d\n", dev_name(&usb_dev->dev), retval); return retval; } usb_dev->descriptor = *descr; kfree(descr); if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { retval = usb_get_bos_descriptor(usb_dev); if (!retval) { usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); } else if (usb_dev->speed >= USB_SPEED_SUPER) { mutex_unlock(&usb_bus_idr_lock); dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", dev_name(&usb_dev->dev), retval); return retval; } } retval = usb_new_device (usb_dev); if (retval) { dev_err (parent_dev, "can't register root hub for %s, %d\n", dev_name(&usb_dev->dev), retval); } else { spin_lock_irq (&hcd_root_hub_lock); hcd->rh_registered = 1; spin_unlock_irq (&hcd_root_hub_lock); /* Did the HC die before the root hub was registered? */ if (HCD_DEAD(hcd)) usb_hc_died (hcd); /* This time clean up */ } mutex_unlock(&usb_bus_idr_lock); return retval; } /* * usb_hcd_start_port_resume - a root-hub port is sending a resume signal * @bus: the bus which the root hub belongs to * @portnum: the port which is being resumed * * HCDs should call this function when they know that a resume signal is * being sent to a root-hub port. The root hub will be prevented from * going into autosuspend until usb_hcd_end_port_resume() is called. * * The bus's private lock must be held by the caller. */ void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) { unsigned bit = 1 << portnum; if (!(bus->resuming_ports & bit)) { bus->resuming_ports |= bit; pm_runtime_get_noresume(&bus->root_hub->dev); } } EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); /* * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal * @bus: the bus which the root hub belongs to * @portnum: the port which is being resumed * * HCDs should call this function when they know that a resume signal has * stopped being sent to a root-hub port. The root hub will be allowed to * autosuspend again. * * The bus's private lock must be held by the caller. */ void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) { unsigned bit = 1 << portnum; if (bus->resuming_ports & bit) { bus->resuming_ports &= ~bit; pm_runtime_put_noidle(&bus->root_hub->dev); } } EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); /*-------------------------------------------------------------------------*/ /** * usb_calc_bus_time - approximate periodic transaction time in nanoseconds * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} * @is_input: true iff the transaction sends data to the host * @isoc: true for isochronous transactions, false for interrupt ones * @bytecount: how many bytes in the transaction. * * Return: Approximate bus time in nanoseconds for a periodic transaction. * * Note: * See USB 2.0 spec section 5.11.3; only periodic transfers need to be * scheduled in software, this function is only used for such scheduling. */ long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) { unsigned long tmp; switch (speed) { case USB_SPEED_LOW: /* INTR only */ if (is_input) { tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; } else { tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; } case USB_SPEED_FULL: /* ISOC or INTR */ if (isoc) { tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; } else { tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; return 9107L + BW_HOST_DELAY + tmp; } case USB_SPEED_HIGH: /* ISOC or INTR */ /* FIXME adjust for input vs output */ if (isoc) tmp = HS_NSECS_ISO (bytecount); else tmp = HS_NSECS (bytecount); return tmp; default: pr_debug ("%s: bogus device speed!\n", usbcore_name); return -1; } } EXPORT_SYMBOL_GPL(usb_calc_bus_time); /*-------------------------------------------------------------------------*/ /* * Generic HC operations. */ /*-------------------------------------------------------------------------*/ /** * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue * @hcd: host controller to which @urb was submitted * @urb: URB being submitted * * Host controller drivers should call this routine in their enqueue() * method. The HCD's private spinlock must be held and interrupts must * be disabled. The actions carried out here are required for URB * submission, as well as for endpoint shutdown and for usb_kill_urb. * * Return: 0 for no error, otherwise a negative error code (in which case * the enqueue() method must fail). If no error occurs but enqueue() fails * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing * the private spinlock and returning. */ int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) { int rc = 0; spin_lock(&hcd_urb_list_lock); /* Check that the URB isn't being killed */ if (unlikely(atomic_read(&urb->reject))) { rc = -EPERM; goto done; } if (unlikely(!urb->ep->enabled)) { rc = -ENOENT; goto done; } if (unlikely(!urb->dev->can_submit)) { rc = -EHOSTUNREACH; goto done; } /* * Check the host controller's state and add the URB to the * endpoint's queue. */ if (HCD_RH_RUNNING(hcd)) { urb->unlinked = 0; list_add_tail(&urb->urb_list, &urb->ep->urb_list); } else { rc = -ESHUTDOWN; goto done; } done: spin_unlock(&hcd_urb_list_lock); return rc; } EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); /** * usb_hcd_check_unlink_urb - check whether an URB may be unlinked * @hcd: host controller to which @urb was submitted * @urb: URB being checked for unlinkability * @status: error code to store in @urb if the unlink succeeds * * Host controller drivers should call this routine in their dequeue() * method. The HCD's private spinlock must be held and interrupts must * be disabled. The actions carried out here are required for making * sure than an unlink is valid. * * Return: 0 for no error, otherwise a negative error code (in which case * the dequeue() method must fail). The possible error codes are: * * -EIDRM: @urb was not submitted or has already completed. * The completion function may not have been called yet. * * -EBUSY: @urb has already been unlinked. */ int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, int status) { struct list_head *tmp; /* insist the urb is still queued */ list_for_each(tmp, &urb->ep->urb_list) { if (tmp == &urb->urb_list) break; } if (tmp != &urb->urb_list) return -EIDRM; /* Any status except -EINPROGRESS means something already started to * unlink this URB from the hardware. So there's no more work to do. */ if (urb->unlinked) return -EBUSY; urb->unlinked = status; return 0; } EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); /** * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue * @hcd: host controller to which @urb was submitted * @urb: URB being unlinked * * Host controller drivers should call this routine before calling * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and * interrupts must be disabled. The actions carried out here are required * for URB completion. */ void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) { /* clear all state linking urb to this dev (and hcd) */ spin_lock(&hcd_urb_list_lock); list_del_init(&urb->urb_list); spin_unlock(&hcd_urb_list_lock); } EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); /* * Some usb host controllers can only perform dma using a small SRAM area, * or have restrictions on addressable DRAM. * The usb core itself is however optimized for host controllers that can dma * using regular system memory - like pci devices doing bus mastering. * * To support host controllers with limited dma capabilities we provide dma * bounce buffers. This feature can be enabled by initializing * hcd->localmem_pool using usb_hcd_setup_local_mem(). * * The initialized hcd->localmem_pool then tells the usb code to allocate all * data for dma using the genalloc API. * * So, to summarize... * * - We need "local" memory, canonical example being * a small SRAM on a discrete controller being the * only memory that the controller can read ... * (a) "normal" kernel memory is no good, and * (b) there's not enough to share * * - So we use that, even though the primary requirement * is that the memory be "local" (hence addressable * by that device), not "coherent". * */ static int hcd_alloc_coherent(struct usb_bus *bus, gfp_t mem_flags, dma_addr_t *dma_handle, void **vaddr_handle, size_t size, enum dma_data_direction dir) { unsigned char *vaddr; if (*vaddr_handle == NULL) { WARN_ON_ONCE(1); return -EFAULT; } vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), mem_flags, dma_handle); if (!vaddr) return -ENOMEM; /* * Store the virtual address of the buffer at the end * of the allocated dma buffer. The size of the buffer * may be uneven so use unaligned functions instead * of just rounding up. It makes sense to optimize for * memory footprint over access speed since the amount * of memory available for dma may be limited. */ put_unaligned((unsigned long)*vaddr_handle, (unsigned long *)(vaddr + size)); if (dir == DMA_TO_DEVICE) memcpy(vaddr, *vaddr_handle, size); *vaddr_handle = vaddr; return 0; } static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, void **vaddr_handle, size_t size, enum dma_data_direction dir) { unsigned char *vaddr = *vaddr_handle; vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); if (dir == DMA_FROM_DEVICE) memcpy(vaddr, *vaddr_handle, size); hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); *vaddr_handle = vaddr; *dma_handle = 0; } void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) { if (IS_ENABLED(CONFIG_HAS_DMA) && (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) dma_unmap_single(hcd->self.sysdev, urb->setup_dma, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) hcd_free_coherent(urb->dev->bus, &urb->setup_dma, (void **) &urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); /* Make it safe to call this routine more than once */ urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); } EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { if (hcd->driver->unmap_urb_for_dma) hcd->driver->unmap_urb_for_dma(hcd, urb); else usb_hcd_unmap_urb_for_dma(hcd, urb); } void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { enum dma_data_direction dir; usb_hcd_unmap_urb_setup_for_dma(hcd, urb); dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (IS_ENABLED(CONFIG_HAS_DMA) && (urb->transfer_flags & URB_DMA_MAP_SG)) dma_unmap_sg(hcd->self.sysdev, urb->sg, urb->num_sgs, dir); else if (IS_ENABLED(CONFIG_HAS_DMA) && (urb->transfer_flags & URB_DMA_MAP_PAGE)) dma_unmap_page(hcd->self.sysdev, urb->transfer_dma, urb->transfer_buffer_length, dir); else if (IS_ENABLED(CONFIG_HAS_DMA) && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) dma_unmap_single(hcd->self.sysdev, urb->transfer_dma, urb->transfer_buffer_length, dir); else if (urb->transfer_flags & URB_MAP_LOCAL) hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, &urb->transfer_buffer, urb->transfer_buffer_length, dir); /* Make it safe to call this routine more than once */ urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); } EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { if (hcd->driver->map_urb_for_dma) return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); else return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); } int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { enum dma_data_direction dir; int ret = 0; /* Map the URB's buffers for DMA access. * Lower level HCD code should use *_dma exclusively, * unless it uses pio or talks to another transport, * or uses the provided scatter gather list for bulk. */ if (usb_endpoint_xfer_control(&urb->ep->desc)) { if (hcd->self.uses_pio_for_control) return ret; if (hcd->localmem_pool) { ret = hcd_alloc_coherent( urb->dev->bus, mem_flags, &urb->setup_dma, (void **)&urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); if (ret) return ret; urb->transfer_flags |= URB_SETUP_MAP_LOCAL; } else if (hcd_uses_dma(hcd)) { if (object_is_on_stack(urb->setup_packet)) { WARN_ONCE(1, "setup packet is on stack\n"); return -EAGAIN; } urb->setup_dma = dma_map_single( hcd->self.sysdev, urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); if (dma_mapping_error(hcd->self.sysdev, urb->setup_dma)) return -EAGAIN; urb->transfer_flags |= URB_SETUP_MAP_SINGLE; } } dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (urb->transfer_buffer_length != 0 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { if (hcd->localmem_pool) { ret = hcd_alloc_coherent( urb->dev->bus, mem_flags, &urb->transfer_dma, &urb->transfer_buffer, urb->transfer_buffer_length, dir); if (ret == 0) urb->transfer_flags |= URB_MAP_LOCAL; } else if (hcd_uses_dma(hcd)) { if (urb->num_sgs) { int n; /* We don't support sg for isoc transfers ! */ if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { WARN_ON(1); return -EINVAL; } n = dma_map_sg( hcd->self.sysdev, urb->sg, urb->num_sgs, dir); if (!n) ret = -EAGAIN; else urb->transfer_flags |= URB_DMA_MAP_SG; urb->num_mapped_sgs = n; if (n != urb->num_sgs) urb->transfer_flags |= URB_DMA_SG_COMBINED; } else if (urb->sg) { struct scatterlist *sg = urb->sg; urb->transfer_dma = dma_map_page( hcd->self.sysdev, sg_page(sg), sg->offset, urb->transfer_buffer_length, dir); if (dma_mapping_error(hcd->self.sysdev, urb->transfer_dma)) ret = -EAGAIN; else urb->transfer_flags |= URB_DMA_MAP_PAGE; } else if (object_is_on_stack(urb->transfer_buffer)) { WARN_ONCE(1, "transfer buffer is on stack\n"); ret = -EAGAIN; } else { urb->transfer_dma = dma_map_single( hcd->self.sysdev, urb->transfer_buffer, urb->transfer_buffer_length, dir); if (dma_mapping_error(hcd->self.sysdev, urb->transfer_dma)) ret = -EAGAIN; else urb->transfer_flags |= URB_DMA_MAP_SINGLE; } } if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL))) usb_hcd_unmap_urb_for_dma(hcd, urb); } return ret; } EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); /*-------------------------------------------------------------------------*/ /* may be called in any context with a valid urb->dev usecount * caller surrenders "ownership" of urb * expects usb_submit_urb() to have sanity checked and conditioned all * inputs in the urb */ int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) { int status; struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); /* increment urb's reference count as part of giving it to the HCD * (which will control it). HCD guarantees that it either returns * an error or calls giveback(), but not both. */ usb_get_urb(urb); atomic_inc(&urb->use_count); atomic_inc(&urb->dev->urbnum); usbmon_urb_submit(&hcd->self, urb); /* NOTE requirements on root-hub callers (usbfs and the hub * driver, for now): URBs' urb->transfer_buffer must be * valid and usb_buffer_{sync,unmap}() not be needed, since * they could clobber root hub response data. Also, control * URBs must be submitted in process context with interrupts * enabled. */ if (is_root_hub(urb->dev)) { status = rh_urb_enqueue(hcd, urb); } else { status = map_urb_for_dma(hcd, urb, mem_flags); if (likely(status == 0)) { status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); if (unlikely(status)) unmap_urb_for_dma(hcd, urb); } } if (unlikely(status)) { usbmon_urb_submit_error(&hcd->self, urb, status); urb->hcpriv = NULL; INIT_LIST_HEAD(&urb->urb_list); atomic_dec(&urb->use_count); /* * Order the write of urb->use_count above before the read * of urb->reject below. Pairs with the memory barriers in * usb_kill_urb() and usb_poison_urb(). */ smp_mb__after_atomic(); atomic_dec(&urb->dev->urbnum); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); usb_put_urb(urb); } return status; } /*-------------------------------------------------------------------------*/ /* this makes the hcd giveback() the urb more quickly, by kicking it * off hardware queues (which may take a while) and returning it as * soon as practical. we've already set up the urb's return status, * but we can't know if the callback completed already. */ static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) { int value; if (is_root_hub(urb->dev)) value = usb_rh_urb_dequeue(hcd, urb, status); else { /* The only reason an HCD might fail this call is if * it has not yet fully queued the urb to begin with. * Such failures should be harmless. */ value = hcd->driver->urb_dequeue(hcd, urb, status); } return value; } /* * called in any context * * caller guarantees urb won't be recycled till both unlink() * and the urb's completion function return */ int usb_hcd_unlink_urb (struct urb *urb, int status) { struct usb_hcd *hcd; struct usb_device *udev = urb->dev; int retval = -EIDRM; unsigned long flags; /* Prevent the device and bus from going away while * the unlink is carried out. If they are already gone * then urb->use_count must be 0, since disconnected * devices can't have any active URBs. */ spin_lock_irqsave(&hcd_urb_unlink_lock, flags); if (atomic_read(&urb->use_count) > 0) { retval = 0; usb_get_dev(udev); } spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); if (retval == 0) { hcd = bus_to_hcd(urb->dev->bus); retval = unlink1(hcd, urb, status); if (retval == 0) retval = -EINPROGRESS; else if (retval != -EIDRM && retval != -EBUSY) dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", urb, retval); usb_put_dev(udev); } return retval; } /*-------------------------------------------------------------------------*/ static void __usb_hcd_giveback_urb(struct urb *urb) { struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); struct usb_anchor *anchor = urb->anchor; int status = urb->unlinked; urb->hcpriv = NULL; if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && urb->actual_length < urb->transfer_buffer_length && !status)) status = -EREMOTEIO; unmap_urb_for_dma(hcd, urb); usbmon_urb_complete(&hcd->self, urb, status); usb_anchor_suspend_wakeups(anchor); usb_unanchor_urb(urb); if (likely(status == 0)) usb_led_activity(USB_LED_EVENT_HOST); /* pass ownership to the completion handler */ urb->status = status; /* * This function can be called in task context inside another remote * coverage collection section, but kcov doesn't support that kind of * recursion yet. Only collect coverage in softirq context for now. */ kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); urb->complete(urb); kcov_remote_stop_softirq(); usb_anchor_resume_wakeups(anchor); atomic_dec(&urb->use_count); /* * Order the write of urb->use_count above before the read * of urb->reject below. Pairs with the memory barriers in * usb_kill_urb() and usb_poison_urb(). */ smp_mb__after_atomic(); if (unlikely(atomic_read(&urb->reject))) wake_up(&usb_kill_urb_queue); usb_put_urb(urb); } static void usb_giveback_urb_bh(struct tasklet_struct *t) { struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); struct list_head local_list; spin_lock_irq(&bh->lock); bh->running = true; list_replace_init(&bh->head, &local_list); spin_unlock_irq(&bh->lock); while (!list_empty(&local_list)) { struct urb *urb; urb = list_entry(local_list.next, struct urb, urb_list); list_del_init(&urb->urb_list); bh->completing_ep = urb->ep; __usb_hcd_giveback_urb(urb); bh->completing_ep = NULL; } /* * giveback new URBs next time to prevent this function * from not exiting for a long time. */ spin_lock_irq(&bh->lock); if (!list_empty(&bh->head)) { if (bh->high_prio) tasklet_hi_schedule(&bh->bh); else tasklet_schedule(&bh->bh); } bh->running = false; spin_unlock_irq(&bh->lock); } /** * usb_hcd_giveback_urb - return URB from HCD to device driver * @hcd: host controller returning the URB * @urb: urb being returned to the USB device driver. * @status: completion status code for the URB. * * Context: atomic. The completion callback is invoked in caller's context. * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet * context (except for URBs submitted to the root hub which always complete in * caller's context). * * This hands the URB from HCD to its USB device driver, using its * completion function. The HCD has freed all per-urb resources * (and is done using urb->hcpriv). It also released all HCD locks; * the device driver won't cause problems if it frees, modifies, * or resubmits this URB. * * If @urb was unlinked, the value of @status will be overridden by * @urb->unlinked. Erroneous short transfers are detected in case * the HCD hasn't checked for them. */ void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) { struct giveback_urb_bh *bh; bool running; /* pass status to tasklet via unlinked */ if (likely(!urb->unlinked)) urb->unlinked = status; if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { __usb_hcd_giveback_urb(urb); return; } if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) bh = &hcd->high_prio_bh; else bh = &hcd->low_prio_bh; spin_lock(&bh->lock); list_add_tail(&urb->urb_list, &bh->head); running = bh->running; spin_unlock(&bh->lock); if (running) ; else if (bh->high_prio) tasklet_hi_schedule(&bh->bh); else tasklet_schedule(&bh->bh); } EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); /*-------------------------------------------------------------------------*/ /* Cancel all URBs pending on this endpoint and wait for the endpoint's * queue to drain completely. The caller must first insure that no more * URBs can be submitted for this endpoint. */ void usb_hcd_flush_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep) { struct usb_hcd *hcd; struct urb *urb; if (!ep) return; might_sleep(); hcd = bus_to_hcd(udev->bus); /* No more submits can occur */ spin_lock_irq(&hcd_urb_list_lock); rescan: list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { int is_in; if (urb->unlinked) continue; usb_get_urb (urb); is_in = usb_urb_dir_in(urb); spin_unlock(&hcd_urb_list_lock); /* kick hcd */ unlink1(hcd, urb, -ESHUTDOWN); dev_dbg (hcd->self.controller, "shutdown urb %pK ep%d%s-%s\n", urb, usb_endpoint_num(&ep->desc), is_in ? "in" : "out", usb_ep_type_string(usb_endpoint_type(&ep->desc))); usb_put_urb (urb); /* list contents may have changed */ spin_lock(&hcd_urb_list_lock); goto rescan; } spin_unlock_irq(&hcd_urb_list_lock); /* Wait until the endpoint queue is completely empty */ while (!list_empty (&ep->urb_list)) { spin_lock_irq(&hcd_urb_list_lock); /* The list may have changed while we acquired the spinlock */ urb = NULL; if (!list_empty (&ep->urb_list)) { urb = list_entry (ep->urb_list.prev, struct urb, urb_list); usb_get_urb (urb); } spin_unlock_irq(&hcd_urb_list_lock); if (urb) { usb_kill_urb (urb); usb_put_urb (urb); } } } /** * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds * the bus bandwidth * @udev: target &usb_device * @new_config: new configuration to install * @cur_alt: the current alternate interface setting * @new_alt: alternate interface setting that is being installed * * To change configurations, pass in the new configuration in new_config, * and pass NULL for cur_alt and new_alt. * * To reset a device's configuration (put the device in the ADDRESSED state), * pass in NULL for new_config, cur_alt, and new_alt. * * To change alternate interface settings, pass in NULL for new_config, * pass in the current alternate interface setting in cur_alt, * and pass in the new alternate interface setting in new_alt. * * Return: An error if the requested bandwidth change exceeds the * bus bandwidth or host controller internal resources. */ int usb_hcd_alloc_bandwidth(struct usb_device *udev, struct usb_host_config *new_config, struct usb_host_interface *cur_alt, struct usb_host_interface *new_alt) { int num_intfs, i, j; struct usb_host_interface *alt = NULL; int ret = 0; struct usb_hcd *hcd; struct usb_host_endpoint *ep; hcd = bus_to_hcd(udev->bus); if (!hcd->driver->check_bandwidth) return 0; /* Configuration is being removed - set configuration 0 */ if (!new_config && !cur_alt) { for (i = 1; i < 16; ++i) { ep = udev->ep_out[i]; if (ep) hcd->driver->drop_endpoint(hcd, udev, ep); ep = udev->ep_in[i]; if (ep) hcd->driver->drop_endpoint(hcd, udev, ep); } hcd->driver->check_bandwidth(hcd, udev); return 0; } /* Check if the HCD says there's enough bandwidth. Enable all endpoints * each interface's alt setting 0 and ask the HCD to check the bandwidth * of the bus. There will always be bandwidth for endpoint 0, so it's * ok to exclude it. */ if (new_config) { num_intfs = new_config->desc.bNumInterfaces; /* Remove endpoints (except endpoint 0, which is always on the * schedule) from the old config from the schedule */ for (i = 1; i < 16; ++i) { ep = udev->ep_out[i]; if (ep) { ret = hcd->driver->drop_endpoint(hcd, udev, ep); if (ret < 0) goto reset; } ep = udev->ep_in[i]; if (ep) { ret = hcd->driver->drop_endpoint(hcd, udev, ep); if (ret < 0) goto reset; } } for (i = 0; i < num_intfs; ++i) { struct usb_host_interface *first_alt; int iface_num; first_alt = &new_config->intf_cache[i]->altsetting[0]; iface_num = first_alt->desc.bInterfaceNumber; /* Set up endpoints for alternate interface setting 0 */ alt = usb_find_alt_setting(new_config, iface_num, 0); if (!alt) /* No alt setting 0? Pick the first setting. */ alt = first_alt; for (j = 0; j < alt->desc.bNumEndpoints; j++) { ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); if (ret < 0) goto reset; } } } if (cur_alt && new_alt) { struct usb_interface *iface = usb_ifnum_to_if(udev, cur_alt->desc.bInterfaceNumber); if (!iface) return -EINVAL; if (iface->resetting_device) { /* * The USB core just reset the device, so the xHCI host * and the device will think alt setting 0 is installed. * However, the USB core will pass in the alternate * setting installed before the reset as cur_alt. Dig * out the alternate setting 0 structure, or the first * alternate setting if a broken device doesn't have alt * setting 0. */ cur_alt = usb_altnum_to_altsetting(iface, 0); if (!cur_alt) cur_alt = &iface->altsetting[0]; } /* Drop all the endpoints in the current alt setting */ for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { ret = hcd->driver->drop_endpoint(hcd, udev, &cur_alt->endpoint[i]); if (ret < 0) goto reset; } /* Add all the endpoints in the new alt setting */ for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { ret = hcd->driver->add_endpoint(hcd, udev, &new_alt->endpoint[i]); if (ret < 0) goto reset; } } ret = hcd->driver->check_bandwidth(hcd, udev); reset: if (ret < 0) hcd->driver->reset_bandwidth(hcd, udev); return ret; } /* Disables the endpoint: synchronizes with the hcd to make sure all * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must * have been called previously. Use for set_configuration, set_interface, * driver removal, physical disconnect. * * example: a qh stored in ep->hcpriv, holding state related to endpoint * type, maxpacket size, toggle, halt status, and scheduling. */ void usb_hcd_disable_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep) { struct usb_hcd *hcd; might_sleep(); hcd = bus_to_hcd(udev->bus); if (hcd->driver->endpoint_disable) hcd->driver->endpoint_disable(hcd, ep); } /** * usb_hcd_reset_endpoint - reset host endpoint state * @udev: USB device. * @ep: the endpoint to reset. * * Resets any host endpoint state such as the toggle bit, sequence * number and current window. */ void usb_hcd_reset_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (hcd->driver->endpoint_reset) hcd->driver->endpoint_reset(hcd, ep); else { int epnum = usb_endpoint_num(&ep->desc); int is_out = usb_endpoint_dir_out(&ep->desc); int is_control = usb_endpoint_xfer_control(&ep->desc); usb_settoggle(udev, epnum, is_out, 0); if (is_control) usb_settoggle(udev, epnum, !is_out, 0); } } /** * usb_alloc_streams - allocate bulk endpoint stream IDs. * @interface: alternate setting that includes all endpoints. * @eps: array of endpoints that need streams. * @num_eps: number of endpoints in the array. * @num_streams: number of streams to allocate. * @mem_flags: flags hcd should use to allocate memory. * * Sets up a group of bulk endpoints to have @num_streams stream IDs available. * Drivers may queue multiple transfers to different stream IDs, which may * complete in a different order than they were queued. * * Return: On success, the number of allocated streams. On failure, a negative * error code. */ int usb_alloc_streams(struct usb_interface *interface, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags) { struct usb_hcd *hcd; struct usb_device *dev; int i, ret; dev = interface_to_usbdev(interface); hcd = bus_to_hcd(dev->bus); if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) return -EINVAL; if (dev->speed < USB_SPEED_SUPER) return -EINVAL; if (dev->state < USB_STATE_CONFIGURED) return -ENODEV; for (i = 0; i < num_eps; i++) { /* Streams only apply to bulk endpoints. */ if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) return -EINVAL; /* Re-alloc is not allowed */ if (eps[i]->streams) return -EINVAL; } ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, num_streams, mem_flags); if (ret < 0) return ret; for (i = 0; i < num_eps; i++) eps[i]->streams = ret; return ret; } EXPORT_SYMBOL_GPL(usb_alloc_streams); /** * usb_free_streams - free bulk endpoint stream IDs. * @interface: alternate setting that includes all endpoints. * @eps: array of endpoints to remove streams from. * @num_eps: number of endpoints in the array. * @mem_flags: flags hcd should use to allocate memory. * * Reverts a group of bulk endpoints back to not using stream IDs. * Can fail if we are given bad arguments, or HCD is broken. * * Return: 0 on success. On failure, a negative error code. */ int usb_free_streams(struct usb_interface *interface, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags) { struct usb_hcd *hcd; struct usb_device *dev; int i, ret; dev = interface_to_usbdev(interface); hcd = bus_to_hcd(dev->bus); if (dev->speed < USB_SPEED_SUPER) return -EINVAL; /* Double-free is not allowed */ for (i = 0; i < num_eps; i++) if (!eps[i] || !eps[i]->streams) return -EINVAL; ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); if (ret < 0) return ret; for (i = 0; i < num_eps; i++) eps[i]->streams = 0; return ret; } EXPORT_SYMBOL_GPL(usb_free_streams); /* Protect against drivers that try to unlink URBs after the device * is gone, by waiting until all unlinks for @udev are finished. * Since we don't currently track URBs by device, simply wait until * nothing is running in the locked region of usb_hcd_unlink_urb(). */ void usb_hcd_synchronize_unlinks(struct usb_device *udev) { spin_lock_irq(&hcd_urb_unlink_lock); spin_unlock_irq(&hcd_urb_unlink_lock); } /*-------------------------------------------------------------------------*/ /* called in any context */ int usb_hcd_get_frame_number (struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!HCD_RH_RUNNING(hcd)) return -ESHUTDOWN; return hcd->driver->get_frame_number (hcd); } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_HCD_TEST_MODE static void usb_ehset_completion(struct urb *urb) { struct completion *done = urb->context; complete(done); } /* * Allocate and initialize a control URB. This request will be used by the * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages * of the GetDescriptor request are sent 15 seconds after the SETUP stage. * Return NULL if failed. */ static struct urb *request_single_step_set_feature_urb( struct usb_device *udev, void *dr, void *buf, struct completion *done) { struct urb *urb; struct usb_hcd *hcd = bus_to_hcd(udev->bus); urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return NULL; urb->pipe = usb_rcvctrlpipe(udev, 0); urb->ep = &udev->ep0; urb->dev = udev; urb->setup_packet = (void *)dr; urb->transfer_buffer = buf; urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; urb->complete = usb_ehset_completion; urb->status = -EINPROGRESS; urb->actual_length = 0; urb->transfer_flags = URB_DIR_IN; usb_get_urb(urb); atomic_inc(&urb->use_count); atomic_inc(&urb->dev->urbnum); if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { usb_put_urb(urb); usb_free_urb(urb); return NULL; } urb->context = done; return urb; } int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) { int retval = -ENOMEM; struct usb_ctrlrequest *dr; struct urb *urb; struct usb_device *udev; struct usb_device_descriptor *buf; DECLARE_COMPLETION_ONSTACK(done); /* Obtain udev of the rhub's child port */ udev = usb_hub_find_child(hcd->self.root_hub, port); if (!udev) { dev_err(hcd->self.controller, "No device attached to the RootHub\n"); return -ENODEV; } buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!dr) { kfree(buf); return -ENOMEM; } /* Fill Setup packet for GetDescriptor */ dr->bRequestType = USB_DIR_IN; dr->bRequest = USB_REQ_GET_DESCRIPTOR; dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); dr->wIndex = 0; dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); urb = request_single_step_set_feature_urb(udev, dr, buf, &done); if (!urb) goto cleanup; /* Submit just the SETUP stage */ retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); if (retval) goto out1; if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { usb_kill_urb(urb); retval = -ETIMEDOUT; dev_err(hcd->self.controller, "%s SETUP stage timed out on ep0\n", __func__); goto out1; } msleep(15 * 1000); /* Complete remaining DATA and STATUS stages using the same URB */ urb->status = -EINPROGRESS; usb_get_urb(urb); atomic_inc(&urb->use_count); atomic_inc(&urb->dev->urbnum); retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); if (!retval && !wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { usb_kill_urb(urb); retval = -ETIMEDOUT; dev_err(hcd->self.controller, "%s IN stage timed out on ep0\n", __func__); } out1: usb_free_urb(urb); cleanup: kfree(dr); kfree(buf); return retval; } EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); #endif /* CONFIG_USB_HCD_TEST_MODE */ /*-------------------------------------------------------------------------*/ #ifdef CONFIG_PM int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) { struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); int status; int old_state = hcd->state; dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", (PMSG_IS_AUTO(msg) ? "auto-" : ""), rhdev->do_remote_wakeup); if (HCD_DEAD(hcd)) { dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); return 0; } if (!hcd->driver->bus_suspend) { status = -ENOENT; } else { clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); hcd->state = HC_STATE_QUIESCING; status = hcd->driver->bus_suspend(hcd); } if (status == 0) { usb_set_device_state(rhdev, USB_STATE_SUSPENDED); hcd->state = HC_STATE_SUSPENDED; if (!PMSG_IS_AUTO(msg)) usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); /* Did we race with a root-hub wakeup event? */ if (rhdev->do_remote_wakeup) { char buffer[6]; status = hcd->driver->hub_status_data(hcd, buffer); if (status != 0) { dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); status = -EBUSY; } } } else { spin_lock_irq(&hcd_root_hub_lock); if (!HCD_DEAD(hcd)) { set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); hcd->state = old_state; } spin_unlock_irq(&hcd_root_hub_lock); dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", "suspend", status); } return status; } int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) { struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); int status; int old_state = hcd->state; dev_dbg(&rhdev->dev, "usb %sresume\n", (PMSG_IS_AUTO(msg) ? "auto-" : "")); if (HCD_DEAD(hcd)) { dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); return 0; } if (!PMSG_IS_AUTO(msg)) { status = usb_phy_roothub_resume(hcd->self.sysdev, hcd->phy_roothub); if (status) return status; } if (!hcd->driver->bus_resume) return -ENOENT; if (HCD_RH_RUNNING(hcd)) return 0; hcd->state = HC_STATE_RESUMING; status = hcd->driver->bus_resume(hcd); clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); if (status == 0) status = usb_phy_roothub_calibrate(hcd->phy_roothub); if (status == 0) { struct usb_device *udev; int port1; spin_lock_irq(&hcd_root_hub_lock); if (!HCD_DEAD(hcd)) { usb_set_device_state(rhdev, rhdev->actconfig ? USB_STATE_CONFIGURED : USB_STATE_ADDRESS); set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); hcd->state = HC_STATE_RUNNING; } spin_unlock_irq(&hcd_root_hub_lock); /* * Check whether any of the enabled ports on the root hub are * unsuspended. If they are then a TRSMRCY delay is needed * (this is what the USB-2 spec calls a "global resume"). * Otherwise we can skip the delay. */ usb_hub_for_each_child(rhdev, port1, udev) { if (udev->state != USB_STATE_NOTATTACHED && !udev->port_is_suspended) { usleep_range(10000, 11000); /* TRSMRCY */ break; } } } else { hcd->state = old_state; usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", "resume", status); if (status != -ESHUTDOWN) usb_hc_died(hcd); } return status; } /* Workqueue routine for root-hub remote wakeup */ static void hcd_resume_work(struct work_struct *work) { struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); struct usb_device *udev = hcd->self.root_hub; usb_remote_wakeup(udev); } /** * usb_hcd_resume_root_hub - called by HCD to resume its root hub * @hcd: host controller for this root hub * * The USB host controller calls this function when its root hub is * suspended (with the remote wakeup feature enabled) and a remote * wakeup request is received. The routine submits a workqueue request * to resume the root hub (that is, manage its downstream ports again). */ void usb_hcd_resume_root_hub (struct usb_hcd *hcd) { unsigned long flags; spin_lock_irqsave (&hcd_root_hub_lock, flags); if (hcd->rh_registered) { pm_wakeup_event(&hcd->self.root_hub->dev, 0); set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); queue_work(pm_wq, &hcd->wakeup_work); } spin_unlock_irqrestore (&hcd_root_hub_lock, flags); } EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_OTG /** * usb_bus_start_enum - start immediate enumeration (for OTG) * @bus: the bus (must use hcd framework) * @port_num: 1-based number of port; usually bus->otg_port * Context: atomic * * Starts enumeration, with an immediate reset followed later by * hub_wq identifying and possibly configuring the device. * This is needed by OTG controller drivers, where it helps meet * HNP protocol timing requirements for starting a port reset. * * Return: 0 if successful. */ int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) { struct usb_hcd *hcd; int status = -EOPNOTSUPP; /* NOTE: since HNP can't start by grabbing the bus's address0_sem, * boards with root hubs hooked up to internal devices (instead of * just the OTG port) may need more attention to resetting... */ hcd = bus_to_hcd(bus); if (port_num && hcd->driver->start_port_reset) status = hcd->driver->start_port_reset(hcd, port_num); /* allocate hub_wq shortly after (first) root port reset finishes; * it may issue others, until at least 50 msecs have passed. */ if (status == 0) mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); return status; } EXPORT_SYMBOL_GPL(usb_bus_start_enum); #endif /*-------------------------------------------------------------------------*/ /** * usb_hcd_irq - hook IRQs to HCD framework (bus glue) * @irq: the IRQ being raised * @__hcd: pointer to the HCD whose IRQ is being signaled * * If the controller isn't HALTed, calls the driver's irq handler. * Checks whether the controller is now dead. * * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. */ irqreturn_t usb_hcd_irq (int irq, void *__hcd) { struct usb_hcd *hcd = __hcd; irqreturn_t rc; if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) rc = IRQ_NONE; else if (hcd->driver->irq(hcd) == IRQ_NONE) rc = IRQ_NONE; else rc = IRQ_HANDLED; return rc; } EXPORT_SYMBOL_GPL(usb_hcd_irq); /*-------------------------------------------------------------------------*/ /* Workqueue routine for when the root-hub has died. */ static void hcd_died_work(struct work_struct *work) { struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); static char *env[] = { "ERROR=DEAD", NULL }; /* Notify user space that the host controller has died */ kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); } /** * usb_hc_died - report abnormal shutdown of a host controller (bus glue) * @hcd: pointer to the HCD representing the controller * * This is called by bus glue to report a USB host controller that died * while operations may still have been pending. It's called automatically * by the PCI glue, so only glue for non-PCI busses should need to call it. * * Only call this function with the primary HCD. */ void usb_hc_died (struct usb_hcd *hcd) { unsigned long flags; dev_err (hcd->self.controller, "HC died; cleaning up\n"); spin_lock_irqsave (&hcd_root_hub_lock, flags); clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); set_bit(HCD_FLAG_DEAD, &hcd->flags); if (hcd->rh_registered) { clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); /* make hub_wq clean up old urbs and devices */ usb_set_device_state (hcd->self.root_hub, USB_STATE_NOTATTACHED); usb_kick_hub_wq(hcd->self.root_hub); } if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { hcd = hcd->shared_hcd; clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); set_bit(HCD_FLAG_DEAD, &hcd->flags); if (hcd->rh_registered) { clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); /* make hub_wq clean up old urbs and devices */ usb_set_device_state(hcd->self.root_hub, USB_STATE_NOTATTACHED); usb_kick_hub_wq(hcd->self.root_hub); } } /* Handle the case where this function gets called with a shared HCD */ if (usb_hcd_is_primary_hcd(hcd)) schedule_work(&hcd->died_work); else schedule_work(&hcd->primary_hcd->died_work); spin_unlock_irqrestore (&hcd_root_hub_lock, flags); /* Make sure that the other roothub is also deallocated. */ } EXPORT_SYMBOL_GPL (usb_hc_died); /*-------------------------------------------------------------------------*/ static void init_giveback_urb_bh(struct giveback_urb_bh *bh) { spin_lock_init(&bh->lock); INIT_LIST_HEAD(&bh->head); tasklet_setup(&bh->bh, usb_giveback_urb_bh); } struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, struct device *sysdev, struct device *dev, const char *bus_name, struct usb_hcd *primary_hcd) { struct usb_hcd *hcd; hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); if (!hcd) return NULL; if (primary_hcd == NULL) { hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), GFP_KERNEL); if (!hcd->address0_mutex) { kfree(hcd); dev_dbg(dev, "hcd address0 mutex alloc failed\n"); return NULL; } mutex_init(hcd->address0_mutex); hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), GFP_KERNEL); if (!hcd->bandwidth_mutex) { kfree(hcd->address0_mutex); kfree(hcd); dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); return NULL; } mutex_init(hcd->bandwidth_mutex); dev_set_drvdata(dev, hcd); } else { mutex_lock(&usb_port_peer_mutex); hcd->address0_mutex = primary_hcd->address0_mutex; hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; hcd->primary_hcd = primary_hcd; primary_hcd->primary_hcd = primary_hcd; hcd->shared_hcd = primary_hcd; primary_hcd->shared_hcd = hcd; mutex_unlock(&usb_port_peer_mutex); } kref_init(&hcd->kref); usb_bus_init(&hcd->self); hcd->self.controller = dev; hcd->self.sysdev = sysdev; hcd->self.bus_name = bus_name; timer_setup(&hcd->rh_timer, rh_timer_func, 0); #ifdef CONFIG_PM INIT_WORK(&hcd->wakeup_work, hcd_resume_work); #endif INIT_WORK(&hcd->died_work, hcd_died_work); hcd->driver = driver; hcd->speed = driver->flags & HCD_MASK; hcd->product_desc = (driver->product_desc) ? driver->product_desc : "USB Host Controller"; return hcd; } EXPORT_SYMBOL_GPL(__usb_create_hcd); /** * usb_create_shared_hcd - create and initialize an HCD structure * @driver: HC driver that will use this hcd * @dev: device for this HC, stored in hcd->self.controller * @bus_name: value to store in hcd->self.bus_name * @primary_hcd: a pointer to the usb_hcd structure that is sharing the * PCI device. Only allocate certain resources for the primary HCD * * Context: task context, might sleep. * * Allocate a struct usb_hcd, with extra space at the end for the * HC driver's private data. Initialize the generic members of the * hcd structure. * * Return: On success, a pointer to the created and initialized HCD structure. * On failure (e.g. if memory is unavailable), %NULL. */ struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, struct device *dev, const char *bus_name, struct usb_hcd *primary_hcd) { return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); } EXPORT_SYMBOL_GPL(usb_create_shared_hcd); /** * usb_create_hcd - create and initialize an HCD structure * @driver: HC driver that will use this hcd * @dev: device for this HC, stored in hcd->self.controller * @bus_name: value to store in hcd->self.bus_name * * Context: task context, might sleep. * * Allocate a struct usb_hcd, with extra space at the end for the * HC driver's private data. Initialize the generic members of the * hcd structure. * * Return: On success, a pointer to the created and initialized HCD * structure. On failure (e.g. if memory is unavailable), %NULL. */ struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, struct device *dev, const char *bus_name) { return __usb_create_hcd(driver, dev, dev, bus_name, NULL); } EXPORT_SYMBOL_GPL(usb_create_hcd); /* * Roothubs that share one PCI device must also share the bandwidth mutex. * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is * deallocated. * * Make sure to deallocate the bandwidth_mutex only when the last HCD is * freed. When hcd_release() is called for either hcd in a peer set, * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. */ static void hcd_release(struct kref *kref) { struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); mutex_lock(&usb_port_peer_mutex); if (hcd->shared_hcd) { struct usb_hcd *peer = hcd->shared_hcd; peer->shared_hcd = NULL; peer->primary_hcd = NULL; } else { kfree(hcd->address0_mutex); kfree(hcd->bandwidth_mutex); } mutex_unlock(&usb_port_peer_mutex); kfree(hcd); } struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) { if (hcd) kref_get (&hcd->kref); return hcd; } EXPORT_SYMBOL_GPL(usb_get_hcd); void usb_put_hcd (struct usb_hcd *hcd) { if (hcd) kref_put (&hcd->kref, hcd_release); } EXPORT_SYMBOL_GPL(usb_put_hcd); int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) { if (!hcd->primary_hcd) return 1; return hcd == hcd->primary_hcd; } EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) { if (!hcd->driver->find_raw_port_number) return port1; return hcd->driver->find_raw_port_number(hcd, port1); } static int usb_hcd_request_irqs(struct usb_hcd *hcd, unsigned int irqnum, unsigned long irqflags) { int retval; if (hcd->driver->irq) { snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", hcd->driver->description, hcd->self.busnum); retval = request_irq(irqnum, &usb_hcd_irq, irqflags, hcd->irq_descr, hcd); if (retval != 0) { dev_err(hcd->self.controller, "request interrupt %d failed\n", irqnum); return retval; } hcd->irq = irqnum; dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, (hcd->driver->flags & HCD_MEMORY) ? "io mem" : "io port", (unsigned long long)hcd->rsrc_start); } else { hcd->irq = 0; if (hcd->rsrc_start) dev_info(hcd->self.controller, "%s 0x%08llx\n", (hcd->driver->flags & HCD_MEMORY) ? "io mem" : "io port", (unsigned long long)hcd->rsrc_start); } return 0; } /* * Before we free this root hub, flush in-flight peering attempts * and disable peer lookups */ static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) { struct usb_device *rhdev; mutex_lock(&usb_port_peer_mutex); rhdev = hcd->self.root_hub; hcd->self.root_hub = NULL; mutex_unlock(&usb_port_peer_mutex); usb_put_dev(rhdev); } /** * usb_stop_hcd - Halt the HCD * @hcd: the usb_hcd that has to be halted * * Stop the root-hub polling timer and invoke the HCD's ->stop callback. */ static void usb_stop_hcd(struct usb_hcd *hcd) { hcd->rh_pollable = 0; clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); del_timer_sync(&hcd->rh_timer); hcd->driver->stop(hcd); hcd->state = HC_STATE_HALT; /* In case the HCD restarted the timer, stop it again. */ clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); del_timer_sync(&hcd->rh_timer); } /** * usb_add_hcd - finish generic HCD structure initialization and register * @hcd: the usb_hcd structure to initialize * @irqnum: Interrupt line to allocate * @irqflags: Interrupt type flags * * Finish the remaining parts of generic HCD initialization: allocate the * buffers of consistent memory, register the bus, request the IRQ line, * and call the driver's reset() and start() routines. */ int usb_add_hcd(struct usb_hcd *hcd, unsigned int irqnum, unsigned long irqflags) { int retval; struct usb_device *rhdev; struct usb_hcd *shared_hcd; if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); if (IS_ERR(hcd->phy_roothub)) return PTR_ERR(hcd->phy_roothub); retval = usb_phy_roothub_init(hcd->phy_roothub); if (retval) return retval; retval = usb_phy_roothub_set_mode(hcd->phy_roothub, PHY_MODE_USB_HOST_SS); if (retval) retval = usb_phy_roothub_set_mode(hcd->phy_roothub, PHY_MODE_USB_HOST); if (retval) goto err_usb_phy_roothub_power_on; retval = usb_phy_roothub_power_on(hcd->phy_roothub); if (retval) goto err_usb_phy_roothub_power_on; } dev_info(hcd->self.controller, "%s\n", hcd->product_desc); switch (authorized_default) { case USB_AUTHORIZE_NONE: hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; break; case USB_AUTHORIZE_INTERNAL: hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; break; case USB_AUTHORIZE_ALL: case USB_AUTHORIZE_WIRED: default: hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; break; } set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); /* per default all interfaces are authorized */ set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); /* HC is in reset state, but accessible. Now do the one-time init, * bottom up so that hcds can customize the root hubs before hub_wq * starts talking to them. (Note, bus id is assigned early too.) */ retval = hcd_buffer_create(hcd); if (retval != 0) { dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); goto err_create_buf; } retval = usb_register_bus(&hcd->self); if (retval < 0) goto err_register_bus; rhdev = usb_alloc_dev(NULL, &hcd->self, 0); if (rhdev == NULL) { dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); retval = -ENOMEM; goto err_allocate_root_hub; } mutex_lock(&usb_port_peer_mutex); hcd->self.root_hub = rhdev; mutex_unlock(&usb_port_peer_mutex); rhdev->rx_lanes = 1; rhdev->tx_lanes = 1; rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; switch (hcd->speed) { case HCD_USB11: rhdev->speed = USB_SPEED_FULL; break; case HCD_USB2: rhdev->speed = USB_SPEED_HIGH; break; case HCD_USB3: rhdev->speed = USB_SPEED_SUPER; break; case HCD_USB32: rhdev->rx_lanes = 2; rhdev->tx_lanes = 2; rhdev->ssp_rate = USB_SSP_GEN_2x2; rhdev->speed = USB_SPEED_SUPER_PLUS; break; case HCD_USB31: rhdev->ssp_rate = USB_SSP_GEN_2x1; rhdev->speed = USB_SPEED_SUPER_PLUS; break; default: retval = -EINVAL; goto err_set_rh_speed; } /* wakeup flag init defaults to "everything works" for root hubs, * but drivers can override it in reset() if needed, along with * recording the overall controller's system wakeup capability. */ device_set_wakeup_capable(&rhdev->dev, 1); /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is * registered. But since the controller can die at any time, * let's initialize the flag before touching the hardware. */ set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); /* "reset" is misnamed; its role is now one-time init. the controller * should already have been reset (and boot firmware kicked off etc). */ if (hcd->driver->reset) { retval = hcd->driver->reset(hcd); if (retval < 0) { dev_err(hcd->self.controller, "can't setup: %d\n", retval); goto err_hcd_driver_setup; } } hcd->rh_pollable = 1; retval = usb_phy_roothub_calibrate(hcd->phy_roothub); if (retval) goto err_hcd_driver_setup; /* NOTE: root hub and controller capabilities may not be the same */ if (device_can_wakeup(hcd->self.controller) && device_can_wakeup(&hcd->self.root_hub->dev)) dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); /* initialize tasklets */ init_giveback_urb_bh(&hcd->high_prio_bh); hcd->high_prio_bh.high_prio = true; init_giveback_urb_bh(&hcd->low_prio_bh); /* enable irqs just before we start the controller, * if the BIOS provides legacy PCI irqs. */ if (usb_hcd_is_primary_hcd(hcd) && irqnum) { retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); if (retval) goto err_request_irq; } hcd->state = HC_STATE_RUNNING; retval = hcd->driver->start(hcd); if (retval < 0) { dev_err(hcd->self.controller, "startup error %d\n", retval); goto err_hcd_driver_start; } /* starting here, usbcore will pay attention to the shared HCD roothub */ shared_hcd = hcd->shared_hcd; if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { retval = register_root_hub(shared_hcd); if (retval != 0) goto err_register_root_hub; if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) usb_hcd_poll_rh_status(shared_hcd); } /* starting here, usbcore will pay attention to this root hub */ if (!HCD_DEFER_RH_REGISTER(hcd)) { retval = register_root_hub(hcd); if (retval != 0) goto err_register_root_hub; if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) usb_hcd_poll_rh_status(hcd); } return retval; err_register_root_hub: usb_stop_hcd(hcd); err_hcd_driver_start: if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) free_irq(irqnum, hcd); err_request_irq: err_hcd_driver_setup: err_set_rh_speed: usb_put_invalidate_rhdev(hcd); err_allocate_root_hub: usb_deregister_bus(&hcd->self); err_register_bus: hcd_buffer_destroy(hcd); err_create_buf: usb_phy_roothub_power_off(hcd->phy_roothub); err_usb_phy_roothub_power_on: usb_phy_roothub_exit(hcd->phy_roothub); return retval; } EXPORT_SYMBOL_GPL(usb_add_hcd); /** * usb_remove_hcd - shutdown processing for generic HCDs * @hcd: the usb_hcd structure to remove * * Context: task context, might sleep. * * Disconnects the root hub, then reverses the effects of usb_add_hcd(), * invoking the HCD's stop() method. */ void usb_remove_hcd(struct usb_hcd *hcd) { struct usb_device *rhdev; bool rh_registered; if (!hcd) { pr_debug("%s: hcd is NULL\n", __func__); return; } rhdev = hcd->self.root_hub; dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); usb_get_dev(rhdev); clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); if (HC_IS_RUNNING (hcd->state)) hcd->state = HC_STATE_QUIESCING; dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); spin_lock_irq (&hcd_root_hub_lock); rh_registered = hcd->rh_registered; hcd->rh_registered = 0; spin_unlock_irq (&hcd_root_hub_lock); #ifdef CONFIG_PM cancel_work_sync(&hcd->wakeup_work); #endif cancel_work_sync(&hcd->died_work); mutex_lock(&usb_bus_idr_lock); if (rh_registered) usb_disconnect(&rhdev); /* Sets rhdev to NULL */ mutex_unlock(&usb_bus_idr_lock); /* * tasklet_kill() isn't needed here because: * - driver's disconnect() called from usb_disconnect() should * make sure its URBs are completed during the disconnect() * callback * * - it is too late to run complete() here since driver may have * been removed already now */ /* Prevent any more root-hub status calls from the timer. * The HCD might still restart the timer (if a port status change * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke * the hub_status_data() callback. */ usb_stop_hcd(hcd); if (usb_hcd_is_primary_hcd(hcd)) { if (hcd->irq > 0) free_irq(hcd->irq, hcd); } usb_deregister_bus(&hcd->self); hcd_buffer_destroy(hcd); usb_phy_roothub_power_off(hcd->phy_roothub); usb_phy_roothub_exit(hcd->phy_roothub); usb_put_invalidate_rhdev(hcd); hcd->flags = 0; } EXPORT_SYMBOL_GPL(usb_remove_hcd); void usb_hcd_platform_shutdown(struct platform_device *dev) { struct usb_hcd *hcd = platform_get_drvdata(dev); /* No need for pm_runtime_put(), we're shutting down */ pm_runtime_get_sync(&dev->dev); if (hcd->driver->shutdown) hcd->driver->shutdown(hcd); } EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, dma_addr_t dma, size_t size) { int err; void *local_mem; hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, dev_to_node(hcd->self.sysdev), dev_name(hcd->self.sysdev)); if (IS_ERR(hcd->localmem_pool)) return PTR_ERR(hcd->localmem_pool); /* * if a physical SRAM address was passed, map it, otherwise * allocate system memory as a buffer. */ if (phys_addr) local_mem = devm_memremap(hcd->self.sysdev, phys_addr, size, MEMREMAP_WC); else local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, GFP_KERNEL, DMA_ATTR_WRITE_COMBINE); if (IS_ERR_OR_NULL(local_mem)) { if (!local_mem) return -ENOMEM; return PTR_ERR(local_mem); } /* * Here we pass a dma_addr_t but the arg type is a phys_addr_t. * It's not backed by system memory and thus there's no kernel mapping * for it. */ err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, dma, size, dev_to_node(hcd->self.sysdev)); if (err < 0) { dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", err); return err; } return 0; } EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); /*-------------------------------------------------------------------------*/ #if IS_ENABLED(CONFIG_USB_MON) const struct usb_mon_operations *mon_ops; /* * The registration is unlocked. * We do it this way because we do not want to lock in hot paths. * * Notice that the code is minimally error-proof. Because usbmon needs * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. */ int usb_mon_register(const struct usb_mon_operations *ops) { if (mon_ops) return -EBUSY; mon_ops = ops; mb(); return 0; } EXPORT_SYMBOL_GPL (usb_mon_register); void usb_mon_deregister (void) { if (mon_ops == NULL) { printk(KERN_ERR "USB: monitor was not registered\n"); return; } mon_ops = NULL; mb(); } EXPORT_SYMBOL_GPL (usb_mon_deregister); #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
linux-master
drivers/usb/core/hcd.c
// SPDX-License-Identifier: GPL-2.0 /* * message.c - synchronous message handling * * Released under the GPLv2 only. */ #include <linux/acpi.h> #include <linux/pci.h> /* for scatterlist macros */ #include <linux/usb.h> #include <linux/module.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/timer.h> #include <linux/ctype.h> #include <linux/nls.h> #include <linux/device.h> #include <linux/scatterlist.h> #include <linux/usb/cdc.h> #include <linux/usb/quirks.h> #include <linux/usb/hcd.h> /* for usbcore internals */ #include <linux/usb/of.h> #include <asm/byteorder.h> #include "usb.h" static void cancel_async_set_config(struct usb_device *udev); struct api_context { struct completion done; int status; }; static void usb_api_blocking_completion(struct urb *urb) { struct api_context *ctx = urb->context; ctx->status = urb->status; complete(&ctx->done); } /* * Starts urb and waits for completion or timeout. Note that this call * is NOT interruptible. Many device driver i/o requests should be * interruptible and therefore these drivers should implement their * own interruptible routines. */ static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) { struct api_context ctx; unsigned long expire; int retval; init_completion(&ctx.done); urb->context = &ctx; urb->actual_length = 0; retval = usb_submit_urb(urb, GFP_NOIO); if (unlikely(retval)) goto out; expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; if (!wait_for_completion_timeout(&ctx.done, expire)) { usb_kill_urb(urb); retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); dev_dbg(&urb->dev->dev, "%s timed out on ep%d%s len=%u/%u\n", current->comm, usb_endpoint_num(&urb->ep->desc), usb_urb_dir_in(urb) ? "in" : "out", urb->actual_length, urb->transfer_buffer_length); } else retval = ctx.status; out: if (actual_length) *actual_length = urb->actual_length; usb_free_urb(urb); return retval; } /*-------------------------------------------------------------------*/ /* returns status (negative) or length (positive) */ static int usb_internal_control_msg(struct usb_device *usb_dev, unsigned int pipe, struct usb_ctrlrequest *cmd, void *data, int len, int timeout) { struct urb *urb; int retv; int length; urb = usb_alloc_urb(0, GFP_NOIO); if (!urb) return -ENOMEM; usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, len, usb_api_blocking_completion, NULL); retv = usb_start_wait_urb(urb, timeout, &length); if (retv < 0) return retv; else return length; } /** * usb_control_msg - Builds a control urb, sends it off and waits for completion * @dev: pointer to the usb device to send the message to * @pipe: endpoint "pipe" to send the message to * @request: USB message request value * @requesttype: USB message request type value * @value: USB message value * @index: USB message index value * @data: pointer to the data to send * @size: length in bytes of the data to send * @timeout: time in msecs to wait for the message to complete before timing * out (if 0 the wait is forever) * * Context: task context, might sleep. * * This function sends a simple control message to a specified endpoint and * waits for the message to complete, or timeout. * * Don't use this function from within an interrupt context. If you need * an asynchronous message, or need to send a message from within interrupt * context, use usb_submit_urb(). If a thread in your driver uses this call, * make sure your disconnect() method can wait for it to complete. Since you * don't have a handle on the URB used, you can't cancel the request. * * Return: If successful, the number of bytes transferred. Otherwise, a negative * error number. */ int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, __u16 value, __u16 index, void *data, __u16 size, int timeout) { struct usb_ctrlrequest *dr; int ret; dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); if (!dr) return -ENOMEM; dr->bRequestType = requesttype; dr->bRequest = request; dr->wValue = cpu_to_le16(value); dr->wIndex = cpu_to_le16(index); dr->wLength = cpu_to_le16(size); ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); /* Linger a bit, prior to the next control message. */ if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) msleep(200); kfree(dr); return ret; } EXPORT_SYMBOL_GPL(usb_control_msg); /** * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion * @dev: pointer to the usb device to send the message to * @endpoint: endpoint to send the message to * @request: USB message request value * @requesttype: USB message request type value * @value: USB message value * @index: USB message index value * @driver_data: pointer to the data to send * @size: length in bytes of the data to send * @timeout: time in msecs to wait for the message to complete before timing * out (if 0 the wait is forever) * @memflags: the flags for memory allocation for buffers * * Context: !in_interrupt () * * This function sends a control message to a specified endpoint that is not * expected to fill in a response (i.e. a "send message") and waits for the * message to complete, or timeout. * * Do not use this function from within an interrupt context. If you need * an asynchronous message, or need to send a message from within interrupt * context, use usb_submit_urb(). If a thread in your driver uses this call, * make sure your disconnect() method can wait for it to complete. Since you * don't have a handle on the URB used, you can't cancel the request. * * The data pointer can be made to a reference on the stack, or anywhere else, * as it will not be modified at all. This does not have the restriction that * usb_control_msg() has where the data pointer must be to dynamically allocated * memory (i.e. memory that can be successfully DMAed to a device). * * Return: If successful, 0 is returned, Otherwise, a negative error number. */ int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, __u8 requesttype, __u16 value, __u16 index, const void *driver_data, __u16 size, int timeout, gfp_t memflags) { unsigned int pipe = usb_sndctrlpipe(dev, endpoint); int ret; u8 *data = NULL; if (size) { data = kmemdup(driver_data, size, memflags); if (!data) return -ENOMEM; } ret = usb_control_msg(dev, pipe, request, requesttype, value, index, data, size, timeout); kfree(data); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_GPL(usb_control_msg_send); /** * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion * @dev: pointer to the usb device to send the message to * @endpoint: endpoint to send the message to * @request: USB message request value * @requesttype: USB message request type value * @value: USB message value * @index: USB message index value * @driver_data: pointer to the data to be filled in by the message * @size: length in bytes of the data to be received * @timeout: time in msecs to wait for the message to complete before timing * out (if 0 the wait is forever) * @memflags: the flags for memory allocation for buffers * * Context: !in_interrupt () * * This function sends a control message to a specified endpoint that is * expected to fill in a response (i.e. a "receive message") and waits for the * message to complete, or timeout. * * Do not use this function from within an interrupt context. If you need * an asynchronous message, or need to send a message from within interrupt * context, use usb_submit_urb(). If a thread in your driver uses this call, * make sure your disconnect() method can wait for it to complete. Since you * don't have a handle on the URB used, you can't cancel the request. * * The data pointer can be made to a reference on the stack, or anywhere else * that can be successfully written to. This function does not have the * restriction that usb_control_msg() has where the data pointer must be to * dynamically allocated memory (i.e. memory that can be successfully DMAed to a * device). * * The "whole" message must be properly received from the device in order for * this function to be successful. If a device returns less than the expected * amount of data, then the function will fail. Do not use this for messages * where a variable amount of data might be returned. * * Return: If successful, 0 is returned, Otherwise, a negative error number. */ int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, __u8 requesttype, __u16 value, __u16 index, void *driver_data, __u16 size, int timeout, gfp_t memflags) { unsigned int pipe = usb_rcvctrlpipe(dev, endpoint); int ret; u8 *data; if (!size || !driver_data) return -EINVAL; data = kmalloc(size, memflags); if (!data) return -ENOMEM; ret = usb_control_msg(dev, pipe, request, requesttype, value, index, data, size, timeout); if (ret < 0) goto exit; if (ret == size) { memcpy(driver_data, data, size); ret = 0; } else { ret = -EREMOTEIO; } exit: kfree(data); return ret; } EXPORT_SYMBOL_GPL(usb_control_msg_recv); /** * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion * @usb_dev: pointer to the usb device to send the message to * @pipe: endpoint "pipe" to send the message to * @data: pointer to the data to send * @len: length in bytes of the data to send * @actual_length: pointer to a location to put the actual length transferred * in bytes * @timeout: time in msecs to wait for the message to complete before * timing out (if 0 the wait is forever) * * Context: task context, might sleep. * * This function sends a simple interrupt message to a specified endpoint and * waits for the message to complete, or timeout. * * Don't use this function from within an interrupt context. If you need * an asynchronous message, or need to send a message from within interrupt * context, use usb_submit_urb() If a thread in your driver uses this call, * make sure your disconnect() method can wait for it to complete. Since you * don't have a handle on the URB used, you can't cancel the request. * * Return: * If successful, 0. Otherwise a negative error number. The number of actual * bytes transferred will be stored in the @actual_length parameter. */ int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, void *data, int len, int *actual_length, int timeout) { return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); } EXPORT_SYMBOL_GPL(usb_interrupt_msg); /** * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion * @usb_dev: pointer to the usb device to send the message to * @pipe: endpoint "pipe" to send the message to * @data: pointer to the data to send * @len: length in bytes of the data to send * @actual_length: pointer to a location to put the actual length transferred * in bytes * @timeout: time in msecs to wait for the message to complete before * timing out (if 0 the wait is forever) * * Context: task context, might sleep. * * This function sends a simple bulk message to a specified endpoint * and waits for the message to complete, or timeout. * * Don't use this function from within an interrupt context. If you need * an asynchronous message, or need to send a message from within interrupt * context, use usb_submit_urb() If a thread in your driver uses this call, * make sure your disconnect() method can wait for it to complete. Since you * don't have a handle on the URB used, you can't cancel the request. * * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, * users are forced to abuse this routine by using it to submit URBs for * interrupt endpoints. We will take the liberty of creating an interrupt URB * (with the default interval) if the target is an interrupt endpoint. * * Return: * If successful, 0. Otherwise a negative error number. The number of actual * bytes transferred will be stored in the @actual_length parameter. * */ int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, void *data, int len, int *actual_length, int timeout) { struct urb *urb; struct usb_host_endpoint *ep; ep = usb_pipe_endpoint(usb_dev, pipe); if (!ep || len < 0) return -EINVAL; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return -ENOMEM; if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) { pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); usb_fill_int_urb(urb, usb_dev, pipe, data, len, usb_api_blocking_completion, NULL, ep->desc.bInterval); } else usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, usb_api_blocking_completion, NULL); return usb_start_wait_urb(urb, timeout, actual_length); } EXPORT_SYMBOL_GPL(usb_bulk_msg); /*-------------------------------------------------------------------*/ static void sg_clean(struct usb_sg_request *io) { if (io->urbs) { while (io->entries--) usb_free_urb(io->urbs[io->entries]); kfree(io->urbs); io->urbs = NULL; } io->dev = NULL; } static void sg_complete(struct urb *urb) { unsigned long flags; struct usb_sg_request *io = urb->context; int status = urb->status; spin_lock_irqsave(&io->lock, flags); /* In 2.5 we require hcds' endpoint queues not to progress after fault * reports, until the completion callback (this!) returns. That lets * device driver code (like this routine) unlink queued urbs first, * if it needs to, since the HC won't work on them at all. So it's * not possible for page N+1 to overwrite page N, and so on. * * That's only for "hard" faults; "soft" faults (unlinks) sometimes * complete before the HCD can get requests away from hardware, * though never during cleanup after a hard fault. */ if (io->status && (io->status != -ECONNRESET || status != -ECONNRESET) && urb->actual_length) { dev_err(io->dev->bus->controller, "dev %s ep%d%s scatterlist error %d/%d\n", io->dev->devpath, usb_endpoint_num(&urb->ep->desc), usb_urb_dir_in(urb) ? "in" : "out", status, io->status); /* BUG (); */ } if (io->status == 0 && status && status != -ECONNRESET) { int i, found, retval; io->status = status; /* the previous urbs, and this one, completed already. * unlink pending urbs so they won't rx/tx bad data. * careful: unlink can sometimes be synchronous... */ spin_unlock_irqrestore(&io->lock, flags); for (i = 0, found = 0; i < io->entries; i++) { if (!io->urbs[i]) continue; if (found) { usb_block_urb(io->urbs[i]); retval = usb_unlink_urb(io->urbs[i]); if (retval != -EINPROGRESS && retval != -ENODEV && retval != -EBUSY && retval != -EIDRM) dev_err(&io->dev->dev, "%s, unlink --> %d\n", __func__, retval); } else if (urb == io->urbs[i]) found = 1; } spin_lock_irqsave(&io->lock, flags); } /* on the last completion, signal usb_sg_wait() */ io->bytes += urb->actual_length; io->count--; if (!io->count) complete(&io->complete); spin_unlock_irqrestore(&io->lock, flags); } /** * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request * @io: request block being initialized. until usb_sg_wait() returns, * treat this as a pointer to an opaque block of memory, * @dev: the usb device that will send or receive the data * @pipe: endpoint "pipe" used to transfer the data * @period: polling rate for interrupt endpoints, in frames or * (for high speed endpoints) microframes; ignored for bulk * @sg: scatterlist entries * @nents: how many entries in the scatterlist * @length: how many bytes to send from the scatterlist, or zero to * send every byte identified in the list. * @mem_flags: SLAB_* flags affecting memory allocations in this call * * This initializes a scatter/gather request, allocating resources such as * I/O mappings and urb memory (except maybe memory used by USB controller * drivers). * * The request must be issued using usb_sg_wait(), which waits for the I/O to * complete (or to be canceled) and then cleans up all resources allocated by * usb_sg_init(). * * The request may be canceled with usb_sg_cancel(), either before or after * usb_sg_wait() is called. * * Return: Zero for success, else a negative errno value. */ int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, unsigned pipe, unsigned period, struct scatterlist *sg, int nents, size_t length, gfp_t mem_flags) { int i; int urb_flags; int use_sg; if (!io || !dev || !sg || usb_pipecontrol(pipe) || usb_pipeisoc(pipe) || nents <= 0) return -EINVAL; spin_lock_init(&io->lock); io->dev = dev; io->pipe = pipe; if (dev->bus->sg_tablesize > 0) { use_sg = true; io->entries = 1; } else { use_sg = false; io->entries = nents; } /* initialize all the urbs we'll use */ io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); if (!io->urbs) goto nomem; urb_flags = URB_NO_INTERRUPT; if (usb_pipein(pipe)) urb_flags |= URB_SHORT_NOT_OK; for_each_sg(sg, sg, io->entries, i) { struct urb *urb; unsigned len; urb = usb_alloc_urb(0, mem_flags); if (!urb) { io->entries = i; goto nomem; } io->urbs[i] = urb; urb->dev = NULL; urb->pipe = pipe; urb->interval = period; urb->transfer_flags = urb_flags; urb->complete = sg_complete; urb->context = io; urb->sg = sg; if (use_sg) { /* There is no single transfer buffer */ urb->transfer_buffer = NULL; urb->num_sgs = nents; /* A length of zero means transfer the whole sg list */ len = length; if (len == 0) { struct scatterlist *sg2; int j; for_each_sg(sg, sg2, nents, j) len += sg2->length; } } else { /* * Some systems can't use DMA; they use PIO instead. * For their sakes, transfer_buffer is set whenever * possible. */ if (!PageHighMem(sg_page(sg))) urb->transfer_buffer = sg_virt(sg); else urb->transfer_buffer = NULL; len = sg->length; if (length) { len = min_t(size_t, len, length); length -= len; if (length == 0) io->entries = i + 1; } } urb->transfer_buffer_length = len; } io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; /* transaction state */ io->count = io->entries; io->status = 0; io->bytes = 0; init_completion(&io->complete); return 0; nomem: sg_clean(io); return -ENOMEM; } EXPORT_SYMBOL_GPL(usb_sg_init); /** * usb_sg_wait - synchronously execute scatter/gather request * @io: request block handle, as initialized with usb_sg_init(). * some fields become accessible when this call returns. * * Context: task context, might sleep. * * This function blocks until the specified I/O operation completes. It * leverages the grouping of the related I/O requests to get good transfer * rates, by queueing the requests. At higher speeds, such queuing can * significantly improve USB throughput. * * There are three kinds of completion for this function. * * (1) success, where io->status is zero. The number of io->bytes * transferred is as requested. * (2) error, where io->status is a negative errno value. The number * of io->bytes transferred before the error is usually less * than requested, and can be nonzero. * (3) cancellation, a type of error with status -ECONNRESET that * is initiated by usb_sg_cancel(). * * When this function returns, all memory allocated through usb_sg_init() or * this call will have been freed. The request block parameter may still be * passed to usb_sg_cancel(), or it may be freed. It could also be * reinitialized and then reused. * * Data Transfer Rates: * * Bulk transfers are valid for full or high speed endpoints. * The best full speed data rate is 19 packets of 64 bytes each * per frame, or 1216 bytes per millisecond. * The best high speed data rate is 13 packets of 512 bytes each * per microframe, or 52 KBytes per millisecond. * * The reason to use interrupt transfers through this API would most likely * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond * could be transferred. That capability is less useful for low or full * speed interrupt endpoints, which allow at most one packet per millisecond, * of at most 8 or 64 bytes (respectively). * * It is not necessary to call this function to reserve bandwidth for devices * under an xHCI host controller, as the bandwidth is reserved when the * configuration or interface alt setting is selected. */ void usb_sg_wait(struct usb_sg_request *io) { int i; int entries = io->entries; /* queue the urbs. */ spin_lock_irq(&io->lock); i = 0; while (i < entries && !io->status) { int retval; io->urbs[i]->dev = io->dev; spin_unlock_irq(&io->lock); retval = usb_submit_urb(io->urbs[i], GFP_NOIO); switch (retval) { /* maybe we retrying will recover */ case -ENXIO: /* hc didn't queue this one */ case -EAGAIN: case -ENOMEM: retval = 0; yield(); break; /* no error? continue immediately. * * NOTE: to work better with UHCI (4K I/O buffer may * need 3K of TDs) it may be good to limit how many * URBs are queued at once; N milliseconds? */ case 0: ++i; cpu_relax(); break; /* fail any uncompleted urbs */ default: io->urbs[i]->status = retval; dev_dbg(&io->dev->dev, "%s, submit --> %d\n", __func__, retval); usb_sg_cancel(io); } spin_lock_irq(&io->lock); if (retval && (io->status == 0 || io->status == -ECONNRESET)) io->status = retval; } io->count -= entries - i; if (io->count == 0) complete(&io->complete); spin_unlock_irq(&io->lock); /* OK, yes, this could be packaged as non-blocking. * So could the submit loop above ... but it's easier to * solve neither problem than to solve both! */ wait_for_completion(&io->complete); sg_clean(io); } EXPORT_SYMBOL_GPL(usb_sg_wait); /** * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() * @io: request block, initialized with usb_sg_init() * * This stops a request after it has been started by usb_sg_wait(). * It can also prevents one initialized by usb_sg_init() from starting, * so that call just frees resources allocated to the request. */ void usb_sg_cancel(struct usb_sg_request *io) { unsigned long flags; int i, retval; spin_lock_irqsave(&io->lock, flags); if (io->status || io->count == 0) { spin_unlock_irqrestore(&io->lock, flags); return; } /* shut everything down */ io->status = -ECONNRESET; io->count++; /* Keep the request alive until we're done */ spin_unlock_irqrestore(&io->lock, flags); for (i = io->entries - 1; i >= 0; --i) { usb_block_urb(io->urbs[i]); retval = usb_unlink_urb(io->urbs[i]); if (retval != -EINPROGRESS && retval != -ENODEV && retval != -EBUSY && retval != -EIDRM) dev_warn(&io->dev->dev, "%s, unlink --> %d\n", __func__, retval); } spin_lock_irqsave(&io->lock, flags); io->count--; if (!io->count) complete(&io->complete); spin_unlock_irqrestore(&io->lock, flags); } EXPORT_SYMBOL_GPL(usb_sg_cancel); /*-------------------------------------------------------------------*/ /** * usb_get_descriptor - issues a generic GET_DESCRIPTOR request * @dev: the device whose descriptor is being retrieved * @type: the descriptor type (USB_DT_*) * @index: the number of the descriptor * @buf: where to put the descriptor * @size: how big is "buf"? * * Context: task context, might sleep. * * Gets a USB descriptor. Convenience functions exist to simplify * getting some types of descriptors. Use * usb_get_string() or usb_string() for USB_DT_STRING. * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) * are part of the device structure. * In addition to a number of USB-standard descriptors, some * devices also use class-specific or vendor-specific descriptors. * * This call is synchronous, and may not be used in an interrupt context. * * Return: The number of bytes received on success, or else the status code * returned by the underlying usb_control_msg() call. */ int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) { int i; int result; if (size <= 0) /* No point in asking for no data */ return -EINVAL; memset(buf, 0, size); /* Make sure we parse really received data */ for (i = 0; i < 3; ++i) { /* retry on length 0 or error; some devices are flakey */ result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (type << 8) + index, 0, buf, size, USB_CTRL_GET_TIMEOUT); if (result <= 0 && result != -ETIMEDOUT) continue; if (result > 1 && ((u8 *)buf)[1] != type) { result = -ENODATA; continue; } break; } return result; } EXPORT_SYMBOL_GPL(usb_get_descriptor); /** * usb_get_string - gets a string descriptor * @dev: the device whose string descriptor is being retrieved * @langid: code for language chosen (from string descriptor zero) * @index: the number of the descriptor * @buf: where to put the string * @size: how big is "buf"? * * Context: task context, might sleep. * * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, * in little-endian byte order). * The usb_string() function will often be a convenient way to turn * these strings into kernel-printable form. * * Strings may be referenced in device, configuration, interface, or other * descriptors, and could also be used in vendor-specific ways. * * This call is synchronous, and may not be used in an interrupt context. * * Return: The number of bytes received on success, or else the status code * returned by the underlying usb_control_msg() call. */ static int usb_get_string(struct usb_device *dev, unsigned short langid, unsigned char index, void *buf, int size) { int i; int result; if (size <= 0) /* No point in asking for no data */ return -EINVAL; for (i = 0; i < 3; ++i) { /* retry on length 0 or stall; some devices are flakey */ result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (USB_DT_STRING << 8) + index, langid, buf, size, USB_CTRL_GET_TIMEOUT); if (result == 0 || result == -EPIPE) continue; if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { result = -ENODATA; continue; } break; } return result; } static void usb_try_string_workarounds(unsigned char *buf, int *length) { int newlength, oldlength = *length; for (newlength = 2; newlength + 1 < oldlength; newlength += 2) if (!isprint(buf[newlength]) || buf[newlength + 1]) break; if (newlength > 2) { buf[0] = newlength; *length = newlength; } } static int usb_string_sub(struct usb_device *dev, unsigned int langid, unsigned int index, unsigned char *buf) { int rc; /* Try to read the string descriptor by asking for the maximum * possible number of bytes */ if (dev->quirks & USB_QUIRK_STRING_FETCH_255) rc = -EIO; else rc = usb_get_string(dev, langid, index, buf, 255); /* If that failed try to read the descriptor length, then * ask for just that many bytes */ if (rc < 2) { rc = usb_get_string(dev, langid, index, buf, 2); if (rc == 2) rc = usb_get_string(dev, langid, index, buf, buf[0]); } if (rc >= 2) { if (!buf[0] && !buf[1]) usb_try_string_workarounds(buf, &rc); /* There might be extra junk at the end of the descriptor */ if (buf[0] < rc) rc = buf[0]; rc = rc - (rc & 1); /* force a multiple of two */ } if (rc < 2) rc = (rc < 0 ? rc : -EINVAL); return rc; } static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) { int err; if (dev->have_langid) return 0; if (dev->string_langid < 0) return -EPIPE; err = usb_string_sub(dev, 0, 0, tbuf); /* If the string was reported but is malformed, default to english * (0x0409) */ if (err == -ENODATA || (err > 0 && err < 4)) { dev->string_langid = 0x0409; dev->have_langid = 1; dev_err(&dev->dev, "language id specifier not provided by device, defaulting to English\n"); return 0; } /* In case of all other errors, we assume the device is not able to * deal with strings at all. Set string_langid to -1 in order to * prevent any string to be retrieved from the device */ if (err < 0) { dev_info(&dev->dev, "string descriptor 0 read error: %d\n", err); dev->string_langid = -1; return -EPIPE; } /* always use the first langid listed */ dev->string_langid = tbuf[2] | (tbuf[3] << 8); dev->have_langid = 1; dev_dbg(&dev->dev, "default language 0x%04x\n", dev->string_langid); return 0; } /** * usb_string - returns UTF-8 version of a string descriptor * @dev: the device whose string descriptor is being retrieved * @index: the number of the descriptor * @buf: where to put the string * @size: how big is "buf"? * * Context: task context, might sleep. * * This converts the UTF-16LE encoded strings returned by devices, from * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones * that are more usable in most kernel contexts. Note that this function * chooses strings in the first language supported by the device. * * This call is synchronous, and may not be used in an interrupt context. * * Return: length of the string (>= 0) or usb_control_msg status (< 0). */ int usb_string(struct usb_device *dev, int index, char *buf, size_t size) { unsigned char *tbuf; int err; if (dev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; if (size <= 0 || !buf) return -EINVAL; buf[0] = 0; if (index <= 0 || index >= 256) return -EINVAL; tbuf = kmalloc(256, GFP_NOIO); if (!tbuf) return -ENOMEM; err = usb_get_langid(dev, tbuf); if (err < 0) goto errout; err = usb_string_sub(dev, dev->string_langid, index, tbuf); if (err < 0) goto errout; size--; /* leave room for trailing NULL char in output buffer */ err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, UTF16_LITTLE_ENDIAN, buf, size); buf[err] = 0; if (tbuf[1] != USB_DT_STRING) dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); errout: kfree(tbuf); return err; } EXPORT_SYMBOL_GPL(usb_string); /* one UTF-8-encoded 16-bit character has at most three bytes */ #define MAX_USB_STRING_SIZE (127 * 3 + 1) /** * usb_cache_string - read a string descriptor and cache it for later use * @udev: the device whose string descriptor is being read * @index: the descriptor index * * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, * or %NULL if the index is 0 or the string could not be read. */ char *usb_cache_string(struct usb_device *udev, int index) { char *buf; char *smallbuf = NULL; int len; if (index <= 0) return NULL; buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); if (buf) { len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); if (len > 0) { smallbuf = kmalloc(++len, GFP_NOIO); if (!smallbuf) return buf; memcpy(smallbuf, buf, len); } kfree(buf); } return smallbuf; } EXPORT_SYMBOL_GPL(usb_cache_string); /* * usb_get_device_descriptor - read the device descriptor * @udev: the device whose device descriptor should be read * * Context: task context, might sleep. * * Not exported, only for use by the core. If drivers really want to read * the device descriptor directly, they can call usb_get_descriptor() with * type = USB_DT_DEVICE and index = 0. * * Returns: a pointer to a dynamically allocated usb_device_descriptor * structure (which the caller must deallocate), or an ERR_PTR value. */ struct usb_device_descriptor *usb_get_device_descriptor(struct usb_device *udev) { struct usb_device_descriptor *desc; int ret; desc = kmalloc(sizeof(*desc), GFP_NOIO); if (!desc) return ERR_PTR(-ENOMEM); ret = usb_get_descriptor(udev, USB_DT_DEVICE, 0, desc, sizeof(*desc)); if (ret == sizeof(*desc)) return desc; if (ret >= 0) ret = -EMSGSIZE; kfree(desc); return ERR_PTR(ret); } /* * usb_set_isoch_delay - informs the device of the packet transmit delay * @dev: the device whose delay is to be informed * Context: task context, might sleep * * Since this is an optional request, we don't bother if it fails. */ int usb_set_isoch_delay(struct usb_device *dev) { /* skip hub devices */ if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) return 0; /* skip non-SS/non-SSP devices */ if (dev->speed < USB_SPEED_SUPER) return 0; return usb_control_msg_send(dev, 0, USB_REQ_SET_ISOCH_DELAY, USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, dev->hub_delay, 0, NULL, 0, USB_CTRL_SET_TIMEOUT, GFP_NOIO); } /** * usb_get_status - issues a GET_STATUS call * @dev: the device whose status is being checked * @recip: USB_RECIP_*; for device, interface, or endpoint * @type: USB_STATUS_TYPE_*; for standard or PTM status types * @target: zero (for device), else interface or endpoint number * @data: pointer to two bytes of bitmap data * * Context: task context, might sleep. * * Returns device, interface, or endpoint status. Normally only of * interest to see if the device is self powered, or has enabled the * remote wakeup facility; or whether a bulk or interrupt endpoint * is halted ("stalled"). * * Bits in these status bitmaps are set using the SET_FEATURE request, * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() * function should be used to clear halt ("stall") status. * * This call is synchronous, and may not be used in an interrupt context. * * Returns 0 and the status value in *@data (in host byte order) on success, * or else the status code from the underlying usb_control_msg() call. */ int usb_get_status(struct usb_device *dev, int recip, int type, int target, void *data) { int ret; void *status; int length; switch (type) { case USB_STATUS_TYPE_STANDARD: length = 2; break; case USB_STATUS_TYPE_PTM: if (recip != USB_RECIP_DEVICE) return -EINVAL; length = 4; break; default: return -EINVAL; } status = kmalloc(length, GFP_KERNEL); if (!status) return -ENOMEM; ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, target, status, length, USB_CTRL_GET_TIMEOUT); switch (ret) { case 4: if (type != USB_STATUS_TYPE_PTM) { ret = -EIO; break; } *(u32 *) data = le32_to_cpu(*(__le32 *) status); ret = 0; break; case 2: if (type != USB_STATUS_TYPE_STANDARD) { ret = -EIO; break; } *(u16 *) data = le16_to_cpu(*(__le16 *) status); ret = 0; break; default: ret = -EIO; } kfree(status); return ret; } EXPORT_SYMBOL_GPL(usb_get_status); /** * usb_clear_halt - tells device to clear endpoint halt/stall condition * @dev: device whose endpoint is halted * @pipe: endpoint "pipe" being cleared * * Context: task context, might sleep. * * This is used to clear halt conditions for bulk and interrupt endpoints, * as reported by URB completion status. Endpoints that are halted are * sometimes referred to as being "stalled". Such endpoints are unable * to transmit or receive data until the halt status is cleared. Any URBs * queued for such an endpoint should normally be unlinked by the driver * before clearing the halt condition, as described in sections 5.7.5 * and 5.8.5 of the USB 2.0 spec. * * Note that control and isochronous endpoints don't halt, although control * endpoints report "protocol stall" (for unsupported requests) using the * same status code used to report a true stall. * * This call is synchronous, and may not be used in an interrupt context. * * Return: Zero on success, or else the status code returned by the * underlying usb_control_msg() call. */ int usb_clear_halt(struct usb_device *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe); if (usb_pipein(pipe)) endp |= USB_DIR_IN; /* we don't care if it wasn't halted first. in fact some devices * (like some ibmcam model 1 units) seem to expect hosts to make * this request for iso endpoints, which can't halt! */ result = usb_control_msg_send(dev, 0, USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, USB_ENDPOINT_HALT, endp, NULL, 0, USB_CTRL_SET_TIMEOUT, GFP_NOIO); /* don't un-halt or force to DATA0 except on success */ if (result) return result; /* NOTE: seems like Microsoft and Apple don't bother verifying * the clear "took", so some devices could lock up if you check... * such as the Hagiwara FlashGate DUAL. So we won't bother. * * NOTE: make sure the logic here doesn't diverge much from * the copy in usb-storage, for as long as we need two copies. */ usb_reset_endpoint(dev, endp); return 0; } EXPORT_SYMBOL_GPL(usb_clear_halt); static int create_intf_ep_devs(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_interface *alt = intf->cur_altsetting; int i; if (intf->ep_devs_created || intf->unregistering) return 0; for (i = 0; i < alt->desc.bNumEndpoints; ++i) (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); intf->ep_devs_created = 1; return 0; } static void remove_intf_ep_devs(struct usb_interface *intf) { struct usb_host_interface *alt = intf->cur_altsetting; int i; if (!intf->ep_devs_created) return; for (i = 0; i < alt->desc.bNumEndpoints; ++i) usb_remove_ep_devs(&alt->endpoint[i]); intf->ep_devs_created = 0; } /** * usb_disable_endpoint -- Disable an endpoint by address * @dev: the device whose endpoint is being disabled * @epaddr: the endpoint's address. Endpoint number for output, * endpoint number + USB_DIR_IN for input * @reset_hardware: flag to erase any endpoint state stored in the * controller hardware * * Disables the endpoint for URB submission and nukes all pending URBs. * If @reset_hardware is set then also deallocates hcd/hardware state * for the endpoint. */ void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, bool reset_hardware) { unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; struct usb_host_endpoint *ep; if (!dev) return; if (usb_endpoint_out(epaddr)) { ep = dev->ep_out[epnum]; if (reset_hardware && epnum != 0) dev->ep_out[epnum] = NULL; } else { ep = dev->ep_in[epnum]; if (reset_hardware && epnum != 0) dev->ep_in[epnum] = NULL; } if (ep) { ep->enabled = 0; usb_hcd_flush_endpoint(dev, ep); if (reset_hardware) usb_hcd_disable_endpoint(dev, ep); } } /** * usb_reset_endpoint - Reset an endpoint's state. * @dev: the device whose endpoint is to be reset * @epaddr: the endpoint's address. Endpoint number for output, * endpoint number + USB_DIR_IN for input * * Resets any host-side endpoint state such as the toggle bit, * sequence number or current window. */ void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) { unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; struct usb_host_endpoint *ep; if (usb_endpoint_out(epaddr)) ep = dev->ep_out[epnum]; else ep = dev->ep_in[epnum]; if (ep) usb_hcd_reset_endpoint(dev, ep); } EXPORT_SYMBOL_GPL(usb_reset_endpoint); /** * usb_disable_interface -- Disable all endpoints for an interface * @dev: the device whose interface is being disabled * @intf: pointer to the interface descriptor * @reset_hardware: flag to erase any endpoint state stored in the * controller hardware * * Disables all the endpoints for the interface's current altsetting. */ void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, bool reset_hardware) { struct usb_host_interface *alt = intf->cur_altsetting; int i; for (i = 0; i < alt->desc.bNumEndpoints; ++i) { usb_disable_endpoint(dev, alt->endpoint[i].desc.bEndpointAddress, reset_hardware); } } /* * usb_disable_device_endpoints -- Disable all endpoints for a device * @dev: the device whose endpoints are being disabled * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. */ static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0) { struct usb_hcd *hcd = bus_to_hcd(dev->bus); int i; if (hcd->driver->check_bandwidth) { /* First pass: Cancel URBs, leave endpoint pointers intact. */ for (i = skip_ep0; i < 16; ++i) { usb_disable_endpoint(dev, i, false); usb_disable_endpoint(dev, i + USB_DIR_IN, false); } /* Remove endpoints from the host controller internal state */ mutex_lock(hcd->bandwidth_mutex); usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); mutex_unlock(hcd->bandwidth_mutex); } /* Second pass: remove endpoint pointers */ for (i = skip_ep0; i < 16; ++i) { usb_disable_endpoint(dev, i, true); usb_disable_endpoint(dev, i + USB_DIR_IN, true); } } /** * usb_disable_device - Disable all the endpoints for a USB device * @dev: the device whose endpoints are being disabled * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. * * Disables all the device's endpoints, potentially including endpoint 0. * Deallocates hcd/hardware state for the endpoints (nuking all or most * pending urbs) and usbcore state for the interfaces, so that usbcore * must usb_set_configuration() before any interfaces could be used. */ void usb_disable_device(struct usb_device *dev, int skip_ep0) { int i; /* getting rid of interfaces will disconnect * any drivers bound to them (a key side effect) */ if (dev->actconfig) { /* * FIXME: In order to avoid self-deadlock involving the * bandwidth_mutex, we have to mark all the interfaces * before unregistering any of them. */ for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) dev->actconfig->interface[i]->unregistering = 1; for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { struct usb_interface *interface; /* remove this interface if it has been registered */ interface = dev->actconfig->interface[i]; if (!device_is_registered(&interface->dev)) continue; dev_dbg(&dev->dev, "unregistering interface %s\n", dev_name(&interface->dev)); remove_intf_ep_devs(interface); device_del(&interface->dev); } /* Now that the interfaces are unbound, nobody should * try to access them. */ for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { put_device(&dev->actconfig->interface[i]->dev); dev->actconfig->interface[i] = NULL; } usb_disable_usb2_hardware_lpm(dev); usb_unlocked_disable_lpm(dev); usb_disable_ltm(dev); dev->actconfig = NULL; if (dev->state == USB_STATE_CONFIGURED) usb_set_device_state(dev, USB_STATE_ADDRESS); } dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, skip_ep0 ? "non-ep0" : "all"); usb_disable_device_endpoints(dev, skip_ep0); } /** * usb_enable_endpoint - Enable an endpoint for USB communications * @dev: the device whose interface is being enabled * @ep: the endpoint * @reset_ep: flag to reset the endpoint state * * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. * For control endpoints, both the input and output sides are handled. */ void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, bool reset_ep) { int epnum = usb_endpoint_num(&ep->desc); int is_out = usb_endpoint_dir_out(&ep->desc); int is_control = usb_endpoint_xfer_control(&ep->desc); if (reset_ep) usb_hcd_reset_endpoint(dev, ep); if (is_out || is_control) dev->ep_out[epnum] = ep; if (!is_out || is_control) dev->ep_in[epnum] = ep; ep->enabled = 1; } /** * usb_enable_interface - Enable all the endpoints for an interface * @dev: the device whose interface is being enabled * @intf: pointer to the interface descriptor * @reset_eps: flag to reset the endpoints' state * * Enables all the endpoints for the interface's current altsetting. */ void usb_enable_interface(struct usb_device *dev, struct usb_interface *intf, bool reset_eps) { struct usb_host_interface *alt = intf->cur_altsetting; int i; for (i = 0; i < alt->desc.bNumEndpoints; ++i) usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); } /** * usb_set_interface - Makes a particular alternate setting be current * @dev: the device whose interface is being updated * @interface: the interface being updated * @alternate: the setting being chosen. * * Context: task context, might sleep. * * This is used to enable data transfers on interfaces that may not * be enabled by default. Not all devices support such configurability. * Only the driver bound to an interface may change its setting. * * Within any given configuration, each interface may have several * alternative settings. These are often used to control levels of * bandwidth consumption. For example, the default setting for a high * speed interrupt endpoint may not send more than 64 bytes per microframe, * while interrupt transfers of up to 3KBytes per microframe are legal. * Also, isochronous endpoints may never be part of an * interface's default setting. To access such bandwidth, alternate * interface settings must be made current. * * Note that in the Linux USB subsystem, bandwidth associated with * an endpoint in a given alternate setting is not reserved until an URB * is submitted that needs that bandwidth. Some other operating systems * allocate bandwidth early, when a configuration is chosen. * * xHCI reserves bandwidth and configures the alternate setting in * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting * may be disabled. Drivers cannot rely on any particular alternate * setting being in effect after a failure. * * This call is synchronous, and may not be used in an interrupt context. * Also, drivers must not change altsettings while urbs are scheduled for * endpoints in that interface; all such urbs must first be completed * (perhaps forced by unlinking). * * Return: Zero on success, or else the status code returned by the * underlying usb_control_msg() call. */ int usb_set_interface(struct usb_device *dev, int interface, int alternate) { struct usb_interface *iface; struct usb_host_interface *alt; struct usb_hcd *hcd = bus_to_hcd(dev->bus); int i, ret, manual = 0; unsigned int epaddr; unsigned int pipe; if (dev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; iface = usb_ifnum_to_if(dev, interface); if (!iface) { dev_dbg(&dev->dev, "selecting invalid interface %d\n", interface); return -EINVAL; } if (iface->unregistering) return -ENODEV; alt = usb_altnum_to_altsetting(iface, alternate); if (!alt) { dev_warn(&dev->dev, "selecting invalid altsetting %d\n", alternate); return -EINVAL; } /* * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, * including freeing dropped endpoint ring buffers. * Make sure the interface endpoints are flushed before that */ usb_disable_interface(dev, iface, false); /* Make sure we have enough bandwidth for this alternate interface. * Remove the current alt setting and add the new alt setting. */ mutex_lock(hcd->bandwidth_mutex); /* Disable LPM, and re-enable it once the new alt setting is installed, * so that the xHCI driver can recalculate the U1/U2 timeouts. */ if (usb_disable_lpm(dev)) { dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); mutex_unlock(hcd->bandwidth_mutex); return -ENOMEM; } /* Changing alt-setting also frees any allocated streams */ for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) iface->cur_altsetting->endpoint[i].streams = 0; ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); if (ret < 0) { dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", alternate); usb_enable_lpm(dev); mutex_unlock(hcd->bandwidth_mutex); return ret; } if (dev->quirks & USB_QUIRK_NO_SET_INTF) ret = -EPIPE; else ret = usb_control_msg_send(dev, 0, USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, alternate, interface, NULL, 0, 5000, GFP_NOIO); /* 9.4.10 says devices don't need this and are free to STALL the * request if the interface only has one alternate setting. */ if (ret == -EPIPE && iface->num_altsetting == 1) { dev_dbg(&dev->dev, "manual set_interface for iface %d, alt %d\n", interface, alternate); manual = 1; } else if (ret) { /* Re-instate the old alt setting */ usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); usb_enable_lpm(dev); mutex_unlock(hcd->bandwidth_mutex); return ret; } mutex_unlock(hcd->bandwidth_mutex); /* FIXME drivers shouldn't need to replicate/bugfix the logic here * when they implement async or easily-killable versions of this or * other "should-be-internal" functions (like clear_halt). * should hcd+usbcore postprocess control requests? */ /* prevent submissions using previous endpoint settings */ if (iface->cur_altsetting != alt) { remove_intf_ep_devs(iface); usb_remove_sysfs_intf_files(iface); } usb_disable_interface(dev, iface, true); iface->cur_altsetting = alt; /* Now that the interface is installed, re-enable LPM. */ usb_unlocked_enable_lpm(dev); /* If the interface only has one altsetting and the device didn't * accept the request, we attempt to carry out the equivalent action * by manually clearing the HALT feature for each endpoint in the * new altsetting. */ if (manual) { for (i = 0; i < alt->desc.bNumEndpoints; i++) { epaddr = alt->endpoint[i].desc.bEndpointAddress; pipe = __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); usb_clear_halt(dev, pipe); } } /* 9.1.1.5: reset toggles for all endpoints in the new altsetting * * Note: * Despite EP0 is always present in all interfaces/AS, the list of * endpoints from the descriptor does not contain EP0. Due to its * omnipresence one might expect EP0 being considered "affected" by * any SetInterface request and hence assume toggles need to be reset. * However, EP0 toggles are re-synced for every individual transfer * during the SETUP stage - hence EP0 toggles are "don't care" here. * (Likewise, EP0 never "halts" on well designed devices.) */ usb_enable_interface(dev, iface, true); if (device_is_registered(&iface->dev)) { usb_create_sysfs_intf_files(iface); create_intf_ep_devs(iface); } return 0; } EXPORT_SYMBOL_GPL(usb_set_interface); /** * usb_reset_configuration - lightweight device reset * @dev: the device whose configuration is being reset * * This issues a standard SET_CONFIGURATION request to the device using * the current configuration. The effect is to reset most USB-related * state in the device, including interface altsettings (reset to zero), * endpoint halts (cleared), and endpoint state (only for bulk and interrupt * endpoints). Other usbcore state is unchanged, including bindings of * usb device drivers to interfaces. * * Because this affects multiple interfaces, avoid using this with composite * (multi-interface) devices. Instead, the driver for each interface may * use usb_set_interface() on the interfaces it claims. Be careful though; * some devices don't support the SET_INTERFACE request, and others won't * reset all the interface state (notably endpoint state). Resetting the whole * configuration would affect other drivers' interfaces. * * The caller must own the device lock. * * Return: Zero on success, else a negative error code. * * If this routine fails the device will probably be in an unusable state * with endpoints disabled, and interfaces only partially enabled. */ int usb_reset_configuration(struct usb_device *dev) { int i, retval; struct usb_host_config *config; struct usb_hcd *hcd = bus_to_hcd(dev->bus); if (dev->state == USB_STATE_SUSPENDED) return -EHOSTUNREACH; /* caller must have locked the device and must own * the usb bus readlock (so driver bindings are stable); * calls during probe() are fine */ usb_disable_device_endpoints(dev, 1); /* skip ep0*/ config = dev->actconfig; retval = 0; mutex_lock(hcd->bandwidth_mutex); /* Disable LPM, and re-enable it once the configuration is reset, so * that the xHCI driver can recalculate the U1/U2 timeouts. */ if (usb_disable_lpm(dev)) { dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); mutex_unlock(hcd->bandwidth_mutex); return -ENOMEM; } /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */ retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL); if (retval < 0) { usb_enable_lpm(dev); mutex_unlock(hcd->bandwidth_mutex); return retval; } retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, config->desc.bConfigurationValue, 0, NULL, 0, USB_CTRL_SET_TIMEOUT, GFP_NOIO); if (retval) { usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); usb_enable_lpm(dev); mutex_unlock(hcd->bandwidth_mutex); return retval; } mutex_unlock(hcd->bandwidth_mutex); /* re-init hc/hcd interface/endpoint state */ for (i = 0; i < config->desc.bNumInterfaces; i++) { struct usb_interface *intf = config->interface[i]; struct usb_host_interface *alt; alt = usb_altnum_to_altsetting(intf, 0); /* No altsetting 0? We'll assume the first altsetting. * We could use a GetInterface call, but if a device is * so non-compliant that it doesn't have altsetting 0 * then I wouldn't trust its reply anyway. */ if (!alt) alt = &intf->altsetting[0]; if (alt != intf->cur_altsetting) { remove_intf_ep_devs(intf); usb_remove_sysfs_intf_files(intf); } intf->cur_altsetting = alt; usb_enable_interface(dev, intf, true); if (device_is_registered(&intf->dev)) { usb_create_sysfs_intf_files(intf); create_intf_ep_devs(intf); } } /* Now that the interfaces are installed, re-enable LPM. */ usb_unlocked_enable_lpm(dev); return 0; } EXPORT_SYMBOL_GPL(usb_reset_configuration); static void usb_release_interface(struct device *dev) { struct usb_interface *intf = to_usb_interface(dev); struct usb_interface_cache *intfc = altsetting_to_usb_interface_cache(intf->altsetting); kref_put(&intfc->ref, usb_release_interface_cache); usb_put_dev(interface_to_usbdev(intf)); of_node_put(dev->of_node); kfree(intf); } /* * usb_deauthorize_interface - deauthorize an USB interface * * @intf: USB interface structure */ void usb_deauthorize_interface(struct usb_interface *intf) { struct device *dev = &intf->dev; device_lock(dev->parent); if (intf->authorized) { device_lock(dev); intf->authorized = 0; device_unlock(dev); usb_forced_unbind_intf(intf); } device_unlock(dev->parent); } /* * usb_authorize_interface - authorize an USB interface * * @intf: USB interface structure */ void usb_authorize_interface(struct usb_interface *intf) { struct device *dev = &intf->dev; if (!intf->authorized) { device_lock(dev); intf->authorized = 1; /* authorize interface */ device_unlock(dev); } } static int usb_if_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct usb_device *usb_dev; const struct usb_interface *intf; const struct usb_host_interface *alt; intf = to_usb_interface(dev); usb_dev = interface_to_usbdev(intf); alt = intf->cur_altsetting; if (add_uevent_var(env, "INTERFACE=%d/%d/%d", alt->desc.bInterfaceClass, alt->desc.bInterfaceSubClass, alt->desc.bInterfaceProtocol)) return -ENOMEM; if (add_uevent_var(env, "MODALIAS=usb:" "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", le16_to_cpu(usb_dev->descriptor.idVendor), le16_to_cpu(usb_dev->descriptor.idProduct), le16_to_cpu(usb_dev->descriptor.bcdDevice), usb_dev->descriptor.bDeviceClass, usb_dev->descriptor.bDeviceSubClass, usb_dev->descriptor.bDeviceProtocol, alt->desc.bInterfaceClass, alt->desc.bInterfaceSubClass, alt->desc.bInterfaceProtocol, alt->desc.bInterfaceNumber)) return -ENOMEM; return 0; } struct device_type usb_if_device_type = { .name = "usb_interface", .release = usb_release_interface, .uevent = usb_if_uevent, }; static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, struct usb_host_config *config, u8 inum) { struct usb_interface_assoc_descriptor *retval = NULL; struct usb_interface_assoc_descriptor *intf_assoc; int first_intf; int last_intf; int i; for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { intf_assoc = config->intf_assoc[i]; if (intf_assoc->bInterfaceCount == 0) continue; first_intf = intf_assoc->bFirstInterface; last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); if (inum >= first_intf && inum <= last_intf) { if (!retval) retval = intf_assoc; else dev_err(&dev->dev, "Interface #%d referenced" " by multiple IADs\n", inum); } } return retval; } /* * Internal function to queue a device reset * See usb_queue_reset_device() for more details */ static void __usb_queue_reset_device(struct work_struct *ws) { int rc; struct usb_interface *iface = container_of(ws, struct usb_interface, reset_ws); struct usb_device *udev = interface_to_usbdev(iface); rc = usb_lock_device_for_reset(udev, iface); if (rc >= 0) { usb_reset_device(udev); usb_unlock_device(udev); } usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ } /* * Internal function to set the wireless_status sysfs attribute * See usb_set_wireless_status() for more details */ static void __usb_wireless_status_intf(struct work_struct *ws) { struct usb_interface *iface = container_of(ws, struct usb_interface, wireless_status_work); device_lock(iface->dev.parent); if (iface->sysfs_files_created) usb_update_wireless_status_attr(iface); device_unlock(iface->dev.parent); usb_put_intf(iface); /* Undo _get_ in usb_set_wireless_status() */ } /** * usb_set_wireless_status - sets the wireless_status struct member * @iface: the interface to modify * @status: the new wireless status * * Set the wireless_status struct member to the new value, and emit * sysfs changes as necessary. * * Returns: 0 on success, -EALREADY if already set. */ int usb_set_wireless_status(struct usb_interface *iface, enum usb_wireless_status status) { if (iface->wireless_status == status) return -EALREADY; usb_get_intf(iface); iface->wireless_status = status; schedule_work(&iface->wireless_status_work); return 0; } EXPORT_SYMBOL_GPL(usb_set_wireless_status); /* * usb_set_configuration - Makes a particular device setting be current * @dev: the device whose configuration is being updated * @configuration: the configuration being chosen. * * Context: task context, might sleep. Caller holds device lock. * * This is used to enable non-default device modes. Not all devices * use this kind of configurability; many devices only have one * configuration. * * @configuration is the value of the configuration to be installed. * According to the USB spec (e.g. section 9.1.1.5), configuration values * must be non-zero; a value of zero indicates that the device in * unconfigured. However some devices erroneously use 0 as one of their * configuration values. To help manage such devices, this routine will * accept @configuration = -1 as indicating the device should be put in * an unconfigured state. * * USB device configurations may affect Linux interoperability, * power consumption and the functionality available. For example, * the default configuration is limited to using 100mA of bus power, * so that when certain device functionality requires more power, * and the device is bus powered, that functionality should be in some * non-default device configuration. Other device modes may also be * reflected as configuration options, such as whether two ISDN * channels are available independently; and choosing between open * standard device protocols (like CDC) or proprietary ones. * * Note that a non-authorized device (dev->authorized == 0) will only * be put in unconfigured mode. * * Note that USB has an additional level of device configurability, * associated with interfaces. That configurability is accessed using * usb_set_interface(). * * This call is synchronous. The calling context must be able to sleep, * must own the device lock, and must not hold the driver model's USB * bus mutex; usb interface driver probe() methods cannot use this routine. * * Returns zero on success, or else the status code returned by the * underlying call that failed. On successful completion, each interface * in the original device configuration has been destroyed, and each one * in the new configuration has been probed by all relevant usb device * drivers currently known to the kernel. */ int usb_set_configuration(struct usb_device *dev, int configuration) { int i, ret; struct usb_host_config *cp = NULL; struct usb_interface **new_interfaces = NULL; struct usb_hcd *hcd = bus_to_hcd(dev->bus); int n, nintf; if (dev->authorized == 0 || configuration == -1) configuration = 0; else { for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { if (dev->config[i].desc.bConfigurationValue == configuration) { cp = &dev->config[i]; break; } } } if ((!cp && configuration != 0)) return -EINVAL; /* The USB spec says configuration 0 means unconfigured. * But if a device includes a configuration numbered 0, * we will accept it as a correctly configured state. * Use -1 if you really want to unconfigure the device. */ if (cp && configuration == 0) dev_warn(&dev->dev, "config 0 descriptor??\n"); /* Allocate memory for new interfaces before doing anything else, * so that if we run out then nothing will have changed. */ n = nintf = 0; if (cp) { nintf = cp->desc.bNumInterfaces; new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), GFP_NOIO); if (!new_interfaces) return -ENOMEM; for (; n < nintf; ++n) { new_interfaces[n] = kzalloc( sizeof(struct usb_interface), GFP_NOIO); if (!new_interfaces[n]) { ret = -ENOMEM; free_interfaces: while (--n >= 0) kfree(new_interfaces[n]); kfree(new_interfaces); return ret; } } i = dev->bus_mA - usb_get_max_power(dev, cp); if (i < 0) dev_warn(&dev->dev, "new config #%d exceeds power " "limit by %dmA\n", configuration, -i); } /* Wake up the device so we can send it the Set-Config request */ ret = usb_autoresume_device(dev); if (ret) goto free_interfaces; /* if it's already configured, clear out old state first. * getting rid of old interfaces means unbinding their drivers. */ if (dev->state != USB_STATE_ADDRESS) usb_disable_device(dev, 1); /* Skip ep0 */ /* Get rid of pending async Set-Config requests for this device */ cancel_async_set_config(dev); /* Make sure we have bandwidth (and available HCD resources) for this * configuration. Remove endpoints from the schedule if we're dropping * this configuration to set configuration 0. After this point, the * host controller will not allow submissions to dropped endpoints. If * this call fails, the device state is unchanged. */ mutex_lock(hcd->bandwidth_mutex); /* Disable LPM, and re-enable it once the new configuration is * installed, so that the xHCI driver can recalculate the U1/U2 * timeouts. */ if (dev->actconfig && usb_disable_lpm(dev)) { dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); mutex_unlock(hcd->bandwidth_mutex); ret = -ENOMEM; goto free_interfaces; } ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); if (ret < 0) { if (dev->actconfig) usb_enable_lpm(dev); mutex_unlock(hcd->bandwidth_mutex); usb_autosuspend_device(dev); goto free_interfaces; } /* * Initialize the new interface structures and the * hc/hcd/usbcore interface/endpoint state. */ for (i = 0; i < nintf; ++i) { struct usb_interface_cache *intfc; struct usb_interface *intf; struct usb_host_interface *alt; u8 ifnum; cp->interface[i] = intf = new_interfaces[i]; intfc = cp->intf_cache[i]; intf->altsetting = intfc->altsetting; intf->num_altsetting = intfc->num_altsetting; intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); kref_get(&intfc->ref); alt = usb_altnum_to_altsetting(intf, 0); /* No altsetting 0? We'll assume the first altsetting. * We could use a GetInterface call, but if a device is * so non-compliant that it doesn't have altsetting 0 * then I wouldn't trust its reply anyway. */ if (!alt) alt = &intf->altsetting[0]; ifnum = alt->desc.bInterfaceNumber; intf->intf_assoc = find_iad(dev, cp, ifnum); intf->cur_altsetting = alt; usb_enable_interface(dev, intf, true); intf->dev.parent = &dev->dev; if (usb_of_has_combined_node(dev)) { device_set_of_node_from_dev(&intf->dev, &dev->dev); } else { intf->dev.of_node = usb_of_get_interface_node(dev, configuration, ifnum); } ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev)); intf->dev.driver = NULL; intf->dev.bus = &usb_bus_type; intf->dev.type = &usb_if_device_type; intf->dev.groups = usb_interface_groups; INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); INIT_WORK(&intf->wireless_status_work, __usb_wireless_status_intf); intf->minor = -1; device_initialize(&intf->dev); pm_runtime_no_callbacks(&intf->dev); dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, dev->devpath, configuration, ifnum); usb_get_dev(dev); } kfree(new_interfaces); ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, configuration, 0, NULL, 0, USB_CTRL_SET_TIMEOUT, GFP_NOIO); if (ret && cp) { /* * All the old state is gone, so what else can we do? * The device is probably useless now anyway. */ usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); for (i = 0; i < nintf; ++i) { usb_disable_interface(dev, cp->interface[i], true); put_device(&cp->interface[i]->dev); cp->interface[i] = NULL; } cp = NULL; } dev->actconfig = cp; mutex_unlock(hcd->bandwidth_mutex); if (!cp) { usb_set_device_state(dev, USB_STATE_ADDRESS); /* Leave LPM disabled while the device is unconfigured. */ usb_autosuspend_device(dev); return ret; } usb_set_device_state(dev, USB_STATE_CONFIGURED); if (cp->string == NULL && !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) cp->string = usb_cache_string(dev, cp->desc.iConfiguration); /* Now that the interfaces are installed, re-enable LPM. */ usb_unlocked_enable_lpm(dev); /* Enable LTM if it was turned off by usb_disable_device. */ usb_enable_ltm(dev); /* Now that all the interfaces are set up, register them * to trigger binding of drivers to interfaces. probe() * routines may install different altsettings and may * claim() any interfaces not yet bound. Many class drivers * need that: CDC, audio, video, etc. */ for (i = 0; i < nintf; ++i) { struct usb_interface *intf = cp->interface[i]; if (intf->dev.of_node && !of_device_is_available(intf->dev.of_node)) { dev_info(&dev->dev, "skipping disabled interface %d\n", intf->cur_altsetting->desc.bInterfaceNumber); continue; } dev_dbg(&dev->dev, "adding %s (config #%d, interface %d)\n", dev_name(&intf->dev), configuration, intf->cur_altsetting->desc.bInterfaceNumber); device_enable_async_suspend(&intf->dev); ret = device_add(&intf->dev); if (ret != 0) { dev_err(&dev->dev, "device_add(%s) --> %d\n", dev_name(&intf->dev), ret); continue; } create_intf_ep_devs(intf); } usb_autosuspend_device(dev); return 0; } EXPORT_SYMBOL_GPL(usb_set_configuration); static LIST_HEAD(set_config_list); static DEFINE_SPINLOCK(set_config_lock); struct set_config_request { struct usb_device *udev; int config; struct work_struct work; struct list_head node; }; /* Worker routine for usb_driver_set_configuration() */ static void driver_set_config_work(struct work_struct *work) { struct set_config_request *req = container_of(work, struct set_config_request, work); struct usb_device *udev = req->udev; usb_lock_device(udev); spin_lock(&set_config_lock); list_del(&req->node); spin_unlock(&set_config_lock); if (req->config >= -1) /* Is req still valid? */ usb_set_configuration(udev, req->config); usb_unlock_device(udev); usb_put_dev(udev); kfree(req); } /* Cancel pending Set-Config requests for a device whose configuration * was just changed */ static void cancel_async_set_config(struct usb_device *udev) { struct set_config_request *req; spin_lock(&set_config_lock); list_for_each_entry(req, &set_config_list, node) { if (req->udev == udev) req->config = -999; /* Mark as cancelled */ } spin_unlock(&set_config_lock); } /** * usb_driver_set_configuration - Provide a way for drivers to change device configurations * @udev: the device whose configuration is being updated * @config: the configuration being chosen. * Context: In process context, must be able to sleep * * Device interface drivers are not allowed to change device configurations. * This is because changing configurations will destroy the interface the * driver is bound to and create new ones; it would be like a floppy-disk * driver telling the computer to replace the floppy-disk drive with a * tape drive! * * Still, in certain specialized circumstances the need may arise. This * routine gets around the normal restrictions by using a work thread to * submit the change-config request. * * Return: 0 if the request was successfully queued, error code otherwise. * The caller has no way to know whether the queued request will eventually * succeed. */ int usb_driver_set_configuration(struct usb_device *udev, int config) { struct set_config_request *req; req = kmalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->udev = udev; req->config = config; INIT_WORK(&req->work, driver_set_config_work); spin_lock(&set_config_lock); list_add(&req->node, &set_config_list); spin_unlock(&set_config_lock); usb_get_dev(udev); schedule_work(&req->work); return 0; } EXPORT_SYMBOL_GPL(usb_driver_set_configuration); /** * cdc_parse_cdc_header - parse the extra headers present in CDC devices * @hdr: the place to put the results of the parsing * @intf: the interface for which parsing is requested * @buffer: pointer to the extra headers to be parsed * @buflen: length of the extra headers * * This evaluates the extra headers present in CDC devices which * bind the interfaces for data and control and provide details * about the capabilities of the device. * * Return: number of descriptors parsed or -EINVAL * if the header is contradictory beyond salvage */ int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, struct usb_interface *intf, u8 *buffer, int buflen) { /* duplicates are ignored */ struct usb_cdc_union_desc *union_header = NULL; /* duplicates are not tolerated */ struct usb_cdc_header_desc *header = NULL; struct usb_cdc_ether_desc *ether = NULL; struct usb_cdc_mdlm_detail_desc *detail = NULL; struct usb_cdc_mdlm_desc *desc = NULL; unsigned int elength; int cnt = 0; memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); hdr->phonet_magic_present = false; while (buflen > 0) { elength = buffer[0]; if (!elength) { dev_err(&intf->dev, "skipping garbage byte\n"); elength = 1; goto next_desc; } if ((buflen < elength) || (elength < 3)) { dev_err(&intf->dev, "invalid descriptor buffer length\n"); break; } if (buffer[1] != USB_DT_CS_INTERFACE) { dev_err(&intf->dev, "skipping garbage\n"); goto next_desc; } switch (buffer[2]) { case USB_CDC_UNION_TYPE: /* we've found it */ if (elength < sizeof(struct usb_cdc_union_desc)) goto next_desc; if (union_header) { dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); goto next_desc; } union_header = (struct usb_cdc_union_desc *)buffer; break; case USB_CDC_COUNTRY_TYPE: if (elength < sizeof(struct usb_cdc_country_functional_desc)) goto next_desc; hdr->usb_cdc_country_functional_desc = (struct usb_cdc_country_functional_desc *)buffer; break; case USB_CDC_HEADER_TYPE: if (elength != sizeof(struct usb_cdc_header_desc)) goto next_desc; if (header) return -EINVAL; header = (struct usb_cdc_header_desc *)buffer; break; case USB_CDC_ACM_TYPE: if (elength < sizeof(struct usb_cdc_acm_descriptor)) goto next_desc; hdr->usb_cdc_acm_descriptor = (struct usb_cdc_acm_descriptor *)buffer; break; case USB_CDC_ETHERNET_TYPE: if (elength != sizeof(struct usb_cdc_ether_desc)) goto next_desc; if (ether) return -EINVAL; ether = (struct usb_cdc_ether_desc *)buffer; break; case USB_CDC_CALL_MANAGEMENT_TYPE: if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) goto next_desc; hdr->usb_cdc_call_mgmt_descriptor = (struct usb_cdc_call_mgmt_descriptor *)buffer; break; case USB_CDC_DMM_TYPE: if (elength < sizeof(struct usb_cdc_dmm_desc)) goto next_desc; hdr->usb_cdc_dmm_desc = (struct usb_cdc_dmm_desc *)buffer; break; case USB_CDC_MDLM_TYPE: if (elength < sizeof(struct usb_cdc_mdlm_desc)) goto next_desc; if (desc) return -EINVAL; desc = (struct usb_cdc_mdlm_desc *)buffer; break; case USB_CDC_MDLM_DETAIL_TYPE: if (elength < sizeof(struct usb_cdc_mdlm_detail_desc)) goto next_desc; if (detail) return -EINVAL; detail = (struct usb_cdc_mdlm_detail_desc *)buffer; break; case USB_CDC_NCM_TYPE: if (elength < sizeof(struct usb_cdc_ncm_desc)) goto next_desc; hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; break; case USB_CDC_MBIM_TYPE: if (elength < sizeof(struct usb_cdc_mbim_desc)) goto next_desc; hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; break; case USB_CDC_MBIM_EXTENDED_TYPE: if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) break; hdr->usb_cdc_mbim_extended_desc = (struct usb_cdc_mbim_extended_desc *)buffer; break; case CDC_PHONET_MAGIC_NUMBER: hdr->phonet_magic_present = true; break; default: /* * there are LOTS more CDC descriptors that * could legitimately be found here. */ dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", buffer[2], elength); goto next_desc; } cnt++; next_desc: buflen -= elength; buffer += elength; } hdr->usb_cdc_union_desc = union_header; hdr->usb_cdc_header_desc = header; hdr->usb_cdc_mdlm_detail_desc = detail; hdr->usb_cdc_mdlm_desc = desc; hdr->usb_cdc_ether_desc = ether; return cnt; } EXPORT_SYMBOL(cdc_parse_cdc_header);
linux-master
drivers/usb/core/message.c
// SPDX-License-Identifier: GPL-2.0 /* * xhci-plat.c - xHCI host controller driver platform Bus Glue. * * Copyright (C) 2012 Texas Instruments Incorporated - https://www.ti.com * Author: Sebastian Andrzej Siewior <[email protected]> * * A lot of code borrowed from the Linux xHCI driver. */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/usb/phy.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/usb/of.h> #include <linux/reset.h> #include "xhci.h" #include "xhci-plat.h" #include "xhci-mvebu.h" static struct hc_driver __read_mostly xhci_plat_hc_driver; static int xhci_plat_setup(struct usb_hcd *hcd); static int xhci_plat_start(struct usb_hcd *hcd); static const struct xhci_driver_overrides xhci_plat_overrides __initconst = { .extra_priv_size = sizeof(struct xhci_plat_priv), .reset = xhci_plat_setup, .start = xhci_plat_start, }; static void xhci_priv_plat_start(struct usb_hcd *hcd) { struct xhci_plat_priv *priv = hcd_to_xhci_priv(hcd); if (priv->plat_start) priv->plat_start(hcd); } static int xhci_priv_init_quirk(struct usb_hcd *hcd) { struct xhci_plat_priv *priv = hcd_to_xhci_priv(hcd); if (!priv->init_quirk) return 0; return priv->init_quirk(hcd); } static int xhci_priv_suspend_quirk(struct usb_hcd *hcd) { struct xhci_plat_priv *priv = hcd_to_xhci_priv(hcd); if (!priv->suspend_quirk) return 0; return priv->suspend_quirk(hcd); } static int xhci_priv_resume_quirk(struct usb_hcd *hcd) { struct xhci_plat_priv *priv = hcd_to_xhci_priv(hcd); if (!priv->resume_quirk) return 0; return priv->resume_quirk(hcd); } static void xhci_plat_quirks(struct device *dev, struct xhci_hcd *xhci) { struct xhci_plat_priv *priv = xhci_to_priv(xhci); xhci->quirks |= priv->quirks; } /* called during probe() after chip reset completes */ static int xhci_plat_setup(struct usb_hcd *hcd) { int ret; ret = xhci_priv_init_quirk(hcd); if (ret) return ret; return xhci_gen_setup(hcd, xhci_plat_quirks); } static int xhci_plat_start(struct usb_hcd *hcd) { xhci_priv_plat_start(hcd); return xhci_run(hcd); } #ifdef CONFIG_OF static const struct xhci_plat_priv xhci_plat_marvell_armada = { .init_quirk = xhci_mvebu_mbus_init_quirk, }; static const struct xhci_plat_priv xhci_plat_marvell_armada3700 = { .init_quirk = xhci_mvebu_a3700_init_quirk, }; static const struct xhci_plat_priv xhci_plat_brcm = { .quirks = XHCI_RESET_ON_RESUME | XHCI_SUSPEND_RESUME_CLKS, }; static const struct of_device_id usb_xhci_of_match[] = { { .compatible = "generic-xhci", }, { .compatible = "xhci-platform", }, { .compatible = "marvell,armada-375-xhci", .data = &xhci_plat_marvell_armada, }, { .compatible = "marvell,armada-380-xhci", .data = &xhci_plat_marvell_armada, }, { .compatible = "marvell,armada3700-xhci", .data = &xhci_plat_marvell_armada3700, }, { .compatible = "brcm,xhci-brcm-v2", .data = &xhci_plat_brcm, }, { .compatible = "brcm,bcm7445-xhci", .data = &xhci_plat_brcm, }, {}, }; MODULE_DEVICE_TABLE(of, usb_xhci_of_match); #endif int xhci_plat_probe(struct platform_device *pdev, struct device *sysdev, const struct xhci_plat_priv *priv_match) { const struct hc_driver *driver; struct device *tmpdev; struct xhci_hcd *xhci; struct resource *res; struct usb_hcd *hcd, *usb3_hcd; int ret; int irq; struct xhci_plat_priv *priv = NULL; if (usb_disabled()) return -ENODEV; driver = &xhci_plat_hc_driver; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; if (!sysdev) sysdev = &pdev->dev; ret = dma_set_mask_and_coherent(sysdev, DMA_BIT_MASK(64)); if (ret) return ret; pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); hcd = __usb_create_hcd(driver, sysdev, &pdev->dev, dev_name(&pdev->dev), NULL); if (!hcd) { ret = -ENOMEM; goto disable_runtime; } hcd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(hcd->regs)) { ret = PTR_ERR(hcd->regs); goto put_hcd; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); xhci = hcd_to_xhci(hcd); xhci->allow_single_roothub = 1; /* * Not all platforms have clks so it is not an error if the * clock do not exist. */ xhci->reg_clk = devm_clk_get_optional(&pdev->dev, "reg"); if (IS_ERR(xhci->reg_clk)) { ret = PTR_ERR(xhci->reg_clk); goto put_hcd; } xhci->clk = devm_clk_get_optional(&pdev->dev, NULL); if (IS_ERR(xhci->clk)) { ret = PTR_ERR(xhci->clk); goto put_hcd; } xhci->reset = devm_reset_control_array_get_optional_shared(&pdev->dev); if (IS_ERR(xhci->reset)) { ret = PTR_ERR(xhci->reset); goto put_hcd; } ret = reset_control_deassert(xhci->reset); if (ret) goto put_hcd; ret = clk_prepare_enable(xhci->reg_clk); if (ret) goto err_reset; ret = clk_prepare_enable(xhci->clk); if (ret) goto disable_reg_clk; if (priv_match) { priv = hcd_to_xhci_priv(hcd); /* Just copy data for now */ *priv = *priv_match; } device_set_wakeup_capable(&pdev->dev, true); xhci->main_hcd = hcd; /* imod_interval is the interrupt moderation value in nanoseconds. */ xhci->imod_interval = 40000; /* Iterate over all parent nodes for finding quirks */ for (tmpdev = &pdev->dev; tmpdev; tmpdev = tmpdev->parent) { if (device_property_read_bool(tmpdev, "usb2-lpm-disable")) xhci->quirks |= XHCI_HW_LPM_DISABLE; if (device_property_read_bool(tmpdev, "usb3-lpm-capable")) xhci->quirks |= XHCI_LPM_SUPPORT; if (device_property_read_bool(tmpdev, "quirk-broken-port-ped")) xhci->quirks |= XHCI_BROKEN_PORT_PED; device_property_read_u32(tmpdev, "imod-interval-ns", &xhci->imod_interval); } hcd->usb_phy = devm_usb_get_phy_by_phandle(sysdev, "usb-phy", 0); if (IS_ERR(hcd->usb_phy)) { ret = PTR_ERR(hcd->usb_phy); if (ret == -EPROBE_DEFER) goto disable_clk; hcd->usb_phy = NULL; } else { ret = usb_phy_init(hcd->usb_phy); if (ret) goto disable_clk; } hcd->tpl_support = of_usb_host_tpl_support(sysdev->of_node); if (priv && (priv->quirks & XHCI_SKIP_PHY_INIT)) hcd->skip_phy_initialization = 1; if (priv && (priv->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK)) xhci->quirks |= XHCI_SG_TRB_CACHE_SIZE_QUIRK; ret = usb_add_hcd(hcd, irq, IRQF_SHARED); if (ret) goto disable_usb_phy; if (!xhci_has_one_roothub(xhci)) { xhci->shared_hcd = __usb_create_hcd(driver, sysdev, &pdev->dev, dev_name(&pdev->dev), hcd); if (!xhci->shared_hcd) { ret = -ENOMEM; goto dealloc_usb2_hcd; } xhci->shared_hcd->usb_phy = devm_usb_get_phy_by_phandle(sysdev, "usb-phy", 1); if (IS_ERR(xhci->shared_hcd->usb_phy)) { xhci->shared_hcd->usb_phy = NULL; } else { ret = usb_phy_init(xhci->shared_hcd->usb_phy); if (ret) dev_err(sysdev, "%s init usb3phy fail (ret=%d)\n", __func__, ret); } xhci->shared_hcd->tpl_support = hcd->tpl_support; } usb3_hcd = xhci_get_usb3_hcd(xhci); if (usb3_hcd && HCC_MAX_PSA(xhci->hcc_params) >= 4) usb3_hcd->can_do_streams = 1; if (xhci->shared_hcd) { ret = usb_add_hcd(xhci->shared_hcd, irq, IRQF_SHARED); if (ret) goto put_usb3_hcd; } device_enable_async_suspend(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); /* * Prevent runtime pm from being on as default, users should enable * runtime pm using power/control in sysfs. */ pm_runtime_forbid(&pdev->dev); return 0; put_usb3_hcd: usb_put_hcd(xhci->shared_hcd); dealloc_usb2_hcd: usb_remove_hcd(hcd); disable_usb_phy: usb_phy_shutdown(hcd->usb_phy); disable_clk: clk_disable_unprepare(xhci->clk); disable_reg_clk: clk_disable_unprepare(xhci->reg_clk); err_reset: reset_control_assert(xhci->reset); put_hcd: usb_put_hcd(hcd); disable_runtime: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); return ret; } EXPORT_SYMBOL_GPL(xhci_plat_probe); static int xhci_generic_plat_probe(struct platform_device *pdev) { const struct xhci_plat_priv *priv_match; struct device *sysdev; int ret; /* * sysdev must point to a device that is known to the system firmware * or PCI hardware. We handle these three cases here: * 1. xhci_plat comes from firmware * 2. xhci_plat is child of a device from firmware (dwc3-plat) * 3. xhci_plat is grandchild of a pci device (dwc3-pci) */ for (sysdev = &pdev->dev; sysdev; sysdev = sysdev->parent) { if (is_of_node(sysdev->fwnode) || is_acpi_device_node(sysdev->fwnode)) break; else if (dev_is_pci(sysdev)) break; } if (!sysdev) sysdev = &pdev->dev; if (WARN_ON(!sysdev->dma_mask)) { /* Platform did not initialize dma_mask */ ret = dma_coerce_mask_and_coherent(sysdev, DMA_BIT_MASK(64)); if (ret) return ret; } if (pdev->dev.of_node) priv_match = of_device_get_match_data(&pdev->dev); else priv_match = dev_get_platdata(&pdev->dev); return xhci_plat_probe(pdev, sysdev, priv_match); } void xhci_plat_remove(struct platform_device *dev) { struct usb_hcd *hcd = platform_get_drvdata(dev); struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct clk *clk = xhci->clk; struct clk *reg_clk = xhci->reg_clk; struct usb_hcd *shared_hcd = xhci->shared_hcd; xhci->xhc_state |= XHCI_STATE_REMOVING; pm_runtime_get_sync(&dev->dev); if (shared_hcd) { usb_remove_hcd(shared_hcd); xhci->shared_hcd = NULL; } usb_phy_shutdown(hcd->usb_phy); usb_remove_hcd(hcd); if (shared_hcd) usb_put_hcd(shared_hcd); clk_disable_unprepare(clk); clk_disable_unprepare(reg_clk); reset_control_assert(xhci->reset); usb_put_hcd(hcd); pm_runtime_disable(&dev->dev); pm_runtime_put_noidle(&dev->dev); pm_runtime_set_suspended(&dev->dev); } EXPORT_SYMBOL_GPL(xhci_plat_remove); static int __maybe_unused xhci_plat_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct xhci_hcd *xhci = hcd_to_xhci(hcd); int ret; if (pm_runtime_suspended(dev)) pm_runtime_resume(dev); ret = xhci_priv_suspend_quirk(hcd); if (ret) return ret; /* * xhci_suspend() needs `do_wakeup` to know whether host is allowed * to do wakeup during suspend. */ ret = xhci_suspend(xhci, device_may_wakeup(dev)); if (ret) return ret; if (!device_may_wakeup(dev) && (xhci->quirks & XHCI_SUSPEND_RESUME_CLKS)) { clk_disable_unprepare(xhci->clk); clk_disable_unprepare(xhci->reg_clk); } return 0; } static int __maybe_unused xhci_plat_resume(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct xhci_hcd *xhci = hcd_to_xhci(hcd); int ret; if (!device_may_wakeup(dev) && (xhci->quirks & XHCI_SUSPEND_RESUME_CLKS)) { clk_prepare_enable(xhci->clk); clk_prepare_enable(xhci->reg_clk); } ret = xhci_priv_resume_quirk(hcd); if (ret) return ret; ret = xhci_resume(xhci, PMSG_RESUME); if (ret) return ret; pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } static int __maybe_unused xhci_plat_runtime_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct xhci_hcd *xhci = hcd_to_xhci(hcd); int ret; ret = xhci_priv_suspend_quirk(hcd); if (ret) return ret; return xhci_suspend(xhci, true); } static int __maybe_unused xhci_plat_runtime_resume(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct xhci_hcd *xhci = hcd_to_xhci(hcd); return xhci_resume(xhci, PMSG_AUTO_RESUME); } const struct dev_pm_ops xhci_plat_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(xhci_plat_suspend, xhci_plat_resume) SET_RUNTIME_PM_OPS(xhci_plat_runtime_suspend, xhci_plat_runtime_resume, NULL) }; EXPORT_SYMBOL_GPL(xhci_plat_pm_ops); #ifdef CONFIG_ACPI static const struct acpi_device_id usb_xhci_acpi_match[] = { /* XHCI-compliant USB Controller */ { "PNP0D10", }, { } }; MODULE_DEVICE_TABLE(acpi, usb_xhci_acpi_match); #endif static struct platform_driver usb_generic_xhci_driver = { .probe = xhci_generic_plat_probe, .remove_new = xhci_plat_remove, .shutdown = usb_hcd_platform_shutdown, .driver = { .name = "xhci-hcd", .pm = &xhci_plat_pm_ops, .of_match_table = of_match_ptr(usb_xhci_of_match), .acpi_match_table = ACPI_PTR(usb_xhci_acpi_match), }, }; MODULE_ALIAS("platform:xhci-hcd"); static int __init xhci_plat_init(void) { xhci_init_driver(&xhci_plat_hc_driver, &xhci_plat_overrides); return platform_driver_register(&usb_generic_xhci_driver); } module_init(xhci_plat_init); static void __exit xhci_plat_exit(void) { platform_driver_unregister(&usb_generic_xhci_driver); } module_exit(xhci_plat_exit); MODULE_DESCRIPTION("xHCI Platform Host Controller Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/usb/host/xhci-plat.c
// SPDX-License-Identifier: GPL-2.0 /* * SuperH EHCI host controller driver * * Copyright (C) 2010 Paul Mundt * * Based on ohci-sh.c and ehci-atmel.c. */ #include <linux/platform_device.h> #include <linux/clk.h> struct ehci_sh_priv { struct clk *iclk, *fclk; struct usb_hcd *hcd; }; static int ehci_sh_reset(struct usb_hcd *hcd) { struct ehci_hcd *ehci = hcd_to_ehci(hcd); ehci->caps = hcd->regs; return ehci_setup(hcd); } static const struct hc_driver ehci_sh_hc_driver = { .description = hcd_name, .product_desc = "SuperH EHCI", .hcd_priv_size = sizeof(struct ehci_hcd), /* * generic hardware linkage */ .irq = ehci_irq, .flags = HCD_USB2 | HCD_DMA | HCD_MEMORY | HCD_BH, /* * basic lifecycle operations */ .reset = ehci_sh_reset, .start = ehci_run, .stop = ehci_stop, .shutdown = ehci_shutdown, /* * managing i/o requests and associated device resources */ .urb_enqueue = ehci_urb_enqueue, .urb_dequeue = ehci_urb_dequeue, .endpoint_disable = ehci_endpoint_disable, .endpoint_reset = ehci_endpoint_reset, /* * scheduling support */ .get_frame_number = ehci_get_frame, /* * root hub support */ .hub_status_data = ehci_hub_status_data, .hub_control = ehci_hub_control, #ifdef CONFIG_PM .bus_suspend = ehci_bus_suspend, .bus_resume = ehci_bus_resume, #endif .relinquish_port = ehci_relinquish_port, .port_handed_over = ehci_port_handed_over, .clear_tt_buffer_complete = ehci_clear_tt_buffer_complete, }; static int ehci_hcd_sh_probe(struct platform_device *pdev) { struct resource *res; struct ehci_sh_priv *priv; struct usb_hcd *hcd; int irq, ret; if (usb_disabled()) return -ENODEV; irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto fail_create_hcd; } /* initialize hcd */ hcd = usb_create_hcd(&ehci_sh_hc_driver, &pdev->dev, dev_name(&pdev->dev)); if (!hcd) { ret = -ENOMEM; goto fail_create_hcd; } hcd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(hcd->regs)) { ret = PTR_ERR(hcd->regs); goto fail_request_resource; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); priv = devm_kzalloc(&pdev->dev, sizeof(struct ehci_sh_priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; goto fail_request_resource; } /* These are optional, we don't care if they fail */ priv->fclk = devm_clk_get(&pdev->dev, "usb_fck"); if (IS_ERR(priv->fclk)) priv->fclk = NULL; priv->iclk = devm_clk_get(&pdev->dev, "usb_ick"); if (IS_ERR(priv->iclk)) priv->iclk = NULL; clk_enable(priv->fclk); clk_enable(priv->iclk); ret = usb_add_hcd(hcd, irq, IRQF_SHARED); if (ret != 0) { dev_err(&pdev->dev, "Failed to add hcd"); goto fail_add_hcd; } device_wakeup_enable(hcd->self.controller); priv->hcd = hcd; platform_set_drvdata(pdev, priv); return ret; fail_add_hcd: clk_disable(priv->iclk); clk_disable(priv->fclk); fail_request_resource: usb_put_hcd(hcd); fail_create_hcd: dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); return ret; } static void ehci_hcd_sh_remove(struct platform_device *pdev) { struct ehci_sh_priv *priv = platform_get_drvdata(pdev); struct usb_hcd *hcd = priv->hcd; usb_remove_hcd(hcd); usb_put_hcd(hcd); clk_disable(priv->fclk); clk_disable(priv->iclk); } static void ehci_hcd_sh_shutdown(struct platform_device *pdev) { struct ehci_sh_priv *priv = platform_get_drvdata(pdev); struct usb_hcd *hcd = priv->hcd; if (hcd->driver->shutdown) hcd->driver->shutdown(hcd); } static struct platform_driver ehci_hcd_sh_driver = { .probe = ehci_hcd_sh_probe, .remove_new = ehci_hcd_sh_remove, .shutdown = ehci_hcd_sh_shutdown, .driver = { .name = "sh_ehci", }, }; MODULE_ALIAS("platform:sh_ehci");
linux-master
drivers/usb/host/ehci-sh.c
// SPDX-License-Identifier: GPL-2.0 /* * Broadcom specific Advanced Microcontroller Bus * Broadcom USB-core driver (BCMA bus glue) * * Copyright 2011-2015 Hauke Mehrtens <[email protected]> * Copyright 2015 Felix Fietkau <[email protected]> * * Based on ssb-ohci driver * Copyright 2007 Michael Buesch <[email protected]> * * Derived from the OHCI-PCI driver * Copyright 1999 Roman Weissgaerber * Copyright 2000-2002 David Brownell * Copyright 1999 Linus Torvalds * Copyright 1999 Gregory P. Smith * * Derived from the USBcore related parts of Broadcom-SB * Copyright 2005-2011 Broadcom Corporation */ #include <linux/bcma/bcma.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_gpio.h> #include <linux/of_platform.h> #include <linux/usb/ehci_pdriver.h> #include <linux/usb/ohci_pdriver.h> MODULE_AUTHOR("Hauke Mehrtens"); MODULE_DESCRIPTION("Common USB driver for BCMA Bus"); MODULE_LICENSE("GPL"); /* See BCMA_CLKCTLST_EXTRESREQ and BCMA_CLKCTLST_EXTRESST */ #define USB_BCMA_CLKCTLST_USB_CLK_REQ 0x00000100 struct bcma_hcd_device { struct bcma_device *core; struct platform_device *ehci_dev; struct platform_device *ohci_dev; struct gpio_desc *gpio_desc; }; /* Wait for bitmask in a register to get set or cleared. * timeout is in units of ten-microseconds. */ static int bcma_wait_bits(struct bcma_device *dev, u16 reg, u32 bitmask, int timeout) { int i; u32 val; for (i = 0; i < timeout; i++) { val = bcma_read32(dev, reg); if ((val & bitmask) == bitmask) return 0; udelay(10); } return -ETIMEDOUT; } static void bcma_hcd_4716wa(struct bcma_device *dev) { #ifdef CONFIG_BCMA_DRIVER_MIPS /* Work around for 4716 failures. */ if (dev->bus->chipinfo.id == 0x4716) { u32 tmp; tmp = bcma_cpu_clock(&dev->bus->drv_mips); if (tmp >= 480000000) tmp = 0x1846b; /* set CDR to 0x11(fast) */ else if (tmp == 453000000) tmp = 0x1046b; /* set CDR to 0x10(slow) */ else tmp = 0; /* Change Shim mdio control reg to fix host not acking at * high frequencies */ if (tmp) { bcma_write32(dev, 0x524, 0x1); /* write sel to enable */ udelay(500); bcma_write32(dev, 0x524, tmp); udelay(500); bcma_write32(dev, 0x524, 0x4ab); udelay(500); bcma_read32(dev, 0x528); bcma_write32(dev, 0x528, 0x80000000); } } #endif /* CONFIG_BCMA_DRIVER_MIPS */ } /* based on arch/mips/brcm-boards/bcm947xx/pcibios.c */ static void bcma_hcd_init_chip_mips(struct bcma_device *dev) { u32 tmp; /* * USB 2.0 special considerations: * * 1. Since the core supports both OHCI and EHCI functions, it must * only be reset once. * * 2. In addition to the standard SI reset sequence, the Host Control * Register must be programmed to bring the USB core and various * phy components out of reset. */ if (!bcma_core_is_enabled(dev)) { bcma_core_enable(dev, 0); mdelay(10); if (dev->id.rev >= 5) { /* Enable Misc PLL */ tmp = bcma_read32(dev, 0x1e0); tmp |= 0x100; bcma_write32(dev, 0x1e0, tmp); if (bcma_wait_bits(dev, 0x1e0, 1 << 24, 100)) printk(KERN_EMERG "Failed to enable misc PPL!\n"); /* Take out of resets */ bcma_write32(dev, 0x200, 0x4ff); udelay(25); bcma_write32(dev, 0x200, 0x6ff); udelay(25); /* Make sure digital and AFE are locked in USB PHY */ bcma_write32(dev, 0x524, 0x6b); udelay(50); tmp = bcma_read32(dev, 0x524); udelay(50); bcma_write32(dev, 0x524, 0xab); udelay(50); tmp = bcma_read32(dev, 0x524); udelay(50); bcma_write32(dev, 0x524, 0x2b); udelay(50); tmp = bcma_read32(dev, 0x524); udelay(50); bcma_write32(dev, 0x524, 0x10ab); udelay(50); tmp = bcma_read32(dev, 0x524); if (bcma_wait_bits(dev, 0x528, 0xc000, 10000)) { tmp = bcma_read32(dev, 0x528); printk(KERN_EMERG "USB20H mdio_rddata 0x%08x\n", tmp); } bcma_write32(dev, 0x528, 0x80000000); tmp = bcma_read32(dev, 0x314); udelay(265); bcma_write32(dev, 0x200, 0x7ff); udelay(10); /* Take USB and HSIC out of non-driving modes */ bcma_write32(dev, 0x510, 0); } else { bcma_write32(dev, 0x200, 0x7ff); udelay(1); } bcma_hcd_4716wa(dev); } } /* * bcma_hcd_usb20_old_arm_init - Initialize old USB 2.0 controller on ARM * * Old USB 2.0 core is identified as BCMA_CORE_USB20_HOST and was introduced * long before Northstar devices. It seems some cheaper chipsets like BCM53573 * still use it. * Initialization of this old core differs between MIPS and ARM. */ static int bcma_hcd_usb20_old_arm_init(struct bcma_hcd_device *usb_dev) { struct bcma_device *core = usb_dev->core; struct device *dev = &core->dev; struct bcma_device *pmu_core; usleep_range(10000, 20000); if (core->id.rev < 5) return 0; pmu_core = bcma_find_core(core->bus, BCMA_CORE_PMU); if (!pmu_core) { dev_err(dev, "Could not find PMU core\n"); return -ENOENT; } /* Take USB core out of reset */ bcma_awrite32(core, BCMA_IOCTL, BCMA_IOCTL_CLK | BCMA_IOCTL_FGC); usleep_range(100, 200); bcma_awrite32(core, BCMA_RESET_CTL, BCMA_RESET_CTL_RESET); usleep_range(100, 200); bcma_awrite32(core, BCMA_RESET_CTL, 0); usleep_range(100, 200); bcma_awrite32(core, BCMA_IOCTL, BCMA_IOCTL_CLK); usleep_range(100, 200); /* Enable Misc PLL */ bcma_write32(core, BCMA_CLKCTLST, BCMA_CLKCTLST_FORCEHT | BCMA_CLKCTLST_HQCLKREQ | USB_BCMA_CLKCTLST_USB_CLK_REQ); usleep_range(100, 200); bcma_write32(core, 0x510, 0xc7f85000); bcma_write32(core, 0x510, 0xc7f85003); usleep_range(300, 600); /* Program USB PHY PLL parameters */ bcma_write32(pmu_core, BCMA_CC_PMU_PLLCTL_ADDR, 0x6); bcma_write32(pmu_core, BCMA_CC_PMU_PLLCTL_DATA, 0x005360c1); usleep_range(100, 200); bcma_write32(pmu_core, BCMA_CC_PMU_PLLCTL_ADDR, 0x7); bcma_write32(pmu_core, BCMA_CC_PMU_PLLCTL_DATA, 0x0); usleep_range(100, 200); bcma_set32(pmu_core, BCMA_CC_PMU_CTL, BCMA_CC_PMU_CTL_PLL_UPD); usleep_range(100, 200); bcma_write32(core, 0x510, 0x7f8d007); udelay(1000); /* Take controller out of reset */ bcma_write32(core, 0x200, 0x4ff); usleep_range(25, 50); bcma_write32(core, 0x200, 0x6ff); usleep_range(25, 50); bcma_write32(core, 0x200, 0x7ff); usleep_range(25, 50); of_platform_default_populate(dev->of_node, NULL, dev); return 0; } static void bcma_hcd_usb20_ns_init_hc(struct bcma_device *dev) { u32 val; /* Set packet buffer OUT threshold */ val = bcma_read32(dev, 0x94); val &= 0xffff; val |= 0x80 << 16; bcma_write32(dev, 0x94, val); /* Enable break memory transfer */ val = bcma_read32(dev, 0x9c); val |= 1; bcma_write32(dev, 0x9c, val); /* * Broadcom initializes PHY and then waits to ensure HC is ready to be * configured. In our case the order is reversed. We just initialized * controller and we let HCD initialize PHY, so let's wait (sleep) now. */ usleep_range(1000, 2000); } /* * bcma_hcd_usb20_ns_init - Initialize Northstar USB 2.0 controller */ static int bcma_hcd_usb20_ns_init(struct bcma_hcd_device *bcma_hcd) { struct bcma_device *core = bcma_hcd->core; struct bcma_chipinfo *ci = &core->bus->chipinfo; struct device *dev = &core->dev; bcma_core_enable(core, 0); if (ci->id == BCMA_CHIP_ID_BCM4707 || ci->id == BCMA_CHIP_ID_BCM53018) bcma_hcd_usb20_ns_init_hc(core); of_platform_default_populate(dev->of_node, NULL, dev); return 0; } static void bcma_hci_platform_power_gpio(struct bcma_device *dev, bool val) { struct bcma_hcd_device *usb_dev = bcma_get_drvdata(dev); if (!usb_dev->gpio_desc) return; gpiod_set_value(usb_dev->gpio_desc, val); } static const struct usb_ehci_pdata ehci_pdata = { }; static const struct usb_ohci_pdata ohci_pdata = { }; static struct platform_device *bcma_hcd_create_pdev(struct bcma_device *dev, const char *name, u32 addr, const void *data, size_t size) { struct platform_device *hci_dev; struct resource hci_res[2]; int ret; memset(hci_res, 0, sizeof(hci_res)); hci_res[0].start = addr; hci_res[0].end = hci_res[0].start + 0x1000 - 1; hci_res[0].flags = IORESOURCE_MEM; hci_res[1].start = dev->irq; hci_res[1].flags = IORESOURCE_IRQ; hci_dev = platform_device_alloc(name, 0); if (!hci_dev) return ERR_PTR(-ENOMEM); hci_dev->dev.parent = &dev->dev; hci_dev->dev.dma_mask = &hci_dev->dev.coherent_dma_mask; ret = platform_device_add_resources(hci_dev, hci_res, ARRAY_SIZE(hci_res)); if (ret) goto err_alloc; if (data) ret = platform_device_add_data(hci_dev, data, size); if (ret) goto err_alloc; ret = platform_device_add(hci_dev); if (ret) goto err_alloc; return hci_dev; err_alloc: platform_device_put(hci_dev); return ERR_PTR(ret); } static int bcma_hcd_usb20_init(struct bcma_hcd_device *usb_dev) { struct bcma_device *dev = usb_dev->core; struct bcma_chipinfo *chipinfo = &dev->bus->chipinfo; u32 ohci_addr; int err; if (dma_set_mask_and_coherent(dev->dma_dev, DMA_BIT_MASK(32))) return -EOPNOTSUPP; bcma_hcd_init_chip_mips(dev); /* In AI chips EHCI is addrspace 0, OHCI is 1 */ ohci_addr = dev->addr_s[0]; if ((chipinfo->id == BCMA_CHIP_ID_BCM5357 || chipinfo->id == BCMA_CHIP_ID_BCM4749) && chipinfo->rev == 0) ohci_addr = 0x18009000; usb_dev->ohci_dev = bcma_hcd_create_pdev(dev, "ohci-platform", ohci_addr, &ohci_pdata, sizeof(ohci_pdata)); if (IS_ERR(usb_dev->ohci_dev)) return PTR_ERR(usb_dev->ohci_dev); usb_dev->ehci_dev = bcma_hcd_create_pdev(dev, "ehci-platform", dev->addr, &ehci_pdata, sizeof(ehci_pdata)); if (IS_ERR(usb_dev->ehci_dev)) { err = PTR_ERR(usb_dev->ehci_dev); goto err_unregister_ohci_dev; } return 0; err_unregister_ohci_dev: platform_device_unregister(usb_dev->ohci_dev); return err; } static int bcma_hcd_usb30_init(struct bcma_hcd_device *bcma_hcd) { struct bcma_device *core = bcma_hcd->core; struct device *dev = &core->dev; bcma_core_enable(core, 0); of_platform_default_populate(dev->of_node, NULL, dev); return 0; } static int bcma_hcd_probe(struct bcma_device *core) { int err; struct bcma_hcd_device *usb_dev; /* TODO: Probably need checks here; is the core connected? */ usb_dev = devm_kzalloc(&core->dev, sizeof(struct bcma_hcd_device), GFP_KERNEL); if (!usb_dev) return -ENOMEM; usb_dev->core = core; usb_dev->gpio_desc = devm_gpiod_get_optional(&core->dev, "vcc", GPIOD_OUT_HIGH); if (IS_ERR(usb_dev->gpio_desc)) return dev_err_probe(&core->dev, PTR_ERR(usb_dev->gpio_desc), "error obtaining VCC GPIO"); switch (core->id.id) { case BCMA_CORE_USB20_HOST: if (IS_ENABLED(CONFIG_ARM)) err = bcma_hcd_usb20_old_arm_init(usb_dev); else if (IS_ENABLED(CONFIG_MIPS)) err = bcma_hcd_usb20_init(usb_dev); else err = -ENOTSUPP; break; case BCMA_CORE_NS_USB20: err = bcma_hcd_usb20_ns_init(usb_dev); break; case BCMA_CORE_NS_USB30: err = bcma_hcd_usb30_init(usb_dev); break; default: return -ENODEV; } if (err) return err; bcma_set_drvdata(core, usb_dev); return 0; } static void bcma_hcd_remove(struct bcma_device *dev) { struct bcma_hcd_device *usb_dev = bcma_get_drvdata(dev); struct platform_device *ohci_dev = usb_dev->ohci_dev; struct platform_device *ehci_dev = usb_dev->ehci_dev; if (ohci_dev) platform_device_unregister(ohci_dev); if (ehci_dev) platform_device_unregister(ehci_dev); bcma_core_disable(dev, 0); } static void bcma_hcd_shutdown(struct bcma_device *dev) { bcma_hci_platform_power_gpio(dev, false); bcma_core_disable(dev, 0); } #ifdef CONFIG_PM static int bcma_hcd_suspend(struct bcma_device *dev) { bcma_hci_platform_power_gpio(dev, false); bcma_core_disable(dev, 0); return 0; } static int bcma_hcd_resume(struct bcma_device *dev) { bcma_hci_platform_power_gpio(dev, true); bcma_core_enable(dev, 0); return 0; } #else /* !CONFIG_PM */ #define bcma_hcd_suspend NULL #define bcma_hcd_resume NULL #endif /* CONFIG_PM */ static const struct bcma_device_id bcma_hcd_table[] = { BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_USB20_HOST, BCMA_ANY_REV, BCMA_ANY_CLASS), BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_USB20, BCMA_ANY_REV, BCMA_ANY_CLASS), BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_USB30, BCMA_ANY_REV, BCMA_ANY_CLASS), {}, }; MODULE_DEVICE_TABLE(bcma, bcma_hcd_table); static struct bcma_driver bcma_hcd_driver = { .name = KBUILD_MODNAME, .id_table = bcma_hcd_table, .probe = bcma_hcd_probe, .remove = bcma_hcd_remove, .shutdown = bcma_hcd_shutdown, .suspend = bcma_hcd_suspend, .resume = bcma_hcd_resume, }; module_bcma_driver(bcma_hcd_driver);
linux-master
drivers/usb/host/bcma-hcd.c